Science.gov

Sample records for agalactiae streptococcus pneumoniae

  1. Streptococcus iniae and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  2. Streptococcus agalactiae mastitis: a review.

    PubMed Central

    Keefe, G P

    1997-01-01

    Streptococcus agalactiae continues to be a major cause of subclinical mastitis in dairy cattle and a source of economic loss for the industry. Veterinarians are often asked to provide information on herd level control and eradication of S. agalactiae mastitis. This review collects and collates relevant publications on the subject. The literature search was conducted in 1993 on the Agricola database. Articles related to S. agalactiae epidemiology, pathogen identification techniques, milk quality consequences, and control, prevention, and therapy were included. Streptococcus agalactiae is an oblique parasite of the bovine mammary gland and is susceptible to treatment with a variety of antibiotics. Despite this fact, where state or provincial census data are available, herd prevalence levels range from 11% (Alberta, 1991) to 47% (Vermont, 1985). Infection with S. agalactiae is associated with elevated somatic cell count and total bacteria count and a decrease in the quantity and quality of milk products produced. Bulk tank milk culture has, using traditional milk culture techniques, had a low sensitivity for identifying S. agalactiae at the herd level. New culture methods, using selective media and large inocula, have substantially improved the sensitivity of bulk tank culture. Efficacy of therapy on individual cows remains high. Protocols for therapy of all infected animals in a herd are generally successful in eradicating the pathogen from the herd, especially if they are followed up with good udder hygiene techniques. PMID:9220132

  3. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  4. Streptococcus agalactiae Toxic Shock-Like Syndrome

    PubMed Central

    Al Akhrass, Fadi; Abdallah, Lina; Berger, Steven; Hanna, Rami; Reynolds, Nina; Thompson, Shellie; Hallit, Rabih; Schlievert, Patrick M.

    2013-01-01

    Abstract We present 2 patients with Streptococcus agalactiae toxic shock-like syndrome and review another 11 well-reported cases from the literature. Streptococcal toxic shock-like syndrome is a devastating illness with a high mortality rate, therefore we stress the importance of early supportive management, antimicrobial therapy, and surgical intervention. Toxic shock-like syndrome is likely to be underestimated in patients with invasive Streptococcus agalactiae infection who present with shock. Early diagnosis requires high suspicion of the illness, along with a thorough mucocutaneous examination. Streptococcus agalactiae produces uncharacterized pyrogenic toxins, which explains the ability of the organism to cause toxic shock-like syndrome. PMID:23263717

  5. DNA Microarray-Based Typing of Streptococcus agalactiae Isolates

    PubMed Central

    Nitschke, Heike; Slickers, Peter; Müller, Elke; Ehricht, Ralf

    2014-01-01

    Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as alleles of the alpha-like protein or capsule types, vary independently of each other, and they also vary independently from the affiliation to their multilocus sequence typing (MLST)-defined sequence types. Thus, it is not possible to assign isolates to sequence types based on the identification of a single distinct marker, such as a capsule type or alp allele. This suggests the occurrence of frequent genomic recombination. For array-based typing, a set of 11 markers (bac, alp, pil1 locus, pepS8, fbsB, capsule locus, hylB, abiG-I/-II plus Q8DZ34, pil2 locus, nss plus srr plus rogB2, and rgfC/A/D/B) was defined that provides a framework for splitting the tested 448 S. agalactiae isolates into 76 strains that clustered mainly according to MLST-defined clonal complexes. There was evidence for region- and host-specific differences in the population structure of S. agalactiae, as well as an overrepresentation of strains related to sequence type 17 among the invasive isolates. The arrays and typing scheme described here proved to be a convenient tool for genotyping large numbers of clinical/veterinary isolates and thus might help obtain insight into the epidemiology of S. agalactiae. PMID:25165085

  6. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae

    PubMed Central

    Dehbashi, Sanaz; Pourmand, Mohammad Reza; Mashhadi, Rahil

    2016-01-01

    Background and Objectives: Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated. Materials and Methods: The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated. Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity. Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host. PMID:27092228

  7. Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy.

    PubMed

    Pasnik, D J; Evans, J J; Panangala, V S; Klesius, P H; Shelby, R A; Shoemaker, C A

    2005-04-01

    Streptococcus agalactiae is a major bacterial pathogen that is the cause of serious economic losses in many species of freshwater, marine and estuarine fish worldwide. A highly efficacious S. agalactiae vaccine was developed using extracellular products (ECP) and formalin-killed whole cells of S. agalactiae. The vaccine efficacy following storage of S. agalactiae ECP and formalin-killed S. agalactiae cells at 4 degrees C for 1 year was determined. The stored ECP containing S. agalactiae formalin-killed cells failed to prevent morbidity and mortality among the vaccinated fish, and the relative percentage survival was 29. Serum antibody responses of the stored ECP and freshly prepared ECP against soluble whole cell extract of S. agalactiae indicated that significantly less antibody was produced in fish immunized with stored ECP and S. agalactiae cells than in those fish immunized with freshly prepared ECP and S. agalactiae cells at day 31 post-vaccination. Silver staining of sodium dodecyl sulphate-polyacrylamide gels and immunostaining of Western blots with tilapia antiserum to S. agalactiae revealed that predominant 54 and 55 kDa bands were present in the freshly prepared ECP fraction. The 55 kDa band was absent from the stored ECP and new bands below 54 kDa appeared on the Western blot. The results of this study on S. agalactiae ECP provide evidence for a correlation between protection and antibody production to ECP and for the importance of the 55 kDa ECP antigen for vaccine efficacy.

  8. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus).

    PubMed

    Evans, Joyce J; Klesius, Phillip H; Pasnik, David J; Bohnsack, John F

    2009-05-01

    Streptococcus agalactiae, the Lancefield group B streptococcus (GBS) long recognized as a mammalian pathogen, is an emerging concern with regard to fish. We show that a GBS serotype Ia multilocus sequence type ST-7 isolate from a clinical case of human neonatal meningitis caused disease and death in Nile tilapia (Oreochromis niloticus).

  9. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), long recognized as a mammalian pathogen, is an emerging pathogen to fish. We show that a GBS serotype Ia, multilocus sequence type ST-7 isolate from a human neonatal meningitis clinical case causes disease signs and mortality in N...

  10. Streptococcus agalactiae Native Valve Endocarditis: Uncommon Presentation of Multiple Myeloma.

    PubMed

    Pinho Oliveira, Ana; Delgado, Anne; Martins, Cláudia; Gama, Pedro

    2016-08-01

    Adults with chronic immunosuppressive conditions are at an increased risk for Streptococcus agalactiae endocarditis, which is typically characterized by acute onset, presence of large vegetations, rapid valvular destruction and frequent complications. We report a rare case of a 74 years old man presenting with fever, renal infarction, ischemic stroke and uveitis. Infective endocarditis was diagnosed and Streptococcus agalactiae was isolated in blood cultures. A multiple myeloma Ig G-K was also diagnosed. The infective endocarditis was successfully treated with a course of benzylpenicillin and gentamicin. The authors highlight the severity of vascular embolic disease present in this case and the diagnostic challenge. They also intend to remind about the association between Streptococcus agalactiae endocarditis and chronic diseases, despite its low reported prevalence.

  11. Specific detection by PCR of Streptococcus agalactiae in milk.

    PubMed

    Martinez, G; Harel, J; Gottschalk, M

    2001-01-01

    The aim of this study was to develop a simple and specific method for direct detection of Streptococcus agalactiae from cow's milk. The method was based on polymerase chain reaction (PCR) using species-specific and universal primers derived from the 16S rRNA gene. The amplification product was verified by restriction endonuclease digest and sequencing. Specific identification was proven on a collection of 147 S. agalactiae isolates of bovine and human origin. In addition, 17 strains belonging to different bacterial species that potentially can be found in milk samples also tested negative. The PCR developed was used for direct detection of S. agalactiae in milk, using for the first time with gram-positive bacteria the nucleic acid-binding properties of diatomaceous earth. The test, which has high specificity, high sensitivity (100 cfu/mL), and can be carried out in less than 24 h, represents an innovative diagnostic tool for the detection of S. agalactiae in milk.

  12. Human Streptococcus agalactiae strains in aquatic mammals and fish

    PubMed Central

    2013-01-01

    Background In humans, Streptococcus agalactiae or group B streptococcus (GBS) is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods Isolates from fish (n = 26), seals (n = 6), a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST) 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host-associated genome content of S

  13. Pigment Production by Streptococcus agalactiae in Quasi-Defined Media

    PubMed Central

    Rosa-Fraile, Manuel; Sampedro, Antonio; Rodríguez-Granger, Javier; García-Peña, Maria Luisa; Ruiz-Bravo, Alfonso; Haïdour, Ali

    2001-01-01

    A quasi-defined medium that supports the growth of Streptococcus agalactiae as pigmented colonies has been developed. The medium contains starch, a peptic digest of albumin, amino acids, nucleosides, vitamins, and salts. The presence of free cysteine, which could be replaced with other sulphur-containing compounds and to a lesser degree by reducing agents, was required for pigment formation. PMID:11133484

  14. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  15. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.

    PubMed

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.

  16. Neonatal necrotizing fasciitis of the scrotum caused by Streptococcus agalactiae.

    PubMed

    Kuroda, Junpei; Inoue, Nobuaki; Satoh, Hiroyuki; Fukuzawa, Ryuji; Terakawa, Toshiro; Hasegawa, Yukihiro

    2015-04-01

    We herein describe the case of a 27-day-old male infant who was brought to the emergency room for intermittent crying, and swelling of the left scrotum. Based on the clinical findings, necrotizing fasciitis was suspected, and surgical intervention was successfully completed within a few hours of admission. Streptococcus agalactiae type Ia was cultured from the drained abscess, and was considered the causative pathogen. To our knowledge, this is the first report of neonatal necrotizing fasciitis caused by S. agalactiae. Prompt diagnosis and immediate surgical debridement are crucial in the initial management of this disease.

  17. Streptococcus pneumoniae, le transformiste.

    PubMed

    Johnston, Calum; Campo, Nathalie; Bergé, Matthieu J; Polard, Patrice; Claverys, Jean-Pierre

    2014-03-01

    Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Natural genetic transformation, which was discovered in this species, involves internalization of exogenous single-stranded DNA and its incorporation into the chromosome. It allows acquisition of pathogenicity islands and antibiotic resistance and promotes vaccine escape via capsule switching. This opinion article discusses how recent advances regarding several facets of pneumococcal transformation support the view that the process has evolved to maximize plasticity potential in this species, making the pneumococcus le transformiste of the bacterial kingdom and providing an advantage in the constant struggle between this pathogen and its host.

  18. Clinical analysis of cases of neonatal Streptococcus agalactiae sepsis.

    PubMed

    Zeng, S J; Tang, X S; Zhao, W L; Qiu, H X; Wang, H; Feng, Z C

    2016-06-17

    With the advent of antibiotic resistance, pathogenic bacteria have become a major threat in cases of neonatal sepsis; however, guidelines for treatment have not yet been standardized. In this study, 15 cases of neonatal Streptococcus agalactiae sepsis from our hospital were retrospectively analyzed. Of these, nine cases showed early-onset and six cases showed late-onset sepsis. Pathogens were characterized by genotyping and antibiotic sensitivity tests on blood cultures. Results demonstrated that in cases with early-onset sepsis, clinical manifestations affected mainly the respiratory tract, while late-onset sepsis was accompanied by intracranial infection. Therefore, we suggest including a cerebrospinal fluid examination when diagnosing neonatal sepsis. Bacterial genotyping indicated the bacteria were mainly type Ib, Ia, and III S. agalactiae. We recommend treatment with penicillin or ampicillin, since bacteria were resistant to clindamycin and tetracycline. In conclusion, our results provide valuable information for the clinical treatment of S. agalactiae sepsis in neonatal infants.

  19. Development of primer sets for loop-mediated isothermal amplification that enables rapid and specific detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...

  20. Complete genome sequence of an attenuated Sparfloxacin resistant Streptococcus agalactiae strain 138spar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...

  1. Molecular Characterization of Type-Specific Capsular Polysaccharide Biosynthesis Genes of Streptococcus agalactiae Type Ia

    PubMed Central

    Yamamoto, Shin; Miyake, Katsuhide; Koike, Yoichi; Watanabe, Masaki; Machida, Yuichi; Ohta, Michio; Iijima, Shinji

    1999-01-01

    The type-specific capsular polysaccharide (CP) of a group B streptococcus, Streptococcus agalactiae type Ia, is a high-molecular-weight polymer consisting of the pentasaccharide repeating unit 4)-[α-d-NeupNAc-(2→3)-β-d-Galp-(1→4)-β-d-GlcpNAc-(1→3)]-β-d-Galp-(1→4)-β-d-Glcp-(1. Here, cloning, sequencing, and transcription of the type Ia-specific capsular polysaccharide synthesis (cps) genes and functional analysis of these gene products are described. A 26-kb DNA fragment containing 18 complete open reading frames (ORFs) was cloned. These ORFs were designated cpsIaA to cpsIaL, neu (neuraminic acid synthesis gene) A to D, orf1 and ung (uracil DNA glycosylase). The cps gene products of S. agalactiae type Ia were homologous to proteins involved in CP synthesis of S. agalactiae type III and S. pneumoniae serotype 14. Unlike the cps gene cluster of S. pneumoniae serotype 14, transcription of this operon may start from cpsIaA, cpsIaE, and orf1 because putative promoter sequences were found in front of these genes. Northern hybridization, reverse transcription-PCR, and primer extension analyses supported this hypothesis. DNA sequence analysis showed that there were two transcriptional terminators in the 3′ end of this operon (downstream of orf1 and ung). The functions of CpsIaE, CpsIaG, CpsIaI, and CpsIaJ were examined by glycosyltransferase assay by using the gene products expressed in Escherichia coli JM109 harboring plasmids containing various S. agalactiae type Ia cps gene fragments. Enzyme assays suggested that the gene products of cpsIaE, cpsIaG, cpsIaI, and cpsIaJ are putative glucosyltransferase, β-1,4-galactosyltransferase, β-1,3-N-acetylglucosaminyltransferase, and β-1,4-galactosyltransferase, respectively. PMID:10464185

  2. Spring forward with improved Nile tilapia Oreochromis niloticus resistant to Streptococcus iniae and Streptococcus agalactiae IB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia aquaculture worldwide is valued around US $ 7 billion. Tilapia are an important source of protein for domestic (top 5 most consumed seafoods) and global food security. Two gram postitive bacteria, Streptococcus iniae and S. agalactiae, are responsible for billion dollar losses annually. Gen...

  3. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections.

    PubMed

    Leelahapongsathon, Kansuda; Schukken, Ynte Hein; Pinyopummintr, Tanu; Suriyasathaporn, Witaya

    2016-02-01

    The objectives of study were to determine the transmission parameters (β), durations of infection, and basic reproductive numbers (R0) of both Streptococcus agalactiae and Streptococcus uberis as pathogens causing mastitis outbreaks in dairy herds. A 10-mo longitudinal study was performed using 2 smallholder dairy herds with mastitis outbreaks caused by Strep. agalactiae and Strep. uberis, respectively. Both herds had poor mastitis control management and did not change their milking management during the entire study period. Quarter milk samples were collected at monthly intervals from all lactating animals in each herd for bacteriological identification. The durations of infection for Strep. uberis intramammary infection (IMI) and Strep. agalactiae IMI were examined using Kaplan-Meier survival curves, and the Kaplan-Meier survival functions for Strep. uberis IMI and Strep. agalactiae IMI were compared using log rank survival-test. The spread of Strep. uberis and Strep. agalactiae through the population was determined by transmission parameter, β, the probability per unit of time that one infectious quarter will infect another quarter, assuming that all other quarters are susceptible. For the Strep. uberis outbreak herd (31 cows), 56 new infections and 28 quarters with spontaneous cure were observed. For the Strep. agalactiae outbreak herd (19 cows), 26 new infections and 9 quarters with spontaneous cure were observed. The duration of infection for Strep. agalactiae (mean=270.84 d) was significantly longer than the duration of infection for Strep. uberis (mean=187.88 d). The transmission parameters (β) estimated (including 95% confidence interval) for Strep. uberis IMI and Strep. agalactiae IMI were 0.0155 (0.0035-0.0693) and 0.0068 (0.0008-0.0606), respectively. The R0 (including 95% confidence interval) during the study were 2.91 (0.63-13.47) and 1.86 (0.21-16.61) for Strep. uberis IMI and Strep. agalactiae IMI, respectively. In conclusion, the transmission

  4. ANTIMICROBIAL SUSCEPTIBILITY OF Streptococcus agalactiae ISOLATED FROM PREGNANT WOMEN

    PubMed Central

    de MELO, Simone Cristina Castanho Sabaini; SANTOS, Nathally Claudiane de Souza; de OLIVEIRA, Marcia; SCODRO, Regiane Bertin de Lima; CARDOSO, Rosilene Fressatti; PÁDUA, Rúbia Andreia Falleiros; SILVA, Flavia Teixeira Ribeiro; COSTA, Aline Balandis; CARVALHO, Maria Dalva de Barros; PELLOSO, Sandra Marisa

    2016-01-01

    SUMMARY Introduction: Group B streptococcus (GBS) or Streptococcus agalactiae can colonize the gastrointestinal and genitourinary tracts and has been considered one of the most important risk factors for the development of neonatal disease. The present study evaluated the antimicrobial susceptibility of GBS isolates from pregnant women who were attended at a public health service in Northern Paraná, Brazil. Methods: A descriptive analytical cross-sectional study was performed with 544 pregnant women, at ≥ 35 weeks of gestation. One hundred and thirty-six GBS isolates from pregnant women were tested for antimicrobial susceptibility. Results: All of the GBS isolates showed susceptibility to the drug that is most frequently used for intrapartum prophylaxis: penicillin. Resistance to clindamycin and erythromycin was detected, thus decreasing the options of prophylaxis in women who are allergic to penicillin. Conclusions: Additional studies should be conducted to increase the knowledge of GBS sensitivity profile to antimicrobials in other health centers. PMID:27828624

  5. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from diseased Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae strain 138P was isolated from the kidney of diseased Nile tilapia in Idaho during a 2007 streptococcal disease outbreak. The full genome of S. agalactiae 138P is 1,838,716 bp. The availability of this genome will allow comparative genomics to identify genes for antigen disco...

  6. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  7. Evaluation of nine teat dip formulations under experimental challenge to staphylococcus aureus and streptococcus agalactiae.

    PubMed

    Pankey, J W; Philpot, W N; Boddie, R L; Watts, J L

    1983-01-01

    Nine postmilking teat dips were evaluated by an experimental challenge model against either Staphylococcus aureus, Streptococcus agalactiae, or both. Formulations containing .9 and .6% sodium hypochlorite, 1% sodium dichloro-s-triazene-trione, .55% chlorhexidine gluconate, and .35% povidone iodine reduced incidence of Staphylococcus aureus infections 56.8, 28.3, 75.9, 92.5, and 77.9%. Incidence of infections with Streptococcus agalactiae was reduced 48.1 and 63.2% by 1.7 and 1% sodium dichloro-s-triazene-trione formulations. The 1% chlorhexidine gluconate and .35% povidone iodine products reduced Streptococcus agalactiae infections 71.0 and 67.0%. Three experimental 1% iodophor formulations reduced Streptococcus agalactiae infections 28.9, 44.8, and 50.7%. The experimental challenge model was refined further and provided an efficient method to determine efficacy of postmilking teat dips.

  8. Proteomic Biomarkers Associated with Streptococcus agalactiae Invasive Genogroups

    PubMed Central

    Lanotte, Philippe; Perivier, Marylise; Haguenoer, Eve; Mereghetti, Laurent; Burucoa, Christophe; Claverol, Stéphane; Atanassov, Christo

    2013-01-01

    Group B streptococcus (GBS, Streptococcus agalactiae) is a leading cause of meningitis and sepsis in newborns and an etiological agent of meningitis, endocarditis, osteoarticular and soft tissue infections in adults. GBS isolates are routinely clustered in serotypes and in genotypes. At present one GBS sequence type (i.e. ST17) is considered to be closely associated with bacterial invasiveness and novel proteomic biomarkers could make a valuable contribution to currently available GBS typing data. For that purpose we analyzed the protein profiles of 170 genotyped GBS isolates by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI). Univariate statistical analysis of the SELDI profiles identified four protein biomarkers significantly discriminating ST17 isolates from those of the other sequence types. Two of these biomarkers (MW of 7878 Da and 12200 Da) were overexpressed and the other two (MW of 6258 Da and 10463 Da) were underexpressed in ST17. The four proteins were isolated by mass spectrometry-assisted purification and their tryptic peptides analyzed by LC-MS/MS. They were thereby identified as the small subunit of exodeoxyribonuclease VII, the 50S ribosomal protein L7/L12, a CsbD-like protein and thioredoxin, respectively. In conclusion, we identified four candidate biomarkers of ST17 by SELDI for high-throughput screening. These markers may serve as a basis for further studies on the pathophysiology of GBS infection, and for the development of novel vaccines. PMID:23372719

  9. Macrolide Resistance in Streptococcus pneumoniae

    PubMed Central

    Schroeder, Max R.; Stephens, David S.

    2016-01-01

    Streptococcus pneumoniae is a common commensal and an opportunistic pathogen. Suspected pneumococcal upper respiratory infections and pneumonia are often treated with macrolide antibiotics. Macrolides are bacteriostatic antibiotics and inhibit protein synthesis by binding to the 50S ribosomal subunit. The widespread use of macrolides is associated with increased macrolide resistance in S. pneumoniae, and the treatment of pneumococcal infections with macrolides may be associated with clinical failures. In S. pneumoniae, macrolide resistance is due to ribosomal dimethylation by an enzyme encoded by erm(B), efflux by a two-component efflux pump encoded by mef (E)/mel(msr(D)) and, less commonly, mutations of the ribosomal target site of macrolides. A wide array of genetic elements have emerged that facilitate macrolide resistance in S. pneumoniae; for example erm(B) is found on Tn917, while the mef (E)/mel operon is carried on the 5.4- or 5.5-kb Mega element. The macrolide resistance determinants, erm(B) and mef (E)/mel, are also found on large composite Tn916-like elements most notably Tn6002, Tn2009, and Tn2010. Introductions of 7-valent and 13-valent pneumococcal conjugate vaccines (PCV-7 and PCV-13) have decreased the incidence of macrolide-resistant invasive pneumococcal disease, but serotype replacement and emergence of macrolide resistance remain an important concern. PMID:27709102

  10. [Streptococcus agalactiae (GBS)--the characteristic of isolated strains from productive women's vagina].

    PubMed

    Wolny, Katarzyna; Gołda-Matuszak, Ewa

    2010-01-01

    The main aim of my research: to determine the frequency of colonisation Streptococcus agalactiae from productive women's vagina, an evaluation of usefulness microbiological diagnostic methods to detect GBS, to define serotype of analysed strains of S. agalactiae. After all, I tried to define fenotypic differential, biochemical and antimicrobial susceptibility between GBS with and without hemolysis. All of strains S. agalactiae (n = 380) belong to bacteria Gram(+), they had B serologic group and didn't produce catalase. On the basis of TSA+5% sheep blood streptococcus with beta-hemolysis grew like a small, grey and shiny colonies with a narrow, bright ring. On the same base we had S. agalactiae without beta-hemolysis, in examine material--6% (n = 22). On the basis of Strepto B ID S. agalactiae grew like a small, round red colonies and on the base Granada agar like an orange, white colonies. The level of colonisation S. agalactiae was 22% (380GBS/1727women). Identification of analysed strains of S. agalactiae was made by test API 20 Strep. The susceptibility was examined to ampicilin, azithromycin, erythromycin, clindamycin, chloramphenicol, doxycyclin, cotrimoxasol, ciprofloxacin. Serotypes III (50%), Ia (18%) and V (14%) prevailed.

  11. Identification of a novel insertion sequence element in Streptococcus agalactiae. bspeller@imib.rwth-aachen.de.

    PubMed

    Spellerberg, B; Martin, S; Franken, C; Berner, R; Lütticken, R

    2000-01-04

    Gain and loss of bacterial pathogenicity is often associated with mobile genetic elements. A novel insertion sequence (IS) element designated ISSa4 was identified in Streptococcus agalactiae (group B streptococci). The 963bp IS element is flanked by 25bp perfect inverted repeats and led to the duplication of a 9bp target sequence at the insertion site. ISSa4 contains one open reading frame coding for a putative transposase of 287 aa and exhibits closest similarities to insertion elements of the IS982 family which has previously not been identified in streptococci. Analysis of different S. agalactiae strains showed that the copy number of ISSa4 in S. agalactiae varies significantly between strains. The S. agalactiae strain with the highest copy number of ISSa4 was nonhemolytic and harbored one copy inserted in cylB, which encodes the membrane-spanning domain of the putative hemolysin transporter (Spellerberg et al., 1999. Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition. J. Bacteriol. 181, 3212-3219). Determination of the distribution of ISSa4 in different S. agalactiae strains revealed that ISSa4 could be detected only in strains isolated after 1996, which might indicate a recent acquisition of this novel insertion element by S. agalactiae.

  12. Structure of a conjugative element in Streptococcus pneumoniae

    SciTech Connect

    Vijayakumar, M.N.; Priebe, S.D.; Guild, W.R.

    1986-06-01

    The authors have cloned and mapped a 69-kilobase (kb) region of the chromosome of Streptococcus pneumoniae DP1322, which carries the conjugative Omega(cat-tet) insertion from S. pneumoniae BM6001. This element proved to be 65.5 kb in size. Location of the junctions was facilitated by cloning a preferred target region from the wild-type strain Rx1 recipient genome. This target site was preferred by both the BM6001 element and the cat-erm-tet element from Streptococcus agalactiae B109. Within the BM6001 element cat and tet were separated by 30 kb, and cat was flanked by two copies of a sequence that was also present in the recipient strain Rx1 DNA. Another sequence at least 2.4 kb in size was found inside the BM6001 element and at two places in the Rx1 genome. Its role is unknown. The ends of the BM6001 element appear to be the same as those of the B109 element, both as seen after transfer to S. pneumoniae and as mapped by others in pDP5 after transposition in Streptococcus faecalis. No homology is seen between the ends of the BM6001 element and no evidence found suggesting that it ever circularizes.

  13. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence.

    PubMed

    Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing

    2014-05-14

    Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new

  14. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  15. Identification of immunoreactive proteins of Streptococcus agalactiae isolated from cultured tilapia in China.

    PubMed

    Liu, Guangjin; Zhang, Wei; Lu, Chengping

    2013-12-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is an important zoonotic pathogen that can cause lethal infections in humans and animals, including aquatic species. Immunoreactive proteins of the S. agalactiae strain, GD201008-001, isolated from cultured tilapia in China, were screened by immunoproteomics using hyperimmune sera, convalescent guinea pig sera and GD201008-001-infected tilapia antisera as primary detection antibodies. A total of 16 different proteins were identified including 13 novel immunoreactive proteins of S. agalactiae. Four proteins, serine-rich repeat glycoprotein 1, branched-chain alpha-keto acid dehydrogenase (BKD) subunit E2, 5'-nucleotidase family protein and ornithine carbamoyltransferase, were shown to react with the three types of sera and thus were considered to represent novel S. agalactiae vaccine candidate antigens. Our findings represent the basis for vaccine development for piscine S. agalactiae and are necessary for understanding virulence factors and immunogenicity of S. agalactiae with different hosts.

  16. Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes.

    PubMed

    Marini, Emanuela; Palmieri, Claudio; Magi, Gloria; Facinelli, Bruna

    2015-07-09

    Integrative conjugative elements (ICEs) are mobile genetic elements that reside in the chromosome but retain the ability to undergo excision and to transfer by conjugation. Genes involved in drug resistance, virulence, or niche adaptation are often found among backbone genes as cargo DNA. We recently characterized in Streptococcus suis an ICE (ICESsu32457) carrying resistance genes [tet(O/W/32/O), tet(40), erm(B), aphA, and aadE] in the 15K unstable genetic element, which is flanked by two ∼1.3kb direct repeats. Remarkably, ∼1.3-kb sequences are conserved in ICESa2603 of Streptococcus agalactiae 2603V/R, which carry heavy metal resistance genes cadC/cadA and mer. In matings between S. suis 32457 (donor) and S. agalactiae 2603V/R (recipient), transconjugants were obtained. PCR experiments, PFGE, and sequence analysis of transconjugants demonstrated a tandem array between ICESsu32457 and ICESa2603. Matings between tandem array-containing S. agalactiae 2603V/R (donor) and Streptococcus pyogenes RF12 (recipient) yielded a single transconjugant containing a hybrid ICE, here named ICESa2603/ICESsu32457. The hybrid formed by recombination of the left ∼1.3-kb sequence of ICESsu32457 and the ∼1.3-kb sequence of ICESa2603. Interestingly, the hybrid ICE was transferable between S. pyogenes strains, thus demonstrating that it behaves as a conventional ICE. These findings suggest that both tandem arrays and hybrid ICEs may contribute to the evolution of antibiotic resistance in streptococci, creating novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.

  17. Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae

    PubMed Central

    Joubert, Laetitia; Dagieu, Jean-Baptiste; Fernandez, Annabelle; Derré-Bobillot, Aurélie; Borezée-Durant, Elise; Fleurot, Isabelle; Gruss, Alexandra; Lechardeur, Delphine

    2017-01-01

    Heme is essential for several cellular key functions but is also toxic. Whereas most bacterial pathogens utilize heme as a metabolic cofactor and iron source, the impact of host heme during bacterial infection remains elusive. The opportunist pathogen Streptococcus agalactiae does not synthesize heme but still uses it to activate a respiration metabolism. Concomitantly, heme toxicity is mainly controlled by the HrtBA efflux transporter. Here we investigate how S. agalactiae manages heme toxicity versus benefits in the living host. Using bioluminescent bacteria and heme-responsive reporters for in vivo imaging, we show that the capacity of S. agalactiae to overcome heme toxicity is required for successful infection, particularly in blood-rich organs. Host heme is simultaneously required, as visualized by a generalized infection defect of a respiration-negative mutant. In S. agalactiae, HrtBA expression responds to an intracellular heme signal via activation of the two-component system HssRS. A hssRS promoter-driven intracellular luminescent heme sensor was designed to identify host compartments that supply S. agalactiae with heme. S. agalactiae acquires heme in heart, kidneys, and liver, but not in the brain. We conclude that S. agalactiae response to heme is organ-dependent, and its efflux may be particularly relevant in late stages of infection. PMID:28091535

  18. Identification of immunoreactive extracellular proteins of Streptococcus agalactiae in bovine mastitis.

    PubMed

    Trigo, Gabriela; Ferreira, Paula; Ribeiro, Niza; Dinis, Márcia; Andrade, Elva Bonifácio; Melo-Cristino, José; Ramirez, Mário; Tavares, Delfina

    2008-11-01

    Streptococcus agalactiae is a common pathogen that causes bovine mastitis. The aims of this study were to evaluate the antibody response against S. agalactiae extracellular proteins in the whey and serum of naturally infected bovines and to identify possible immunodominant extracellular antigens. IgG1 antibodies against S. agalactiae extracellular proteins were elevated in the whey and serum of naturally infected bovines. In the whey, the levels of IgG1 specific for S. agalactiae extracellular proteins were similar in infected and noninfected milk quarters from the same cow, and the production of antibodies specific for S. agalactiae extracellular proteins was induced only by infection with this bacterium. The immunoreactivity of extracellular proteins with bovine whey was clearly different in infected versus control animals. Group B protective surface protein and 5'-nucleotidase family protein were 2 major immunoreactive proteins that were detected only in the whey of infected cows, suggesting that these proteins may be important in the pathogenesis of S. agalactiae-induced mastitis. This information could be used to diagnose S. agalactiae infection. In addition, these antigens may be useful as carrier proteins for serotype-specific polysaccharides in conjugate vaccines.

  19. [Vertebral osteomyelitis caused by Streptococcus agalactiae in healthy adults. Description of 2 new cases].

    PubMed

    Rivero Marcotegui, M; Hidalgo Ovejero, A; Lecumberri, M Cía; Otermin Maya, I; Pereda García, A

    2009-10-01

    The importance of Streptococcus agalactiae as a pathogen in nonpregnant adults has been widely recognized in recent years, especially in the elderly or immunocompromised patients. Two cases of vertebral osteomyelitis caused by S. agalactiae in young patients with no known underlying diseases or predisposing factor to infection are reported. A systematic review of the literature (MEDLINE, 1976-May 2008) was performed, 10 cases previously reported in the literature of vertebral osteomyelitis due to S. agalactiae being found in adults under 65 years of age with no predisposing risk factors for infection, most of which have been reported over the last 10 years. We believe that this microbial etiology should be considered in patients of any age and immunological status. Other factors, other than increasing the number of patients with chronic diseases, explaining the increased rate of S. agalactiae infections in adults need to be studied.

  20. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from disease Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of a virulent Streptococcus agalactiae strain 138P is 1838701 bp in size, containing 1831 genes. The genome has 1593 coding sequences, 152 pseudo genes, 16 rRNAs, 69 tRNAs, and 1 non-coding RNA. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipel...

  1. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  2. Draft Genome Sequence of an Attenuated Streptococcus agalactiae Strain Isolated from the Gut of a Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Yu, Angen; Lan, Jiangfeng; Zhang, Yulei; Zhang, Hua; Li, Yuhui; Hu, Minqiang; Cheng, Jiewei

    2017-01-01

    ABSTRACT Streptococcus agalactiae is a pathogen that causes severe anthropozoonosis within a broad range of hosts from aquatic animals to mammals, including human beings. Here, we describe the draft genome of S. agalactiae HZAUSC001, a low-virulent strain isolated from the gut of a moribund tilapia (Oreochromis niloticus) in China. PMID:28183773

  3. Phosphoglycerate kinase enhanced immunity of the whole cell of Streptococcus agalactiae in tilapia, Oreochromis niloticus.

    PubMed

    Wang, Yi-Ting; Huang, Hsing-Yen; Tsai, Ming-An; Wang, Pei-Chi; Jiang, Bo-Huang; Chen, Shih-Chu

    2014-12-01

    Streptococcus agalactiae is a Gram-positive bacterium and a severe aquaculture pathogen that can infect a wide range of warmwater fish species. The outer-surface proteins in bacterial pathogens play an important role in pathogenesis. We evaluated the immunogenicity of two of the identified surface proteins namely phosphoglycerate kinase (PGK) and ornithine carbamoyl-transferase (OCT). PGK and OCT were over-expressed and purified from Escherichia coli and used as the subunit vaccines in tilapia. Tilapia immunized with the S. agalactiae modified bacteria vaccine (whole cell preparations with recombinant PGK and OCT proteins) individually were tested for the efficacy. OCT and PGK combined with WC had a higher survival rate. A high-level protection and significant specific antibody responses against S. agalactiae challenge was observed upon the vaccinated tilapia with the purified PGK protein and S. agalactiae whole cells. The specific antibody titer against S. agalactiae antigen suggested that increased antibody titers were correlated with post-challenge survival rate. Il-1β expression profile was higher in PGK + WC-treated group. Tnf-α expression in the PGK + WC group was significantly increased. Taken together, our results suggested the combinations of recombinant protein and whole cell may elicit immune responses that reach greater protection than that of individual S. agalactiae components.

  4. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    SciTech Connect

    Kino, Kuniki . E-mail: kkino@waseda.jp; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-12

    Glutathione (GSH) is synthesized by {gamma}-glutamylcysteine synthetase ({gamma}-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed {gamma}-GCS-GS catalyzing both {gamma}-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the {gamma}-GCS activity, S. agalactiae {gamma}-GCS-GS had different substrate specificities from those of Escherichia coli {gamma}-GCS. Furthermore, S. agalactiae {gamma}-GCS-GS synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-X{sub aa}-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding {gamma}-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae {gamma}-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed {gamma}-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-Cys-X{sub aa}. Whereas the substrate specificities of {gamma}-GCS domain protein and GS domain protein of S. agalactiae {gamma}-GCS-GS were the same as those of S. agalactiae {gamma}-GCS-GS.

  5. Bacteremic pneumonia caused by extensively drug-resistant Streptococcus pneumoniae.

    PubMed

    Kang, Cheol-In; Baek, Jin Yang; Jeon, Kyeongman; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2012-12-01

    The emergence of antimicrobial resistance threatens the successful treatment of pneumococcal infections. Here we report a case of bacteremic pneumonia caused by an extremely drug-resistant strain of Streptococcus pneumoniae, nonsusceptible to at least one agent in all classes but vancomycin and linezolid, posing an important new public health threat in our region.

  6. Fluoroquinolone-resistant Streptococcus agalactiae isolates from Argentina.

    PubMed

    Faccone, D; Guerriero, L; Méndez, E; Errecalde, L; Cano, H; Yoyas, N; Togneri, A; Romanowski, V; Galas, M; Whonet, Red; Corso, A

    2010-01-01

    Fluoroquinolone resistance is a growing problem that has only recently emerged in S. agalactiae. Between 2005-2007, WHONET--Argentina network evaluated levofloxacin susceptibility in 1128 clinical S. agalactiae isolates, 10 (0.9%) of which proved to be resistant. Nine of them had come from 5 hospitals (in Buenos Aires City and 4 Argentinean provinces) and recovered from urine (n=7) and vaginal screening cultures (n=2). Three strains were also resistant to macrolides, lincosamides and B streptogramins due to the ermA gene. All nine fluoroquinolone-resistant isolates bore the same two mutations, Ser79Phe in ParC and Ser81Leu in GyrA proteins. Genetic relationships were analyzed by Apal-PFGE and two clones were determined, A (n=6) and B (n=3). To our knowledge, these are the first fluoroquinolone-resistant S. agalactiae isolates detected in Latin America.

  7. Development of an indirect ELISA for bovine mastitis using Sip protein of Streptococcus agalactiae.

    PubMed

    Bu, R E; Wang, J L; DebRoy, C; Wu, J H; Xi, L G W; Liu, Y; Shen, Z Q

    2015-01-01

    The sip gene encoding for a conserved highly immunogenic surface protein of Streptococcus agalactiae was amplified using polymerase chain reaction (PCR) and subcloned into prokaryotic expression vector pET32a (+) and expressed as a recombinant protein in E. coli BL21 (DE3). An indirect enzyme linked immunosorbent assay (ELISA) was developed using the purified Sip protein as a coating antigen, which could identify S. agalactiae specific antibody in sera. The coating antigen at a concentration of 3.125 μg/ml, serum diluted to 1:160, and HRP-conjugated secondary antibody concentration at 1:4000 was found to be most effective in exhibiting positive result. The ELISA was found to be highly specific for S. agalactiae that may be used for the detection of the pathogen in mastitis cases, for epidemiological studies and for surveillance.

  8. Experimental early pathogenesis of Streptococcus agalactiae infection in red tilapia Oreochromis spp.

    PubMed

    Iregui, C A; Comas, J; Vásquez, G M; Verján, N

    2016-02-01

    Streptococcus agalactiae causes a severe systemic disease in fish, and the routes of entry are still ill-defined. To address this issue, two groups of 33 red tilapia Oreochromis spp. each of 10 g were orally infected with S. agalactiae (n = 30), and by immersion (n = 30), six individuals were control-uninfected fish. Three tilapias were killed at each time point from 30 min to 96 h post-inoculation (pi); controls were killed at 96 h. Samples from most tissues were examined by haematoxylin-eosin (H&E), indirect immunoperoxidase (IPI) and periodic acid-Schiff; only intestine from fish infected by gavage was evaluated by transmission electron microscopy. The results of both experiments suggest that the main entry site of S. agalactiae in tilapia is the gastrointestinal epithelium; mucus seems to play an important defensive role, and environmental conditions may be an important predisposing factor for the infection.

  9. Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus).

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-05-01

    Six herbs were assessed for their antimicrobial activity against Streptococcus agalactiae, a major fish pathogen causing streptococcosis. Each herb was extracted with 3 solvents: water, 95% ethanol, and methanol. Using swab paper disc assays, aqueous extracts of Andrographis paniculata and Allium sativum produced the largest (27.5 mm) and smallest (10.3 mm) inhibition zones, respectively. Determination of minimal inhibitory concentration (MIC) of herb extracts against S. agalactiae showed that the aqueous extract of A. paniculata had the lowest MIC value (31.25 microg/mL). Aqueous extract of A. sativum was the only herb extract with a MIC > 500 microg/mL. Based on mortalities in 2 weeks after intraperitoneal S. agalactiae injection, the median lethal dose (LD(50)) of S. agalactiae for Nile tilapia (Oreochromis niloticus) was 3.79 x 10(5) CFU/mL. In vivo experiments showed that fish feed supplemented with either A. paniculata leaf powder or dried matter of A. paniculata aqueous extract reduced mortality of S. agalactiae infected Nile tilapia. In addition, no mortality was found in fish receiving dried matter of A. paniculata aqueous extract supplemented feeds at ratios (w/w) of 4:36 and 5:35. During 2 weeks of feeding with A. paniculata supplemented feeds, no adverse effects on appearance, behavior, or feeding responses were observed.

  10. Transcriptome profiling and digital gene expression analysis of Nile tilapia (Oreochromis niloticus) infected by Streptococcus agalactiae.

    PubMed

    Zhang, Rui; Zhang, Li-li; Ye, Xing; Tian, Yuan-yuan; Sun, Cheng-fei; Lu, Mai-xin; Bai, Jun-jie

    2013-10-01

    Tilapia is an important freshwater aquaculture species worldwide. In recent years, streptococcal diseases have severely threatened development of tilapia aquaculture, while effective prevention and control methods have not yet been established. In order to understand the immunological response of tilapia to infection by Streptococcus agalactiae (S. agalactiae), this study employed Solexa/Illumina RNA-seq and digital gene expression (DGE) technology to investigate changes in the tilapia transcriptome before and after S. agalactiae infection. We obtained 82,799 unigenes (mean size: 618 bp) using de novo assembly. Unigenes were annotated by comparing against databases including Nr, Swissprot, cluster of orthologous groups of proteins, Kyoto encyclopedia of genes and genomes, and gene ontology. Combined with DGE technology, transcriptomic changes in tilapia before and after bacteria challenging were examined. A total of 774 significantly up-regulated and 625 significantly down-regulated unigenes were identified, among which 293 were mapped to 181 signaling pathways including 17 immune-related pathways involving 65 differentially expressed genes. We observed a change in the expression of six genes in the Toll-like receptor signaling pathway, and this was subsequently confirmed via quantitative real-time PCR. This comparative study of the tilapia transcriptome before and after S. agalactiae infection identified important differentially-expressed immune-related genes and signaling pathways that will provide useful insights for further analysis of the mechanisms of tilapia defense against S. agalactiae infection.

  11. Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection

    NASA Astrophysics Data System (ADS)

    McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz

    1984-12-01

    A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.

  12. [Thousand faces of Streptococcus pneumonia (pneumococcus) infections].

    PubMed

    Szabó, Bálint Gergely; Lénárt, Katalin Szidónia; Kádár, Béla; Gombos, Andrea; Dezsényi, Balázs; Szanka, Judit; Bobek, Ilona; Prinz, Gyula

    2015-11-01

    Incidence and mortality rates of infections caused by Streptococcus pneumoniae (pneumococcus) are high worldwide and in Hungary among paediatric as well as adult populations. Pneumococci account for 35-40% of community acquired adult pneumonias requiring hospitalization, while 25-30% of Streptococcus pneumoniae pneumonias are accompanied by bacteraemia. 5-7% of all infections are fatal but this rate is exponentially higher in high risk patients and elderly people. Mortality could reach 20% among patients with severe invasive pneumococcal infections. Complications may develop despite administration of adequate antibiotics. The authors summarize the epidemiology of pneumococcal infections, pathogenesis of non-invasive and invasive disease and present basic clinical aspects through demonstration of four cases. Early risk stratification, sampling of hemocultures, administration of antibiotics and wider application of active immunization could reduce the mortality of invasive disease. Anti-pneumococcal vaccination is advisable for adults of ≥50 years and high risk patients of ≥18 years who are susceptible to pneumococcal disease.

  13. Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

    SciTech Connect

    Khare, B.; Krishnan, V.; Rajashankar, K.R.; I-Hsiu, H.; Xin, M.; Ton-That, H.; Narayana, S.V.

    2011-10-21

    The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.

  14. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316

    PubMed Central

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P21 and P212121, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  15. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  16. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    PubMed Central

    Wang, Deguo; Liu, Yanhong

    2015-01-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  17. Revisitingmolecular serotyping of Streptococcus pneumoniae

    PubMed Central

    2015-01-01

    Background Ninety-two Streptococcus pneumoniae serotypes have been described so far, but the pneumococcal conjugate vaccine introduced in the Brazilian basic vaccination schedule in 2010 covers only the ten most prevalent in the country. Pneumococcal serotype-shifting after massive immunization is a major concern and monitoring this phenomenon requires efficient and accessible serotyping methods. Pneumococcal serotyping based on antisera produced in animals is laborious and restricted to a few reference laboratories. Alternatively, molecular serotyping methods assess polymorphisms in the cps gene cluster, which encodes key enzymes for capsular polysaccharides synthesis in pneumococci. In one such approach, cps-RFLP, the PCR amplified cps loci are digested with an endonuclease, generating serotype-specific fingerprints on agarose gel electrophoresis. Methods In this work, in silico and in vitro approaches were combined to demonstrate that XhoII is the most discriminating endonuclease for cps-RFLP, and to build a database of serotype-specific fingerprints that accommodates the genetic diversity within the cps locus of 92 known pneumococci serotypes. Results The expected specificity of cps-RFLP using XhoII was 76% for serotyping and 100% for serogrouping. The database of cps-RFLP fingerprints was integrated to Molecular Serotyping Tool (MST), a previously published web-based software for molecular serotyping. In addition, 43 isolates representing 29 serotypes prevalent in the state of Minas Gerais, Brazil, from 2007 to 2013, were examined in vitro; 11 serotypes (nine serogroups) matched the respective in silico patterns calculated for reference strains. The remaining experimental patterns, despite their resemblance to their expected in silico patterns, did not reach the threshold of similarity score to be considered a match and were then added to the database. Conclusion The cps-RFLP method with XhoII outperformed the antisera-based and other molecular serotyping

  18. Discovery and Characterization of Human-Urine Utilization by Asymptomatic-Bacteriuria-Causing Streptococcus agalactiae

    PubMed Central

    Ipe, Deepak S.; Ben Zakour, Nouri L.; Sullivan, Matthew J.; Beatson, Scott A.; Ulett, Kimberly B.; Benjamin, William H.; Davies, Mark R.; Dando, Samantha J.; King, Nathan P.; Cripps, Allan W.; Dougan, Gordon

    2015-01-01

    Streptococcus agalactiae causes both symptomatic cystitis and asymptomatic bacteriuria (ABU); however, growth characteristics of S. agalactiae in human urine have not previously been reported. Here, we describe a phenotype of robust growth in human urine observed in ABU-causing S. agalactiae (ABSA) that was not seen among uropathogenic S. agalactiae (UPSA) strains isolated from patients with acute cystitis. In direct competition assays using pooled human urine inoculated with equal numbers of a prototype ABSA strain, designated ABSA 1014, and any one of several UPSA strains, measurement of the percentage of each strain recovered over time showed a markedly superior fitness of ABSA 1014 for urine growth. Comparative phenotype profiling of ABSA 1014 and UPSA strain 807, isolated from a patient with acute cystitis, using metabolic arrays of >2,500 substrates and conditions revealed unique and specific l-malic acid catabolism in ABSA 1014 that was absent in UPSA 807. Whole-genome sequencing also revealed divergence in malic enzyme-encoding genes between the strains predicted to impact the activity of the malate metabolic pathway. Comparative growth assays in urine comparing wild-type ABSA and gene-deficient mutants that were functionally inactivated for the malic enzyme metabolic pathway by targeted disruption of the maeE or maeK gene in ABSA demonstrated attenuated growth of the mutants in normal human urine as well as synthetic human urine containing malic acid. We conclude that some S. agalactiae strains can grow in human urine, and this relates in part to malic acid metabolism, which may affect the persistence or progression of S. agalactiae ABU. PMID:26553467

  19. Streptococcus agalactiae in the environment of bovine dairy herds--rewriting the textbooks?

    PubMed

    Jørgensen, H J; Nordstoga, A B; Sviland, S; Zadoks, R N; Sølverød, L; Kvitle, B; Mørk, T

    2016-02-29

    Many free-stall bovine dairy herds in Norway fail to eradicate Streptococcus agalactiae despite long-term control measures. In a longitudinal study of 4 free-stall herds with automatic milking systems (AMS), milk and extramammary sites were sampled 4 times with 1-2 month intervals. Composite milk, rectal- and vaginal swabs were collected from dairy cows; rectal swabs from heifers and young stock; rectal- and tonsillar swabs from calves; and environmental swabs from the AMS, the floors, cow beds, watering and feeding equipment. A cross sectional study of 37 herds was also conducted, with 1 visit for environmental sampling. Fifteen of the herds were known to be infected with S. agalactiae while the remaining 22 had not had evidence of S. agalactiae mastitis in the preceding 2 years. All samples were cultured for S. agalactiae, and selected isolates (n=54) from positive herds were genotyped by Multi Locus Sequence Typing (MLST). Results show that the bovine gastrointestinal tract and the dairy cow environment are reservoirs of S. agalactiae, and point to the existence of 2 transmission cycles; a contagious transmission cycle via the milking machine and an oro-fecal transmission cycle, with drinking water as the most likely vehicle for transmission. Ten sequence types were identified, and results suggest that strains differ in their ability to survive in the environment and transmit within dairy herds. Measures to eradicate S. agalactiae from bovine dairy herds should take into account the extra-mammary reservoirs and the potential for environmental transmission of this supposedly exclusively contagious pathogen.

  20. Nontypeable Streptococcus pneumoniae as an Otopathogen

    PubMed Central

    Xu, Qingfu; Kaur, Ravinder; Casey, Janet R.; Sabharwal, Vishakha; Pelton, Stephen; Pichichero, Michael E.

    2014-01-01

    Among 34 Spn sequential isolates from middle ear fluid we found a case of a nontypeable Streptococcus pneumoniae (NT-Spn) in a child with AOM. The strain was pneumolysin PCR positive and capsule gene PCR negative. Virulence of the NT-Spn was confirmed in a chinchilla model of AOM. PMID:21251566

  1. Two Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX Availability in Streptococcus agalactiae

    PubMed Central

    Fernandez, Annabelle; Lechardeur, Delphine; Derré-Bobillot, Aurélie; Couvé, Elisabeth; Gaudu, Philippe; Gruss, Alexandra

    2010-01-01

    Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The ΔpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host. PMID:20421944

  2. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae.

    PubMed

    Vásquez, Gersson; Rey, Alba; Rivera, Camilo; Iregui, Carlos; Orozco, Jahir

    2017-01-15

    Pathogenic bacteria are responsible for several diseases in humans and in a variety of hosts. Detection of pathogenic bacteria is imperative to avoid and/or fight their potential harmful effects. This work reports on the first amperometric biosensor for the rapid detection of Streptococcus agalactiae (S. agalactiae). The biosensor relies on a single biotinylated antibody that immobilizes the bacteria on a screen-printed carbon electrode while is further linked to a streptavidin-conjugated HRP reporter. The biotinylated antibody provides selectivity to the biosensor whereas serves as an anchoring point to the reporter for further amplification of the electrochemical signal. The resultant immunosensor is simple, responds rapidly, and allows for the selective and highly sensitive quantification of S. agalactiae cells in a concentration range of 10(1)-10(7)CFUml(-1), with a detection limit of 10CFUml(-1). The approach not only enables a rapid detection and quantification of S. agalactiae in environmental samples but also opens up new opportunities for the simple fabrication of electrochemical immunosensors for different target pathogens.

  3. Two coregulated efflux transporters modulate intracellular heme and protoporphyrin IX availability in Streptococcus agalactiae.

    PubMed

    Fernandez, Annabelle; Lechardeur, Delphine; Derré-Bobillot, Aurélie; Couvé, Elisabeth; Gaudu, Philippe; Gruss, Alexandra

    2010-04-22

    Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for 'porphyrin-regulated efflux'. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The DeltapefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host.

  4. Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis.

    PubMed

    Trigo, Gabriela; Dinis, Márcia; França, Angela; Bonifácio Andrade, Elva; Gil da Costa, Rui M; Ferreira, Paula; Tavares, Delfina

    2009-07-01

    Streptococcus agalactiae is a contagious, mastitis-causing pathogen that is highly adapted to survive in the bovine mammary gland. This study used a BALB/c mouse model of Streptococcus agalactiae mastitis to evaluate leukocyte populations in regional lymph nodes and cytokine expression in the mammary gland involved in the immune response against Streptococcus agalactiae. It was found that the bacteria replicated efficiently in the mammary gland, peaking after 24 h and increasing by 100-fold. Dissemination of bacteria to systemic organs was observed 6 h after infection. At the same time, a massive infiltration of polymorphonuclear cells and an increase in the inflammatory cytokines interleukin (IL)-1beta, IL-6 and tumour necrosis factor-alpha were detected in mammary glands, indicating an early inflammatory response. A decrease in the levels of inflammatory cytokines in mammary glands was observed 72 h after infection, accompanied by an increase in the levels of IL-12 and IL-10, which were related to a gradual decrease in bacterial load. An increase in the number of macrophages and B220(+) lymphocytes and similar increases in both CD4(+) and CD8(+) T cells in regional lymph nodes were observed, being most pronounced 5 days after infection. Moreover, increased levels of anti-Streptococcus agalactiae antibodies in the mammary gland were observed 10 days after infection. Overall, these data suggest that the host exhibits both innate and acquired immune responses in response to Streptococcus agalactiae mastitis.

  5. Whole-Genome Sequences and Classification of Streptococcus agalactiae Strains Isolated from Laboratory-Reared Long-Evans Rats (Rattus norvegicus)

    PubMed Central

    Dzink-Fox, J.; Feng, Y.; Shen, Z.; Bakthavatchalu, V.

    2017-01-01

    ABSTRACT In collaboration with the CDC’s Streptococcus Laboratory, we report here the whole-genome sequences of seven Streptococcus agalactiae bacteria isolated from laboratory-reared Long-Evans rats. Four of the S. agalactiae isolates were associated with morbidity accompanied by endocarditis, metritis, and fatal septicemia, providing an opportunity for comparative genomic analysis of this opportunistic pathogen. PMID:28057750

  6. Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration.

    PubMed

    Evans, Joyce J; Klesius, Phillip H; Shoemaker, Craig A

    2004-09-09

    We evaluated the effectiveness of a Streptococcus agalactiae vaccine in tilapia (Oreochromis niloticus) for prevention of streptococcal disease. The vaccine was prepared from formalin-killed cells and concentrated extracellular products (greater than 3 kDa) of a single isolate of S. agalactiae (ARS-KU-MU-11B). Intraperitoneal (IP) and bath immersion (BI) vaccine trials were conducted at two temperatures, 32 and 26 degrees C, and mean fish weights, 5 and 30 g. Control tilapia were injected with tryptic soy broth. Thirty gram tilapia vaccinated and challenged by IP injection with 1.5 x 10(4) colony-forming units (CFU)/fish of Streptococcus agalactiae at 30 days post-immunization had a relative percent survival (RPS) of 80. Smaller tilapia vaccinated and challenged under similar conditions had an RPS of 25. An RPS of zero was noted in 30 g fish IP vaccinated with Streptococcus iniae and IP challenged with S. agalactiae. The 5 and 30 g tilapia bath immunized with S. agalactiae and IP challenged with 3.6 x 10(5) and 1.7 x 10(6) CFU/fish of S. agalactiae had RPS values of 34. Intraperitoneal administration of the vaccine provided efficacious protection only in the 30 g tilapia regardless of whether the fish were immunized and challenged at 26 or 32 degrees C. Bath immunization of both 5 and 30 g tilapia resulted in RPS values that were two times lower than those achieved with IP vaccination. The results of this study suggest that there is a lack of cross-protection of S. iniae bacterins against S. agalactiae challenge. Protection against S. agalactiae infection is, however, provided through vaccination with a S. agalactiae modified bacterin vaccine.

  7. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions.

    PubMed

    Shabayek, Sarah; Bauer, Richard; Mauerer, Stefanie; Mizaikoff, Boris; Spellerberg, Barbara

    2016-05-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages.

  8. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment

    PubMed Central

    2013-01-01

    Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine

  9. Description of Streptococcus pneumoniae Infections in Burn Patients

    DTIC Science & Technology

    2010-01-01

    Description of Streptococcus pneumoniae infections in burn patients§ Jessie S. Glasser a, Michael L. Landruma,b,c, Kevin K. Chung a,d, Duane R...history: Accepted 10 July 2009 Keywords: Burn Streptococcus pneumoniae Pneumococcus Pneumococcal a b s t r a c t Background: Longer survival in burn...Staphylococcus aureus. Although Streptococcus pneumoniae infections are common in the community and can cause nosocomial infections, the incidence and

  10. Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia.

    PubMed

    File, T M

    2006-05-01

    Streptococcus pneumoniae is the leading bacterial cause of community-acquired respiratory tract infections. Prior to the 1970s this pathogen was uniformly susceptible to penicillin and most other antimicrobials. However, since the 1990s there has been a significant increase in drug-resistant Streptococcus pneumoniae (DRSP) due, in large part, to increased use of antimicrobials. The clinical significance of this resistance is not definitely established, but appears to be most relevant to specific MICs for specific antimicrobials. Certain beta-lactams (amoxicillin, cefotaxime, ceftriaxone), the respiratory fluoroquinolones, and telithromycin are among several agents that remain effective against DRSP. Continued surveillance studies, appropriate antimicrobial usage campaigns, stratification of patients based on known risk factors for resistance, and vaccination programmes are needed to appropriately manage DRSP and limit its spread.

  11. Granzyme A impairs host defense during Streptococcus pneumoniae pneumonia.

    PubMed

    van den Boogaard, Florry E; van Gisbergen, Klaas P J M; Vernooy, Juanita H; Medema, Jan P; Roelofs, Joris J T H; van Zoelen, Marieke A D; Endeman, Henrik; Biesma, Douwe H; Boon, Louis; Van't Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2016-08-01

    Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia (CAP). Granzyme A (GzmA) is a serine protease produced by a variety of cell types involved in the immune response. We sought to determine the role of GzmA on the host response during pneumococcal pneumonia. GzmA was measured in bronchoalveolar lavage fluid (BALF) harvested from CAP patients from the infected and contralateral uninfected side and in lung tissue slides from CAP patients and controls. In CAP patients, GzmA levels were increased in BALF obtained from the infected lung. Human lungs showed constitutive GzmA expression by both parenchymal and nonparenchymal cells. In an experimental setting, pneumonia was induced in wild-type (WT) and GzmA-deficient (GzmA(-/-)) mice by intranasal inoculation of S. pneumoniae In separate experiments, WT and GzmA(-/-) mice were treated with natural killer (NK) cell depleting antibodies. Upon infection with S. pneumoniae, GzmA(-/-) mice showed a better survival and lower bacterial counts in BALF and distant body sites compared with WT mice. Although NK cells showed strong GzmA expression, NK cell depletion did not influence bacterial loads in either WT or GzmA(-/-) mice. These results implicate that GzmA plays an unfavorable role in host defense during pneumococcal pneumonia by a mechanism that does not depend on NK cells.

  12. The MCP-8 gene and its possible association with resistance to Streptococcus agalactiae in tilapia.

    PubMed

    Fu, Gui Hong; Wan, Zi Yi; Xia, Jun Hong; Liu, Feng; Liu, Xiao Jun; Yue, Gen Hua

    2014-09-01

    Mast cell proteases play an important role in the regulation of the immune response. We identified the cDNA of the mast cell protease 8 (MCP-8) gene and analyzed its genomic structure in tilapia. The ORF of the MCP-8 was 768 bp, encoding 255 amino acids. Quantitative real-time PCR revealed that the MCP-8 gene was expressed predominantly in spleen, moderately in liver, blood, brain, gill, intestine, skin, and weakly expressed in kidney, muscle and eye. After a challenge with Streptococcus agalactiae, the gene was induced significantly (p < 0.05) in intestine, kidney, spleen and liver. Furthermore, we identified five single nucleotide polymorphisms (SNPs) in the MCP-8 gene and found that three SNPs were significantly associated (p < 0.05) with resistance against S. agalactiae. However, we found no association between four SNPs and growth traits (p > 0.05). These results suggest that the MCP-8 gene play an important role in the resistance to S. agalactiae in tilapia. The SNP markers in the MCP-8 gene associated with the resistance to the bacterial pathogen may facilitate selection of tilapia resistant to the bacterial disease.

  13. Identification of Genes Preferentially Expressed by Highly Virulent Piscine Streptococcus agalactiae upon Interaction with Macrophages

    PubMed Central

    Guo, Chang-Ming; Chen, Rong-Rong; Kalhoro, Dildar Hussain; Wang, Zhao-Fei; Liu, Guang-Jin; Lu, Cheng-Ping; Liu, Yong-Jie

    2014-01-01

    Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB. PMID:24498419

  14. A novel C5a-derived immunobiotic peptide reduces Streptococcus agalactiae colonization through targeted bacterial killing.

    PubMed

    Cavaco, Courtney K; Patras, Kathryn A; Zlamal, Jaime E; Thoman, Marilyn L; Morgan, Edward L; Sanderson, Sam D; Doran, Kelly S

    2013-11-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a Gram-positive bacterium that colonizes the cervicovaginal tract in approximately 25% of healthy women. Although colonization is asymptomatic, GBS can be vertically transmitted to newborns peripartum, causing severe disease such as pneumonia and meningitis. Current prophylaxis, consisting of late gestation screening and intrapartum antibiotics, has failed to completely prevent transmission, and GBS remains a leading cause of neonatal sepsis and meningitis in the United States. Lack of an effective vaccine and emerging antibiotic resistance necessitate exploring novel therapeutic strategies. We have employed a host-directed immunomodulatory therapy using a novel peptide, known as EP67, derived from the C-terminal region of human complement component C5a. Previously, we have demonstrated in vivo that EP67 engagement of the C5a receptor (CD88) effectively limits staphylococcal infection by promoting cytokine release and neutrophil infiltration. Here, using our established mouse model of GBS vaginal colonization, we observed that EP67 treatment results in rapid clearance of GBS from the murine vagina. However, this was not dependent on functional neutrophil recruitment or CD88 signaling, as EP67 treatment reduced the vaginal bacterial load in mice lacking CD88 or the major neutrophil receptor CXCr2. Interestingly, we found that EP67 inhibits GBS growth in vitro and in vivo and that antibacterial activity was specific to Streptococcus species. Our work establishes that EP67-mediated clearance of GBS is likely due to direct bacterial killing rather than to enhanced immune stimulation. We conclude that EP67 may have potential as a therapeutic to control GBS vaginal colonization.

  15. The impact of pH and nutrient stress on the growth and survival of Streptococcus agalactiae.

    PubMed

    Yang, Qian; Porter, Andrew J; Zhang, Meng; Harrington, Dean J; Black, Gary W; Sutcliffe, Iain C

    2012-08-01

    Streptococcus agalactiae is a major neonatal pathogen that is able to colonise various host environments and is associated with both gastrointestinal and vaginal maternal carriage. Maternal vaginal carriage represents the major source for transmission of S. agalactiae to the foetus/neonate and thus is a significant risk factor for neonatal disease. In order to understand factors influencing maternal carriage we have investigated growth and long term survival of S. agalactiae under conditions of low pH and nutrient stress in vitro. Surprisingly, given that vaginal pH is normally <4.5, S. agalactiae was found to survive poorly at low pH and failed to grow at pH 4.3. However, biofilm growth, although also reduced at low pH, was shown to enhance survival of S. agalactiae. Proteomic analysis identified 26 proteins that were more abundant under nutrient stress conditions (extended stationary phase), including a RelE family protein, a universal stress protein family member and four proteins that belong to the Gls24 (PF03780) stress protein family. Cumulatively, these data indicate that novel mechanisms are likely to operate that allow S. agalactiae survival at low pH and under nutrient stress during maternal vaginal colonisation and/or that the bacteria may access a more favourable microenvironment at the vaginal mucosa. As current in vitro models for S. agalactiae growth appear unsatisfactory, novel methods need to be developed to study streptococcal colonisation under physiologically-relevant conditions.

  16. Duration of protective antibodies and correlation with survival in Nile tilapia Oreochromis niloticus following Streptococcus agalactiae vaccination.

    PubMed

    Pasnik, David J; Evans, Joyce J; Klesius, Phillip H

    2005-09-05

    Streptococcus agalactiae is a major piscine pathogen that causes significant morbidity and mortality among numerous species of freshwater, estuarine and marine fishes. Considering the economic importance of fishes susceptible to S. agalactiae throughout the world, an efficacious S. agalactiae vaccine was developed using an extracellular product (ECP) fraction and formalin-killed whole cells of S. agalactiae. A vaccine study was conducted by intraperitoneal (i.p.) injection in Nile tilapia Oreochromis niloticus in order to determine the duration of protection and its correlation to antibodies specific for this pathogen. After 47, 90 or 180 d post-vaccination (DPV), the fish were i.p. challenged with approximately 2.0 x 10(4) S. agalactiae colony-forming units (CFU) fish(-1) to determine the duration of protective immunity. The percent survival in control fish i.p.-injected with sterile TSB was 16,16, and 4% on 47, 90 and 180 DPV, respectively, while the percent survival for the vaccinated fish was 67, 62 and 49%, respectively. The specific mean antibody concentration of the vaccinated fish was significantly higher than that of the control fish, with significant correlation between the ELISA optical density (OD) and protection. These results indicate that the specific antibody has a correlation with protection following immunization with the S. agalactiae vaccine and that the vaccine can confer protection against S. agalactiae up to 180 DPV.

  17. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro.

    PubMed

    Li, L P; Wang, R; Liang, W W; Huang, T; Huang, Y; Luo, F G; Lei, A Y; Chen, M; Gan, X

    2015-08-01

    Fish Streptococcus agalactiae (S. agalactiae) seriously harms the world's aquaculture industry and causes huge economic losses. This study aimed to develop a potential live attenuated vaccine of S. agalactiae. Pre-screened vaccine candidate strain S. agalactiae HN016 was used as starting material to generate an attenuated strain S. agalactiae YM001 by continuous passage in vitro. The biological characteristics, virulence, and stability of YM001 were detected, and the protective efficacy of YM001 immunization in tilapia was also determined. Our results indicated that the growth, staining, characteristics of pulsed-field gel electrophoresis (PFGE) genotype, and virulence of YM001 were changed significantly as compared to the parental strain HN016. High doses of YM001 by intraperitoneal (IP) injection (1.0 × 10(9) CFU/fish) and oral gavage (1.0 × 10(10) CFU/fish) respectively did not cause any mortality and morbidity in tilapia. The relative percent survivals (RPSs) of fishes immunized with YM001 (1.0 × 10(8) CFU/fish, one time) via injection, immersion, and oral administration were 96.88, 67.22, and 71.81%, respectively, at 15 days, and 93.61, 60.56, and 53.16%, respectively, at 30 days. In all tests with 1-3 times of immunization in tilapia, the dosages at 1 × 10(8) and 1 × 10(9) CFU/fish displayed the similar best results, whereas the immunoprotection of the dosages at 1 × 10(6) and 1 × 10(7) CFU/fish declined significantly (P < 0.01), and 1 × 10(5) CFU/fish hardly displayed any protective effect. In addition, the efficacy of 2-3 times of immunization was significantly higher than that of single immunization (P < 0.01) while no significant difference in the efficacy between twice and thrice of immunization was seen (P > 0.05). The level of protective antibody elicited by oral immunization was significantly higher compared to that of the control group (P < 0.01), and the antibody reached their maximum levels 14-21 days after the immunization but decreased

  18. Macrolide resistance gene mreA of Streptococcus agalactiae encodes a flavokinase.

    PubMed

    Clarebout, G; Villers, C; Leclercq, R

    2001-08-01

    The mreA gene from Streptococcus agalactiae COH31 gamma/delta, resistant to macrolides and clindamycin by active efflux, has recently been cloned in Escherichia coli, where it was reported to confer macrolide resistance (J. Clancy, F. Dib-Hajj, J. W. Petitpas, and W. Yuan, Antimicrob. Agents Chemother. 41:2719--2723, 1997). Cumulative data suggested that the mreA gene was located on the chromosome of S. agalactiae COH31 gamma/delta. Analysis of the deduced amino acid sequence of mreA revealed significant homology with several bifunctional flavokinases/(flavin adenine dinucleotide (FAD) synthetases, which convert riboflavin to flavin mononucleotide (FMN) and FMN to FAD, respectively. High-performance liquid chromatography experiments showed that the mreA gene product had a monofunctional flavokinase activity, similar to that of RibR from Bacillus subtilis. Sequences identical to those of the mreA gene and of a 121-bp upstream region containing a putative promoter were detected in strains of S. agalactiae UCN4, UCN5, and UCN6 susceptible to macrolides. mreA and its allele from S. agalactiae UCN4 were cloned on the shuttle vector pAT28. Both constructs were introduced into E. coli, where they conferred a similar two- to fourfold increase in the MICs of erythromycin, spiramycin, and clindamycin. The MICs of a variety of other molecules, including crystal violet, acriflavin, sodium dodecyl sulfate, and antibiotics, such as certain cephalosporins, chloramphenicol, doxycycline, nalidixic acid, novobiocin, and rifampin, were also increased. In contrast, resistance to these compounds was not detected when the constructs were introduced into E. faecalis JH2-2. In conclusion, the mreA gene was probably resident in S. agalactiae and may encode a metabolic function. We could not provide any evidence that it was responsible for macrolide resistance in S. agalactiae COH31 gamma/delta; broad-spectrum resistance conferred by the gene in E. coli could involve multidrug efflux pumps

  19. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus)

    PubMed Central

    Laith, AA; Ambak, Mohd Azmi; Hassan, Marina; Sheriff, Shahreza Md.; Nadirah, Musa; Draman, Ahmad Shuhaimi; Wahab, Wahidah; Ibrahim, Wan Nurhafizah Wan; Aznan, Alia Syafiqah; Jabar, Amina; Najiah, Musa

    2017-01-01

    Aim: The main objective of this study was to emphasize on histopathological examinations and molecular identification of Streptococcus agalactiae isolated from natural infections in hybrid tilapia (Oreochromis niloticus) in Temerloh Pahang, Malaysia, as well as to determine the susceptibility of the pathogen strains to various currently available antimicrobial agents. Materials and Methods: The diseased fishes were observed for variable clinical signs including fin hemorrhages, alterations in behavior associated with erratic swimming, exophthalmia, and mortality. Tissue samples from the eyes, brain, kidney, liver, and spleen were taken for bacterial isolation. Identification of S. agalactiae was screened by biochemical methods and confirmed by VITEK 2 and 16S rRNA gene sequencing. The antibiogram profiling of the isolate was tested against 18 standard antibiotics included nitrofurantoin, flumequine, florfenicol, amoxylin, doxycycline, oleandomycin, tetracycline, ampicillin, lincomycin, colistin sulfate, oxolinic acid, novobiocin, spiramycin, erythromycin, fosfomycin, neomycin, gentamycin, and polymyxin B. The histopathological analysis of eyes, brain, liver, kidney, and spleen was observed for abnormalities related to S. agalactiae infection. Results: The suspected colonies of S. agalactiae identified by biochemical methods was observed as Gram-positive chained cocci, β-hemolytic, and non-motile. The isolate was confirmed as S. agalactiae by VITEK 2 (99% similarity), reconfirmed by 16S rRNA gene sequencing (99% similarity) and deposited in GenBank with accession no. KT869025. The isolate was observed to be resistance to neomycin and gentamicin. The most consistent gross findings were marked hemorrhages, erosions of caudal fin, and exophthalmos. Microscopic examination confirmed the presence of marked congestion and infiltration of inflammatory cell in the eye, brain, kidney, liver, and spleen. Eye samples showed damage of the lens capsule, hyperemic and

  20. [Antimicrobial susceptibilities and serotype distribution of Streptococcus agalactiae strains isolated from pregnant women].

    PubMed

    Yenişehirli, Gülgün; Bulut, Yunus; Demirtürk, Fazli; Calişkan, A Cantuğ

    2006-07-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is an important cause of neonatal morbidity and mortality. The aim of this study was to determine the serotype distribution and antibiotic susceptibility patterns of GBS isolated from pregnant women. A total of 671 pregnant women were screened for vaginal carriage of GBS, and vaginal colonization rate was found to be 14.6%. All GBS isolates were susceptible to penicillin, vancomycin, chloramphenicol and ofloxacin. The rates of GBS resistance to tetracycline, erythromycin and clindamycin were 81.6%, 24.5% and 19.4%, respectively. The serotype distribution of GBS isolates was as follows in order of frequency; serotype III (33.7%), serotype Ib (24.5%), serotype V (18.4%), serotype Ia (7.1%), serotype IV (3.1%) and serotype II (2%). Eleven GBS isolates could not be serotyped by the antisera set used in the study.

  1. Loss of catabolic function in Streptococcus agalactiae strains and its association with neonatal meningitis.

    PubMed

    Domelier, Anne-Sophie; van der Mee-Marquet, Nathalie; Grandet, Adeline; Mereghetti, Laurent; Rosenau, Agnès; Quentin, Roland

    2006-09-01

    The abilities of 151 Streptococcus agalactiae strains to oxidize 95 carbon sources were studied using the Biolog system. Two populations were constituted: one with a high risk of causing meningitis (HR group; 63 strains), and the other with a lower risk of causing meningitis (LR group; 46 strains). Strains belonging to the HR group were significantly less able to use four carbon sources, i.e., alpha-D-glucose-1-phosphate, D-ribose, beta-methyl-D-glucoside, and D,L-alpha-glycerol phosphate, than strains from the LR group (P agalactiae. Fifteen biotypes (B1 to B15) were identified from the results of oxidation of the four carbon sources, of which six (B1 to B6) included 92% of the isolates belonging to the HR group. Strains of biotypes B1 to B6 are thus 13 times more likely to be able to invade the central nervous system of neonates than strains of biotypes B7 to B15. In addition, 86% of strains recently associated with neonatal meningitis (42 strains studied) were identified as being of biotypes B1 to B6. Identification of particular S. agalactiae biotypes may therefore be one of the criteria to assist clinicians in assessing the level of risk of neonatal meningitis when a mother and/or her neonate is colonized with S. agalactiae.

  2. Molecular cloning and bioinformatic analysis of the Streptococcus agalactiae neuA gene isolated from tilapia.

    PubMed

    Wang, E L; Wang, K Y; Chen, D F; Geng, Y; Huang, L Y; Wang, J; He, Y

    2015-06-01

    Cytidine monophosphate (CMP) N-acetylneuraminic acid (NeuNAc) synthetase, which is encoded by the neuA gene, can catalyze the activation of sialic acid with CMP, and plays an important role in Streptococcus agalactiae infection pathogenesis. To study the structure and function of the S. agalactiae neuA gene, we isolated it from diseased tilapia, amplified it using polymerase chain reaction (PCR) with specific primers, and cloned it into a pMD19-T vector. The recombinant plasmid was confirmed by PCR and restriction enzyme digestion, and identified by sequencing. Molecular characterization analyses of the neuA nucleotide amino acid sequence were performed using bioinformatic tools and an online server. The results showed that the neuA nucleotide sequence contained a complete coding region, which comprised 1242 bp, encoding 413 amino acids (aa). The aa sequence was highly conserved and contained a Glyco_tranf_GTA_type superfamily and an SGNH_hydrolase superfamily conserved domain, which are related to sialic acid activation catalysis. The NeuA protein possessed many important sites related to post-translational modification, including 28 potential phosphorylation sites and 2 potential N-glycosylation sites, had no signal peptides or transmembrane regions, and was predicted to reside in the cytoplasm. Moreover, the protein had some B-cell epitopes, which suggests its potential in development of a vaccine against S. agalactiae infection. The codon usage frequency of neuA differed greatly in Escherichia coli and Homo sapiens genes, and neuA may be more efficiently expressed in eukaryotes (yeast). S. agalactiae neuA from tilapia maintains high structural homology and sequence identity with CMP-NeuNAc synthetases from other bacteria.

  3. Complete genome sequence of Streptococcus agalactiae GD201008-001, isolated in China from tilapia with meningoencephalitis.

    PubMed

    Liu, Guangjin; Zhang, Wei; Lu, Chengping

    2012-12-01

    This work describes a whole-genome sequence of Streptococcus agalactiae strain GD201008-001, a pathogen causing meningoencephalitis in cultural tilapia in China. The genome sequence provides opportunities to understand the piscine GBS pathogenicity and its genetic basis associated with host tropism.

  4. Complete Genome Sequence of Streptococcus agalactiae GD201008-001, Isolated in China from Tilapia with Meningoencephalitis

    PubMed Central

    Liu, Guangjin; Zhang, Wei

    2012-01-01

    This work describes a whole-genome sequence of Streptococcus agalactiae strain GD201008-001, a pathogen causing meningoencephalitis in cultural tilapia in China. The genome sequence provides opportunities to understand the piscine GBS pathogenicity and its genetic basis associated with host tropism. PMID:23144401

  5. Export Requirements of Pneumolysin in Streptococcus pneumoniae

    PubMed Central

    Price, Katherine E.; Greene, Neil G.

    2012-01-01

    Streptococcus pneumoniae is a major causative agent of otitis media, pneumonia, bacteremia, and meningitis. Pneumolysin (Ply), a member of the cholesterol-dependent cytolysins (CDCs), is produced by virtually all clinical isolates of S. pneumoniae, and ply mutant strains are severely attenuated in mouse models of colonization and infection. In contrast to all other known members of the CDC family, Ply lacks a signal peptide for export outside the cell. Instead, Ply has been hypothesized to be released upon autolysis or, alternatively, via a nonautolytic mechanism that remains undefined. We show that an exogenously added signal sequence is not sufficient for Sec-dependent Ply secretion in S. pneumoniae but is sufficient in the surrogate host Bacillus subtilis. Previously, we showed that Ply is localized primarily to the cell wall compartment in the absence of detectable cell lysis. Here we show that Ply released by autolysis cannot reassociate with intact cells, suggesting that there is a Ply export mechanism that is coupled to cell wall localization of the protein. This putative export mechanism is capable of secreting a related CDC without its signal sequence. We show that B. subtilis can export Ply, suggesting that the export pathway is conserved. Finally, through truncation and domain swapping analyses, we show that export is dependent on domain 2 of Ply. PMID:22563048

  6. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  7. Major surfome and secretome profile of Streptococcus agalactiae from Nile tilapia (Oreochromis niloticus): Insight into vaccine development.

    PubMed

    Li, Wei; Wang, Hai-Qing; He, Run-Zhen; Li, Yan-Wei; Su, You-Lu; Li, An-Xing

    2016-08-01

    Streptococcus agalactiae is a major piscine pathogen that is responsible for huge economic losses to the aquaculture industry. Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against S. agalactiae. The proteins of S. agalactiae exposed to the environment, including surface proteins and secretory proteins, are important targets for the immune system and they are likely to be good vaccine candidates. To obtain a precise profile of its surface proteins, S. agalactiae strain THN0901, which was isolated from tilapia (Oreochromis niloticus), was treated with proteinase K to cleave surface-exposed proteins, which were identified by liquid chromatography-tandem spectrometry (LC-MS/MS). Forty surface-associated proteins were identified, including ten proteins containing cell wall-anchoring motifs, eight lipoproteins, eleven membrane proteins, seven secretory proteins, three cytoplasmic proteins, and one unknown protein. In addition, culture supernatant proteins of S. agalactiae were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all of the Coomassie-stained bands were subsequently identified by LC-MS/MS. A total of twenty-six extracellular proteins were identified, including eleven secretory proteins, seven cell wall proteins, three membrane proteins, two cytoplasmic proteins and three unknown proteins. Of these, six highly expressed surface-associated and secretory proteins are putative to be vaccine candidate of piscine S. agalactiae. Moreover, immunogenic secreted protein, a highly expressed protein screened from the secretome in the present study, was demonstrated to induce high antibody titer in tilapia, and it conferred protection against S. agalactiae, as evidenced by the relative percent survival (RPS) 48.61± 8.45%. The data reported here narrow the scope of screening protective antigens, and provide guidance in the development of a novel

  8. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    PubMed Central

    Barnum, D. A.; Johnson, R. E.; Brooks, B. W.

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control are discussed. PMID:17422110

  9. Genetic diversity of Streptococcus agalactiae strains colonizing the same pregnant woman.

    PubMed Central

    Pérez-Ruiz, M.; Rodríguez-Granger, J. M.; Bautista-Marín, M. F.; Romero-Noguera, J.; Rosa-Fraile, M.

    2004-01-01

    Pulsed-field gel electrophoresis (PFGE) of SmaI-DNA digests and serotyping was performed on 15 colonies of Streptococcus agalactiae (GBS) from each of 30 vaginal rectal colonized women. Five distinct GBS serotypes were observed among the 30 specimens (Ia, Ib, II, III and V). In 29 of the 30 samples, the same serotype was observed among all 15 colonies; in the remaining specimen, the 15 colonies yielded two serotypes (II and V). The PFGE profiles of all colonies in 27 of the 30 subjects were indistinguishable within each subject. In the remaining women, different DNA profiles were identified among the colonies in each specimen, one of whom carried two different serotypes. Furthermore, strains of the same serotype belonging to different women were genetically heterogeneous. PMID:15061514

  10. Streptococcus agalactiae Endophthalmitis in Boston Keratoprosthesis in a Patient with Steven-Johnson Syndrome.

    PubMed

    Al-Otaibi, Humoud M; Talea, Mohammed; Kirat, Omar; Stone, Donald U; May, William N; Kozak, Igor

    2016-01-01

    A 25-year-old Syrian male with a previous episode of Stevens-Johnson syndrome with bilateral corneal cicatrization previously underwent surgery for Type 1 Boston Keratoprosthesis (K-Pro). Sixteen months after the K-Pro surgery, the patient presented with decreased vision to hand motion and microbial keratitis of the graft around the K-Pro with purulent discharge. Corneal scrapings were nonrevealing. B-scan in 3 days showed increased debris in the vitreous cavity and thickened retinochoroidal layer. Intravitreal tap and injections of vancomycin and ceftazidime were performed. The vitreous culture revealed β-hemolytic Streptococcus agalactiae; fungal cultures were negative. Repeat B-scan 3 days later demonstrated decreased vitreous opacity, and the patient felt more comfortable and was without pain. His visual acuity improved to 20/70, ocular findings have been stable for 9 months, and the patient continues to be monitored.

  11. Streptococcus agalactiae Endophthalmitis in Boston Keratoprosthesis in a Patient with Steven–Johnson Syndrome

    PubMed Central

    Al-Otaibi, Humoud M.; Talea, Mohammed; Kirat, Omar; Stone, Donald U.; May, William N.; Kozak, Igor

    2016-01-01

    A 25-year-old Syrian male with a previous episode of Stevens-Johnson syndrome with bilateral corneal cicatrization previously underwent surgery for Type 1 Boston Keratoprosthesis (K-Pro). Sixteen months after the K-Pro surgery, the patient presented with decreased vision to hand motion and microbial keratitis of the graft around the K-Pro with purulent discharge. Corneal scrapings were nonrevealing. B-scan in 3 days showed increased debris in the vitreous cavity and thickened retinochoroidal layer. Intravitreal tap and injections of vancomycin and ceftazidime were performed. The vitreous culture revealed β-hemolytic Streptococcus agalactiae; fungal cultures were negative. Repeat B-scan 3 days later demonstrated decreased vitreous opacity, and the patient felt more comfortable and was without pain. His visual acuity improved to 20/70, ocular findings have been stable for 9 months, and the patient continues to be monitored. PMID:27994401

  12. Streptococcus agalactiae Serotype IV in Humans and Cattle, Northern Europe1

    PubMed Central

    Lyhs, Ulrike; Kulkas, Laura; Katholm, Jørgen; Waller, Karin Persson; Saha, Kerttu; Tomusk, Richard J.

    2016-01-01

    Streptococcus agalactiae is an emerging pathogen of nonpregnant human adults worldwide and a reemerging pathogen of dairy cattle in parts of Europe. To learn more about interspecies transmission of this bacterium, we compared contemporaneously collected isolates from humans and cattle in Finland and Sweden. Multilocus sequence typing identified 5 sequence types (STs) (ST1, 8, 12, 23, and 196) shared across the 2 host species, suggesting possible interspecies transmission. More than 54% of the isolates belonged to those STs. Molecular serotyping and pilus island typing of those isolates did not differentiate between populations isolated from different host species. Isolates from humans and cattle differed in lactose fermentation, which is encoded on the accessory genome and represents an adaptation to the bovine mammary gland. Serotype IV-ST196 isolates were obtained from multiple dairy herds in both countries. Cattle may constitute a previously unknown reservoir of this strain. PMID:27869599

  13. Parallel Evolution in Streptococcus pneumoniae Biofilms

    PubMed Central

    Churton, Nicholas W. V.; Misra, Raju V.; Howlin, Robert P.; Allan, Raymond N.; Jefferies, Johanna; Faust, Saul N.; Gharbia, Saheer E.; Edwards, Richard J.; Clarke, Stuart C.; Webb, Jeremy S.

    2016-01-01

    Streptococcus pneumoniae is a commensal human pathogen and the causative agent of various invasive and noninvasive diseases. Carriage of the pneumococcus in the nasopharynx is thought to be mediated by biofilm formation, an environment where isogenic populations frequently give rise to morphological colony variants, including small colony variant (SCV) phenotypes. We employed metabolic characterization and whole-genome sequencing of biofilm-derived S. pneumoniae serotype 22F pneumococcal SCVs to investigate diversification during biofilm formation. Phenotypic profiling revealed that SCVs exhibit reduced growth rates, reduced capsule expression, altered metabolic profiles, and increased biofilm formation compared to the ancestral strain. Whole-genome sequencing of 12 SCVs from independent biofilm experiments revealed that all SCVs studied had mutations within the DNA-directed RNA polymerase delta subunit (RpoE). Mutations included four large-scale deletions ranging from 51 to 264 bp, one insertion resulting in a coding frameshift, and seven nonsense single-nucleotide substitutions that result in a truncated gene product. This work links mutations in the rpoE gene to SCV formation and enhanced biofilm development in S. pneumoniae and therefore may have important implications for colonization, carriage, and persistence of the organism. Furthermore, recurrent mutation of the pneumococcal rpoE gene presents an unprecedented level of parallel evolution in pneumococcal biofilm development. PMID:27190203

  14. Streptococcus pneumoniae necrotizing fasciitis in systemic lupus erythematosus.

    PubMed

    Sánchez, A; Robaina, R; Pérez, G; Cairoli, E

    2016-04-01

    Necrotizing fasciitis is a rapidly progressive destructive soft tissue infection with high mortality. Streptococcus pneumoniae as etiologic agent of necrotizing fasciitis is extremely unusual. The increased susceptibility to Streptococcus pneumoniae infection in patients with systemic lupus erythematosus is probably a multifactorial phenomenon. We report a case of a patient, a 36-year-old Caucasian female with 8-year history of systemic lupus erythematosus who presented a fatal Streptococcus pneumoniae necrotizing fasciitis. The role of computed tomography and the high performance of blood cultures for isolation of the causative microorganism are emphasized. Once diagnosis is suspected, empiric antibiotic treatment must be prescribed and prompt surgical exploration is mandatory.

  15. Molecular characterization of temporally and geographically matched Streptococcus agalactiae strains isolated from food products and bloodstream infections.

    PubMed

    van der Mee-Marquet, Nathalie; Domelier, Anne-Sophie; Salloum, Mazen; Violette, Jérémie; Arnault, Laurence; Gaillard, Nicolas; Bind, Jean-Louis; Lartigue, Marie-Frédérique; Quentin, Roland

    2009-12-01

    In a defined geographic area, during a 3-month period, 914 food products were screened for Streptococcus agalactiae, and S. agalactiae strains isolated from bloodstream infections (BSI) in nonpregnant adults were collected. Eleven S. agalactiae strains were isolated from 1.2% of food products, with high rates in pastries (7.0%) and seafood products (11.8%). These findings indicate that S. agalactiae is a food product contaminant. Seven S. agalactiae BSI were observed in nonpregnant adults representing an incidence of 0.015/100 admissions. The distribution of strains in serotypes did not differ according to origin of the strains; food products and clinical strains were of serotypes Ia (22%), Ib (11%), II (5%), III (22%), IV (5%), and V (33%). The strains isolated from seafoods were of serotypes Ia and Ib. The distribution of strains in Sequence Types differed according to their origin; food strains were equally distributed between the major clonal complex (CC), CC1 (27%), CC9 (18%), CC17 (18%), and CC23 (27%), whereas a high proportion of BSI strains belonged to CC1 (57%). DNA macrorestriction using SmaI revealed diversity; nine different patterns were found for the 11 food strains and seven for the 7 BSI strains. One pattern was similar for two food strains and one BSI strain. On account of the molecular characteristics previously described for S. agalactiae strains of human carriage and fish and mice infections, the serotype characteristics of seafood strains suggest contamination by aquatic S. agalactiae, whereas the molecular characteristics of strains from pastries suggest human contamination, but may also originate from rodents. Indeed, serotype V CC1 strains, found in food and responsible for a high percentage of BSI in nonpregnant adults, belong to a known clone spreading worldwide, and have also been described in mice.

  16. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    PubMed

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish.

  17. Exogenous Streptococcus pneumoniae Endophthalmitis in Diabetic Rabbits

    PubMed Central

    Benton, Angela H.; Fulton, Linda K.; Marquart, Mary E.

    2017-01-01

    Diabetics are at increased risk for eye infections including bacterial endophthalmitis. It is unclear whether the severity of endophthalmitis is greater in these patients due to confounding factors such as pre-existing ocular diseases in some but not others. Therefore, we tested the hypothesis that disease severity and/or bacterial loads would be significantly higher in a Type I diabetic rabbit model of Streptococcus pneumoniae endophthalmitis. Rabbits were treated with alloxan to destroy pancreatic islet cells, or mock-treated with vehicle, and maintained for 10 days before intravitreal infection with S. pneumoniae E353. Clinical scoring of the eyes was performed 24 and 48 hours after infection, followed by euthanasia and vitreous harvest to quantitate bacterial loads. There were no significant differences in clinical scores (P ≥ 0.440) or bacterial loads (P = 0.736), however, 4/12 (33%) of the diabetic rabbits became bacteremic. This finding not only indicates a breakdown in the blood-ocular barrier, but also prompts further investigation into the exploitation of the diabetic eye by the streptococci. PMID:28387365

  18. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  19. L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature.

    PubMed

    Zhao, Xian-Liang; Han, Yi; Ren, Shi-Tong; Ma, Yan-Mei; Li, Hui; Peng, Xuan-Xian

    2015-05-01

    Streptococcosis causes massive tilapia kills, which results in heavy economic losses of tilapia farming industry. Out of the Streptococcosis, Streptococcus agalactiae is the major pathogen. The bacterium causes higher mortality of tilapias in higher than lower temperatures. However, effect of temperature on metabolic regulation which is related to the mortality is largely unknown. The present study showed 50% and 70% mortality of tilapias cultured in 25 °C and 30 °C, respectively, in comparison with no death in 20 °C following infection caused by S. agalactiae. Then, GC/MS based metabolomics was used to investigate a global metabolic response of tilapia liver to the two higher water temperatures compared to 20 °C. Thirty-six and forty-five varied abundance of metabolites were identified in livers of tilapias cultured at 25 °C and 30 °C, respectively. More decreasing abundance of amino acids and increasing abundance of carbohydrates were detected in 30 °C than 25 °C groups. On the other hand, out of the pathways enriched, the first five biggest impact pathways belong to amino acid metabolism. Decreasing abundance of l-proline was identified as a crucial biomarker for indexing higher water temperature and a potential modulator to reduce the high death. This was validated by engineering injection or oral addition of l-proline. Exogenous l-proline led to elevated amino acid metabolism, which contributes to the elevated survivals. Our findings provide a potential metabolic modulator for controlling the disease, and shed some light on host metabolic prevention to infectious diseases.

  20. Efficacy of spray administration of formalin-killed Streptococcus agalactiae in hybrid Red Tilapia.

    PubMed

    Noraini, O; Sabri, M Y; Siti-Zahrah, A

    2013-06-01

    An initial evaluation of spray vaccination was carried out with 60 hybrid Red Tilapia Oreochromis spp., divided into three groups that consisted of 10 fish per group with duplicates. The formalin-killed cells (FKCs) of Streptococcus agalactiae were administered once to group 1 by spray and once daily for five consecutive days to group 2. Group 3 remained as the untreated control group and was sprayed with normal saline. A booster was given twice to all the groups, once at the second week and again at the fourth week after the first vaccination. After this initial evaluation, a challenge study was conducted with 40 tilapia divided into two groups that consisted of 10 fish per group with duplicates. Group 1 was vaccinated with FKCs of S. agalactiae by a single spray administration while group 2 remained as the untreated control group. A booster was given twice using the same protocol as in the initial evaluation. After 6 weeks, fish from one of the duplicate tanks from each of groups 1 and 2 were challenged with pathogenic S. agalactiae by intraperitoneal (IP) injection, while fish in another tank were challenged through immersion. Based on the observations, serum immunoglobulin M (IgM) levels were significantly higher (P < 0.05) in the challenged fish than in the either the preexposed fish or the control group 1 week after the initial exposure. However, no significant differences (P > 0.05) were noted between challenged groups 1 and 2. In addition, no significant differences (P > 0.05) were observed between the frequencies of exposure. The mucus IgM level, however, remained high after each booster until the end of the 8-week study period. Meanwhile, serum IgM levels decreased after the challenge. A higher percentage of survival was noted for fish challenged through immersion (80%) compared with IP injection (70%). These results suggested that single spray exposure was able to induce IgM, which gave moderate to high protection during the challenge study.

  1. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110

    PubMed Central

    du Merle, Laurence; Rosinski-Chupin, Isabelle; Gominet, Myriam; Bellais, Samuel; Poyart, Claire; Trieu-Cuot, Patrick

    2017-01-01

    The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) “hypervirulent” ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5’ promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect

  2. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110.

    PubMed

    Périchon, Bruno; Szili, Noémi; du Merle, Laurence; Rosinski-Chupin, Isabelle; Gominet, Myriam; Bellais, Samuel; Poyart, Claire; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2017-01-01

    The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) "hypervirulent" ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5' promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect

  3. Identification of Streptococcus pneumoniae with a DNA probe.

    PubMed Central

    Denys, G A; Carey, R B

    1992-01-01

    The Accuprobe Streptococcus pneumoniae Culture Identification Test (Gen-Probe, Inc.) was evaluated with 172 isolates of S. pneumoniae and 204 nonpneumococcal isolates. The sensitivity and specificity of the Accuprobe test were 100%. Optimum results were obtained when four or more discrete colonies were selected for testing. The Accuprobe test was determined to be an accurate and rapid method for identification of S. pneumoniae. PMID:1400974

  4. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.

    PubMed

    Bosward, Katrina L; House, John K; Deveridge, Amber; Mathews, Karen; Sheehy, Paul A

    2016-03-01

    Streptococcus agalactiae is a well-characterized bovine mastitis pathogen that is known to be highly contagious and capable of spreading rapidly in affected dairy herds. Loop-mediated isothermal amplification (LAMP) is a novel molecular diagnostic method that has the capability to provide rapid, cost-effective screening for pathogens to support on-farm disease control and eradication programs. In the current study, a LAMP test was developed to detect S. agalactiae in milk. The assay was validated on a bank of existing clinical mastitis milk samples that had previously been identified as S. agalactiae positive via traditional microbiological culture techniques and PCR. The LAMP assay was conducted on bacterial colonies and DNA extracted from milk in tube- and plate-based formats using multiple detection platforms. The 1-h assay conducted at 64 °C exhibited repeatability (coefficient of variation) of 2.07% (tube) and 8.3% (plate), sensitivity to ~20 pg of extracted DNA/reaction, and specificity against a panel of known bacterial mastitis pathogens. Of the 109 known S. agalactiae isolates assessed by LAMP directly from bacterial cells in culture, 108 were identified as positive, in accordance with PCR analysis. The LAMP analysis from the corresponding milk samples indicated that 104 of these milks exhibited a positive amplification curve. Although exhibiting some limitations, this assay provides an opportunity for rapid screening of milk samples to facilitate on-farm management of this pathogen.

  5. Heteroresistance to penicillin in Streptococcus pneumoniae.

    PubMed

    Morand, Brigitte; Mühlemann, Kathrin

    2007-08-28

    Heteroresistance to beta-lactam antibiotics has been mainly described for staphylococci, for which it complicates diagnostic procedures and therapeutic success. This study investigated whether heteroresistance to penicillin exists in Streptococcus pneumoniae. Population analysis profile (PAP) showed the presence of subpopulations with higher penicillin resistance in four of nine clinical pneumococcal strains obtained from a local surveillance program (representing the multiresistant clones ST179, ST276, and ST344) and in seven of 16 reference strains (representing the international clones Spain(23F)-1, Spain(9V)-3, Spain(14)-5, Hungary(19A)-6, South Africa(19A)-13, Taiwan(23F)-15, and Finland(6B)-12). Heteroresistant strains had penicillin minimal inhibitory concentrations (MICs) (for the majority of cells) in the intermediate- to high-level range (0.19-2.0 mug/ml). PAP curves suggested the presence of subpopulations also for the highly penicillin-resistant strains Taiwan(19F)-14, Poland(23F)-16, CSR(19A)-11, and CSR(14)-10. PAP of bacterial subpopulations with higher penicillin resistance showed a shift toward higher penicillin-resistance levels, which reverted upon multiple passages on antibiotic-free media. Convergence to a homotypic resistance phenotype did not occur. Comparison of two strains of clone ST179 showed a correlation between the heteroresistant phenotype and a higher-penicillin MIC and a greater number of altered penicillin-binding proteins (PBP1a, -2b, and -2x), respectively. Therefore, heteroresistance to penicillin occurs in international multiresistant clones of S. pneumoniae. Pneumococci may use heteroresistance to penicillin as a tool during their evolution to high penicillin resistance, because it gives the bacteria an opportunity to explore growth in the presence of antibiotics before acquisition of resistance genes.

  6. Emerging resistant serotypes of invasive Streptococcus pneumoniae

    PubMed Central

    Elshafie, Sittana; Taj-Aldeen, Saad J

    2016-01-01

    Background Streptococcus pneumoniae is the leading cause of meningitis and sepsis. The aim of the study was to analyze the distribution, vaccine serotype coverage, and antibiotic resistance of S. pneumoniae serotypes isolated from patients with invasive diseases, after the introduction of pneumococcal 7-valent conjugated vaccine (PCV-7). Methods A total of 134 isolates were collected from blood and cerebrospinal fluid specimens at Hamad Hospital during the period from 2005 to 2009. Isolate serotyping was done using the Quellung reaction. The prevaccination period was considered before 2005. Results The most common serotypes for all age groups were 3 (12.70%), 14 (11.90%), 1 (11.90%), 19A (9.00%), 9V (5.20%), 23F (5.20%), and 19F (4.50%). Coverage rates for infant <2 years for PCV-7, the 10-valent conjugated vaccine (PCV-10), and the 13-valent conjugated vaccine (PCV-13) were 34.78%, 52.17%, and 78.26%, respectively. Coverage rates of these vaccines were 50%, 67.86%, and 75% for the 2–5 years age group; 27.12%, 40.68%, and 64.41% for the age group 6–64 years; and 25%, 33.33%, and 66.67% for the ≥65 years age group, respectively. The percentage of nonsusceptible isolates to penicillin, cefotaxime, and erythromycin were 43.86%, 16.66%, and 22.81%, respectively. Thirty-seven isolates (32.46%) were multidrug resistant (MDR) and belonged to serotypes 14, 19A, 19F, 23F, 1, 9V, 12F, 4, 6B, 3, and 15A. Compared to previous results before the introduction of PCV-7, there was a significant reduction in penicillin-nonsusceptable S. pneumoniae from 66.67% to 43.86%, and a slight insignificant reduction in erythromycin nonsusceptible strains from 27.60% to 22.8%, while there was a significant increase in cefotaxime nonsusceptible strains from 3.55% to 16.66%. Conclusion Invasive pneumococcal strains and the emergence of MDR serotypes is a global burden that must be addressed through multiple strategies, including vaccination, antibiotic stewardship, and continuous

  7. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines.

    PubMed

    Bryan, Joshua D; Shelver, Daniel W

    2009-03-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) remains a leading cause of invasive infections in neonates and has emerged as a pathogen of the immunocompromised and elderly populations. The virulence mechanisms of GBS are relatively understudied and are still poorly understood. Previous evidence indicated that the GBS cspA gene is necessary for full virulence and the cleavage of fibrinogen. The predicted cspA product displays homology to members of the extracellular cell envelope protease family. CXC chemokines, many of which can recruit neutrophils to sites of infection, are important signaling peptides of the immune system. In this study, we purified CspA and demonstrated that it readily cleaved the CXC chemokines GRO-alpha, GRO-beta, GRO-gamma, neutrophil-activating peptide 2 (NAP-2), and granulocyte chemotactic protein 2 (GCP-2) but did not cleave interleukin-8. CspA did not cleave a panel of other test substrates, suggesting that it possesses a certain degree of specificity. CXC chemokines also underwent cleavage by whole GBS cells in a cspA-dependent manner. CspA abolished the abilities of three representative CXC chemokines, GRO-gamma, NAP-2, and GCP-2, to attract and activate neutrophils. Genetic and biochemical evidence indicated that CspA is a serine protease with S575 at its active site. D180 was also implicated as part of the signature serine protease catalytic triad, and both S575 and D180 were required for both N-terminal and C-terminal autocatalytic processing of CspA.

  8. Streptococcus agalactiae Capsule Polymer Length and Attachment Is Determined by the Proteins CpsABCD

    PubMed Central

    Toniolo, Chiara; Balducci, Evita; Romano, Maria Rosaria; Proietti, Daniela; Ferlenghi, Ilaria; Grandi, Guido; Berti, Francesco; Ros, Immaculada Margarit Y; Janulczyk, Robert

    2015-01-01

    The production of capsular polysaccharides (CPS) or secreted exopolysaccharides is ubiquitous in bacteria, and the Wzy pathway constitutes a prototypical mechanism to produce these structures. Despite the differences in polysaccharide composition among species, a group of proteins involved in this pathway is well conserved. Streptococcus agalactiae (group B Streptococcus; GBS) produces a CPS that represents the main virulence factor of the bacterium and is a prime target in current vaccine development. We used this human pathogen to investigate the roles and potential interdependencies of the conserved proteins CpsABCD encoded in the cps operon, by developing knock-out and functional mutant strains. The mutant strains were examined for CPS quantity, size, and attachment to the cell surface as well as CpsD phosphorylation. We observed that CpsB, -C, and -D compose a phosphoregulatory system where the CpsD autokinase phosphorylates its C-terminal tyrosines in a CpsC-dependent manner. These Tyr residues are also the target of the cognate CpsB phosphatase. An interaction between CpsD and CpsC was observed, and the phosphorylation state of CpsD influenced the subsequent action of CpsC. The CpsC extracellular domain appeared necessary for the production of high molecular weight polysaccharides by influencing CpsA-mediated attachment of the CPS to the bacterial cell surface. In conclusion, although having no impact on cps transcription or the synthesis of the basal repeating unit, we suggest that these proteins are fine-tuning the last steps of CPS biosynthesis (i.e. the balance between polymerization and attachment to the cell wall). PMID:25666613

  9. Streptococcus agalactiae from pregnant women: antibiotic and heavy-metal resistance mechanisms and molecular typing.

    PubMed

    Rojo-Bezares, B; Azcona-Gutiérrez, J M; Martin, C; Jareño, M S; Torres, C; Sáenz, Y

    2016-11-01

    We investigated the antibiotic and heavy-metal resistance mechanisms, virulence genes and clonal relationships of macrolide- and/or lincosamide-resistant (M+/-LR) Streptococcus agalactiae (group B Streptococcus, GBS) isolates from pregnant women in La Rioja in Northern Spain, a region with a significant immigrant population. In total 375 GBS isolates were recovered during 2011. About three-quarters of isolates were from European nationals and the remainder distributed among 23 other nationalities. Seventy-five (20%) were classified as M+/-LR strains and 28 (37%) of these were resistant to ⩾3 classes of antibiotics. Capsular serotypes III (29·3%), V (21·3%) and II (12%) were the most frequent. A wide variety of antibiotic resistance genes were detected in M+/-LR strains; notably, 5·3% harboured the lsa(C) gene associated with cross-resistance, and tet(W) was identified in a single strain. We report, for the first time, the detection of cadmium and copper resistance encoded by tcrB + cadA + cadC genes in 20 M+/-LR strains, which raises the possibility of co-selection of antibiotic and heavy-metal resistance disseminated through mobile genetic elements. The M+/-LR strains were highly diverse by DNA macrorestriction profiles (65 patterns) and 16 multilocus sequence types (STs) distributed among six clonal complexes; the most frequent were ST1, ST19, and ST12, and two strains were novel (ST586 and ST601). In conclusion, a wide diversity of genetic lineages of macrolide, lincosamide and heavy-metal- resistant GBS strains was observed in an ethnically diverse maternal population.

  10. Maternal colonisation with Streptococcus agalactiae, and associated stillbirth and neonatal disease in coastal Kenya

    PubMed Central

    Seale, Anna C; Koech, Angela C; Sheppard, Anna E; Barsosio, Hellen C; Langat, Joyce; Anyango, Emily; Mwakio, Stella; Mwarumba, Salim; Morpeth, Susan C; Anampiu, Kirimi; Vaughan, Alison; Giess, Adam; Mogeni, Polycarp; Walusuna, Leahbell; Mwangudzah, Hope; Mwanzui, Doris; Salim, Mariam; Kemp, Bryn; Jones, Caroline; Mturi, Neema; Tsofa, Benjamin; Mumbo, Edward; Mulewa, David; Bandika, Victor; Soita, Musimbi; Owiti, Maureen; Onzere, Norris; Walker, A Sarah; Schrag, Stephanie J; Kennedy, Stephen H; Fegan, Greg; Crook, Derrick W; Berkley, James A

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes neonatal disease and stillbirth, but its burden in sub-Saharan Africa is uncertain. We assessed maternal recto-vaginal GBS colonisation (7967 women), stillbirth and neonatal disease. Whole genome sequencing was used to determine serotypes, sequence types (ST), and phylogeny. We found low maternal GBS colonisation prevalence (934/7967, 12%), but comparatively high incidence of GBS-associated stillbirth and early onset neonatal disease (EOD) in hospital (0.91(0.25-2.3)/1000 births; 0.76(0.25-1.77)/1000 live-births respectively). However, using a population denominator, EOD incidence was considerably reduced (0.13(0.07-0.21)/1000 live-births). Treated cases of EOD had very high case fatality (17/36, 47%), especially within 24 hours of birth, making under-ascertainment of community-born cases highly likely, both here and in similar facility-based studies. Maternal GBS colonisation was less common in women with low socio-economic status, HIV infection and undernutrition, but when GBS-colonised, they were more likely colonised by the most virulent clone, CC17. CC17 accounted for 267/915(29%) of maternal colonising (265/267(99%) serotype III, 2/267(0.7%) serotype IV), and 51/73(70%) of neonatal disease cases (all serotype III). Trivalent (Ia/II/III) and pentavalent (Ia/Ib/II/III/V) vaccines would cover 71/73(97%) and 72/73(99%) of disease-causing serotypes respectively. Serotype IV should be considered for inclusion, with evidence of capsular switching in CC17 strains. PMID:27572968

  11. Rare serotype occurrence and PFGE genotypic diversity of Streptococcus agalactiae isolated from tilapia in China.

    PubMed

    Li, Liping; Wang, Rui; Liang, Wanwen; Gan, Xi; Huang, Ting; Huang, Yan; Li, Jian; Shi, Yunliang; Chen, Ming; Luo, Honglin

    2013-12-27

    Previously, we reported 10 PEGE types of 85 tilapia Streptococcus agalactiae (GBS), which shifted from Streptococcus iniae in China, by using PEGE method. Presently, larger and more representative tilapia GBS were isolated, for the first time in China, to characterize their serotypes and genetic diversities more precisely than had done before. 168 GBS strains were distributed in five provinces of China, in which Guangdong, Guangxi and Hainan were the major ones, holding 36.9% (62/168), 37.5% (63/168) and 19.6% (33/168), respectively. Serotypes, Ia, Ib and III, were observed in these strains and the most predominant one was Ia (95.2%), which mainly distributed in Guangdong, Guangxi and Hainan. Ia initially occurred in 2009, it shoot up to 32.1% in 2010, but decreased to 16.1% in 2011 before went up to 45.2% in 2012. Ib sporadically occurred during 2007-2011, III only occurred in 2012. 14 different PFGE types, including 4 new types (N, O, P and Q), were observed, in which B, D, F and G were the predominant types, holding 83.9% (141/168) of the total GBS strains. Ia corresponded to 11 PFGE types (A-H, N-P), in which type D predominated (51%). Ib represented 3 genotypes (I, J and Q) and III harbored only 2 genotypes (N and F). Type N and F synchronously presented in Ia and III. In summary, the genetic diversity of tilapia GBS varied by serotypes and changed with geographical locations and years. Although Ia still predominated, new rare serotype III already occurred in China.

  12. Virulence factors, antimicrobial susceptibility and molecular characterization of Streptococcus agalactiae isolated from pregnant women.

    PubMed

    Beigverdi, Reza; Jabalameli, Fereshteh; Mirsalehian, Akbar; Hantoushzadeh, Sedigheh; Boroumandi, Shahram; Taherikalani, Morovat; Emaneini, Mohammad

    2014-12-01

    Forty-one Streptococcus agalactiae isolates collected from pregnant women at 35-37 weeks of gestation were analysed for their capsular types, antimicrobial resistance determinants, distribution of virulence factors and genetic relatedness using PCR and multiplex PCR. Capsular type III was predominant (65.8%), followed by capsular type II (14.6%), Ib (7.3%), and V(4.9%). All isolates were susceptible to penicillin, vancomycin, linezolid and quinupristin-dalfopristin. Resistance to tetracycline, erythromycin and clindamycin were found in 97.6%, 24.4%, and 14.6% of isolates, respectively. The most common antimicrobial resistance gene was tetM found in 97.6% of the isolates followed by ermTR and ermB found in 12% and 7.3% of isolates, respectively. The most common virulence gene was hly (100%), followed by scpB (97.6%), bca (97.6%), rib (53.65%) and bac (4.9%). The insertion sequence IS1548 was found in 63.4% of isolates. By multi locus variable number of tandem repeat analysis (MLVA) typing, 30 different allelic profiles or MLVA types (MTs) were identified. The most frequent was the MT1 (5/41, 12.2%) and followed by MT2 (4/41, 9.75%). Our data revealed that population structure of these isolates is highly diverse and indicates different MLVA types.

  13. Effect of Eugenol against Streptococcus agalactiae and Synergistic Interaction with Biologically Produced Silver Nanoparticles.

    PubMed

    Perugini Biasi-Garbin, Renata; Saori Otaguiri, Eliane; Morey, Alexandre Tadachi; Fernandes da Silva, Mayara; Belotto Morguette, Ana Elisa; Armando Contreras Lancheros, César; Kian, Danielle; Perugini, Márcia Regina Eches; Nakazato, Gerson; Durán, Nelson; Nakamura, Celso Vataru; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie

    2015-01-01

    Streptococcus agalactiae (group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced by Fusarium oxysporum (AgNPbio). Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections.

  14. The susceptibility of bovine udder quarters colonized with Corynebacterium bovis to experimental infection with Staphylococcus aureus or Streptococcus agalactiae.

    PubMed Central

    Brooks, B W; Barnum, D A

    1984-01-01

    Twenty bovine udder quarters colonized with Corynebacterium bovis SR6 and 20 uncolonized quarters were challenged by inoculation of Staphylococcus aureus Newbould 305 (ATCC 29740) into the teat cistern. The percentage of infection in quarters colonized with C. bovis (50%) was significantly lower than that in controls (100%). By similar challenge no significant difference was observed between the percentage of infection with Streptococcus agalactiae ATCC 27956 in 33 quarters colonized with C. bovis (70%) compared to 33 controls (87.9%). A total of 37 quarters colonized with C. bovis and 37 control quarters were challenged with Staph. aureus Newbould 305 (ATCC 29740) and Maxi (ATCC 27543) and Strep. agalactiae (ATCC 27956) by exposure of the teat orifice. The percentage of teat ducts colonized with C. bovis which became infected with either pathogen was not different from that for controls. PMID:6372969

  15. MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae.

    PubMed

    van Prehn, Joffrey; van Veen, Suzanne Q; Schelfaut, Jacqueline J G; Wessels, Els

    2016-05-01

    We compared the Vitek MS and Microflex MALDI-TOF mass spectrometry platform for species differentiation within the Streptococcus mitis group with PCR assays targeted at lytA, Spn9802, and recA as reference standard. The Vitek MS correctly identified 10/11 Streptococcus pneumoniae, 13/13 Streptococcus pseudopneumoniae, and 12/13 S. mitis/oralis. The Microflex correctly identified 9/11 S. pneumoniae, 0/13 S. pseudopneumoniae, and 13/13 S. mitis/oralis. MALDI-TOF is a powerful tool for species determination within the mitis group. Diagnostic accuracy varies depending on platform and database used.

  16. 77 FR 26014 - Prospective Grant of Exclusive License: P4 Peptide From Streptococcus Pneumoniae

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Prospective Grant of Exclusive License: P4 Peptide From Streptococcus Pneumoniae AGENCY: Technology Transfer... ``Functional Epitopes of Streptococcus Pneumoniae PsaA Antigen and Uses Thereof,'' filed 7/ 18/2008, claiming... Streptococcus pneumoniae. This technology also includes an antibody that can bind to the epitopes of the...

  17. The Importance of TLR2 and Macrophages in Modulating a Humoral Response after Encountering Streptococcus pneumoniae

    DTIC Science & Technology

    2008-03-26

    Response after Encountering Streptococcus Pneumoniae " Brian Schae:5 ,Ph.D. Department of Microbi ogy & Immunology Committee Chairperson Masters...Macrophages in Modulating a Humoral Response after Encountering Streptococcus Pneumoniae " is appropriately acknowledged and, beyond brief excerpts, is...Dissertation: The importance of TLR2 and macrophages in modulating a humoral response after encountering Streptococcus pneumoniae Sam Vasilevsky

  18. Screening vaccine candidate strains against Streptococcus agalactiae of tilapia based on PFGE genotype.

    PubMed

    Chen, Ming; Wang, Rui; Li, Li-Ping; Liang, Wan-Wen; Li, Jian; Huang, Yan; Lei, Ai-Ying; Huang, Wei-Yi; Gan, Xi

    2012-09-14

    The immunogenicity identification of epidemic strain is important for the development and application of vaccine. In this study, 85 Streptococcus agalactiae prevalent strains from the tilapia main cultured areas of China were distributed among 10 distinct PFGE genotypes (A-J). For each genotype, one representative strain (S.a(A)-S.a(J)) was selected to develop an inactivated whole-cell bacterial vaccine (V(A)-V(J)), which then underwent a protective immunity test. V(A)-V(J) showed similar relative percent survival (RPS) to the homologous or heterologous strains with the identical genotype, while the average RPS among V(A)-V(J) protecting against itself genotype strains showed large differences (44.71-98.81%). The RPS of V(A)-V(J) vaccinated fish against infections by the mixture of S.a(A)-S.a(J) at 15 days post vaccination (dpv) was ranged from 13.33% to 60.00%, and V(B), V(D), V(F), and V(G) showed the highest RPS of 60.00%, 46.67%, 53.33% and 60.00% respectively. V(B), V(D) and V(G) have their own specific protection scope, V(B) showed strong protective immunity to infections caused by A-D, F, G and J (53.57-100%), and V(G) showed strong protective immunity to C-H and J (50.00-100%), whereas V(D) showed weak protective immunity to all non-self genotype strains (14.81-36.67%). The results of the combined vaccination showed that V(G)+V(B) group had wider protection scope and higher RPS value than V(G)+V(D) group. Our results demonstrated that the protective immunity of S. agalactiae from tilapia was not only associated with their serotypes, but also related to their PFGE genotypes. It is difficult to acquire a single vaccine candidate strain that can protect against all genotype strains from the same serotype.

  19. Next generation protein based Streptococcus pneumoniae vaccines.

    PubMed

    Pichichero, Michael E; Khan, M Nadeem; Xu, Qingfu

    2016-01-01

    All currently available Streptococcus pneumoniae (Spn) vaccines have limitations due to their capsular serotype composition. Both the 23-valent Spn polysaccharide vaccine (PPV) and 7, 10, or 13-valent Spn conjugate vaccines (PCV-7, 10, -13) are serotype-based vaccines and therefore they elicit only serotype-specific immunity. Emergence of replacement Spn strains expressing other serotypes has consistently occurred following introduction of capsular serotype based Spn vaccines. Furthermore, capsular polysaccharide vaccines are less effective in protection against non-bacteremic pneumonia and acute otitis media (AOM) than against invasive pneumococcal disease (IPD). These shortcomings of capsular polysaccharide-based Spn vaccines have created high interest in development of non-serotype specific protein-based vaccines that could be effective in preventing both IPD and non-IPD infections. This review discusses the progress to date on development of Spn protein vaccine candidates that are highly conserved by all Spn strains, are highly conserved, exhibit maximal antigenicity and minimal reactogenicity to replace or complement the current capsule-based vaccines. Key to development of a protein based Spn vaccine is an understanding of Spn pathogenesis. Based on pathogenesis, a protein-based Spn vaccine should include one or more ingredients that reduce NP colonization below a pathogenic inoculum. Elimination of all Spn colonization may not be achievable or even advisable. The level of expression of a target protein antigen during pathogenesis is another key to the success of protein based vaccines.. As with virtually all currently licensed vaccines, production of a serum antibody response in response to protein based vaccines is anticipated to provide protection from Spn infections. A significant advantage that protein vaccine formulations can offer over capsule based vaccination is their potential benefits associated with natural priming and boosting to all strains of

  20. Next generation protein based Streptococcus pneumoniae vaccines

    PubMed Central

    Pichichero, Michael E; Khan, M Nadeem; Xu, Qingfu

    2016-01-01

    All currently available Streptococcus pneumoniae (Spn) vaccines have limitations due to their capsular serotype composition. Both the 23-valent Spn polysaccharide vaccine (PPV) and 7, 10, or 13-valent Spn conjugate vaccines (PCV-7, 10, -13) are serotype-based vaccines and therefore they elicit only serotype-specific immunity. Emergence of replacement Spn strains expressing other serotypes has consistently occurred following introduction of capsular serotype based Spn vaccines. Furthermore, capsular polysaccharide vaccines are less effective in protection against non-bacteremic pneumonia and acute otitis media (AOM) than against invasive pneumococcal disease (IPD). These shortcomings of capsular polysaccharide-based Spn vaccines have created high interest in development of non-serotype specific protein-based vaccines that could be effective in preventing both IPD and non-IPD infections. This review discusses the progress to date on development of Spn protein vaccine candidates that are highly conserved by all Spn strains, are highly conserved, exhibit maximal antigenicity and minimal reactogenicity to replace or complement the current capsule-based vaccines. Key to development of a protein based Spn vaccine is an understanding of Spn pathogenesis. Based on pathogenesis, a protein-based Spn vaccine should include one or more ingredients that reduce NP colonization below a pathogenic inoculum. Elimination of all Spn colonization may not be achievable or even advisable. The level of expression of a target protein antigen during pathogenesis is another key to the success of protein based vaccines.. As with virtually all currently licensed vaccines, production of a serum antibody response in response to protein based vaccines is anticipated to provide protection from Spn infections. A significant advantage that protein vaccine formulations can offer over capsule based vaccination is their potential benefits associated with natural priming and boosting to all strains of

  1. Nonencapsulated Streptococcus pneumoniae: Emergence and Pathogenesis

    PubMed Central

    Keller, Lance E.; Robinson, D. Ashley

    2016-01-01

    ABSTRACT While significant protection from pneumococcal disease has been achieved by the use of polysaccharide and polysaccharide-protein conjugate vaccines, capsule-independent protection has been limited by serotype replacement along with disease caused by nonencapsulated Streptococcus pneumoniae (NESp). NESp strains compose approximately 3% to 19% of asymptomatic carriage isolates and harbor multiple antibiotic resistance genes. Surface proteins unique to NESp enhance colonization and virulence despite the lack of a capsule even though the capsule has been thought to be required for pneumococcal pathogenesis. Genes for pneumococcal surface proteins replace the capsular polysaccharide (cps) locus in some NESp isolates, and these proteins aid in pneumococcal colonization and otitis media (OM). NESp strains have been isolated from patients with invasive and noninvasive pneumococcal disease, but noninvasive diseases, specifically, conjunctivitis (85%) and OM (8%), are of higher prevalence. Conjunctival strains are commonly of the so-called classical NESp lineages defined by multilocus sequence types (STs) ST344 and ST448, while sporadic NESp lineages such as ST1106 are more commonly isolated from patients with other diseases. Interestingly, sporadic lineages have significantly higher rates of recombination than classical lineages. Higher rates of recombination can lead to increased acquisition of antibiotic resistance and virulence factors, increasing the risk of disease and hindering treatment. NESp strains are a significant proportion of the pneumococcal population, can cause disease, and may be increasing in prevalence in the population due to effects on the pneumococcal niche caused by pneumococcal vaccines. Current vaccines are ineffective against NESp, and further research is necessary to develop vaccines effective against both encapsulated and nonencapsulated pneumococci. PMID:27006456

  2. Méningo-encéphalite à Streptococcus agalactiae chez l'adulte non immunodéprimé

    PubMed Central

    Rafai, Mostafa; Chouaib, Naoufal; Zidouh, Saad; Bakkali, Hicham; Belyamani, Lahcen

    2015-01-01

    Streptococcus agalactiae est un Streptocoque beta-hémolytique du groupe B (SGB), c'est un germe commensal occasionnel de la peau, du tube digestif et des voies génito-urinaires. Nous rapportons un cas inhabituel d'une méningo-encéphalite due au Streptococcus agalactiae (SGB) multisensible à l'antibiogramme chez un sujet adulte immunocompétent admis au service des urgences pour prise en charge de troubles de conscience fébrile. L’évolution clinique et biologique à J10 était favorable et le patient à été transféré au service de neurologie pour complément de prise en charge secondaire. L'originalité de notre observation réside dans la rareté du type d'infection par ce germe puise qu'elle est la troisième à notre connaissance d'une méningo-encéphalite à Streptococcus agalactiae dans la littérature, c'est ainsi que même s'il est très rarement en cause, il doit être considéré comme une étiologie possible de méningo-encéphalite chez l'adulte en dehors de la grossesse, quelle que soit le statut immunitaire du patient, et sans méconnaitre le rôle du terrain sous-jacent dans l’émergence de cette pathologie infectieuse polymorphe est potentiellement grave. PMID:25995802

  3. Preliminary observations on the use of latex agglutination test for the detection of mastitis due to Streptococcus agalactiae in cows.

    PubMed Central

    Daniel, R C; Barnum, D A

    1986-01-01

    A commercial latex agglutination test for the detection of Group B streptococcal antigens was used to detect infection due to Streptococcus agalactiae in whey of bovine milk samples. Fifteen out of 17 known infections were detected, but it was necessary to incubate the wheys at 37 degrees C for 18 hours in nine of the samples. It was found that the latex agglutination test could detect Group streptococcal carbohydrate antigens in whey samples from artificially infected quarters from one to four days after failure to detect the organism on culture or after antibiotic therapy of the affected quarter. PMID:3527389

  4. Presence and resistance of Streptococcus agalactiae in vaginal specimens of pregnant and adult non-pregnant women and association with other aerobic bacteria.

    PubMed

    Numanović, Fatima; Smajlović, Jasmina; Gegić, Merima; Delibegović, Zineta; Bektaš, Sabaheta; Halilović, Emir; Nurkić, Jasmina

    2017-02-01

    Aim To determine the prevalence rate and resistance profile of Streptococcus agalactiae (S. agalactiae) in vaginal swabs of pregnant and adult non-pregnant women in the Tuzla region, Bosnia and Herzegovina (B&H), as well as its association with other aerobic bacteria. Methods This prospective study included 200 women, 100 pregnant and 100 adult non-pregnant. The research was conducted at the Institute of Microbiology, University Clinical Center Tuzla from October to December 2015. Standard aerobic microbiological techniques were used for isolation and identification of S. agalactiae and other aerobic bacteria. Antimicrobial susceptibility was determined by the disk diffusion and microdilution method(VITEK 2/AES instrument). Results Among 200 vaginal swabs, 17 (8.50%) were positive for S. agalactiae, e. g., 7% (7/100) of pregnant and 10% (10/100) of adult non-pregnant women. In the pregnant group, 71.4% (5/7) of S. agalactiae isolates were susceptible to clindamycin and 85.7%(6/7) to erythromycin. In the adult non-pregnant group, only resistance to clindamycin was observed in one patient (1/10; 10%). S. agalactiae as single pathogen was isolated in 57.14% (4/7) of pregnant and 60% (6/10) of adult non-pregnant S. agalactiae positive women. In mixed microbial cultures S. agalactiae was most frequently associated with Enterococcus faecalis and Escherichia coli. Conclusion The rate of S. agalactiae positive women in the population of pregnant and adult non-pregnant women of Tuzla Canton, B&H is comparable with other European countries. Large studies are needed to develop a common national strategy for the prevention of S. agalactiae infection in B&H, especially during pregnancy.

  5. First report of an outbreak of pneumonia caused by Streptococcus pneumoniae serotype 6A.

    PubMed

    Prebil, Karla; Beović, Bojana; Paragi, Metka; Seme, Katja; Kastrin, Tamara; Plesničar, Blanka Kores; Petek, Bojana; Martinčič, Žiga

    2016-01-01

    Five patients in a geropsychiatric unit of a psychiatric hospital became abruptly ill with pneumonia caused by Streptococcus pneumoniae serotype 6A. Four other residents were colonized with the same serotype, which has previously not been reported in association with pneumonia outbreaks. Furthermore, serotype 6A is not included in all vaccine types, which may be important for the choice of vaccine in some settings. All isolates showed identical pulsed-field gel electrophoresis restriction patterns.

  6. Characterization of two novel gadd45a genes in hybrid tilapia and their responses to the infection of Streptococcus agalactiae.

    PubMed

    Shen, Yubang; Ma, Keyi; Liu, Feng; Yue, Gen Hua

    2016-07-01

    Diseases are one of the major challenges in tilapia aquaculture. Identification of DNA markers associated with disease resistance may facilitate the acceleration of the selection for disease resistance. Gadd45a (growth arrest and DNA damage 45 A), a stress-inducible gene in humans and mice, has not been studied in fish. We characterized the two prologues of Gadd45a genes in hybrid tilapia. Gadd45a1 and Gadd45a2 shared an identical gene structure and showed an amino acid sequence identity of 73.8%. Their expressions were detected in all 10 tissues examined, with the kidney and gill having high transcriptional expressions. The expression levels of Gadd45a1 were significantly lower than those of Gadd45a2 in all examined tissues. After a challenge with a bacterial pathogen Streptococcus agalactiae, the expressions of the two genes were up-regulated significantly in the spleen, kidney, liver and intestine. These findings suggest that the two Gadd45a genes play an important role in the resistance to S. agalactiae in tilapia. We identified 10 SNPs in the two genes. The SNP markers in the two Gadd45a genes could be used to examine whether they are associated with resistance to S. agalactiae.

  7. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease

    PubMed Central

    Landwehr-Kenzel, Sybille; Henneke, Philipp

    2014-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood–brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are

  8. [Vaginal colonization of the Streptococcus agalactiae in pregnant woman in Tunisia: risk factors and susceptibility of isolates to antibiotics].

    PubMed

    Ferjani, A; Ben Abdallah, H; Ben Saida, N; Gozzi, C; Boukadida, J

    2006-05-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) is one of the main bacterial causes of serious infections in newborns. We have evaluated prospectively GBS vaginal colonization in pregnant women and we have tried to determine the risk factors of the colonization by GBS and the particularities of the different isolated strains. We have screened 300 pregnant women with vaginal and anal sample in a same swab. Thirty nine (13%) pregnant women are colonized by SGB, 0% in the first trimester, 10.2% in the second trimester and 17% in the third trimester. Different factors are associated significantly with GBS colonization: past history of infection in newborns, genital infection during pregnancy and parity The highest rates of resistance are found in tetracycline (97.4%), erythromycin (51.3%) and lincomycin (46.2%). All the strains were susceptible to amoxicilin and pristinamycin.

  9. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae.

    PubMed

    Faikoh, Elok Ning; Hong, Yong-Han; Hu, Shao-Yang

    2014-05-01

    Cinnamaldehyde, which is extracted from cinnamon, is a natural compound with activity against bacteria and a modulatory immune function. However, the antibacterial activity and immunostimulation of cinnamaldehyde in fish has not been well investigated due to the compound's poor water solubility. Thus, liposome-encapsulated cinnamaldehyde (LEC) was used to evaluate the effects of cinnamaldehyde on in vitro antibacterial activity against aquatic pathogens and in vivo immunity and protection parameters against Vibrio vulnificus and Streptococcus agalactiae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as well as bactericidal agar plate assay results demonstrated the effective bacteriostatic and bactericidal potency of LEC against Aeromonas hydrophila, V. vulnificus, and S. agalactiae, as well as the antibiotic-resistant Vibrio parahaemolyticus and Vibrio alginolyticus. Bacteria challenge test results demonstrated that LEC significantly enhances the survival rate and inhibits bacterial growth in zebrafish infected with A. hydrophila, V. vulnificus, and S. agalactiae. A gene expression study using a real-time PCR showed that LEC immersion-treated zebrafish had increased endogenous interleukin (IL)-1β, IL-6, IL-15, IL-21, tumor necrosis factor (TNF)-α, and interferon (INF)-γ expression in vivo. After the zebrafish were infected with V. vulnificus or S. agalactiae, the LEC immersion treatment suppressed the expression of the inflammatory cytokines IL-1β, IL-6, IL-15, NF-κb, and TNF-α and induced IL-10 and C3b expression. These findings demonstrate that cinnamaldehyde exhibits antimicrobial activity against aquatic pathogens, even antibiotic-resistant bacterial strains and immune-stimulating effects to protect the host's defenses against pathogen infection in bacteria-infected zebrafish. These results suggest that LEC could be used as an antimicrobial agent and immunostimulant to protect bacteria-infected fish in aquaculture.

  10. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  11. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  12. Streptococcus Pneumoniae Intracranial Abscess and Post-Infectious Vasculitis

    PubMed Central

    Lucas, Alexandra; Maung, Ko Ko; Ratts, Ryan

    2016-01-01

    Intracranial abscesses are rare complications of Streptococcus pneumoniae infections, and to our knowledge, there have been no case reports of post-infectious vasculitis developing in such patients. Here we describe the case of a 48-year-old post-splenectomy male who developed post-infectious vasculitis following S. pneumoniae otitis media complicated by mastoiditis, osteomyelitis, meningitis, and intracranial abscess. Clinicians ought to be aware of the possible adverse outcomes of invasive S. pneumoniae and the limitations of current treatment options. PMID:28191299

  13. Structure of Streptococcus agalactiae tip pilin GBS104: a model for GBS pili assembly and host interactions

    SciTech Connect

    Krishnan, Vengadesan; Dwivedi, Prabhat; Kim, Brandon J.; Samal, Alexandra; Macon, Kevin; Ma, Xin; Mishra, Arunima; Doran, Kelly S.; Ton-That, Hung; Narayana, Sthanam V. L.

    2013-06-01

    The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. In addition, a homology model of the remaining two domains of GBS104 was built and a model of full-length GBS104 was generated by combining the homology model (the N1 and N4 domains) and the crystal structure of the 75 kDa fragment (the N2 and N3 domains). This rod-shaped GBS104 model is constructed of three IgG-like domains (the N1, N2 and N4 domains) and one vWFA-like domain (the N3 domain). The N1 and N2 domains of GBS104 are assembled with distinct and remote segments contributed by the N- and C-termini. The metal-binding site in the N3 domain of GBS104 is in the closed/low-affinity conformation. Interestingly, this domain hosts two long arms that project away from the metal-binding site. Using site-directed mutagenesis, two cysteine residues that lock the N3 domain of GBS104 into the open/high-affinity conformation were introduced. Both wild-type and disulfide-locked recombinant proteins were tested for binding to extracellular matrix proteins such as collagen, fibronectin, fibrinogen and laminin, and an increase in fibronectin binding affinity was identified for the disulfide-locked N3 domain, suggesting that induced conformational changes may play a possible role in receptor binding.

  14. Following the equator: division site selection in Streptococcus pneumoniae.

    PubMed

    Bramkamp, Marc

    2015-03-01

    The mechanisms that spatially regulate cytokinesis are more diverse than initially thought. In two recent publications a positive regulator of FtsZ positioning has been identified in Streptococcus pneumoniae. MapZ (LocZ) connects the division machinery with cell wall elongation, providing a simple mechanism to ensure correct division site selection.

  15. Conjugative Transfer and cis-Mobilization of a Genomic Island by an Integrative and Conjugative Element of Streptococcus agalactiae

    PubMed Central

    Puymège, Aurore; Bertin, Stéphane; Chuzeville, Sarah; Guédon, Gérard

    2013-01-01

    Putative integrative and conjugative elements (ICEs), i.e., genomic islands which could excise, self-transfer by conjugation, and integrate into the chromosome of the bacterial host strain, were previously identified by in silico analysis in the sequenced genomes of Streptococcus agalactiae (M. Brochet et al., J. Bacteriol. 190:6913–6917, 2008). We investigated here the mobility of the elements integrated into the 3′ end of a tRNALys gene. Three of the four putative ICEs tested were found to excise but only one (ICE_515_tRNALys) was found to transfer by conjugation not only to S. agalactiae strains but also to a Streptococcus pyogenes strain. Transfer was observed even if recipient cell already carries a related resident ICE or a genomic island flanked by attL and attR recombination sites but devoid of conjugation or recombination genes (CIs-Mobilizable Element [CIME]). The incoming ICE preferentially integrates into the 3′ end of the tRNALys gene (i.e., the attR site of the resident element), leading to a CIME-ICE structure. Transfer of the whole composite element CIME-ICE was obtained, showing that the CIME is mobilizable in cis by the ICE. Therefore, genomic islands carrying putative virulence genes but lacking the mobility gene can be mobilized by a related ICE after site-specific accretion. PMID:23275243

  16. Conjugative transfer and cis-mobilization of a genomic island by an integrative and conjugative element of Streptococcus agalactiae.

    PubMed

    Puymège, Aurore; Bertin, Stéphane; Chuzeville, Sarah; Guédon, Gérard; Payot, Sophie

    2013-03-01

    Putative integrative and conjugative elements (ICEs), i.e., genomic islands which could excise, self-transfer by conjugation, and integrate into the chromosome of the bacterial host strain, were previously identified by in silico analysis in the sequenced genomes of Streptococcus agalactiae (M. Brochet et al., J. Bacteriol. 190:6913-6917, 2008). We investigated here the mobility of the elements integrated into the 3' end of a tRNA(Lys) gene. Three of the four putative ICEs tested were found to excise but only one (ICE_515_tRNA(Lys)) was found to transfer by conjugation not only to S. agalactiae strains but also to a Streptococcus pyogenes strain. Transfer was observed even if recipient cell already carries a related resident ICE or a genomic island flanked by attL and attR recombination sites but devoid of conjugation or recombination genes (CIs-Mobilizable Element [CIME]). The incoming ICE preferentially integrates into the 3' end of the tRNA(Lys) gene (i.e., the attR site of the resident element), leading to a CIME-ICE structure. Transfer of the whole composite element CIME-ICE was obtained, showing that the CIME is mobilizable in cis by the ICE. Therefore, genomic islands carrying putative virulence genes but lacking the mobility gene can be mobilized by a related ICE after site-specific accretion.

  17. Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae.

    PubMed

    Barichello, Tatiana; Lemos, Joelson C; Generoso, Jaqueline S; Carradore, Mirelle M; Moreira, Ana Paula; Collodel, Allan; Zanatta, Jessiele R; Valvassori, Samira S; Quevedo, João

    2013-03-01

    Streptococcus agalactiae (GBS) is a major cause of severe morbidity and mortality in neonates and young infants, causing sepsis, pneumonia and meningitis. The survivors from this meningitis can suffer serious long-term neurological consequences, such as, seizures, hearing loss, learning and memory impairments. Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) control the neuronal cell death during the brain development and play an important role in neuronal differentiation, survival and growth of neurons. Neonate Wistar rats, received either 10μL of sterile saline as a placebo or an equivalent volume of GBS suspension at a concentration of 1×10(6)cfu/mL. Sixty days after induction of meningitis, the animals underwent behavioral tests, after were killed and the hippocampus and cortex were retired for analyze of the BDNF and NGF levels. In the open-field demonstrated no difference in motor, exploratory activity and habituation memory between the groups. The step-down inhibitory avoidance, when we evaluated the long-term memory at 24h after training session, we found that the meningitis group had a decrease in aversive memory when compared with the long-term memory test of the sham group. BDNF levels decreased in hippocampus and cortex; however the NGF levels decreased only in hippocampus. These findings suggest that the meningitis model could be a good research tool for the study of the biological mechanisms involved in the behavioral alterations secondary to GBS meningitis.

  18. Interpreting Assays for the Detection of Streptococcus pneumoniae

    PubMed Central

    2011-01-01

    Streptococcus pneumoniae is both an aggressive pathogen and a normal part of the human respiratory microbiome. Clinicians and microbiologists have struggled to develop tests that can identify pneumococcal respiratory infection and accurately distinguish colonization from invasive disease. Molecular methods hold the promise of an improved ability to rapidly detect microorganisms in respiratory secretions and to make an accurate diagnosis; however, interpretation of diagnostic testing for S. pneumoniae remains problematic. Molecular assays, such as those targeting the pneumolysin gene, may cross-react with other streptococcal species, confounding detection and quantification. Assays that target the autolysin gene appear to be more specific. Even when accurately identified, however, the significance of S. pneumoniae DNA detected in clinical samples is difficult to determine. Here we will discuss the challenges faced in the interpretation of molecular testing for S. pneumoniae, and some strategies that might be used to improve our ability to diagnose pneumococcal respiratory infection. PMID:21460292

  19. Recognition of Streptococcus pneumoniae by the innate immune system.

    PubMed

    Koppe, Uwe; Suttorp, Norbert; Opitz, Bastian

    2012-04-01

    Streptococcus pneumoniae is both a frequent colonizer of the upper respiratory tract and a leading cause of life-threatening infections such as pneumonia, meningitis and sepsis. The innate immune system is critical for the control of colonization and for defence during invasive disease. Initially, pneumococci are recognized by different sensors of the innate immune system called pattern recognition receptors (PRRs), which control most subsequent host defence pathways. These PRRs include the transmembrane Toll-like receptors (TLRs) as well as the cytosolic NOD-like receptors (NLRs) and DNA sensors. Recognition of S. pneumoniae by members of these PRR families regulates the production of inflammatory mediators that orchestrate the following immune response of infected as well as neighbouring non-infected cells, stimulates the recruitment of immune cells such as neutrophils and macrophages, and shapes the adaptive immunity. This review summarizes the current knowledge of the function of different PRRs in S. pneumoniae infection.

  20. Evolving trends in Streptococcus pneumoniae resistance: implications for therapy of community-acquired bacterial pneumonia.

    PubMed

    Jones, Ronald N; Jacobs, Michael R; Sader, Helio S

    2010-09-01

    Pneumonia is a major infectious disease associated with significant morbidity, mortality and utilisation of healthcare resources. Streptococcus pneumoniae is the predominant pathogen in community-acquired pneumonia (CAP), accounting for 20-60% of bacterial cases. Emergence of multidrug-resistant S. pneumoniae has become a significant problem in the management of CAP. Although pneumococcal conjugate vaccine usage in children has led to significant decreases in morbidity and mortality due to S. pneumoniae in all age groups, disease management has been further complicated by the unexpected increase in resistant serotypes, such as 19A, in some regions. Until rapid and accurate diagnostic tests become available, initial treatment of CAP will remain empirical. Thus, selection of appropriate antimicrobial therapy for CAP must be based on prediction of the most likely pathogens and their local antimicrobial susceptibility patterns. This article reviews information on antimicrobial resistance patterns amongst S. pneumoniae and implications for managing CAP.

  1. Molecular characterization and expression of Lck in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Lu, Yishan; Zhu, Weiwei; Huang, Yu; Jian, JiChang; Wu, Zaohe

    2015-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a critical role in effective signal transductions that are fundamental to T cell differentiation, proliferation, and effector functions. In this paper, the Lck gene of Nile tilapia, Oreochromis niloticus (designated as On-Lck), was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed important structural characteristics required for T cell receptor (TCR) signal transduction were detected in the deduced amino acid sequence of On-Lck, and the deduced genomic structure of On-Lck was similar to the known Lck. In healthy Nile tilapia, the On-Lck transcripts were mainly detected in the thymus, spleen, head kidney, and gill. When immunized with inactivated S. agalactiae, the On-Lck mRNA expression was significantly upregulated in the thymus, spleen, and head kidney. Moreover, there was a clear time-dependent expression pattern of On-Lck after immunization, and the expression reached the highest level at 48 h in the spleen and thymus and at 72 h in the head kidney, respectively. This is the first report on the expression of Lck induced by intracellular bacteria vaccination in teleosts. These findings indicated that On-Lck may play an important role in the immune response to intracellular bacteria in Nile tilapia.

  2. Molecular characterization and expression of CD2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Tang, Jufen; Lu, Yishan; Jian, JiChang; Wu, Zaohe; Nie, Pin

    2016-03-01

    The cluster of differentiation 2 (CD2), functioning as a cell adhesion and costimulatory molecule, plays a crucial role in T-cell activation. In this paper, the CD2 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD2) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed On-CD2 protein consists of two extracellular Ig-like domains, a transmembrane region, and a long proline-rich cytoplasmic tail, which is a hallmark of CD2, and several important structural characteristics required for T-cell activation were detected in the deduced amino acid sequence of On-CD2. In healthy tilapia, the On-CD2 transcripts were mainly detected in the head kidney, spleen, blood and thymus. Moreover, there was a clear time-dependent expression pattern of On-CD2 after immunized by formalin-inactivated S. agalactiae and the expression reached the highest level at 12 h in the brain and head kidney, 48 h in the spleen, and 72 h in the thymus, respectively. This is the first report on the expression of CD2 induced by bacteria vaccination in teleosts. These findings indicated that On-CD2 may play an important role in the immune response to intracellular bacteria in Nile tilapia.

  3. Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae.

    PubMed

    Blau, Karin; Portnoi, Maxim; Shagan, Marilou; Kaganovich, Antonina; Rom, Slava; Kafka, Daniel; Chalifa Caspi, Vered; Porgador, Angel; Givon-Lavi, Noga; Gershoni, Jonathan M; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2007-06-15

    Streptococcus pneumoniae fructose bisphosphate aldolase (FBA) is a cell wall-localized lectin. We demonstrate that recombinant (r) FBA and anti-rFBA antibodies inhibit encapsulated and unencapsulated S. pneumoniae serotype 3 adherence to A549 type II lung carcinoma epithelial cells. A random combinatorial peptide library expressed by filamentous phage was screened with rFBA. Eleven of 30 rFBA-binding phages inhibited 90% of S. pneumoniae adhesion to A549 cells. The insert peptide sequence of 9 of these phages matched the Flamingo cadherin receptor (FCR) when aligned against the human genome. A peptide comprising a putative FBA-binding region of FCR (FCRP) inhibited 2 genetically and capsularly unrelated pairs of encapsulated and unencapsulated S. pneumoniae strains from binding to A549 cells. Moreover, FCRP inhibited S. pneumoniae nasopharyngeal and lung colonization and, possibly, pneumonia development in the mouse intranasal inoculation model system. These data indicate that FBA is an S. pneumoniae adhesin and that FCR is its host receptor.

  4. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    DTIC Science & Technology

    2006-07-06

    caused by penicillin -resistant Streptococcus pneumoniae in rabbits. Antimicrob. Agents Chemother. 46: 1760- 1765. Takeuchi, O., Hoshino, K., and...2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE The host immune response to Streptococcus pneumoniae ...host immune response to Streptococcus pneumoniae : bridging innate and adaptive immunity Katherine Shi-Hui Lee Thesis directed by: Clifford M

  5. Disseminated Streptococcus pneumoniae infection involving a ventricular assist device

    PubMed Central

    Reeves, J.S.; Rajagopalan, N.; Huaman, M.A.

    2015-01-01

    We describe the first reported case, to our knowledge, of disseminated pneumococcal infection involving a left ventricular assist device (LVAD). The management of this infection was extremely challenging, requiring multiple surgical debridements, LVAD removal, and prolonged courses of antibiotics. The Streptococcus pneumoniae isolate was found to be serotype 19F, which is included in both the pneumococcal polysaccharide and conjugate vaccines. This report highlights the importance of routine screening for up-to-date vaccination in patients who undergo LVAD implantation. PMID:26073334

  6. Disseminated Streptococcus pneumoniae infection involving a ventricular assist device.

    PubMed

    Reeves, J S; Rajagopalan, N; Huaman, M A

    2015-08-01

    We describe the first reported case, to our knowledge, of disseminated pneumococcal infection involving a left ventricular assist device (LVAD). The management of this infection was extremely challenging, requiring multiple surgical debridements, LVAD removal, and prolonged courses of antibiotics. The Streptococcus pneumoniae isolate was found to be serotype 19F, which is included in both the pneumococcal polysaccharide and conjugate vaccines. This report highlights the importance of routine screening for up-to-date vaccination in patients who undergo LVAD implantation.

  7. Milk protein profiles in response to Streptococcus agalactiae subclinical mastitis in dairy cows.

    PubMed

    Pongthaisong, Pongphol; Katawatin, Suporn; Thamrongyoswittayakul, Chaiyapas; Roytrakul, Sittiruk

    2016-01-01

    The objective of this study was to investigate the milk protein profiles of normal milk and those of milk during the course of subclinical mastitis, caused by natural Streptococcus agalactiae infection. Two-dimensional gel electrophoresis and liquid chromatography mass spectrometry were used to assess protein profiles and to identify the proteins. The results showed that S. agalactiae subclinical mastitis altered the protein profiles of milk. Following Mascot database matching, 11 and 12 protein types were identified in the milk collected from healthy and S. agalactiae subclinical mastitic udders, respectively. The distinct presence of the antibacterial protein cathelicidin-1 was detected in infected milk samples, which in turn was highly correlated to the severity of subclinical mastitis as represented by the milk somatic cell count (r = 0.616), but not the bacterial count. The protein profile of milk reveals changes in the host response to S. agalactiae intramammary infection; cathelicidin-1 could therefore serve as a biomarker for the detection of subclinical mastitis in dairy cows.

  8. Mycoplasma pneumoniae and Streptococcus pneumoniae caused different microbial structure and correlation network in lung microbiota

    PubMed Central

    Wang, Heping; Dai, Wenkui; Qiu, Chuangzhao; Li, Shuaicheng; Wang, Wenjian; Xu, Jianqiang; Li, Zhichuan; Wang, Hongmei; Li, Yuzheng; Yang, Zhenyu; Feng, Xin; Zhou, Qian; Han, Lijuan; Li, Yinhu

    2016-01-01

    Pneumonia is one of the most serious diseases for children, with which lung microbiota are proved to be associated. We performed 16S rDNA analysis on broncho-alveolar lavage fluid (BALF) for 32 children with tracheomalacia (C group), pneumonia infected with Streptococcus pneumoniae (S. pneumoniae) (D1 group) or Mycoplasma pneumoniae (M. pneumoniae) (D2 group). Children with tracheomalacia held lower microbial diversity and accumulated Lactococcus (mean ± SD, 45.21%±5.07%, P value <0.05), Porphyromonas (0.12%±0.31%, P value <0.05). D1 and D2 group were enriched by Streptococcus (7.57%±11.61%, P value <0.01 when compared with D2 group) and Mycoplasma (0.67%±1.25%, P value <0.01) respectively. Bacterial correlation in C group was mainly intermediated by Pseudomonas and Arthrobacter. Whilst, D1 group harbored simplest microbial correlation in three groups, and D2 group held the most complicated network, involving enriched Staphylococcus (0.26%±0.71%), Massilia (0.81%±2.42%). This will be of significance for understanding pneumonia incidence and progression more comprehensively, and discerning between bacterial infection and carriage. PMID:27293852

  9. Diversity and Mobility of Integrative and Conjugative Elements in Bovine Isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis▿ †

    PubMed Central

    Haenni, Marisa; Saras, Estelle; Bertin, Stéphane; Leblond, Pierre; Madec, Jean-Yves; Payot, Sophie

    2010-01-01

    Bovine isolates of Streptococcus agalactiae (n = 76), Streptococcus dysgalactiae subsp. dysgalactiae (n = 32), and Streptococcus uberis (n = 101) were analyzed for the presence of different integrative and conjugative elements (ICEs) and their association with macrolide, lincosamide, and tetracycline resistance. The diversity of the isolates included in this study was demonstrated by multilocus sequence typing for S. agalactiae and pulsed-field gel electrophoresis for S. dysgalactiae and S. uberis. Most of the erythromycin-resistant strains carry an ermB gene. Five strains of S. uberis that are resistant to lincomycin but susceptible to erythromycin carry the lin(B) gene, and one has both linB and lnuD genes. In contrast to S. uberis, most of the S. agalactiae and S. dysgalactiae tetracycline-resistant isolates carry a tet(M) gene. A tet(S) gene was also detected in the three species. A Tn916-related element was detected in 30 to 50% of the tetracycline-resistant strains in the three species. Tetracycline resistance was successfully transferred by conjugation to an S. agalactiae strain. Most of the isolates carry an ICE integrated in the rplL gene. In addition, half of the S. agalactiae isolates have an ICE integrated in a tRNA lysine (tRNALys) gene. Such an element is also present in 20% of the isolates of S. dysgalactiae and S. uberis. A circular form of these ICEs was detected in all of the isolates tested, indicating that these genetic elements are mobile. These ICEs could thus also be a vehicle for horizontal gene transfer between streptococci of animal and/or human origin. PMID:20952646

  10. Development of a single-dose recombinant CAMP factor entrapping poly(lactide-co-glycolide) microspheres-based vaccine against Streptococcus agalactiae.

    PubMed

    Liu, Gang; Yin, Jinhua; Barkema, Herman W; Chen, Liben; Shahid, Muhammad; Szenci, Otto; De Buck, Jeroen; Kastelic, John P; Han, Bo

    2017-03-01

    Streptococcus agalactiae is an important contagious bovine mastitis pathogen. Although it is well controlled and even eradicated in most Northern European and North American dairy herds, the prevalence of this pathogen remains very high in China. However, research on development of a vaccine against S. agalactiae mastitis is scarce. The aims of the present study were to: (1) develop a single-dose vaccine against S. agalactiae based on poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) encapsulated CAMP factor, a conserved virulent protein encoded by S. agalactiae's cfb gene; and (2) evaluate its immunogenicity and protective efficacy in a mouse model. The cfb gene was cloned and expressed in a recombinant Escherichia coli strain Trans1-T1. The CAMP factor was tested to determine a safe dose range and then encapsulated in MS of PLGA (50:50) to assess its release pattern in vitro and immune reaction in vivo. Furthermore, a mouse model and a histopathological assay were developed to evaluate bacterial burden and vaccine efficacy. In the low dosage range (<100μg), CAMP factor had no obvious toxicity in mice. The release pattern in vitro was characterized by an initial burst release (44%), followed by a sustained and slower release over 7wk. In mice immunized with either pure CAMP factor protein or PLGA-CAMP, increased antibody titers were detected in the first 2wk, whereas only PLGA-CAMP immunization induced a sustained increase of antibody titers. In mice vaccinated with PLGA-CAMP, mortality and bacteria counts were lower (compared to a control group) after S. agalactiae challenge. Additionally, no pathological lesions were detected in the vaccinated group. Therefore, PLGA-CAMP conferred protective efficacy against S. agalactiae in our mouse model, indicating its potential as a vaccine against S. agalactiae mastitis. Furthermore, the slow-release kinetics of PLGA MS warranted optimism for development of a single-dose vaccine.

  11. Recent advances in our understanding of Streptococcus pneumoniae infection

    PubMed Central

    Anderson, Ronald

    2014-01-01

    A number of significant challenges remain with regard to the diagnosis, treatment, and prevention of infections with Streptococcus pneumoniae (pneumococcus), which remains the most common bacterial cause of community-acquired pneumonia. Although this infection is documented to be extremely common in younger children and in older adults, the burden of pneumonia it causes is considerably underestimated, since the incidence statistics are derived largely from bacteremic infections, because they are easy to document, and yet the greater burden of pneumococcal pneumonias is non-invasive. It has been estimated that for every bacteremic pneumonia that is documented, three non-bacteremic infections occur. Management of these infections is potentially complicated by the increasing resistance of the isolates to the commonly used antibiotics. Furthermore, it is well recognized that despite advances in medical care, the mortality of bacteremic pneumococcal pneumonia has remained largely unchanged over the past 50 years and averages approximately 12%. Much recent research interest in the field of pneumococcal infections has focused on important virulence factors of the organism, on improved diagnostic and prognostication tools, on defining risk factors for death, on optimal treatment strategies involving both antibiotics and adjunctive therapies, and on disease prevention. It is hoped that through these endeavors the outlook of pneumococcal infections will be improved. PMID:25343039

  12. Contribution of IL-1 to resistance to Streptococcus pneumoniae infection.

    PubMed

    Kafka, Daniel; Ling, Eduard; Feldman, Galia; Benharroch, Daniel; Voronov, Elena; Givon-Lavi, Noga; Iwakura, Yoichiro; Dagan, Ron; Apte, Ron N; Mizrachi-Nebenzahl, Yaffa

    2008-09-01

    The role of IL-1 in susceptibility to Streptococcus pneumoniae infection was studied in mice deficient in genes of the IL-1 family [i.e. IL-1alpha-/-, IL-1beta-/-, IL-1alpha/beta-/- and IL-1R antagonist (IL-1Ra)-/- mice] following intra-nasal inoculation. Intra-nasal inoculation of S. pneumoniae of IL-1beta-/- and IL-1alpha/beta-/- mice displayed significantly lower survival rates and higher nasopharyngeal and lung bacterial load as compared with control, IL-1alpha-/- and IL-1Ra-/- mice. Treatment of IL-1beta-/- mice with rIL-1beta significantly improved their survival. A significant increase in blood neutrophils was found in control, IL-1alpha-/- and IL-1Ra-/- but not in IL-1beta-/- and IL-1alpha/beta-/- mice. Local infiltrates of neutrophils and relatively preserved organ architecture were observed in the lungs of IL-1alpha-/- and control mice. However, S. pneumoniae-infected IL-1beta-/-, IL-1alpha/beta-/- and IL-1Ra-/- mice demonstrated diffuse pneumonia and tissue damage. Altogether, all three isoforms contribute to protection against S. pneumoniae; our results point to differential role of IL-1alpha and IL-1beta in the pathogenesis and control of S. pneumoniae infection and suggest that IL-1beta has a major role in resistance to primary pneumococcal infection while the role of IL-1alpha is less important.

  13. Characterization of the inflammatory infiltrate in Streptococcus pneumoniae pneumonia in young and elderly patients.

    PubMed

    Menter, Thomas; Giefing-Kroell, Carmen; Grubeck-Loebenstein, Beatrix; Tzankov, Alexandar

    2014-01-01

    There is an increased susceptibility and mortality in the elderly due to pneumonia caused by Streptococcus pneumoniae. We aimed to assess the inflammatory cell composition with respect to age in pneumococcal pneumonia patients. Neutrophilic granulocytes and various lymphocyte and macrophage subpopulations were immunohistochemically quantified on lung tissue specimens of young (n = 5; mean age 8.4 years), middle-aged (n = 8; mean age 55.9 years) and elderly (n = 9; mean age 86.6 years) pneumonia patients with microbiologically proven S. pneumoniae pneumonia. We discovered a higher percentage of neutrophilic granulocytes in elderly as opposed to young patients (95 vs. 75%, p = 0.012). Conversely, young patients versus elderly patients had more alveolar macrophages (CD11c+: 20 vs. 9%, p = 0.029) and M1 macrophages (CD14+: 30 vs. 10%, p = 0.012 and HLA-DR+: 52 vs. 11%, p = 0.019). There was no significant difference concerning M2 macrophages and lymphocytes. Comparison of young patients with middle-aged patients showed similar significant results for alveolar macrophages (p = 0.019) and subsignificant results for M1 macrophages and neutrophilic granulocytes (p < 0.08). This is the first study characterizing the inflammatory infiltrate of pneumococcal pneumonia in situ. Our observations improve the understanding of the innate immune mechanisms of pneumococcal lung infection and point at the potential of therapies for restoring macrophage function and decreasing neutrophilic influx in order to help prevent or cure pneumonia.

  14. Capsule Switching and Antimicrobial Resistance Acquired during Repeated Streptococcus pneumoniae Pneumonia Episodes.

    PubMed

    Chang, Bin; Nariai, Akiyoshi; Sekizuka, Tsuyoshi; Akeda, Yukihiro; Kuroda, Makoto; Oishi, Kazunori; Ohnishi, Makoto

    2015-10-01

    Streptococcus pneumoniae colonizes the nasopharyngeal mucus in healthy people and causes otitis media, pneumonia, bacteremia, and meningitis. In this study, we analyzed an S. pneumoniae strain that caused 7 repeated pneumonia episodes in an 80-month-old patient with cerebral palsy during a period of 25 months. A total of 10 S. pneumoniae strains were obtained from sputum samples, and serotype 6B was isolated from samples from the first 5 episodes, whereas serotype 6A was isolated from samples from the last 2. Whole-genome sequencing showed clonality of the 10 isolates with 10 single nucleotide polymorphisms (SNPs) in the genomes. Among these SNPs, one single point mutation in the wciP gene was presumed to relate to the serotype switching from 6B to 6A, and the other mutations in parC and gyrA were related to fluoroquinolone resistance. These results suggested that an S. pneumoniae strain, which asymptomatically colonized the patient's nasopharynx or was horizontally transmitted from an asymptomatic carrier, caused the repeated pneumonia events. Phenotypic variations in the capsule type and antimicrobial susceptibility occurred during the carrier state. Hyporesponsiveness to serotypes 6B and 6A of S. pneumoniae was found even after vaccination with the 7-valent pneumococcal conjugate vaccine and the 23-valent pneumococcal polysaccharide vaccine. After an additional vaccination with the 13-valent pneumococcal conjugate vaccine, opsonic activities for both serotypes 6A and 6B significantly increased and are expected to prevent relapse by the same strain.

  15. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli

    PubMed Central

    Kay, Emily J.; Yates, Laura E.; Terra, Vanessa S.; Cuccui, Jon; Wren, Brendan W.

    2016-01-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  16. Penicillin resistance and serotyping of Streptococcus pneumoniae in Latin America.

    PubMed

    Camargos, Paulo; Fischer, Gilberto Bueno; Mocelin, Helena; Dias, Cícero; Ruvinsky, Raúl

    2006-09-01

    Streptococcus pneumoniae (Strep. pneumoniae) is the main cause of bacterial pneumonia in children less than 5 years of age, with high mortality rates in developing countries. In 1993, the Regional System for Vaccines Group (SIREVA) of the pan-American Health Organisation (PAHO) began a study involving six Latin American countries to identify serotypes and their representativity in the new conjugated vaccines, and to determine the degree of resistance to penicillin. Serotypes 14 (highest resistance level), 5, 1, 6A/B, 23F, 7F, 9V, 19F, 18C, 19A, 9N, were prevalent in the region, with some differences among countries. Although resistance to penicillin ranged from 2% (Brazil) to 21.1% (Mexico), studies have shown that pneumonia caused by Strep. pneumoniae with diminished sensitivity to penillin can be treated with this antibiotic. Only 58% of the serotypes isolated in the region studied were represented in the seven-valent vaccine. Continual surveillance is essential to determine which formulation of conjugated vaccine will be suitable for use in Latin America.

  17. Lethal Synergism between Influenza and Streptococcus pneumoniae

    PubMed Central

    Rudd, Jennifer M; Ashar, Harshini K; Chow, Vincent TK; Teluguakula, Narasaraju

    2016-01-01

    The devastating synergism of bacterial pneumonia with influenza viral infections left its mark on the world over the last century. Although the details of pathogenesis remain unclear, the synergism is related to a variety of factors including pulmonary epithelial barrier damage which exposes receptors that influence bacterial adherence and the triggering of an exaggerated innate immune response and cytokine storm, which further acts to worsen the injury. Several therapeutics and combination therapies of antibiotics, anti-inflammatories including corticosteroids and toll-like receptor modifiers, and anti-virals are being discussed. This mini review summarizes recent developments in unearthing the pathogenesis of the lethal synergism of pneumococcal co-infection following influenza, as well as addresses potential therapeutic options and combinations of therapies currently being evaluated. PMID:27981251

  18. National Department of Defense Surveillance for Invasive Streptococcus Pneumoniae: Antibiotic Resistance, Serotype Distribution, and Arbitrarily Primed Polymerase Chain Reaction Analyses

    DTIC Science & Technology

    2008-02-15

    penicillin -susceptible and peni- cillin-resistant Streptococcnspneuttmoniae serotypes in Canada. J Infect Dis Streptococcus pneumoniae Surveillance Group...Gray for the Streptococcus pneumonia Surveillance Group Report No. 00-44 Approved for public release; distribution unlimited. NAVAL HEALTH RESEARCH...Defense Surveillance for Invasive Streptococcus pneumoniae : Antibiotic Resistance, Serotype Distribution, and Arbitrarily Primed Polymerase Chain

  19. [Nursing-home-acquired pneumococcal pneumonia--comparison of sputum cultures with Binax NOW Streptococcus pneumoniae urinary antigen assay].

    PubMed

    Rikimaru, Toru; Nishiyama, Mamoru; Yonemitsu, Junko; Nagabuchi, Masako; Shimada, Akiko; Koga, Takeharu; Aizawa, Hisamichi

    2008-11-01

    To clarify the clinical significance of Pneumococcal pneumonia in nursing-home-acquired pneumonia, we examined the positive disease rate of using sputum cultures and the Binax NOW Streptococcus pneumoniae urinary antigen assay in 154 nursing-home patients with pneumonia. These included 54 males and 100 females with a mean age of 86.2 years. Bacteriological findings for sputum culture in 130 patients showed Streptococcus pneumoniae to be cultured in 11 cases (8%). In 72 in whom the Streptococcus pneumoniae-urinary antigen test (Binax NOW) was done, the urinary-antigen-positive rate (26/72 ; 36%) was higher than the culture positive rate for S. pneumoniae. Both examinations were done in 64 patients, among whom 5 in whom S. pneumoniae was cultured also had positive results for the urinary antigen test. Almost half of those undergoing percutaneous endoscopic gastroscopy (PEG) tube nutrition had positive results for the urinary antigen test, but not all such patients had positive cultures for S. pneumoniae. Although the culture-positive rate for S. pneumoniae in sputum was low, we concluded that S. pneumoniae was frequently linked to nursing-home-acquired pneumonia, especially in "total-care" patients.

  20. Development of Streptococcus pneumoniae Vaccines Using Live Vectors

    PubMed Central

    Wang, Shifeng; Curtiss, Roy

    2014-01-01

    Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines. PMID:25309747

  1. Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties

    NASA Technical Reports Server (NTRS)

    Orihuela, C. J.; Janssen, R.; Robb, C. W.; Watson, D. A.; Niesel, D. W.

    2000-01-01

    We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro.

  2. Fatal necrotizing fasciitis due to Streptococcus pneumoniae: a case report.

    PubMed

    Park, So-Youn; Park, So Young; Moon, Soo-Youn; Son, Jun Seong; Lee, Mi Suk

    2011-01-01

    Necrotizing fasciitis is known to be a highly lethal infection of deep-seated subcutaneous tissue and superficial fascia. Reports of necrotizing fasciitis due to Streptococcus pneumoniae are exceedingly rare. We report a case of necrotizing fasciitis in a 62-yr-old man with liver cirrhosis and diabetes mellitus. He presented with painful swelling of left leg and right hand. On the day of admission, compartment syndrome was aggravated and the patient underwent surgical exploration. Intra-operative findings revealed necrotizing fasciitis and cultures of two blood samples and wound aspirates showed S. pneumoniae. The patient died despite debridement and proper antimicrobial treatment. To the best of our knowledge, this is the first case of fatal necrotizing fasciitis with meningitis reported in Korea. We also review and discuss the literature on pneumococcal necrotizing fasciitis.

  3. Recent trends in pediatric bacterial meningitis in Japan--a country where Haemophilus influenzae type b and Streptococcus pneumoniae conjugated vaccines have just been introduced.

    PubMed

    Shinjoh, Masayoshi; Iwata, Satoshi; Yagihashi, Tatsuhiko; Sato, Yoshitake; Akita, Hironobu; Takahashi, Takao; Sunakawa, Keisuke

    2014-08-01

    To investigate the trends in incidence and the characteristics of bacterial meningitis in Japan where Haemophilus influenzae type b (Hib) vaccine and 7-valent pneumococcal conjugated vaccine (PCV7) were introduced in 2008 and 2010, respectively, which was 5-20 years after their introduction in western countries. The nationwide Japanese survey of pediatric and neonatal bacterial meningitis was performed in 2011 and 2012. We analyzed the epidemiological and clinical data, and compared the information obtained in the previous nationwide survey database. We also investigated the risk factors for disease outcome. In the 2011-2012 surveys, 357 patients were evaluated. H. influenzae, Streptococcus pneumoniae, Streptococcus agalactiae and Escherichia coli were the main organisms. The number of patients hospitalized with bacterial meningitis per 1000 admissions decreased from 1.31 in 2009 to 0.43 in 2012 (p < 0.001). The incidence of H. influenzae and S. pneumoniae meningitis also decreased from 0.66 to 0.08 (p < 0.001), and 0.30 to 0.06 (p < 0.001), respectively. Only 0-2 cases with Neisseria meningitidis were reported each year throughout 2001-2012. The median patient age was 10-12 months in 2001-2011, and became lower in 2012 (2 month old) (p < 0.001). The fatality rate for S. agalactiae is the highest (5.9% (11/187)) throughout 2001-2012 among the four organisms. Risk factors for death and sequelae were convulsions at onset, low CSF glucose, S. agalactiae etiology, and persistent positive CSF culture. Hib vaccine and PCV7 decreased the rate of bacterial meningitis. Earlier introduction of these vaccines may have prevented bacterial meningitis among Japanese children.

  4. Isolation and characterization of unsaturated fatty acid auxotrophs of Streptococcus pneumoniae and Streptococcus mutans.

    PubMed

    Altabe, Silvia; Lopez, Paloma; de Mendoza, Diego

    2007-11-01

    Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis.

  5. Isolation and Characterization of Unsaturated Fatty Acid Auxotrophs of Streptococcus pneumoniae and Streptococcus mutans▿

    PubMed Central

    Altabe, Silvia; Lopez, Paloma; de Mendoza, Diego

    2007-01-01

    Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis. PMID:17827283

  6. Fluoroquinolone resistance in Streptococcus pneumoniae from a university hospital, Thailand.

    PubMed

    Srifuengfung, Somporn; Tribuddharat, Chanwit; Chokephaibulkit, Kulkanya; Comerungsee, Sopita

    2010-11-01

    The most frequent markers of fluoroquinolone resistance in S. pneumoniae are chromosomal mutations in the quinolone-resistance-determining regions of DNA gyrase and topoisomerase IV encoding for the gyrA, gyrB and parC, parE genes. In 2008, 6.5% of the Streptococcus pneumoniae isolates in a Bangkok university hospital were resistant to ofloxacin. Using PCR and DNA sequencing, we identified mutations in both the gyrA and parC genes of four ofloxacin- and ciprofloxacin-resistant S. pneumoniae isolates (minimum inhibitory concentrations > 32 microg/ml). Mutations were found in the gyrA gene at positions Ser81Phe, Glu85Gly, Glu85Lys and in the parC gene at position Ser79Tyr. Three isolates had mutations in both genes. Two of the isolates were serotype 6B and two were serotypes not contained in currently licensed pneumococcal vaccines. This is the first report of the mechanisms of fluoroquinolone resistance in S. pneumoniae in Thailand.

  7. Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316

    PubMed Central

    Morello, Eric; Mallet, Adeline; Konto-Ghiorghi, Yoan; Chaze, Thibault; Mistou, Michel-Yves; Oliva, Giulia; Oliveira, Liliana; Di Guilmi, Anne-Marie; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2015-01-01

    Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host. PMID:26407005

  8. Molecular and functional characterization of peptidoglycan-recognition protein SC2 (PGRP-SC2) from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae.

    PubMed

    Gan, Zhen; Chen, Shannan; Hou, Jing; Huo, Huijun; Zhang, Xiaolin; Ruan, Baiye; Laghari, Zubair Ahmed; Li, Li; Lu, Yishan; Nie, Pin

    2016-07-01

    PGRP-SC2, the member of PGRP family, plays an important role in regulation of innate immune response. In this paper, a PGRP-SC2 gene of Nile tilapia, Oreochromis niloticus (designated as On-PGRP-SC2) was cloned and its expression pattern under the infection of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for amidase activity were detected in the deduced amino acid sequence of On-PGRP-SC2. In healthy tilapia, the On-PGRP-SC2 transcripts could be detected in all the examined tissues, with the most abundant expression in the muscle. When infected with S. agalactiae, there was a clear time-dependent expression pattern of On-PGRP-SC2 in the spleen, head kidney and brain. The assays for the amidase activity suggested that recombinant On-PGRP-SC2 protein had a Zn(2+)-dependent PGN-degrading activity. Moreover, our works showed that recombinant On-PGRP-SC2 protein could significantly reduce bacterial load in target organs attacked by S. agalactiae. These findings indicated that On-PGRP-SC2 may play important roles in the immune response to S. agalactiae in Nile tilapia.

  9. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    SciTech Connect

    Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi; Rubens, Craig E.; Goldman, Adrian

    2006-09-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.

  10. Pneumonia and purulent pericarditis caused by Streptococcus pneumoniae: an uncommon association in the antibiotic era.

    PubMed

    Flores-González, Jose Carlos; Rubio-Quiñones, Fernando; Hernández-González, Arturo; Rodríguez-González, Moisés; Blanca-García, Jose Antonio; Lechuga-Sancho, Alfonso María; Quintero-Otero, Sebastián

    2014-08-01

    Bacterial pericarditis in children has become a rare entity in the modern antibiotic era. The most common pathogen is Staphylococcus aureus, being Streptococcus pneumoniae an exceptional cause. We present 2 children, who were diagnosed of pneumonia complicated with a pleural effusion that developed a purulent pericarditis with signs of cardiac tamponade. One of them had received 4 doses of the 7-valent conjugated pneumococcal vaccine. Systemic antibiotics and pericardial and pleural drainages were used. Pneumococcal antigens were positive in pleural and pericardial fluids in both cases, and S. pneumoniae was isolated from pleural effusion in one of them. Both children fully recovered, and none of them developed constrictive pericarditis, although 1 case presented a transient secondary left ventricular dysfunction. Routine immunization with 10- and 13-valent vaccines including a wider range of serotypes should further decrease the already low incidence.

  11. Draft Genome Sequences of Streptococcus pneumoniae with High-Level Resistance to Respiratory Fluoroquinolones.

    PubMed

    Keness, Yoram; Bisharat, Naiel

    2016-03-31

    Streptococcus pneumoniaeis the leading cause of community-acquired pneumonia. Levofloxacin is a fluoroquinolone used for treatment of severe community-acquired pneumonia. Here, we describe the draft genome sequences ofS. pneumoniaewith emerging resistance to levofloxacin, resulting in failure of treatment of pneumococcal pneumonia.

  12. Capsular Polysaccharide Expression in Commensal Streptococcus Species: Genetic and Antigenic Similarities to Streptococcus pneumoniae

    PubMed Central

    Skov Sørensen, Uffe B.; Yao, Kaihu; Yang, Yonghong; Tettelin, Hervé

    2016-01-01

    ABSTRACT Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule production distinguishes S. pneumoniae from closely related commensals of the mitis group streptococci. Based on antigenic and genetic analyses of 187 mitis group streptococci, including 90 recognized serotypes of S. pneumoniae, we demonstrated capsule production by the Wzy/Wzx pathway in 74% of 66 S. mitis strains and in virtually all tested strains of S. oralis (subspecies oralis, dentisani, and tigurinus) and S. infantis. Additional analyses of genomes of S. cristatus, S. parasanguinis, S. australis, S. sanguinis, S. gordonii, S. anginosus, S. intermedius, and S. constellatus revealed complete capsular biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S. pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae raises concerns about potential misidentifications in addition to important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and for the pathogen. PMID:27935839

  13. Structure and Inhibition of Quorum Sensing Target from Streptococcus pneumoniae

    SciTech Connect

    Singh,V.; Shi, W.; Almo, S.; Evans, G.; Furneaux, R.; Tyler, P.; Painter, G.; Lenz, D.; Mee, S.; et al.

    2006-01-01

    Streptococcus pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects the growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative S{sub N}1 transition state for Escherichia coli MTAN, and transition state analogues resembling the transition state are powerful inhibitors of the enzyme [Singh, V., Lee, J. L., Nunez, S., Howell, P. L., and Schramm, V. L. (2005) Biochemistry 44, 11647-11659]. The sequence of MTAN from S. pneumoniae is 40% identical to that of E. coli MTAN, but S. pneumoniae MTAN exhibits remarkably distinct kinetic and inhibitory properties. 5'-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early S{sub N}1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a K{sub i} of 1.0 {mu}M. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA), or ethyl (EtT-ImmA) groups increases the affinity to give K{sub i} values of 335, 60, and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a K{sub i} value of 24 nM, and replacing the 5'-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a K{sub i}* value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT

  14. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus.

    PubMed

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-03-08

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain's cDNA is composed of 3347 bp with a 31 bp of 5'-UTR, 3015 bp open reading frame (ORF) and 301 bp 3'-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia.

  15. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus

    PubMed Central

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-01-01

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain’s cDNA is composed of 3347 bp with a 31 bp of 5′-UTR, 3015 bp open reading frame (ORF) and 301 bp 3′-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia. PMID:27005611

  16. Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge.

    PubMed

    Zhu, Jiajie; Fu, Qiang; Ao, Qiuwei; Tan, Yun; Luo, Yongju; Jiang, Hesheng; Li, Chao; Gan, Xi

    2017-03-01

    Innate immune system is the primary defense mechanism against pathogen infection in teleost, which are living in pathogen-rich aquatic environment. It has been long hypothesized that the disease resistance in teleost are strongly correlated to the activities of innate immune genes. Tilapia is an important economical fish around the world, especially in China, where the production accounts for nearly half of the global production. Recently, S. agalactiae has become one of the most serious bacterial diseases in southern China, resulted in high cumulative mortality and economic loss to tilapia industry. Therefore, we sought here to characterize the expression profiles of tilapia against S. agalactiae infection at whole transcriptome level by RNA-seq technology. A total of 2822 genes were revealed significantly expressed in tilapia spleen with a general trend of induction. Notably, most of the genes were rapidly the most induced at the early timepoint. The significantly changed genes highlighted the function of pathogen attachment and recognition, antioxidant/apoptosis, cytoskeletal rearrangement, and immune activation. Collectively, the induced expression patterns suggested the strong ability of tilapia to rapidly recognize the invasive bacteria, and activation of downstream immune signaling pathways to clear the bacteria and prevent the tissue damage and bacteria triggered cell apoptosis. Our results heighted important roles of novel candidate genes which were often missed in previous tilapia studies. Further studies are needed to characterize the molecular relationships between key immune genes and disease resistance, and to identify the candidate genes for molecular-assistant selection of disease-resistant broodstock and evaluation of disease prevention and treatment measures.

  17. Necrotizing fasciitis in captive juvenile Crocodylus porosus caused by Streptococcus agalactiae: an outbreak and review of the animal and human literature.

    PubMed

    Bishop, E J; Shilton, C; Benedict, S; Kong, F; Gilbert, G L; Gal, D; Godoy, D; Spratt, B G; Currie, B J

    2007-11-01

    We observed an outbreak of necrotizing fasciitis associated with Streptococcus agalactiae infection in a group of juvenile saltwater crocodiles (Crocodylus porosus). We undertook screening of crocodiles and the environment to clarify the source of the outbreak and evaluated the isolates cultured from post-mortem specimens with molecular methods to assess clonality and the presence of known group B streptococcal virulence determinants. The isolates were indistinguishable by pulsed-field gel electrophoresis. They were a typical serotype Ia strain with the Calpha-like protein gene, epsilon (or alp1), the mobile genetic elements IS381 ISSag1 and ISSag2, and belonged to multi-locus sequence type (ST) 23. All of these characteristics suggest they were probably of human origin. We review the medical and veterinary literature relating to S. agalactiae necrotizing fasciitis, epidemiology and virulence determinants.

  18. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia.

    PubMed

    Gomez, John C; Yamada, Mitsuhiro; Martin, Jessica R; Dang, Hong; Brickey, W June; Bergmeier, Wolfgang; Dinauer, Mary C; Doerschuk, Claire M

    2015-03-01

    Bacterial pneumonia is a common public health problem associated with significant mortality, morbidity, and cost. Neutrophils are usually the earliest leukocytes to respond to bacteria in the lungs. Neutrophils rapidly sequester in the pulmonary microvasculature and migrate into the lung parenchyma and alveolar spaces, where they perform numerous effector functions for host defense. Previous studies showed that migrated neutrophils produce IFN-γ early during pneumonia induced by Streptococcus pneumoniae and that early production of IFN-γ regulates bacterial clearance. IFN-γ production by neutrophils requires Rac2, Hck/Lyn/Fgr Src family tyrosine kinases, and NADPH oxidase. Our current studies examined the mechanisms that regulate IFN-γ production by lung neutrophils during acute S. pneumoniae pneumonia in mice and its function. We demonstrate that IFN-γ production by neutrophils is a tightly regulated process that does not require IL-12. The adaptor molecule MyD88 is critical for IFN-γ production by neutrophils. The guanine nucleotide exchange factor CalDAG-GEFI modulates IFN-γ production. The CD11/CD18 complex, CD44, Toll-like receptors 2 and 4, TRIF, and Nrf2 are not required for IFN-γ production by neutrophils. The recently described neutrophil-dendritic cell hybrid cell, identified by its expression of Ly6G and CD11c, is present at low numbers in pneumonic lungs and is not a source of IFN-γ. IFN-γ produced by neutrophils early during acute S. pneumoniae pneumonia induces transcription of target genes in the lungs, which are critical for host defense. These studies underline the complexity of the neutrophil responses during pneumonia in the acute inflammatory response and in subsequent resolution or initiation of immune responses.

  19. Mechanisms of Interferon-γ Production by Neutrophils and Its Function during Streptococcus pneumoniae Pneumonia

    PubMed Central

    Gomez, John C.; Yamada, Mitsuhiro; Martin, Jessica R.; Dang, Hong; Brickey, W. June; Bergmeier, Wolfgang; Dinauer, Mary C.

    2015-01-01

    Bacterial pneumonia is a common public health problem associated with significant mortality, morbidity, and cost. Neutrophils are usually the earliest leukocytes to respond to bacteria in the lungs. Neutrophils rapidly sequester in the pulmonary microvasculature and migrate into the lung parenchyma and alveolar spaces, where they perform numerous effector functions for host defense. Previous studies showed that migrated neutrophils produce IFN-γ early during pneumonia induced by Streptococcus pneumoniae and that early production of IFN-γ regulates bacterial clearance. IFN-γ production by neutrophils requires Rac2, Hck/Lyn/Fgr Src family tyrosine kinases, and NADPH oxidase. Our current studies examined the mechanisms that regulate IFN-γ production by lung neutrophils during acute S. pneumoniae pneumonia in mice and its function. We demonstrate that IFN-γ production by neutrophils is a tightly regulated process that does not require IL-12. The adaptor molecule MyD88 is critical for IFN-γ production by neutrophils. The guanine nucleotide exchange factor CalDAG-GEFI modulates IFN-γ production. The CD11/CD18 complex, CD44, Toll-like receptors 2 and 4, TRIF, and Nrf2 are not required for IFN-γ production by neutrophils. The recently described neutrophil–dendritic cell hybrid cell, identified by its expression of Ly6G and CD11c, is present at low numbers in pneumonic lungs and is not a source of IFN-γ. IFN-γ produced by neutrophils early during acute S. pneumoniae pneumonia induces transcription of target genes in the lungs, which are critical for host defense. These studies underline the complexity of the neutrophil responses during pneumonia in the acute inflammatory response and in subsequent resolution or initiation of immune responses. PMID:25100610

  20. Williopsis saturnus yeast killer toxin does not kill Streptococcus pneumoniae.

    PubMed

    Ochigava, Irma; Collier, Phillip J; Walker, Graeme M; Hakenbeck, Regine

    2011-03-01

    Streptococcus pneumoniae is an important human bacterial pathogen, and the increase in antibiotic resistance demands the development of new antimicrobial compounds. Several reports have suggested that yeast killer toxins show activity against bacteria and we therefore investigated the activity of K9 killer toxin from the yeast Williopsis saturnus var. mrakii NCYC 500 against S. pneumoniae. However, no inhibition of bacterial growth was observed with concentrated K9 preparations in agar diffusion assays and in liquid culture. Although cell morphology was slightly affected by K9 treatment, no effect on cellular viability was detectable, and K9 had no stimulatory effect on cell lysis induced by β-lactams or Triton X-100. This indicated that K9 did not contribute to cell wall damage. Moreover, flow cytometry was used as a sensitive assessment of integrity of cells exposed to killer toxin. No significant damage of S. pneumoniae cells was evident, although minor changes in fluorescence suggested that K9 killer toxin may interact with bacterial surface components.

  1. Cross-Resistance to Lincosamides, Streptogramins A, and Pleuromutilins Due to the lsa(C) Gene in Streptococcus agalactiae UCN70▿

    PubMed Central

    Malbruny, Brigitte; Werno, Anja M.; Murdoch, David R.; Leclercq, Roland; Cattoir, Vincent

    2011-01-01

    Streptococcus agalactiae UCN70, isolated from a vaginal swab obtained in New Zealand, is resistant to lincosamides and streptogramins A (LSA phenotype) and also to tiamulin (a pleuromutilin). By whole-genome sequencing, we identified a 5,224-bp chromosomal extra-element that comprised a 1,479-bp open reading frame coding for an ABC protein (492 amino acids) 45% identical to Lsa(A), a protein related to intrinsic LSA resistance in Enterococcus faecalis. Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 μg/ml), clindamycin (0.03 to 2 μg/ml), dalfopristin (2 to >32 μg/ml), and tiamulin (0.12 to 32 μg/ml), whereas no change in MICs of erythromycin (0.06 μg/ml), azithromycin (0.03 μg/ml), spiramycin (0.25 μg/ml), telithromycin (0.03 μg/ml), and quinupristin (8 μg/ml) was observed. The phenotype was renamed the LSAP phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins. This gene was also identified in similar genetic environments in 17 other S. agalactiae clinical isolates from New Zealand exhibiting the same LSAP phenotype, whereas it was absent in susceptible S. agalactiae strains. Interestingly, this extra-element was bracketed by a 7-bp duplication of a target site (ATTAGAA), suggesting that this structure was likely a mobile genetic element. In conclusion, we identified a novel gene, lsa(C), responsible for the acquired LSAP resistance phenotype in S. agalactiae. Dissection of the biochemical basis of resistance, as well as demonstration of in vitro mobilization of lsa(C), remains to be performed. PMID:21245447

  2. Construction of a Streptococcus agalactiae phoB mutant and evaluation of its potential as an attenuated modified live vaccine in golden pompano, Trachinotus ovatus.

    PubMed

    Cai, Xiaohui; Wang, Bei; Peng, Yinhui; Li, Yuan; Lu, Yishan; Huang, Yucong; Jian, Jichang; Wu, Zaohe

    2016-11-21

    Streptococcus agalactiae is a Gram-positive pathogen that can survive inside professional phagocytes and nonphagocytic cells to cause septicemia and meningoencephalitis in freshwater and marine fish. However, vaccines based on extracellular products (ECP) and formalin-killed whole S. agalactiae cells, as well as subunit vaccine are unable to protect fish from infection by variant serotypes S. agalactiae. The search for live attenuated vaccine with highly conserved and virulent-related genes is essential for producing a vaccine to help understand and control streptococcosis In this study, the phoB gene was cloned from pathogenic S. agalactiae TOS01 strain and the mutant strain SAΔphoB was constructed via allelic exchange mutagenesis. The results showed that the deduced amino acid of S. agalactiae TOS01 shares high similarities with other Streptococcus spp. and has high conserved response regulator receiver domain (REC) and DNA-binding effector domain of two-component system response regulators (Trans_reg_C). Cell adherence and invasion assays, challenge experiments and histopathological changes post-vaccination were performed and observed, the results showed that the mutant strain SAΔphoB has a lower adherence and invasion rate and less virulent than the wild type strain in golden pompano, and it doesn't induce clinical symptoms and obvious pathological changes in golden pompano, thereby indicating that the deletion of phoB affects the virulence and infectious capacity of S. agalactiae. Golden pompano vaccinated via intraperitoneal injection SAΔphoB had the relative percent survival value of 93.1% after challenge with TOS01, demonstrating its high potential as an effective attenuated live vaccine candidate. Real-time PCR assays showed that the SAΔphoB was able to enhance the expression of immune-related genes, including MHC-I, MyD88, IL-22 and IL-10 after vaccination, indicating that the SAΔphoB is able to induce humoral and cell-mediated immune response in

  3. A commercial rapid optical immunoassay detects Streptococcus agalactiae from aquatic cultures and clinical specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The BioStar STREPT B Optical ImmunoAssay (OIA) (BioStar® OIA® Strep B Assay Kit; Biostar Incorporation; Louisville, CO, USA) was used to identify 32 known group B streptococcus (GBS) isolates of fish, dolphin, bovine, and human origin. Thirteen non-GBS isolates from fish and other animals were test...

  4. Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia

    PubMed Central

    Rai, Aswathy N.; Thornton, Justin A.; Stokes, John; Sunesara, Imran; Swiatlo, Edwin; Nanduri, Bindu

    2016-01-01

    Streptococcus pneumoniae is the most common bacterial etiology of pneumococcal pneumonia in adults worldwide. Genomic plasticity, antibiotic resistance and extreme capsular antigenic variation complicates the design of effective therapeutic strategies. Polyamines are ubiquitous small cationic molecules necessary for full expression of pneumococcal virulence. Polyamine transport system is an attractive therapeutic target as it is highly conserved across pneumococcal serotypes. In this study, we compared an isogenic deletion strain of S. pneumoniae TIGR4 in polyamine transport operon (ΔpotABCD) with the wild type in a mouse model of pneumococcal pneumonia. Our results show that the wild type persists in mouse lung 24 h post infection while the mutant strain is cleared by host defense mechanisms. We show that intact potABCD is required for survival in the host by providing resistance to neutrophil killing. Comparative proteomics analysis of murine lungs infected with wild type and ΔpotABCD pneumococci identified expression of proteins that could confer protection to wild type strain and help establish infection. We identified ERM complex, PGLYRP1, PTPRC/CD45 and POSTN as new players in the pathogenesis of pneumococcal pneumonia. Additionally, we found that deficiency of polyamine transport leads to up regulation of the polyamine synthesis genes speE and cad in vitro. PMID:27247105

  5. Gatifloxacin used for therapy of outpatient community-acquired pneumonia caused by Streptococcus pneumoniae.

    PubMed

    Jones, Ronald N; Andes, David R; Mandell, Lionel A; Gothelf, Samantha; Ehrhardt, Anton F; Nicholson, Susan C

    2002-09-01

    Gatifloxacin is an advanced-generation fluoroquinolone with demonstrated efficacy and safety as therapy for community-acquired pneumonia (CAP). As part of a phase IV postmarketing surveillance program (TeqCES), 136 outpatients with CAP whose sputum was culture-positive for Streptococcus pneumoniae were enrolled in an open-label trial of oral gatifloxacin 400 mg daily for 7 to 14 days. An antibiogram of isolates showed 100% susceptibility to gatifloxacin (MIC(90) 0.5 micro g/mL) and respective susceptibilities of 67%, 70%, and 80% to penicillin, erythromycin, and tetracycline. Clinical cure was achieved in 95.3% of evaluable patients, including seven patients infected with penicillin-resistant S. pneumoniae (MIC > or =2 micro g/mL). The bacteriologic eradication rate for S. pneumoniae was 94.5%. Diarrhea, nausea, and dizziness, the most common adverse events in CAP patients (<3%), were generally mild to moderate; no serious adverse events were recorded. These results support recommendations to treat CAP, particularly due to S. pneumoniae including multidrug-resistant strains, with the newer 8-methoxy-fluoroquinolone, gatifloxacin.

  6. RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis

    PubMed Central

    Gaudu, Philippe; Fleuchot, Betty; Besset, Colette; Rosinski-Chupin, Isabelle; Guillot, Alain; Monnet, Véronique; Gardan, Rozenn

    2015-01-01

    ABSTRACT  Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. Importance  Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we

  7. Single Cell Bottlenecks in the Pathogenesis of Streptococcus pneumoniae

    PubMed Central

    Zafar, M. Ammar; Zuniga, Marisol; Roche, Aoife M.; Hamaguchi, Shigeto; Weiser, Jeffrey N.

    2016-01-01

    Herein, we studied a virulent isolate of the leading bacterial pathogen Streptococcus pneumoniae in an infant mouse model of colonization, disease and transmission, both with and without influenza A (IAV) co-infection. To identify vulnerable points in the multiple steps involved in pneumococcal pathogenesis, this model was utilized for a comprehensive analysis of population bottlenecks. Our findings reveal that in the setting of IAV co-infection the organism must pass through single cell bottlenecks during bloodstream invasion from the nasopharynx within the host and in transmission between hosts. Passage through these bottlenecks was not associated with genetic adaptation by the pathogen. The bottleneck in transmission occurred between bacterial exit from one host and establishment in another explaining why the number of shed organisms in secretions is critical to overcoming it. These observations demonstrate how viral infection, and TLR-dependent innate immune responses it stimulates and that are required to control it, drive bacterial contagion. PMID:27732665

  8. Aromatic Esters of Bicyclic Amines as Antimicrobials against Streptococcus pneumoniae.

    PubMed

    de Gracia Retamosa, María; Díez-Martínez, Roberto; Maestro, Beatriz; García-Fernández, Esther; de Waal, Bas; Meijer, E W; García, Pedro; Sanz, Jesús M

    2015-11-09

    A double approach was followed in the search of novel inhibitors of the surface choline-binding proteins (CBPs) of Streptococcus pneumoniae (pneumococcus) with antimicrobial properties. First, a library of 49 rationally-designed esters of alkyl amines was screened for their specific binding to CBPs. The best binders, being esters of bicyclic amines (EBAs), were then tested for their in vitro effect on pneumococcal growth and morphology. Second, the efficiency of EBA-induced CBP inhibition was enhanced about 45,000-fold by multivalency effects upon synthesizing a poly(propylene imine) dendrimer containing eight copies of an atropine derivative. Both approaches led to compounds that arrest bacterial growth, dramatically decrease cell viability, and exhibit a protection effect in animal disease models, demonstrating that the pneumococcal CBPs are adequate targets for the discovery of novel antimicrobials that overcome the currently increasing antimicrobial resistance issues.

  9. Conjugal mobilization of the mega element carrying mef(E) from Streptococcus salivarius to Streptococcus pneumoniae.

    PubMed

    Santagati, Maria; Lupo, Agnese; Scillato, Marina; Di Martino, Andrea; Stefani, Stefania

    2009-01-01

    We report the isolation and characterization of an unusual strain of Streptococcus salivarius, 3C30, displaying both the macrolide-lincosamide-streptogramin B and the tetracycline resistance phenotypes. It harbours the mef(E), erm(B), and tet(M) genes carried by different genetic elements. The genetic element carrying mef(E), named mega, was investigated by long PCR and sequencing, while the presence of the Tn3872-like element, carrying tet(M) and erm(B), was demonstrated by sequencing of both the int-xis-Tn and the fragment between the two resistance genes. In strain 3C30 the mega element is 5388 bp in size and its nucleotide sequence is identical to that of the element described previously in S. salivarius, with the exception of a 912 bp deletion at the left end. The composite Tn3872-like element appeared to be nonconjugative while the mega element was transferred by conjugation to Streptococcus pneumoniae. It was, however, impossible to transfer it again from these transconjugants to other strains. In addition, only in the 3C30 strain did mega form circular structures, as identified by real-time PCR. In conclusion, we found a clinical strain of S. salivarius carrying both mega and Tn3872-like genetic elements. Mega is transferable by conjugation to S. pneumoniae but it is not transferable again from the transconjugants, suggesting a possible mobilization by recombinases of the coresident Tn3872-like transposon.

  10. Characterization of Tn5801.Sag, a variant of Staphylococcus aureus Tn916 family transposon Tn5801 that is widespread in clinical isolates of Streptococcus agalactiae.

    PubMed

    Mingoia, Marina; Morici, Eleonora; Tili, Emily; Giovanetti, Eleonora; Montanari, Maria Pia; Varaldo, Pietro E

    2013-09-01

    Tn5801, originally detected in Staphylococcus aureus Mu50, is a Tn916 family element in which a unique int gene (int5801) replaces the int and xis genes in Tn916 (int916 and xis916). Among 62 tet(M)-positive tetracycline-resistant Streptococcus agalactiae isolates, 43 harbored Tn916, whereas 19 harbored a Tn5801-like element (Tn5801.Sag, ∼20.6 kb). Tn5801.Sag was characterized (PCR mapping, partial sequencing, and chromosomal integration) and compared to other Tn5801-like elements. Similar to Tn5801 from S. aureus Mu50, tested in parallel, Tn5801.Sag was unable to undergo circularization and conjugal transfer.

  11. The use of polyethylene intramammary device in protection of the lactating bovine udder against experimental infection with Staphylococcus aureus or Streptococcus agalactiae.

    PubMed Central

    Brooks, B W; Barnum, D A

    1982-01-01

    The susceptibility of lactating bovine udder quarters fitted with a polyethylene intramammary device to infection was investigated. Following experimental challenge with Streptococcus agalactiae or Staphylococcus aureus, the incidence of infection was significantly (p less than 0.05) lower in intramammary device-fitted quarters compared to control quarters. In general, total foremilk and strippings milk somatic cell counts for intramammary device-fitted and control quarters were not significantly (p less than 0.05) different. Differential foremilk and strippings milk somatic cell counts were significantly (p less than 0.05) higher in samples from intramammary device-fitted quarters compared to control quarters. PMID:7127192

  12. Fatal Streptococcus pneumoniae Sepsis in a Patient With Celiac Disease-Associated Hyposplenism

    PubMed Central

    Ouseph, Madhu M.; Simons, Malorie; Treaba, Diana O.; Yakirevich, Evgeny; Green, Peter H.; Bhagat, Govind; Moss, Steven F.

    2016-01-01

    We present a 59-year-old male with poorly controlled celiac disease (CD) and fatal Streptococcus pneumoniae sepsis, describe the morphologic findings, and stress the need for monitoring splenic function and pneumococcal vaccination in these patients. PMID:27761478

  13. Streptococcus pneumoniae-associated pneumonia complicated by purulent pericarditis: case series *

    PubMed Central

    Cillóniz, Catia; Rangel, Ernesto; Barlascini, Cornelius; Piroddi, Ines Maria Grazia; Torres, Antoni; Nicolini, Antonello

    2015-01-01

    Abstract Objective: In the antibiotic era, purulent pericarditis is a rare entity. However, there are still reports of cases of the disease, which is associated with high mortality, and most such cases are attributed to delayed diagnosis. Approximately 40-50% of all cases of purulent pericarditis are caused by Gram-positive bacteria, Streptococcus pneumoniae in particular. Methods: We report four cases of pneumococcal pneumonia complicated by pericarditis, with different clinical features and levels of severity. Results: In three of the four cases, the main complication was cardiac tamponade. Microbiological screening (urinary antigen testing and pleural fluid culture) confirmed the diagnosis of severe pneumococcal pneumonia complicated by purulent pericarditis. Conclusions: In cases of pneumococcal pneumonia complicated by pericarditis, early diagnosis is of paramount importance to avoid severe hemodynamic compromise. The complications of acute pericarditis appear early in the clinical course of the infection. The most serious complications are cardiac tamponade and its consequences. Antibiotic therapy combined with pericardiocentesis drastically reduces the mortality associated with purulent pericarditis. PMID:26398760

  14. Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro.

    PubMed

    Steinfort, C; Wilson, R; Mitchell, T; Feldman, C; Rutman, A; Todd, H; Sykes, D; Walker, J; Saunders, K; Andrew, P W

    1989-07-01

    A total of 11 of 15 Streptococcus pneumoniae culture filtrates and all five bacterial autolysates produced by cell death in the stationary phase caused slowed ciliary beating and disruption of the surface integrity of human respiratory epithelium in organ culture. This effect was inhibited by cholesterol and was heat labile and reduced by standing at room temperature but was stable at -40 degrees C. The activity was detected at the late stationary phase of culture and was associated with the presence of hemolytic activity. Gel filtration of a concentrated culture filtrate and autolysate both yielded a single fraction of approximately 50 kilodaltons which slowed ciliary beating and were the only fractions with hemolytic activity. Rabbit antiserum to pneumolysin, a sulfhydryl-activated hemolytic cytotoxin released by S. pneumoniae during autolysis, neutralized the effect of the culture filtrate on respiratory epithelium. Both native and recombinant pneumolysin caused ciliary slowing and epithelial disruption. Electron microscopy showed a toxic effect of pneumolysin on epithelial cells: cytoplasmic blebs, mitochondrial swelling, cellular extrusion, and cell death, but no change in ciliary ultrastructure. Recombinant pneumolysin (10 micrograms/ml) caused ciliary slowing in the absence of changes in cell ultrastructure. Release of pneumolysin in the respiratory tract during infection may perturb host defenses, allowing bacterial proliferation and spread.

  15. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    SciTech Connect

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; Gutenkunst, Ryan N.; McAuley, Julie L.; McCullers, Jonathan A.; Perelson, Alan S.

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.

  16. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    DOE PAGES

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; ...

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determinedmore » that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.« less

  17. AdcAII of Streptococcus pneumoniae Affects Pneumococcal Invasiveness

    PubMed Central

    Brown, Lindsey R.; Gunnell, Steven M.; Cassella, Adam N.; Keller, Lance E.; Scherkenbach, Lisa A.; Mann, Beth; Brown, Matthew W.; Hill, Rebecca; Fitzkee, Nicholas C.; Rosch, Jason W.; Tuomanen, Elaine I.; Thornton, Justin A.

    2016-01-01

    Across bacterial species, metal binding proteins can serve functions in pathogenesis in addition to regulating metal homeostasis. We have compared and contrasted the activities of zinc (Zn2+)-binding lipoproteins AdcA and AdcAII in the Streptococcus pneumoniae TIGR4 background. Exposure to Zn2+-limiting conditions resulted in delayed growth in a strain lacking AdcAII (ΔAdcAII) when compared to wild type bacteria or a mutant lacking AdcA (ΔAdcA). AdcAII failed to interact with the extracellular matrix protein laminin despite homology to laminin-binding proteins of related streptococci. Deletion of AdcA or AdcAII led to significantly increased invasion of A549 human lung epithelial cells and a trend toward increased invasion in vivo. Loss of AdcAII, but not AdcA, was shown to negatively impact early colonization of the nasopharynx. Our findings suggest that expression of AdcAII affects invasiveness of S. pneumoniae in response to available Zn2+ concentrations. PMID:26752283

  18. Characterization of mal recombination plasmids cloned in Streptococcus pneumoniae

    SciTech Connect

    Stassi, D.L.; Lopez, P.; Espinosa, M.; Lacks, S.A.

    1981-01-01

    The malM locus of Streptococcus pneumoniae was cloned into one of the two PstI sites of the multicopy S. pneumoniae plasmid pMV158. To eliminate chromosomal transformants in the simultaneous selection for tetracycline resistance (coded by pMV158) and maltose utilization, the host cells contained a chromosomal deletion of the mal gene cluster. Two clones were isolated; one with a 3.3 kb insert (pLS70) which behaved like wild type with respect to maltose utilization, and another with a 2.9 kb insert (pLS69) which behaved as though it contained a down promoter mutation. Preliminary mapping of these clones by restriction analysis placed the 0.4kb deletion on a HindIII fragment in the interior of the chromosomal insert. The recombinant plasmids were able to transform over 50% of a recipient population to Mal/sup +/. Enzyme measurements of the clones indicated an overproduction of amylomaltase, constituting up to 10% of the total cellular protein, and supported the theory that the deletion in the pLS69 is in the promoter region. Protein analysis by polyacrylamide gel electrophoresis confirmed that the amylomaltase polypeptide was produced in large amounts in induced cells containing the pLS70. Another polypeptide, possibly a fragment of the phosphorylase or X protein of the mal gene cluster, was also produced to a similar extent.

  19. Inductors and regulatory properties of the genomic island-associated fru2 metabolic operon of Streptococcus agalactiae.

    PubMed

    Patron, Kévin; Gilot, Philippe; Rong, Vanessa; Hiron, Aurélia; Mereghetti, Laurent; Camiade, Emilie

    2017-02-01

    The fru2 metabolic operon of Streptococcus agalactiae encodes the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) enzyme II complex Fru2 (EIIB(Fru2) , EIIA(Fru2) , and EIIC(Fru2) ); Fru2 R, a transcriptional activator with PTS regulatory domains (PRDs); a d-allulose-6-phosphate 3-epimerase; a transaldolase; and a transketolase. We showed that the transcription of fru2 is induced during the stationary phase of growth in complex media and during incubation in human cerebrospinal or amniotic fluids. d-allose and d-ribose are environmental signals governing this induction. PTS(Fru2) is involved in the activation of the fru2 promoter, and the histidine-67 of EIIA(Fru2) and the cysteine-9 of EIIB(Fru2) are important for this function. The activation of fru2 is also controlled by Fru2 R. The histidine-243 in the PRD1 domain, the histidine-323 in the PRD2 domain, the cysteine-400 in the EIIB-like domain, and the histidine-549 in the EIIA-like domain are important for the function of Fru2 R. Fru2 R binds to a DNA region containing palindromic sequences upstream of the identified transcriptional start site. EIIB(Fru2) interacts physically with the C-terminal part of Fru2 R (expressing the EIIB-like and EIIA-like motifs) and with EIIA(Fru2) . We propose a model of regulation of fru2 depending on the presence of an activatory carbohydrate in the growth medium.

  20. Effect of Sophora flavescens on non-specific immune response of tilapia (GIFT Oreochromis niloticus) and disease resistance against Streptococcus agalactiae.

    PubMed

    Wu, Ying-rui; Gong, Qing-fang; Fang, Hong; Liang, Wan-wen; Chen, Ming; He, Rui-jie

    2013-01-01

    The paper describes the effect of a diet supplemented with the Chinese traditional herbal medicine Sophora flavescens on the immunity and disease resistance of an Oreochromis niloticus GIFT strain. Experimental diets containing 0.025%, 0.050%, 0.100%, 0.200%, and 0.400% S. flavescens, as well as a control group without S. flavescens were used. We tested the non-specific humoral immune responses (lysozyme, antiprotease, and complement) and cellular immune responses (reactive oxygen species and nitrogen species production and myeloperoxidase), as well as disease resistance against Streptococcus agalactiae. S. flavescens supplementation at all dose significantly enhanced serum lysozyme, antiprotease, and natural hemolytic complement activity. Similarly, all S. flavescens doses enhanced cellular myeloperoxidase activity. The increased production of reactive oxygen species and reactive nitrogen intermediates by peripheral blood leucocytes was observed in most of the treatment groups throughout the test period. The fish fed 0.100% S. flavescens had a percent mortality of 21.1% and a relative percent survival of 73.3% compared with the group fed the basal diet during the S. agalactiae challenge. The results suggest that S. flavescens can be recommended as a tilapia feed supplement to enhance fish immunity and disease resistance against S. agalactiae.

  1. Rapid bactericidal activity of sitafloxacin against Streptococcus pneumoniae.

    PubMed

    Kanda, Hiroko; Inoue, Kazue; Okumura, Ryo; Hoshino, Kazuki

    2013-02-01

    The initial bactericidal activity of quinolones against Streptococcus pneumoniae at the concentration equivalent to their respective peak serum concentration (C(max)) and free drug fraction of C(max) (fC(max)) were investigated. The bactericidal activity of sitafloxacin (STFX), levofloxacin (LVFX), moxifloxacin (MFLX), and garenoxacin (GRNX) were compared by determining the actual killing of bacteria at C(max) and fC(max) for 1 and 2 hours based on the Japanese maximum dose per administration (100, 500, 400, and 400 mg, respectively). Against 4 quinolone-susceptible clinical isolates (wild-type), STFX with C(max) and fC(max) exhibited the most rapid bactericidal activity resulting in an average reduction of > or = 3.0 log10 colony forming units (CFU)/ mL in 1 hour. STFX with C(max) and fC(max) also showed the most rapid and potent bactericidal activity against 9 clinical isolates with single par (C/E) mutation, resulting in > or = 3.0 log10 CFU/mL average reduction in viable cells in 1 hour. STFX showed a statistically significant advantage in initial bactericidal activity over other quinolones for single mutants (P < 0.001). The propensity that the difference in the initial bactericidal activity between STFX and other quinolones was higher in single mutants than wild-type strains, was confirmed using S. pneumoniae ATCC49619 (wild-type) and its laboratory single parC mutant. As a result, STFX showed a similar rapid and potent initial bactericidal activity against both strains, while initial bactericidal activity for other quinolones was significantly reduced in the single mutant (P < 0.05). In conclusion, STFX has the most rapid and potent initial bactericidal activity against wild-type and single mutants of S. pneumoniae and its bactericidal activity is not affected by the presence of a single par mutation compared to LVFX, MFLX, and GRNX.

  2. Susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada.

    PubMed

    Patel, Samir N; McGeer, Allison; Melano, Roberto; Tyrrell, Gregory J; Green, Karen; Pillai, Dylan R; Low, Donald E

    2011-08-01

    Ciprofloxacin, the first fluoroquinolone to be used to treat lower respiratory tract infections (LRTI), demonstrates poor potency against Streptococcus pneumoniae, and its use has been associated with the emergence of resistance. During the last decade, fluoroquinolones with enhanced in vitro activity against S. pneumoniae have replaced ciprofloxacin for the treatment of LRTI. Here, we analyzed the impact of more active fluoroquinolone usage on pneumococci by examining the fluoroquinolone usage, prevalence of fluoroquinolone resistance, and mutations in the genes that encode the major target sites for the fluoroquinolones (gyrA and parC) in pneumococcal isolates collected in Canada-wide surveillance. A total of 26,081 isolates were collected between 1998 and 2009. During this time period, total per capita outpatient use of fluoroquinolones increased from 64 to 96 prescriptions per 1,000 persons per year. The proportion of prescriptions for respiratory tract infection that were for fluoroquinolones increased from 5.9% to 10.7%, but the distribution changed: the proportion of prescriptions for ciprofloxacin decreased from 5.3% to 0.5%, and those for levofloxacin or moxifloxacin increased from 1.5% in 1999 to 5.9% in 2009. The prevalence of ciprofloxacin resistance (MIC ≥ 4 μg/ml), levofloxacin resistance, and moxifloxacin resistance remained unchanged at <2%. Multivariable analyses showed that prevalence of mutations known to be associated with reduced susceptibility to fluoroquinolones did not change during the surveillance period. If fluoroquinolone therapy is required, the preferential use of fluoroquinolones with enhanced pneumococcal activity to treat pneumococcal infections may slow the emergence of resistance in S. pneumoniae.

  3. Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium.

    PubMed

    Huang, L Y; Wang, K Y; Xiao, D; Chen, D F; Geng, Y; Wang, J; He, Y; Wang, E L; Huang, J L; Xiao, G Y

    2014-05-01

    Attenuated Salmonella typhimurium SL7207 was used as a carrier for a reconstructed DNA vaccine against Streptococcus agalactiae. A 1.02 kb DNA fragment, encoding for a portion of the surface immunogenic protein (Sip) of S. agalactiae was inserted into pVAX1. The recombinant plasmid pVAX1-sip was transfected in EPC cells to detect the transient expression by an indirect immunofluorescence assay, together with Western blot analysis. The pVAX1-sip was transformed by electroporation into SL7207. The stability of pVAX1-sip into Salmonella was over 90% after 50 generations with antibiotic selection in vitro while remained stable over 80% during 35 generations under antibiotic-free conditions. The LD50 of SL/pVAX1-sip was 1.7 × 10(11) CFU/fish by intragastric administration which indicated a quite low virulence. Tilapias were inoculated orally at 10(8) CFU/fish, the recombinant bacteria were found present in intestinal tract, spleens and livers and eventually eliminated from the tissues 4 weeks after immunization. Fish immunized at 10(7), 10(8) and 10(9) CFU/fish with different immunization times caused various levels of serum antibody and an effective protection against lethal challenge with the wild-type strain S. agalactiae. Integration studies showed that the pVAX1-sip did not integrate with tilapia chromosomes. The DNA vaccine SL/pVAX1-sip was proved to be safe and effective in protecting tilapias against S. agalactiae infection.

  4. Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Isolated in Algiers, Algeria

    PubMed Central

    Ramdani-Bouguessa, Nadjia; Rahal, Kheira

    2003-01-01

    There are few data on antibiotic resistance of Streptococcus pneumoniae in Algeria. Among 309 strains, 34.6% were penicillin G-nonsusceptible S. pneumoniae strains (25.2% were intermediate and 9.4% were resistant). Serotypes 1, 5, 14, and 6 were the most frequent in invasive child infections. A multicenter study to standardize the national guidelines is needed. PMID:12543703

  5. Real-time PCR assays for the detection and quantification of Streptococcus pneumoniae.

    PubMed

    Park, Hee Kuk; Lee, Hee Joong; Lee, Hee Jung; Kim, Wonyong

    2010-09-01

    Streptococcus pneumoniae is the main etiologic agent of pneumonia worldwide. Because the members of the viridans group streptococci share a high degree of DNA sequence homologies, phenotypic and genotypic discriminations of S. pneumoniae from the viridans group are difficult. A quantitative real-time PCR assay targeting the capsular polysaccharide biosynthesis gene (cpsA) was developed as a species-specific detection tool for S. pneumoniae. The specificity was evaluated using genomic DNAs extracted from 135 oral cocci strains. Twenty-seven S. pneumoniae strains tested positive, whereas 108 other strains including Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis did not show a specific signal. The linear regression of standard curves indicated high correlations between the log numbers of S. pneumoniae cells and the C(T) values (R(2)=0.99). The minimal limit of detection was 32 fg of purified genomic DNA, equivalent to 14 genomes of S. pneumoniae. This new real-time PCR method may be very useful as a rapid and specific tool for detecting and quantifying S. pneumoniae.

  6. Multiple mycotic aneurysms due to penicillin nonsusceptible Streptococcus pneumoniae solved with endovascular repair.

    PubMed

    Rojas, Alvaro; Mertens, Renato; Arbulo, Douglas; Garcia, Patricia; Labarca, Jaime

    2010-08-01

    Mycotic aneurysm is a life-threatening condition. We report the case of an 83-year-old white female who had pneumonia, and 3 months later she was admitted with multiple sacular mycotic aneurysms due to penicillin nonsusceptible Streptococcus pneumoniae. Successful combination therapy with antibiotics and endovascular repair was done.

  7. Novel Levofloxacin-Resistant Multidrug-Resistant Streptococcus pneumoniae Serotype 11A Isolates, South Korea

    PubMed Central

    Park, Miey; Kim, Hyun Soo; Kim, Han-Sung; Park, Ji Young; Song, Wonkeun; Cho, Hyoun Chan

    2016-01-01

    Of 608 Streptococcus pneumoniae clinical strains isolated at a hospital in South Korea during 2009–2014, sixteen (2.6%) were identified as levofloxacin resistant. The predominant serotype was 11A (9 isolates). Two novel sequence types of multidrug-resistant S. pneumoniae with serotype 11A were identified, indicating continuous diversification of resistant strains. PMID:27767906

  8. Recurrent Streptococcus agalactiae Toxic Shock Syndrome Triggered by a Tumor Necrosis Factor-α Inhibitor

    PubMed Central

    Yoshida, Masataka; Takazono, Takahiro; Tashiro, Masato; Saijo, Tomomi; Morinaga, Yoshitomo; Yamamoto, Kazuko; Nakamura, Shigeki; Imamura, Yoshifumi; Miyazaki, Taiga; Sawai, Toyomitsu; Nishino, Tomoya; Izumikawa, Koichi; Yanagihara, Katsunori; Mukae, Hiroshi; Kohno, Shigeru

    2016-01-01

    Streptococcal toxic shock syndrome caused by group B streptococcus (GBS) is a rare, but lethal disease. We experienced a 45-year-old woman with pustular psoriasis who developed toxic shock-like syndrome during infliximab treatment. Surprisingly, similar episodes recurred three times in one year with restarting of infliximab treatments. In the third episode, GBS were detected in blood, urine, and vaginal secretion cultures. These episodes of shock syndrome were possibly due to GBS. To the best of our knowledge, this is the first case report of recurrent streptococcal toxic shock syndrome possibly caused by GBS which was induced by anti-TNF-α inhibitor therapy. The restarting of biological agents in patients with a history of toxic shock syndrome should therefore be avoided as much as possible. PMID:27803422

  9. Versatility of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci.

    PubMed

    Hakenbeck, Regine; Madhour, Abderrahim; Denapaite, Dalia; Brückner, Reinhold

    2009-05-01

    The pneumococcal choline-containing teichoic acids are targeted by cholinebinding proteins (CBPs), major surface components implicated in the interaction with host cells and bacterial cell physiology. CBPs also occur in closely related commensal species, Streptococcus oralis and Streptococcus mitis, and many strains of these species contain choline in their cell wall. Physiologically relevant CBPs including cell wall lytic enzymes are highly conserved between Streptococcus pneumoniae and S. mitis. In contrast, the virulence-associated CBPs, CbpA, PspA and PcpA, are S. pneumoniae specific and are thus relevant for the characteristic properties of this species.

  10. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Group B Streptococcus agalactiae (GBS) causes of infections in multiple animals. This study examined the genetic relatedness of piscine, dolphin, and human GBS isolates and bovine GBS reference strains from different geographical regions using serological and multilocus sequence typing (MLST) techni...

  11. Emergence of a Streptococcus pneumoniae clinical isolate highly resistant to telithromycin and fluoroquinolones.

    PubMed

    Faccone, Diego; Andres, Patricia; Galas, Marcelo; Tokumoto, Marta; Rosato, Adriana; Corso, Alejandra

    2005-11-01

    Streptococcus pneumoniae is a major pathogen causing community-acquired pneumonia and acute bronchitis. Macrolides, fluoroquinolones (FQs), and, recently, telithromycin (TEL) constitute primary therapeutic options, and rare cases of resistance have been reported. In this report, we describe the emergence of an S. pneumoniae clinical isolate with high-level TEL resistance (MIC, 256 microg/ml) and simultaneous resistance to FQs. Ongoing studies are oriented to elucidate the precise mechanism of resistance to TEL.

  12. A novel method for rapid detection of Streptococcus pneumoniae antigens in blood.

    PubMed

    Fukushima, Kiyoyasu; Kubo, Toru; Ehara, Naomi; Nakano, Reiji; Matsutake, Toyoshi; Ishimatu, Yuji; Tanaka, Yumi; Akamatsu, Suguru; Izumikawa, Koichi; Kohno, Shigeru

    2016-03-01

    In this study, we used "RAPIRUN(®)Streptococcus pneumoniae HS (otitis media/sinusitis) (RAPIRUN-HS)," a rapid S. pneumoniae antigen detection kit, to investigate methods for detecting S. pneumoniae antigens in blood of 32 bacterial pneumonia patients. We simultaneously performed PCR to detect S. pneumoniae in blood samples. The results of these tests were compared based on pneumonia severity, determined using the Pneumonia Severity Index (PSI) score classification. Four S. pneumoniae PCR-positive patients of the six severe pneumococcal pneumonia patients (PSI risk class IV/V) also tested positive using RAPIRUN-HS. Twenty-four mild to moderate pneumonia patients (PSI risk class I-III) were S. pneumoniae PCR-negative; of these, 21 tested negative using RAPIRUN-HS. The pneumococcal pneumonia patients testing positive using RAPIRUN-HS had low leukocyte counts and elevated C-reactive protein and procalcitonin levels, indicating that RAPIRUN-HS results were correlated with pneumonia severity. The time course evaluations of the laboratory tests for severe pneumococcal pneumonia patients showed that RAPIRUN-HS and S. pneumoniae PCR yielded positive results earlier than the changes in procalcitonin and IL-6. Thus, concomitant pneumococcal bacteremia was strongly suspected in patients testing positive using RAPIRUN-HS. In conclusion, RAPIRUN-HS may be useful for determining whether to admit patients into hospitals and selecting the appropriate antimicrobial agents.

  13. Treatment of experimental pneumonia due to penicillin-resistant Streptococcus pneumoniae in immunocompetent rats.

    PubMed Central

    Gavaldà, J; Capdevila, J A; Almirante, B; Otero, J; Ruiz, I; Laguarda, M; Allende, H; Crespo, E; Pigrau, C; Pahissa, A

    1997-01-01

    A model of pneumonia due to Streptococcus pneumoniae resistant to penicillin was developed in immunocompetent Wistar rats and was used to evaluate the efficacies of different doses of penicillin, cefotaxime, cefpirome, and vancomycin. Adult Wistar rats were challenged by intratracheal inoculation with 3 x 10(9) CFU of one strain of S. pneumoniae resistant to penicillin (MICs of penicillin, cefotaxime, cefpirome, and vancomycin, 2, 1, 0.5, and 0.5 microg/ml, respectively) suspended in brain heart broth supplemented with 0.7% agar. The rats experienced a fatal pneumonia, dying within 5 days and with peak mortality (70 to 80%) occurring 48 to 72 h after infection, and the bacterial counts in the lungs persisted from 8.87 +/- 0.3 log10 CFU/g of lung at 24 h of the infection to 9.1 +/- 0.3 log10 CFU/g at 72 h. Four hours after infection the animals were randomized into the following treatment groups: (i) control without treatment, (ii) penicillin G at 100,000 IU/kg of body weight every 2 h, (iii) penicillin G at 250,000 IU/kg every 2 h, (iv) cefotaxime at 100 mg/kg every 2 h, (v) cefpirome at 200 mg/kg every 2 h, and (vi) vancomycin at 50 mg/kg every 8 h. Two different protocols were used for the therapeutic efficacy studies: four doses of beta-lactams and one dose of vancomycin or eight doses of beta-lactams and two doses of vancomycin. Results of the therapy for experimental pneumonia caused by penicillin-resistant S. pneumoniae showed that initially, all the antimicrobial agents tested had similar efficacies, but when we prolonged the treatment, higher doses of penicillin, cefotaxime, and cefpirome were more effective than penicillin at lower doses in decreasing the residual bacterial titers in the lungs. Also, when we extended the treatment, vancomycin was more efficacious than penicillin at lower doses but was less efficacious than higher doses of penicillin or cefpirome. The model that we have developed is simple and amenable for inducing pneumonia in

  14. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    PubMed Central

    Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  15. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis

    PubMed Central

    Grandgirard, Denis; Valente, Luca G.; Täuber, Martin G.; Leib, Stephen L.

    2016-01-01

    Streptococcus pneumoniae bacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement. PMID:27009189

  16. Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited

    PubMed Central

    Martens, Pernille; Worm, Signe Westring; Lundgren, Bettina; Konradsen, Helle Bossen; Benfield, Thomas

    2004-01-01

    Background Invasive infection with Streptococcus pneumoniae (pneumococci) causes significant morbidity and mortality. Case series and experimental data have shown that the capsular serotype is involved in the pathogenesis and a determinant of disease outcome. Methods Retrospective review of 464 cases of invasive disease among adults diagnosed between 1990 and 2001. Multivariate Cox proportional hazard analysis. Results After adjustment for other markers of disease severity, we found that infection with serotype 3 was associated with an increased relative risk (RR) of death of 2.54 (95% confidence interval (CI): 1.22–5.27), whereas infection with serotype 1 was associated with a decreased risk of death (RR 0.23 (95% CI, 0.06–0.97)). Additionally, older age, relative leucopenia and relative hypothermia were independent predictors of mortality. Conclusion Our study shows that capsular serotypes independently influenced the outcome from invasive pneumococcal disease. The limitations of the current polysaccharide pneumococcal vaccine warrant the development of alternative vaccines. We suggest that the virulence of pneumococcal serotypes should be considered in the design of novel vaccines. PMID:15228629

  17. Fluoroquinolone Resistance in Penicillin-resistant Streptococcus pneumoniae Clones, Spain

    PubMed Central

    Balsalobre, Luz; Ardanuy, Carmen; Fenoll, Asunción; Pérez-Trallero, Emilio; Liñares, Josefina

    2004-01-01

    Among 2,882 Streptococcus pneumoniae sent to the Spanish Reference Laboratory during 2002, 75 (2.6%) were ciprofloxacin-resistant. Resistance was associated with older patients (3.9% in adults and 7.2% in patients >65 years of age), with isolation from noninvasive sites (4.3% vs. 1.0%), and with penicillin and macrolide resistance. Among 14 low-level resistant (MIC 4–8 µg/mL) strains, 1 had a fluoroquinolone efflux phenotype, and 13 showed single ParC changes. The 61 high-level ciprofloxacin-resistant (MIC >16 µg/mL) strains showed either two or three changes at ParC, ParE, and GyrA. Resistance was acquired either by point mutation (70 strains) or by recombination with viridans streptococci (4 strains) at the topoisomerase II genes. Although 36 pulsed-field gel electrophoresis patterns were observed, 5 international multiresistant clones (Spain23F-1, Spain6B-2, Spain9V-3, Spain14-5 and Sweden15A-25) accounted for 35 (46.7%) of the ciprofloxacin-resistant strains. Continuous surveillance is needed to prevent the dissemination of these clones. PMID:15504260

  18. Molecular characterization and expression of CD2BP2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Lu, Yishan; Cai, Shuanghu; Cai, Jia; Jian, JiChang; Wu, Zaohe

    2014-09-10

    CD2BP2 (CD2 cytoplasmic tail binding protein 2), one of several proteins interacting with the cytoplasmic tail of CD2, plays a crucial role in CD2-triggered T cell activation and nuclear splicing. The studies on CD2BP2 have tended to be confined to a few mammals, and little information is available to date regarding fish CD2BP2. In this paper, a CD2BP2 gene (On-CD2BP2) was cloned from Nile tilapia, Oreochromis niloticus. Sequence analysis showed that the full length of On-CD2BP2 cDNA was 1429 bp, containing a 5'untranslated region (UTR) of 111 bp, a 3'-UTR of 193 bp and an open reading frame of 1125 bp which is encoding 374 amino acids. Two important structural features, a GYF domain and a consensus motif GPFXXXXMXXWXXXGYF were detected in the deduced amino acid sequence of On-CD2BP2, and the deduced genomic structure of On-CD2BP2 was similar to the known CD2BP2. The mRNA expression of On-CD2BP2 in various tissues of Nile tilapia was analyzed by fluorescent quantitative real-time PCR. In healthy Nile tilapia, the On-CD2BP2 transcripts were mainly detected in the head kidney and spleen. While vaccinated with inactivated Streptococcus agalactiae, the On-CD2BP2 mRNA expression was significantly up-regulated in the head kidney, spleen and brain 48 h post immunization. Moreover, there was a clear time-dependent expression pattern of On-CD2BP2 after immunization and the expression reached the highest level at 24h in the brain and 48 h in the head kidney and spleen. This is the first report of proving the presence of a CD2BP2 ortholog in fish, and investigating its tissue distribution and expression profile in response to bacterial stimulus. These findings indicated that On-CD2BP2 may play an important role in the immune response to bacteria in Nile tilapia.

  19. Single immunoglobulin interleukin-1 receptor-related molecule impairs host defense during pneumonia and sepsis caused by Streptococcus pneumoniae.

    PubMed

    Blok, Dana C; van Lieshout, Miriam H P; Hoogendijk, Arie J; Florquin, Sandrine; de Boer, Onno J; Garlanda, Cecilia; Mantovani, Alberto; van't Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2014-01-01

    Streptococcus pneumoniae is a common cause of pneumonia and sepsis. Toll-like receptors (TLRs) play a pivotal role in the host defense against infection. In this study, we sought to determine the role of single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR a.k.a. TIR8), a negative regulator of TLR signaling, in pneumococcal pneumonia and sepsis. Wild-type and SIGIRR-deficient (sigirr-/-) mice were infected intranasally (to induce pneumonia) or intravenously (to induce primary sepsis) with S. pneumoniae and euthanized after 6, 24, or 48 h for analyses. Additionally, survival studies were performed. sigirr-/- mice showed delayed mortality during lethal pneumococcal pneumonia. Accordingly, sigirr-/- mice displayed lower bacterial loads in lungs and less dissemination of the infection 24 h after the induction of pneumonia. SIGIRR deficiency was associated with increased interstitial and perivascular inflammation in lung tissue early after infection, with no impact on neutrophil recruitment or cytokine production. sigirr-/- mice also demonstrated reduced bacterial burdens at multiple body sites during S. pneumoniae sepsis. sigirr-/- alveolar macrophages and neutrophils exhibited an increased capacity to phagocytose viable pneumococci. These results suggest that SIGIRR impairs the antibacterial host defense during pneumonia and sepsis caused by S. pneumoniae.

  20. A specific polymerase chain reaction test for the identification of Streptococcus pneumoniae.

    PubMed

    Prère, Marie-Françoise; Fayet, Olivier A

    2011-05-01

    Using an approach based on the comparison of arbitrary primer polymerase chain reaction (PCR) genomic profiles from oral streptococci and Streptococcus pneumoniae strains, we identified a 434-bp genomic fragment apparently specific for S. pneumoniae. From the nucleotidic sequence of this common fragment, a pair of primers was designed and tested on a set of strains comprising the major Streptococcus species. One species, S. anginosus, gave an amplification product of the same length as S. pneumoniae. Sequence comparison of the S. anginosus and S. pneumoniae amplicons revealed several variations which were used to define a new set of primers giving a 181-bp S. pneumoniae-specific fragment. The amplified fragment contains the 5' terminal part of a gene encoding a putative sugar-specific permease and an intergenic sequence. The PCR test was evaluated on 257 strains of invasive S. pneumoniae corresponding to clinical isolates and on 153 non-pneumoniae oral streptococci strains; in addition, 3 S. pseudopneumoniae strains were tested. With these primers, an amplification product was only obtained with the S. pneumoniae strains. Moreover, the test was successfully evaluated on 10 atypical S. pneumoniae strains related to pneumococcal diseases. In this study, we therefore established the capacity of a simple PCR test to discriminate S. pneumoniae from other Streptococci (including S. pseudopneumoniae), thus allowing rapid and accurate diagnosis.

  1. Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment

    PubMed Central

    Domínguez-Hüttinger, Elisa; Boon, Neville J.; Clarke, Thomas B.; Tanaka, Reiko J.

    2017-01-01

    Streptococcus pneumoniae (Sp) is a commensal bacterium that normally resides on the upper airway epithelium without causing infection. However, factors such as co-infection with influenza virus can impair the complex Sp-host interactions and the subsequent development of many life-threatening infectious and inflammatory diseases, including pneumonia, meningitis or even sepsis. With the increased threat of Sp infection due to the emergence of new antibiotic resistant Sp strains, there is an urgent need for better treatment strategies that effectively prevent progression of disease triggered by Sp infection, minimizing the use of antibiotics. The complexity of the host-pathogen interactions has left the full understanding of underlying mechanisms of Sp-triggered pathogenesis as a challenge, despite its critical importance in the identification of effective treatments. To achieve a systems-level and quantitative understanding of the complex and dynamically-changing host-Sp interactions, here we developed a mechanistic mathematical model describing dynamic interplays between Sp, immune cells, and epithelial tissues, where the host-pathogen interactions initiate. The model serves as a mathematical framework that coherently explains various in vitro and in vitro studies, to which the model parameters were fitted. Our model simulations reproduced the robust homeostatic Sp-host interaction, as well as three qualitatively different pathogenic behaviors: immunological scarring, invasive infection and their combination. Parameter sensitivity and bifurcation analyses of the model identified the processes that are responsible for qualitative transitions from healthy to such pathological behaviors. Our model also predicted that the onset of invasive infection occurs within less than 2 days from transient Sp challenges. This prediction provides arguments in favor of the use of vaccinations, since adaptive immune responses cannot be developed de novo in such a short time. We

  2. Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment.

    PubMed

    Domínguez-Hüttinger, Elisa; Boon, Neville J; Clarke, Thomas B; Tanaka, Reiko J

    2017-01-01

    Streptococcus pneumoniae (Sp) is a commensal bacterium that normally resides on the upper airway epithelium without causing infection. However, factors such as co-infection with influenza virus can impair the complex Sp-host interactions and the subsequent development of many life-threatening infectious and inflammatory diseases, including pneumonia, meningitis or even sepsis. With the increased threat of Sp infection due to the emergence of new antibiotic resistant Sp strains, there is an urgent need for better treatment strategies that effectively prevent progression of disease triggered by Sp infection, minimizing the use of antibiotics. The complexity of the host-pathogen interactions has left the full understanding of underlying mechanisms of Sp-triggered pathogenesis as a challenge, despite its critical importance in the identification of effective treatments. To achieve a systems-level and quantitative understanding of the complex and dynamically-changing host-Sp interactions, here we developed a mechanistic mathematical model describing dynamic interplays between Sp, immune cells, and epithelial tissues, where the host-pathogen interactions initiate. The model serves as a mathematical framework that coherently explains various in vitro and in vitro studies, to which the model parameters were fitted. Our model simulations reproduced the robust homeostatic Sp-host interaction, as well as three qualitatively different pathogenic behaviors: immunological scarring, invasive infection and their combination. Parameter sensitivity and bifurcation analyses of the model identified the processes that are responsible for qualitative transitions from healthy to such pathological behaviors. Our model also predicted that the onset of invasive infection occurs within less than 2 days from transient Sp challenges. This prediction provides arguments in favor of the use of vaccinations, since adaptive immune responses cannot be developed de novo in such a short time. We

  3. In vitro antimicrobial activity of Combretum molle (Combretaceae) against Staphylococcus aureus and Streptococcus agalactiae isolated from crossbred dairy cows with clinical mastitis.

    PubMed

    Regassa, Fekadu; Araya, Mengistu

    2012-08-01

    Following the rapidly expanding dairy enterprise, mastitis has remained the most economically damaging disease. The objective of this study was mainly to investigate the in vitro antibacterial activities of ethanol extracts of Combretum molle (R.Br.Ex.G.Don) Engl & Diels (Combretaceae) against antibiotic-resistant and susceptible Staphylococcus aureus and Streptococcus agalactiae isolated from clinical cases of bovine mastitis using agar disc diffusion method. The leaf and bark extracts showed antibacterial activity against S. aureus at concentrations of 3 mg/ml while the stem and seed extract did not show any bioactivity. Although both leaf and bark extracts were handled in the same manner, the antibacterial activity of the bark extract against the bacterial strains had declined gradually to a lower level as time advanced after extraction. The leaf extract had sustained bioactivity for longer duration. The susceptibility of the bacteria to the leaf extract is not obviously different between S. aureus and S. agalactiae. Also, there was no difference in susceptibility to the leaf extract between the antibiotic-resistant and antibiotic-sensitive bacteria. Further phytochemical and in vivo efficacy and safety studies are required to evaluate the therapeutic value of the plant against bovine mastitis.

  4. Bridging Chromosomal Architecture and Pathophysiology of Streptococcus pneumoniae

    PubMed Central

    Ferrándiz, María J.; de la Campa, Adela G.

    2017-01-01

    The chromosome of Streptococcus pneumoniae is organized into topological domains based on its transcriptional response to DNA relaxation: Up-regulated (UP), down-regulated (DOWN), nonregulated (NR), and AT-rich. In the present work, NR genes found to have highly conserved chromosomal locations (17% of the genome) were categorized as members of position-conserved nonregulated (pcNR) domains, while NR genes with a variable position (36% of the genome) were classified as members of position-variable nonregulated (pvNR) domains. On average, pcNR domains showed high transcription rates, optimized codon usage, and were found to contain only a small number of RUP/BOX/SPLICE repeats. They were also poor in exogenous genes but enriched in leading strand genes that code for proteins involved in primary metabolism with central roles within the interactome. In contrast, pvNR genes coding for cell wall proteins, paralogs, virulence factors and immunogenic candidates for protein-based vaccines were found to be overrepresented. DOWN domains were enriched in genes essential for infection. Many UP and DOWN domain genes were seen to be activated during different stages of competence, whereas pcNR genes tended to be repressed until the competence was switched off. Pneumococcal genes appear to be subject to a topology-driven selection pressure that defines the chromosomal location of genes involved in metabolism, virulence and competence. The pcNR domains are interleaved between UP and DOWN domains according to a pattern that suggests the existence of macrodomain entities. The term “topogenomics” is here proposed to describe the study of the topological rules of genomes and their relationship with physiology. PMID:28158485

  5. C-type Lectin Mincle Recognizes Glucosyl-diacylglycerol of Streptococcus pneumoniae and Plays a Protective Role in Pneumococcal Pneumonia.

    PubMed

    Behler-Janbeck, Friederike; Takano, Tomotsugu; Maus, Regina; Stolper, Jennifer; Jonigk, Danny; Tort Tarrés, Meritxell; Fuehner, Thomas; Prasse, Antje; Welte, Tobias; Timmer, Mattie S M; Stocker, Bridget L; Nakanishi, Yoichi; Miyamoto, Tomofumi; Yamasaki, Sho; Maus, Ulrich A

    2016-12-01

    Among various innate immune receptor families, the role of C-type lectin receptors (CLRs) in lung protective immunity against Streptococcus pneumoniae (S. pneumoniae) is not fully defined. We here show that Mincle gene expression was induced in alveolar macrophages and neutrophils in bronchoalveolar lavage fluids of mice and patients with pneumococcal pneumonia. Moreover, S. pneumoniae directly triggered Mincle reporter cell activation in vitro via its glycolipid glucosyl-diacylglycerol (Glc-DAG), which was identified as the ligand recognized by Mincle. Purified Glc-DAG triggered Mincle reporter cell activation and stimulated inflammatory cytokine release by human alveolar macrophages and alveolar macrophages from WT but not Mincle KO mice. Mincle deficiency led to increased bacterial loads and decreased survival together with strongly dysregulated cytokine responses in mice challenged with focal pneumonia inducing S. pneumoniae, all of which was normalized in Mincle KO mice reconstituted with a WT hematopoietic system. In conclusion, the Mincle-Glc-DAG axis is a hitherto unrecognized element of lung protective immunity against focal pneumonia induced by S. pneumoniae.

  6. C-type Lectin Mincle Recognizes Glucosyl-diacylglycerol of Streptococcus pneumoniae and Plays a Protective Role in Pneumococcal Pneumonia

    PubMed Central

    Behler-Janbeck, Friederike; Maus, Regina; Stolper, Jennifer; Jonigk, Danny; Fuehner, Thomas; Prasse, Antje; Welte, Tobias; Stocker, Bridget L.; Nakanishi, Yoichi; Miyamoto, Tomofumi; Yamasaki, Sho; Maus, Ulrich A.

    2016-01-01

    Among various innate immune receptor families, the role of C-type lectin receptors (CLRs) in lung protective immunity against Streptococcus pneumoniae (S. pneumoniae) is not fully defined. We here show that Mincle gene expression was induced in alveolar macrophages and neutrophils in bronchoalveolar lavage fluids of mice and patients with pneumococcal pneumonia. Moreover, S. pneumoniae directly triggered Mincle reporter cell activation in vitro via its glycolipid glucosyl-diacylglycerol (Glc-DAG), which was identified as the ligand recognized by Mincle. Purified Glc-DAG triggered Mincle reporter cell activation and stimulated inflammatory cytokine release by human alveolar macrophages and alveolar macrophages from WT but not Mincle KO mice. Mincle deficiency led to increased bacterial loads and decreased survival together with strongly dysregulated cytokine responses in mice challenged with focal pneumonia inducing S. pneumoniae, all of which was normalized in Mincle KO mice reconstituted with a WT hematopoietic system. In conclusion, the Mincle-Glc-DAG axis is a hitherto unrecognized element of lung protective immunity against focal pneumonia induced by S. pneumoniae. PMID:27923071

  7. Acute suppurative parotitis caused by Streptococcus pneumoniae in an HIV-infected man.

    PubMed

    Guzman Vinasco, Luis; Bares, Sara; Sandkovsky, Uriel

    2015-03-02

    We report a case of a 32-year-old man who presented with progressive unilateral parotid gland enlargement and subsequently tested positive for HIV. A CT scan of the neck performed with contrast showed a phlegmon in the region of the right parotid tail measuring approximately 2.5×2.4 cm. Cultures of the aspirated fluid grew Streptococcus pneumoniae and the S. pneumoniae urinary antigen test was also positive. The patient underwent surgical debridement and received antimicrobial therapy with complete resolution of the parotitis. Parotitis caused by S. pneumoniae is rare, and HIV infection should be suspected in any case of invasive pneumococcal disease.

  8. Persistence and complex evolution of fluoroquinolone-resistant Streptococcus pneumoniae clone.

    PubMed

    Ben-David, Debby; Schwaber, Mitchell J; Adler, Amos; Masarwa, Samira; Edgar, Rotem; Navon-Venezia, Shiri; Schwartz, David; Porat, Nurith; Kotlovsky, Tali; Polivkin, Nikolay; Weinberg, Irina; Lazary, Avraham; Ohana, Nissim; Dagan, Ron

    2014-05-01

    Prolonged outbreaks of multidrug-resistant Streptococcus pneumoniae in health care facilities are uncommon. We found persistent transmission of a fluroquinolone-resistant S. pneumoniae clone during 2006-2011 in a post-acute care facility in Israel, despite mandatory vaccination and fluoroquinolone restriction. Capsular switch and multiple antimicrobial nonsusceptibility mutations occurred within this single clone. The persistent transmission of fluoroquinolone-resistant S. pneumoniae during a 5-year period underscores the importance of long-term care facilities as potential reservoirs of multidrug-resistant streptococci.

  9. Acute suppurative parotitis caused by Streptococcus pneumoniae in an HIV-infected man

    PubMed Central

    Guzman Vinasco, Luis; Bares, Sara; Sandkovsky, Uriel

    2015-01-01

    We report a case of a 32-year-old man who presented with progressive unilateral parotid gland enlargement and subsequently tested positive for HIV. A CT scan of the neck performed with contrast showed a phlegmon in the region of the right parotid tail measuring approximately 2.5×2.4 cm. Cultures of the aspirated fluid grew Streptococcus pneumoniae and the S. pneumoniae urinary antigen test was also positive. The patient underwent surgical debridement and received antimicrobial therapy with complete resolution of the parotitis. Parotitis caused by S. pneumoniae is rare, and HIV infection should be suspected in any case of invasive pneumococcal disease. PMID:25733094

  10. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  11. Effects of Starvation and Streptococcus Pneumoniae Infection on Carnitine Acylation States in the Rat.

    DTIC Science & Technology

    1977-06-08

    This study was performed to determine if alterations in carnitine and its acylation states could account for the decreased ketone body production...seen during Streptococcus pneumoniae infection in the rat. Despite a lower ketogenic capacity, the hepatic total and free carnitine increases to the same

  12. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  13. Determining the frequency of resistance of Streptococcus pneumoniae to ciprofloxacin, levofloxacin, trovafloxacin, grepafloxacin, and gemifloxacin.

    PubMed

    Evans, M E

    2001-12-01

    Newer fluoroquinolones have good activity against Streptococcus pneunoniae and may be useful clinically for the treatment of pneumonia. Although resistance among Streptococcus pneumoniae has been reported, it is rare. The frequency of single-step resistance and the emergence of resistance were compared in serial transfer of 49 clinical isolates of penicillin-sensitive and -resistant Streptococcus pneumoniae to ciprofloxacin, levofloxacin, trovafloxacin, grepafloxacin, and gemifloxacin. Single-step resistance frequencies to four times the minimum inhibitory concentration were 2.73 x 10(-6) (+/- 8.46 x 10(-6)) for ciprofloxacin, 1.78 x 10(-7) (+/- 4.62 x 10(-7)) for trovafloxacin, 5.45 x 10(-7) (+/- 1.24 x 10(-6)) for grepafloxacin, 6.78 x 10(-7) (+/- 1.38 x 10(-6)) for gemifloxacin, and 9.23 x 10(-8) (+/- 4.47 x 10(-7)) for levofloxacin. In serial transfer experiments, all isolates became resistant to clinically relevant levels of all fluoroquinolones after eight passages. The resistance occurred most rapidly with ciprofloxacin followed by grepafloxacin, gemifloxacin, trovafloxacin, and levofloxacin. These results show that strains with decreased susceptibility to fluoroquinolones occur frequently in cultures of Streptococcus pneumoniae, and this organism can readily become resistant to clinically relevant concentrations of fluoroquinolones in vitro.

  14. Streptococcus pneumoniae: the evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides.

    PubMed

    Cornick, J E; Bentley, S D

    2012-07-01

    Multi drug resistant Streptococcus pneumoniae constitute a major public health concern worldwide. In this review we discuss how the transformable nature of the pneumococcus, in parallel with antimicrobial induced stress, contributes to the evolution of antimicrobial resistance; and how the introduction of the pneumococcal conjugate vaccine has affected the situation.

  15. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1991-03-26

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.

  16. Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel

    1991-01-01

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.

  17. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  18. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance

    PubMed Central

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M.; Ruttimann, Ricardo

    2016-01-01

    Objectives: Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. Methods: From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Results: Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Conclusions: Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures – negative but presumably bacterial meningitis cases. PMID:27551428

  19. Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice.

    PubMed

    de Stoppelaar, S F; Van't Veer, C; van den Boogaard, F E; Nieuwland, R; Hoogendijk, A J; de Boer, O J; Roelofs, J J T H; van der Poll, T

    2013-09-01

    Streptococcus pneumoniae is a common causative pathogen of pneumonia and sepsis. Pneumonia and sepsis are associated with enhanced activation of coagulation, resulting in the production of several host-derived proteases at the primary site of infection and in the circulation. Serine proteases cleave protease activated receptors (PARs), which form a molecular link between coagulation and inflammation. PAR4 is one of four subtypes of PARs and is widely expressed by multiple cell types in the respiratory tract implicated in pulmonary inflammation, by immune cells and by platelets. In mice, mouse (m)PAR4 is the only thrombin receptor expressed by platelets. We here sought to determine the contribution of mPAR4 to the host response during pneumococcal pneumonia. Pneumonia was induced by intranasal inoculation with S. pneumoniae in mPAR4-deficient (par4-/-) and wild-type mice. Mice were sacrificed after 6, 24 or 48 hours (h). Blood, lungs, liver and spleen were collected for analyses. Ex vivo stimulation assays were performed with S. pneumoniae and mPAR4 activating peptides. At 48 h after infection, higher bacterial loads were found in the lungs and blood of par4-/- mice (p < 0.05), accompanied by higher histopathology scores and increased cytokine levels (p < 0.05) in the lungs. Ex vivo, co-stimulation with mPAR4 activating peptide enhanced the whole blood cytokine response to S. pneumoniae. Thrombin inhibition resulted in decreased cytokine release after S. pneumoniae stimulation in human whole blood. Our findings suggest that mPAR4 contributes to antibacterial defence during murine pneumococcal pneumonia.

  20. Long-term flaxseed oil supplementation diet protects BALB/c mice against Streptococcus pneumoniae infection.

    PubMed

    Saini, Archana; Harjai, Kusum; Mohan, Harsh; Punia, Raj Pal Singh; Chhibber, Sanjay

    2010-02-01

    Intense host immune response to infection contributes significantly to the pathology of pneumococcal pneumonia. Therefore, the regulation of host immune response is critical for the successful outcome of pneumonia in such patients. The aim of the present study was to investigate the effect of n-3 PUFA, i.e. flaxseed oil supplementation for short (4 weeks) as well as long (9 weeks) term, on the course of S. pneumoniae D39 serotype 2 infection in mice. The efficacy of flaxseed oil supplementation was investigated in terms of survival of animals and production of various inflammatory molecules (malondialdehyde, myeloperoxidase, nitric oxide) in the lung homogenate of animals. This was correlated with bacteriological and histopathological parameters. The immunomodulation was studied in terms of cytokines in the lungs following infection with Streptococcus pneumoniae. Results suggest that long-term flaxseed supplementation protected the mice against bacterial colonization of lungs with Streptococcus pneumoniae with reduced histopathological involvement of lung tissue. Moderate pneumonia was observed in supplemented, infected mice compared to severe pneumonia seen in control mice. This was accompanied by decreased inflammatory markers (malondialdehyde, myeloperoxidase, nitric oxide) as the disease progressed. In addition, difference in the levels of pro-inflammatory (TNF-alpha and IL-1beta) and anti-inflammatory (IL-10) cytokines was observed in the flaxseed fed animals. On the contrary, short-term supplementation did not show such an effect on lung colonization.

  1. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element

    PubMed Central

    2013-01-01

    Camels are the most valuable livestock species in the Horn of Africa and play a pivotal role in the nutritional sustainability for millions of people. Their health status is therefore of utmost importance for the people living in this region. Streptococcus agalactiae, a Group B Streptococcus (GBS), is an important camel pathogen. Here we present the first epidemiological study based on genetic and phenotypic data from African camel derived GBS. Ninety-two GBS were characterized using multilocus sequence typing (MLST), capsular polysaccharide typing and in vitro antimicrobial susceptibility testing. We analysed the GBS using Bayesian linkage, phylogenetic and minimum spanning tree analyses and compared them with human GBS from East Africa in order to investigate the level of genetic exchange between GBS populations in the region. Camel GBS sequence types (STs) were distinct from other STs reported so far. We mapped specific STs and capsular types to major disease complexes caused by GBS. Widespread resistance (34%) to tetracycline was associated with acquisition of the tetM gene that is carried on a Tn916-like element, and observed primarily among GBS isolated from mastitis. The presence of tetM within different MLST clades suggests acquisition on multiple occasions. Wound infections and mastitis in camels associated with GBS are widespread and should ideally be treated with antimicrobials other than tetracycline in East Africa. PMID:24083845

  2. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages

    PubMed Central

    Campisi, Edmondo; Rinaudo, C. Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S.; Baker, Carol J.; Margarit, Imma; Rosini, Roberto

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV. PMID:27411639

  3. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages.

    PubMed

    Campisi, Edmondo; Rinaudo, C Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S; Baker, Carol J; Margarit, Imma; Rosini, Roberto

    2016-07-14

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV.

  4. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression.

    PubMed

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N Luisa

    2015-02-02

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well to other bacterial species as long as multiple whole-genome sequences are available that collectively capture the vast majority of the species supragenome.

  5. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae.

    PubMed Central

    Tait-Kamradt, A; Clancy, J; Cronan, M; Dib-Hajj, F; Wondrack, L; Yuan, W; Sutcliffe, J

    1997-01-01

    Recently, it was shown that a significant number of erythromycin-resistant Streptococcus pneumoniae and Streptococcus pyogenes strains contain a determinant that mediates resistance via a putative efflux pump. The gene encoding the erythromycin-resistant determinant was cloned and sequenced from three strains of S. pneumoniae bearing the M phenotype (macrolide resistant but clindamycin and streptogramin B susceptible). The DNA sequences of mefE were nearly identical, with only 2-nucleotide differences between genes from any two strains. When the mefE sequences were compared to the mefA sequence from S. pyogenes, the two genes were found to be closely related (90% identity). Strains of S. pneumoniae were constructed to confirm that mefE is necessary to confer erythromycin resistance and to explore the substrate specificity of the pump; no substrates other than 14- and 15-membered macrolides were identified. PMID:9333056

  6. Rapid urine antigen testing for Streptococcus pneumoniae in adults with community-acquired pneumonia: clinical use and barriers.

    PubMed

    Harris, Aaron M; Beekmann, Susan E; Polgreen, Philip M; Moore, Matthew R

    2014-08-01

    Streptococcus pneumoniae (pneumococcus) is the most common bacterial etiology of community-acquired pneumonia (CAP) in adults, a leading cause of death. The majority of pneumococcal CAP is diagnosed by blood culture, which likely underestimates the burden of disease. The 2007 CAP guidelines recommend routine use of the rapid pneumococcal urinary antigen (UAg) test. To assess the how pneumococcal UAg testing is being used among hospitalized adult CAP patients and what barriers restrict its use, a Web-based survey was distributed in 2013 to 1287 infectious disease physician members of the Emerging Infectious disease Network of the Infectious Disease Society of America. Of 493 eligible responses, 65% use the pneumococcal UAg test. The primary barrier to UAg use was availability (46%). UAg users reported ordering fewer other diagnostic tests and tailoring antibiotic therapy. Increased access to UAg tests could improve pneumonia management and pneumococcal CAP surveillance.

  7. The role of Streptococcus pneumoniae in community-acquired pneumonia among adults in Europe: a meta-analysis.

    PubMed

    Rozenbaum, M H; Pechlivanoglou, P; van der Werf, T S; Lo-Ten-Foe, J R; Postma, M J; Hak, E

    2013-03-01

    The primary objective of this meta-analysis was to estimate the prevalence of adult community-acquired pneumonia (CAP) caused by Streptococcus pneumoniae in Europe, adjusted for possible independent covariates. Two reviewers conducted a systematic literature search using PubMed on English-language articles that involved human subjects with CAP during the period from January 1990 to November 2011 across European countries. A mixed-effects meta-regression model was developed and populated with 24,410 patients obtained from 77 articles that met the inclusion criteria. The model showed that the observed prevalence of S. pneumoniae in CAP significantly varies between European regions, even after adjusting for explanatory covariates, including patient characteristics, diagnostic tests, antibiotic resistance, and health-care setting. The probability of detecting S. pneumoniae was substantially higher in studies that performed more frequently a diagnostic polymerase chain reaction assay compared to all the other diagnostic tests included. Furthermore, S. pneumoniae was more likely to be confirmed as the cause of a CAP in studies with intensive care unit patients as compared to those with hospital- or community-treated patients. This study provides estimates of the average observed prevalence of S. pneumoniae, which could be used for projecting the health and economic benefits of pneumococcal immunization.

  8. Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing.

    PubMed

    Wang, Bei; Gan, Zhen; Cai, Shuanghu; Wang, Zhongliang; Yu, Dapeng; Lin, Ziwei; Lu, Yishan; Wu, Zaohe; Jian, Jichang

    2016-07-01

    MicroRNAs are a kind of small non-coding RNAs that participate in various biological processes. Deregulated microRNA expression is associated with several types of diseases. Tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify miRNAs and investigate immune-related miRNAs of O. niloticus, we applied high-throughput sequencing technology to identify and analyze miRNAs from tilapia infected with Streptococcus agalactiae at a timescale of 72 h divided into six different time points. The results showed that a total of 3009 tilapia miRNAs were identified, including in 1121 miRNAs which have homologues in the currently available databases and 1878 novel miRNAs. The expression levels of 218 tilapia miRNAs were significantly altered at 6 h-72 h post-bacterial infection (pi), and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. For the 1121 differentially expressed tilapia miRNAs target 41961 genes. GO and KEGG enrichment analysis revealed that some target genes of tilapia miRNAs were grouped mainly into the categories of apoptotic process, signal pathway, and immune response. This is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in spleen in normal conditions relating to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions.

  9. Effects of some dietary crude plant extracts on the growth and gonadal maturity of Nile tilapia (Oreochromis niloticus) and their resistance to Streptococcus agalactiae infection.

    PubMed

    Kareem, Zana H; Abdelhadi, Yasser M; Christianus, Annie; Karim, Murni; Romano, Nicholas

    2016-04-01

    A 90-day feeding trial was conducted on the growth performance, feeding efficacy, body indices, various hematological and plasma biochemical parameters, and histopathological examination of the gonads from male and female Nile tilapia fingerlings when fed different crude plant extracts from Cinnamomum camphora, Euphorbia hirta, Azadirachta indica, or Carica papaya at 2 g kg(-1) compared to a control diet. This was followed by a 14-day challenge to Streptococcus agalactiae. All treatments were triplicated, and each treatment consisted of 30 fish. Results showed that C. papaya extracts were the most effective at delaying gonadal maturation to both male and female tilapia, as well as significantly increasing (P < 0.05) growth performance compared to the control treatment. Similarly, dietary C. camphora and E. hirta extracts also significantly improved growth, while no significant growth effect was detected between the A. indica and control treatments (P > 0.05). Further, crude body lipid was lower in the C. camphora, E. hirta and C. papaya treatments, but was only significantly lower for the E. hirta treatment compared to the control. Meanwhile, none of the hematological or biochemical parameters were significantly affected, although plasma ALT was significantly lower for tilapia fed A. indica compared to the control. After the 14-day bacterial challenge, tilapia fed C. camphora supplementation had significantly higher survival, compared to the control, but was not significantly higher than the other supplemented diets. Results indicate that dietary C. papaya extract can significantly promote growth and delay gonadal maturation to both male and female tilapia, while C. camphora was the most effective prophylactic to S. agalactiae and may be a cost-effective and eco-friendly alternative to antibiotics.

  10. mef(A) is the predominant macrolide resistance determinant in Streptococcus pneumoniae and Streptococcus pyogenes in Germany.

    PubMed

    Bley, Christine; van der Linden, Mark; Reinert, Ralf René

    2011-05-01

    In this study, macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes isolates from Germany were carefully characterised by susceptibility testing, phenotyping, polymerase chain reaction (PCR) and sequencing of macrolides resistance genes, and multilocus sequence typing (MLST). Of 2045 S. pneumoniae and 352 S. pyogenes isolates, 437 (21.4%) and 29 (8.2%), respectively, were found to be macrolide-resistant. Amongst the S. pneumoniae isolates, the most prevalent resistance marker was mef(A) (57.7%) followed by erm(B) (27.0%) and mef(E) (11.2%). Of note, the dual resistance mechanism mef(E)+erm(B) was found in a relatively high proportion (4.1%) of pneumococcal isolates. Amongst the S. pyogenes isolates, 31.0% carried mef(A), 34.5% erm(B) and 13.8% erm(A). Dissemination of a single clone [mef(A)-positive England(14)-9] has significantly contributed to the emergence of macrolide resistance amongst pneumococci in Germany.

  11. Ruling out False-Positive Urinary Legionella pneumophila Serogroup 1 and Streptococcus pneumoniae Antigen Test Results by Heating Urine

    PubMed Central

    Pontoizeau, C.; Dangers, L.; Jarlier, V.; Luyt, C. E.; Guiller, E.; Fievet, M. H.; Lecsö-Bornet, M.; Aubry, A.

    2014-01-01

    We report here false-positive urinary Legionella pneumophila serogroup 1 and Streptococcus pneumoniae antigen test results due to rabbit antilymphocyte serum treatment and provide a simple and fast solution to rule them out by heating urine. PMID:25253788

  12. Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-cell responses to nasopharyngeal colonisation.

    PubMed

    Cohen, Jonathan M; Khandavilli, Suneeta; Camberlein, Emilie; Hyams, Catherine; Baxendale, Helen E; Brown, Jeremy S

    2011-01-01

    The nasopharyngeal commensal bacteria Streptococcus pneumoniae is also a frequent cause of serious infections. Nasopharyngeal colonisation with S. pneumoniae inhibits subsequent re-colonisation by inducing Th17-cell adaptive responses, whereas vaccination prevents invasive infections by inducing antibodies to S. pneumoniae capsular polysaccharides. In contrast, protection against invasive infection after nasopharyngeal colonisation with mutant S. pneumoniae strains was associated with antibody responses to protein antigens. The role of colonisation-induced Th17-cell responses during subsequent invasive infections is unknown. Using mouse models, we show that previous colonisation with S. pneumoniae protects against subsequent lethal pneumonia mainly by preventing bacteraemia with a more modest effect on local control of infection within the lung. Previous colonisation resulted in CD4-dependent increased levels of Th17-cell cytokines during subsequent infectious challenge. However, mice depleted of CD4 cells prior to challenge remained protected against bacteraemia, whereas no protection was seen in antibody deficient mice and similar protection could be achieved through passive transfer of serum. Serum from colonised mice but not antibody deficient mice promoted phagocytosis of S. pneumoniae, and previously colonised mice were able to rapidly clear S. pneumoniae from the blood after intravenous inoculation. Thus, despite priming for a Th17-cell response during subsequent infection, the protective effects of prior colonisation in this model was not dependent on CD4 cells but on rapid clearance of bacteria from the blood by antibody-mediated phagocytosis. These data suggest that whilst nasopharyngeal colonisation induces a range of immune responses, the effective protective responses depend upon the site of subsequent infection.

  13. Viridans Group Streptococci Are Donors in Horizontal Transfer of Topoisomerase IV Genes to Streptococcus pneumoniae

    PubMed Central

    Balsalobre, Luz; Ferrándiz, María José; Liñares, Josefina; Tubau, Fe; de la Campa, Adela G.

    2003-01-01

    A total of 46 ciprofloxacin-resistant (Cipr) Streptococcus pneumoniae strains were isolated from 1991 to 2001 at the Hospital of Bellvitge. Five of these strains showed unexpectedly high rates of nucleotide variations in the quinolone resistance-determining regions (QRDRs) of their parC, parE, and gyrA genes. The nucleotide sequence of the full-length parC, parE, and gyrA genes of one of these isolates revealed a mosaic structure compatible with an interspecific recombination origin. Southern blot analysis and nucleotide sequence determinations showed the presence of an ant-like gene in the intergenic parE-parC regions of the S. pneumoniae Cipr isolates with high rates of variations in their parE and parC QRDRs. The ant-like gene was absent from typical S. pneumoniae strains, whereas it was present in the intergenic parE-parC regions of the viridans group streptococci (Streptococcus mitis and Streptococcus oralis). These results suggest that the viridans group streptococci are acting as donors in the horizontal transfer of fluoroquinolone resistance genes to S. pneumoniae. PMID:12821449

  14. DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14.

    PubMed

    Koppel, Estella A; Saeland, Eirikur; de Cooker, Désirée J M; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2005-01-01

    The Gram-positive bacterium Streptococcus pneumoniae is the leading causative pathogen in community-acquired pneumonia. The ever-increasing frequency of antibiotic-resistant S. pneumoniae strains severely hampers effective treatments. Thus, a better understanding of the mechanisms involved in the pathogenesis of pneumococcal disease is needed; in particular, of the initial interactions that take place between the host and the bacterium. Recognition of pathogens by dendritic cells is one of the most crucial steps in the induction of an immune response. For efficient pathogen recognition, dendritic cells express various kinds of receptors, including the DC-specific C-type lectin DC-SIGN. Pathogens such as Mycobacterium tuberculosis and HIV target DC-SIGN to escape immunity. Here the in vitro binding of DC-SIGN with S. pneumoniae was investigated. DC-SIGN specifically interacts with S. pneumoniae serotype 3 and 14 in contrast to other serotypes such as 19F. While the data described here suggest that DC-SIGN interacts with S. pneumoniae serotype 14 through a ligand expressed by the capsular polysaccharide, the binding to S. pneumoniae serotype 3 appears to depend on an as yet unidentified ligand. Despite the binding capacity of the capsular polysaccharide of S. pneumoniae 14 to DC-SIGN, no immunomodulatory effects on the dendritic cells were observed. The immunological consequences of the serotype-specific capacity to interact with DC-SIGN should be further explored and might result in new insights in the development of new and more potent vaccines.

  15. Nasopharyngeal carriage of Streptococcus pneumoniae in adults infected with human immunodeficiency virus in Jakarta, Indonesia.

    PubMed

    Harimurti, Kuntjoro; Saldi, Siti R F; Dewiasty, Esthika; Khoeri, Miftahuddin M; Yunihastuti, Evi; Putri, Tiara; Tafroji, Wisnu; Safari, Dodi

    2016-01-01

    This study investigated the distribution of serotype and antimicrobial susceptibility of Streptococcus pneumoniae carried by adults infected with human immunodeficiency virus (HIV) in Jakarta, Indonesia. Specimens of nasopharyngeal swab were collected from 200 HIV infected adults aged 21 to 63 years. Identification of S. pneumoniae was done by optochin susceptibility test and PCR for the presence of psaA and lytA genes. Serotyping was performed with sequential multiplex PCR and antibiotic susceptibility with the disk diffusion method. S. pneumoniae strains were carried by 10% adults with serotype 6A/B 20% was common serotype among cultured strains in 20 adults. Most of isolates were susceptible to chloramphenicol (80%) followed by clindamycin (75%), erythromycin (75%), penicillin (55%), and tetracycline (50%). This study found resistance to sulphamethoxazole/trimethoprim was most common with only 15% of strains being susceptible. High non-susceptibility to sulphamethoxazole/trimethoprim was observed in S. pneumoniae strains carried by HIV infected adults in Jakarta, Indonesia.

  16. Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster.

    PubMed

    Valentino, Michael D; McGuire, Abigail Manson; Rosch, Jason W; Bispo, Paulo J M; Burnham, Corinna; Sanfilippo, Christine M; Carter, Robert A; Zegans, Michael E; Beall, Bernard; Earl, Ashlee M; Tuomanen, Elaine I; Morris, Timothy W; Haas, Wolfgang; Gilmore, Michael S

    2014-11-12

    Streptococcus pneumoniae, an inhabitant of the upper respiratory mucosa, causes respiratory and invasive infections as well as conjunctivitis. Strains that lack the capsule, a main virulence factor and the target of current vaccines, are often isolated from conjunctivitis cases. Here we perform a comparative genomic analysis of 271 strains of conjunctivitis-causing S. pneumoniae from 72 postal codes in the United States. We find that the vast majority of conjunctivitis strains are members of a distinct cluster of closely related unencapsulated strains. These strains possess divergent forms of pneumococcal virulence factors (such as CbpA and neuraminidases) that are not shared with other unencapsulated nasopharyngeal S. pneumoniae. They also possess putative adhesins that have not been described in encapsulated pneumococci. These findings suggest that the unencapsulated strains capable of causing conjunctivitis utilize a pathogenesis strategy substantially different from that described for S. pneumoniae at other infection sites.

  17. Protection of mice from infection with Streptococcus pneumoniae by anti-phosphocholine antibody.

    PubMed Central

    Yother, J; Forman, C; Gray, B M; Briles, D E

    1982-01-01

    Anti-phosphocholine (PC) antibody mediated protection against many strains of Streptococcus pneumoniae, and hybridoma anti-PC antibodies protected mice from fatal infections with types 1 and 3 S. pneumoniae. Live types 1, 3, 5, 6A, and 19F S. pneumoniae had similar amounts of surface PC accessible to antibody. Furthermore, mice expressing the X-linked immunodeficiency (xid) of the CBA/N strain were found to be more susceptible to infection with S. pneumoniae of types 3, 6A, and 19F than were immunologically normal mice. The only exception to these results was with the type 5 strain, which was highly virulent for both xid and normal mice. In addition, we were unable to protect mice against infection with the type 5 strain by using anti-PC antibody. PMID:7076292

  18. Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster

    PubMed Central

    Valentino, Michael D.; McGuire, Abigail Manson; Rosch, Jason W.; Bispo, Paulo J. M.; Burnham, Corinna; Sanfilippo, Christine M.; Carter, Robert A.; Zegans, Michael E.; Beall, Bernard; Earl, Ashlee M.; Tuomanen, Elaine I.; Morris, Timothy W.; Haas, Wolfgang; Gilmore, Michael S.

    2014-01-01

    Streptococcus pneumoniae, an inhabitant of the upper respiratory mucosa, causes respiratory and invasive infections as well as conjunctivitis. Strains that lack the capsule, a main virulence factor and the target of current vaccines, are often isolated from conjunctivitis cases. Here we perform a comparative genomic analysis of 271 strains of conjunctivitis-causing S. pneumoniae from 72 postal codes in the US. We find that the vast majority of conjunctivitis strains are members of a distinct cluster of closely related unencapsulated strains. These strains possess divergent forms of pneumococcal virulence factors (such as CbpA and neuraminidases) that are not shared with other unencapsulated nasopharyngeal S. pneumoniae. They also possess putative adhesins that have not been described in encapsulated pneumococci. These findings suggest that the unencapsulated strains capable of causing conjunctivitis utilize a pathogenesis strategy substantially different from that described for S. pneumoniae at other infection sites. PMID:25388376

  19. Relationship Between the Inoculum Dose of Streptococcus pneumoniae and Pneumonia Onset in a Rabbit Model

    DTIC Science & Technology

    2005-04-01

    of ventilator- associated pneumonia and urinary tract infections . J Chemother 2003; 15: 536 542. PNEUMOCOCCI INOCULUM DOSE AND PNEUMONIA ONSET A.L. YERSHOV ET AL. 700 VOLUME 25 NUMBER 4 EUROPEAN RESPIRATORY JOURNAL

  20. The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice.

    PubMed

    de Vos, Alex F; Dessing, Mark C; Lammers, Adriana J J; de Porto, Alexander P N A; Florquin, Sandrine; de Boer, Onno J; de Beer, Regina; Terpstra, Sanne; Bootsma, Hester J; Hermans, Peter W; van 't Veer, Cornelis; van der Poll, Tom

    2015-01-01

    Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88(-/-) mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88(-/-) mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88(-/-) mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.

  1. Age-dependent preference in human antibody responses to Streptococcus pneumoniae polypeptide antigens.

    PubMed

    Lifshitz, S; Dagan, R; Shani-Sekler, M; Grossman, N; Fleminger, G; Friger, M; Nebenzahl, Y Mizrachi

    2002-02-01

    Vulnerability to Streptococcus pneumoniae is most pronounced in children. The microbial virulence factors and the features of the host immune response contributing to this phenomenon are not completely understood. In the current study, the humoral immune response to separated Strep. pneumoniae surface proteins and the ability to interfere with Strep. pneumoniae adhesion to cultured epithelial cells were analysed in adults and in children. Sera collected from healthy adults recognized Strep. pneumoniae separated lectin and nonlectin surface proteins in Western blot analysis and inhibited on average 80% of Strep. pneumoniae adhesion to epithelial cells in a concentration-dependent manner. However, sera longitudinally collected from healthy children attending day care centres from 18 months of age and over the course of the following 2 years revealed: (a) development of antibodies to previously unrecognized Strep. pneumoniae surface proteins with age; (b) a quantitative increase in antibody responses, measured by densitometry, towards separated Strep. pneumoniae surface proteins with age; and (c) inhibition of Strep. pneumoniae adhesion to epithelial cells, which was 50% on average at 18 months of age, increased significantly to an average level of 80% inhibition at 42 months of age equalling adult sera inhibitory values. The results obtained in the current study, from the longitudinally collected sera from healthy children with documented repeated Strep. pneumoniae colonization, show that repeated exposures are insufficient to elicit an immune response to Strep. pneumoniae proteins at 18 months of age. This inability to recognize Strep. pneumoniae surface proteins may stem from the inefficiency of T-cell-dependent B-cell responses at this age and/or from the low immunogenicity of the proteins.

  2. Age-dependent preference in human antibody responses to Streptococcus pneumoniae polypeptide antigens

    PubMed Central

    LIFSHITZ, S; DAGAN, R; SHANI-SEKLER, M; GROSSMAN, N; FLEMINGER, G; FRIGER, M; NEBENZAHL, Y MIZRACHI

    2002-01-01

    Vulnerability to Streptococcus pneumoniae is most pronounced in children. The microbial virulence factors and the features of the host immune response contributing to this phenomenon are not completely understood. In the current study, the humoral immune response to separated Strep. pneumoniae surface proteins and the ability to interfere with Strep. pneumoniae adhesion to cultured epithelial cells were analysed in adults and in children. Sera collected from healthy adults recognized Strep. pneumoniae separated lectin and nonlectin surface proteins in Western blot analysis and inhibited on average 80% of Strep. pneumoniae adhesion to epithelial cells in a concentration-dependent manner. However, sera longitudinally collected from healthy children attending day care centres from 18 months of age and over the course of the following 2 years revealed: (a) development of antibodies to previously unrecognized Strep. pneumoniae surface proteins with age; (b) a quantitative increase in antibody responses, measured by densitometry, towards separated Strep. pneumoniae surface proteins with age; and (c) inhibition of Strep. pneumoniae adhesion to epithelial cells, which was 50% on average at 18 months of age, increased significantly to an average level of 80% inhibition at 42 months of age equalling adult sera inhibitory values. The results obtained in the current study, from the longitudinally collected sera from healthy children with documented repeated Strep. pneumoniae colonization, show that repeated exposures are insufficient to elicit an immune response to Strep. pneumoniae proteins at 18 months of age. This inability to recognize Strep. pneumoniae surface proteins may stem from the inefficiency of T-cell-dependent B-cell responses at this age and/or from the low immunogenicity of the proteins. PMID:11876760

  3. Bacterial Pneumonia Caused by Streptococcus pyogenes Infection: A Case Report and Review of the Literature

    PubMed Central

    Akuzawa, Nobuhiro; Kurabayashi, Masahiko

    2016-01-01

    A 78-year-old Japanese man was admitted to our hospital because of fever lasting for 4 days. His white blood cell count and C-reactive protein level were elevated and computed tomography of the chest showed bronchopneumonia in the right upper lobe of the lung. Streptococcus pyogenes was detected from sputum and blood culture samples on admission and administration of ampicillin/sulbactam was effective. Although our patient’s clinical course was good, S. pyogenes pneumonia commonly shows a high rate of fatality and septicemia, and may affect a previously healthy population. Physicians should be aware of pernicious characteristics of S. pyogenes pneumonia. PMID:27738486

  4. Consumption patterns and in vitro resistance of Streptococcus pneumoniae to fluoroquinolones.

    PubMed

    Simoens, Steven; Verhaegen, Jan; van Bleyenbergh, Pascal; Peetermans, Willy E; Decramer, Marc

    2011-06-01

    This article analyzes patterns of consumption of fluoroquinolones and documents the in vitro resistances of Streptococcus pneumoniae isolates to fluoroquinolones in the ambulatory care setting in Belgium over time. The volume of fluoroquinolone consumption has fallen consistently since 2003. Fluoroquinolones were used primarily for their registered indications (i.e., urinary tract infections and lower respiratory tract infections). The MIC distributions of moxifloxacin and levofloxacin in S. pneumoniae isolates remained stable during 2004 to 2009, and the level of resistance to moxifloxacin and levofloxacin was low (≤1%).

  5. Call for the international adoption of microbiological breakpoints for fluoroquinolones and Streptococcus pneumoniae.

    PubMed

    Schurek, Kristen N; Adam, Heather J; Hoban, Daryl J; Zhanel, George G

    2006-09-01

    The use of current Clinical and Laboratory Standards Institute levofloxacin breakpoints for assessing fluoroquinolone resistance in Streptococcus pneumoniae is inadequate for detecting isolates possessing first-step parC mutations. Consequently, the risk for development of fluoroquinolone resistance is greatly underestimated. Adopting microbiological breakpoints for fluoroquinolones and S. pneumoniae, where parC mutations are rare in susceptible isolates, more accurately describes the emergence of resistance and may help to prevent a number of future fluoroquinolone treatment failures. Additionally, we propose that the use of a second fluoroquinolone marker, such as ciprofloxacin, offers the best prediction for detecting an isolate possessing a first-step parC mutation.

  6. Amoxicillin is effective against penicillin-resistant Streptococcus pneumoniae strains in a mouse pneumonia model simulating human pharmacokinetics.

    PubMed

    Abgueguen, Pierre; Azoulay-Dupuis, Esther; Noel, Violaine; Moine, Pierre; Rieux, Veronique; Fantin, Bruno; Bedos, Jean-Pierre

    2007-01-01

    High-dose oral amoxicillin (3 g/day) is the recommended empirical outpatient treatment of community-acquired pneumonia (CAP) in many European guidelines. To investigate the clinical efficacy of this treatment in CAP caused by Streptococcus pneumoniae strains with MICs of amoxicillin > or =2 microg/ml, we used a lethal bacteremic pneumonia model in leukopenic female Swiss mice with induced renal failure to replicate amoxicillin kinetics in humans given 1 g/8 h orally. Amoxicillin (15 mg/kg of body weight/8 h subcutaneously) was given for 3 days. We used four S. pneumoniae strains with differing amoxicillin susceptibility and tolerance profiles. Rapid bacterial killing occurred with an amoxicillin-susceptible nontolerant strain: after 4 h, blood cultures were negative and lung homogenate counts under the 2 log(10) CFU/ml detection threshold (6.5 log(10) CFU/ml in controls, P < 0.01). With an amoxicillin-intermediate nontolerant strain, significant pulmonary bacterial clearance was observed after 24 h (4.3 versus 7.9 log(10) CFU/ml, P < 0.01), and counts were undetectable 12 h after treatment completion. With an amoxicillin-intermediate tolerant strain, 24-h bacterial clearance was similar (5.4 versus 8.3 log(10) CFU/ml, P < 0.05), but 12 h after treatment completion, lung homogenates contained 3.3 log(10) CFU/ml. Similar results were obtained with an amoxicillin-resistant and -tolerant strain. Day 10 survival rates were usually similar across strains. Amoxicillin with pharmacokinetics simulating 1 g/8 h orally in humans is bactericidal in mice with pneumonia due to S. pneumoniae for which MICs were 2 to 4 microg/ml. The killing rate depends not only on resistance but also on tolerance of the S. pneumoniae strains.

  7. Polymicrobial subdural empyema: involvement of Streptococcus pneumoniae revealed by lytA PCR and antigen detection.

    PubMed

    Greve, Thomas; Clemmensen, Dorte; Ridderberg, Winnie; Pedersen, Lisbeth N; Møller, Jens K

    2011-03-01

    The authors report a case of a subdural empyema (SDE) caused by a coinfection with Streptococcus intermedius and Streptococcus pneumoniae, initially considered a S. intermedius infection only. An otherwise healthy 11-year-old female was admitted to the hospital after 5 days of illness. Symptoms were consistent with classical SDE symptoms and progressed rapidly with finally somnolence before the first neurosurgical procedure despite relevant antibiotic treatment. Primary MRI showed an interhemispheric SDE and a postoperative control CT scan showed progression of the empyema infratentorially. The empyema was evacuated twice, day 8 and 18, with good results. Primary samples showed growth of S. intermedius only. The severity of the clinical picture elicited supplementary samples, which were additionally positive for S. pneumoniae by an in-house specific lytA PCR and/or a commercial antigen test.

  8. Incomplete Kawasaki disease associated with complicated Streptococcus pyogenes pneumonia: A case report.

    PubMed

    Leahy, Timothy Ronan; Cohen, Eyal; Allen, Upton D

    2012-01-01

    A three-year-old boy presented with community-acquired pneumonia complicated by empyema. Streptococcus pyogenes (group A streptococcus) was identified on culture of the pleural fluid. The patient improved with antibiotic therapy and drainage of the empyema. During his convalescence, the patient developed persistent fever, lethargy and anorexia. His inflammatory markers were elevated, and repeat cultures were negative. Although the patient had none of the classical mucocutaneous features of Kawasaki disease, an echocardiogram was performed, which revealed coronary artery dilation. The patient was diagnosed with incomplete Kawasaki disease and treated with intravenous immunoglobulin and high-dose acetylsalicylic acid. The fever subsided within 48 h. To the authors' knowledge, the present report is the first report of Kawasaki disease associated with complicated S pyogenes pneumonia. It emphasizes the importance of considering incomplete Kawasaki disease among children with persistent fever, the role of echocardiography in diagnosis, and the potential link between Kawasaki disease and superantigen-producing organisms such as S pyogenes.

  9. MicroRNA-155 is required for clearance of Streptococcus pneumoniae from the nasopharynx.

    PubMed

    Verschoor, Chris P; Dorrington, Michael G; Novakowski, Kyle E; Kaiser, Julie; Radford, Katherine; Nair, Parameswaran; Anipindi, Varun; Kaushic, Charu; Surette, Michael G; Bowdish, Dawn M E

    2014-11-01

    Pneumonia caused by Streptococcus pneumoniae is a major cause of death and an economic burden worldwide. S. pneumoniae is an intermittent colonizer of the human upper respiratory tract, and the ability to control asymptomatic colonization determines the likelihood of developing invasive disease. Recognition of S. pneumoniae by resident macrophages via Toll-like receptor 2 (TLR-2) and the macrophage receptor with collagenous structure (MARCO) and the presence of interleukin-17 (IL-17)-secreting CD4(+) T cells are required for macrophage recruitment and bacterial clearance. Despite the fact that the primary cellular effectors needed for bacterial clearance have been identified, much of the underlying regulatory mechanisms are unknown. Herein, we demonstrate that the small, noncoding RNA microRNA-155 (mir-155) is critical for the effective clearance of S. pneumoniae. Our studies show that mir-155-deficient mice maintain the ability to prevent acute invasive pneumococcal infection but have significantly higher bacterial burdens following colonization, independently of macrophage recognition by TLR-2, MARCO expression, or bactericidal capacity. The observed defects in bacterial clearance parallel reduced IL-17A and gamma interferon CD4(+) T-cell responses in vivo, lower IL-17A mRNA levels in the nasopharynx, and a reduced capacity to induce Th17 cell polarization. Given that knockout mice are also limited in the capacity to generate high-titer S. pneumoniae-specific antibodies, we conclude that mir-155 is a critical mediator of the cellular effectors needed to clear primary and secondary S. pneumoniae colonizations.

  10. Cross Protective Mucosal Immunity Mediated by Memory Th17 Cells against Streptococcus pneumoniae Lung Infection

    PubMed Central

    Wang, Yan; Jiang, Bin; Guo, Yongli; Li, Wenchao; Tian, Ying; Sonnenberg, Gregory F; Weiser, Jeffery N.; Ni, Xin; Shen, Hao

    2016-01-01

    Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology and apoptosis of lung epithelial cells. Sp infection in the lung induced strong Th17 responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by IL-17A blockade. Transfer of memory CD4+ T cells from IL-17A knockout mice failed to provide protection. These results indicate that memory Th17 cells played a key role in providing protection against pneumonia in a serotype independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells. PMID:27118490

  11. Serotype distribution and antimicrobial susceptibilities of Streptococcus agalactiae isolated from infected cultured tilapia (Oreochromis niloticus) in Thailand: Nine-year perspective.

    PubMed

    Dangwetngam, Machalin; Suanyuk, Naraid; Kong, Fanrong; Phromkunthong, Wutiporn

    2016-03-01

    Streptococcus agalactiae (group B Streptococcus, GBS) infection remains a major problem associated with high mortality of cultured tilapia worldwide. The present study reports the serotype distribution and antimicrobial susceptibilities of GBS isolated from infected tilapia cultured in Thailand. One hundred and forty-four GBS isolates were identified by biochemical, serological and molecular analyses. Of these 144 GBS isolates, 126 were serotype Ia and 18 were serotype III. Antimicrobial susceptibilities of the 144 GBS isolates were determined by the disc diffusion method. Most GBS isolates were susceptible to lincomycin, norfloxacin, oxytetracycline, ampicillin, erythromycin and chloramphenicol, but resistant to oxolinic acid, gentamicin, sulfamethoxazole and trimethoprim. However, 17 isolates displayed an oxytetracycline-resistant phenotype and harboured the tet(M) gene. The broth microdilution method was used to determine the minimal inhibitory concentrations (MICs) of 17 oxytetracycline-resistant GBS isolates, and then minimal bactericidal concentrations (MBCs) of these isolates were evaluated. Oxytetracyline-resistant isolates were found to be susceptible to ampicillin, lincomycin, norfloxacin, erythromycin and chloramphenicol, with the MIC and MBC ranging from ≤ 0.125 to 0.5 μg ml- 1 and ≤ 0.125 to 2 μg ml- 1, respectively. Moreover, all 17 oxytetracycline-resistant isolates demonstrated resistance to trimethoprim, oxolinic acid, gentamicin, sulfamethoxazole and oxytetracycline, with the MIC and MBC ranging from 16 to ≥ 128 μg ml- 1 and ≥ 128 μg ml- 1, respectively. These findings are useful information for antibiotic usage in fish aquaculture.

  12. Transgenic Expression of Bcl-xL or Bcl-2 by Murine B Cells Enhances the In Vivo Antipolysaccharide, but Not Antiprotein, Response to Intact Streptococcus pneumoniae

    DTIC Science & Technology

    2007-01-01

    Potter,‡ and Clifford M. Snapper4* IgG antipolysaccharide (PS) and antiprotein responses to Streptococcus pneumoniae (Pn) are both CD4 T cell dependent...that PS Ags expressed by intact bacteria may be neither classically TI nor TD (8). Thus, immunization of mice with intact Streptococcus pneumoniae (Pn...WT, wild type; TI, T cell independent; TD, T cell dependent; Pn, Streptococcus pneumoniae ; mIg, membrane Ig; Btk, Bruton’s tyrosine kinase; GC

  13. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus).

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Hirono, Ikuo; Rodkhum, Channarong

    2014-08-06

    Temperature strongly affects the health of aquatic poikilotherms. In Nile tilapia (Oreochromis niloticus), elevated water temperatures increase the severity of streptococcosis. Here we investigated the effects of temperature on the vulnerability and inflammatory response of Nile tilapia to Streptococcus agalactiae (Group B streptococci; GBS). At 35 and 28 °C, GBS took 4 and 7h, respectively to reach the log-phase and, when incubated with tilapia whole blood, experienced survival rates of 97% and 2%, respectively. The hemolysis activity of GBS grown at 35 °C was five times higher than that of GBS grown at 28 °C. GBS expressed cylE (β-hemolysin/cytolysin), cfb (CAMP factor) and PI-2b (pili-backbone) much more strongly at 35 °C than at 28 °C. Challenging Nile tilapia reared at 35 and 28 °C with GBS resulted in accumulated mortalities of about 85% and 45%, respectively. At 35 °C, infected tilapia exhibited tremendous inflammatory responses due to a dramatic up-regulation (30-40-fold) of inflammatory-related genes (cyclooxygenase-2, IL-1β and TNF-α) between 6 and 96 h-post infection. These results suggest that the increase of GBS pathogenicity to Nile tilapia induced by elevated temperature is associated with massive inflammatory responses, which may lead to acute mortality.

  14. RNA-Seq revealed the impairment of immune defence of tilapia against the infection of Streptococcus agalactiae with simulated climate warming.

    PubMed

    Wang, Le; Liu, Peng; Wan, Zi Yi; Huang, Shu Qing; Wen, Yan Fei; Lin, Grace; Yue, Gen Hua

    2016-08-01

    Global warming is one of the causes of disease outbreaks in fishes. Understanding its mechanisms is critical in aquaculture and fisheries. We used tilapia to study the effects of a high temperature on the infection of a bacterial pathogen Streptococcus agalactiae using RNA-Seq. We found that the dissolved oxygen level in water at 32 °C is lower than at 22 °C, and tilapia infected with the pathogen died more rapidly at 32 °C. The gene expression profiles showed significant differences in fish raised under different conditions. We identified 126 and 576 differentially expressed genes (DEGs) at 4 and 24 h post infection at 22 °C, respectively, whereas at 32 °C, the data were 312 and 1670, respectively. Almost all responding pathways at 22 °C were involved in the immune responses, whereas at 32 °C, the enriched pathways were not only involved in immune responses but also involved in oxygen and energy metabolisms. We identified significant signals of immunosuppression of immune responses at 32 °C. In addition, many of the enriched transcription factors and DEGs under positive selection were involved in immune responses, oxygen and/or energy metabolisms. Our results suggest that global warming could reduce the oxygen level in water and impair the defence of tilapia against bacterial infection.

  15. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-01-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli. PMID:22139924

  16. Palmitoylethanolamide stimulates phagocytosis of Escherichia coli K1 and Streptococcus pneumoniae R6 by microglial cells.

    PubMed

    Redlich, Sandra; Ribes, Sandra; Schütze, Sandra; Czesnik, Dirk; Nau, Roland

    2012-03-01

    The ability of microglial cells to phagocytose bacteria after stimulation with the endocannabinoid palmitoylethanolamide (PEA) was studied in vitro. PEA increased the phagocytosis of unencapsulated Streptococcus pneumoniae R6 and encapsulated Escherichia coli K1 by murine microglial cells significantly after 30 min of microglial stimulation. This suggested that stimulation of microglial cells by PEA can increase the resistance of the brain against CNS infections.

  17. Pathomorphosis of experimental infection in mice, infected by Streptococcus pneumoniae, under the effect of immunotropic drugs.

    PubMed

    Somova, L M; Kondrashova, N M; Plekhova, N G; Drobot, E I; Lyapun, I N

    2013-08-01

    Pathomorphological changes in the organs of animals intranasally infected with Streptococcus pneumoniae were studied under conditions of immunotropic therapy added to antibiotic therapy. The pathomorphosis in the lungs, spleen, and thymus in animals treated with likopid, tinrostim, and roncoleukin was described. A positive time course of the pathological process in experimental animals in comparison with intact animals and animals receiving no immunotropic drugs was demonstrated.

  18. Screening for cephalosporin-resistant Streptococcus pneumoniae with the Kirby-Bauer disk susceptibility test.

    PubMed

    Friedland, I R; Shelton, S; McCracken, G H

    1993-06-01

    Kirby-Bauer disk susceptibility tests with five standard cephalosporin disks were performed on 23 penicillin-resistant Streptococcus pneumoniae isolates for which ceftriaxone MICs were 0.125 to 4 micrograms/ml. Cefuroxime disk inhibition zone diameters distinguished clearly isolates for which ceftriaxone MICs were > or = 2 micrograms/ml from more susceptible strains, whereas cephalothin, ceftizoxime, cefotaxime, and ceftriaxone disks distinguished these isolates less clearly than the cefuroxime disk did.

  19. Draft Genome Sequences of Clinical Isolates of Serotype 6E Streptococcus pneumoniae from Five Asian Countries

    PubMed Central

    Park, In Ho; Baek, Jin Yang; Song, Jae-Hoon

    2017-01-01

    ABSTRACT Although serotype 6E Streptococcus pneumoniae consistently expresses capsules of either vaccine-serotype 6A or 6B, certain genetic variants of serotype 6E may evade vaccine induced immunity. Thus, draft genome sequences from five clinical isolates of serotype 6E from each of five different Asian countries have been generated to provide insight into the genomic diversity in serotype 6E strains. PMID:28280026

  20. Draft Genome Sequence of an Atypical Strain of Streptococcus pneumoniae Serotype 19A Isolated from Cerebrospinal Fluid

    PubMed Central

    Hinojosa-Robles, Rosa Maria; Barcenas-Walls, Jose Ramon; Rojas-Martinez, Augusto; Barrera-Saldaña, Hugo Alberto

    2016-01-01

    We present here the draft genome sequence of Streptococcus pneumoniae strain MTY32702340SN814 isolated in Monterrey, Mexico, from a girl with bacterial meningitis. The strain belongs to the atypical and multidrug-resistant serogroup 19A. This is the first report in the literature of sequence type 3936 (ST3936) in S. pneumoniae serotype 19A. PMID:27103715

  1. Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in Streptococci.

    PubMed

    Chuzeville, Sarah; Puymège, Aurore; Madec, Jean-Yves; Haenni, Marisa; Payot, Sophie

    2012-01-01

    Genetic exchanges between Streptococci occur frequently and contribute to their genome diversification. Most of sequenced streptococcal genomes carry multiple mobile genetic elements including Integrative and Conjugative Elements (ICEs) that play a major role in these horizontal gene transfers. In addition to genes involved in their mobility and regulation, ICEs also carry genes that can confer selective advantages to bacteria. Numerous elements have been described in S. agalactiae especially those integrated at the 3' end of a tRNA(Lys) encoding gene. In strain 515 of S. agalactiae, an invasive neonate human pathogen, the ICE (called 515_tRNA(Lys)) is functional and carries different putative virulence genes including one encoding a putative new CAMP factor in addition to the one previously described. This work demonstrated the functionality of this CAMP factor (CAMP factor II) in Lactococcus lactis but also in pathogenic strains of veterinary origin. The search for co-hemolytic factors in a collection of field strains revealed their presence in S. uberis, S. dysgalactiae, but also for the first time in S. equisimilis and S. bovis. Sequencing of these genes revealed the prevalence of a species-specific factor in S. uberis strains (Uberis factor) and the presence of a CAMP factor II encoding gene in S. bovis and S. equisimilis. Furthermore, most of the CAMP factor II positive strains also carried an element integrated in the tRNA(Lys) gene. This work thus describes a CAMP factor that is carried by a mobile genetic element and has spread to different streptococcal species.

  2. Coinfection with Streptococcus pneumoniae modulates the B cell response to influenza virus.

    PubMed

    Wolf, Amaya I; Strauman, Maura C; Mozdzanowska, Krystyna; Whittle, James R R; Williams, Katie L; Sharpe, Arlene H; Weiser, Jeffrey N; Caton, Andrew J; Hensley, Scott E; Erikson, Jan

    2014-10-01

    Pathogen-specific antibodies (Abs) protect against respiratory infection with influenza A virus (IAV) and Streptococcus pneumoniae and are the basis of effective vaccines. Sequential or overlapping coinfections with both pathogens are common, yet the impact of coinfection on the generation and maintenance of Ab responses is largely unknown. We report here that the B cell response to IAV is altered in mice coinfected with IAV and S. pneumoniae and that this response differs, depending on the order of pathogen exposure. In mice exposed to S. pneumoniae prior to IAV, the initial virus-specific germinal center (GC) B cell response is significantly enhanced in the lung-draining mediastinal lymph node and spleen, and there is an increase in CD4(+) T follicular helper (TFH) cell numbers. In contrast, secondary S. pneumoniae infection exaggerates early antiviral antibody-secreting cell formation, and at later times, levels of GCs, TFH cells, and antiviral serum IgG are elevated. Mice exposed to S. pneumoniae prior to IAV do not maintain the initially robust GC response in secondary lymphoid organs and exhibit reduced antiviral serum IgG with diminished virus neutralization activity a month after infection. Our data suggest that the history of pathogen exposures can critically affect the generation of protective antiviral Abs and may partially explain the differential susceptibility to and disease outcomes from IAV infection in humans. Importance: Respiratory tract coinfections, specifically those involving influenza A viruses and Streptococcus pneumoniae, remain a top global health burden. We sought to determine how S. pneumoniae coinfection modulates the B cell immune response to influenza virus since antibodies are key mediators of protection.

  3. Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans

    PubMed Central

    Shanker, Erin; Federle, Michael J.

    2017-01-01

    The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci. PMID:28067778

  4. Mosaic Genes and Mosaic Chromosomes: Intra- and Interspecies Genomic Variation of Streptococcus pneumoniae

    PubMed Central

    Hakenbeck, Regine; Balmelle, Nadège; Weber, Beate; Gardès, Christophe; Keck, Wolfgang; de Saizieu, Antoine

    2001-01-01

    Streptococcus pneumoniae remains a major causative agent of serious human diseases. The worldwide increase of antibiotic resistant strains revealed the importance of horizontal gene transfer in this pathogen, a scenario that results in the modulation of the species-specific gene pool. We investigated genomic variation in 20 S. pneumoniae isolates representing major antibiotic-resistant clones and 10 different capsular serotypes. Variation was scored as decreased hybridization signals visualized on a high-density oligonucleotide array representing 1,968 genes of the type 4 reference strain KNR.7/87. Up to 10% of the genes appeared altered between individual isolates and the reference strain; variability within clones was below 2.1%. Ten gene clusters covering 160 kb account for half of the variable genes. Most of them are associated with transposases and are assumed to be part of a flexible gene pool within the bacterial population; other variable loci include mosaic genes encoding antibiotic resistance determinants and gene clusters related to bacteriocin production. Genomic comparison between S. pneumoniae and commensal Streptococcus mitis and Streptococcus oralis strains indicates distinct antigenic profiles and suggests a smooth transition between these species, supporting the validity of the microarray system as an epidemiological and diagnostic tool. PMID:11254610

  5. Development of amperometric magnetogenosensors coupled to asymmetric PCR for the specific detection of Streptococcus pneumoniae.

    PubMed

    Campuzano, Susana; Pedrero, María; García, José L; García, Ernesto; García, Pedro; Pingarrón, José M

    2011-03-01

    A disposable magnetogenosensor for the rapid, specific and sensitive detection of Streptococcus pneumoniae is reported. The developed procedure involves the use of streptavidin-modified magnetic beads, a specific biotinylated capture probe that hybridizes with a specific region of lytA, the gene encoding the pneumococcal major autolysin, and appropriate primers for asymmetric polymerase chain reaction (PCR) amplification. Capture probes and amplicons specific for S. pneumoniae were selected by a careful analysis of all lytA alleles available. The selected primers amplify a 235-bp fragment of pneumococcal lytA. A detection limit (LOD) of 5.1 nM was obtained for a 20-mer synthetic target DNA without any amplification protocol, while the LOD for the asymmetric PCR amplicon was 1.1 nM. A RSD value of 6.9% was obtained for measurements carried out with seven different genosensors for 1.1-nM aPCR product. The strict specificity of the designed primers was demonstrated by aPCR amplification of genomic DNA prepared from different bacteria, including some closely related streptococci. Direct asymmetric PCR (daPCR), using cells directly from broth cultures of S. pneumoniae, showed that daPCR products could be prepared with as few as 2 colony-forming units (CFU). Furthermore, this methodology did not show any cross-reaction with closely related streptococci such as Streptococcus mitis (or Streptococcus pseudopneumoniae) even when present in the culture at concentrations up to 10(5) times higher than that of S. pneumoniae. Preliminary data for rapid detection of pneumococcus directly in clinical samples has shown that it is possible to discriminate between non-inoculated blood and urine samples and samples inoculated with only 10(3) CFU mL(-1)  S. pneumoniae.

  6. Metabolomic Profiling of Infectious Parapneumonic Effusions Reveals Biomarkers for Guiding Management of Children with Streptococcus pneumoniae Pneumonia

    PubMed Central

    Chiu, Chih-Yung; Lin, Gigin; Cheng, Mei-Ling; Chiang, Meng-Han; Tsai, Ming-Han; Lai, Shen-Hao; Wong, Kin-Sun; Hsieh, Sen-Yung

    2016-01-01

    Metabolic markers in biofluids represent an attractive tool for guiding clinical management. The aim of this study was to identify metabolic mechanisms during the progress of pleural infection in children with Streptococcus pneumoniae pneumonia. Forty children diagnosed with pneumococcal pneumonia were enrolled and analysis of pleural fluid metabolites categorized by complicated parapneumonic effusions (CPE) and non-CPE was assessed by using 1H-NMR spectroscopy. Multivariate statistical analysis including principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were performed. Metabolites identified were studied in relation to subsequent intervention procedures by receiver operating characteristic (ROC) curve analysis. Ten metabolites significantly different between CPE and non-CPE were identified. A significantly lower level of glucose for glycolysis was found in CPE compared to non-CPE. Six metabolites involving bacterial biosynthesis and three metabolites involving bacterial fermentation were significantly higher in CPE compared to non-CPE. Glucose and 3-hydroxybutyric acid were the metabolites found to be useful in discriminating from receiving intervention procedures. Metabolic profiling of pleural fluid using 1H-NMR spectroscopy provides direct observation of bacterial metabolism in the progress of pneumococcal pneumonia. An increase in the metabolism of butyric acid fermentation of glucose could potentially lead to the need of aggressive pleural drainage. PMID:27103079

  7. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae.

    PubMed

    Denoël, Philippe; Philipp, Mario T; Doyle, Lara; Martin, Dale; Carletti, Georges; Poolman, Jan T

    2011-07-26

    Infections caused by Streptococcus pneumoniae are a major cause of mortality throughout the world. Protein-based pneumococcal vaccines are envisaged to replace or complement the current polysaccharide-based vaccines. In this context, detoxified pneumolysin (dPly) and pneumococcal histidine triad protein D (PhtD) are two potential candidates for incorporation into pneumococcal vaccines. In this study, the protective efficacy of a PhtD-dPly vaccine was evaluated in a rhesus macaque (Macaca mulatta) model of pneumonia. The animals were immunized twice with 10 μg of PhtD and 10 μg of dPly formulated in the Adjuvant System AS02 or with AS02 alone, before they were challenged with a 19F pneumococcal strain. The survival was significantly higher in the protein-vaccinated group and seemed to be linked to the capacity to greatly reduce bacterial load within the first week post-challenge. Vaccination elicited high concentrations of anti-PhtD and anti-Ply antibodies and a link was found between survival and antibody levels. In conclusion, AS02-adjuvanted PhtD-dPly vaccine protects against S. pneumoniae-induced pneumonia. It is probable that the protection is at least partially mediated by PhtD- and Ply-specific antibodies.

  8. Efficacy of moxifloxacin for treatment of penicillin-, macrolide- and multidrug-resistant Streptococcus pneumoniae in community-acquired pneumonia.

    PubMed

    Fogarty, C; Torres, A; Choudhri, S; Haverstock, D; Herrington, J; Ambler, J

    2005-11-01

    This pooled analysis of six prospective, multicentre trials aimed to determine the efficacy of moxifloxacin in community-acquired pneumonia (CAP) due to penicillin-, macrolide- and multidrug-resistant Streptococcus pneumoniae (MDRSP). At a central laboratory, isolates were identified and antimicrobial susceptibility determined (microbroth dilution). MDRSP was defined as resistance > or =3 drug classes. Patients received oral or sequential intravenous/oral 400 mg moxifloxacin once daily for 7-14 days. The primary endpoint was clinical success at test-of-cure for efficacy-valid patients with proven pretherapy S. pneumoniae infection. Of 140 S. pneumoniae isolated (112 respiratory, 28 blood), 23 (16.4%) were penicillin resistant, 26 (18.6%) macrolide resistant and 31 (22.1%) MDRSP. The moxifloxacin MIC90 was 0.25 microg/ml. Clinical cure with moxifloxacin was 95.4% (125/131) overall, and 100% (21/21) for penicillin-, 95.7% (22/23) for macrolide- and 96.4% (27/28) for multidrug-resistant strains. Moxifloxacin provided excellent clinical and bacteriological cure rates in CAP due to drug-resistant pneumococci.

  9. Garenoxacin activity against isolates form patients hospitalized with community-acquired pneumonia and multidrug-resistant Streptococcus pneumoniae.

    PubMed

    Jones, Ronald N; Sader, Helio S; Stilwell, Matthew G; Fritsche, Thomas R

    2007-05-01

    Community-acquired pneumonia (CAP) continues to cause significant morbidity worldwide, and the principal bacterial pathogens (Streptococcus pneumoniae and Haemophilus influenzae) have acquired numerous resistance mechanisms over the last few decades. CAP treatment guidelines have suggested the use of broader spectrum agents, such as antipneumococcal fluoroquinolones as the therapy for at-risk patient population. In this report, we studied 3087 CAP isolates from the SENTRY Antimicrobial Surveillance Program (1999-2005) worldwide and all respiratory tract infection (RTI) isolate population of pneumococci (14665 strains) grouped by antibiogram patterns against a new des-F(6)-quinolone, garenoxacin. Results indicated that garenoxacin was highly active against CAP isolates of S. pneumoniae (MIC(90), 0.06 microg/mL) and H. influenzae (MIC(90), < or =0.03 microg/mL). This garenoxacin potency was 8- to 32-fold greater than gatifloxacin, levofloxacin, and ciprofloxacin against the pneumococci and >99.9% of strains were inhibited at < or =1 microg/mL (proposed susceptible breakpoint). Garenoxacin MIC values were not affected by resistances among S. pneumoniae strains to penicillin or erythromycin; however, coresistances were high among the beta-lactams (penicillins and cephalosporins), macrolides, tetracyclines, and trimethoprim/sulfamethoxazole. Analysis of S. pneumoniae isolates with various antimicrobial resistance patterns to 6 drug classes demonstrated that garenoxacin was active against >99.9% (MIC, < or =1 microg/mL) of strains, and the most resistant pneumococci (6-drug resistance, 1051 strains or 7.2% of all isolates) were completely susceptible (100.0% at < or =1 microg/mL) to garenoxacin (MIC(90), 0.06 microg/mL). These results illustrate the high activity of garenoxacin against contemporary CAP isolates and especially against multidrug-resistant (MDR) S. pneumoniae that have created therapeutic dilemmas for all RTI presentations. Garenoxacin appears to be a

  10. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia.

    PubMed

    de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J

    2016-12-01

    Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.

  11. Recombination rates of Streptococcus pneumoniae isolates with both erm(B) and mef(A) genes.

    PubMed

    Lee, Ji-Young; Song, Jae-Hoon; Ko, Kwan Soo

    2010-08-01

    Erythromycin-resistant Streptococcus pneumoniae isolates containing both erm(B) and mef(A) genes have a higher rate of multidrug resistance (MDR). We investigated the relationships between the presence of erythromycin resistance determinants and the recombination rate. We determined the mutation and recombination frequencies of 46 S. pneumoniae isolates, which included 19 with both erm(B) and mef(A), nine with only erm(B), six with only mef(A), and 11 erythromycin-susceptible isolates. Mutation frequency values were estimated as the number of rifampin-resistant colonies as a proportion of total viable count. Genotypes and serotypes of isolates with the hyper-recombination phenotype were determined. Twelve S. pneumoniae isolates were hypermutable and four isolates were determined to have hyper-recombination frequency. Streptococcus pneumoniae isolates with both erm(B) and mef(A) genes did not show a high mutation frequency. In contrast, all isolates with a hyper-recombination phenotype contained both erm(B) and mef(A) genes. In addition, the recombination rate of isolates with both erm(B) and mef(A) genes was statistically higher than the rate of other isolates. The dual presence of erm(B) and mef(A) genes in some pneumococcal isolates may be associated with high recombination frequency. This may be one of the reasons for the frequent emergence of MDR in certain pneumococcal isolates.

  12. Antibiotic susceptibility in relation to genotype of Streptococcus pneumoniae, Haemophilus influenzae, and Mycoplasma pneumoniae responsible for community-acquired pneumonia in children.

    PubMed

    Morozumi, Miyuki; Chiba, Naoko; Okada, Takafumi; Sakata, Hiroshi; Matsubara, Keita; Iwata, Satoshi; Ubukata, Kimiko

    2013-06-01

    Streptococcus pneumoniae, Haemophilus influenzae, and Mycoplasma pneumoniae are the main pathogens causing community-acquired pneumonia (CAP). We identified S. pneumoniae (n = 241), H. influenzae (n = 123), and M. pneumoniae (n = 54) as causative pathogens from clinical findings and blood tests from pediatric CAP patients (n = 903) between April 2008 and April 2009. Identification of genes mediating antimicrobial resistance by real-time PCR was performed for all isolates of these three pathogens, as was antibiotic susceptibility testing using an agar dilution method or broth microdilution method. The genotypic (g) resistance rate was 47.7 % for penicillin-resistant S. pneumoniae (gPRSP) possessing abnormal pbp1a, pbp2x, and pbp2b genes, 62.6 % for β-lactamase-nonproducing, ampicillin-resistant (gBLNAR) H. influenzae possessing the amino acid substitutions Ser385Thr and Asn526Lys, and 44.4 % for macrolide-resistant M. pneumoniae (gMRMP) possessing a mutation of A2063G, A2064G, or C2617A. Serotype 6B (20.3 %) predominated in S. pneumoniae, followed by 19F (15.4 %), 14 (14.5 %), 23F (12.0 %), 19A (6.2 %), and 6C (5.4 %). Coverage for the isolates by heptavalent pneumococcal conjugate vaccine (PCV7) and PCV13, respectively, was calculated as 68.5 and 80.9 %. A small number of H. influenzae were identified as type b (6.5 %), type e (0.8 %), or type f (0.8 %); all others were nontypeable. Proper use of antibiotics based on information about resistance in CAP pathogens is required to control rapid increases in resistance. Epidemiological surveillance of pediatric patients also is needed to assess the effectiveness of PCV7 and Hib vaccines after their introduction in Japan.

  13. Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide.

    PubMed

    Seeberger, Peter H; Pereira, Claney L; Govindan, Subramanian

    2017-01-01

    The Gram-positive bacterium Streptococcus pneumoniae causes severe disease globally. Vaccines that prevent S. pneumoniae infections induce antibodies against epitopes within the bacterial capsular polysaccharide (CPS). A better immunological understanding of the epitopes that protect from bacterial infection requires defined oligosaccharides obtained by total synthesis. The key to the synthesis of the S. pneumoniae serotype 12F CPS hexasaccharide repeating unit that is not contained in currently used glycoconjugate vaccines is the assembly of the trisaccharide β-D-GalpNAc-(1→4)-[α-D-Glcp-(1→3)]-β-D-ManpNAcA, in which the branching points are equipped with orthogonal protecting groups. A linear approach relying on the sequential assembly of monosaccharide building blocks proved superior to a convergent [3 + 3] strategy that was not successful due to steric constraints. The synthetic hexasaccharide is the starting point for further immunological investigations.

  14. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  15. A Type IV Pilus Mediates DNA Binding during Natural Transformation in Streptococcus pneumoniae

    PubMed Central

    Laurenceau, Raphaël; Péhau-Arnaudet, Gérard; Baconnais, Sonia; Gault, Joseph; Malosse, Christian; Dujeancourt, Annick; Campo, Nathalie; Chamot-Rooke, Julia; Le Cam, Eric; Claverys, Jean-Pierre; Fronzes, Rémi

    2013-01-01

    Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material. PMID:23825953

  16. Apparent involvement of a multidrug transporter in the fluoroquinolone resistance of Streptococcus pneumoniae.

    PubMed Central

    Baranova, N N; Neyfakh, A A

    1997-01-01

    A Streptococcus pneumoniae strain selected for resistance to ethidium bromide demonstrated enhanced energy-dependent efflux of this toxic dye. Both the ethidium resistance and the ethidium efflux could be inhibited by the plant alkaloid reserpine. The ethidium-selected cells demonstrated cross-resistance to the fluoroquinolones norfloxacin and ciprofloxacin; this resistance could also be completely reversed by reserpine. Furthermore, reserpine potentiated the susceptibility of wild-type S. pneumoniae to fluoroquinolones and ethidium. The most plausible explanation for these results is that S. pneumoniae, like some other gram-positive bacteria, expresses a reserpine-sensitive multidrug transporter, which may play an important role in both intrinsic and acquired resistances of this pathogen to fluoroquinolone therapy. PMID:9174208

  17. Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

    PubMed Central

    Pereira, Claney L; Govindan, Subramanian

    2017-01-01

    The Gram-positive bacterium Streptococcus pneumoniae causes severe disease globally. Vaccines that prevent S. pneumoniae infections induce antibodies against epitopes within the bacterial capsular polysaccharide (CPS). A better immunological understanding of the epitopes that protect from bacterial infection requires defined oligosaccharides obtained by total synthesis. The key to the synthesis of the S. pneumoniae serotype 12F CPS hexasaccharide repeating unit that is not contained in currently used glycoconjugate vaccines is the assembly of the trisaccharide β-D-GalpNAc-(1→4)-[α-D-Glcp-(1→3)]-β-D-ManpNAcA, in which the branching points are equipped with orthogonal protecting groups. A linear approach relying on the sequential assembly of monosaccharide building blocks proved superior to a convergent [3 + 3] strategy that was not successful due to steric constraints. The synthetic hexasaccharide is the starting point for further immunological investigations. PMID:28228857

  18. Streptococcus pneumoniae disrupts pulmonary immune defence via elastase release following pneumolysin-dependent neutrophil lysis

    PubMed Central

    Domon, Hisanori; Oda, Masataka; Maekawa, Tomoki; Nagai, Kosuke; Takeda, Wataru; Terao, Yutaka

    2016-01-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia and is the principal cause of morbidity and mortality worldwide. Previous studies suggested that excessive activation of neutrophils results in the release of neutrophil elastase, which contributes to lung injury in severe pneumonia. Although both pneumococcal virulence factors and neutrophil elastase contribute to the development and progression of pneumonia, there are no studies analysing relationships between these factors. Here, we showed that pneumolysin, a pneumococcal pore-forming toxin, induced cell lysis in primary isolated human neutrophils, leading to the release of neutrophil elastase. Pneumolysin exerted minimal cytotoxicity against alveolar epithelial cells and macrophages, whereas neutrophil elastase induced detachment of alveolar epithelial cells and impaired phagocytic activity in macrophages. Additionally, activation of neutrophil elastase did not exert bactericidal activity against S. pneumoniae in vitro. P2X7 receptor, which belongs to a family of purinergic receptors, was involved in pneumolysin-induced cell lysis. These findings suggested that infiltrated neutrophils are the primary target cells of pneumolysin, and that S. pneumoniae exploits neutrophil-elastase leakage to induce the disruption of pulmonary immune defences, thereby causing lung injury. PMID:27892542

  19. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.

    PubMed

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2015-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence.

  20. Therapeutic effects of garenoxacin in murine experimental secondary pneumonia by Streptococcus pneumoniae after influenza virus infection.

    PubMed

    Fukuda, Yoshiko; Furuya, Yuri; Nozaki, Yusuke; Takahata, Masahiro; Nomura, Nobuhiko; Mitsuyama, Junichi

    2014-02-01

    In a pneumococcal pneumonia murine model following influenza virus infection, garenoxacin was more effective than other fluoroquinolones and demonstrated high levels of bacterial eradication in the lung, low mortality, and potent histopathological improvements. Garenoxacin could potentially be used for the treatment of secondary pneumococcal pneumonia following influenza.

  1. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae.

    PubMed

    Hoogendijk, Arie J; Roelofs, Joris J T H; Duitman, Janwillem; van Lieshout, Miriam H P; Blok, Dana C; van der Poll, Tom; Wieland, Catharina W

    2012-09-25

    Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. R-roscovitine, a purine analog, is a potent cyclin-dependent kinase (CDK)-1, -2, -5 and -7 inhibitor that has the ability to inhibit the cell cycle and to induce polymorphonuclear cell (PMN) apoptosis. We sought to investigate the effect of R-roscovitine on LTA-induced activation of cell lines with relevance for lung inflammation in vitro and on lung inflammation elicited by either LTA or viable S. pneumoniae in vivo. In vitro R-roscovitine enhanced apoptosis in PMNs and reduced tumor necrosis factor (TNF)-α and keratinocyte chemoattractant (KC) production in MH-S (alveolar macrophage) and MLE-12/MLE-15 (respiratory epithelial) cell lines. In vivo R-roscovitine treatment reduced PMN numbers in bronchoalveolar lavage fluid during LTA-induced lung inflammation; this effect was reversed by inhibiting apoptosis. Postponed treatment with R-roscovitine (24 and 72 h) diminished PMN numbers in lung tissue during gram-positive pneumonia; this step was associated with a transient increase in pulmonary bacterial loads. R-roscovitine inhibits proinflammatory responses induced by the gram-positive stimuli LTA and S. pneumoniae. R-roscovitine reduces PMN numbers in lungs upon LTA administration by enhancing apoptosis. The reduction in PMN numbers caused by R-roscovitine during S. pneumoniae pneumonia may hamper antibacterial defense.

  2. Differences in antibiotic-induced oxidative stress responses between laboratory and clinical isolates of Streptococcus pneumoniae.

    PubMed

    Dridi, Bédis; Lupien, Andréanne; Bergeron, Michel G; Leprohon, Philippe; Ouellette, Marc

    2015-09-01

    Oxidants were shown to contribute to the lethality of bactericidal antibiotics in different bacterial species, including the laboratory strain Streptococcus pneumoniae R6. Resistance to penicillin among S. pneumoniae R6 mutants was further shown to protect against the induction of oxidants upon exposure to unrelated bactericidal compounds. In the work described here, we expanded on these results by studying the accumulation of reactive oxygen species in the context of antibiotic sensitivity and resistance by including S. pneumoniae clinical isolates. In S. pneumoniae R6, penicillin, ciprofloxacin, and kanamycin but not the bacteriostatic linezolid, erythromycin, or tetracycline induced the accumulation of reactive oxygen species. For the three bactericidal compounds, resistance to a single molecule prevented the accumulation of oxidants upon exposure to unrelated bactericidal antibiotics, and this was accompanied by a reduced lethality. This phenomenon does not involve target site mutations but most likely implicates additional mutations occurring early during the selection of resistance to increase survival while more efficient resistance mechanisms are being selected or acquired. Bactericidal antibiotics also induced oxidants in sensitive S. pneumoniae clinical isolates. The importance of oxidants in the lethality of bactericidal antibiotics was less clear than for S. pneumoniae R6, however, since ciprofloxacin induced oxidants even in ciprofloxacin-resistant S. pneumoniae clinical isolates. Our results provide a clear example of the complex nature of the mode of action of antibiotics. The adaptive approach to oxidative stress of S. pneumoniae is peculiar, and a better understanding of the mechanism implicated in response to oxidative injury should also help clarify the role of oxidants induced by antibiotics.

  3. Streptococcus pneumoniae Transmission Is Blocked by Type-Specific Immunity in an Infant Mouse Model

    PubMed Central

    Zangari, Tonia; Wang, Yang

    2017-01-01

    ABSTRACT Epidemiological studies on Streptococcus pneumoniae show that rates of carriage are highest in early childhood and that the major benefit of the pneumococcal conjugate vaccine (PCV) is a reduction in the incidence of nasopharyngeal colonization through decreased transmission within a population. In this study, we sought to understand how anti-S. pneumoniae immunity affects nasal shedding of bacteria, the limiting step in experimental pneumococcal transmission. Using an infant mouse model, we examined the role of immunity (passed from mother to pup) on shedding and within-litter transmission of S. pneumoniae by pups infected at 4 days of life. Pups from both previously colonized immune and PCV-vaccinated mothers had higher levels of anti-S. pneumoniae IgG than pups from non-immune or non-vaccinated mothers and shed significantly fewer S. pneumoniae over the first 5 days of infection. By setting up cross-foster experiments, we demonstrated that maternal passage of antibody to pups either in utero or post-natally decreases S. pneumoniae shedding. Passive immunization experiments showed that type-specific antibody to capsular polysaccharide is sufficient to decrease shedding and that the agglutinating function of immunoglobulin is required for this effect. Finally, we established that anti-pneumococcal immunity and anti-PCV vaccination block host-to-host transmission of S. pneumoniae. Moreover, immunity in either the donor or recipient pups alone was sufficient to reduce rates of transmission, indicating that decreased shedding and protection from acquisition of colonization are both contributing factors. Our findings provide a mechanistic explanation for the reduced levels of S. pneumoniae transmission between hosts immune from prior exposure and among vaccinated children. PMID:28292980

  4. Transmission of Streptococcus pneumoniae in an Urban Slum Community

    PubMed Central

    Palma, Tania; Ribeiro, Guilherme S.; Pinheiro, Ricardo M; Ribeiro, Cassio Tâmara; Cordeiro, Soraia Machado; da Silva Filho, H. P.; Moschioni, Monica; Thompson, Terry A.; Spratt, Brian; Riley, Lee W.; Barocchi, Michele A.; Reis, Mitermayer G.; Ko, Albert I.

    2008-01-01

    Background Inhabitants of slum settlements represent a significant proportion of the population at risk for pneumococcal disease in developing countries. Methods We conducted a household survey of pneumococcal carriage among residents of a slum community in the city of Salvador, Brazil. Results Among 262 subjects, 95 (36%) were colonized with S. pneumoniae. Children <5 years of age (OR, 8.0; 95%CI, 3.5-18.6) and those who attended schools (OR 2.7, 95%CI, 1.2-6.0) had significantly higher risk of being colonized. Of 94 isolates obtained from colonized individuals, 51% had serotypes included in the seven-valent pneumococcal conjugate vaccine. Overall, 10% (9 of 94 isolates) were nonsusceptible to penicillin and 28% (27 of 94 isolates) were resistant to cotrimoxazole. BOX-PCR, PFGE and MLST analysis found that 44% of the carriage isolates belonged to 14 distinct clonal groups. Strains of the same clonal group were isolated from multiple members of 9 out of the 39 study households. Nineteen carriage isolates had genotypes that were the same as those identified among 362 strains obtained from active surveillance for meningitis. Conclusions The study's findings indicate that there is significant intra and inter-household spread of S. pneumoniae in the slum community setting. However, a limited number of clones encountered during carriage among slum residents were found to cause invasive disease. PMID:18672297

  5. Incidence of childhood pneumonia and serotype and sequence-type distribution in Streptococcus pneumoniae isolates in Japan.

    PubMed

    Tanaka, J; Ishiwada, N; Wada, A; Chang, B; Hishiki, H; Kurosaki, T; Kohno, Y

    2012-06-01

    The 7-valent pneumococcal conjugate vaccine (PCV7) is reported to decrease the incidence of community-acquired pneumonia (CAP) in children. To determine the annual incidence of CAP before the introduction of PCV7, we counted the number of children hospitalized with CAP between 2008 and 2009 in Chiba City, Japan. We investigated serotype and multilocus sequence typing (MLST) for Streptococcus pneumoniae isolates in CAP cases. The annual incidence of hospitalized CAP in children aged <5 years was 17.6 episodes/1000 child-years. In 626 episodes, S. pneumoniae was dominant in 14.7% and 0.8% of sputum and blood samples, respectively. The most common serotypes were 6B, 23F and 19F. The coverage rates of PCV7 were 66.7% and 80% in sputum samples and blood samples, respectively. MLST analysis revealed 37 sequence types. Furthermore, 54.1% of the sputum isolates and 40% of the blood isolate were related to international multidrug-resistant clones.

  6. Limited role of the receptor for advanced glycation end products during Streptococcus pneumoniae bacteremia.

    PubMed

    Achouiti, Ahmed; de Vos, Alex F; de Beer, Regina; Florquin, Sandrine; van 't Veer, Cornelis; van der Poll, Tom

    2013-01-01

    Streptococcus pneumoniae is one of the most common causes of sepsis. Sepsis is associated with the release of 'damage-associated molecular patterns' (DAMPs). The receptor for advanced glycation end products (RAGE) is a multiligand receptor, abundantly expressed in the lungs, that recognizes several of these DAMPs. Triggering of RAGE leads to activation of the NF-κB pathway and perpetuation of inflammation. Earlier investigations have shown that the absence of RAGE reduces inflammation and bacterial dissemination and increases survival in sepsis caused by S. pneumoniae pneumonia. We hypothesized that the detrimental role of RAGE depends on the level of RAGE expression in the primary organ of infection. By directly injecting S. pneumoniae intravenously, thereby circumventing the extensive RAGE-expressing lung, we here determined whether RAGE contributes to an adverse outcome of bacteremia or whether its role is restricted to primary lung infection. During late-stage infection (48 h), rage(-/-) mice had an attenuated systemic inflammatory response, as reflected by lower plasma levels of proinflammatory cytokines, reduced endothelial cell activation (as measured by E-selectin levels) and less neutrophil accumulation in lung tissue. However, RAGE deficiency did not influence bacterial loads or survival in this model. In accordance, plasma markers for cell injury were similar in both mouse strains. These results demonstrate that while RAGE plays a harmful part in S. pneumoniae sepsis originating from the respiratory tract, this receptor has a limited role in the outcome of primary bloodstream infection by this pathogen.

  7. Host-derived extracellular RNA promotes adhesion of Streptococcus pneumoniae to endothelial and epithelial cells

    PubMed Central

    Zakrzewicz, Dariusz; Bergmann, Simone; Didiasova, Miroslava; Giaimo, Benedetto Daniele; Borggrefe, Tilman; Mieth, Maren; Hocke, Andreas C.; Lochnit, Guenter; Schaefer, Liliana; Hammerschmidt, Sven; Preissner, Klaus T.; Wygrecka, Malgorzata

    2016-01-01

    Streptococcus pneumoniae is the most frequent cause of community-acquired pneumonia. The infection process involves bacterial cell surface receptors, which interact with host extracellular matrix components to facilitate colonization and dissemination of bacteria. Here, we investigated the role of host-derived extracellular RNA (eRNA) in the process of pneumococcal alveolar epithelial cell infection. Our study demonstrates that eRNA dose-dependently increased S. pneumoniae invasion of alveolar epithelial cells. Extracellular enolase (Eno), a plasminogen (Plg) receptor, was identified as a novel eRNA-binding protein on S. pneumoniae surface, and six Eno eRNA-binding sites including a C-terminal 15 amino acid motif containing lysine residue 434 were characterized. Although the substitution of lysine 434 for glycine (K434G) markedly diminished the binding of eRNA to Eno, the adherence to and internalization into alveolar epithelial cells of S. pneumoniae strain carrying the C-terminal lysine deletion and the mutation of internal Plg-binding motif were only marginally impaired. Accordingly, using a mass spectrometric approach, we identified seven novel eRNA-binding proteins in pneumococcal cell wall. Given the high number of eRNA-interacting proteins on pneumococci, treatment with RNase1 completely inhibited eRNA-mediated pneumococcal alveolar epithelial cell infection. Our data support further efforts to employ RNAse1 as an antimicrobial agent to combat pneumococcal infectious diseases. PMID:27892961

  8. Silica Desiccant Packets for Storage and Transport of Streptococcus pneumoniae and Other Clinically Relevant Species

    PubMed Central

    Pell, Casey L.; Williams, Melanie J.; Dunne, Eileen M.; Porter, Barbara D.; Satzke, Catherine

    2013-01-01

    Bacterial isolates are often transported between laboratories for research and diagnostic purposes. Silica desiccant packets (SDPs), which are inexpensive and do not require freezing, were evaluated for storage and recovery of bacterial isolates. Conditions such as inoculum size, swab type and temperature of storage were investigated using ten Streptococcus pneumoniae isolates. The optimized protocol was then tested using 49 additional S. pneumoniae isolates representing 40 serogroups. Overall, S. pneumoniae growth was considered satisfactory (>100 colony forming units) for 98/109 (89.9%) and 20/20 (100%) swabs after 14 days at room temperature or 28 days at 4° C, respectively. Storage in SDPs did not impact on the ability of S. pneumoniae isolates to be subsequently serotyped. When the survival of nine other clinically relevant bacterial species was tested, seven were viable after 28 days at room temperature, the exceptions being Neisseria gonorrhoeae and Haemophilus influenzae. SDPs are suitable for transport and short-term storage of bacterial species including S. pneumoniae. PMID:23940811

  9. Potential Usefulness of Streptococcus pneumoniae Extracellular Membrane Vesicles as Antibacterial Vaccines

    PubMed Central

    Choi, Chi-Won; Park, Edmond Changkyun; Yun, Sung Ho; Lee, Sang-Yeop

    2017-01-01

    The secretion of extracellular membrane vesicles (EMVs) is a common phenomenon that occurs in archaea, bacteria, and mammalian cells. The EMVs of bacteria play important roles in their virulence, biogenesis mechanisms, and host cell interactions. Bacterial EMVs have recently become the focus of attention because of their potential as highly effective vaccines that cause few side effects. Here, we isolated the EMVs of Streptococcus pneumoniae and examined their potential as new vaccine candidates. Although the S. pneumoniae bacteria were highly pathogenic in a mouse model, the EMVs purified from these bacteria showed low pathological activity both in cell culture and in mice. When mice were injected intraperitoneally with S. pneumoniae EMVs and then challenged, they were protected from both the homologous strain and another pathogenic serotype of S. pneumoniae. We also identified a number of proteins that may have immunogenic activity and may be responsible for the immune responses by the hosts. These results suggest that S. pneumoniae EMVs or their individual immunogenic antigens may be useful as new vaccine agents. PMID:28210633

  10. Characterization and expression analysis of the transferrin gene in Nile tilapia (Oreochromis niloticus) and its upregulation in response to Streptococcus agalactiae infection.

    PubMed

    Poochai, Watsida; Choowongkomon, Kiattawee; Srisapoome, Prapansak; Unajak, Sasimanas; Areechon, Nontawith

    2014-10-01

    In this study, full-length tilapia transferrin (OnTF) isolated from liver cDNA of Nile tilapia (Oreochromis niloticus) was found to have an open reading frame of 2,091-bp encoding 696 amino acid residues. Two additional amino acids: Gly(369) and Gly(370) were observed compared with the reported Nile tilapia transferrin protein sequence. Pre-mature protein has a predicted molecular weight of 78.2 kDa, while mature protein is 73.28 kDa in size. Comparative sequence analysis with transferrin from other species revealed two major putative iron-binding domains designated as the N-lobe and the C-lobe in accordance with the transferrin protein characteristics. The predicted tertiary structure of tilapia transferrin confirmed the presence of iron and anion-binding sites on both lobes that are conserved among transferrins from other species. Quantitative real-time PCR analysis showed significantly higher expression of tilapia transferrin gene in liver than in other tissues (p < 0.05). Transferrin expression in tilapia experimentally infected with 10(6) and 10(8) colony-forming units mL(-1) of Streptococcus agalactiae was significantly upregulated at 24 and 12 h post-infection (hpi), respectively, and decreased afterward. Iron-deficiency in serum of bacterially infected fish was detected at 48 and 24 hpi, respectively. The expression pattern of the transferrin gene and the iron levels of infected tilapia in this study were consistent with the function of transferrin in innate immunity.

  11. Macrolide-Resistant Streptococcus pneumoniae and Streptococcus pyogenes in the Pediatric Population in Germany during 2000-2001

    PubMed Central

    Reinert, Ralf René; Lütticken, Rudolf; Bryskier, André; Al-Lahham, Adnan

    2003-01-01

    In a nationwide study in Germany covering 13 clinical microbiology laboratories, a total of 307 Streptococcus pyogenes (mainly pharyngitis) and 333 Streptococcus pneumoniae (respiratory tract infections) strains were collected from outpatients less than 16 years of age. The MICs of penicillin G, amoxicillin, cefotaxime, erythromycin A, clindamycin, levofloxacin, and telithromycin were determined by the microdilution method. In S. pyogenes isolates, resistance rates were as follows: penicillin, 0%; erythromycin A, 13.7%; and levofloxacin, 0%. Telithromycin showed good activity against S. pyogenes isolates (MIC90 = 0.25 μg/ml; MIC range, 0.016 to 16 μg/ml). Three strains were found to be telithromycin-resistant (MIC ≥ 4 μg/ml). Erythromycin-resistant strains were characterized for the underlying resistance genotype, with 40.5% having the efflux type mef(A), 38.1% having the erm(A), and 9.5% having the erm(B) genotypes. emm typing of macrolide-resistant S. pyogenes isolates showed emm types 4 (45.2%), 77 (26.2%), and 12 (11.9%) to be predominant. In S. pneumoniae, resistance rates were as follows: penicillin intermediate, 7.5%; penicillin resistant, 0%; erythromycin A, 17.4%; and levofloxacin, 0%. Telithromycin was highly active against pneumococcal isolates (MIC90 ≤ 0.016 μg/ml; range, 0.016 to 0.5 μg/ml). The overall resistance profile of streptococcal respiratory tract isolates is still favorable, but macrolide resistance is of growing concern in Germany. PMID:12543648

  12. Typing of Streptococcus pneumoniae: past, present, and future.

    PubMed

    Henrichsen, J

    1999-07-26

    Early works leading to the detection of the pneumococcus and eventually to the appreciation that isolates differed in agglutination and that antisera differed in their capacity to protect against pneumococcal infection in the mouse protection test are reviewed. Studies by researchers from Europe, South Africa, and the United States over nearly five decades led to the introduction of serum therapy. Rapid typing methods thus became very important, and type-specific serum therapy generated a dramatic decrease in the number of deaths from pneumococcal pneumonia. Just before the introduction of sulfonamides and, shortly thereafter, penicillin, the use of horse sera was replaced by the use of rabbit sera for a number of reasons. The present methods of typing comprise the capsular reaction test, latex- and coagglutination, and capillary precipitation, to name the most important; these use a large variety of antisera. Newer methods include the use of DNA probes and DNA sequence-based subtyping.

  13. Antimicrobial susceptibilities and serotypes of Streptococcus pneumoniae isolates from elderly patients with pneumonia and acute exacerbation of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Trallero, Emilio; Marimón, José M; Larruskain, Julián; Alonso, Marta; Ercibengoa, María

    2011-06-01

    In the elderly, Streptococcus pneumoniae is the most common cause of pneumonia and one of the most frequently isolated pathogens in cases of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). This study was conducted to compare the pneumococcal isolates obtained during episodes of AECOPD and pneumonia in patients of ≥65 years old and to analyze whether in patients with AECOPD and pneumonia within a short interval, the same isolate caused both episodes. This laboratory-based study was performed between 2005 and 2008. Pneumococcal isolates from episodes of pneumonia (n = 401) and AECOPD (n = 398), matched one-to-one by date of isolation, were characterized. The serotypes and genotypes of other pneumococcal isolates causing pneumonia and AECOPD in the same patient were compared. In patients with pneumonia, COPD as an underlying disease was not associated with more-drug-resistant pneumococci. In contrast, isolates causing AECOPD showed higher rates of resistance than those causing pneumonia. Serotypes 1, 3, and 7F were more frequent in pneumonia. The same pneumococcus was involved in 25.7% (9/35 patients) of patients with two consecutive AECOPD episodes but in only 6.3% (2/32 patients) of COPD patients with pneumonia and exacerbation (Fisher's exact test; P = 0.047). Less invasive serotypes were isolated more often in AECOPD and were more resistant to antimicrobials. The presence of a specific pneumococcal serotype in AECOPD does not predict the etiology of subsequent pneumonia.

  14. Pneumococcal Surface Protein A Plays a Major Role in Streptococcus pneumoniae-Induced Immunosuppression.

    PubMed

    Saumyaa; Pujanauski, Lindsey; Colino, Jesus; Flora, Michael; Torres, Raul M; Tuomanen, Elaine; Snapper, Clifford M

    2016-05-01

    Intact, inactivated Streptococcus pneumoniae [including the unencapsulated S. pneumoniae, serotype 2 strain (R36A)] markedly inhibits the humoral immune response to coimmunized heterologous proteins, a property not observed with several other intact Gram-positive or Gram-negative bacteria. In this study, we determined the nature of this immunosuppressive property. Because phosphorylcholine (PC), a major haptenic component of teichoic acid in the S. pneumoniae cell wall, and lipoteichoic acid in the S. pneumoniae membrane were previously reported to be immunosuppressive when derived from filarial parasites, we determined whether R36A lacking PC (R36A(pc-)) was inhibitory. Indeed, although R36A(pc-) exhibited a markedly reduced level of inhibition of the IgG response to coimmunized chicken OVA (cOVA), no inhibition was observed when using several other distinct PC-expressing bacteria or a soluble, protein-PC conjugate. Further, treatment of R36A with periodate, which selectively destroys PC residues, had no effect on R36A-mediated inhibition. Because R36A(pc-) also lacks choline-binding proteins (CBPs) that require PC for cell wall attachment, and because treatment of R36A with trypsin eliminated its inhibitory activity, we incubated R36A in choline chloride, which selectively strips CBPs from its surface. R36A lacking CBPs lost most of its inhibitory property, whereas the supernatant of choline chloride-treated R36A, containing CBPs, was markedly inhibitory. Coimmunization studies using cOVA and various S. pneumoniae mutants, each genetically deficient in one of the CBPs, demonstrated that only S. pneumoniae lacking the CBP pneumococcal surface protein A lost its ability to inhibit the IgG anti-cOVA response. These results strongly suggest that PspA plays a major role in mediating the immunosuppressive property of S. pneumoniae.

  15. In vitro activity of six macrolides, clindamycin and tetracycline on Streptococcus pneumoniae with different penicillin susceptibilities.

    PubMed

    Poulsen, R L; Knudsen, J D; Petersen, M B; Fuursted, K; Espersen, F; Frimodt-Møller, N

    1996-03-01

    A collection of 99 clinical isolates of Streptococcus pneumoniae, chosen due to their different susceptibilities to penicillin, were investigated with respect to their susceptibility to the macrolides azithromycin, clarithromycin, dirithromycin, erythromycin, roxithromycin, spiramycin, and to clindamycin and tetracycline by the agar dilution method. We found complete cross resistance among the macrolides. The pneumococci were either susceptible, MIC < or = 0.5 micrograms/ml, or resistant, MIC > or = 16 micrograms/ml, to the tested macrolides, giving a bimodal distribution. In addition, complete cross resistance was observed between clindamycin and macrolides. Pneumococci resistant to macrolides were also resistant to tetracycline, and 26% of the macrolide-susceptible strains were tetracycline resistant.

  16. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity.

    PubMed

    Andre, Greiciely O; Converso, Thiago R; Politano, Walter R; Ferraz, Lucio F C; Ribeiro, Marcelo L; Leite, Luciana C C; Darrieux, Michelle

    2017-01-01

    The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.

  17. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity

    PubMed Central

    Andre, Greiciely O.; Converso, Thiago R.; Politano, Walter R.; Ferraz, Lucio F. C.; Ribeiro, Marcelo L.; Leite, Luciana C. C.; Darrieux, Michelle

    2017-01-01

    The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement. PMID:28265264

  18. Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae

    PubMed Central

    Zhang, Zhenyi; Li, Wenzhe; Frolet, Cecile; Bao, Rui; di Guilmi, Anne-Marie; Vernet, Thierry; Chen, Yuxing

    2009-01-01

    Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44–129) was solved at 2.38 Å resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins. PMID:19652332

  19. Selective IgM deficiency in an adult presenting with Streptococcus pneumoniae septic arthritis.

    PubMed

    Phuphuakrat, Angsana; Ngamjanyaporn, Pintip; Nantiruj, Kanokrat; Luangwedchakarn, Voravich; Malathum, Kumthorn

    2016-02-01

    Septic arthritis caused by Streptococcus pneumoniae is uncommon. Most of the patients who have invasive pneumococcal infection have underlying diseases associated with impaired immune function. We report a case of polyarticular pneumococcal septic arthritis in a previously healthy adult as the first manifestation of selective immunoglobulin (Ig)M deficiency. The patient had no evidence of autoimmune disease or malignancy. Serum IgG, IgA, and complement levels were normal. Numbers of lymphocyte subsets were in normal range except that of CD4+ cells, which was slightly low. Invasive pneumococcal disease in a healthy adult should lead to further investigation for underlying diseases including primary immunodeficiencies.

  20. Screening assay for inhibitors of a recombinant Streptococcus pneumoniae UDP-glucose pyrophosphorylase.

    PubMed

    Zavala, Agustín; Kovacec, Verónica; Levín, Gustavo; Moglioni, Albertina; Miranda, María Victoria; García, Ernesto; Bonofiglio, Laura; Mollerach, Marta

    2017-12-01

    The UDP-glucose pyrophosphorylase of Streptococcus pneumoniae (GalUSpn) is absolutely required for the biosynthesis of capsular polysaccharide, the sine qua non virulence factor of pneumococcus. Since the eukaryotic enzymes are completely unrelated to their prokaryotic counterparts, we propose that the GalU enzyme is a critical target to fight the pneumococcal disease. A recombinant GalUSpn was overexpressed and purified. An enzymatic assay that is rapid, sensitive and easy to perform was developed. This assay was appropriate for screening chemical libraries for searching GalU inhibitors. This work represents a fundamental step in the exploration of novel antipneumococcal drugs.

  1. [Mutant prevention concentrations of garenoxacin against Streptococcus pneumoniae isolates from otorhinolaryngological infections].

    PubMed

    Suzuki, Kenji; Kurono, Yuichi; Kobayashi, Toshimitsu; Nishimura, Tadao; Baba, Shunkichi; Harabuchi, Yasuaki; Fujisawa, Toshiyuki; Yamanaka, Noboru; Ubukata, Kimiko; Ikeda, Fumiaki

    2010-08-01

    The minimum inhibitory concentrations (MICs) and the mutant prevention concentrations (MPCs) of garenoxacin (GRNX), were compared to those of levofloxacin (LVFX), and moxifloxacin (MFLX) against 78 Streptococcus pneumoniae isolates from otorhinolaryngological infections in Japan during the period January 2007 to June 2007. The MIC and MPC for 90% of the isolates (MIC90 and MPC90) of GRNX were 0.06 and 0.12 microg/mL, respectively, and were the lower values than LVFX and MFLX MIC90s and MPC90s. The ratios of MPC/MIC of GRNX were the lower values than those of LVFX and MFLX.

  2. Streptococcus pneumoniae causing mycotic aneurysm in a pediatric patient with coarctation of the aorta.

    PubMed

    Haas, Brian; Wilt, Heath G; Carlson, Karina M; Lofland, Gary K

    2012-01-01

    Mycotic aneurysms are rare in patients with congenital heart disease, but may occur in those with aortic coarctation and abnormal aortic valve. Rapid diagnosis of mycotic aneurysm is of extreme importance given the significant reported incidence of morbidity and mortality across all age groups. Aortic aneurysm is uncommon before the second decade of life, and here we report a 10-year-old male patient with new diagnosis of aortic coarctation and bicuspid aortic valve, who developed a rapidly enlarging mycotic aneurysm from Streptococcus pneumoniae. Cardiac magnetic resonance imaging was crucial in making the diagnosis, as well as in follow-up.

  3. Transfer of penicillin resistance from Streptococcus oralis to Streptococcus pneumoniae identifies murE as resistance determinant.

    PubMed

    Todorova, Katya; Maurer, Patrick; Rieger, Martin; Becker, Tina; Bui, Nhat Khai; Gray, Joe; Vollmer, Waldemar; Hakenbeck, Regine

    2015-09-01

    Beta-lactam resistant clinical isolates of Streptococcus pneumoniae contain altered penicillin-binding protein (PBP) genes and occasionally an altered murM, presumably products of interspecies gene transfer. MurM and MurN are responsible for the synthesis of branched lipid II, substrate for the PBP catalyzed transpeptidation reaction. Here we used the high-level beta-lactam resistant S. oralis Uo5 as donor in transformation experiments with the sensitive laboratory strain S. pneumoniae R6 as recipient. Surprisingly, piperacillin-resistant transformants contained no alterations in PBP genes but carried murEUo5 encoding the UDP-N-acetylmuramyl tripeptide synthetase. Codons 83-183 of murEUo5 were sufficient to confer the resistance phenotype. Moreover, the promoter of murEUo5 , which drives a twofold higher expression compared to that of S. pneumoniae R6, could also confer increased resistance. Multiple independent transformations produced S. pneumoniae R6 derivatives containing murEUo5 , pbp2xUo5 , pbp1aUo5 and pbp2bUo5 , but not murMUo5 sequences; however, the resistance level of the donor strain could not be reached. S. oralis Uo5 harbors an unusual murM, and murN is absent. Accordingly, the peptidoglycan of S. oralis Uo5 contained interpeptide bridges with one L-Ala residue only. The data suggest that resistance in S. oralis Uo5 is based on a complex interplay of distinct PBPs and other enzymes involved in peptidoglycan biosynthesis.

  4. Structural and functional studies of Streptococcus pneumoniae neuraminidase B: An intramolecular trans-sialidase.

    PubMed

    Gut, Heinz; King, Samantha J; Walsh, Martin A

    2008-10-15

    The human pathogen Streptococcus pneumoniae expresses neuraminidase proteins that cleave sialic acids from complex carbohydrates. The pneumococcus genome encodes up to three neuraminidase proteins that have been shown to be important virulence factors. Here, we report the first structure of a neuraminidase from S. pneumoniae: the crystal structure of NanB in complex with its reaction product 2,7-anhydro-Neu5Ac. Our structural data, together with biochemical analysis, establish NanB as an intramolecular trans-sialidase with strict specificity towards alpha2-3 linked sialic acid substrates. In addition, we show that NanB differs in its substrate specificity from the other pneumococcal neuraminidase NanA.

  5. Connection between trimethoprim-sulfamethoxazole use and resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis.

    PubMed

    Kärpänoja, Pauliina; Nyberg, Solja T; Bergman, Miika; Voipio, Tinna; Paakkari, Pirkko; Huovinen, Pentti; Sarkkinen, Hannu

    2008-07-01

    The association between trimethoprim-sulfamethoxazole use and resistance among the major respiratory tract pathogens was investigated by comparing regional consumption of the drug to regional resistance in the following year in 21 central hospital districts in Finland. A total of 23,530 Streptococcus pneumoniae isolates, 28,320 Haemophilus influenzae isolates, and 14,138 Moraxella catarrhalis isolates were tested for trimethoprim-sulfamethoxazole susceptibility during the study period (1998-2004). Among the S. pneumoniae isolates, a statistically significant connection was found between regional consumption and resistance. No statistically significant connection was found between regional trimethoprim-sulfamethoxazole use and resistance among H. influenzae and M. catarrhalis isolates. According to our results, it seems that only in pneumococci can the development of trimethoprim-sulfamethoxazole resistance be influenced by restricting its use. However, trimethoprim-sulfamethoxazole remains an important antimicrobial agent because of its reasonable price. Hence, resistance to trimethoprim-sulfamethoxazole among these pathogens needs continuous monitoring.

  6. Connection between Trimethoprim-Sulfamethoxazole Use and Resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis▿

    PubMed Central

    Kärpänoja, Pauliina; Nyberg, Solja T.; Bergman, Miika; Voipio, Tinna; Paakkari, Pirkko; Huovinen, Pentti; Sarkkinen, Hannu

    2008-01-01

    The association between trimethoprim-sulfamethoxazole use and resistance among the major respiratory tract pathogens was investigated by comparing regional consumption of the drug to regional resistance in the following year in 21 central hospital districts in Finland. A total of 23,530 Streptococcus pneumoniae isolates, 28,320 Haemophilus influenzae isolates, and 14,138 Moraxella catarrhalis isolates were tested for trimethoprim-sulfamethoxazole susceptibility during the study period (1998-2004). Among the S. pneumoniae isolates, a statistically significant connection was found between regional consumption and resistance. No statistically significant connection was found between regional trimethoprim-sulfamethoxazole use and resistance among H. influenzae and M. catarrhalis isolates. According to our results, it seems that only in pneumococci can the development of trimethoprim-sulfamethoxazole resistance be influenced by restricting its use. However, trimethoprim-sulfamethoxazole remains an important antimicrobial agent because of its reasonable price. Hence, resistance to trimethoprim-sulfamethoxazole among these pathogens needs continuous monitoring. PMID:18443116

  7. Abdominal aortitis due to Streptococcus pneumoniae and Enterobacter aerogenes: a case report and review.

    PubMed

    Rondina, Matthew T; Raphael, Kalani; Pendleton, Robert; Sande, Merle A

    2006-07-01

    Endovascular infections are 1 cause of fever of unknown origin. We describe a diagnostically challenging case of cryptogenic abdominal aortitis from Streptococcus pneumoniae and Enterobacter aerogenes. A 72-year-old male presented with epigastric pain, fevers, and chills. A computed tomography scan demonstrated enlargement and ulceration of the distal abdominal aorta, prompting urgent vascular surgery. Intraoperative tissue cultures grew S. pneumoniae and E. aerogenes and gatifloxacin was administered for 6 weeks. Spontaneous abdominal aortitis is uncommon and usually due to a single pathogen. This is the second reported case of polymicrobial infectious aortitis and to date, Enterobacter has only been reported in infected aortic grafts. Clinicians should maintain a high index of suspicion for infectious aortitis as the mortality, if only treated medically, approaches 100%.

  8. Population genomic datasets describing the post-vaccine evolutionary epidemiology of Streptococcus pneumoniae

    PubMed Central

    Croucher, Nicholas J.; Finkelstein, Jonathan A.; Pelton, Stephen I.; Parkhill, Julian; Bentley, Stephen D.; Lipsitch, Marc; Hanage, William P.

    2015-01-01

    Streptococcus pneumoniae is common nasopharyngeal commensal bacterium and important human pathogen. Vaccines against a subset of pneumococcal antigenic diversity have reduced rates of disease, without changing the frequency of asymptomatic carriage, through altering the bacterial population structure. These changes can be studied in detail through using genome sequencing to characterise systematically-sampled collections of carried S. pneumoniae. This dataset consists of 616 annotated draft genomes of isolates collected from children during routine visits to primary care physicians in Massachusetts between 2001, shortly after the seven valent polysaccharide conjugate vaccine was introduced, and 2007. Also made available are a core genome alignment and phylogeny describing the overall population structure, clusters of orthologous protein sequences, software for inferring serotype from Illumina reads, and whole genome alignments for the analysis of closely-related sets of pneumococci. These data can be used to study both bacterial evolution and the epidemiology of a pathogen population under selection from vaccine-induced immunity. PMID:26528397

  9. Purpura fulminans associated with Streptococcus pneumoniae septicemia in an asplenic pediatric patient.

    PubMed

    Konda, S; Zell, D; Milikowski, C; Alonso-Llamazares, J

    2013-09-01

    Purpura fulminans is a rapidly progressive syndrome of small-vessel thrombosis and hemorrhagic necrosis of the skin accompanied by disseminated intravascular coagulation. We describe a case of Streptococcus pneumoniae septicemia in an asplenic 5-year-old boy on oral tacrolimus, with a past medical history of multivisceral organ transplantation and subsequent development of purpura fulminans on his chest and distal extremities. The acute infectious form of purpura fulminans is usually caused by gram-negative bacteria. Cases secondary to gram-positive encapsulated bacteria usually occur when individuals are immuno-suppressed or have anatomic or functional asplenia. Our patient had both, which likely increased his susceptibility, and he responded well to antimicrobial therapy in addition to prophylactic coverage in the setting of his immunosuppression. We review the literature for similar cases due to S. pneumoniae in the pediatric population and discuss the etiology and treatment of purpura fulminans.

  10. Structural characterization of the Streptococcus pneumoniae carbohydrate substrate-binding protein SP0092

    PubMed Central

    Tang, Minzhe

    2017-01-01

    Streptococcus pneumoniae is an opportunistic respiratory pathogen that remains a major cause of morbidity and mortality globally, with infants and the elderly at the highest risk. S. pneumoniae relies entirely on carbohydrates as a source of carbon and dedicates a third of all uptake systems to carbohydrate import. The structure of the carbohydrate-free substrate-binding protein SP0092 at 1.61 Å resolution reveals it to belong to the newly proposed subclass G of substrate-binding proteins, with a ligand-binding pocket that is large enough to accommodate complex oligosaccharides. SP0092 is a dimer in solution and the crystal structure reveals a domain-swapped dimer with the monomer subunits in a closed conformation but in the absence of carbohydrate ligand. This closed conformation may be induced by dimer formation and could be used as a mechanism to regulate carbohydrate uptake. PMID:28045395

  11. Endocarditis with ruptured sinus of Valsalva aneurysm caused by nonvaccine Streptococcus pneumoniae serotype 21.

    PubMed

    Patra, Kamakshya P; Vanchiere, John A; Bocchini, Joseph A; Wu, Amy C; Jackson, Robert D; Kiel, Ernest A; Mello, Dennis

    2012-01-01

    Sinus of Valsalva aneurysm is a rare, catastrophic complication of endocarditis. We report an unusual case of ruptured sinus of Valsalva aneurysm associated with endocarditis that was caused by Streptococcus pneumoniae serotype 21. The patient, a 12-year-old girl, underwent surgical repair of the aneurysm and was given intravenous antibiotics for 6 weeks. She was doing well at the 6-week follow-up visit. This case is unusual because of the patient's young age at presentation, the absence of predisposing factors, and the isolation of a nonvaccine serotype 21, which revealed the epidemiologic changes of invasive pneumococcal disease. To our knowledge, this is the first reported case of endocarditis caused by this S. pneumoniae serotype.

  12. Streptococcus pneumoniae-associated cellulitis in a two-month-old Domestic Shorthair kitten.

    PubMed

    Zhang, Shuping; Wilson, Floyd; Pace, Lanny

    2006-03-01

    An approximately 2-month-old, reproductively intact female Domestic Shorthair kitten was presented to the Mississippi Veterinary Research and Diagnostic Laboratory with a history of possible trauma to the left shoulder region while playing with children, and was found dead the following day. Marked swelling, with subcutaneous edema and hemorrhages, was observed in the left forelimb. Severe pleocellular, but largely suppurative cellulitis, fasciitis, and interstitial myositis with edema were observed microscopically in sections from the affected limb. Massive numbers of gram-positive diplococci also were observed. Other pathologic changes included moderate interstitial pneumonia, mild cholangitis, lymph node hemorrhage, gastrointestinal nematodiasis, mild enteritis, and mild interstitial nephritis. Bacteriologic culture identified Streptococcus pneumoniae as the causative agent, which was confirmed by polymerase chain reaction amplification of the pneumolysin gene from chromosomal DNA of the isolate.

  13. Methionine-mediated gene expression and characterization of the CmhR regulon in Streptococcus pneumoniae

    PubMed Central

    Afzal, Muhammad; Shafeeq, Sulman

    2016-01-01

    This study investigated the transcriptomic response of Streptococcus pneumoniae D39 to methionine. Transcriptome comparison of the S. pneumoniae D39 wild-type grown in chemically defined medium with 0–10 mM methionine revealed the elevated expression of various genes/operons involved in methionine synthesis and transport (fhs, folD, gshT, metA, metB-csd, metEF, metQ, tcyB, spd-0150, spd-0431 and spd-0618). Furthermore, β-galactosidase assays and quantitative RT-PCR studies demonstrated that the transcriptional regulator, CmhR (SPD-0588), acts as a transcriptional activator of the fhs, folD, metB-csd, metEF, metQ and spd-0431 genes. A putative regulatory site of CmhR was identified in the promoter region of CmhR-regulated genes and this CmhR site was further confirmed by promoter mutational experiments. PMID:28348831

  14. Isolated Streptococcus agalactiae tricuspid endocarditis in elderly patient without known predisposing factors: Case report and review of the literature

    PubMed Central

    Abid, Leila; Charfeddine, Salma; Kammoun, Samir

    2015-01-01

    Group B streptococcal (GBS) tricuspid infective endocarditis is a very rare clinical entity. It affects intravenous drug users, pregnant, postpartum women, and the elderly. We report the case of a 68-year-old patient without known predisposing factors who presented a GBS tricuspid endocarditis treated by penicillin and aminoglycosides with no response. The patient was operated with a good evolution. Our case is the 25th reported in the literature. GBS disease is increasing in the elderly and is mainly associated to comorbid conditions. Tricuspid infective endocarditis with Group B streptococcus predominantly presents as a persistent fever with respiratory symptoms due to pulmonary embolism. Therefore, it requires a medicosurgical treatment and close follow-up. PMID:27053903

  15. Genomic Analysis of a Serotype 5 Streptococcus pneumoniae Outbreak in British Columbia, Canada, 2005–2009

    PubMed Central

    Miller, Ruth R.; Langille, Morgan G. I.; Montoya, Vincent; Crisan, Anamaria; Stefanovic, Aleksandra; Martin, Irene; Patrick, David M.; Romney, Marc; Tyrrell, Gregory; Jones, Steven J. M.; Brinkman, Fiona S. L.; Tang, Patrick

    2016-01-01

    Background. Streptococcus pneumoniae can cause a wide spectrum of disease, including invasive pneumococcal disease (IPD). From 2005 to 2009 an outbreak of IPD occurred in Western Canada, caused by a S. pneumoniae strain with multilocus sequence type (MLST) 289 and serotype 5. We sought to investigate the incidence of IPD due to this S. pneumoniae strain and to characterize the outbreak in British Columbia using whole-genome sequencing. Methods. IPD was defined according to Public Health Agency of Canada guidelines. Two isolates representing the beginning and end of the outbreak were whole-genome sequenced. The sequences were analyzed for single nucleotide variants (SNVs) and putative genomic islands. Results. The peak of the outbreak in British Columbia was in 2006, when 57% of invasive S. pneumoniae isolates were serotype 5. Comparison of two whole-genome sequenced strains showed only 10 SNVs between them. A 15.5 kb genomic island was identified in outbreak strains, allowing the design of a PCR assay to track the spread of the outbreak strain. Discussion. We show that the serotype 5 MLST 289 strain contains a distinguishing genomic island, which remained genetically consistent over time. Whole-genome sequencing holds great promise for real-time characterization of outbreaks in the future and may allow responses tailored to characteristics identified in the genome. PMID:27366170

  16. Serotype and genotype distribution among invasive Streptococcus pneumoniae isolates in Colombia, 2005-2010.

    PubMed

    Parra, Eliana L; Ramos, Viviana; Sanabria, Olga; Moreno, Jaime

    2014-01-01

    In Colombia, a laboratory-based surveillance of invasive Streptococcus pneumoniae isolates as part of SIREVA II PAHO has been conducted since 1994. This study describes the serotype distribution, antimicrobial resistance, and genetic relationships of pneumococcal isolates recovered in Colombia from 2005 to 2010. In this study, demographic data of invasive S. pneumoniae isolates were analyzed, and antimicrobial susceptibility patterns were determined. Pulse field gel electrophoresis (n = 629) and multilocus sequence typing (n = 10) were used to determine genetic relationship of isolates with minimal inhibitory concentration to penicillin ≥0.125 µg/mL. A total of 1775 isolates of S. pneumoniae were obtained. Fifteen serotypes accounted for 80.7% of isolates. Serotype 14 (23.1%) was the most frequent in the general population. Penicillin resistance was 30.7% in meningitis and 9.0% in non-meningitis. Clones Spain(6B)ST90, Spain(9V)ST156, Spain(23F)ST81, and Colombia(23F)ST338 were associated to isolates. Additionally, serotype 6A isolates were associated with ST460 and ST473, and 19A isolates with ST276, ST320, and ST1118. In conclusion, the surveillance program provided updated information of trends in serotype distribution, antimicrobial resistance and the circulation of clones in invasive pneumococcal diseases. These results could be helpful to understand the epidemiology of S. pneumoniae in Colombia, and provide a baseline to measure the impact of vaccine introduction.

  17. Antimicrobial activities of Eugenia caryophyllata extract and its major chemical constituent eugenol against Streptococcus pneumoniae.

    PubMed

    Yadav, Mukesh Kumar; Park, Seok-Won; Chae, Sung-Won; Song, Jae-Jun; Kim, Ho Chul

    2013-12-01

    In this study, we investigate the antimicrobial activities of both Eugenia caryophyllata (Ec) extract and its major component eugenol (4-allyl-2-methoxyphenol) against Streptococcus pneumoniae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microdilution method. Pneumococcal biofilms were detected by crystal-violet microtiter plate assay, followed by colony-forming unit counts and visualized by scanning electron microscope (SEM). The synergistic effect of eugenol and penicillin was determined by checker-board method. Both the eugenol and the Ec extract inhibited pneumococcal growth in a concentration-dependent manner. The MIC and MBC of eugenol were 0.06% and 0.12%, respectively. Eugenol at a concentration of 0.12% completely killed S. pneumoniae within 60 min of exposure. The kill rate of planktonic cells was most rapid during the first 15 min of contact with eugenol. The addition of eugenol or Ec extract inhibited in vitro biofilm formation. In already established biofilms, the inhibitory effect of eugenol or Ec extract was more significant in terms of cell viability than in terms of disruption of the biofilm matrix. SEM analysis revealed non-viable and disruptive action of eugenol on the cell membrane of bacteria of biofilms. It was found that eugenol and penicillin produced a synergistic effect against S. pneumoniae. In conclusion, eugenol and Ec extract efficiently inhibited S. pneumoniae in planktonic growth and within biofilms.

  18. Streptococcus intermedius Causing Necrotizing Pneumonia in an Immune Competent Female: A Case Report and Literature Review.

    PubMed

    Hannoodi, Faris; Ali, Israa; Sabbagh, Hussam; Kumar, Sarwan

    2016-01-01

    We report a case of a 52-year-old immunocompetent Caucasian female treated for necrotizing Streptococcus intermedius pneumonia and review available literature of similar cases. Our patient presented with respiratory failure and required hospitalization and treatment in the intensive care unit. Moreover, she required surgical drainage of right lung empyema as well as decortication and resection. The review of literature revealed three cases of S. intermedius pneumonia, one of which was a mortality. Comparison of the published cases showed a highly varied prehospital course and radiological presentations, with a symptomatic phase ranging from 10 days to five months. Radiological findings varied from an isolated pleural effusion to systemic disease with the presence of brain abscesses. Immunocompetence appears to correlate well with the overall prognosis. In addition, smoking appears to be an important risk factor for S. intermedius pneumonia. In 2 (50%) of cases, pleural fluid analysis identified S. intermedius. In contrast, no organism was found in our patient, necessitating the acquisition of lung tissue sample for the diagnosis. In conclusion, both medical and surgical management are necessary for effective treatment of S. intermedius pneumonia. The outcome of treatment is good in immunocompetent individuals.

  19. Streptococcus intermedius Causing Necrotizing Pneumonia in an Immune Competent Female: A Case Report and Literature Review

    PubMed Central

    Ali, Israa; Sabbagh, Hussam; Kumar, Sarwan

    2016-01-01

    We report a case of a 52-year-old immunocompetent Caucasian female treated for necrotizing Streptococcus intermedius pneumonia and review available literature of similar cases. Our patient presented with respiratory failure and required hospitalization and treatment in the intensive care unit. Moreover, she required surgical drainage of right lung empyema as well as decortication and resection. The review of literature revealed three cases of S. intermedius pneumonia, one of which was a mortality. Comparison of the published cases showed a highly varied prehospital course and radiological presentations, with a symptomatic phase ranging from 10 days to five months. Radiological findings varied from an isolated pleural effusion to systemic disease with the presence of brain abscesses. Immunocompetence appears to correlate well with the overall prognosis. In addition, smoking appears to be an important risk factor for S. intermedius pneumonia. In 2 (50%) of cases, pleural fluid analysis identified S. intermedius. In contrast, no organism was found in our patient, necessitating the acquisition of lung tissue sample for the diagnosis. In conclusion, both medical and surgical management are necessary for effective treatment of S. intermedius pneumonia. The outcome of treatment is good in immunocompetent individuals. PMID:27891283

  20. Low Concentrations of Nitric Oxide Modulate Streptococcus pneumoniae Biofilm Metabolism and Antibiotic Tolerance

    PubMed Central

    Allan, Raymond N.; Morgan, Samantha; Brito-Mutunayagam, Sanjita; Skipp, Paul; Feelisch, Martin; Hayes, Stephen M.; Hellier, William; Clarke, Stuart C.; Stoodley, Paul; Burgess, Andrea; Ismail-Koch, Hasnaa; Salib, Rami J.; Webb, Jeremy S.; Hall-Stoodley, Luanne

    2016-01-01

    Streptococcus pneumoniae is one of the key pathogens responsible for otitis media (OM), the most common infection in children and the largest cause of childhood antibiotic prescription. Novel therapeutic strategies that reduce the overall antibiotic consumption due to OM are required because, although widespread pneumococcal conjugate immunization has controlled invasive pneumococcal disease, overall OM incidence has not decreased. Biofilm formation represents an important phenotype contributing to the antibiotic tolerance and persistence of S. pneumoniae in chronic or recurrent OM. We investigated the treatment of pneumococcal biofilms with nitric oxide (NO), an endogenous signaling molecule and therapeutic agent that has been demonstrated to trigger biofilm dispersal in other bacterial species. We hypothesized that addition of low concentrations of NO to pneumococcal biofilms would improve antibiotic efficacy and that higher concentrations exert direct antibacterial effects. Unlike in many other bacterial species, low concentrations of NO did not result in S. pneumoniae biofilm dispersal. Instead, treatment of both in vitro biofilms and ex vivo adenoid tissue samples (a reservoir for S. pneumoniae biofilms) with low concentrations of NO enhanced pneumococcal killing when combined with amoxicillin-clavulanic acid, an antibiotic commonly used to treat chronic OM. Quantitative proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) identified 13 proteins that were differentially expressed following low-concentration NO treatment, 85% of which function in metabolism or translation. Treatment with low-concentration NO, therefore, appears to modulate pneumococcal metabolism and may represent a novel therapeutic approach to reduce antibiotic tolerance in pneumococcal biofilms. PMID:26856845

  1. Streptococcus pyogenes Pneumonia in Adults: Clinical Presentation and Molecular Characterization of Isolates 2006-2015

    PubMed Central

    Tamayo, Esther; Montes, Milagrosa; Vicente, Diego; Pérez-Trallero, Emilio

    2016-01-01

    Introduction In the preantibiotic era Streptococcus pyogenes was a common cause of severe pneumonia but currently, except for postinfluenza complications, it is not considered a common cause of community-acquired pneumonia in adults. Aim and Material and Methods This study aimed to identify current clinical episodes of S. pyogenes pneumonia, its relationship with influenza virus circulation and the genotypes of the involved isolates during a decade in a Southern European region (Gipuzkoa, northern Spain). Molecular analysis of isolates included emm, multilocus-sequence typing, and superantigen profile determination. Results Forty episodes were detected (annual incidence 1.1 x 100,000 inhabitants, range 0.29–2.29). Thirty-seven episodes were community-acquired, 21 involved an invasive infection and 10 developed STSS. The associated mortality rate was 20%, with half of the patients dying within 24 hours after admission. Influenza coinfection was confirmed in four patients and suspected in another. The 52.5% of episodes occurred outside the influenza seasonal epidemic. The 67.5% of affected persons were elderly individuals and adults with severe comorbidities, although 13 patients had no comorbidities, 2 of them had a fatal outcome. Eleven clones were identified, the most prevalent being emm1/ST28 (43.6%) causing the most severe cases. Conclusions S. pyogenes pneumonia had a continuous presence frequently unrelated to influenza infection, being rapidly fatal even in previously healthy individuals. PMID:27027618

  2. Serotype and Genotype Distribution among Invasive Streptococcus pneumoniae Isolates in Colombia, 2005–2010

    PubMed Central

    Parra, Eliana L.; Ramos, Viviana; Sanabria, Olga; Moreno, Jaime

    2014-01-01

    In Colombia, a laboratory-based surveillance of invasive Streptococcus pneumoniae isolates as part of SIREVA II PAHO has been conducted since 1994. This study describes the serotype distribution, antimicrobial resistance, and genetic relationships of pneumococcal isolates recovered in Colombia from 2005 to 2010. In this study, demographic data of invasive S. pneumoniae isolates were analyzed, and antimicrobial susceptibility patterns were determined. Pulse field gel electrophoresis (n = 629) and multilocus sequence typing (n = 10) were used to determine genetic relationship of isolates with minimal inhibitory concentration to penicillin ≥0.125 µg/mL. A total of 1775 isolates of S. pneumoniae were obtained. Fifteen serotypes accounted for 80.7% of isolates. Serotype 14 (23.1%) was the most frequent in the general population. Penicillin resistance was 30.7% in meningitis and 9.0% in non-meningitis. Clones Spain6BST90, Spain9VST156, Spain23FST81, and Colombia23FST338 were associated to isolates. Additionally, serotype 6A isolates were associated with ST460 and ST473, and 19A isolates with ST276, ST320, and ST1118. In conclusion, the surveillance program provided updated information of trends in serotype distribution, antimicrobial resistance and the circulation of clones in invasive pneumococcal diseases. These results could be helpful to understand the epidemiology of S. pneumoniae in Colombia, and provide a baseline to measure the impact of vaccine introduction. PMID:24416330

  3. Gene expression platform for synthetic biology in the human pathogen Streptococcus pneumoniae.

    PubMed

    Sorg, Robin A; Kuipers, Oscar P; Veening, Jan-Willem

    2015-03-20

    The human pathogen Streptococcus pneumoniae (pneumococcus) is a bacterium that owes its success to complex gene expression regulation patterns on both the cellular and the population level. Expression of virulence factors enables a mostly hazard-free presence of the commensal, in balance with the host and niche competitors. Under specific circumstances, changes in this expression can result in a more aggressive behavior and the reversion to the invasive form as pathogen. These triggering conditions are very difficult to study due to the fact that environmental cues are often unknown or barely possible to simulate outside the host (in vitro). An alternative way of investigating expression patterns is found in synthetic biology approaches of reconstructing regulatory networks that mimic an observed behavior with orthogonal components. Here, we created a genetic platform suitable for synthetic biology approaches in S. pneumoniae and characterized a set of standardized promoters and reporters. We show that our system allows for fast and easy cloning with the BglBrick system and that reliable and robust gene expression after integration into the S. pneumoniae genome is achieved. In addition, the cloning system was extended to allow for direct linker-based assembly of ribosome binding sites, peptide tags, and fusion proteins, and we called this new generally applicable standard "BglFusion". The gene expression platform and the methods described in this study pave the way for employing synthetic biology approaches in S. pneumoniae.

  4. Differential gene expression in Streptococcus pneumoniae in response to various iron sources.

    PubMed

    Gupta, R; Shah, P; Swiatlo, E

    2009-08-01

    Iron is a critical co-factor for several enzymes and is known to regulate gene expression in many pathogens. Streptococcus pneumoniae (pneumococcus) normally colonizes the upper respiratory mucosa, which is an iron-restricted environment. In contrast, during bacteremia available iron from heme and non-heme proteins potentially increases. In iron-depleted medium pneumococcal strain TIGR4 showed reduced growth, however, addition of several physiological iron sources restored growth. Gene expression of selected known and putative pneumococcal virulence factors was analyzed by quantitative RT-PCR in response to iron sources in vitro and during colonization, pneumonia, and bacteremia in a mouse model. Change in mRNA levels relative to transcription in iron-depleted medium was reported. In presence of iron sources, transcription of cps4A, zmpA, pavA, hemolysin and a putative exfoliative toxin was significantly increased, but nanB was suppressed. Hemoglobin at physiological concentration repressed ply and pspA expression. Ferritin, an acute phase protein, increased expression of an iron ABC transporter and repressed expression of a bacterial non-heme iron-containing ferritin. Transcription of cps4A, nanB, hemolysin, and a putative exfoliative toxin were significantly up-regulated during pneumonia and bacteremia, while mRNA of pavA and non-heme ferritin were expressed at higher levels during pneumonia and carriage. An iron ABC transporter was most up-regulated during bacteremia, while pspA and ply were expressed only in pneumonia. Transcription of zmpA was elevated during both pneumonia and bacteremia. These findings suggest that a subset of virulence genes in pneumococci is differentially regulated in response to the quantity and form of iron sources available in a host.

  5. Commensal Streptococci Serve as a Reservoir for β-Lactam Resistance Genes in Streptococcus pneumoniae

    PubMed Central

    Valdórsson, Oskar; Frimodt-Møller, Niels; Hollingshead, Susan; Kilian, Mogens

    2015-01-01

    Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, septicemia, and middle ear infections. The incidence of S. pneumoniae isolates that are not susceptible to penicillin has risen worldwide and may be above 20% in some countries. Beta-lactam antibiotic resistance in pneumococci is associated with significant sequence polymorphism in penicillin-binding proteins (PBPs). Commensal streptococci, especially S. mitis and S. oralis, have been identified as putative donors of mutated gene fragments. However, no studies have compared sequences of the involved pbp genes in large collections of commensal streptococci with those of S. pneumoniae. We therefore investigated the sequence diversity of the transpeptidase region of the three pbp genes, pbp2x, pbp2b, and pbp1a in 107, 96, and 88 susceptible and nonsusceptible strains of commensal streptococci, respectively, at the nucleotide and amino acid levels to determine to what extent homologous recombination between commensal streptococci and S. pneumoniae plays a role in the development of beta-lactam resistance in S. pneumoniae. In contrast to pneumococci, extensive sequence variation in the transpeptidase region of pbp2x, pbp2b, and pbp1a was observed in both susceptible and nonsusceptible strains of commensal streptococci, conceivably reflecting the genetic diversity of the many evolutionary lineages of commensal streptococci combined with the recombination events occurring with intra- and interspecies homologues. Our data support the notion that resistance to beta-lactam antibiotics in pneumococci is due to sequences acquired from commensal Mitis group streptococci, especially S. mitis. However, several amino acid alterations previously linked to beta-lactam resistance in pneumococci appear to represent species signatures of the donor strain rather than being causal of resistance. PMID:25845880

  6. Circulation of international clones of levofloxacin non-susceptible Streptococcus pneumoniae in Taiwan.

    PubMed

    Hsieh, Y-C; Chang, L-Y; Huang, Y-C; Lin, H-C; Huang, L-M; Hsueh, P-R

    2010-07-01

    Levofloxacin susceptibility testing was carried out for a total of 2539 Streptococcus pneumoniae isolates obtained from January 2001 to February 2008 at the National Taiwan University Hospital (NTUH) and a further 228 pneumococcal isolates obtained from January 2004 to December 2006 at three other hospitals in different geographical areas in Taiwan. Levofloxacin non-susceptible S. pneumoniae isolates were subsequently analysed for serotype and molecular epidemiology. Rates of levofloxacin non-susceptibility of S. pneumoniae increased significantly from 1.2% in 2001 to 4.2% in 2007 at NTUH. A total of 30 isolates of levofloxacin non-susceptible S. pneumoniae isolates (MIC ≥ 4 mg/L) were available for evaluation of serotype, antimicrobial susceptibility, nucleotide sequence of the quinolone resistance-determining regions of parC, gyrA, parE and gyrB, reserpine effect on quinolone susceptibility and multilocus sequence type. Among these isolates, seven (23.3%) were from children, and two (6.7%; one from a 3- and one from a 93-year-old patient) were from blood. One levofloxacin-resistant isolate (MIC = 8 mg/L) was recovered from a previously healthy child with bacteraemic necrotizing pneumonia complicated by empyema and a haemolytic-uraemic syndrome. All isolates except two had Ser79 and/or Asp83 changes in ParC, and/or Ser81 or Glu85 changes in GyrA. An efflux phenotype concerning levofloxacin was detected in only one (3.3%) isolate. A novel clone (ST3642), genetically related to Spain(9V)-3 and belonging to serotype 11A, was identified. Dissemination of clonal complexes related to Spain(23F)-1, Taiwan(19F)-14, Spain(9V)-3 and Taiwan(23F)-15 has contributed to levofloxacin non-susceptibility among these S. pneumoniae isolates from Taiwan.

  7. Adhesion and invasion of Streptococcus pneumoniae to primary and secondary respiratory epithelial cells

    PubMed Central

    Novick, Sara; Shagan, Marilous; Blau, Karin; Lifshitz, Sarit; Givon-Lavi, Noga; Grossman, Nili; Bodner, Lipa; Dagan, Ron; Nebenzahl, Yaffa Mizrachi

    2016-01-01

    The interaction between Streptococcus pneumoniae (S. pneumoniae) and the mucosal epithelial cells of its host is a prerequisite for pneumococcal disease development, yet the specificity of this interaction between different respiratory cells is not fully understood. In the present study, three areas were examined: i) The capability of the encapsulated S. pneumoniae serotype 3 strain (WU2) to adhere to and invade primary nasal-derived epithelial cells in comparison to primary oral-derived epithelial cells, A549 adenocarcinoma cells and BEAS-2B viral transformed bronchial cells; ii) the capability of the unencapsulated 3.8DW strain (a WU2 derivative) to adhere to and invade the same cells over time; and iii) the ability of various genetically-unrelated encapsulated and unencapsulated S. pneumoniae strains to adhere to and invade A549 lung epithelial cells. The results of the present study demonstrated that the encapsulated WU2 strain adhesion to and invasion of primary nasal epithelial cells was greatest, followed by BEAS-2B, A549 and primary oral epithelial cells. By contrast, the unencapsulated 3.8-DW strain invaded oral epithelial cells significantly more efficiently when compared to the nasal epithelial cells. In addition, unencapsulated S. pneumoniae strains adhered to and invaded the A459 cells significantly more efficiently than the encapsulated strains; this is consistent with previously published data. In conclusion, the findings presented in the current study indicated that the adhesion and invasion of the WU2 strain to primary nasal epithelial cells was more efficient compared with the other cultured respiratory epithelial cells tested, which corresponds to the natural course of S. pneumoniae infection and disease development. The target cell preference of unencapsulated strains was different from that of the encapsulated strains, which may be due to the exposure of cell wall proteins. PMID:27922699

  8. Structural and functional analysis of fucose-processing enzymes from Streptococcus pneumoniae.

    PubMed

    Higgins, Melanie A; Suits, Michael D; Marsters, Candace; Boraston, Alisdair B

    2014-04-03

    Fucose metabolism pathways are present in many bacterial species and typically contain the central fucose-processing enzymes fucose isomerase (FcsI), fuculose kinase (FcsK), and fuculose-1-phosphate aldolase (FcsA). Fucose initially undergoes isomerization by FcsI producing fuculose, which is then phosphorylated by FcsK. FcsA cleaves the fuculose-1-phosphate product into lactaldehyde and dihydroxyacetone phosphate, which can be incorporated into central metabolism allowing the bacterium to use fucose as an energy source. Streptococcus pneumoniae has fucose-processing operons containing homologs of FcsI, FcsK, and FcsA; however, this bacterium appears unable to utilize fucose as an energy source. To investigate this contradiction, we performed biochemical and structural studies of the S. pneumoniae fucose-processing enzymes SpFcsI, SpFcsK, and SpFcsA. These enzymes are demonstrated to act in a sequential manner to ultimately produce dihydroxyacetone phosphate and have structural features entirely consistent with their observed biochemical activities. Analogous to the regulation of the Escherichia coli fucose utilization operon, fuculose-1-phosphate appears to act as an inducing molecule for activation of the S. pneumoniae fucose operon. Despite our evidence that S. pneumoniae appears to have the appropriate regulatory and biochemical machinery for fucose metabolism, we confirmed the inability of the S. pneumoniae TIGR4 strain to grow on fucose or on the H-disaccharide, which is the probable substrate of the transporter for the pathway. On the basis of these observations, we postulate that the S. pneumoniae fucose-processing pathway has a non-metabolic role in the interaction of this bacterium with its human host.

  9. Molecular Detection of Streptococcus pneumoniae on Dried Blood Spots from Febrile Nigerian Children Compared to Culture

    PubMed Central

    Iroh Tam, Pui-Ying; Hernandez-Alvarado, Nelmary; Schleiss, Mark R.; Hassan-Hanga, Fatimah; Onuchukwu, Chuma; Umoru, Dominic; Obaro, Stephen K.

    2016-01-01

    Background Nigeria has one of the highest burdens of pneumococcal disease in the world, but accurate surveillance is lacking. Molecular detection of infectious pathogens in dried blood spots (DBS) is an ideal method for surveillance of infections in resource-limited settings because of its low cost, minimal blood volumes involved, and ease of storage at ambient temperature. Our study aim was to evaluate a Streptococcus pneumoniae real-time polymerase chain reaction (rt-PCR) assay on DBS from febrile Nigerian children on Whatman 903 and FTA filter papers, compared to the gold standard of culture. Methods Between September 2011 to May 2015, blood was collected from children 5 years of age or under who presented to six hospital study sites throughout northern and central Nigeria with febrile illness, and inoculated into blood culture bottles or spotted onto Whatman 903 or FTA filter paper. Culture and rt-PCR were performed on all samples. Results A total of 537 DBS specimens from 535 children were included in the study, of which 15 were culture-positive for S. pneumoniae. The rt-PCR assay detected S. pneumoniae in 12 DBS specimens (2.2%). One positive rt-PCR result was identified in a culture-negative specimen from a high-risk subject, and two positive rt-PCR results were negative on repeat testing. Six culture-confirmed cases of S. pneumoniae bacteremia were missed. Compared to culture, the overall sensitivities of Whatman 903 and FTA DBS for detection of S. pneumoniae were 57.1% (95% CI 18.4–90.1%) and 62.5% (95% CI 24.5–91.5%), respectively. Nonspecific amplification was noted in an additional 22 DBS (4.1%). Among these, six were positive for a non-S. pneumoniae pathogen on culture. Conclusions Rt-PCR was able to detect S. pneumoniae from clinical DBS specimens, including from a culture-negative specimen. Our findings show promise of this approach as a surveillance diagnostic, but also raise important cautionary questions. Several DBS specimens were detected as

  10. Nile Tilapia Infectivity by Genomically Diverse Streptoccocus agalactiae Isolates from Multiple Hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, Lancefield group B Streptococcus (GBS), is recognized for causing cattle mastitis, human neonatal meningitis, and fish meningo-encephalitis. We investigated the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions using serological t...

  11. Phenotypic and genotypic characterization of Streptococcus agalactiae in pregnant women. First study in a province of Argentina.

    PubMed

    Oviedo, P; Pegels, E; Laczeski, M; Quiroga, M; Vergara, M

    2013-01-01

    Group B Streptococcus (GBS) is the leading cause of neonatal infections. Our purpose was to characterize GBS colonization in pregnant women, current serotypes, resistance phenotypes and genes associated with virulence. In Misiones, Argentina, there are no previous data on this topic. Vaginal-rectal swabs from 3125 pregnant women were studied between 2004 and 2010. GBS strains were identified by conventional and serological methods (Phadebact Strep B Test, ETC International, Bactus AB, Sweden). Serotypes were detected using Strep-B Latex (Statens Serum Institut, Denmark). Resistance phenotypes were determined by the double-disk test. Genes were studied by PCR. Maternal colonization was 9.38%. Resistance to erythromycin was 11.6%, and the constitutive phenotype was the predominant one. Serotype Ia was the most frequent, whereas serotypes IV, VI, VII and VIII were not detected. The lmb, bca and hylB genes were detected in more than 79% of the strains. In this study, the colonization rate with GBS and the serotype distribution were compared with studies reported in other areas of the country. The high resistance to erythromycin in Misiones justifies performing antibiotic susceptibility testing. The serotype distribution, the genes encoding putative virulence factors, and the patterns of resistance phenotypes of GBS may vary in different areas. They thus need to be evaluated in each place to devise strategies for prevention.

  12. Phenotypic and genotypic characterization of Streptococcus agalactiae in pregnant women. First study in a province of Argentina

    PubMed Central

    Oviedo, P; Pegels, E; Laczeski, M; Quiroga, M; Vergara, M

    2013-01-01

    Group B Streptococcus (GBS) is the leading cause of neonatal infections. Our purpose was to characterize GBS colonization in pregnant women, current serotypes, resistance phenotypes and genes associated with virulence. In Misiones, Argentina, there are no previous data on this topic. Vaginal-rectal swabs from 3125 pregnant women were studied between 2004 and 2010. GBS strains were identified by conventional and serological methods (Phadebact Strep B Test, ETC International, Bactus AB, Sweden). Serotypes were detected using Strep-B Latex (Statens Serum Institut, Denmark). Resistance phenotypes were determined by the double-disk test. Genes were studied by PCR. Maternal colonization was 9.38%. Resistance to erythromycin was 11.6%, and the constitutive phenotype was the predominant one. Serotype Ia was the most frequent, whereas serotypes IV, VI, VII and VIII were not detected. The lmb, bca and hylB genes were detected in more than 79% of the strains. In this study, the colonization rate with GBS and the serotype distribution were compared with studies reported in other areas of the country. The high resistance to erythromycin in Misiones justifies performing antibiotic susceptibility testing. The serotype distribution, the genes encoding putative virulence factors, and the patterns of resistance phenotypes of GBS may vary in different areas. They thus need to be evaluated in each place to devise strategies for prevention. PMID:24159312

  13. Activity of gemifloxacin against quinolone-resistant Streptococcus pneumoniae strains in vitro and in a mouse pneumonia model.

    PubMed

    Azoulay-Dupuis, E; Bédos, J P; Mohler, J; Moine, P; Cherbuliez, C; Peytavin, G; Fantin, B; Köhler, T

    2005-03-01

    Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 10(5) CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 10(7) CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC(24))/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC(24)/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo.

  14. Feasibility and Safety of Local Treatment with Recombinant Human Tissue Factor Pathway Inhibitor in a Rat Model of Streptococcus pneumoniae Pneumonia.

    PubMed

    van den Boogaard, Florry E; Hofstra, Jorrit J; van 't Veer, Cornelis; Levi, Marcel M; Roelofs, Joris J T H; van der Poll, Tom; Schultz, Marcus J

    2015-01-01

    Pulmonary coagulopathy is intrinsic to pulmonary injury including pneumonia. Anticoagulant strategies could benefit patients with pneumonia, but systemic administration of anticoagulant agents may lead to suboptimal local levels and may cause systemic hemorrhage. We hypothesized nebulization to provide a safer and more effective route for local administration of anticoagulants. Therefore, we aimed to examine feasibility and safety of nebulization of recombinant human tissue factor pathway inhibitor (rh-TFPI) in a well-established rat model of Streptococcus (S.) pneumoniae pneumonia. Thirty minutes before and every 6 hours after intratracheal instillation of S. pneumonia causing pneumonia, rats were subjected to local treatment with rh-TFPI or placebo, and sacrificed after 42 hours. Pneumonia was associated with local as well as systemic activation of coagulation. Nebulization of rh-TFPI resulted in high levels of rh-TFPI in bronchoalveolar lavage fluid, which was accompanied by an attenuation of pulmonary coagulation. Systemic rh-TFPI levels remained undetectable, and systemic TFPI activity and systemic coagulation were not affected. Histopathology revealed no bleeding in the lungs. We conclude that nebulization of rh-TFPI seems feasible and safe; local anticoagulant treatment with rh-TFPI attenuates pulmonary coagulation, while not affecting systemic coagulation in a rat model of S. pneumoniae pneumonia.

  15. Draft Genome Sequences of Six Strains of Streptococcus pneumoniae from Serotypes 5, 6A, 6B, 18C, 19A, and 23F

    PubMed Central

    Jakobsson, Hedvig E.; Salvà-Serra, Francisco; Karlsson, Roger; Gonzales-Silès, Lucia; Boulund, Fredrik; Engstrand, Lars; Kristiansson, Erik

    2017-01-01

    ABSTRACT Streptococcus pneumoniae is a pathogenic bacterium found most commonly in the respiratory tract of humans and is a common cause of pneumonia and bacterial meningitis. Here, we report the draft genome sequences of six S. pneumoniae strains: CCUG 1350, CCUG 7206, CCUG 11780, CCUG 33774, CCUG 35180, and CCUG 35272. PMID:28385844

  16. Modification of the CpsA Protein Reveals a Role in Alteration of the Streptococcus agalactiae Cell Envelope

    PubMed Central

    Rowe, Hannah M.; Hanson, Brett R.; Runft, Donna L.; Lin, Qian; Firestine, Steve M.

    2015-01-01

    The bacterial cell envelope is a crucial first line of defense for a systemic pathogen, with production of capsular polysaccharides and maintenance of the peptidoglycan cell wall serving essential roles in survival in the host environment. The LytR-CpsA-Psr proteins are important for cell envelope maintenance in many Gram-positive species. In this study, we examined the role of the extracellular domain of the CpsA protein of the zoonotic pathogen group B Streptococcus in capsule production and cell wall integrity. CpsA has multiple functional domains, including a DNA-binding/transcriptional activation domain and a large extracellular domain. We demonstrated that episomal expression of extracellularly truncated CpsA causes a dominant-negative effect on capsule production when expressed in the wild-type strain. Regions of the extracellular domain essential to this phenotype were identified. The dominant-negative effect could be recapitulated by addition of purified CpsA protein or a short CpsA peptide to cultures of wild-type bacteria. Changes in cell wall morphology were also observed when the dominant-negative peptide was added to wild-type cultures. Fluorescently labeled CpsA peptide could be visualized bound at the mid-cell region near the division septae, suggesting a novel role for CpsA in cell division. Finally, expression of truncated CpsA also led to attenuation of virulence in zebrafish models of infection, to levels below that of a cpsA deletion strain, demonstrating the key role of the extracellular domain in virulence of GBS. PMID:25644003

  17. Streptococcus agalactiae isolates of serotypes Ia, III and V from human and cow are able to infect tilapia.

    PubMed

    Chen, Ming; Wang, Rui; Luo, Fu-Guang; Huang, Yan; Liang, Wan-Wen; Huang, Ting; Lei, Ai-Ying; Gan, Xi; Li, Li-Ping

    2015-10-22

    Recent studies have shown that group B streptococcus (GBS) may be infectious across hosts. The purpose of this study is to investigate the pathogenicity of clinical GBS isolates with serotypes Ia, III and V from human and cow to tilapia and the evolutionary relationship among these GBS strains of different sources. A total of 27 clinical GBS isolates from human (n=10), cow (n=2) and tilapia (n=15) were analyzed using serotyping, multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Among them, 15 isolates were tested for their pathogenicity to tilapia. The results showed that five human GBS strains (2 serotype III, 2 serotype Ia and 1 serotype V) infected tilapia with mortality rate ranging from 56.67% to 100%, while the other five human GBS strains tested were unable to infect tilapia. In addition, two cow GBS strains C001 and C003 of serotype III infected tilapia. However, they had significantly lower pathogenicity than the five human strains. Furthermore, human GBS strains H005 and H008, which had very strong ability to infect tilapia, had the same PFGE pattern. MLST analysis showed that the five human and the two cow GBS strains that were able to infect tilapia belonged to clonal complexes CC19, CC23 and CC103. The study for the first time confirmed that human or cow GBS clonal complexes CC19, CC23 and CC103 containing strains with serotypes Ia, III and V could infect tilapia and induce clinical signs under experimental conditions.

  18. Characterization of Isolates of Streptococcus agalactiae from Diseased Farmed and Wild Marine Fish from the U.S. Gulf Coast, Latin America, and Thailand.

    PubMed

    Soto, Esteban; Wang, Rui; Wiles, Judy; Baumgartner, Wes; Green, Christopher; Plumb, John; Hawke, John

    2015-06-01

    We examined Lancefield serogroup B Streptococcus isolates recovered from diseased, cultured hybrid Striped Bass (Striped Bass Morone saxatilis × White Bass M. chrysops) and wild and cultured Gulf Killifish Fundulus grandis from coastal waters of the U.S. Gulf of Mexico (Gulf coast) and compared those isolates to strains from tilapias Oreochromis spp. reared in Mississippi, Thailand, Ecuador, and Honduras and to the original Gulf coast strain identified by Plumb et al. ( 1974 ). The isolates were subjected to phylogenetic, biochemical, and antibiotic susceptibility analyses. Genetic analysis was performed using partial sequence comparison of (1) the 16S ribosomal RNA (rRNA) gene; (2) the sipA gene, which encodes a surface immunogenic protein; (3) the cspA gene, which encodes a cell surface-associated protein; and (4) the secY gene, which encodes components of a general protein secretion pathway. Phylogenies inferred from sipA, secY, and cspA gene sequence comparisons were more discriminating than that inferred from the 16S rRNA gene sequence comparison. The U.S. Gulf coast strains showed a high degree of similarity to strains from South America and Central America and belonged to a unique group that can be distinguished from other group B streptococci. In agreement with the molecular findings, biochemical and antimicrobial resistance analyses demonstrated that the isolates recovered from the U.S. Gulf coast and Latin America were more similar to each other than to isolates from Thailand. Three laboratory challenge methods for inducing streptococcosis in Gulf Killifish were evaluated-intraperitoneal (IP) injection, immersion (IMM), and immersion plus abrasion (IMMA)-using serial dilutions of S. agalactiae isolate LADL 97-151, a representative U.S. Gulf coast strain. The dose that was lethal to 50% of test fish by 14 d postchallenge was approximately 2 CFU/fish via IP injection. In contrast, the fish that were challenged via IMM or IMMA presented cumulative mortality

  19. Oxacillin disk diffusion testing for the prediction of penicillin resistance in Streptococcus pneumoniae.

    PubMed

    Horna, Gertrudis; Molero, María L; Benites, Liliana; Roman, Sigri; Carbajal, Luz; Mercado, Erik; Castillo, María E; Zerpa, Rito; Chaparro, Eduardo; Hernandez, Roger; Silva, Wilda; Campos, Francisco; Saenz, Andy; Reyes, Isabel; Villalobos, Alex; Ochoa, Theresa J

    2016-08-01

    Objective To 1) describe the correlation between the zones of inhibition in 1-µg oxacillin disk diffusion (ODD) tests and penicillin and ceftriaxone minimum inhibitory concentrations (MICs) of meningeal and non-meningeal strains of Streptococcus pneumoniae and 2) evaluate the usefulness of the ODD test as a predictor of susceptibility to penicillin in S. pneumoniae and as a quick and cost-effective method easily implemented in a routine clinical laboratory setting. Methods S. pneumoniae isolates from healthy nasopharyngeal carriers less than 2 years old, obtained in a multicentric cross-sectional study conducted in various Peruvian hospitals and health centers from 2007 to 2009, were analyzed. Using Clinical and Laboratory Standards Institute (CLSI) breakpoints, the correlation between the zones of inhibition of the ODD test and the MICs of penicillin and ceftriaxone was determined. Results Of the 571 S. pneumoniae isolates, 314 (55%) showed resistance to penicillin (MIC ≥ 0.12 µg/mL) and 124 (21.7%) showed resistance to ceftriaxone (MIC ≥ 1 µg/mL). Comparison of the ODD test zones of inhibition and the penicillin MICs, using the CLSI meningeal breakpoints, showed good correlation (Cohen's kappa coefficient = 0.8239). Conclusions There was good correlation between ODD zones of inhibition and penicillin meningeal breakpoints but weak correlation between the ODD results and non-meningeal breakpoints for both penicillin and ceftriaxone. Therefore, the ODD test appears to be a useful tool for predicting penicillin resistance in cases of meningeal strains of S. pneumoniae, particularly in low- and middle- income countries, where MIC determination is not routinely available.

  20. Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae--United States, 2006-2007.

    PubMed

    2008-12-19

    Streptococcus pneumoniae (pneumococcus) is a common cause of pneumonia and meningitis in the United States. Antimicrobial resistance, which can result in pneumococcal infection treatment failure, is identified by measuring the minimum inhibitory concentration (MIC) of an antimicrobial that will inhibit pneumococcal growth. Breakpoints are MICs that define infections as susceptible (treatable), intermediate (possibly treatable with higher doses), and resistant (not treatable) to certain antimicrobials. In January 2008, after a reevaluation that included more recent clinical studies, the Clinical and Laboratory Standards Institute (CLSI) published new S. pneumoniae breakpoints for penicillin (the preferred antimicrobial for susceptible S. pneumoniae infections). To assess the potential effects of the new breakpoints on susceptibility categorization, CDC applied them to MICs of invasive pneumococcal disease (IPD) isolates collected by the Active Bacterial Core surveillance (ABCs) system at sites in 10 states during 2006-2007. This report summarizes the results of that analysis, which found that the percentage of IPD nonmeningitis S. pneumoniae isolates categorized as susceptible, intermediate, and resistant to penicillin changed from 74.7%, 15.0%, and 10.3% under the former breakpoints to 93.2%, 5.6%, and 1.2%, respectively, under the new breakpoints. Microbiology laboratories should be aware of the new breakpoints to interpret pneumococcal susceptibility accurately, and clinicians should be aware of the breakpoints to prescribe antimicrobials appropriately for pneumococcal infections. State and local health departments also should be aware of the new breakpoints because they might result in a decrease in the number of reported cases of penicillin-resistant pneumococcus.

  1. Emergence of Neoteric Serotypes Among Multidrug Resistant Strains of Streptococcus pneumoniae Prevalent in Egypt

    PubMed Central

    Bahy, Rehab H; Hamouda, Hayam M; Shahat, Amal S; Yassin, Aymen S; Amin, Magdy A

    2016-01-01

    Background Streptococcus pneumoniae is still one of the major causes of morbidity and mortality worldwide. The prevalent serotype distribution had shown variation along different studies conducted at different time intervals. In order to efficiently assess the epidemiology of the diseases for effective preventive and treatment strategies, serotype prevalence need to be periodically reassessed. Objectives Conducting a reassessment of the prevalent S. pneumoniae serotypes in Egypt as an essential step in the search for a regional vaccine. In addition, monitoring the antibiotic susceptibility patterns of pneumococcal strains currently causing infections as an evaluation of therapeutic strategies applied. Materials and Methods A total of 100 specimens of different sources were collected in Cairo, Egypt, from 2011 to 2013, representing almost all different types of diseases caused by S. pneumoniae such as meningitis, pneumonia, otitis media and sinusitis. Conventional and molecular identification methods were performed, the antimicrobial susceptibility patterns were assessed and serotyping was done using PCR assays to identify the most prevalent types. In addition, detection of certain virulence genes for the most prevalent serotypes was carried out. Results Our results revealed that in Egypt, currently, the most prevalent serotypes were serogroup 6 and serotype 19F as they represented 58% of all isolates. High rates of resistance were found to different antibiotic classes. The lytA and psaA genes were found to be more sensitive for S. pneumoniae identification than ply. Conclusions Our study illustrates the importance of constantly monitoring the prevalent serotypes in any region in order to aid in the development of more effective vaccines. PMID:27303614

  2. Bactericidal activity of moxifloxacin compared to grepafloxacin and clarithromycin against Streptococcus pneumoniae and Streptococcus pyogenes investigated using an in vitro pharmacodynamic model.

    PubMed

    Esposito, S; Noviello, S; Ianniello, F

    2000-12-01

    The aim of the present investigation was to study and compare the killing activity of two new fluoroquinolone compounds, moxifloxacin and grepafloxacin, and a new generation macrolide, clarithromycin, against three clinical isolates of Streptococcus pneumoniae (penicillin-susceptible, -intermediate and -resistant) and two Streptococcus pyogenes (erythromycin-susceptible and -resistant) strains by simulating their human pharmacokinetics in a pharmacodynamic model. Results were achieved by measuring the reduction in viable bacterial count during the 24-h experimental period. All three antimicrobials led to a continuous reduction in the bacterial counts of penicillin-susceptible S. pneumoniae and erythromycin-susceptible S. pyogenes strains, the maximal reduction observed after 8-10 hours being 5-6 logs for moxifloxacin and 3 logs for grepafloxacin; clarithromycin exhibited a similar reduction of 5 logs only after 24 h. No regrowth was observed for any strain after 24 h with any of the antibiotics. The bactericidal activity of both the fluoroquinolones was not affected by penicillin resistance of S. pneumoniae and erythromycin resistance of S. pyogenes. In contrast, clarithromycin was not able to reduce the bacterial count of penicillin-resistant S. pneumoniae and erythromycin-resistant S. pyogenes strains. Moxifloxacin exhibited, within 24 h, higher and faster bactericidal activity than grepafloxacin and clarithromycin against S. pneumoniae, and was not affected by penicillin resistance. These results suggest that moxifloxacin is a promising new agent for treatment of streptococcal infections.

  3. Characteristics and Outcome of Streptococcus pneumoniae Endocarditis in the XXI Century

    PubMed Central

    de Egea, Viviana; Muñoz, Patricia; Valerio, Maricela; de Alarcón, Arístides; Lepe, José Antonio; Miró, José M.; Gálvez-Acebal, Juan; García-Pavía, Pablo; Navas, Enrique; Goenaga, Miguel Angel; Fariñas, María Carmen; Vázquez, Elisa García; Marín, Mercedes; Bouza, Emilio

    2015-01-01

    Abstract Streptococcus pneumoniae is an infrequent cause of severe infectious endocarditis (IE). The aim of our study was to describe the epidemiology, clinical and microbiological characteristics, and outcome of a series of cases of S. pneumoniae IE diagnosed in Spain and in a series of cases published since 2000 in the medical literature. We prospectively collected all cases of IE diagnosed in a multicenter cohort of patients from 27 Spanish hospitals (n = 2539). We also performed a systematic review of the literature since 2000 and retrieved all cases with complete clinical data using a pre-established protocol. Predictors of mortality were identified using a logistic regression model. We collected 111 cases of pneumococcal IE: 24 patients from the Spanish cohort and 87 cases from the literature review. Median age was 51 years, and 23 patients (20.7%) were under 15 years. Men accounted for 64% of patients, and infection was community-acquired in 96.4% of cases. The most important underlying conditions were liver disease (27.9%) and immunosuppression (10.8%). A predisposing heart condition was present in only 18 patients (16.2%). Pneumococcal IE affected a native valve in 93.7% of patients. Left-sided endocarditis predominated (aortic valve 53.2% and mitral valve 40.5%). The microbiological diagnosis was obtained from blood cultures in 84.7% of cases. In the Spanish cohort, nonsusceptibility to penicillin was detected in 4.2%. The most common clinical manifestations included fever (71.2%), a new heart murmur (55%), pneumonia (45.9%), meningitis (40.5%), and Austrian syndrome (26.1%). Cardiac surgery was performed in 47.7% of patients. The in-hospital mortality rate was 20.7%. The multivariate analysis revealed the independent risk factors for mortality to be meningitis (OR, 4.3; 95% CI, 1.4–12.9; P < 0.01). Valve surgery was protective (OR, 0.1; 95% CI, 0.04–0.4; P < 0.01). Streptococcus pneumoniae IE is a community-acquired disease that mainly

  4. [Serotype distribution and antibiotic susceptibilities of Streptococcus pneumoniae causing acute exacerbations and pneumonia in children with chronic respiratory diseases].

    PubMed

    Altınkanat Gelmez, Gülşen; Soysal, Ahmet; Kuzdan, Canan; Karadağ, Bülent; Hasdemir, Ufuk; Bakır, Mustafa; Söyletir, Güner

    2013-10-01

    This study aimed to investigate serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates obtained from children with chronic respiratory diseases admitted to hospital with a diagnosis of acute exacerbations between 2008-2010 at Marmara University Hospital, Istanbul, Turkey. Sixty one S.pneumoniae strains isolated from the respiratory samples of patients were studied for erythromycin, clindamycin, tetracyline, trimethoprim-sulphametoxazole (TMP-SMX), vancomycin, levofloxacin susceptibilities by disk diffusion method; MIC values of penicillin and ceftriaxone were determined by E-test (AB Biodisk, Sweden). Results were evaluated according to the CLSI standards. The erythromycin-clindamycin double disc method was applied for the detection of macrolide resistance phenotypes. The presence of macrolide resistance genes, ermB, mef(A)/(E), ermTR were determined by PCR using specific primers for each gene. The serotypes were determined by multiplex PCR using specific primers for 40 different serotypes. According to CLSI criteria, penicillin resistance in S.pneumoniae isolates were found to be 8.2% (5/61) and intermediate resistance rate was 54% (33/61) for oral penicillin. Penicillin resistance were found to be only 1.6% (1/61) for parenteral penicillin. Resistance rates of erythromycin, clindamycin, tetracyline, TMP-SMX were detected as 55.8%, 46%, 47.5% and 67.2%; respectively. No resistance was detected to vancomycin and levofloxacin. Constitutive macrolide-lincosamide-streptogramin B (cMLSB) phenotype and M phenotype were observed in 82.4% (n= 28) and 17.6% (n= 6) of the macrolide resistant isolates, respectively. Inducible macrolide-lincosamide-streptogramin B (iMLSB) phenotype was not detected. The macrolid resistance genotypes, ermB, mef(A)/(E), were positive 50% and 14.7%; respectively. Both ermB and mef(A)/(E) genes were detected 35.3% of the macrolid resistant isolates. None of the isolates were positive for ermTR gene. The most

  5. Activities of garenoxacin against quinolone-resistant Streptococcus pneumoniae strains in vitro and in a mouse pneumonia model.

    PubMed

    Azoulay-Dupuis, E; Bédos, J P; Mohler, J; Peytavin, G; Isturiz, R; Moine, P; Rieux, V; Cherbuliez, C; Péchère, J C; Fantin, B; Köhler, T

    2004-03-01

    Garenoxacin is a novel des-F(6) quinolone with enhanced in vitro activities against both gram-positive and gram-negative bacteria. We compared the activity of garenoxacin with that of trovafloxacin (TVA) against Streptococcus pneumoniae, together with their efficacies and their capacities to select for resistant mutants, in a mouse model of acute pneumonia. In vitro, garenoxacin was more potent than TVA against wild-type S. pneumoniae and against a mutant with a single mutation (parC), a mutant with double mutations (gyrA and parC), and a mutant with triple mutations (gyrA, parC, and parE). Swiss mice were infected with 10(5) CFU of virulent, encapsulated S. pneumoniae strain P-4241 or its derived isogenic parC, gyrA, gyrA parC, and efflux mutants and 10(7) CFU of poorly virulent clinical strains carrying a parE mutation or gyrA, parC, and parE mutations. The drugs were administered six times, every 12 h, beginning at either 3 or 18 h postinfection. The pulmonary pharmacokinetic parameters in mice infected with strain P-4241 and treated with garenoxacin or TVA (25 mg/kg of body weight) were as follows: maximum concentration of drug in serum (C(max); 17.3 and 21.2 micro g/ml, respectively), C(max)/MIC ratio (288 and 170, respectively), area under the concentration-time curve (AUC; 48.5 and 250 microg. h/ml, respectively), and AUC/MIC ratio (808 and 2000, respectively). Garenoxacin at 25 and 50 mg/kg was highly effective (survival rates, 85 to 100%) against the wild-type strain and mutants harboring a single mutation. TVA was as effective as garenoxacin against these strains. TVA at 200 mg/kg and garenoxacin at 50 mg/kg were ineffective against the mutant with the parC and gyrA double mutations and the mutant with the gyrA, parC, and parE triple mutations. The efficacy of garenoxacin was reduced only when strains bore several mutations for quinolone resistance.

  6. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae

    PubMed Central

    Yuzenkova, Yulia; Gamba, Pamela; Herber, Martijn; Attaiech, Laetitia; Shafeeq, Sulman; Kuipers, Oscar P.; Klumpp, Stefan; Zenkin, Nikolay; Veening, Jan-Willem

    2014-01-01

    Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in ‘transcription traffic jams’ on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes. PMID:25190458

  7. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae.

    PubMed

    Abbott, D Wade; Higgins, Melanie A; Hyrnuik, Susanne; Pluvinage, Benjamin; Lammerts van Bueren, Alicia; Boraston, Alisdair B

    2010-07-01

    The genome of Streptococcus pneumoniae strains, as typified by the TIGR4 strain, contain several genes encoding proteins putatively involved in alpha-glucan degradation, modification and synthesis. The extracellular components comprise an ATP binding cassette-transporter with its solute binding protein, MalX, and the hydrolytic enzyme SpuA. We show that of the commonly occurring exogenous alpha-glucans, S. pneumoniae TIGR4 is only able to grow on glycogen in a MalX- and SpuA-dependent manner. SpuA is able to degrade glycogen into a ladder of alpha-1,4-glucooligosaccharides while the high-affinity interaction (K(a) approximately 10(6) M(-1)) of MalX with maltooligosaccharides plays a key role in promoting the selective uptake of the glycogen degradation products that are produced by SpuA. The X-ray crystallographic analyses of apo- and complexed MalX illuminate the protein's specificity for the degradation products of glycogen and its striking ability to recognize the helical structure of the ligand. Overall, the results of this work provide new structural and functional insight into streptococcal alpha-glucan metabolism while supplying biochemical support for the hypothesis that the substrate of the S. pneumoniaealpha-glucan metabolizing machinery is glycogen, which in a human host is abundant in lung epithelial cells, a common target for invasive S. pneumoniae.

  8. IL-22 Defect During Streptococcus pneumoniae Infection Triggers Exacerbation of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Pichavant, Muriel; Sharan, Riti; Le Rouzic, Olivier; Olivier, Cécile; Hennegrave, Florence; Rémy, Gaëlle; Pérez-Cruz, Magdiel; Koné, Bachirou; Gosset, Pierre; Just, Nicolas; Gosset, Philippe

    2015-01-01

    Progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS) and to stimulate peripheral blood mononuclear cells (PBMC) from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1β and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1β and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation. PMID:26870795

  9. Dried Saliva Spots: A Robust Method for Detecting Streptococcus pneumoniae Carriage by PCR.

    PubMed

    Krone, Cassandra L; Oja, Anna E; van de Groep, Kirsten; Sanders, Elisabeth A M; Bogaert, Debby; Trzciński, Krzysztof

    2016-03-05

    The earliest studies in the late 19th century on Streptococcus pneumoniae (S. pneumoniae) carriage used saliva as the primary specimen. However, interest in saliva declined after the sensitive mouse inoculation method was replaced by conventional culture, which made isolation of pneumococci from the highly polymicrobial oral cavity virtually impossible. Here, we tested the feasibility of using dried saliva spots (DSS) for studies on pneumococcal carriage. Saliva samples from children and pneumococcus-spiked saliva samples from healthy adults were applied to paper, dried, and stored, with and without desiccant, at temperatures ranging from -20 to 37 °C for up to 35 days. DNA extracted from DSS was tested with quantitative-PCR (qPCR) specifically for S. pneumoniae. When processed immediately after drying, the quantity of pneumococcal DNA detected in spiked DSS from adults matched the levels in freshly spiked raw saliva. Furthermore, pneumococcal DNA was stable in DSS stored with desiccant for up to one month over a broad range of temperatures. There were no differences in the results when spiking saliva with varied pneumococcal strains. The collection of saliva can be a particularly useful in surveillance studies conducted in remote settings, as it does not require trained personnel, and DSS are resilient to various transportation conditions.

  10. Streptococcus pneumoniae resists intracellular killing by olfactory ensheathing cells but not by microglia

    PubMed Central

    Macedo-Ramos, Hugo; Ruiz-Mendoza, Susana; Mariante, Rafael M.; Guimarães, Erick V.; Quadros-de-Souza, Lucas C.; Paiva, Mauricio M.; Ferreira, Eliane de O.; Pinto, Tatiana C. A.; Teixeira, Lucia M.; Allodi, Silvana; Baetas-da-Cruz, Wagner

    2016-01-01

    Olfactory ensheathing cells (OECs) are a type of specialized glial cell currently considered as having a double function in the nervous system: one regenerative, and another immune. Streptococcus pneumoniae is a major agent of severe infections in humans, including meningitis. It is commonly found in the nasopharynx of asymptomatic carriers, and, under certain still unknown conditions, can invade the brain. We evaluated whether pneumococcal cells recovered from lysed OECs and microglia are able to survive by manipulating the host cell activation. An intracellular-survival assay of S. pneumoniae in OECs showed a significant number of bacterial CFU recovered after 3 h of infection. In contrast, microglia assays resulted in a reduced number of CFU. Electron-microscopy analysis revealed a large number of pneumococci with apparently intact morphology. However, microglia cells showed endocytic vesicles containing only bacterial cell debris. Infection of OEC cultures resulted in continuous NF-κB activation. The IFN-γ-induced increase of iNOS expression was reversed in infected OECs. OECs are susceptible to S. pneumoniae infection, which can suppress their cytotoxic mechanisms in order to survive. We suggest that, in contrast to microglia, OECs might serve as safe targets for pneumococci, providing a more stable environment for evasion of the immune system. PMID:27827453

  11. In vitro selective antibiotic concentrations of beta-lactams for penicillin-resistant Streptococcus pneumoniae populations.

    PubMed Central

    Negri, M C; Morosini, M I; Loza, E; Baquero, F

    1994-01-01

    Therapeutic regimens containing beta-lactam antibiotics are selecting penicillin-resistant Streptococcus pneumoniae populations all over the world. The selective pressure after 4 h of exposure to different concentrations of amoxicillin, cefixime, cefuroxime, and cefotaxime for low-level or high-level penicillin-resistant S. pneumoniae was evaluated in an in vitro model with mixed populations with penicillin susceptibilities of 0.015, 0.5, 1, and 2 micrograms/ml. The antibiotic concentration selecting for low-level resistance strongly reduced the susceptible population. Increasing antibiotic concentrations tended to decrease the total proportion of penicillin-resistant bacteria because of reduced numbers of the low-level-resistant population. The antibiotic concentration selecting for high-level resistance produced fewer resistant populations, but most of the organisms selected represented high-level resistance. In general, amoxicillin was a good selector for the low-level-resistant population and a poor selector for high-level resistance; cefuroxime and cefotaxime were poor selectors for low-level resistance and better selectors than amoxicillin for high-level penicillin resistance. Cefixime was the best selector of low-level penicillin resistance. When only resistant populations were mixed, the strains with high-level resistance were selected even at low antibiotic concentrations. Determination of the effects of selective antibiotic concentrations on mixed cultures of bacteria expressing different antibiotic resistance levels may help researchers to understand the ecology and epidemiology of penicillin-resistant S. pneumoniae populations. PMID:8141563

  12. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae

    PubMed Central

    Romero-Espejel, María E.; Rodríguez, Mario A.; Chávez-Munguía, Bibiana; Ríos-Castro, Emmanuel; Olivares-Trejo, José de Jesús

    2016-01-01

    Streptococcus pneumoniae is a Gram-positive microorganism that is the cause of bacterial pneumonia, sinusitis and otitis media. This human pathogen also can cause invasive diseases such as meningitis, bacteremia and septicemia. Hemoglobin (Hb) and haem can support the growth and viability of S. pneumoniae as sole iron sources. Unfortunately, the acquisition mechanism of Hb and haem in this bacterium has been poorly studied. Previously we identified two proteins of 37 and 22 kDa as putative Hb- and haem-binding proteins (Spbhp-37 and Spbhp-22, respectively). The sequence of Spbhp-37 protein was database annotated as lipoprotein without any function or localization. Here it was immunolocalized in the surface cell by transmission electron microscopy using specific antibodies produced against the recombinant protein. The expression of Spbhp-37 was increased when bacteria were grown in media culture supplied with Hb. In addition, the affinity of Sphbp-37 for Hb was determined. Thus, in this work we are presenting new findings that attempt to explain the mechanism involved in iron acquisition of this pathogen. In the future these results could help to develop new therapy targets in order to avoid the secondary effects caused by the traditional therapies. PMID:27200302

  13. Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation.

    PubMed

    Kjos, Morten; Veening, Jan-Willem

    2014-03-01

    Chromosome segregation is an essential part of the bacterial cell cycle but is poorly characterized in oval-shaped streptococci. Using time-lapse fluorescence microscopy and total internal reflection fluorescence microscopy, we have tracked the dynamics of chromosome segregation in live cells of the human pathogen Streptococcus pneumoniae. Our observations show that the chromosome segregation process last for two-thirds of the total cell cycle; the origin region segregates rapidly in the early stages of the cell cycle while nucleoid segregation finishes just before cell division. Previously we have demonstrated that the DNA-binding protein ParB and the condensin SMC promote efficient chromosome segregation, likely by an active mechanism. We now show that in the absence of SMC, cell division can occur over the unsegregated chromosomes. However, neither smc nor parB are essential in S. pneumoniae, suggesting the importance of additional mechanisms. Here we have identified the process of transcription as one of these mechanisms important for chromosome segregation in S. pneumoniae. Transcription inhibitors rifampicin and streptolydigin as well as mutants affected in transcription elongation cause chromosome segregation defects. Together, our results highlight the importance of passive (or indirect) processes such as transcription for chromosome segregation in oval-shaped bacteria.

  14. S-carboxymethylcysteine inhibits adherence of Streptococcus pneumoniae to human alveolar epithelial cells.

    PubMed

    Sumitomo, Tomoko; Nakata, Masanobu; Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2012-01-01

    Streptococcus pneumoniae is a major pathogen of respiratory infections that utilizes platelet-activating factor receptor (PAFR) for firm adherence to host cells. The mucolytic agent S-carboxymethylcysteine (S-CMC) has been shown to exert inhibitory effects against infection by several respiratory pathogens including S. pneumoniae in vitro and in vivo. Moreover, clinical studies have implicated the benefits of S-CMC in preventing exacerbation of chronic obstructive pulmonary disease, which is considered to be related to respiratory infections. In this study, to assess whether the potency of S-CMC is attributable to inhibition of pneumococcal adherence to host cells, an alveolar epithelial cell line stimulated with interleukin-1α was used as a model of inflamed epithelial cells. Despite upregulation of PAFR by inflammatory activation, treatment with S-CMC efficiently inhibited pneumococcal adherence to host epithelial cells. In order to gain insight into the inhibitory mechanism, the effects of S-CMC on PAFR expression were also investigated. Following treatment with S-CMC, PAFR expression was reduced at both mRNA and post-transcriptional levels. Interestingly, S-CMC was also effective in inhibiting pneumococcal adherence to cells transfected with PAFR small interfering RNAs. These results indicate S-CMC as a probable inhibitor targeting numerous epithelial receptors that interact with S. pneumoniae.

  15. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae.

    PubMed

    Hammerschmidt, S; Bethe, G; Remane, P H; Chhatwal, G S

    1999-04-01

    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10(-18) M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hLf binding significantly, indicating that the hLf receptor is proteinaceous. Binding assays performed with 63 clinical isolates belonging to different serotypes showed that 88% of the tested isolates interacted with hLf. Scatchard analysis showed the existence of two hLf-binding proteins with dissociation constants of 5.7 x 10(-8) and 2.74 x 10(-7) M. The receptors were purified by affinity chromatography, and internal sequence analysis revealed that one of the S. pneumoniae proteins was homologous to pneumococcal surface protein A (PspA). The function of PspA as an hLf-binding protein was confirmed by the ability of purified PspA to bind hLf and to competitively inhibit hLf binding to pneumococci. S. pneumoniae may use the hLf-PspA interaction to overcome the iron limitation at mucosal surfaces, and this might represent a potential virulence mechanism.

  16. Dried Saliva Spots: A Robust Method for Detecting Streptococcus pneumoniae Carriage by PCR

    PubMed Central

    Krone, Cassandra L.; Oja, Anna E.; van de Groep, Kirsten; Sanders, Elisabeth A. M.; Bogaert, Debby; Trzciński, Krzysztof

    2016-01-01

    The earliest studies in the late 19th century on Streptococcus pneumoniae (S. pneumoniae) carriage used saliva as the primary specimen. However, interest in saliva declined after the sensitive mouse inoculation method was replaced by conventional culture, which made isolation of pneumococci from the highly polymicrobial oral cavity virtually impossible. Here, we tested the feasibility of using dried saliva spots (DSS) for studies on pneumococcal carriage. Saliva samples from children and pneumococcus-spiked saliva samples from healthy adults were applied to paper, dried, and stored, with and without desiccant, at temperatures ranging from −20 to 37 °C for up to 35 days. DNA extracted from DSS was tested with quantitative-PCR (qPCR) specifically for S. pneumoniae. When processed immediately after drying, the quantity of pneumococcal DNA detected in spiked DSS from adults matched the levels in freshly spiked raw saliva. Furthermore, pneumococcal DNA was stable in DSS stored with desiccant for up to one month over a broad range of temperatures. There were no differences in the results when spiking saliva with varied pneumococcal strains. The collection of saliva can be a particularly useful in surveillance studies conducted in remote settings, as it does not require trained personnel, and DSS are resilient to various transportation conditions. PMID:26959014

  17. Capsular Serotype and Antibiotic Resistance of Streptococcus pneumoniae Isolates in Two Chilean Cities

    PubMed Central

    Inostroza, Jaime; Trucco, Olivia; Prado, Valeria; Vinet, Ana Maria; Retamal, Gloria; Ossa, Gonzalo; Facklam, Richard R.; Sorensen, Ricardo U.

    1998-01-01

    We compared the incidence of nasopharyngeal colonization by Streptococcus pneumoniae, the serotypes causing mucosal and invasive diseases, and the antibiotic resistance of these strains in patients admitted to three large hospitals and children attending day care centers in two Chilean cities (Santiago and Temuco). The populations in both cities were similar in ethnic background, socioeconomic status, family size, and access to medical care. Significant differences in nasopharyngeal colonization rates, in serotypes causing infections, and in antibiotic resistance were found between the two cities. In children 0 to 2 years of age, 42% were colonized with S. pneumoniae in Santiago compared to 14% in Temuco. A total of 41 serotypes were identified in both Chilean cities studied. Six serotypes were found only in Santiago; 14 serotypes were found only in Temuco. Antibiotic-resistant serotypes 6A, 6B, 14, 19F, and 23F were detected only in Santiago. We show that important differences in the incidence of nasopharyngeal carriage, infection, and S. pneumoniae serotypes can exist in similar populations in different areas of the same country. Our findings are relevant for prevention strategies, antibiotic usage, and vaccine design. PMID:9521139

  18. Streptococcus pneumoniae TIGR4 Flavodoxin: Structural and Biophysical Characterization of a Novel Drug Target

    PubMed Central

    Rodríguez-Cárdenas, Ángela; Rojas, Adriana L.; Conde-Giménez, María; Velázquez-Campoy, Adrián; Hurtado-Guerrero, Ramón; Sancho, Javier

    2016-01-01

    Streptococcus pneumoniae (Sp) strain TIGR4 is a virulent, encapsulated serotype that causes bacteremia, otitis media, meningitis and pneumonia. Increased bacterial resistance and limited efficacy of the available vaccine to some serotypes complicate the treatment of diseases associated to this microorganism. Flavodoxins are bacterial proteins involved in several important metabolic pathways. The Sp flavodoxin (Spfld) gene was recently reported to be essential for the establishment of meningitis in a rat model, which makes SpFld a potential drug target. To facilitate future pharmacological studies, we have cloned and expressed SpFld in E. coli and we have performed an extensive structural and biochemical characterization of both the apo form and its active complex with the FMN cofactor. SpFld is a short-chain flavodoxin containing 146 residues. Unlike the well-characterized long-chain apoflavodoxins, the Sp apoprotein displays a simple two-state thermal unfolding equilibrium and binds FMN with moderate affinity. The X-ray structures of the apo and holo forms of SpFld differ at the FMN binding site, where substantial rearrangement of residues at the 91–100 loop occurs to permit cofactor binding. This work will set up the basis for future studies aiming at discovering new potential drugs to treat S. pneumoniae diseases through the inhibition of SpFld. PMID:27649488

  19. Macrolide resistance in Streptococcus pneumoniae isolated from Argentinian pediatric patients suffering from acute otitis media.

    PubMed

    Reijtman, Vanesa; Gagetti, Paula; Faccone, Diego; Fossati, Sofía; Sommerfleck, Patricia; Hernández, Claudia; Bernáldez, Patricia; Lopardo, Horacio; Corso, Alejandra

    2013-01-01

    Macrolide-resistant Streptococcus pneumoniae emerged in Argentina in 1995, representing 26% of invasive infection isolates in children under 5 years old. The objectives of this study were to describe the prevalence of ermB and mefA genes in macrolide-resistant S. pneumoniae isolates from acute otitis media (AOM) and to determine their genetic relatedness. Between May 2009 and August 2010, 126 S. pneumoniae isolates from 324 otherwise healthy children with a first episode of AOM were included. Twenty six of these isolates (20.6%) were resistant to erythromycin. Most frequent serotypes were: 14 (46.2%), 6A (23.1%), 19F (7.7%) and 9V (7.7%). Twenty (76.9%) carried the mefA gene, 5 (19.2%) have the ermB gene, and 1 (3.9%) both ermB + mefA. Ten clonal types were identified, mostly related to Sweden(15A)-25/ST782 (SLV63), CloneB(6A)/ST473 and England(14)-9/ ST9. This is the first study assessing the mechanisms of macrolide resistance in pneumococci isolates from pediatric AOM in Argentina and their genetic relatedness.

  20. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    SciTech Connect

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  1. New Alkaloid Antibiotics That Target the DNA Topoisomerase I of Streptococcus pneumoniae*

    PubMed Central

    García, María Teresa; Blázquez, María Amparo; Ferrándiz, María José; Sanz, María Jesús; Silva-Martín, Noella; Hermoso, Juan A.; de la Campa, Adela G.

    2011-01-01

    Streptococcus pneumoniae has two type II DNA-topoisomerases (DNA-gyrase and DNA topoisomerase IV) and a single type I enzyme (DNA-topoisomerase I, TopA), as demonstrated here. Although fluoroquinolones target type II enzymes, antibiotics efficiently targeting TopA have not yet been reported. Eighteen alkaloids (seven aporphine and 11 phenanthrenes) were semisynthesized from boldine and used to test inhibition both of TopA activity and of cell growth. Two phenanthrenes (seconeolitsine and N-methyl-seconeolitsine) effectively inhibited both TopA activity and cell growth at equivalent concentrations (∼17 μm). Evidence for in vivo TopA targeting by seconeolitsine was provided by the protection of growth inhibition in a S. pneumoniae culture in which the enzyme was overproduced. Additionally, hypernegative supercoiling was observed in an internal plasmid after drug treatment. Furthermore, a model of pneumococcal TopA was made based on the crystal structure of Escherichia coli TopA. Docking calculations indicated strong interactions of the alkaloids with the nucleotide-binding site in the closed protein conformation, which correlated with their inhibitory effect. Finally, although seconeolitsine and N-methyl-seconeolitsine inhibited TopA and bacterial growth, they did not affect human cell viability. Therefore, these new alkaloids can be envisaged as new therapeutic candidates for the treatment of S. pneumoniae infections resistant to other antibiotics. PMID:21169356

  2. IL-22 Defect During Streptococcus pneumoniae Infection Triggers Exacerbation of Chronic Obstructive Pulmonary Disease.

    PubMed

    Pichavant, Muriel; Sharan, Riti; Le Rouzic, Olivier; Olivier, Cécile; Hennegrave, Florence; Rémy, Gaëlle; Pérez-Cruz, Magdiel; Koné, Bachirou; Gosset, Pierre; Just, Nicolas; Gosset, Philippe

    2015-11-01

    Progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS) and to stimulate peripheral blood mononuclear cells (PBMC) from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1β and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1β and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation.

  3. Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae.

    PubMed

    Afzal, Muhammad; Shafeeq, Sulman; Manzoor, Irfan; Kuipers, Oscar P

    2015-01-01

    The maltose regulon (mal regulon) has previously been shown to consist of the mal gene cluster (malMP, malXCD and malAR operons) in Streptococcus pneumoniae. In this study, we have further elucidated the complete mal regulon in S. pneumoniae D39 using microarray analyses and β-galactosidase assays. In addition to the mal gene cluster, the complete mal regulon of S. pneumoniae D39 consists of a pullulanase (PulA), a glucosidase (DexB), a glucokinase (RokB), a PTS component (PtsG) and an amylase (AmyA2). Our microarray studies and β-galactosidase assays further showed that the LacI-family transcriptional regulator MalR represses the expression of the mal regulon in the absence of maltose. Furthermore, the role of the pleiotropic transcriptional regulator CcpA in the regulation of the mal regulon in the presence of maltose was explored. Our microarray analysis with a ΔccpA strain showed that CcpA only represses the expression of the malXCD operon and the pulA gene in the presence of maltose. Hence, we extend the mal regulon now consisting of pulA, dexB, rokB, ptsG and amyA2 in addition to malMP, malXCD and malAR operons.

  4. PD-1 suppresses protective immunity to Streptococcus pneumoniae through a B cell-intrinsic mechanism.

    PubMed

    McKay, Jerome T; Egan, Ryan P; Yammani, Rama D; Chen, Lieping; Shin, Tahiro; Yagita, Hideo; Haas, Karen M

    2015-03-01

    Despite the emergence of the programmed cell death 1 (PD-1):PD-1 ligand (PD-L) regulatory axis as a promising target for treating multiple human diseases, remarkably little is known about how this pathway regulates responses to extracellular bacterial infections. We found that PD-1(-/-) mice, as well as wild-type mice treated with a PD-1 blocking Ab, exhibited significantly increased survival against lethal Streptococcus pneumoniae infection following either priming with low-dose pneumococcal respiratory infection or S. pneumoniae-capsular polysaccharide immunization. Enhanced survival in mice with disrupted PD-1:PD-L interactions was explained by significantly increased proliferation, isotype switching, and IgG production by pneumococcal capsule-specific B cells. Both PD-L, B7-H1 and B7-DC, contributed to PD-1-mediated suppression of protective capsule-specific IgG. Importantly, PD-1 was induced on capsule-specific B cells and suppressed IgG production and protection against pneumococcal infection in a B cell-intrinsic manner. To our knowledge, these results provide the first demonstration of a physiologic role for B cell-intrinsic PD-1 expression in vivo. In summary, our study reveals that B cell-expressed PD-1 plays a central role in regulating protection against S. pneumoniae, and thereby represents a promising target for bolstering immunity to encapsulated bacteria.

  5. Defense of zebrafish embryos against Streptococcus pneumoniae infection is dependent on the phagocytic activity of leukocytes.

    PubMed

    Rounioja, Samuli; Saralahti, Anni; Rantala, Lilli; Parikka, Mataleena; Henriques-Normark, Birgitta; Silvennoinen, Olli; Rämet, Mika

    2012-02-01

    Severe community acquired pneumonia caused by Streptococcus pneumoniae is the most common cause of death from infection in developing countries. Serotype specific conjugate vaccines have decreased the incidence of invasive infections, but at the same time, disease due to non-vaccine serotypes have increased. New insights into host immune mechanisms against pneumococcus may provide better treatment and prevention strategies. Zebrafish is an attractive vertebrate model for studying host immune responses and infection biology. Here we show that an intravenous challenge with pneumococcus infects zebrafish embryos leading to death in a dose dependent manner. Survival rates correlate with the bacterial burden in the embryos. The production of proinflammatory cytokines is induced in zebrafish after pneumococcal exposure. Importantly, morpholino treated embryos lacking either myeloid cells or the ability to phagocytose bacteria have lowered survival rates compared to wild type embryos after pneumococcal challenge. These data suggest that the survival of zebrafish embryos upon intravenous infection with S. pneumoniae is dependent on the clearance of the bacteria by phagocytosing cells. Additionally, we demonstrate that mutant pneumococci lacking known virulence factors are attenuated in the zebrafish model. Our data demonstrate that zebrafish embryos can be used for study innate immune responses as well as virulence determinants in pneumococcal infections.

  6. Evaluation of a new lateral flow test for detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigen.

    PubMed

    Jørgensen, Charlotte S; Uldum, Søren A; Sørensen, Jesper F; Skovsted, Ian C; Otte, Sanne; Elverdal, Pernille L

    2015-09-01

    Pneumonia is a major cause of morbidity and mortality worldwide. Early diagnosis of the etiologic agent is important in order to choose the correct antibiotic treatment. In this study we evaluated the first commercial combined test for the agents of pneumococcal pneumonia and Legionnaires' disease based on urinary antigen detection, the ImmuView® Streptococcus pneumoniae and Legionella pneumophila Urinary Antigen Test. In this evaluation, the new test had a significantly higher sensitivity than the BinaxNOW® lateral flow tests and the Binax® EIA test. This identifies the ImmuView® S. pneumoniae and L. pneumophila Urinary Antigen Test as a fast and sensitive point of care test for identification of the infectious agent in a major group of patients with pneumonia.

  7. Streptococcus pneumoniae serine protease HtrA, but not SFP or PrtA, is a major virulence factor in pneumonia.

    PubMed

    de Stoppelaar, Sacha F; Bootsma, Hester J; Zomer, Aldert; Roelofs, Joris J T H; Hermans, Peter W M; van 't Veer, Cornelis; van der Poll, Tom

    2013-01-01

    Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA (cell wall-associated serine protease A), that contributed to virulence in models of pneumonia and intraperitoneal infection respectively. We here sought to identify additional S. pneumoniae serine proteases and determine their role in virulence. The S. pneumoniae D39 genome contains five putative serine proteases, of which HtrA, Subtilase Family Protein (SFP) and PrtA were selected for insertional mutagenesis because they are predicted to be secreted and surface exposed. Mutant D39 strains lacking serine proteases were constructed by in-frame insertion deletion mutagenesis. Pneumonia was induced by intranasal infection of mice with wild-type or mutant D39. After high dose infection, only D39ΔhtrA showed reduced virulence, as reflected by strongly reduced bacterial loads, diminished dissemination and decreased lung inflammation. D39ΔprtA induced significantly less lung inflammation together with smaller infiltrated lung surface, but without influencing bacterial loads. After low dose infection, D39ΔhtrA again showed strongly reduced bacterial loads; notably, pneumococcal burdens were also modestly lower in lungs after infection with D39Δsfp. These data confirm the important role for HtrA in S. pneumoniae virulence. PrtA contributes to lung damage in high dose pneumonia; it does not however contribute to bacterial outgrowth in pneumococcal pneumonia. SFP may facilitate S. pneumoniae growth after low dose infection.

  8. Respiratory microbiota dynamics following Streptococcus pneumoniae acquisition in young and elderly mice.

    PubMed

    Krone, Cassandra L; Biesbroek, Giske; Trzciński, Krzysztof; Sanders, Elisabeth A M; Bogaert, Debby

    2014-04-01

    The upper respiratory tract (URT) is a distinct microbial niche of low-density bacterial communities and, also, a portal of entry for many potential pathogens, including Streptococcus pneumoniae. Thus far, animal models have been used to study the dynamics of and interactions between limited numbers of different species in the URT. Here, we applied a deep sequencing approach to explore, for the first time, the impact of S. pneumoniae acquisition on URT microbiota in a mouse model, as well as potential age-dependent effects. Young-adult and elderly mice were inoculated intranasally with S. pneumoniae, and nasal lavage samples were collected for up to 28 days postcolonization. Bacterial DNA extracted from lavage samples was subjected to barcoded pyrosequencing of the V5-to-V7 hypervariable region of the small-subunit rRNA gene. We observed highly diverse microbial profiles, with the presence overall of 15 phyla and approximately 645 operational taxonomic units (OTUs). We noted differences in the composition of microbiota between young and elderly mice, with a significantly higher abundance of Bacteroidetes in the young mice. The introduction of S. pneumoniae into the URT led to a temporary dominance of pneumococci in the microbiota of all mice, accompanied by a significant decrease in microbial diversity. As mice gradually cleared the colonization, the diversity returned to baseline levels. Diversification was accompanied by an early expansion of Bacteroidetes, Staphylococcus spp., and Lachnospiraceae. Moreover, the Bacteroidetes expansion was significantly greater in young-adult than in elderly mice. In conclusion, we observed differences in URT microbiota composition between naive young-adult and elderly mice that were associated with differences in pneumococcal clearance over time.

  9. N-acetylglucosamine-Mediated Expression of nagA and nagB in Streptococcus pneumoniae

    PubMed Central

    Afzal, Muhammad; Shafeeq, Sulman; Manzoor, Irfan; Henriques-Normark, Birgitta; Kuipers, Oscar P.

    2016-01-01

    In this study, we have explored the transcriptomic response of Streptococcus pneumoniae D39 to N-acetylglucosamine (NAG). Transcriptome comparison of S. pneumoniae D39 wild-type grown in chemically defined medium (CDM) in the presence of 0.5% NAG to that grown in the presence of 0.5% glucose revealed elevated expression of many genes/operons, including nagA, nagB, manLMN, and nanP. We have further confirmed the NAG-dependent expression of nagA, nagB, manLMN, and nanP by β-galactosidase assays. nagA, nagB and glmS are putatively regulated by a transcriptional regulator NagR. We predicted the operator site of NagR (dre site) in PnagA, PnagB, and PglmS, which was further confirmed by mutating the predicted dre site in the respective promoters (nagA, nagB, and glmS). Growth comparison of ΔnagA, ΔnagB, and ΔglmS with the D39 wild-type demonstrates that nagA and nagB are essential for S. pneumoniae D39 to grow in the presence of NAG as a sole carbon source. Furthermore, deletion of ccpA shows that CcpA has no effect on the expression of nagA, nagB, and glmS in the presence of NAG in S. pneumoniae. PMID:27900287

  10. Application of two methods to determine killing of Streptococcus pneumoniae by various fluoroquinolones.

    PubMed

    Blondeau, J M; Blondeau, L D; Hesje, C; Borsos, S

    2006-08-01

    Minimum inhibitory concentration (MIC) testing measures the lowest drug concentration that prevents microbial growth using an inoculum of 10(5) colony forming units/ml (cfu/ml) whereas the mutant prevention concentration (MPC) (inoculum approximately 10(10) cells) defines the antimicrobial drug concentration threshold that would require an organism to possess two simultaneous mutations for continued growth in the presence of the drug. The rates at which multidrug-resistant Streptococcus pneumoniae [MDRSP] were killed by the respiratory fluoroquinolones, gatifloxacin, gemfloxacin, levofloxacin and moxifloxacin, were compared based on the MIC and MPC drug concentrations and at inocula ranging from 10(6)-10(9) cfu/ml. The MIC drug concentration failed to eradicate all viable cells whereas the MPC drug concentration resulted in 99.9% to 100% cellular reduction following 12-24 hours of drug exposure. MPC values against S. pneumoniae were different for each fluoroquinolone. The MPC drug concentration prevents the selection of multidrug-resistant or fluoroquinolone-resistant S. pneumoniae. The value of dosing of antimicrobial agents based on MPC thresholds results in a rapid reduction in viable cells--even at higher inocula which are more reflective of organism burden in pneumonia. The rapid reduction in viable cells observed at MPC drug concentrations may not only have an impact on preventing the selection of resistant mutants but may also help explain the rapid symptom resolution seen with new fluoroquinolones since these agents lead to little or low release of cell contents which are known to drive the inflammatory response.

  11. In vitro pharmacodynamic evaluation of garenoxacin against quinolone-resistant Streptococcus pneumoniae.

    PubMed

    Fukuda, Yoshiko; Takahata, Masahiro; Sugiura, Yoko; Shinmura, Yuko; Nomura, Nobuhiko

    2012-02-01

    The bactericidal activity and resistance selectivity of garenoxacin against Streptococcus pneumoniae with mutations in ParC (S79F) or both GyrA (S81F) and ParC (D83Y and K137N) were investigated using in vitro pharmacokinetic models simulating plasma concentrations for a standard clinical regimen [400mg once daily (q.d.)]. The efficacy of garenoxacin was compared with that of levofloxacin (500 mg q.d.) and moxifloxacin (400mg q.d.). Garenoxacin showed excellent bactericidal activity against S. pneumoniae, including quinolone-resistant S. pneumoniae (QRSP), achieving ratios of area under the plasma concentration-time curve over 24h to minimum inhibitory concentration (AUC(0-24)/MIC) ≥ 26.3, without emerging resistant subpopulations. The area above the killing curves was greater and the time to achieve 99.9% killing was shorter for garenoxacin than the corresponding values for levofloxacin and moxifloxacin. No resistant subpopulations and no additional substitution of amino acids in GyrA or ParC emerged following treatment with garenoxacin. On the other hand, in the parC mutant strain, levofloxacin and moxifloxacin treatment caused an increase in the frequency of the resistant population and an additional substitution of amino acids in GyrA (levofloxacin, S81Y/F/C; moxifloxacin, S81Y or E85K). In QRSP with mutations in GyrA and ParC, levofloxacin had no bactericidal activity, whilst the bactericidal activity of moxifloxacin was less than that of garenoxacin; moreover, an additional substitution of amino acids in ParC (S79Y) was noted. In conclusion, garenoxacin corresponding to an oral dose of 400mg showed excellent bactericidal activity against S. pneumoniae, including QRSP, without the emergence of resistant mutants.

  12. [Nasopharyngeal carriage of Streptococcus pneumoniae in healthy children and multidrug resistance].

    PubMed

    Bayer, Müjgan; Aslan, Gönül; Emekdaş, Gürol; Kuyucu, Necdet; Kanik, Arzu

    2008-04-01

    Nasopharyngeal carriage of Streptococcus pneumoniae plays an important role for the development of invasive disease and the spread of resistant strains within the community. The aims of this study were to determine the carriage rate of nasopharyngeal S. pneumoniae at healthy school children, to search the susceptibility of the strains to various antibiotics and to evaluate the risk factors for nasopharyngeal carriage of penicillin-resistant pneumococci. A total of 1440 healthy children (age range: 6-13 years old) attending to three primary schools which were chosen randomly in Mersin province (Mediterranean region of Turkey) were included to the study between April 2003 to March 2004. The isolation and identification of S. pneumoniae strains from nasopharyngeal samples were performed by conventional culture methods. Antibiotic sensitivity tests were done according to the Clinical Laboratory Standards Institute directions by disk diffusion method, and penisilin MIC values were detected by E-test (AB Biodisk, Solna, Sweden). S.pneumoniae were isolated from 201 (13.9) of the children. The susceptibility rate of the isolates to penicilin was found as 87.1% (n:175), while 12% (n:24) of the strains yielded intermediate and 1% (n:2) yielded high resistance against penicilin. Overall percentages of resistance to trimethoprim-sulfamethoxazole (TMP-SMX) and macrolides were 30% and 4%, respectively. Two out of eight erythromycin (E) resistant strains showed inducible MLS(B) (macrolide, lincosamide and streptogramin B) type while six showed M (due to active efflux system) type of resistance. Resistance to meropenem, vancomycin, ceftriaxone and ciprofloxacin were not detected. Of S. pneumoniae isolates, 20% were found resistant to only one antibiotic (two strains to penicilin; 39 strains to TMP-SMX), 8.9% to two antibiotics (16 strains to penicillin+TMP-SMX; two strains to penicillin+E) and 2.9% to three or more antibiotics (five strains to penicillin+E+TMP-SMX; one strain to

  13. Bacterial vaccines and serotype replacement: lessons from Haemophilus influenzae and prospects for Streptococcus pneumoniae.

    PubMed Central

    Lipsitch, M.

    1999-01-01

    Conjugate vaccines have reduced the incidence of invasive disease caused by Haemophilus influenzae, type b (Hib), in industrialized countries and may be highly effective against Streptococcus pneumoniae. However, the serotype specificity of these vaccines has led to concern that their use may increase carriage of and disease from serotypes not included in the vaccine. Replacement has not occurred with the use of Hib vaccines but has occurred in trials of pneumococcal vaccines. Mathematical models can be used to elucidate these contrasting outcomes, predict the conditions under which serotype replacement is likely, interpret the results of conjugate vaccine trials, design trials that will better detect serotype replacement (if it occurs), and suggest factors to consider in choosing the serotype composition of vaccines. PMID:10341170

  14. Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae.

    PubMed

    Chaguza, Chrispin; Cornick, Jennifer E; Everett, Dean B

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high burden of human disease globally. Genetic recombination, a process in which exogenous DNA is acquired and incorporated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is much higher than the rate at which the organism acquires variation through spontaneous mutations. This higher rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome sequence (WGS) data and the advent of novel analysis methods and powerful computational tools for population genetics and evolution studies has transformed our understanding of how genetic recombination drives pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the evolution of the pneumococcus.

  15. Streptococcus pneumoniae causing septic arthritis with shock and revealing multiple myeloma

    PubMed Central

    Riachy, Moussa Albert

    2011-01-01

    The authors present the case of a 43-year-old male who presented at the emergency department, with a mean arterial pressure of 48 mm of Hg, a sinus tachycardia of 142/min and shallow breathing at 30/min. Two days previously, he started a high-grade fever with a concomitant reddish and painful left knee and right elbow, without any treatment. Septic shock was diagnosed and the patient was started on empiric antibiotics combining ceftriaxone and vancomycin and vasopressors (norepinephrine). The painful knee and elbow joints were aspirated and cultures grew Streptococcus pneumoniae. The patient’s clinical condition improved progressively and after investigation, the diagnosis of multiple myeloma was concluded. Pneumococcal septic arthritis, an extraordinary cause of septic arthritis, is a manifestation of an underlying disease and can be responsible for septic shock. Its diagnosis should direct further investigations. It can occur in patients with joint disease but should emphasise the search of systemic immunosuppression. PMID:22694889

  16. Variation at the capsule locus, cps, of mistyped and non-typable Streptococcus pneumoniae isolates.

    PubMed

    Salter, S J; Hinds, J; Gould, K A; Lambertsen, L; Hanage, W P; Antonio, M; Turner, P; Hermans, P W M; Bootsma, H J; O'Brien, K L; Bentley, S D

    2012-06-01

    The capsule polysaccharide locus (cps) is the site of the capsule biosynthesis gene cluster in encapsulated Streptococcus pneumoniae. A set of pneumococcal samples and non-pneumococcal streptococci from Denmark, the Gambia, the Netherlands, Thailand, the UK and the USA were sequenced at the cps locus to elucidate serologically mistyped or non-typable isolates. We identified a novel serotype 33B/33C mosaic capsule cluster and previously unseen serotype 22F capsule genes, disrupted and deleted cps clusters, the presence of aliB and nspA genes that are unrelated to capsule production, and similar genes in the non-pneumococcal samples. These data provide greater understanding of diversity at a locus which is crucial to the antigenic diversity of the pathogen and current vaccine strategies.

  17. Region-specific diversification of the highly virulent serotype 1 Streptococcus pneumoniae

    PubMed Central

    Chaguza, Chrispin; Harris, Simon R.; Yalcin, Feyruz; Senghore, Madikay; Kiran, Anmol M.; Govindpershad, Shanil; Ousmane, Sani; Plessis, Mignon Du; Pluschke, Gerd; Ebruke, Chinelo; McGee, Lesley; Sigaùque, Beutel; Collard, Jean-Marc; Antonio, Martin; von Gottberg, Anne; French, Neil; Klugman, Keith P.; Heyderman, Robert S.; Bentley, Stephen D.; Everett, Dean B.

    2015-01-01

    Serotype 1 Streptococcus pneumoniae is a leading cause of invasive pneumococcal disease (IPD) worldwide, with the highest burden in developing countries. We report the whole-genome sequencing analysis of 448 serotype 1 isolates from 27 countries worldwide (including 11 in Africa). The global serotype 1 population shows a strong phylogeographic structure at the continental level, and within Africa there is further region-specific structure. Our results demonstrate that region-specific diversification within Africa has been driven by limited cross-region transfer events, genetic recombination and antimicrobial selective pressure. Clonal replacement of the dominant serotype 1 clones circulating within regions is uncommon; however, here we report on the accessory gene content that has contributed to a rare clonal replacement event of ST3081 with ST618 as the dominant cause of IPD in the Gambia. PMID:28348812

  18. Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation

    NASA Astrophysics Data System (ADS)

    Allen, C. A.; Galindo, C. L.; Pandya, U.; Watson, D. A.; Chopra, A. K.; Niesel, D. W.

    2007-02-01

    High-aspect rotating vessels (HARVs) are used to study the effects low-shear modeled microgravity (LSMMG) on bacterial gene expression. LSMMG is generated by orienting HARVs with the axis of rotation perpendicular to the gravity vector while gravitational controls are oriented with the axis of rotation parallel to the gravity vector. Microarray analysis was performed on Streptococcus pneumoniae TIGR4 grown in HARVs under three conditions (LSMMG, 1×g, and static) to determine if global transcriptional activity is altered between different gravitational controls and LSMMG. Results revealed 101 differentially expressed genes under static conditions compared to 1×g, 46 genes between 1×g and LSMMG, and nine genes between static and LSMMG. Hierarchical cluster analysis revealed 15 genes exhibiting similar expression patterns under static conditions compared to 1×g. These results indicate that rotation, in addition to low-shear forces, might contribute to bacterial adaptation to the LSMMG.

  19. Antimicrobial activity and a comparison of published pharmacodynamics of gemifloxacin and eight fluoroquinolones against Streptococcus pneumoniae.

    PubMed

    Saravolatz, Louis; Manzor, Odette; Pawlak, Joan; Belian, Bradley

    2005-07-01

    Gemifloxacin was evaluated for its in vitro activity and was compared with eight fluoroquinolones. Pharmacodynamic comparisons were made based on published pharmacokinetic information. Gemifloxacin demonstrated excellent in vitro activity (minimum inhibitory concentration necessary to inhibit 90% of the strains tested, MIC90 = 0.03 mg/L (range 0.0019-0.03 mg/L)) against 199 strains of Streptococcus pneumoniae. Its activity was not influenced by penicillin or ciprofloxacin non-susceptibility. Gemifloxacin demonstrated excellent pharmacodynamic parameters, with a Cmax/MIC90 of 67 (where Cmax is the peak serum level) and an AUC/MIC90 of 297 (where AUC is the area under the curve). Compared with the other eight fluoroquinolones tested, gemifloxacin demonstrated the best in vitro activity and Cmax/MIC90.

  20. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae.

    PubMed Central

    Hakenbeck, R; Tarpay, M; Tomasz, A

    1980-01-01

    Penicillin-binding properties and characteristics of penicillin-binding proteins (PBPs) were investigated in several clinical isolates of Streptococcus pneumoniae differing in their susceptibilities to penicillin (minimal inhibitory concentration [MIC], 0.03 to 0.5 microgram/ml) and compared with the penicillin-susceptible strain R36A (MIC, 0.07 microgram/ml). Several changes accompanied the development of resistance: the relative affinity to penicillin of whole cells, isolated membranes, and two major PBPs after in vivo or in vitro labeling decreased (with increasing resistance). Furthermore, one additional PBP (2') appeared in four of five relatively resistant strains with an MIC of 0.25 microgram/ml and higher. PBP 3 maintained the same high affinity toward penicillin in all strains under all labeling conditions. Images PMID:7425601

  1. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae

    PubMed Central

    Begg, Stephanie L.; Eijkelkamp, Bart A.; Luo, Zhenyao; Couñago, Rafael M.; Morey, Jacqueline R.; Maher, Megan J.; Ong, Cheryl-lynn Y.; McEwan, Alastair G.; Kobe, Bostjan; O’Mara, Megan L.; Paton, James C.; McDevitt, Christopher A.

    2015-01-01

    Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth’s crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress. PMID:25731976

  2. Identification of proteins in Streptococcus pneumoniae by reverse vaccinology and genetic diversity of these proteins in clinical isolates.

    PubMed

    Argondizzo, Ana Paula Corrêa; da Mota, Fabio Faria; Pestana, Cristiane Pinheiro; Reis, Joice Neves; de Miranda, Antonio Basílio; Galler, Ricardo; Medeiros, Marco Alberto

    2015-02-01

    Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. Our aim was to identify conserved targets in pneumococci that showed positive prediction for lipoprotein and extracellular subcellular location using bioinformatics programs and verify the distribution and the degree of conservation of these targets in pneumococci. These targets can be considered potential vaccine candidate to be evaluated in the future. A set of 13 targets were analyzed and confirmed the presence in all pneumococci tested. These 13 genes were highly conserved showing around >96 % of amino acid and nucleotide identity, but they were also present and show high identity in the closely related species Streptococcus mitis, Streptococcus oralis, and Streptococcus pseudopneumoniae. S. oralis clusters away from S. pneumoniae, while S. pseudopneumoniae and S. mitis cluster closer. The divergence between the selected targets was too small to be observed consistently in phylogenetic groups between the analyzed genomes of S. pneumoniae. The proteins analyzed fulfill two of the initial criteria of a vaccine candidate: targets are present in a variety of different pneumococci strains including different serotypes and are conserved among the samples evaluated.

  3. The efficacy of pneumococcal capsular polysaccharide-specific antibodies to serotype 3 Streptococcus pneumoniae requires macrophages.

    PubMed

    Fabrizio, Kevin; Manix, Catherine; Tian, Haijun; van Rooijen, Nico; Pirofski, Liise-anne

    2010-11-03

    The efficacy of antibody immunity against Streptococcus pneumoniae stems from the ability of opsonic, serotype (ST)-specific antibodies to pneumococcal capsular polysaccharide (PPS) to facilitate killing of the homologous ST by host phagocytes. However, PPS-specific antibodies have been identified that are protective in mice, but do not promote opsonic killing in vitro, raising the question of how they mediate protection in vivo. To probe this question, we investigated the dependence of antibody efficacy against lethal systemic (intraperitoneal, i.p.) infection with Streptococcus pneumoniae serotype 3 (ST3) on macrophages and neutrophils for the following PPS3-specific monoclonal antibodies (MAbs) in survival experiments in mice using a non-opsonic human IgM (A7), a non-opsonic mouse IgG1 (1E2) and an opsonic mouse IgG1 (5F6). The survival of A7- and PPS3-specific and isotype control MAb-treated neutrophil-depleted and neutrophil-sufficient and macrophage-depleted and macrophage-sufficient mice were determined after i.p. challenge with ST3 strains 6303 and WU2. Neutrophils were dispensable for A7 and the mouse MAbs to mediate protection in this model, but macrophages were required for the efficacy of A7 and optimal mouse MAb-mediated protection. For A7-treated mice, macrophage-depleted mice had higher blood CFU, cytokines and peripheral neutrophil levels than macrophage-sufficient mice, and macrophage-sufficient mice had lower tissue bacterial burdens than control MAb-treated mice. These findings demonstrate that macrophages contribute to opsonic and non-opsonic PPS3-specific MAb-mediated protection against ST3 infection by enhancing bacterial clearance and suggest that neutrophils do not compensate for the absence of macrophages in the model used in this study.

  4. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    PubMed

    Yadav, Mukesh Kumar; Go, Yoon Young; Chae, Sung-Won; Song, Jae-Jun

    2015-01-01

    Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered

  5. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro

    PubMed Central

    Yadav, Mukesh Kumar; Go, Yoon Young; Chae, Sung-Won; Song, Jae-Jun

    2015-01-01

    Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered

  6. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae

    PubMed Central

    Peñaloza, Hernán F; Nieto, Pamela A; Muñoz-Durango, Natalia; Salazar-Echegarai, Francisco J; Torres, Javiera; Parga, María J; Alvarez-Lobos, Manuel; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2015-01-01

    Streptococcus pneumoniae is a major aetiological agent of pneumonia worldwide, as well as otitis media, sinusitis, meningitis and sepsis. Recent reports have suggested that inflammation of lungs due to S. pneumoniae infection promotes bacterial dissemination and severe disease. However, the contribution of anti-inflammatory molecules to the pathogenesis of S. pneumoniae remains unknown. To elucidate whether the production of the anti-inflammatory cytokine interleukin-10 (IL-10) is beneficial or detrimental for the host during pneumococcal pneumonia, we performed S. pneumoniae infections in mice lacking IL-10 (IL-10−/− mice). The IL-10−/− mice showed increased mortality, higher expression of pro-inflammatory cytokines, and an exacerbated recruitment of neutrophils into the lungs after S. pneumoniae infection. However, IL-10−/− mice showed significantly lower bacterial loads in lungs, spleen, brain and blood, when compared with mice that produced this cytokine. Our results support the notion that production of IL-10 during S. pneumoniae infection modulates the expression of pro-inflammatory cytokines and the infiltration of neutrophils into the lungs. This feature of IL-10 is important to avoid excessive inflammation of tissues and to improve host survival, even though bacterial dissemination is less efficient in the absence of this cytokine. PMID:26032199

  7. Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae.

    PubMed

    Phipps, John C; Aronoff, David M; Curtis, Jeffrey L; Goel, Deepti; O'Brien, Edmund; Mancuso, Peter

    2010-03-01

    Cigarette smoke exposure increases the risk of pulmonary and invasive infections caused by Streptococcus pneumoniae, the most commonly isolated organism from patients with community-acquired pneumonia. Despite this association, the mechanisms by which cigarette smoke exposure diminishes host defense against S. pneumoniae infections are poorly understood. In this study, we compared the responses of BALB/c mice following an intratracheal challenge with S. pneumoniae after 5 weeks of exposure to room air or cigarette smoke in a whole-body exposure chamber in vivo and the effects of cigarette smoke on alveolar macrophage phagocytosis of S. pneumoniae in vitro. Bacterial burdens in cigarette smoke-exposed mice were increased at 24 and 48 h postinfection, and this was accompanied by a more pronounced clinical appearance of illness, hypothermia, and increased lung homogenate cytokines interleukin-1beta (IL-1beta), IL-6, IL-10, and tumor necrosis factor alpha (TNF-alpha). We also found greater numbers of neutrophils in bronchoalveolar lavage fluid recovered from cigarette smoke-exposed mice following a challenge with heat-killed S. pneumoniae. Interestingly, overnight culture of alveolar macrophages with 1% cigarette smoke extract, a level that did not affect alveolar macrophage viability, reduced complement-mediated phagocytosis of S. pneumoniae, while the ingestion of unopsonized bacteria or IgG-coated microspheres was not affected. This murine model provides robust additional support to the hypothesis that cigarette smoke exposure increases the risk of pneumococcal pneumonia and defines a novel cellular mechanism to help explain this immunosuppressive effect.

  8. [Evaluation of penicillin-binding protein genotypes in penicillin susceptible and resistant Streptococcus pneumoniae isolates].

    PubMed

    Aslan, Gönül; Tezcan, Seda; Delialioğlu, Nuran; Aydın, Fatma Esin; Kuyucu, Necdet; Emekdaş, Gürol

    2012-04-01

    Penicillin-binding proteins (PBPs) are the natural targets of beta-lactam antibiotics and mutations in pbp1a, pbp2b, and pbp2x genes, which encode PBPs, are responsible for resistance to beta-lactams in Streptococcus pneumoniae. In the present study, we intended to determine how often the common mutation patterns occurred within the pbp1a, pbp2b, and pbp2x PBP gene regions and evaluate the PBP genotype mutations which were associated with penicillin resistance in several penicillin-susceptible and - resistant S.pneumoniae isolates in Mersin, Turkey. A total of 62 S.pneumoniae strains isolated from different clinical specimens (32 nasopharyngeal swab, 16 sputum, 3 blood, 3 wound, 2 cerebrospinal fluids and one of each urine, abscess, bronchoalveolar lavage, conjunctival swab, tracheal aspirate, middle ear effusion) were included in the study. Penicillin susceptibilities of the isolates were searched by disc diffusion and E-test methods, and 23 of them were identified as susceptible, 31 were intermediate susceptible, and eight were resistant to penicillin. A rapid DNA extraction procedure was performed for the isolation of nucleic acids from the strains. Distribution of PBP gene mutations in pbp1a, pbp2b, and pbp2x gene regions related to penicillin resistance was determined by using a wild-type specific polymerase chain reaction (PCR) based technique. PBP gene alterations of those isolates were also evaluated in relation to penicillin susceptibility and resistance patterns. Twenty two (95.7%) of 23 penicillin-susceptible S.pneumoniae isolates exhibited no mutation in the three PBP genes (pbp1a, pbp2x, and pbp 2b), while 1 (4.3%) of these harbored mutations in all of the three PBP genes. The penicillin-intermediate susceptible S.pneumoniae isolates exhibited various combinations of mutations. One (3.2%) of 31 penicillin-intermediate susceptible isolates exhibited no mutation in the three PBP genes, while 22 (71%) of them yielded mutations in all of the three PBP

  9. Antibody and splenocyte proliferation response to whole inactivated Streptococcus pneumoniae serotype 1, 3 and 6B in mice.

    PubMed

    Pană, Marina; Orhan, Rasid; Bănică, Leontina; Iancu, Adina Daniela; Stăvaru, Crina

    2011-01-01

    Animal models of infection and protection on the topic of the Streptococcus pneumoniae (S. pneumoniae) have encountered many difficulties generated by low immunogenicity, a characteristic of polysaccharide capsular bacteria and difference of virulence between serotypes and strains. We have explored the immune response after immunization with heat inactivated S. pneumoniae serotype 1, 3 and 6B in C57BL/6 mice by IgM and IgG detection, and by splenocyte in vitro 5-ethynyl-2'-deoxyuridine (EdU) incorporation after antigen specific stimulation, as a proposed method of cellular immune response evaluation. Antibody titer persistence after immunization was not lengthy while antigen specific proliferation response detected by EdU assay was remnant. Intraperitoneal (i.p.) challenge with serotype 6B S. pneumoniae proved that antibody titers and the detected specific cellular immune response do not cover seroprotective necessity and do not confer improved immunologic memory in comparison to non-immunized mice, which show natural resistance.

  10. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis.

    PubMed

    Mascher, Thorsten; Zähner, Dorothea; Merai, Michelle; Balmelle, Nadège; de Saizieu, Antoine B; Hakenbeck, Regine

    2003-01-01

    The ciaR-ciaH system is one of 13 two-component signal-transducing systems of the human pathogen Streptococcus pneumoniae. Mutations in the histidine protein kinase CiaH confer increased resistance to beta-lactam antibiotics and interfere with the development of genetic competence. In order to identify the genes controlled by the cia system, the cia regulon, DNA fragments targeted by the response regulator CiaR were isolated from restricted chromosomal DNA using the solid-phase DNA binding assay and analyzed by hybridization to an oligonucleotide microarray representing the S. pneumoniae genome. A set of 18 chromosomal regions containing 26 CiaR target sites were detected and proposed to represent the minimal cia regulon. The putative CiaR target loci included genes important for the synthesis and modification of cell wall polymers, peptide pheromone and bacteriocin production, and the htrA-spo0J region. In addition, the transcription profile of cia loss-of-function mutants and those with an apparent activated cia system representing the off and on states of the regulatory system were analyzed. The transcript analysis confirmed the cia-dependent expression of seven putative target loci and revealed three additional cia-regulated loci. Five putative target regions were silent under all conditions, and for the remaining three regions, no cia-dependent expression could be detected. Furthermore, the competence regulon, including the comCDE operon required for induction of competence, was completely repressed by the cia system.

  11. Preparation of inocula for experimental infection of blood with Streptococcus pneumoniae

    PubMed Central

    Vivas-Alegre, Santiago; Fernández-Natal, Isabel; López-Fidalgo, Eduardo; Rivero-Lezcano, Octavio Miguel

    2015-01-01

    Experimental infections of either cells or animals require the preparation of good quality inocula. Unfortunately, the important pulmonary pathogen Streptococcus pneumoniae is a fastidious microorganism that suffers an autolysis process when cultured in vitro. Supplementation of Todd–Hewitt broth with a biological buffer (20 mM Tris–HCl, pH = 7.8) promotes a six hours delay in the beginning of the autolysis process. Additional improvements include washing bacteria before freezing, avoiding manipulations after thawing, and the use of glycerol (<18%) as a cryoprotectant, instead of reagents like skimmed milk that may affect cell cultures. With the proposed protocol >70% of the frozen bacteria was viable after 28 weeks at −80 °C, and aliquots were highly homogeneous. We have tested their utility in a whole blood infection model and have found that human plasma exhibits a higher microbicidal activity than whole blood, a result that we have not found previously reported. Additionally, we have also observed significant variations in the antimicrobial activity against different strains, which might be related to their virulence.•Media culture buffering extends S. pneumoniae viability for 6 h.•Washing before freezing of single use aliquots minimizes manipulation after thawing.•Experimental infection with the frozen inocula has shown that plasma has higher bactericidal activity than blood. PMID:26844211

  12. Clinical Characteristics of Streptococcus Pneumoniae Meningoencephalitis after Transsphenoidal Surgery: Three Case Reports

    PubMed Central

    KOBAYASHI, Nobuyuki; FUKUHARA, Noriaki; FUKUI, Takahito; YAMAGUCHI-OKADA, Mitsuo; NISHIOKA, Hiroshi; YAMADA, Shozo

    2014-01-01

    We report three extremely rare cases of Streptococcus pneumoniae meningoencephalitis (SPM) after transsphenoidal surgery (TSS). Between 2004 and 2010, we experienced three cases of severe SPM after surgery out of 1,965 patients undergoing TSS (0.15%). The three cases included a 4-year-old boy with a large cystic craniopharyngioma, a 40-year-old man with a non-functioning pituitary adenoma, and a 55-year-old man with acromegaly. The similarity among these SPM patients was that severe clinical events occurred suddenly 1–2 months postoperatively without any history of sinusitis or pneumonia. Despite intensive care these patients notably had residual neurological sequelae. In no case was rhinorrhea associated with SPM. It should be noted that SPM was not detected from bacterial cultures of the sphenoidal sinus mucous membranes (BCSM) obtained during TSS in two of the patients examined. Severe postoperative SPM can occur suddenly without cerebrospinal fluid (CSF) leakage within 2 months after surgery and requires emergency treatment. Reduced resistance to infection may play a role in the occurrence of SPM in our three patients. Our study indicates that BCSM is not useful for predicting postoperative meningitis. PMID:24418784

  13. Tex, a putative transcriptional accessory factor, is involved in pathogen fitness in Streptococcus pneumoniae.

    PubMed

    He, Xiangyun; Thornton, Justin; Carmicle-Davis, Stephanie; McDaniel, Larry S

    2006-12-01

    We have identified a pneumococcal gene, tex, which has the potential to regulate gene expression. The tex gene is named for its role in toxin expression in Bordetella pertussis, where it was characterized as an essential gene. Homologous sequences have been found in both Gram-positive and Gram-negative bacteria and are highly conserved at the protein level. Tex family proteins contain a S1 RNA-binding domain at the C-terminus. Members of this family are putative transcriptional accessory factors. Although tex in Streptococcus pneumoniae is homologous to that in B. pertussis, there are distinct differences. Since the tex gene in S. pneumoniae is not an essential gene, we were able to delete tex in strain D39. The tex knockout mutant, DeltaTex, did not affect production of the pneumococcal toxin pneumolysin. However, we observed decreased growth of DeltaTex in the presence of the wild-type strain both in vitro and in vivo as determined by generation numbers and competitive index (CI). The interaction between recombinant Tex and nucleic acids was confirmed by southwestern and northwestern analysis, supporting its role as a transcriptional accessory factor.

  14. Multidrug-Resistant Streptococcus pneumoniae Isolates from Healthy Ghanaian Preschool Children.

    PubMed

    Dayie, Nicholas T K D; Arhin, Reuben E; Newman, Mercy J; Dalsgaard, Anders; Bisgaard, Magne; Frimodt-Møller, Niels; Slotved, Hans-Christian

    2015-12-01

    Streptococcus pneumoniae is the cause of high mortality among children worldwide. Antimicrobial treatment and vaccination are used to control pneumococcal infections. In Ghana, data on antimicrobial resistance and the prevalence of multidrug-resistant pneumococcal clones are scarce; hence, the aim of this study was to determine the antibiogram of S. pneumoniae recovered from Ghanaian children younger than six years of age and to what extent resistances were due to the spread of certain sero- and multilocus sequence typing (MLST) types. The susceptibility of 115 pneumococcal isolates, recovered in a previous study, to six antimicrobials was determined by disk diffusion test. Overall, 90.4% of isolates were intermediate penicillin resistant, 99.1% were trimethoprim resistant, 73.0% were tetracycline resistant, and 33.9% were sulfamethoxazole resistant. Low resistance was recorded for erythromycin (2.6%) and cefotaxime (5.2%). Overall, 72.2% of isolates were resistant to penicillin (I or R) and at least two other antimicrobials. MLST of 20 isolates showing resistance to at least four antimicrobials revealed a high diversity documented by 16 different clones, none of which had previously been associated with multidrug resistance. The resistances found may have emerged due to nonprudent antimicrobial use practices and there is a need to monitor and promote prudent antimicrobial usage in Ghana.

  15. Penicillin susceptibility of non-serotypeable Streptococcus pneumoniae from ophthalmic specimens.

    PubMed

    Kojima, Fumiko; Nakagami, Yoshiko; Takemori, Koichi; Iwatani, Yoshinori; Fujimoto, Shuji

    2006-01-01

    Nontypeable (NT) Streptococcus pneumoniae strains isolated from eyes were examined for both penicillin susceptibility by E-test and penicillin-binding protein (PBP) gene alterations using PCR. Of the 25 ophthalmic isolates, 15 proved to be sensitive (PSSP, MIC < or = 0.06 microg/ml) and 10 were shown as intermediately resistant to penicillin (PISP, MIC = 0.1-1 microg/ml). No penicillin-resistant S. pneumoniae (PRSP, MIC > or = 2 microg/ml) were found. PBP gene (pbp1a and pbp2b) alteration PCR indicated that 12 (80.0%) of the 15 ophthalmic PSSPs had unaltered pbp genes and that 3 (20.0%) had alterations in either pbp1a or pbp2b, whereas 8 (80.0%) of the 10 PISPs had unaltered pbp genes and 2 (20.0%) had alterations in both pbp1a and pbp2b. These data suggest that penicillin resistance is spread among NT pneumococci typically associated with ophthalmic infections.

  16. Genomic analyses of DNA transformation and penicillin resistance in Streptococcus pneumoniae clinical isolates.

    PubMed

    Fani, Fereshteh; Leprohon, Philippe; Zhanel, George G; Bergeron, Michel G; Ouellette, Marc

    2014-01-01

    Alterations in penicillin-binding proteins, the target enzymes for β-lactam antibiotics, are recognized as primary penicillin resistance mechanisms in Streptococcus pneumoniae. Few studies have analyzed penicillin resistance at the genome scale, however, and we report the sequencing of S. pneumoniae R6 transformants generated while reconstructing the penicillin resistance phenotypes from three penicillin-resistant clinical isolates by serial genome transformation. The genome sequences of the three last-level transformants T2-18209, T5-1983, and T3-55938 revealed that 16.2 kb, 82.7 kb, and 137.2 kb of their genomes had been replaced with 5, 20, and 37 recombinant sequence segments derived from their respective parental clinical isolates, documenting the extent of DNA transformation between strains. A role in penicillin resistance was confirmed for some of the mutations identified in the transformants. Several multiple recombination events were also found to have happened at single loci coding for penicillin-binding proteins (PBPs) that increase resistance. Sequencing of the transformants with MICs for penicillin similar to those of the parent clinical strains confirmed the importance of mosaic PBP2x, -2b, and -1a as a driving force in penicillin resistance. A role in resistance for mosaic PBP2a was also observed for two of the resistant clinical isolates.

  17. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae

    PubMed Central

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345

  18. Overexpression, purification and crystallization of a choline-binding protein CbpI from Streptococcus pneumoniae

    SciTech Connect

    Paterson, Neil G. Riboldi-Tunicliffe, Alan; Mitchell, Timothy J.; Isaacs, Neil W.

    2006-07-01

    The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γ = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.

  19. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae.

    PubMed

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.

  20. Streptococcus pneumoniae sepsis as the initial presentation of systemic lupus erythematosus

    PubMed Central

    Erdem, Ilknur; Elbasan Omar, Senay; Ali, Ridvan Kara; Gunes, Hayati; Topkaya, Aynur Eren

    2016-01-01

    Objective Infections are among the most important causes of morbidity and mortality in patients with systemic lupus erythematosus (SLE) but are rare initial presentation of the disease. Therefore, in this study, we describe a case of Streptococcus pneumoniae sepsis in a young woman with previously undiagnosed SLE. Case report A 23-year-old female patient was admitted to our outpatient clinic complaining of high fever (40°C), chills, fatigue, generalized myalgia, and cough with brown sputum for 5 days. Blood cultures grew gram-positive coccus defined as S. pneumoniae using standard procedures. Antinuclear antibody was positive at a titer of 1/1,000, and anti-double-stranded DNA was positive at 984 IU/mL. She was diagnosed with SLE. Her respiratory symptoms and pleural effusion were considered to be due to pulmonary manifestation of SLE. Conclusion The underlying immunosuppression caused by SLE could have predisposed the patient to invasive pneumococcal disease. It may also occur as a primary presenting feature, although a rare condition. PMID:27660485

  1. Increase in pilus islet 2-encoded pili among Streptococcus pneumoniae isolates, Atlanta, Georgia, USA.

    PubMed

    Zähner, Dorothea; Gudlavalleti, Aditya; Stephens, David S

    2010-06-01

    To define the prevalence of pilus islet 2 (PI-2)-encoded pili in Streptococcus pneumoniae in a geographically defined area, we examined 590 S. pneumoniae isolates from population-based surveillance of invasive pneumococcal disease in Atlanta, Georgia, USA, 1994-2006. In 2006, PI-2 was present in 21% of all invasive isolates, including serotypes 1 (100%), 7F (89%), 11A (21%), 19A (40%), and 19F (75%). Only serotype 19F is included in the 7-valent pneumococcal conjugate vaccine that is in use worldwide. In 1999, PI-2-containing isolates were of the same serotypes but accounted for only 3.6% of all invasive isolates. The increase of PI-2 in 2006 resulted predominantly from the emergence of serotype 19A isolates of sequence type 320 and the expansion of serotype 7F isolates. The increase in PI-2-containing isolates and the finding that isolates of all identified serotypes expressed highly conserved PI-2 pili supports their potential as a vaccine candidate.

  2. Characterization of Streptococcus pneumoniae invasive serotype 19A isolates recovered in Colombia.

    PubMed

    Ramos, Viviana; Parra, Eliana L; Duarte, Carolina; Moreno, Jaime

    2014-02-07

    The aim of this study was to determine the molecular characterization of invasive penicillin non-susceptible Streptococcus pneumoniae serotype 19A isolates, collected in Colombia between 1994 and 2012. A total of 115 isolates serotype 19A were analyzed. Genetic relationship of 80 isolates with minimal inhibitory concentration (MIC) to penicillin ≥0.125 μg/was determined by pulsed-field gel electrophoresis (PFGE) and selected strains were studied by multilocus sequence typing (MLST). Among the 115 isolates, resistance to penicillin in meningitis was 64.2%, in non-meningitis 32.2% were intermediate and 1.1% were high resistance. The most frequent sequence types were ST320 (33.7%), ST276 (21.5%), and ST1118 (11.2%). Five isolates were associated with the Spain(9V)-ST156 clone, and two isolates were related to Colombia(23F)-ST338 clone. S. pneumoniae serotype 19A increased in Colombia was associated with the spread of isolates genetically related to ST320 and ST276, and emergence of capsular variants of worldwide-disseminated clones.

  3. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae

    PubMed Central

    Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M.

    2016-01-01

    Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4′-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems. PMID:27257160

  4. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae.

    PubMed

    Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M

    2016-06-03

    Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4'-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems.

  5. Structure of the fucose mutarotase from Streptococcus pneumoniae in complex with L-fucose.

    PubMed

    Higgins, Melanie A; Boraston, Alisdair B

    2011-12-01

    Streptococcus pneumoniae relies on a variety of carbohydrate-utilization pathways for both colonization of its human host and full virulence during the development of invasive disease. One such pathway is the fucose-utilization pathway, a component of which is fucose mutarotase (SpFcsU), an enzyme that performs the interconversion between α-L-fucose and β-L-fucose. This protein was crystallized and its three-dimensional structure was solved in complex with L-fucose. The structure shows a complex decameric quaternary structure with a high overall degree of structural identity to Escherichia coli FcsU (EcFcsU). Furthermore, the active-site architecture of SpFcsU is highly similar to that of EcFcsU. When considered in the context of the fucose-utilization pathway found in S. pneumoniae, SpFcsU appears to link the two halves of the pathway by enhancing the rate of conversion of the product of the final glycoside hydrolysis step, β-fucose, into the substrate for the fucose isomerase, α-fucose.

  6. Characterization of Pneumonia Due to Streptococcus equi subsp. zooepidemicus in Dogs▿

    PubMed Central

    Priestnall, Simon L.; Erles, Kerstin; Brooks, Harriet W.; Cardwell, Jacqueline M.; Waller, Andrew S.; Paillot, Romain; Robinson, Carl; Darby, Alistair C.; Holden, Matthew T. G.; Schöniger, Sandra

    2010-01-01

    Streptococcus equi subsp. zooepidemicus has been linked to cases of acute fatal pneumonia in dogs in several countries. Outbreaks can occur in kenneled dog populations and result in significant levels of morbidity and mortality. This highly contagious disease is characterized by the sudden onset of clinical signs, including pyrexia, dyspnea, and hemorrhagic nasal discharge. The pathogenesis of S. equi subsp. zooepidemicus infection in dogs is poorly understood. This study systematically characterized the histopathological changes in the lungs of 39 dogs from a large rehoming shelter in London, United Kingdom; the dogs were infected with S. equi subsp. zooepidemicus. An objective scoring system demonstrated that S. equi subsp. zooepidemicus caused pneumonia in 26/39 (66.7%) dogs, and most of these dogs (17/26 [65.4%]) were classified as severe fibrino-suppurative, necrotizing, and hemorrhagic. Three recently described superantigen genes (szeF, szeN, and szeP) were detected by PCR in 17/47 (36.2%) of the S. equi subsp. zooepidemicus isolates; however, there was no association between the presence of these genes and the histopathological score. The lungs of S. equi subsp. zooepidemicus-infected dogs with severe respiratory signs and lung pathology did however have significantly higher mRNA levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 8 (IL-8) than in uninfected controls, suggesting a role for an exuberant host immune response in the pathogenesis of this disease. PMID:20861329

  7. [Antibiotic resistance in Streptococcus pneumoniae strains isolated from sterile body sites].

    PubMed

    Oznur, A K; Ozer, Serdar; Benzonana, Nur A

    2006-07-01

    Antibiotic resistance in Streptococcus pneumoniae has become an important issue in the last years. Penicillin resistance rates vary among countries and among different regions in countries. It is important to know penicillin resistance rates among isolates, in planning empirical antimicrobial therapy in pneumococcal infections. In this study, the antibiotic resistance rates of S. pneumoniae strains isolated from sterile body sites were investigated with both E-test and disc diffusion methods for penicillin, erythromycin, levofloxacin, and with only disc diffusion method for chloramphenicol, ceftriaxone, vancomycin, rifampin, trimethoprim-sulfamethoxazole (TMP-SMX), clindamycin, and tetracycline. A total of 165 strains were included into the study of which 52 were isolated from blood, 46 from cerebrospinal fluids, 25 from pleural fluids, 24 from dacryocystitis materials, 13 from tympanocentesis materials, 3 from joint fluids and 2 from wound specimens. Intermediate resistance to penicilin was 18.8%, while the resistance rates to TMP-SMX, tetracycline, chloramphenicol, erythromycin and levofloxacin were detected as 21.2%, 10.9%, 9.7%, 5.4% and 0.6%, respectively. None of the isolates were highly resistant to penicillin, nor resistant to vancomycin, ceftriaxone and rifampin. In conclusion, penicillin is still the first line therapeutic agent for pneumococcal infections except for severe infections such as meningitis, in our region.

  8. [Epidemiological study of levofloxacin-resistant Streptococcus pneumoniae isolated from 2003 through 2006 in Japan].

    PubMed

    Sohma, Maemi; Yokozawa, Ikuyo; Kaneko, Shingaku; Satake, Sachiko

    2009-03-01

    We evaluated the usefulness of WHONET, free software from the World Health Organization (WHO), in a laboratory-based survey analyzing infectious disease, i.e., Streptococcus pneumoniae, and its antimicrobial susceptibility, i.e., to levofloxacin (LVFX), between 2003 and 2006 at 5 hospitals. The percentage of resistant strains (MIC > or = 8 microg/mL) isolated by the Maebashi Red Cross Hospital Laboratory between 2003 and 2005 was 3.8% (26/684 = number of resistant isolates/number of all isolates), significantly higher (p<0.001, Fisher's exact test) than the 0.5% (8/1717) recorded at 4 other hospital laboratories. In 2006 the Maebashi Red Cross Hospital Laboratory percentage of resistant strains was 0.9% (2/221) in the absence of intervention to reduce the percentage of resistant isolates, while that at 4 other hospital laboratories was 1.3% (9/ 717)--a difference not statistically significant (p = 0.574). Of resistant strains, 86% (24/28) came from patients older than 67 years and 71% (20/28) from outpatients or those newly hospitalized 1 or 2 days. Where and when pathogens are isolated are the two priority factors in epidemiological analysis. Superimposing plot of patient residences and isolated times of LVFX-resistant S. pneumoniae strains for each incidences showed no unusual trends in pathogen distribution. Analysis of possible multiple drug resistance for all LVFX-resistant S. pneumoniae isolates, i.e., resistance profile determination, indicated that no strain isolated in any one-month period shared an identical resistance profile, suggesting that the probability of a community outbreak of one specific S. pneumoniae strain is minimal. We did not find possible causes for the high resistance percentage of isolates recorded by the Maebashi Red Cross Hospital Laboratory during 2003-2005, or for the low resistance percentage for strains isolated during 2006. Analysis of our survey indicated that LVFX-resistant S. pneumoniae isolates are still rare in the

  9. In vitro activity of telithromycin against Spanish Streptococcus pneumoniae isolates with characterized macrolide resistance mechanisms.

    PubMed

    Morosini, M I; Cantón, R; Loza, E; Negri, M C; Galán, J C; Almaraz, F; Baquero, F

    2001-09-01

    The susceptibilities to telithromycin of 203 Streptococcus pneumoniae isolates prospectively collected during 1999 and 2000 from 14 different geographical areas in Spain were tested and compared with those to erythromycin A, clindamycin, quinupristin-dalfopristin, penicillin G, cefotaxime, and levofloxacin. Telithromycin was active against 98.9% of isolates (MICs, < or =0.5 microg/ml), with MICs at which 90% of isolates are inhibited being 0.06 microg/ml, irrespective of the resistance genotype. The corresponding values for erythromycin were 61.0% (MICs, < or =0.25 microg/ml) and >64 microg/ml. The erm(B) gene (macrolide-lincosamide-streptogramin B resistance phenotype) was detected in 36.4% (n = 74) of the isolates, which corresponded to 93.6% of erythromycin-intermediate and -resistant isolates, whereas the mef(A) gene (M phenotype [resistance to erythromycin and susceptibility to clindamycin and spiramycin without blunting]) was present in only 2.4% (n = 5) of the isolates. One of the latter isolates also carried erm(B). Interestingly, in one isolate for which the erythromycin MIC was 2 microg/ml, none of these resistance genes could be detected. Erythromycin MICs for S. pneumoniae erm(B)-positive isolates were higher (range, 0.5 to >64 microg/ml) than those for erm(B)- and mef(A)-negative isolates (range, 0.008 to 2 microg/ml). The corresponding values for telithromycin were lower for both groups, with ranges of 0.004 to 1 and 0.002 to 0.06 microg/ml, respectively. The erythromycin MIC was high for a large number of erm(B)-positive isolates, but the telithromycin MIC was low for these isolates. These results indicate the potential usefulness of telithromycin for the treatment of infections caused by erythromycin-susceptible and -resistant S. pneumoniae isolates when macrolides are indicated.

  10. Streptococcus pneumoniae Enhances Human Respiratory Syncytial Virus Infection In Vitro and In Vivo

    PubMed Central

    Nguyen, D. Tien; Louwen, Rogier; Elberse, Karin; van Amerongen, Geert; Yüksel, Selma; Luijendijk, Ad; Osterhaus, Albert D. M. E.; Duprex, W. Paul; de Swart, Rik L.

    2015-01-01

    Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate

  11. Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae.

    PubMed

    Mura, Andrea; Fadda, Daniela; Perez, Amilcar J; Danforth, Madeline L; Musu, Daniela; Rico, Ana Isabel; Krupka, Marcin; Denapaite, Dalia; Tsui, Ho-Ching T; Winkler, Malcolm E; Branny, Pavel; Vicente, Miguel; Margolin, William; Massidda, Orietta

    2016-11-21

    Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli such as Escherichia coli and Bacillus subtilis In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis, but not peripheral PG synthesis; hence inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF, which in B. subtilis are synthetically lethal with ftsA, resulted in enlarged and elongated cells, with multiple FtsZ rings, the latter mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z ring assembly. Overproduction of FtsA stimulates septation and suppresses the cell division defects caused by deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae, both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell.

  12. Streptococcus pneumoniae Enhances Human Respiratory Syncytial Virus Infection In Vitro and In Vivo.

    PubMed

    Nguyen, D Tien; Louwen, Rogier; Elberse, Karin; van Amerongen, Geert; Yüksel, Selma; Luijendijk, Ad; Osterhaus, Albert D M E; Duprex, W Paul; de Swart, Rik L

    2015-01-01

    Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate

  13. Profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39.

    PubMed

    Kocaoglu, Ozden; Tsui, Ho-Ching T; Winkler, Malcolm E; Carlson, Erin E

    2015-01-01

    Selective fluorescent β-lactam chemical probes enable the visualization of the transpeptidase activity of penicillin-binding proteins (PBPs) at different stages of bacterial cell division. To facilitate the development of new fluorescent probes for PBP imaging, we evaluated 20 commercially available β-lactams for selective PBP inhibition in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae. Live cells were treated with β-lactam antibiotics at different concentrations and subsequently incubated with Bocillin FL (Boc-FL; fluorescent penicillin) to saturate uninhibited PBPs. Fluorophore-labeled PBPs were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence scanning. Among 20 compounds tested, carbapenems (doripenem and meropenem) were coselective for PBP1a, PBP2x, and PBP3, while six of the nine penicillin compounds were coselective for PBP2x and PBP3. In contrast, the seven cephalosporin compounds tested display variability in their PBP-binding profiles. Three cephalosporin compounds (cefoxitin, cephalexin, and cefsulodin) and the monobactam aztreonam exhibited selectivity for PBP3, while only cefuroxime (a cephalosporin) was selective for PBP2x. Treatment of S. pneumoniae cultures with a sublethal concentration of cefuroxime that inhibited 60% of PBP2x activity and less than 20% of the activity of other PBPs resulted in formation of elongated cells. In contrast, treatment of S. pneumoniae cultures with concentrations of aztreonam and cefoxitin that inhibited up to 70% of PBP3 activity and less than 30% of other PBPs resulted in no discernible morphological changes. Additionally, correlation of the MIC and IC50s for each PBP, with the exception of faropenem, amdinocillin (mecillinam), and 6-APA, suggests that pneumococcal growth inhibition is primarily due to the inhibition of PBP2x.

  14. Insertional mutation of orfD of the DCW cluster of Streptococcus pneumoniae attenuates virulence.

    PubMed

    Palmen, R; Ogunniyi, A D; Berroy, P; Larpin, S; Paton, J C; Trombe, M C

    1999-12-01

    Mutational analysis of a 5.5 kb fragment of the genome Streptococcus pneumoniae led to the identification of a putative new virulence gene, designated orfD. Insertion mutagenesis of flanking genes on the fragment suggested that the corresponding gene products were required for in vitro growth. In contrast, insertion mutation of orfD did not alter in vitro growth or the transformability pattern of the mutated strain. However, it did reduce bacterial growth in mice and attenuated virulence in an intraperitoneal model of infection. orfD is flanked by orfC (63 codons) and ftsL (105 codons) and all three genes are upstream of pbpx. orfC showed no similarity with other known proteins. ftsL of S. pneumoniae exhibits minimal sequence similarity with ftsL of E. coli, but shares 16% identical residues with the ftsL homologue encoded by ylld of B. subtilis. Also, ftsL of S. pneumoniae has a predicted topology similar to that described for ftsL of E. coli. Putative promoters with an extended -10 box could be identified upstream of both orfC or orfD. The four open reading frames (including pbpx) are orientated in the same direction, and polycistronic transcription could theoretically start at either promoter. Interestingly, this region shows organizational and sequence homologies with genes controlling division and cell wall biosynthesis (DCW) in other bacteria. The attenuation of virulence in the orfD insertion mutant might be due to the loss of function of the orfD gene product or to an altered level of expression of downstream genes.

  15. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  16. Molecular characterization of clinical Streptococcus pneumoniae isolates with reduced susceptibility to fluoroquinolones emerging in Italy.

    PubMed

    Montanari, Maria Pia; Tili, Emily; Cochetti, Ileana; Mingoia, Marina; Manzin, Aldo; Varaldo, Pietro Emanuele

    2004-01-01

    Fifteen Streptococcus pneumoniae clinical isolates with reduced fluoroquinolone susceptibility (defined as a ciprofloxacin MIC of > or = 4 microg/ml), all collected in Italy in 2000-2003, were typed and subjected to extensive molecular characterization to define the contribution of drug target alterations and efflux mechanisms to their resistance. Serotyping and pulsed-field gel electrophoresis analysis indicated substantial genetic unrelatedness among the 15 isolates, suggesting that the new resistance traits arise in multiple indigenous strains rather than through clonal dissemination. Sequencing of the quinolone resistance-determining regions of gyrA, gyrB, parC, and parE demonstrated that point mutations producing single amino acid changes were more frequent in topoisomerase IV (parC mutations in 14 isolates and parE mutations in 13) than in DNA gyrase subunits (gyrA mutations in 7 isolates and no gyrB mutations observed). No isolate displayed a quinolone efflux system susceptible to carbonyl cyanide m-chlorophenylhydrazone; conversely, four-fold or greater MIC reductions in the presence of reserpine were observed in all 15 isolates with ethidium bromide, in 13 with ulifloxacin, in 9 with ciprofloxacin, in 5 with norfloxacin, and in none with five other fluoroquinolones. The effect of efflux pump activity on the level and profile of fluoroquinolone resistance in our strains was minor compared with that of target site modifications. DNA mutations and/or efflux systems other than those established so far might contribute to the fluoroquinolone resistance expressed by our strains. Susceptibility profiles to nonquinolone class antibiotics and resistance-associated phenotypic and genotypic characteristics were also determined and correlated with fluoroquinolone resistance. A unique penicillin-binding protein profile was observed in all five penicillin-resistant isolates, whereas the same PBP profile as S. pneumoniae R6 was exhibited by all six penicillin

  17. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  18. The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4.

    PubMed

    Lu, Ling; Lamm, Michael E; Li, Hongmin; Corthesy, Blaise; Zhang, Jing-Ren

    2003-11-28

    Streptococcus pneumoniae (the pneumococcus) is a major cause of bacterial pneumonia, middle ear infection (otitis media), sepsis, and meningitis. Our previous study demonstrated that the choline-binding protein A (CbpA) of S. pneumoniae binds to the human polymeric immunoglobulin receptor (pIgR) and enhances pneumococcal adhesion to and invasion of cultured epithelial cells. In this study, we sought to determine the CbpA-binding motif on pIgR by deletional analysis. The extra-cellular portion of pIgR consists of five Ig-like domains (D1-D5), each of which contains 104-114 amino acids and two disulfide bonds. Deletional analysis of human pIgR revealed that the lack of either D3 or D4 resulted in the loss of CbpA binding, whereas complete deletions of domains D1, D2, and D5 had undetectable impacts. Subsequent analysis showed that domains D3 and D4 together were necessary and sufficient for the ligand-binding activity. Furthermore, CbpA binding of pIgR did not appear to require Ca2+ or Mg2+. Finally, treating pIgR with a reducing agent abolished CbpA binding, suggesting that disulfide bonding is required for the formation of CbpA-binding motif(s). These results strongly suggest a conformational CbpA-binding motif(s) in the D3/D4 region of human pIgR, which is functionally separated from the IgA-binding site(s).

  19. Population Structure, Antimicrobial Resistance, and Mutation Frequencies of Streptococcus pneumoniae Isolates from Cystic Fibrosis Patients

    PubMed Central

    del Campo, Rosa; Morosini, María-Isabel; de la Pedrosa, Elia Gómez-G.; Fenoll, Asunción; Muñoz-Almagro, Carmen; Máiz, Luis; Baquero, Fernando; Cantón, Rafael

    2005-01-01

    Forty-eight Streptococcus pneumoniae isolates recovered from sputum samples from 26 cystic fibrosis (CF) patients attending our CF unit (1995 to 2003) were studied. Mean yearly incidence of isolation was 5.5%, and all were strains recovered from young patients (≤12 years). The isolation was linked to clinical exacerbation in 35% of the cases, but only 27% of these were not accompanied by other CF pathogens. Fifty percent of the patients presented with two to four isolates over the studied period. Pulsed-field gel electrophoresis-SmaI digestion revealed a high heterogeneity (32 pulsotypes among 48 isolates) and the persistence over a 6-month period of a single clone (clone A) in two patients. This clone, presenting a varied multiresistance phenotype, was identified as the Spain23F-1 clone and was also recognized in six other patients, including two out of nine patients from the CF unit of Sant Joan de Dèu Hospital, Barcelona, Spain. In our isolates, 16 different serotypes were recognized, the most frequent being 23F (33.3%), 19F (18.8%), 6A (6.2%), and 6B (6.2%). High overall resistance rates were observed: to penicillin, 73%; to cefotaxime, 33%; to erythromycin, 42%; to tetracycline, 58%; to chloramphenicol, 48%; and to trimethoprim-sulfamethoxazole, 67%. Resistance to fluoroquinolones was not detected. Multiresistance was a common feature (60%). The percentage of S. pneumoniae strains with increased frequencies of mutation to rifampin resistance (≥7.5 × 10−8) was significantly higher (P = 0.02) in CF (60%) than among non-CF (37%) isolates in the same institution (M. I. Morosini et al., Antimicrob. Agents Chemother. 47:1464-1467, 2003). Even though a clear association with acute exacerbations could not be observed, long-term clonal persistence and variability, high frequency of antibiotic resistance, and hypermutability indicate the plasticity for adaptation of S. pneumoniae to the CF lung environment. PMID:15872243

  20. Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients.

    PubMed

    del Campo, Rosa; Morosini, María-Isabel; de la Pedrosa, Elia Gómez-G; Fenoll, Asunción; Muñoz-Almagro, Carmen; Máiz, Luis; Baquero, Fernando; Cantón, Rafael

    2005-05-01

    Forty-eight Streptococcus pneumoniae isolates recovered from sputum samples from 26 cystic fibrosis (CF) patients attending our CF unit (1995 to 2003) were studied. Mean yearly incidence of isolation was 5.5%, and all were strains recovered from young patients (< or = 12 years). The isolation was linked to clinical exacerbation in 35% of the cases, but only 27% of these were not accompanied by other CF pathogens. Fifty percent of the patients presented with two to four isolates over the studied period. Pulsed-field gel electrophoresis-SmaI digestion revealed a high heterogeneity (32 pulsotypes among 48 isolates) and the persistence over a 6-month period of a single clone (clone A) in two patients. This clone, presenting a varied multiresistance phenotype, was identified as the Spain23F-1 clone and was also recognized in six other patients, including two out of nine patients from the CF unit of Sant Joan de Deu Hospital, Barcelona, Spain. In our isolates, 16 different serotypes were recognized, the most frequent being 23F (33.3%), 19F (18.8%), 6A (6.2%), and 6B (6.2%). High overall resistance rates were observed: to penicillin, 73%; to cefotaxime, 33%; to erythromycin, 42%; to tetracycline, 58%; to chloramphenicol, 48%; and to trimethoprim-sulfamethoxazole, 67%. Resistance to fluoroquinolones was not detected. Multiresistance was a common feature (60%). The percentage of S. pneumoniae strains with increased frequencies of mutation to rifampin resistance (> or = 7.5 x 10(-8)) was significantly higher (P = 0.02) in CF (60%) than among non-CF (37%) isolates in the same institution (M. I. Morosini et al., Antimicrob. Agents Chemother. 47:1464-1467, 2003). Even though a clear association with acute exacerbations could not be observed, long-term clonal persistence and variability, high frequency of antibiotic resistance, and hypermutability indicate the plasticity for adaptation of S. pneumoniae to the CF lung environment.

  1. Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in Streptococcus pneumoniae D39

    PubMed Central

    Lisher, John P.; Tsui, Ho-Ching Tiffany; Ramos-Montañez, Smirla; Hentchel, Kristy L.; Martin, Julia E.; Trinidad, Jonathan C.

    2017-01-01

    ABSTRACT The catalase-negative, facultative anaerobe Streptococcus pneumoniae D39 is naturally resistant to hydrogen peroxide (H2O2) produced endogenously by pyruvate oxidase (SpxB). Here, we investigate the adaptive response to endogenously produced H2O2. We show that lactate oxidase, which converts lactate to pyruvate, positively impacts pyruvate flux through SpxB and that ΔlctO mutants produce significantly lower H2O2. In addition, both the SpxB pathway and a candidate pyruvate dehydrogenase complex (PDHC) pathway contribute to acetyl coenzyme A (acetyl-CoA) production during aerobic growth, and the pyruvate format lyase (PFL) pathway is the major acetyl-CoA pathway during anaerobic growth. Microarray analysis of the D39 strain cultured under aerobic versus strict anaerobic conditions shows upregulation of spxB, a gene encoding a rhodanese-like protein (locus tag spd0091), tpxD, sodA, piuB, piuD, and an Fe-S protein biogenesis operon under H2O2-producing conditions. Proteome profiling of H2O2-induced sulfenylation reveals that sulfenylation levels correlate with cellular H2O2 production, with endogenous sulfenylation of ≈50 proteins. Deletion of tpxD increases cellular sulfenylation 5-fold and has an inhibitory effect on ATP generation. Two major targets of protein sulfenylation are glyceraldehyde-3-phosphate dehydrogenase (GapA) and SpxB itself, but targets also include pyruvate kinase, LctO, AdhE, and acetate kinase (AckA). Sulfenylation of GapA is inhibitory, while the effect on SpxB activity is negligible. Strikingly, four enzymes of capsular polysaccharide biosynthesis are sulfenylated, as are enzymes associated with nucleotide biosynthesis via ribulose-5-phosphate. We propose that LctO/SpxB-generated H2O2 functions as a signaling molecule to downregulate capsule production and drive altered flux through sugar utilization pathways. IMPORTANCE Adaptation to endogenous oxidative stress is an integral aspect of Streptococcus pneumoniae colonization and

  2. Fitness of Streptococcus pneumoniae Fluoroquinolone-Resistant Strains with Topoisomerase IV Recombinant Genes▿

    PubMed Central

    Balsalobre, Luz; de la Campa, Adela G.

    2008-01-01

    The low prevalence of ciprofloxacin-resistant (Cpr) Streptococcus pneumoniae isolates carrying recombinant topoisomerase IV genes could be attributed to a fitness cost imposed by the horizontal transfer, which often implies the acquisition of larger-than-normal parE-parC intergenic regions. A study of the transcription of these genes and of the fitness cost for 24 isogenic Cpr strains was performed. Six first-level transformants were obtained either with PCR products containing the parC quinolone resistance-determining regions (QRDRs) of S. pneumoniae Cpr mutants with point mutations or with a PCR product that includes parE-QRDR-ant-parC-QRDR from a Cpr Streptococcus mitis isolate. The latter yielded two strains, T6 and T11, carrying parC-QRDR and parE-QRDR-ant-parC-QRDR, respectively. These first-level transformants were used as recipients in further transformations with the gyrA-QRDR PCR products to obtain 18 second-level transformants. In addition, strain Tr7 (which contains the GyrA E85K change) was used. Reverse transcription-PCR experiments showed that parE and parC were cotranscribed in R6, T6, and T11; and a single promoter located upstream of parE was identified in R6 by primer extension. The fitness of the transformants was estimated by pairwise competition with R6 in both one-cycle and two-cycle experiments. In the one-cycle experiments, most strains carrying the GyrA E85K change showed a fitness cost; the exception was recombinant T14. In the two-cycle experiments, a fitness cost was observed in most first-level transformants carrying the ParC changes S79F, S79Y, and D83Y and the GyrA E85K change; the exceptions were recombinants T6 and T11. The results suggest that there is no impediment due to a fitness cost for the spread of recombinant Cpr S. pneumoniae isolates, since some recombinants (T6, T11, and T14) exhibited an ability to compensate for the cost. PMID:18160515

  3. Toward a quantitative DNA-based definition of pneumococcal pneumonia: a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Olcén, Per; Blomberg, Jonas; Herrmann, Björn

    2008-02-01

    The current shift from phenotypically toward genotypically based microbial diagnosis is not unproblematic. A novel quantitative real-time polymerase chain reaction (PCR) assay based on the Spn9802 DNA fragment was therefore developed for detection of Streptococcus pneumoniae. Out of 44 bacterial species, only S. pneumoniae and Streptococcus pseudopneumoniae were positive in Spn9802 PCR. In an evaluation on nasopharyngeal aspirates from 166 patients with community-acquired pneumonia, the assay was positive in 49 of 50 culture-positive cases. Of 19 culture-negative but Spn9802 PCR-positive cases, 12 were confirmed as S. pneumoniae by rnpB sequence analysis. With an expanded reference standard, including culture and rnpB sequencing, Spn9802 had a sensitivity of 94% and a specificity of 98%. A cutoff for clinically significant positivity was 10(4) DNA copies/mL, giving 71% sensitivity and 100% specificity. In conclusion, Spn9802 real-time PCR is highly sensitive and specific. The quantification it provides enables differentiation between pneumococcal pathogenicity and commensalism.

  4. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia.

    PubMed

    de Beer, F M; Aslami, H; Hoeksma, J; van Mierlo, G; Wouters, D; Zeerleder, S; Roelofs, J J T H; Juffermans, N P; Schultz, M J; Lagrand, W K

    2014-11-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary complement activation, and as such attenuates lung inflammation and lung injury in a rat model of Streptococcus pneumoniae pneumonia. Forty hours after intratracheal challenge with S. pneumoniae causing pneumonia rats were subjected to ventilation with lower tidal volumes and positive end-expiratory pressure (PEEP) or high tidal volumes without PEEP, after an intravenous bolus of C1-INH (200 U/kg) or placebo (saline). After 4 h of ventilation blood, broncho-alveolar lavage fluid and lung tissue were collected. Non-ventilated rats with S. pneumoniae pneumonia served as controls. While ventilation with lower tidal volumes and PEEP slightly amplified pneumonia-induced complement activation in the lungs, ventilation with higher tidal volumes without PEEP augmented local complement activation more strongly. Systemic pre-treatment with C1-INH, however, failed to alter ventilation-induced complement activation with both ventilation strategies. In accordance, lung inflammation and lung injury were not affected by pre-treatment with C1-INH, neither in rats ventilated with lower tidal volumes and PEEP, nor rats ventilated with high tidal volumes without PEEP. Ventilation augments pulmonary complement activation in a rat model of S. pneumoniae pneumonia. Systemic administration of C1-INH, however, does not attenuate ventilation-induced complement activation, lung inflammation, and lung injury.

  5. Sensitivity and specificity of the Streptococcus pneumoniae urinary antigen test for unconcentrated urine from adult patients with pneumonia: a meta-analysis.

    PubMed

    Horita, Nobuyuki; Miyazawa, Naoki; Kojima, Ryota; Kimura, Naoko; Inoue, Miyo; Ishigatsubo, Yoshiaki; Kaneko, Takeshi

    2013-11-01

    Studies on the sensitivity and specificity of the Binax Now Streptococcus pneumonia urinary antigen test (index test) show considerable variance of results. Those written in English provided sufficient original data to evaluate the sensitivity and specificity of the index test using unconcentrated urine to identify S. pneumoniae infection in adults with pneumonia. Reference tests were conducted with at least one culture and/or smear. We estimated sensitivity and two specificities. One was the specificity evaluated using only patients with pneumonia of identified other aetiologies ('specificity (other)'). The other was the specificity evaluated based on both patients with pneumonia of unknown aetiology and those with pneumonia of other aetiologies ('specificity (unknown and other)') using a fixed model for meta-analysis. We found 10 articles involving 2315 patients. The analysis of 10 studies involving 399 patients yielded a pooled sensitivity of 0.75 (95% confidence interval: 0.71-0.79) without heterogeneity or publication bias. The analysis of six studies involving 258 patients yielded a pooled specificity (other) of 0.95 (95% confidence interval: 0.92-0.98) without no heterogeneity or publication bias. We attempted to conduct a meta-analysis with the 10 studies involving 1916 patients to estimate specificity (unknown and other), but it remained unclear due to moderate heterogeneity and possible publication bias. In our meta-analysis, sensitivity of the index test was moderate and specificity (other) was high; however, the specificity (unknown and other) remained unclear.

  6. Toll-like receptor 4 agonistic antibody promotes innate immunity against severe pneumonia induced by coinfection with influenza virus and Streptococcus pneumoniae.

    PubMed

    Tanaka, Akitaka; Nakamura, Shigeki; Seki, Masafumi; Fukudome, Kenji; Iwanaga, Naoki; Imamura, Yoshifumi; Miyazaki, Taiga; Izumikawa, Koichi; Kakeya, Hiroshi; Yanagihara, Katsunori; Kohno, Shigeru

    2013-07-01

    Coinfection with bacteria is a major cause of mortality during influenza epidemics. Recently, Toll-like receptor (TLR) agonists were shown to have immunomodulatory functions. In the present study, we investigated the effectiveness and mechanisms of the new TLR4 agonistic monoclonal antibody UT12 against secondary pneumococcal pneumonia induced by coinfection with influenza virus in a mouse model. Mice were intranasally inoculated with Streptococcus pneumoniae 2 days after influenza virus inoculation. UT12 was intraperitoneally administered 2 h before each inoculation. Survival rates were significantly increased and body weight loss was significantly decreased by UT12 administration. Additionally, the production of inflammatory mediators was significantly suppressed by the administration of UT12. In a histopathological study, pneumonia in UT12-treated mice was very mild compared to that in control mice. UT12 increased antimicrobial defense through the acceleration of macrophage recruitment into the lower respiratory tract induced by c-Jun N-terminal kinase (JNK) and nuclear factor kappaB (NF-κB) pathway-dependent monocyte chemoattractant protein 1 (MCP-1) production. Collectively, these findings indicate that UT12 promoted pulmonary innate immunity and may reduce the severity of severe pneumonia induced by coinfection with influenza virus and S. pneumoniae. This immunomodulatory effect of UT12 improves the prognosis of secondary pneumococcal pneumonia and makes UT12 an attractive candidate for treating severe infectious diseases.

  7. A Community-acquired Lung Abscess Attributable to Streptococcus pneumoniae which Extended Directly into the Chest Wall

    PubMed Central

    Ko, Yuki; Tobino, Kazunori; Yasuda, Yuichiro; Sueyasu, Takuto; Nishizawa, Saori; Yoshimine, Kouhei; Munechika, Miyuki; Asaji, Mina; Yamaji, Yoshikazu; Tsuruno, Kosuke; Miyajima, Hiroyuki; Mukasa, Yosuke; Ebi, Noriyuki

    2017-01-01

    We herein report the case of 75-year-old Japanese female with a community-acquired lung abscess attributable to Streptococcus pneumoniae (S. penumoniae) which extended into the chest wall. The patient was admitted to our hospital with a painful mass on the left anterior chest wall. A contrast-enhanced chest computed tomography scan showed a lung abscess in the left upper lobe which extended into the chest wall. Surgical debridement of the chest wall abscess and percutaneous transthoracic tube drainage of the lung abscess were performed. A culture of the drainage specimen yielded S. pneumoniae. The patient showed a remarkable improvement after the initiation of intravenous antibiotic therapy. PMID:28049987

  8. Ser-127-to-Leu substitution in the DNA gyrase B subunit of Streptococcus pneumoniae is implicated in novobiocin resistance.

    PubMed Central

    Muñoz, R; Bustamante, M; de la Campa, A G

    1995-01-01

    We report the cloning of the gyrB gene from Streptococcus pneumoniae 533 that carries the nov-1 allele. The gyrB gene codes for a protein homologous to the gyrase B subunit of archaebacteria and eubacteria. The same amino acid substitution (Ser-127 to Leu) confers novobiocin resistance on four isolates of S. pneumoniae. This amino acid position is equivalent to Val-120 of Escherichia coli GyrB, a residue that lies inside the ATP-binding domain as revealed by the crystal structure of the protein. PMID:7608096

  9. Efficacy of ceftaroline fosamil against penicillin-sensitive and -resistant streptococcus pneumoniae in an experimental rabbit meningitis model.

    PubMed

    Cottagnoud, P; Cottagnoud, M; Acosta, F; Stucki, A

    2013-10-01

    Ceftaroline is a new cephalosporin with bactericidal activity against resistant Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae, as well as common Gram-negative organisms. This study tested the prodrug, ceftaroline fosamil, against a penicillin-sensitive and a penicillin-resistant strain of S. pneumoniae in an experimental rabbit meningitis model. The penetration of ceftaroline into inflamed meninges was approximately 14%. Ceftaroline fosamil was slightly superior to ceftriaxone against the penicillin-sensitive strain and significantly superior to the combination of ceftriaxone and vancomycin against the penicillin-resistant strain.

  10. Genetic Characterization of Fluoroquinolone-Resistant Streptococcus pneumoniae Strains Isolated during Ciprofloxacin Therapy from a Patient with Bronchiectasis

    PubMed Central

    de la Campa, Adela G.; Ferrandiz, María-José; Tubau, Fe; Pallarés, Román; Manresa, Federico; Liñares, Josefina

    2003-01-01

    Five Spain9V-3 Streptococcus pneumoniae strains were isolated from a patient with bronchiectasis who had received long-term ciprofloxacin therapy. One ciprofloxacin-susceptible strain was isolated before treatment, and four ciprofloxacin-resistant strains were isolated during treatment. The resistant strains were derived from the susceptible strain either by a parC mutation (low-level resistance) or by parC and gyrA mutations (high-level resistance). This study shows that ciprofloxacin therapy in a patient colonized by susceptible S. pneumoniae may select fluoroquinolone-resistant mutants. PMID:12654682

  11. Differentiation of Streptococcus pneumoniae Conjunctivitis Outbreak Isolates by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Williamson, Yulanda M.; Moura, Hercules; Woolfitt, Adrian R.; Pirkle, James L.; Barr, John R.; Carvalho, Maria Da Gloria; Ades, Edwin P.; Carlone, George M.; Sampson, Jacquelyn S.

    2008-01-01

    Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis. PMID:18708515

  12. Activity of telithromycin against penicillin-resistant Streptococcus pneumoniae isolates recovered from French children with invasive and noninvasive infections.

    PubMed

    Bingen, Edouard; Doit, Catherine; Loukil, Chawki; Brahimi, Naima; Bidet, Philippe; Deforche, Dominique; Geslin, Pierre

    2003-07-01

    We compared the activities of telithromycin, erythromycin, azithromycin, josamycin, penicillin G, amoxicillin, cefpodoxime, and ceftriaxone against invasive and noninvasive non-penicillin-susceptible Streptococcus pneumoniae isolates recovered from children. Of the 186 isolates tested, 89% were positive for erm(B) by PCR. Telithromycin had the lowest MICs, with MICs at which 90% of the isolates tested are inhibited of 0.032 and 0.25 micro g/ml for erythromycin-sensitive and -resistant isolates, respectively.

  13. Inhibition of Streptococcus pneumoniae penicillin-binding protein 2x and Actinomadura R39 DD-peptidase activities by ceftaroline.

    PubMed

    Zervosen, Astrid; Zapun, André; Frère, Jean-Marie

    2013-01-01

    Although the rate of acylation of a penicillin-resistant form of Streptococcus pneumoniae penicillin-binding protein 2x (PBP2x) by ceftaroline is 80-fold lower than that of its penicillin-sensitive counterpart, it remains sufficiently high (k(2)/K = 12,600 M(-1) s(-1)) to explain the sensitivity of the penicillin-resistant strain to this new cephalosporin. Surprisingly, the Actinomadura R39 DD-peptidase is not very sensitive to ceftaroline.

  14. B7 Requirements for Primary and Secondary Protein- and Polysaccharide-Specific Ig Isotype Responses to Streptococcus pneumoniae

    DTIC Science & Technology

    2000-09-01

    Streptococcus pneumoniae (R36A) to determine the B7 requirements for induction of Ig, specific for two determinants on R36A, the phosphorylcholine ...protein A (PspA)4 and to the phosphorylcholine (PC) determinant of the cell wall C-polysaccharide have been used as models. We recently re- ported that...Jackson Laboratory. Mice were used at 7–10 wk of age and were maintained in a pathogen-free environment. Reagents PC (6-(O- phosphorylcholine

  15. Evaluation of disk approximation and single-well broth tests for detection of inducible clindamycin resistance in Streptococcus pneumoniae.

    PubMed

    Jorgensen, James H; McElmeel, M Leticia; Fulcher, Letitia C; McGee, Lesley; Glennen, Anita

    2011-09-01

    This study evaluated an agar disk diffusion D-zone test and an erythromycin-clindamycin (ERY + CLI) single-well broth test for inducible CLI resistance in Streptococcus pneumoniae. The standard CLSI disk approximation test and a single-well combination test incorporating 1 plus 0.5 μg/ml ERY + CLI detected >96% of isolates containing the ermB determinant.

  16. [Bactericidal activity of sitafloxacin and other new quinolones against antimicrobial resistant Streptococcus pneumoniae].

    PubMed

    Kobayashi, Intetsu; Kanayama, Akiko; Hasegawa, Miyuki; Kaneko, Akihiro

    2013-02-01

    We conducted a study assess the bactericidal activity of sitafloxacin (STFX) against Streptococcus pneumoniae isolates recovered from respiratory infections including penicillin-resistant (PRSP) isolates, macrolide resistant isolates possessing mefA and ermB resistance genes and quinolone resistance isolates with mutations in gyrA or gyrA and parC. Each isolate tested was grown in hemosupplemented Mueller-Hinton broth and adjusted to approximately 10(5) CFU/ mL. Isolates were than exposed to a Cmax antimicrobial blood level that would be attained with routine antimicrobial administration and an antimicrobial level that would be expected 4 hours post-Cmax (Cmax 4hr). Bactericidal activity was measured for up to 8 hours. Excluding a subset of S. pneumoniae isolates with mutations in the quinolone resistance determining region (QRDR), all quinolones showed bactericidal activity at Cmax and Cmax 4 hr antimicrobial concentrations for up to 8 hours. Against S. pneumoniae isolates with either gyrA or gyrA and parC mutations, bactericidal activity of STFX was shown for up to 4 to 8 hours following Cmax based on a limit of detection of < 1.3 log CFU/mL. Garenoxacin (GRNX) did not showed bactericidal activity below the limit of detection for up to 8 hours with exposure to Cmax and no bactericidal activity was seen with levofloxacin. When all quinolones tested where adjusted to concentrations corresponding to their MICs, STFX showed the most rapid bactericidal activity against PRSP. This rapid bactericidal activity in PRSP is a key to the effectiveness of STFX. Our findings show that beyond inhibition of bacterial replication by blocking their DNA replication pathway and synthesis of proteins, STFX demonstrated characteristics contributing to greater bactericidal activity compared to GRNX. In conclusion, of the newer quinolones, STFX showed the strongest bactericidal activity against S. pneumoniae isolates with mutations in the QRDR which indicates that it may show the most

  17. Post-infective transverse myelitis following Streptococcus pneumoniae meningitis with radiological features of acute disseminated encephalomyelitis: a case report

    PubMed Central

    2012-01-01

    Introduction Post-infectious autoimmune demyelination of the central nervous system is a rare neurological disorder typically associated with exanthematous viral infections. We report an unusual presentation of the condition and a previously undocumented association with Streptococcus pneumonia meningitis. Case presentation A 50-year-old Caucasian woman presented to our facility with an acute myelopathy three days after discharge following acute Streptococcus pneumoniae meningitis. Imaging studies of the spine ruled out an infective focus and no other lesions were seen within the cord. Diffuse, bilateral white matter lesions were seen within the cerebral hemispheres, and our patient was diagnosed as having a post-infective demyelination syndrome that met the diagnostic criteria for an acute transverse myelitis. Our patient clinically and radiologically improved following treatment with steroids. Conclusions The novel association of a Streptococcus pneumoniae infection with post-infectious autoimmune central nervous system demyelination should alert the reader to the potentially causative role of this common organism, and gives insights into the pathogenesis. The unusual dissociation between the clinical presentation and the location of the radiological lesions should also highlight the potential for the condition to mimic the presentation of others, and stimulates debate on the definitions of acute transverse myelitis and acute disseminated encephalomyelitis, and their potential overlap. PMID:22992300

  18. A Case Report on the Successful Treatment of Streptococcus pneumoniae-Induced Infectious Abdominal Aortic Aneurysm Initially Presenting with Meningitis

    PubMed Central

    Kawatani, Yohei; Nakamura, Yoshitsugu; Hayashi, Yujiro; Taneichi, Tetsuyoshi; Ito, Yujiro; Kurobe, Hirotsugu; Suda, Yuji; Hori, Takaki

    2015-01-01

    Infectious abdominal aortic aneurysms often present with abdominal and lower back pain, but prolonged fever may be the only symptom. Infectious abdominal aortic aneurysms initially presenting with meningitis are extremely rare; there are no reports of their successful treatment. Cases with Streptococcus pneumoniae as the causative bacteria are even rarer with a higher mortality rate than those caused by other bacteria. We present the case of a 65-year-old man with lower limb weakness and back pain. Examination revealed fever and neck stiffness. Cerebrospinal fluid showed leukocytosis and low glucose levels. The patient was diagnosed with meningitis and bacteremia caused by Streptococcus pneumoniae and treated with antibiotics. Fever, inflammatory response, and neurologic findings showed improvement. However, abdominal computed tomography revealed an aneurysm not present on admission. Antibiotics were continued, and a rifampicin soaked artificial vascular graft was implanted. Tissue cultures showed no bacteria, and histological findings indicated inflammation with high leukocyte levels. There were no postoperative complications or neurologic abnormalities. Physical examination, blood tests, and computed tomography confirmed there was no relapse over the following 13 months. This is the first reported case of survival of a patient with an infectious abdominal aortic aneurysm initially presenting with meningitis caused by Streptococcus pneumoniae. PMID:26779361

  19. Role of putative virulence factors of Streptococcus pyogenes in mouse models of long-term throat colonization and pneumonia.

    PubMed Central

    Husmann, L K; Yung, D L; Hollingshead, S K; Scott, J R

    1997-01-01

    To investigate the role of putative virulence factors of Streptococcus pyogenes (group A streptococcus; GAS) in causing disease, we introduced specific mutations in GAS strain B514, a natural mouse pathogen, and tested the mutant strains in two models of infection. To study late stages of disease, we used our previously described mouse model (C3HeB/FeJ mice) in which pneumonia and systemic spread of the streptococcus follow intratracheal inoculation. To study the early stages of disease, we report here a model of long-term (at least 21 days) throat colonization following intranasal inoculation of C57BL/10SnJ mice. When the three emm family genes of GAS strain B514-Sm were deleted, the mutant showed no significant difference from the wild type in induction of long-term throat colonization or pneumonia. We inactivated the scpA gene, which encodes a complement C5a peptidase, by insertion of a nonreplicative plasmid and found no significant difference from the wild type in the incidence of throat colonization. However, there was a small but statistically significant decrease in the incidence of pneumonia caused by the scpA mutant. Finally, we demonstrated a very important effect of the hyaluronic acid capsule in both models. Following intranasal inoculation of mice with a mutant in which a nonreplicative plasmid was inserted into the hasA gene, which encodes hyaluronate synthase, we found that all bacteria recovered from the throats of the mice were encapsulated revertants. Following intratracheal inoculation with the hasA mutant, the incidence of pneumonia within 72 h was significantly reduced from that of the control strain (P = 0.006). These results indicate that the hyaluronic acid capsule of S. pyogenes B514 confers an important selective advantage for survival of the bacteria in the upper respiratory tract and is also an important determinant in induction of pneumonia in our model system. PMID:9119483

  20. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China

    PubMed Central

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    Background Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. Material/Methods Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. Results Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. Conclusions SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  1. Immunization with LytB protein of Streptococcus pneumoniae activates complement-mediated phagocytosis and induces protection against pneumonia and sepsis.

    PubMed

    Corsini, Bruno; Aguinagalde, Leire; Ruiz, Susana; Domenech, Mirian; Antequera, María Luisa; Fenoll, Asunción; García, Pedro; García, Ernesto; Yuste, Jose

    2016-12-07

    The cell wall glucosaminidase LytB of Streptococcus pneumoniae is a surface exposed protein involved in daughter cell separation, biofilm formation and contributes to different aspects of the pathogenesis process. In this study we have characterized the antibody responses after immunization of mice with LytB in the presence of alhydrogel as an adjuvant. Enzyme-linked immunosorbent assays measuring different subclasses of immunoglobulin G, demonstrated that the antibody responses to LytB were predominantly IgG1 and IgG2b, followed by IgG3 and IgG2a subclasses. Complement-mediated immunity against two different pneumococcal serotypes was investigated using sera from immunized mice. Immunization with LytB increased the recognition of S. pneumoniae by complement components C1q and C3b demonstrating that anti-LytB antibodies trigger activation of the classical pathway. Phagocytosis assays showed that serum containing antibodies to LytB stimulates neutrophil-mediated phagocytosis against S. pneumoniae. Animal models of infection including invasive pneumonia and sepsis were performed with two different clinical isolates. Vaccination with LytB increased bacterial clearance and induced protection demonstrating that LytB might be a good candidate to be considered in a future protein-based vaccine against S. pneumoniae.

  2. Validation of an Immunodiagnostic Assay for Detection of 13 Streptococcus pneumoniae Serotype-Specific Polysaccharides in Human Urine

    PubMed Central

    Huijts, Susanne M.; Wu, Kangjian; Souza, Victor; Passador, Sherry; Tinder, Chunyan; Song, Esther; Elfassy, Arik; McNeil, Lisa; Menton, Ronald; French, Roger; Callahan, Janice; Webber, Chris; Gruber, William C.; Bonten, Marc J. M.; Jansen, Kathrin U.

    2012-01-01

    To improve the clinical diagnosis of pneumococcal infection in bacteremic and nonbacteremic community-acquired pneumonia (CAP), a Luminex technology-based multiplex urinary antigen detection (UAD) diagnostic assay was developed and validated. The UAD assay can simultaneously detect 13 different serotypes of Streptococcus pneumoniae by capturing serotype-specific S. pneumoniae polysaccharides (PnPSs) secreted in human urine. Assay specificity is achieved by capturing the polysaccharides with serotype-specific monoclonal antibodies (MAbs) on spectrally unique microspheres. Positivity for each serotype was based on positivity cutoff values calculated from a standard curve run on each assay plate together with positive- and negative-control urine samples. The assay is highly specific, since significant signals are detected only when each PnPS was paired with its homologous MAb-coated microspheres. Validation experiments demonstrated excellent accuracy and precision. The UAD assay and corresponding positivity cutoff values were clinically validated by assessing 776 urine specimens obtained from patients with X-ray-confirmed CAP. The UAD assay demonstrated 97% sensitivity and 100% specificity using samples obtained from patients with bacteremic, blood culture-positive CAP. Importantly, the UAD assay identified Streptococcus pneumoniae (13 serotypes) in a proportion of individuals with nonbacteremic CAP, a patient population for which the pneumococcal etiology of CAP was previously difficult to assess. Therefore, the UAD assay provides a specific, noninvasive, sensitive, and reproducible tool to support vaccine efficacy as well as epidemiological evaluation of pneumococcal disease, including CAP, in adults. PMID:22675155

  3. Validation of an immunodiagnostic assay for detection of 13 Streptococcus pneumoniae serotype-specific polysaccharides in human urine.

    PubMed

    Pride, Michael W; Huijts, Susanne M; Wu, Kangjian; Souza, Victor; Passador, Sherry; Tinder, Chunyan; Song, Esther; Elfassy, Arik; McNeil, Lisa; Menton, Ronald; French, Roger; Callahan, Janice; Webber, Chris; Gruber, William C; Bonten, Marc J M; Jansen, Kathrin U

    2012-08-01

    To improve the clinical diagnosis of pneumococcal infection in bacteremic and nonbacteremic community-acquired pneumonia (CAP), a Luminex technology-based multiplex urinary antigen detection (UAD) diagnostic assay was developed and validated. The UAD assay can simultaneously detect 13 different serotypes of Streptococcus pneumoniae by capturing serotype-specific S. pneumoniae polysaccharides (PnPSs) secreted in human urine. Assay specificity is achieved by capturing the polysaccharides with serotype-specific monoclonal antibodies (MAbs) on spectrally unique microspheres. Positivity for each serotype was based on positivity cutoff values calculated from a standard curve run on each assay plate together with positive- and negative-control urine samples. The assay is highly specific, since significant signals are detected only when each PnPS was paired with its homologous MAb-coated microspheres. Validation experiments demonstrated excellent accuracy and precision. The UAD assay and corresponding positivity cutoff values were clinically validated by assessing 776 urine specimens obtained from patients with X-ray-confirmed CAP. The UAD assay demonstrated 97% sensitivity and 100% specificity using samples obtained from patients with bacteremic, blood culture-positive CAP. Importantly, the UAD assay identified Streptococcus pneumoniae (13 serotypes) in a proportion of individuals with nonbacteremic CAP, a patient population for which the pneumococcal etiology of CAP was previously difficult to assess. Therefore, the UAD assay provides a specific, noninvasive, sensitive, and reproducible tool to support vaccine efficacy as well as epidemiological evaluation of pneumococcal disease, including CAP, in adults.

  4. Characterization of Streptococcus pneumoniae clones from paediatric patients with cystic fibrosis.

    PubMed

    Pimentel de Araujo, Fernanda; D'Ambrosio, Fabio; Camilli, Romina; Fiscarelli, Ersilia; Di Bonaventura, Giovanni; Baldassarri, Lucilla; Visca, Paolo; Pantosti, Annalisa; Gherardi, Giovanni

    2014-12-01

    The role of Streptococcus pneumoniae in cystic fibrosis (CF) is poorly understood. The pneumococcal population has changed over time after the introduction of the heptavalent conjugate vaccine (PCV7) and, more recently, the 13-valent conjugate vaccine (PCV13). Although serotypes and clones causing invasive pneumococcal disease or colonizing healthy children have been extensively analysed, little is known so far on the serotypes and clones of pneumococci in CF patients. The aim of this work was to investigate serotypes, antibiotic susceptibilities, genotypes and biofilm production of CF pneumococcal isolates. Overall, 44 S. pneumoniae strains collected from 32 paediatric CF patients from January 2010 to May 2012 in a large Italian CF Centre were tested for antimicrobial susceptibility testing by Etest, serotyped by the Quellung reaction and genotyped by a combination of different molecular typing methods, including pbp gene restriction profiling, pspA restriction profiling and sequencing, PFGE and multilocus sequence typing. Biofilm production by pneumococcal strains was also assessed. Penicillin non-susceptibility was 16 %. High resistance rates (>56 %) were observed for erythromycin, clindamycin and tetracycline. The most frequent serotype recovered was serotype 3 (31.8 %). The coverage of PCV7 and PCV13 was 6.8 and 47.7 %, respectively. More than 80 % of CF strains belonged to Pneumococcal Molecular Epidemiology Network (PMEN) reference clones, the most common being Netherlands(3)-ST180 (28.2 %), and Greece(21)-30/ST193 (15.4 %). All strains produced biofilm in vitro, although with large variability in biofilm formation efficiency. No correlation was found between biofilm levels and serotype, clone or antibiotic resistance. The high isolation rate of antibiotic-resistant serotype 3 pneumococci from CF patients suggests that PCV13 could increase protection from pneumococcal colonization and infection.

  5. Molecular analysis of pbp2b in Streptococcus pneumonia isolated from clinical and normal flora samples.

    PubMed

    Sadeghi, J; Ahamadi, A; Douraghi, M; Pourshafie, M R; Talebi, M

    2015-02-01

    Streptococcus pneumoniae is an important bacterial pathogen responsible for respiratory infections, bacteraemia, and meningitis remains an important cause of disease and mortality in infants and younger children around the world, with penicillin being considered the drug of choice for the treatment of infections. However, penicillin-resistant S. pneumonia is now becoming endemic worldwide. In this study, a total of 80 pneumococcal isolates were collected from different clinical sources as well as normal flora. These isolates were subjected to antimicrobial susceptibility testing and MIC determination. The penicillin-binding proteins, pbp2b, were amplified by PCR, and they were sequenced. The genetic relationship of the penicillin-resistant isolates was performed by BOX PCR. Overall, 36 pneumococcal (45 %) isolates were found to be resistant to penicillin with different MICs. The majority of them (80 %) were intermediately resistant with MIC of 0.12-1 µg/ml, whereas 20 % of isolates were penicillin resistant with MICs of >2 µg/ml. The results identified seven groups which were based on the amino acid substitutions of pbp2b. Sequencing analysis revealed that the most prevalent mutation was the substitution of Adenine for Thymine at the position 445 which is next to the second PBP2b-conserved motif (SSN). This study indicates that resistance to penicillin appears to be dependent on specific mutations in pbp2b, and the substitution in S620 → T near to the third PBP2b-conserved motif appears to be important in developing highly antibiotic-resistant isolates. Moreover, there was a positive correlation between the mutations in pbp2b gene and MIC.

  6. Serotype distribution of Streptococcus pneumoniae in children with invasive diseases in Turkey: 2008–2014

    PubMed Central

    Ceyhan, Mehmet; Ozsurekci, Yasemin; Gürler, Nezahat; Öksüz, Lütfiye; Aydemir, Sohret; Ozkan, Sengul; Yuksekkaya, Serife; Keser Emiroglu, Melike; Gültekin, Meral; Yaman, Akgün; Kiremitci, Abdurrahman; Yanık, Keramettin; Karli, Arzu; Ozcinar, Hatice; Aydin, Faruk; Bayramoglu, Gulcin; Zer, Yasemin; Gulay, Zeynep; Gayyurhan, Efgan Dogan; Gül, Mustafa; Özakın, Cüneyt; Güdücüoğlu, Hüseyin; Perçin, Duygu; Akpolat, Nezahat; Ozturk, Candan; Camcıoğlu, Yıldız; Karadağ Öncel, Eda; Çelik, Melda; Şanal, Laser; Uslu, Hakan

    2016-01-01

    Successful vaccination policies for protection from invasive pneumococcal diseases (IPD) dependent on determination of the exact serotype distribution in each country. We aimed to identify serotypes of pneumococcal strains causing IPD in children in Turkey and emphasize the change in the serotypes before and after vaccination with 7-valent pneumococcal conjugate vaccine (PCV-7) was included and PCV-13 was newly changed in Turkish National Immunization Program. Streptococcus pneumoniae strains were isolated at 22 different hospitals of Turkey, which provide healthcare services to approximately 65% of the Turkish population. Of the 335 diagnosed cases with S. pneumoniae over the whole period of 2008–2014, the most common vaccine serotypes were 19F (15.8%), 6B (5.9%), 14 (5.9%), and 3 (5.9%). During the first 5 y of age, which is the target population for vaccination, the potential serotype coverage ranged from 57.5 % to 36.8%, from 65.0% to 44.7%, and from 77.4% to 60.5% for PCV-7, PCV-10, and PCV-13 in 2008–2014, respectively. The ratio of non-vaccine serotypes was 27.2% in 2008–2010 whereas was 37.6% in 2011–2014 (p=0.045). S. penumoniae serotypes was less non-susceptible to penicillin as compared to our previous results (33.7 vs 16.5 %, p=0.001). The reduction of those serotype coverage in years may be attributed to increasing vaccinated children in Turkey and the increasing non-vaccine serotype may be explained by serotype replacement. Our ongoing IPD surveillance is a significant source of information for the decision-making processes on pneumococcal vaccination. PMID:26325175