Science.gov

Sample records for agalactiae streptococcus pneumoniae

  1. Streptococcus iniae and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  2. Streptococcus agalactiae mastitis: a review.

    PubMed Central

    Keefe, G P

    1997-01-01

    Streptococcus agalactiae continues to be a major cause of subclinical mastitis in dairy cattle and a source of economic loss for the industry. Veterinarians are often asked to provide information on herd level control and eradication of S. agalactiae mastitis. This review collects and collates relevant publications on the subject. The literature search was conducted in 1993 on the Agricola database. Articles related to S. agalactiae epidemiology, pathogen identification techniques, milk quality consequences, and control, prevention, and therapy were included. Streptococcus agalactiae is an oblique parasite of the bovine mammary gland and is susceptible to treatment with a variety of antibiotics. Despite this fact, where state or provincial census data are available, herd prevalence levels range from 11% (Alberta, 1991) to 47% (Vermont, 1985). Infection with S. agalactiae is associated with elevated somatic cell count and total bacteria count and a decrease in the quantity and quality of milk products produced. Bulk tank milk culture has, using traditional milk culture techniques, had a low sensitivity for identifying S. agalactiae at the herd level. New culture methods, using selective media and large inocula, have substantially improved the sensitivity of bulk tank culture. Efficacy of therapy on individual cows remains high. Protocols for therapy of all infected animals in a herd are generally successful in eradicating the pathogen from the herd, especially if they are followed up with good udder hygiene techniques. PMID:9220132

  3. Streptococcus agalactiae infection in zebrafish larvae

    PubMed Central

    Kim, Brandon J; Hancock, Bryan M; Cid, Natasha Del; Bermudez, Andres; Traver, David; Doran, Kelly S

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1β il1b and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis. PMID:25617657

  4. Molecular typing of Streptococcus agalactiae isolates from fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic variability among Streptococcus agalactiae isolates recovered from fish was characterized using single-stranded conformation polymorphisms (SSCP) analysis of the intergenic spacer region (ISR), and amplified fragment length polymorphism (AFLP) fingerprinting. A total of 49 S. agalactiae ...

  5. Surface protein of a Streptococcus agalactiae isolate.

    PubMed Central

    de Cueninck, B J

    1979-01-01

    A Streptococcus agalactiae isolate of bovine origin was cultured in broth; log-phase cells were washed and radioiodinated and subsequently extracted at low pH in the presence of a nonionic detergent. A protein antigen was purified from concentrated extract by ultracentrifugation, gel filtration, and ion-exchange chromatography. The molecular weight of the protein was estimated at 31,800. The agglutinogenic character of the protein indicated its localization at the cell surface. Images PMID:381197

  6. DNA Microarray-Based Typing of Streptococcus agalactiae Isolates

    PubMed Central

    Nitschke, Heike; Slickers, Peter; Müller, Elke; Ehricht, Ralf

    2014-01-01

    Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as alleles of the alpha-like protein or capsule types, vary independently of each other, and they also vary independently from the affiliation to their multilocus sequence typing (MLST)-defined sequence types. Thus, it is not possible to assign isolates to sequence types based on the identification of a single distinct marker, such as a capsule type or alp allele. This suggests the occurrence of frequent genomic recombination. For array-based typing, a set of 11 markers (bac, alp, pil1 locus, pepS8, fbsB, capsule locus, hylB, abiG-I/-II plus Q8DZ34, pil2 locus, nss plus srr plus rogB2, and rgfC/A/D/B) was defined that provides a framework for splitting the tested 448 S. agalactiae isolates into 76 strains that clustered mainly according to MLST-defined clonal complexes. There was evidence for region- and host-specific differences in the population structure of S. agalactiae, as well as an overrepresentation of strains related to sequence type 17 among the invasive isolates. The arrays and typing scheme described here proved to be a convenient tool for genotyping large numbers of clinical/veterinary isolates and thus might help obtain insight into the epidemiology of S. agalactiae. PMID:25165085

  7. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae

    PubMed Central

    Dehbashi, Sanaz; Pourmand, Mohammad Reza; Mashhadi, Rahil

    2016-01-01

    Background and Objectives: Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated. Materials and Methods: The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated. Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity. Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host. PMID:27092228

  8. Streptococcus agalactiae pyomyositis in diabetes mellitus.

    PubMed

    Panikkath, Deepa; Tantrachoti, Pakpoom; Panikkath, Ragesh; Nugent, Kenneth

    2016-07-01

    Pyomyositis is an acute infectious disorder affecting the skeletal muscle. Although seen more commonly in the tropics, cases are being reported in temperate countries, including the United States. We report a case of nontropical pyomyositis in a 58-year-old diabetic man who presented with a vague chest wall swelling. His initial clinical presentation and imaging findings suggested an intramuscular hematoma. He later developed fever with increased swelling, and pyomyositis was diagnosed after an aspiration of the swelling yielded Streptococcus agalactiae. Aspiration of the abscess and the use of appropriate antibiotics led to complete resolution of the disease. We discuss possible factors in diabetics that might predispose them to pyomyositis. PMID:27365874

  9. Streptococcus agalactiae pyomyositis in diabetes mellitus

    PubMed Central

    Tantrachoti, Pakpoom; Panikkath, Ragesh; Nugent, Kenneth

    2016-01-01

    Pyomyositis is an acute infectious disorder affecting the skeletal muscle. Although seen more commonly in the tropics, cases are being reported in temperate countries, including the United States. We report a case of nontropical pyomyositis in a 58-year-old diabetic man who presented with a vague chest wall swelling. His initial clinical presentation and imaging findings suggested an intramuscular hematoma. He later developed fever with increased swelling, and pyomyositis was diagnosed after an aspiration of the swelling yielded Streptococcus agalactiae. Aspiration of the abscess and the use of appropriate antibiotics led to complete resolution of the disease. We discuss possible factors in diabetics that might predispose them to pyomyositis. PMID:27365874

  10. Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy.

    PubMed

    Pasnik, D J; Evans, J J; Panangala, V S; Klesius, P H; Shelby, R A; Shoemaker, C A

    2005-04-01

    Streptococcus agalactiae is a major bacterial pathogen that is the cause of serious economic losses in many species of freshwater, marine and estuarine fish worldwide. A highly efficacious S. agalactiae vaccine was developed using extracellular products (ECP) and formalin-killed whole cells of S. agalactiae. The vaccine efficacy following storage of S. agalactiae ECP and formalin-killed S. agalactiae cells at 4 degrees C for 1 year was determined. The stored ECP containing S. agalactiae formalin-killed cells failed to prevent morbidity and mortality among the vaccinated fish, and the relative percentage survival was 29. Serum antibody responses of the stored ECP and freshly prepared ECP against soluble whole cell extract of S. agalactiae indicated that significantly less antibody was produced in fish immunized with stored ECP and S. agalactiae cells than in those fish immunized with freshly prepared ECP and S. agalactiae cells at day 31 post-vaccination. Silver staining of sodium dodecyl sulphate-polyacrylamide gels and immunostaining of Western blots with tilapia antiserum to S. agalactiae revealed that predominant 54 and 55 kDa bands were present in the freshly prepared ECP fraction. The 55 kDa band was absent from the stored ECP and new bands below 54 kDa appeared on the Western blot. The results of this study on S. agalactiae ECP provide evidence for a correlation between protection and antibody production to ECP and for the importance of the 55 kDa ECP antigen for vaccine efficacy. PMID:15813862

  11. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), long recognized as a mammalian pathogen, is an emerging pathogen to fish. We show that a GBS serotype Ia, multilocus sequence type ST-7 isolate from a human neonatal meningitis clinical case causes disease signs and mortality in N...

  12. GENOMIC DIVERSITY OF STREPTOCOCCUS AGALACTIAE FROM FISH, BOVINE AND HUMAN HOSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Group B Streptococcus agalactiae (GBS) is a cause of infectious disease in multiple poikilothermic and homothermic animal species. Epidemiological and zoonotic considerations necessitate an undertaking of a comparison of S. agalactiae isolates from different phylogenetic hosts and geographical regi...

  13. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  14. Antibiotic resistance of Streptococcus agalactiae from cows with mastitis.

    PubMed

    Gao, Jian; Yu, Fu-Qing; Luo, Li-Ping; He, Jian-Zhong; Hou, Rong-Guang; Zhang, Han-Qi; Li, Shu-Mei; Su, Jing-Liang; Han, Bo

    2012-12-01

    The aim of this study was to characterise the phenotypic and genotypic antibiotic resistance patterns of Streptococcus agalactiae isolated from cows with mastitis in China. Antibiotic resistance was based on minimum inhibitory concentrations and detection of resistance genes by PCR. S. agalactiae isolates most frequently exhibited phenotypic resistance to tetracycline, while the resistance genes most frequently detected were ermB, tetL and tetM. Resistance genes were detected in some susceptible isolates, whereas no resistance genes could be detected in some resistant isolates, indicating that the resistance genotype does not accurately predict phenotypic resistance. PMID:22627045

  15. Clinical analysis of cases of neonatal Streptococcus agalactiae sepsis.

    PubMed

    Zeng, S J; Tang, X S; Zhao, W L; Qiu, H X; Wang, H; Feng, Z C

    2016-01-01

    With the advent of antibiotic resistance, pathogenic bacteria have become a major threat in cases of neonatal sepsis; however, guidelines for treatment have not yet been standardized. In this study, 15 cases of neonatal Streptococcus agalactiae sepsis from our hospital were retrospectively analyzed. Of these, nine cases showed early-onset and six cases showed late-onset sepsis. Pathogens were characterized by genotyping and antibiotic sensitivity tests on blood cultures. Results demonstrated that in cases with early-onset sepsis, clinical manifestations affected mainly the respiratory tract, while late-onset sepsis was accompanied by intracranial infection. Therefore, we suggest including a cerebrospinal fluid examination when diagnosing neonatal sepsis. Bacterial genotyping indicated the bacteria were mainly type Ib, Ia, and III S. agalactiae. We recommend treatment with penicillin or ampicillin, since bacteria were resistant to clindamycin and tetracycline. In conclusion, our results provide valuable information for the clinical treatment of S. agalactiae sepsis in neonatal infants. PMID:27323190

  16. Development of primer sets for loop-mediated isothermal amplification that enables rapid and specific detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...

  17. Protein degradation in bovine milk caused by Streptococcus agalactiae.

    PubMed

    Åkerstedt, Maria; Wredle, Ewa; Lam, Vo; Johansson, Monika

    2012-08-01

    Streptococcus (Str.) agalactiae is a contagious mastitis bacterium, often associated with cases of subclinical mastitis. Different mastitis bacteria have been evaluated previously from a diagnostic point of view, but there is a lack of knowledge concerning their effect on milk composition. Protein composition is important in achieving optimal yield and texture when milk is processed to fermented products, such as cheese and yoghurt, and is thus of great economic value. The aim of this in vitro study was to evaluate protein degradation mainly caused by exogenous proteases originating from naturally occurring Str. agalactiae. The samples were incubated at 37°C to imitate degradation caused by the bacteria in the udder. Protein degradation caused by different strains of Str. agalactiae was also investigated. Protein degradation was observed to occur when Str. agalactiae was added to milk, but there were variations between strains of the bacteria. Caseins, the most economically important proteins in milk, were degraded up to 75% in milk inoculated with Str. agalactiae in relation to sterile ultra-high temperature (UHT) milk, used as control milk. The major whey proteins, α-lactalbumin and β-lactoglobulin, were degraded up to 21% in relation to the sterile control milk. These results suggest that different mastitis bacteria but also different strains of mastitis bacteria should be evaluated from a milk quality perspective to gain knowledge about their ability to degrade the economically important proteins in milk. PMID:22850579

  18. Complete genome sequence of an attenuated Sparfloxacin resistant Streptococcus agalactiae strain 138spar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...

  19. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections.

    PubMed

    Leelahapongsathon, Kansuda; Schukken, Ynte Hein; Pinyopummintr, Tanu; Suriyasathaporn, Witaya

    2016-02-01

    The objectives of study were to determine the transmission parameters (β), durations of infection, and basic reproductive numbers (R0) of both Streptococcus agalactiae and Streptococcus uberis as pathogens causing mastitis outbreaks in dairy herds. A 10-mo longitudinal study was performed using 2 smallholder dairy herds with mastitis outbreaks caused by Strep. agalactiae and Strep. uberis, respectively. Both herds had poor mastitis control management and did not change their milking management during the entire study period. Quarter milk samples were collected at monthly intervals from all lactating animals in each herd for bacteriological identification. The durations of infection for Strep. uberis intramammary infection (IMI) and Strep. agalactiae IMI were examined using Kaplan-Meier survival curves, and the Kaplan-Meier survival functions for Strep. uberis IMI and Strep. agalactiae IMI were compared using log rank survival-test. The spread of Strep. uberis and Strep. agalactiae through the population was determined by transmission parameter, β, the probability per unit of time that one infectious quarter will infect another quarter, assuming that all other quarters are susceptible. For the Strep. uberis outbreak herd (31 cows), 56 new infections and 28 quarters with spontaneous cure were observed. For the Strep. agalactiae outbreak herd (19 cows), 26 new infections and 9 quarters with spontaneous cure were observed. The duration of infection for Strep. agalactiae (mean=270.84 d) was significantly longer than the duration of infection for Strep. uberis (mean=187.88 d). The transmission parameters (β) estimated (including 95% confidence interval) for Strep. uberis IMI and Strep. agalactiae IMI were 0.0155 (0.0035-0.0693) and 0.0068 (0.0008-0.0606), respectively. The R0 (including 95% confidence interval) during the study were 2.91 (0.63-13.47) and 1.86 (0.21-16.61) for Strep. uberis IMI and Strep. agalactiae IMI, respectively. In conclusion, the transmission

  20. Influence of Tricaine Methanesulfonate on Streptococcus agalactiae vaccination of Nile tilapia (Oreochromis niloticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to study the influence of tricaine methanesulfonate (MS-222) on blood glucose levels and percent cumulative survival of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae 30 days post-vaccination with S. agalactiae vaccine or sham-vaccination wit...

  1. Fecal strings Associated with Streptococcus agalactiae Infection in Nile Tilapia, Oreochromis niloticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nile tilapia (Oreochromis niloticus) were experimentally-infected with Streptococcus agalactiae for several infectivity and vaccine studies. Some of the S. agalactiae-infected tilapia produced considerably longer (up to 20 cm in length) fecal waste strings than historically observed from tilapia at...

  2. Draft Genome Sequence of an Invasive Streptococcus agalactiae Isolate Lacking Pigmentation.

    PubMed

    Singh, Pallavi; Aronoff, David M; Davies, H Dele; Manning, Shannon D

    2016-01-01

    This report provides the whole-genome sequence of Streptococcus agalactiae isolate GB00037 isolated from a newborn in Calgary, Canada. This serotype V isolate is unique because it lacks pigment production previously shown to be critical for S. agalactiae virulence. PMID:26950320

  3. Development of live attenuated sparfloxacin-resistant Streptococcus agalactiae polyvalent vaccines to protect Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  4. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  5. Whole-Genome Shotgun Sequencing of a Colonizing Multilocus Sequence Type 17 Streptococcus agalactiae Strain

    PubMed Central

    Singh, Pallavi; Springman, A. Cody; Davies, H. Dele

    2012-01-01

    This report highlights the whole-genome shotgun draft sequence for a Streptococcus agalactiae strain representing multilocus sequence type (ST) 17, isolated from a colonized woman at 8 weeks postpartum. This sequence represents an important addition to the published genomes and will promote comparative genomic studies of S. agalactiae recovered from diverse sources. PMID:23045509

  6. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from diseased Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae strain 138P was isolated from the kidney of diseased Nile tilapia in Idaho during a 2007 streptococcal disease outbreak. The full genome of S. agalactiae 138P is 1,838,716 bp. The availability of this genome will allow comparative genomics to identify genes for antigen disco...

  7. Draft Genome Sequence of an Invasive Streptococcus agalactiae Isolate Lacking Pigmentation

    PubMed Central

    Singh, Pallavi; Aronoff, David M.; Davies, H. Dele

    2016-01-01

    This report provides the whole-genome sequence of Streptococcus agalactiae isolate GB00037 isolated from a newborn in Calgary, Canada. This serotype V isolate is unique because it lacks pigment production previously shown to be critical for S. agalactiae virulence. PMID:26950320

  8. Identification and Epidemiology of Streptococcus iniae and S. agalactiae in tilapias Oreochromis spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being known mainly as mammalian disease agents, Streptococcus iniae and S. agalactiae have become recognized as emerging pathogens of wild and cultured fish. The worldwide economic impact of S. iniae and S. agalactiae to the aquaculture industry is estimated in hundreds of millions annually...

  9. Draft genome sequence of a nonhemolytic fish-pathogenic Streptococcus agalactiae strain.

    PubMed

    Delannoy, Christian M J; Zadoks, Ruth N; Lainson, Frederick A; Ferguson, Hugh W; Crumlish, Margaret; Turnbull, James F; Fontaine, Michael C

    2012-11-01

    Streptococcus agalactiae is a significant Gram-positive bacterial pathogen of terrestrial and aquatic animals. A subpopulation of nonhemolytic strains which appear to be pathogenic only for poikilotherms exists. We report here the first draft genome sequence of a nonhemolytic S. agalactiae isolate recovered from a diseased fish. PMID:23105075

  10. Draft Genome Sequences of Streptococcus agalactiae Serotype Ia and III Isolates from Tilapia Farms in Thailand

    PubMed Central

    Areechon, Nontawith; Kannika, Korntip; Hirono, Ikuo

    2016-01-01

    Streptococcus agalactiae serotypes Ia and III were isolated from infected tilapia in cage and pond culture farms in Thailand during 2012 to 2014, in which pathogenicity analysis demonstrated that serotype III showed higher virulence than serotype Ia. Here, we report the draft genome sequencing of piscine S. agalactiae serotypes Ia and III. PMID:27013037

  11. Structure of a conjugative element in Streptococcus pneumoniae

    SciTech Connect

    Vijayakumar, M.N.; Priebe, S.D.; Guild, W.R.

    1986-06-01

    The authors have cloned and mapped a 69-kilobase (kb) region of the chromosome of Streptococcus pneumoniae DP1322, which carries the conjugative Omega(cat-tet) insertion from S. pneumoniae BM6001. This element proved to be 65.5 kb in size. Location of the junctions was facilitated by cloning a preferred target region from the wild-type strain Rx1 recipient genome. This target site was preferred by both the BM6001 element and the cat-erm-tet element from Streptococcus agalactiae B109. Within the BM6001 element cat and tet were separated by 30 kb, and cat was flanked by two copies of a sequence that was also present in the recipient strain Rx1 DNA. Another sequence at least 2.4 kb in size was found inside the BM6001 element and at two places in the Rx1 genome. Its role is unknown. The ends of the BM6001 element appear to be the same as those of the B109 element, both as seen after transfer to S. pneumoniae and as mapped by others in pDP5 after transposition in Streptococcus faecalis. No homology is seen between the ends of the BM6001 element and no evidence found suggesting that it ever circularizes.

  12. Evaluation of nine teat dip formulations under experimental challenge to staphylococcus aureus and streptococcus agalactiae.

    PubMed

    Pankey, J W; Philpot, W N; Boddie, R L; Watts, J L

    1983-01-01

    Nine postmilking teat dips were evaluated by an experimental challenge model against either Staphylococcus aureus, Streptococcus agalactiae, or both. Formulations containing .9 and .6% sodium hypochlorite, 1% sodium dichloro-s-triazene-trione, .55% chlorhexidine gluconate, and .35% povidone iodine reduced incidence of Staphylococcus aureus infections 56.8, 28.3, 75.9, 92.5, and 77.9%. Incidence of infections with Streptococcus agalactiae was reduced 48.1 and 63.2% by 1.7 and 1% sodium dichloro-s-triazene-trione formulations. The 1% chlorhexidine gluconate and .35% povidone iodine products reduced Streptococcus agalactiae infections 71.0 and 67.0%. Three experimental 1% iodophor formulations reduced Streptococcus agalactiae infections 28.9, 44.8, and 50.7%. The experimental challenge model was refined further and provided an efficient method to determine efficacy of postmilking teat dips. PMID:6339575

  13. Non-infectivity of Cattle Streptococcus agalactiae in Nile Tilapia, Oreochromis niloticus and Channel Catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae is classified as a Lancefield’s group B Streptococcus (GBS). It is the causative bacterium of streptococcosis that is responsible for severe economic losses in wild and cultured fish, worldwide. Streptococcus agalactiae also causes bovine mastitis. Only limited comparativ...

  14. Biofilm formation in Streptococcus pneumoniae.

    PubMed

    Domenech, Mirian; García, Ernesto; Moscoso, Miriam

    2012-07-01

    Biofilm-grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline-binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S. pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S. pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance. PMID:21906265

  15. Biofilm formation in Streptococcus pneumoniae

    PubMed Central

    Domenech, Mirian; García, Ernesto; Moscoso, Miriam

    2012-01-01

    Summary Biofilm‐grown bacteria are refractory to antimicrobial agents and show an increased capacity to evade the host immune system. In recent years, studies have begun on biofilm formation by Streptococcus pneumoniae, an important human pathogen, using a variety of in vitro model systems. The bacterial cells in these biofilms are held together by an extracellular matrix composed of DNA, proteins and, possibly, polysaccharide(s). Although neither the precise nature of these proteins nor the composition of the putative polysaccharide(s) is clear, it is known that choline‐binding proteins are required for successful biofilm formation. Further, many genes appear to be involved, although the role of each appears to vary when biofilms are produced in batch or continuous culture. Prophylactic and therapeutic measures need to be developed to fight S. pneumoniae biofilm formation. However, much care needs to be taken when choosing strains for such studies because different S. pneumoniae isolates can show remarkable genomic differences. Multispecies and in vivo biofilm models must also be developed to provide a more complete understanding of biofilm formation and maintenance. PMID:21906265

  16. Streptococcus agalactiae mural infective endocarditis in a structurally normal heart

    PubMed Central

    Ariyoshi, Nobuhiro; Miyamoto, Keisuke; Bolger, Dennis T.

    2016-01-01

    A 38-year-old Caucasian man with uncontrolled diabetes mellitus type 2 was admitted with a 1-week duration of fevers, chills, and a non-productive cough. He had a left ischiorectal abscess 1 month prior to admission. Physical examination revealed caries on a left upper molar and a well-healed scar on the left buttock, but no heart murmur or evidence of micro-emboli. Blood cultures grew Streptococcus agalactiae. A transesophageal echocardiogram revealed a mobile mass in the right ventricle that attached to chordae tendineae without valvular disease or dysfunction. A computed tomography (CT) with contrast revealed the mass within the right ventricle, a left lung cavitary lesion, and a splenic infarction. He was initially treated with penicillin G for a week. Subsequently, ceftriaxone was continued for a total of 8 weeks. A follow-up CT showed no evidence of right ventricular mass 8 weeks after discharge. This is the first reported case of S. agalactiae mural infective endocarditis in a structurally normal heart. PMID:27124171

  17. Streptococcus agalactiae mural infective endocarditis in a structurally normal heart.

    PubMed

    Ariyoshi, Nobuhiro; Miyamoto, Keisuke; Bolger, Dennis T

    2016-01-01

    A 38-year-old Caucasian man with uncontrolled diabetes mellitus type 2 was admitted with a 1-week duration of fevers, chills, and a non-productive cough. He had a left ischiorectal abscess 1 month prior to admission. Physical examination revealed caries on a left upper molar and a well-healed scar on the left buttock, but no heart murmur or evidence of micro-emboli. Blood cultures grew Streptococcus agalactiae. A transesophageal echocardiogram revealed a mobile mass in the right ventricle that attached to chordae tendineae without valvular disease or dysfunction. A computed tomography (CT) with contrast revealed the mass within the right ventricle, a left lung cavitary lesion, and a splenic infarction. He was initially treated with penicillin G for a week. Subsequently, ceftriaxone was continued for a total of 8 weeks. A follow-up CT showed no evidence of right ventricular mass 8 weeks after discharge. This is the first reported case of S. agalactiae mural infective endocarditis in a structurally normal heart. PMID:27124171

  18. Serotype IX, a Proposed New Streptococcus agalactiae Serotype.

    PubMed

    Slotved, Hans-Christian; Kong, Fanrong; Lambertsen, Lotte; Sauer, Susanne; Gilbert, Gwendolyn L

    2007-09-01

    We identified three isolates of Streptococcus agalactiae (group B streptococcus [GBS]), of human origin, which failed to react with antisera against any of the nine known GBS serotypes. Polyclonal rabbit antisera raised against these isolates and standard GBS typing sera were used in capillary precipitation and Ouchterlony tests to compare the strains with known GBS serotype reference strains. All three previously nontypeable isolates reacted with all three new antisera, producing lines of identity in the Ouchterlony test. Weak cross-reactions with antisera against several GBS serotypes were observed but were removed by absorption with corresponding antigens. The new antisera were used to test 227 GBS isolates that had been nontypeable or difficult to type using standard antisera. Of these, five reacted with the new antisera. These results suggested that all eight isolates belong to the previously unrecognized GBS serotype. They were tested by Western blotting for the Calpha and Cbeta proteins and by PCR to identify molecular serotypes and surface protein antigen genes. Two segments of the cps gene cluster (3' end of cpsE-cpsF and 5' end of cpsG, approximately 700 bp; 3' end of cpsH and 5' end of cpsM, approximately 560 bp) were sequenced. All eight isolates expressed Calpha, and seven expressing the Cbeta protein and the corresponding genes, bca and bac, respectively, were identified. They all share the same, unique partial cps sequence. These results indicate that these eight isolates represent a new S. agalactiae serotype, which we propose should be designated serotype IX. PMID:17634306

  19. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae.

    PubMed

    Rego, Sara; Heal, Timothy J; Pidwill, Grace R; Till, Marisa; Robson, Alice; Lamont, Richard J; Sessions, Richard B; Jenkinson, Howard F; Race, Paul R; Nobbs, Angela H

    2016-07-29

    Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712

  20. High Incidence of Macrolide and Tetracycline Resistance among Streptococcus Agalactiae Strains Isolated from Clinical Samples in Tehran, Iran

    PubMed Central

    EMANEINI, Mohammad; MIRSALEHIAN, Akbar; BEIGVIERDI, Reza; FOOLADI, Abbas Ali Imani; ASADI, Fatemeh; JABALAMELI, Fereshteh; TAHERIKALANI, Morovat

    2014-01-01

    Background: Streptococcus agalactiae or Group B Streptococci (GBS) is an important bacterial pathogen that causes a wide range of infections including neonatal sepsis, meningitis, pneumonia and soft tissue or urinary tract infections. Material and methods: One hundred and fifteen isolates of Streptococcus agalactiae collected from urine specimens of patients attending a hospital in Tehran. All isolates were screened for their capsular types and genes encoding resistance to the macrolide and tetracycline antibiotics by PCR and multiplex PCR–based methods. Results: Most of isolates belonged to capsular types III (49%), V (19%), II (16%), and Ib (6%). Twelve isolates (10%) were nontypable. All isolates were susceptible to penicillin and Quinupristin-dalfopristin, but were resistant to clindamycin (35%), chloramphenicol (45%), erythromycin (35%), linezolid (1%) and tetracycline (96%). The most prevalent antimicrobial resistance gene was tetM found in 93% of the isolates followed by ermTR, ermB, and tetK, found in 23%, 16%, and 16% of isolates, respectively. The genes, tetL, tetO, ermA, ermC and mefA were not detected in any of the S. agalactiae isolates. Of the 110 tetracycline resistant S. agalactiae, 89 isolates harbored the tetM gene alone and eighteen isolates carried the tetM gene with the tetK gene. All erythromycin-resistant isolates exhibited cMLSB resistance phenotype, 22 isolates harbored the ermTR gene alone and five isolates carried the ermTR gene with the ermB gene. The rate of coexistence of genes encoding the erythromycin and tetracycline resistance determinants was 34%. Conclusion: The present study demonstrated that S. agalactiae isolates obtained from urine samples showed a high rate of resistance to tetracycline, chloramphenicol and macrolide antibiotics and were commonly associated with the resistance genes temM, ermTR or ermB. PMID:25705271

  1. A comparative investigation of Streptococcus agalactiae isolates from fish and cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae is the causative bacterium of streptococcosis and causes severe economic losses in wild and cultured fish and cattle, worldwide. In fish, infection can result in septicemia with hemorrhages on the body surface and in the external and internal organs. Streptococcus agalacti...

  2. Structural analysis of the lipoteichoic acids isolated from bovine mastitis Streptococcus uberis 233, Streptococcus dysgalactiae 2023 and Streptococcus agalactiae 0250.

    PubMed

    Czabańska, Anna; Neiwert, Olga; Lindner, Buko; Leigh, James; Holst, Otto; Duda, Katarzyna A

    2012-11-01

    Lipoteichoic acid (LTA) is an amphiphilic polycondensate located in the cell envelope of Gram-positive bacteria. In this study, LTAs were isolated from the three bovine mastitis species Streptococcus uberis 233, Streptococcus dysgalactiae 2023, and Streptococcus agalactiae 0250. Structural investigations of these LTAs were performed applying 1D and 2D nuclear magnetic resonance experiments as well as chemical analyses and mass spectrometry. Compositional analysis revealed the presence of glycerol (Gro), Glc, alanine (Ala), and 16:0, 16:1, 18:0, 18:1. The LTAs of the three Streptococcus strains possessed the same structure, that is, a lipid anchor comprised of α-Glcp-(1→2)-α-Glcp-(1→3)-1,2-diacyl-sn-Gro and the hydrophilic backbone consisting of poly(sn-Gro-1-phosphate) randomly substituted at O-2 of Gro by d-Ala. PMID:23036931

  3. Complete Genome Sequence of Streptococcus agalactiae Serotype III, Multilocus Sequence Type 283 Strain SG-M1

    PubMed Central

    Mehershahi, Kurosh S.; Hsu, Li Yang; Koh, Tse Hsien

    2015-01-01

    Streptococcus agalactiae (group B Streptococcus) is a common commensal strain in the human gastrointestinal tract that can also cause invasive disease in humans and other animals. We report here the complete genome sequence of S. agalactiae SG-M1, a serotype III, multilocus sequence type 283 strain, isolated from a Singaporean patient suffering from meningitis. PMID:26494662

  4. Complete Genome Sequence of Streptococcus agalactiae Serotype III, Multilocus Sequence Type 283 Strain SG-M1.

    PubMed

    Mehershahi, Kurosh S; Hsu, Li Yang; Koh, Tse Hsien; Chen, Swaine L

    2015-01-01

    Streptococcus agalactiae (group B Streptococcus) is a common commensal strain in the human gastrointestinal tract that can also cause invasive disease in humans and other animals. We report here the complete genome sequence of S. agalactiae SG-M1, a serotype III, multilocus sequence type 283 strain, isolated from a Singaporean patient suffering from meningitis. PMID:26494662

  5. Complete Genome Sequence of Nonhemolytic Streptococcus agalactiae Serotype V Strain 1, Isolated from the Buccal Cavity of a Canine.

    PubMed

    Harden, Leeanne K; Morales, Karina M; Hughey, Jeffery R

    2016-01-01

    The complete genome sequence from a nonhemolytic strain of Streptococcus agalactiae from the oral cavity of a canine was assembled. The genome is 2,165,968 bp, contains 2,055 genes, and is classified as group B streptococcus (GBS) serotype V, strain 1. A comparison to other S. agalactiae sequences shows high gene synteny with human and bovine strains. PMID:26823579

  6. Complete Genome Sequence of Nonhemolytic Streptococcus agalactiae Serotype V Strain 1, Isolated from the Buccal Cavity of a Canine

    PubMed Central

    Harden, Leeanne K.; Morales, Karina M.

    2016-01-01

    The complete genome sequence from a nonhemolytic strain of Streptococcus agalactiae from the oral cavity of a canine was assembled. The genome is 2,165,968 bp, contains 2,055 genes, and is classified as group B streptococcus (GBS) serotype V, strain 1. A comparison to other S. agalactiae sequences shows high gene synteny with human and bovine strains. PMID:26823579

  7. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2)

    PubMed Central

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae internalization, we chemically inhibited discrete parts of cellular uptake system in H9C2 cells using genistein, chlorpromazine, nocodazole and cytochalasin B. Chemical inhibition of microtubule and actin formation by nocodazole and cytochalasin B impaired S. agalactiae internalization into H9C2 cells. Consistently, reverse‒ transcription PCR (RT‒PCR) and quantitative real time‒PCR (RT-qPCR) analyses also detected higher levels of transcripts for cytoskeleton forming genes, Acta1 and Tubb5 in S. agalactiae‒infected H9C2 cells, suggesting the requirement of functional cytoskeleton in pathogenesis. Host survival assay demonstrated that S. agalactiae internalization induced cytotoxicity in H9C2 cells. S. agalactiae cells grown with benzyl penicillin reduced its ability to internalize and induce cytotoxicity in H9C2 cells, which could be attributed with the removal of surface lipoteichoic acid (LTA) from S. agalactiae. Further, the LTA extracted from S. agalactiae also exhibited dose‒dependent cytotoxicity in H9C2 cells. Taken together, our data suggest that S. agalactiae cells internalized H9C2 cells through energy‒dependent endocytic processes and the LTA of S. agalactiae play major role in host cell internalization and cytotoxicity induction. PMID:26431539

  8. Isolation of quinupristin/dalfopristin-resistant Streptococcus agalactiae from asymptomatic Korean women.

    PubMed

    Nam, Hye Ran; Lee, Hak Mee; Lee, Yeonhee

    2008-02-01

    Seven Streptococcus agalactiae isolates were obtained from the vagina of 80 asymptomatic women. Three of these isolates showed multi-drug resistant (MDR) phenotypes: two isolates were resistant to clarithromycin, clindamycin, erythromycin, and tetracycline; and one isolate was resistant to clarithromycin, clindamycin, erythromycin, tetracycline, and quinupristin/dalfopristin. There was no clonal relationship among the MDR isolates. This is the first report of quinupristin/dalfopristin-resistant S. agalactiae. PMID:18337702

  9. Reactive oxygen species involved in apoptosis induction of human respiratory epithelial (A549) cells by Streptococcus agalactiae.

    PubMed

    da Costa, Andréia Ferreira Eduardo; Moraes, João Alfredo; de Oliveira, Jessica Silva Santos; dos Santos, Michelle Hanthequeste Bittencourt; Santos, Gabriela da Silva; Barja-Fidalgo, Christina; Mattos-Guaraldi, Ana Luiza; Nagao, Prescilla Emy

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus; GBS) is an important pathogen and is associated with pneumonia, sepsis and meningitis in neonates and adults. GBS infections induce cytotoxicity of respiratory epithelial cells (A549) with generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (ψm). The apoptosis of A549 cells by GBS was dependent on the activation of caspase-3 and caspase-9 with increased pro-apoptotic Bim and Bax molecules and decreased Bcl-2 pro-survival protein. Treatment of infected A549 cells with ROS inhibitors (diphenyleniodonium chloride or apocynin) prevented intracellular ROS production and apoptosis. Consequently, oxidative stress is included among the cellular events leading to apoptosis during GBS human invasive infections. PMID:26490153

  10. Streptococcus agalactiae Serotype Distribution and Antimicrobial Susceptibility in Pregnant Women in Gabon, Central Africa.

    PubMed

    Belard, Sabine; Toepfner, Nicole; Capan-Melser, Mesküre; Mombo-Ngoma, Ghyslain; Zoleko-Manego, Rella; Groger, Mirjam; Matsiegui, Pierre-Blaise; Agnandji, Selidji T; Adegnika, Ayôla A; González, Raquel; Kremsner, Peter G; Menendez, Clara; Ramharter, Michael; Berner, Reinhard

    2015-01-01

    Neonatal invasive disease due to Streptococcus agalactiae is life threatening and preventive strategies suitable for resource limited settings are urgently needed. Protective coverage of vaccine candidates based on capsular epitopes will relate to local epidemiology of S. agalactiae serotypes and successful management of critical infections depends on timely therapy with effective antibiotics. This is the first report on serotype distribution and antimicrobial susceptibility of S. agalactiae in pregnant women from a Central African region. Serotypes V, III, and Ib accounted for 88/109 (81%) serotypes and all isolates were susceptible to penicillin and clindamycin while 13% showed intermediate susceptibility to erythromycin. PMID:26603208

  11. Streptococcus agalactiae Serotype Distribution and Antimicrobial Susceptibility in Pregnant Women in Gabon, Central Africa

    PubMed Central

    Belard, Sabine; Toepfner, Nicole; Capan-Melser, Mesküre; Mombo-Ngoma, Ghyslain; Zoleko-Manego, Rella; Groger, Mirjam; Matsiegui, Pierre-Blaise; Agnandji, Selidji T.; Adegnika, Ayôla A.; González, Raquel; Kremsner, Peter G.; Menendez, Clara; Ramharter, Michael; Berner, Reinhard

    2015-01-01

    Neonatal invasive disease due to Streptococcus agalactiae is life threatening and preventive strategies suitable for resource limited settings are urgently needed. Protective coverage of vaccine candidates based on capsular epitopes will relate to local epidemiology of S. agalactiae serotypes and successful management of critical infections depends on timely therapy with effective antibiotics. This is the first report on serotype distribution and antimicrobial susceptibility of S. agalactiae in pregnant women from a Central African region. Serotypes V, III, and Ib accounted for 88/109 (81%) serotypes and all isolates were susceptible to penicillin and clindamycin while 13% showed intermediate susceptibility to erythromycin. PMID:26603208

  12. [Streptococcus agalactiae (GBS)--the characteristic of isolated strains from productive women's vagina].

    PubMed

    Wolny, Katarzyna; Gołda-Matuszak, Ewa

    2010-01-01

    The main aim of my research: to determine the frequency of colonisation Streptococcus agalactiae from productive women's vagina, an evaluation of usefulness microbiological diagnostic methods to detect GBS, to define serotype of analysed strains of S. agalactiae. After all, I tried to define fenotypic differential, biochemical and antimicrobial susceptibility between GBS with and without hemolysis. All of strains S. agalactiae (n = 380) belong to bacteria Gram(+), they had B serologic group and didn't produce catalase. On the basis of TSA+5% sheep blood streptococcus with beta-hemolysis grew like a small, grey and shiny colonies with a narrow, bright ring. On the same base we had S. agalactiae without beta-hemolysis, in examine material--6% (n = 22). On the basis of Strepto B ID S. agalactiae grew like a small, round red colonies and on the base Granada agar like an orange, white colonies. The level of colonisation S. agalactiae was 22% (380GBS/1727women). Identification of analysed strains of S. agalactiae was made by test API 20 Strep. The susceptibility was examined to ampicilin, azithromycin, erythromycin, clindamycin, chloramphenicol, doxycyclin, cotrimoxasol, ciprofloxacin. Serotypes III (50%), Ia (18%) and V (14%) prevailed. PMID:20873487

  13. Streptococcus pneumoniae NanC

    PubMed Central

    Owen, C. David; Lukacik, Petra; Potter, Jane A.; Sleator, Olivia; Taylor, Garry L.; Walsh, Martin A.

    2015-01-01

    Streptococcus pneumoniae is an important human pathogen that causes a range of disease states. Sialidases are important bacterial virulence factors. There are three pneumococcal sialidases: NanA, NanB, and NanC. NanC is an unusual sialidase in that its primary reaction product is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en, also known as DANA), a nonspecific hydrolytic sialidase inhibitor. The production of Neu5Ac2en from α2–3-linked sialosides by the catalytic domain is confirmed within a crystal structure. A covalent complex with 3-fluoro-β-N-acetylneuraminic acid is also presented, suggesting a common mechanism with other sialidases up to the final step of product formation. A conformation change in an active site hydrophobic loop on ligand binding constricts the entrance to the active site. In addition, the distance between the catalytic acid/base (Asp-315) and the ligand anomeric carbon is unusually short. These features facilitate a novel sialidase reaction in which the final step of product formation is direct abstraction of the C3 proton by the active site aspartic acid, forming Neu5Ac2en. NanC also possesses a carbohydrate-binding module, which is shown to bind α2–3- and α2–6-linked sialosides, as well as N-acetylneuraminic acid, which is captured in the crystal structure following hydration of Neu5Ac2en by NanC. Overall, the pneumococcal sialidases show remarkable mechanistic diversity while maintaining a common structural scaffold. PMID:26370075

  14. Streptococcus agalactiae infection in cancer patients: a five-year study.

    PubMed

    Pimentel, B A S; Martins, C A S; Mendonça, J C; Miranda, P S D; Sanches, G F; Mattos-Guaraldi, A L; Nagao, P E

    2016-06-01

    Although the highest burden of Streptococcus agalactiae infections has been reported in industrialized countries, studies on the characterization and epidemiology are still limited in developing countries and implementation of control strategies remains undefined. The aim of this retrospective study was to assess the epidemiological, clinical, and microbiological aspects of S. agalactiae infections in cancer patients treated at a Reference Brazilian National Cancer Institute - INCA, Rio de Janeiro, Brazil. We reviewed the clinical and laboratory records of all cancer patients identified as having invasive S. agalactiae disease during 2010-2014. The isolates were identified by biochemical analysis and tested for antimicrobial susceptibility. A total of 263 strains of S. agalactiae were isolated from cancer patients who had been clinically and microbiologically classified as infected. S. agalactiae infections were mostly detected among adults with solid tumors (94 %) and/or patients who have used indwelling medical devices (77.2 %) or submitted to surgical procedures (71.5 %). Mortality rates (in-hospital mortality during 30 days after the identification of S. agalactiae) related to invasive S. agalactiae infections (n = 28; 31.1 %) for the specific category of neoplasic diseases were: gastrointestinal (46 %), head and neck (25 %), lung (11 %), hematologic (11 %), gynecologic (4 %), and genitourinary (3 %). We also found an increase in S. agalactiae resistance to erythromycin and clindamycin and the emergence of penicillin-less susceptible isolates. A remarkable number of cases of invasive infections due to S. agalactiae strains was identified, mostly in adult patients. Our findings reinforce the need for S. agalactiae control measures in Brazil, including cancer patients. PMID:26993288

  15. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence.

    PubMed

    Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing

    2014-05-14

    Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new

  16. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  17. Revisitingmolecular serotyping of Streptococcus pneumoniae

    PubMed Central

    2015-01-01

    Background Ninety-two Streptococcus pneumoniae serotypes have been described so far, but the pneumococcal conjugate vaccine introduced in the Brazilian basic vaccination schedule in 2010 covers only the ten most prevalent in the country. Pneumococcal serotype-shifting after massive immunization is a major concern and monitoring this phenomenon requires efficient and accessible serotyping methods. Pneumococcal serotyping based on antisera produced in animals is laborious and restricted to a few reference laboratories. Alternatively, molecular serotyping methods assess polymorphisms in the cps gene cluster, which encodes key enzymes for capsular polysaccharides synthesis in pneumococci. In one such approach, cps-RFLP, the PCR amplified cps loci are digested with an endonuclease, generating serotype-specific fingerprints on agarose gel electrophoresis. Methods In this work, in silico and in vitro approaches were combined to demonstrate that XhoII is the most discriminating endonuclease for cps-RFLP, and to build a database of serotype-specific fingerprints that accommodates the genetic diversity within the cps locus of 92 known pneumococci serotypes. Results The expected specificity of cps-RFLP using XhoII was 76% for serotyping and 100% for serogrouping. The database of cps-RFLP fingerprints was integrated to Molecular Serotyping Tool (MST), a previously published web-based software for molecular serotyping. In addition, 43 isolates representing 29 serotypes prevalent in the state of Minas Gerais, Brazil, from 2007 to 2013, were examined in vitro; 11 serotypes (nine serogroups) matched the respective in silico patterns calculated for reference strains. The remaining experimental patterns, despite their resemblance to their expected in silico patterns, did not reach the threshold of similarity score to be considered a match and were then added to the database. Conclusion The cps-RFLP method with XhoII outperformed the antisera-based and other molecular serotyping

  18. Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk.

    PubMed

    Shome, Bibek Ranjan; Bhuvana, Mani; Mitra, Susweta Das; Krithiga, Natesan; Shome, Rajeswari; Velu, Dhanikachalam; Banerjee, Apala; Barbuddhe, Sukhadeo B; Prabhudas, Krishnamshetty; Rahman, Habibar

    2012-12-01

    Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A-D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B

  19. Nontypeable Streptococcus pneumoniae as an Otopathogen

    PubMed Central

    Xu, Qingfu; Kaur, Ravinder; Casey, Janet R.; Sabharwal, Vishakha; Pelton, Stephen; Pichichero, Michael E.

    2014-01-01

    Among 34 Spn sequential isolates from middle ear fluid we found a case of a nontypeable Streptococcus pneumoniae (NT-Spn) in a child with AOM. The strain was pneumolysin PCR positive and capsule gene PCR negative. Virulence of the NT-Spn was confirmed in a chinchilla model of AOM. PMID:21251566

  20. Could β-hemolytic, group B Enterococcus faecalis be mistaken for Streptococcus agalactiae?

    PubMed

    Savini, Vincenzo; Gherardi, Giovanni; Marrollo, Roberta; Franco, Alessia; Pimentel De Araujo, Fernanda; Dottarelli, Samuele; Fazii, Paolo; Battisti, Antonio; Carretto, Edoardo

    2015-05-01

    A β-hemolytic Enterococcus faecalis strain agglutinating Lancefield group A, B, C, D, F, and G antisera was observed from a rectovaginal swab, in the context of antenatal screening for Streptococcus agalactiae (group B Streptococcus [GBS]). This is the first multi-Lancefield antisera-agglutinating isolate of this species, and it raised particular concern, as it may mimic GBS, leading to false reporting and useless receipt of intrapartum antibiotics. PMID:25766004

  1. Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia

    PubMed Central

    Mainardi, Rafaella Menegheti; Lima Júnior, Edson Antônio; Ribeiro Júnior, Jose Carlos; Beloti, Vanerli; Carmo, Anderson Oliveira; Kalapothakis, Evanguedes; Gonçalves, Daniela Dib; Padua, Santiago Benites

    2016-01-01

    Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil. PMID:27491974

  2. Efficacy of an experimentally inactivated Streptococcus agalactiae vaccine in Nile tilapia (Oreochromis niloticus) reared in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia aquaculture is one of the fastest growing segments of fish production in Brazil. Nile tilapia (Oreochromis niloticus) is largely cultivated in the state of Parana, where Streptococcus agalactiae is the cause of severe disease outbreaks. The objective of this paper was to evaluate an inactiva...

  3. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from disease Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of a virulent Streptococcus agalactiae strain 138P is 1838701 bp in size, containing 1831 genes. The genome has 1593 coding sequences, 152 pseudo genes, 16 rRNAs, 69 tRNAs, and 1 non-coding RNA. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipel...

  4. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  5. Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia.

    PubMed

    Mainardi, Rafaella Menegheti; Lima Júnior, Edson Antônio; Ribeiro Júnior, Jose Carlos; Beloti, Vanerli; Carmo, Anderson Oliveira; Kalapothakis, Evanguedes; Gonçalves, Daniela Dib; Padua, Santiago Benites; Pereira, Ulisses Pádua

    2016-01-01

    Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil. PMID:27491974

  6. Genome Sequence of Streptococcus agalactiae Strain 09mas018883, Isolated from a Swedish Cow.

    PubMed

    Zubair, S; de Villiers, E P; Fuxelius, H H; Andersson, G; Johansson, K-E; Bishop, R P; Bongcam-Rudloff, E

    2013-01-01

    We announce the complete genome sequence of Streptococcus agalactiae strain 09mas018883, isolated from the milk of a cow with clinical mastitis. The availability of this genome may allow identification of candidate genes, leading to discovery of antigens that might form the basis for development of a vaccine as an alternative means of mastitis control. PMID:23846269

  7. GC-MS-Based Metabolome and Metabolite Regulation in Serum-Resistant Streptococcus agalactiae.

    PubMed

    Wang, Zhe; Li, Min-Yi; Peng, Bo; Cheng, Zhi-Xue; Li, Hui; Peng, Xuan-Xian

    2016-07-01

    Streptococcus agalactiae causes severe systemic infections in human and fish. In the present study, we established a pathogen-plasma interaction model by which we explored how S. agalactiae evaded serum-mediated killing. We found that S. agalactiae grew faster in the presence of yellow grouper plasma than in the absence of the plasma, indicating S. agalactiae evolved a way of evading the fish immune system. To determine the events underlying this phenotype, we applied GC-MS-based metabolomics approaches to identify differential metabolomes between S. agalactiae cultured with and without yellow grouper plasma. Through bioinformatics analysis, decreased malic acid and increased adenosine were identified as the most crucial metabolites that distinguish the two groups. Meanwhile, they presented with decreased TCA cycle and elevated purine metabolism, respectively. Finally, exogenous malic acid and adenosine were used to reprogram the plasma-resistant metabolome, leading to elevated and decreased susceptibility to the plasma, respectively. Therefore, our findings reveal for the first time that S. agalactiae utilizes a metabolic trick to respond to plasma killing as a result of serum resistance, which may be reverted or enhanced by exogenous malic acid and adenosine, respectively, suggesting that the metabolic trick can be regulated by metabolites. PMID:27251450

  8. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    SciTech Connect

    Kino, Kuniki . E-mail: kkino@waseda.jp; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-12

    Glutathione (GSH) is synthesized by {gamma}-glutamylcysteine synthetase ({gamma}-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed {gamma}-GCS-GS catalyzing both {gamma}-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the {gamma}-GCS activity, S. agalactiae {gamma}-GCS-GS had different substrate specificities from those of Escherichia coli {gamma}-GCS. Furthermore, S. agalactiae {gamma}-GCS-GS synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-X{sub aa}-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding {gamma}-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae {gamma}-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed {gamma}-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-Cys-X{sub aa}. Whereas the substrate specificities of {gamma}-GCS domain protein and GS domain protein of S. agalactiae {gamma}-GCS-GS were the same as those of S. agalactiae {gamma}-GCS-GS.

  9. Annual incidence, prevalence and transmission characteristics of Streptococcus agalactiae in Danish dairy herds.

    PubMed

    Mweu, Marshal M; Nielsen, Søren S; Halasa, Tariq; Toft, Nils

    2012-10-01

    Contagious mastitis pathogens continue to pose an economic threat to the dairy industry. An understanding of their frequency and transmission dynamics is central to evaluating the effectiveness of control programmes. The objectives of this study were twofold: (1) to estimate the annual herd-level incidence rates and apparent prevalences of Streptococcus agalactiae (S. agalactiae) in the population of Danish dairy cattle herds over a 10-year period from 2000 to 2009 inclusive and (2) to estimate the herd-level entry and exit rates (demographic parameters), the transmission parameter, β, and recovery rate for S. agalactiae infection. Data covering the specified period, on bacteriological culture of all bulk tank milk samples collected annually as part of the mandatory Danish S. agalactiae surveillance scheme, were extracted from the Danish Cattle Database and subsequently analysed. There was an increasing trend in both the incidence and prevalence of S. agalactiae over the study period. Per 100 herd-years the value of β was 54.1 (95% confidence interval [CI] 46.0-63.7); entry rate 0.3 (95% CI 0.2-0.4); infection-related exit rate 7.1 (95% CI 5.6-8.9); non-infection related exit rate 9.2 (95% CI 7.4-11.5) and recovery rate 40.0 (95% CI 36.8-43.5). This study demonstrates a need to tighten the current controls against S. agalactiae in order to lower its incidence. PMID:22560559

  10. Differential pathogenicity of five Streptococcus agalactiae isolates of diverse geographic origin in Nile tilapia (Oreochromis niloticus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae is an emerging pathogen of fish and has caused significant morbidity amd mortality worldwide. The work in this study assessed whether pathogenic differences exist among isolates from different geographic locations. Nile tilapia (Oreochromis niloticus L.) were administered an...

  11. INFLUENCE OF NATURAL TRICHODINA SP.PARASITISM ON EXPERIMENTAL STREPTOCOCCUS INIAE OR Streptococcus AGALACTIAE INFECTION AND SURVIVAL OF YOUNG CHANNEL CATFISH ICTALURUS PUNCTATUS (RAFINESQUE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae and S. agalactiae are usually not considered pathogens of channel catfish, Ictalurus punctatus, though concurrent infections may decrease catfish survival when infected with streptococcal organisms. Non-parasitized or naturally-parasitized channel catfish fry were challenged wit...

  12. Granzyme A impairs host defense during Streptococcus pneumoniae pneumonia.

    PubMed

    van den Boogaard, Florry E; van Gisbergen, Klaas P J M; Vernooy, Juanita H; Medema, Jan P; Roelofs, Joris J T H; van Zoelen, Marieke A D; Endeman, Henrik; Biesma, Douwe H; Boon, Louis; Van't Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2016-08-01

    Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia (CAP). Granzyme A (GzmA) is a serine protease produced by a variety of cell types involved in the immune response. We sought to determine the role of GzmA on the host response during pneumococcal pneumonia. GzmA was measured in bronchoalveolar lavage fluid (BALF) harvested from CAP patients from the infected and contralateral uninfected side and in lung tissue slides from CAP patients and controls. In CAP patients, GzmA levels were increased in BALF obtained from the infected lung. Human lungs showed constitutive GzmA expression by both parenchymal and nonparenchymal cells. In an experimental setting, pneumonia was induced in wild-type (WT) and GzmA-deficient (GzmA(-/-)) mice by intranasal inoculation of S. pneumoniae In separate experiments, WT and GzmA(-/-) mice were treated with natural killer (NK) cell depleting antibodies. Upon infection with S. pneumoniae, GzmA(-/-) mice showed a better survival and lower bacterial counts in BALF and distant body sites compared with WT mice. Although NK cells showed strong GzmA expression, NK cell depletion did not influence bacterial loads in either WT or GzmA(-/-) mice. These results implicate that GzmA plays an unfavorable role in host defense during pneumococcal pneumonia by a mechanism that does not depend on NK cells. PMID:27343190

  13. The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells.

    PubMed

    Gutekunst, Heike; Eikmanns, Bernhard J; Reinscheid, Dieter J

    2004-06-01

    Streptococcus agalactiae is a major cause of bacterial sepsis and meningitis in human newborns. The interaction of S. agalactiae with host proteins and the entry into host cells thereby represent important virulence traits of these bacteria. The present report describes the identification of the fbsB gene, encoding a novel fibrinogen-binding protein that plays a crucial role in the invasion of S. agalactiae into human cells. In Western blots and enzyme-linked immunosorbent assay (ELISA) experiments, the FbsB protein was demonstrated to interact with soluble and immobilized fibrinogen. Binding studies showed the N-terminal 388 residues of FbsB and the Aalpha-subunit of human fibrinogen to recognize each other. By reverse transcription (RT)-PCR, the fbsB gene was shown to be cotranscribed with the gbs0851 gene in S. agalactiae. Deletion of the fbsB gene in the genome of S. agalactiae did not influence the binding of the bacteria to fibrinogen, suggesting that FbsB does not participate in the attachment of S. agalactiae to fibrinogen. In tissue culture experiments, however, the fbsB deletion mutant was severely impaired in its invasion into lung epithelial cells. Bacterial invasion could be reestablished by introducing the fbsB gene on a shuttle plasmid into the fbsB deletion mutant. Furthermore, treatment of lung epithelial cells with FbsB fusion protein blocked S. agalactiae invasion of epithelial cells in a dose-dependent fashion. These results suggest an important role of the FbsB protein in the overall process of host cell entry by S. agalactiae. PMID:15155657

  14. Inapparent Streptococcus agalactiae infection in adult/commercial tilapia

    PubMed Central

    Sun, Jiufeng; Fang, Wei; Ke, Bixia; He, Dongmei; Liang, Yuheng; Ning, Dan; Tan, Hailing; Peng, Hualin; Wang, Yunxin; Ma, Yazhou; Ke, Changwen; Deng, Xiaoling

    2016-01-01

    We report on inapparent infections in adult/commercial tilapia in major tilapia fish farms in Guangdong. A total of 146 suspected isolates were confirmed to be S. agalactiae using an API 20 Strep system and specific PCR amplification. All isolates were identified as serotype Ia using multiplex serotyping PCR. An MLST assay showed single alleles of adhP (10), atr (2), glcK (2), glnA (1), pheS (1), sdhA (3) and tkt (2), and this profile was designated ‘unique ST 7’. The analysis of virulence genes resulted in 10 clusters, of which dltr-bca-sodA-spb1-cfb-bac (62, 42.47%) was the predominant virulence gene profile. The PFGE analysis of S. agalactiae yielded 6 distinct PFGE types (A, B, C, D, F and G), of which Pattern C (103) was the predominant type, accounting for approximately 70.55% (103/146) of the total S. agalactiae strains. Therefore, unlike what has been found in juvenile tilapia, in which PFGE pattern D/F is the major prevalent pattern, we found that pattern C was the major prevalent pattern in inapparent infected adult/commercial tilapia in Guangdong, China. In conclusion, we close a gap in the current understanding of S. agalactiae epidemiology and propose that researchers should be alert for inapparent S. agalactiae infections in adult/commercial tilapia to prevent a potential threat to food safety. PMID:27215811

  15. Inapparent Streptococcus agalactiae infection in adult/commercial tilapia.

    PubMed

    Sun, Jiufeng; Fang, Wei; Ke, Bixia; He, Dongmei; Liang, Yuheng; Ning, Dan; Tan, Hailing; Peng, Hualin; Wang, Yunxin; Ma, Yazhou; Ke, Changwen; Deng, Xiaoling

    2016-01-01

    We report on inapparent infections in adult/commercial tilapia in major tilapia fish farms in Guangdong. A total of 146 suspected isolates were confirmed to be S. agalactiae using an API 20 Strep system and specific PCR amplification. All isolates were identified as serotype Ia using multiplex serotyping PCR. An MLST assay showed single alleles of adhP (10), atr (2), glcK (2), glnA (1), pheS (1), sdhA (3) and tkt (2), and this profile was designated 'unique ST 7'. The analysis of virulence genes resulted in 10 clusters, of which dltr-bca-sodA-spb1-cfb-bac (62, 42.47%) was the predominant virulence gene profile. The PFGE analysis of S. agalactiae yielded 6 distinct PFGE types (A, B, C, D, F and G), of which Pattern C (103) was the predominant type, accounting for approximately 70.55% (103/146) of the total S. agalactiae strains. Therefore, unlike what has been found in juvenile tilapia, in which PFGE pattern D/F is the major prevalent pattern, we found that pattern C was the major prevalent pattern in inapparent infected adult/commercial tilapia in Guangdong, China. In conclusion, we close a gap in the current understanding of S. agalactiae epidemiology and propose that researchers should be alert for inapparent S. agalactiae infections in adult/commercial tilapia to prevent a potential threat to food safety. PMID:27215811

  16. Evaluation of two iodophor teat germicides: activity against Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1997-08-01

    Two germicides containing 0.5 and 1% titratable iodine were tested for efficacy against the development of new intramammary infections (IMI) caused by Staphylococcus aureus and Streptococcus agalactiae. The two trials for postmilking teat dip used a model for experimental challenge that was recommended by the National Mastitis Council. The 0.5% iodine formulation reduced new Staph. aureus IMI by 78.2% and reduced new Strep. agalactiae IMI by 73.2%. The 1% iodine product reduced new Staph. aureus IMI by 43.5% and reduced new Strep. agalactiae IMI by 46.4%. No adverse effects on the condition of teat skin or on teat ends were observed over the course of the trials. At the completion of each trial, the teat skin of dipped quarters was characterized as normal, smooth skin that was free from scales, cracks, or chapping; the teat orifice was characterized as smooth without evidence of irritation. PMID:9276825

  17. Brachial Plexus Neuritis Associated With Streptococcus agalactiae Infection: A Case Report.

    PubMed

    Seo, Yu Jung; Lee, Yu Jin; Kim, Joon Sung; Lim, Seong Hoon; Hong, Bo Young

    2014-08-01

    Brachial plexus neuritis is reportedly caused by various factors; however, it has not been described in association with Streptococcus agalactiae. This is a case report of a patient diagnosed with brachial plexus neuritis associated with pyogenic arthritis of the shoulder. A 57-year-old man visited the hospital complaining of sudden weakness and painful swelling of the left arm. The diagnosis was pyogenic arthritis of the left shoulder, and the patient was treated with open irrigation and debridement accompanied by intravenous antibiotic therapy. S. agalactiae was isolated from a wound culture, and an electrodiagnostic study showed brachial plexopathy involving the left upper and middle trunk. Nine weeks after onset, muscle strength improved in most of the affected muscles, and an electrodiagnostic study showed signs of reinnervation. In conclusion, S. agalactiae infection can lead to various complications including brachial plexus neuritis. PMID:25229037

  18. Brachial Plexus Neuritis Associated With Streptococcus agalactiae Infection: A Case Report

    PubMed Central

    Seo, Yu Jung; Lee, Yu Jin; Kim, Joon Sung; Lim, Seong Hoon

    2014-01-01

    Brachial plexus neuritis is reportedly caused by various factors; however, it has not been described in association with Streptococcus agalactiae. This is a case report of a patient diagnosed with brachial plexus neuritis associated with pyogenic arthritis of the shoulder. A 57-year-old man visited the hospital complaining of sudden weakness and painful swelling of the left arm. The diagnosis was pyogenic arthritis of the left shoulder, and the patient was treated with open irrigation and debridement accompanied by intravenous antibiotic therapy. S. agalactiae was isolated from a wound culture, and an electrodiagnostic study showed brachial plexopathy involving the left upper and middle trunk. Nine weeks after onset, muscle strength improved in most of the affected muscles, and an electrodiagnostic study showed signs of reinnervation. In conclusion, S. agalactiae infection can lead to various complications including brachial plexus neuritis. PMID:25229037

  19. Development of an indirect ELISA for bovine mastitis using Sip protein of Streptococcus agalactiae

    PubMed Central

    Bu, R. E; Wang, J. L; DebRoy, C; Wu, J. H; Xi, L. G. W; Liu, Y; Shen, Z. Q

    2015-01-01

    The sip gene encoding for a conserved highly immunogenic surface protein of Streptococcus agalactiae was amplified using polymerase chain reaction (PCR) and subcloned into prokaryotic expression vector pET32a (+) and expressed as a recombinant protein in E. coli BL21 (DE3). An indirect enzyme linked immunosorbent assay (ELISA) was developed using the purified Sip protein as a coating antigen, which could identify S. agalactiae specific antibody in sera. The coating antigen at a concentration of 3.125 μg/ml, serum diluted to 1:160, and HRP-conjugated secondary antibody concentration at 1:4000 was found to be most effective in exhibiting positive result. The ELISA was found to be highly specific for S. agalactiae that may be used for the detection of the pathogen in mastitis cases, for epidemiological studies and for surveillance. PMID:27175190

  20. [Thousand faces of Streptococcus pneumonia (pneumococcus) infections].

    PubMed

    Szabó, Bálint Gergely; Lénárt, Katalin Szidónia; Kádár, Béla; Gombos, Andrea; Dezsényi, Balázs; Szanka, Judit; Bobek, Ilona; Prinz, Gyula

    2015-11-01

    Incidence and mortality rates of infections caused by Streptococcus pneumoniae (pneumococcus) are high worldwide and in Hungary among paediatric as well as adult populations. Pneumococci account for 35-40% of community acquired adult pneumonias requiring hospitalization, while 25-30% of Streptococcus pneumoniae pneumonias are accompanied by bacteraemia. 5-7% of all infections are fatal but this rate is exponentially higher in high risk patients and elderly people. Mortality could reach 20% among patients with severe invasive pneumococcal infections. Complications may develop despite administration of adequate antibiotics. The authors summarize the epidemiology of pneumococcal infections, pathogenesis of non-invasive and invasive disease and present basic clinical aspects through demonstration of four cases. Early risk stratification, sampling of hemocultures, administration of antibiotics and wider application of active immunization could reduce the mortality of invasive disease. Anti-pneumococcal vaccination is advisable for adults of ≥50 years and high risk patients of ≥18 years who are susceptible to pneumococcal disease. PMID:26498896

  1. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses

    PubMed Central

    McConnell, Kevin W.; McDunn, Jonathan E.; Clark, Andrew T.; Dunne, W. Michael; Dixon, David J.; Turnbull, Isaiah R.; DiPasco, Peter J.; Osberghaus, William F.; Sherman, Benjamin; Martin, James R.; Walter, Michael J.; Cobb, J. Perren; Buchman, Timothy G.; Hotchkiss, Richard S.; Coopersmith, Craig M.

    2009-01-01

    Objective Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, treatment involves only non-specific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar following disparate infections with similar mortalities. Design Prospective, randomized controlled study. Setting Animal laboratory in a university medical center. Interventions Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple timepoints. Measurements and Main Results The host response was dependent upon the causative organism as well as kinetics of mortality, but the pro- and anti- inflammatory response was independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of 5 distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary MIP-2 and IL-10 with progression of infection while elevated plasma TNFsr2 and MCP-1 were indicative of fulminant disease with >90% mortality within 48 hours. Conclusions Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a potential therapeutic

  2. Herd prevalence and incidence of Streptococcus agalactiae in the dairy industry of Prince Edward Island.

    PubMed

    Keefe, G P; Dohoo, I R; Spangler, E

    1997-03-01

    Herd prevalence and incidence of mastitis caused by Streptococcus agalactiae was determined for dairy cattle on Prince Edward Island during December 1992 and June 1994. For each census, bulk tank milk samples from all dairy herds (n = 452) in the province were tested on two occasions, and the results were interpreted in parallel. The combined sensitivity of the testing protocol was estimated to be 91%. The confirmatory latex agglutination test had previously reported specificities approaching 100%. Therefore, the estimated specificity of the testing protocol was assumed to be 100%. The apparent prevalence of S. agalactiae in December 1992 and in June 1994 was 17.7 and 13.1%, respectively. Based on the characteristics of the test, the estimated true prevalence was 18.9% in December 1992 and 14.4% in June 1994. Infection with S. agalactiae was associated with elevated bulk tank somatic cell count (SCC) and elevated standard plate counts. Economic losses associated with S. agalactiae were attributed to production losses (associated with bulk tank SCC), milk quality penalties (associated with bulk tank SCC and standard plate count), and decreases in milk quality (associated with bulk tank SCC). For herds that had been negative for S. agalactiae in December 1992, evaluation in June 1994 yielded an incidence of new infections of 3.51 per 100 herds per year. PMID:9098795

  3. Streptococcus agalactiae Septic Arthritis of the Shoulder and the Sacroiliac Joints: A Case Report

    PubMed Central

    Imam, Yahia Z.; Sarakbi, Housam Aldeen; Abdelwahab, Nagui; Mattar, Issa

    2012-01-01

    Invasive group beta-streptococcal arthritis is being increasingly diagnosed as suggested by recent data. We report a case of a middle-aged lady from Sri Lanka who developed septic arthritis of the right shoulder and the left sacroiliac joint as well as an iliopsoas collection caused by Streptococcus agalactiae shortly after labor at Hamad General Hospital in Doha, Qatar. We conclude that Streptococcus agalactiae septic arthritis is rare. It can present with invasive disease in adults. It usually targets older females and immuno compromised patients especially those with risk factors for bacteraemia. Therefore a high index of suspicion is needed. Shoulder and sacroiliac joint affection is not uncommon for unknown reasons. Utilizing imaging modalities such as ultrasonography and magnetic resonance imaging is helpful. PMID:22937455

  4. Immune ageing and susceptibility to Streptococcus pneumoniae.

    PubMed

    Gonçalves, Mariana Torrente; Mitchell, Timothy J; Lord, Janet M

    2016-06-01

    Streptococcus pneumoniae is a complex Gram-positive bacterium comprising over 90 different serotypes and is a major cause of pneumonia. Susceptibility to S. pneumoniae is remarkably age-related being greatest in children under 5 years old and adults over 65. Whilst the immaturity of the immune system is largely responsible for poor immunity in the former, the underlying causes of susceptibility in older adults is complex. Immunity to S. pneumoniae is mediated predominantly through the inflammatory response in the nasopharyngeal mucosa recruiting phagocytes (neutrophils and monocyte/macrophages) which recognise the pathogen via TLR2 and ingest and kill the bacteria, with the induction of Th17 cells being required to maintain neutrophil recruitment and ensure clearance of the infection. In this review we discuss the impact of ageing upon these aspects of immunity to S. pneumoniae, as well as age-related changes to the serotypes present in the adult nasopharyngeal tract which could further influence susceptibility to infection. PMID:26472172

  5. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316.

    PubMed

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-07-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P2₁ and P2₁2₁2₁, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  6. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316

    PubMed Central

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P21 and P212121, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  7. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    PubMed Central

    Wang, Deguo; Liu, Yanhong

    2015-01-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  8. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-06-01

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies. PMID:26016433

  9. Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

    SciTech Connect

    Khare, B.; Krishnan, V.; Rajashankar, K.R.; I-Hsiu, H.; Xin, M.; Ton-That, H.; Narayana, S.V.

    2011-10-21

    The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.

  10. Acute Mastoiditis Caused by Streptococcus pneumoniae.

    PubMed

    Obringer, Emily; Chen, Judy L

    2016-05-01

    Acute mastoiditis (AM) is a relatively rare complication of acute otitis media (AOM). The most common pathogens include Streptococcus pneumoniae, Streptococcus pyogenes, and Staphylococcus aureus. Pneumococcal vaccination and changes in antibiotic prescribing recommendations for AOM may change the incidence of AM in the future. Diagnosis of AM can be made based on clinical presentation, but computed tomography of the temporal bone with contrast should be considered if there is concern for complicated AM. Both extracranial and intracranial complications of AM may occur. Previously, routine cortical mastoidectomy was recommended for AM treatment, but new data suggest that a more conservative treatment approach can be considered, including intravenous (IV) antibiotics alone or IV antibiotics with myringotomy. [Pediatr Ann. 2016;45(5):e176-e179.]. PMID:27171806

  11. Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines.

    PubMed Central

    AlonsoDeVelasco, E; Verheul, A F; Verhoef, J; Snippe, H

    1995-01-01

    Although pneumococcal conjugate vaccines are close to being licensed, a more profound knowledge of the virulence factors responsible for the morbidity and mortality caused by Streptococcus pneumoniae is necessary. This review deals with the major structures of pneumococci involved in the pathogenesis of pneumococcal disease and their interference with the defense mechanisms of the host. It is well known that protection against S. pneumoniae is the result of phagocytosis of invading pathogens. For this process, complement and anticapsular polysaccharide antibodies are required. Besides, relatively recent experimental data suggest that protection is also mediated by the removal of disintegrating pneumococci and their degradation products (cell wall, pneumolysin). These structures seem to be major contributors to illness and death caused by pneumococci. An effective conjugate vaccine should therefore preferably include the capsular polysaccharide and at least one of these inflammatory factors. PMID:8531887

  12. Discovery and Characterization of Human-Urine Utilization by Asymptomatic-Bacteriuria-Causing Streptococcus agalactiae

    PubMed Central

    Ipe, Deepak S.; Ben Zakour, Nouri L.; Sullivan, Matthew J.; Beatson, Scott A.; Ulett, Kimberly B.; Benjamin, William H.; Davies, Mark R.; Dando, Samantha J.; King, Nathan P.; Cripps, Allan W.; Dougan, Gordon

    2015-01-01

    Streptococcus agalactiae causes both symptomatic cystitis and asymptomatic bacteriuria (ABU); however, growth characteristics of S. agalactiae in human urine have not previously been reported. Here, we describe a phenotype of robust growth in human urine observed in ABU-causing S. agalactiae (ABSA) that was not seen among uropathogenic S. agalactiae (UPSA) strains isolated from patients with acute cystitis. In direct competition assays using pooled human urine inoculated with equal numbers of a prototype ABSA strain, designated ABSA 1014, and any one of several UPSA strains, measurement of the percentage of each strain recovered over time showed a markedly superior fitness of ABSA 1014 for urine growth. Comparative phenotype profiling of ABSA 1014 and UPSA strain 807, isolated from a patient with acute cystitis, using metabolic arrays of >2,500 substrates and conditions revealed unique and specific l-malic acid catabolism in ABSA 1014 that was absent in UPSA 807. Whole-genome sequencing also revealed divergence in malic enzyme-encoding genes between the strains predicted to impact the activity of the malate metabolic pathway. Comparative growth assays in urine comparing wild-type ABSA and gene-deficient mutants that were functionally inactivated for the malic enzyme metabolic pathway by targeted disruption of the maeE or maeK gene in ABSA demonstrated attenuated growth of the mutants in normal human urine as well as synthetic human urine containing malic acid. We conclude that some S. agalactiae strains can grow in human urine, and this relates in part to malic acid metabolism, which may affect the persistence or progression of S. agalactiae ABU. PMID:26553467

  13. Streptococcus agalactiae in the environment of bovine dairy herds--rewriting the textbooks?

    PubMed

    Jørgensen, H J; Nordstoga, A B; Sviland, S; Zadoks, R N; Sølverød, L; Kvitle, B; Mørk, T

    2016-02-29

    Many free-stall bovine dairy herds in Norway fail to eradicate Streptococcus agalactiae despite long-term control measures. In a longitudinal study of 4 free-stall herds with automatic milking systems (AMS), milk and extramammary sites were sampled 4 times with 1-2 month intervals. Composite milk, rectal- and vaginal swabs were collected from dairy cows; rectal swabs from heifers and young stock; rectal- and tonsillar swabs from calves; and environmental swabs from the AMS, the floors, cow beds, watering and feeding equipment. A cross sectional study of 37 herds was also conducted, with 1 visit for environmental sampling. Fifteen of the herds were known to be infected with S. agalactiae while the remaining 22 had not had evidence of S. agalactiae mastitis in the preceding 2 years. All samples were cultured for S. agalactiae, and selected isolates (n=54) from positive herds were genotyped by Multi Locus Sequence Typing (MLST). Results show that the bovine gastrointestinal tract and the dairy cow environment are reservoirs of S. agalactiae, and point to the existence of 2 transmission cycles; a contagious transmission cycle via the milking machine and an oro-fecal transmission cycle, with drinking water as the most likely vehicle for transmission. Ten sequence types were identified, and results suggest that strains differ in their ability to survive in the environment and transmit within dairy herds. Measures to eradicate S. agalactiae from bovine dairy herds should take into account the extra-mammary reservoirs and the potential for environmental transmission of this supposedly exclusively contagious pathogen. PMID:26854346

  14. Regulation of neuraminidase expression in Streptococcus pneumoniae

    PubMed Central

    2012-01-01

    Background Sialic acid (N-acetylneuraminic acid; NeuNAc) is one of the most important carbohydrates for Streptococcus pneumoniae due of its role as a carbon and energy source, receptor for adhesion and invasion and molecular signal for promotion of biofilm formation, nasopharyngeal carriage and invasion of the lung. Results In this work, NeuNAc and its metabolic derivative N-acetyl mannosamine (ManNAc) were used to analyze regulatory mechanisms of the neuraminidase locus expression. Genomic and metabolic comparison to Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii and Streptococcus sanguinis elucidates the metabolic association of the two amino sugars to different parts of the locus coding for the two main pneumococcal neuraminidases and confirms the substrate specificity of the respective ABC transporters. Quantitative gene expression analysis shows repression of the locus by glucose and induction of all predicted transcriptional units by ManNAc and NeuNAc, each inducing with higher efficiency the operon encoding for the transporter with higher specificity for the respective amino sugar. Cytofluorimetric analysis demonstrated enhanced surface exposure of NanA on pneumococci grown in NeuNAc and ManNAc and an activity assay allowed to quantify approximately twelve times as much neuraminidase activity on induced cells as opposed to glucose grown cells. Conclusions The present data increase the understanding of metabolic regulation of the nanAB locus and indicate that experiments aimed at the elucidation of the relevance of neuraminidases in pneumococcal virulence should possibly not be carried out on bacteria grown in glucose containing media. PMID:22963456

  15. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains.

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Kondo, Hidehiro; Hirono, Ikuo; Rodkhum, Channarong

    2015-12-01

    Streptococcus agalactiae, or Group B streptococcus (GBS), is a highly virulent pathogen in aquatic animals, causing huge mortalities worldwide. In Thailand, the serotype Ia, β-hemolytic GBS, belonging to sequence type (ST) 7 of clonal complex (CC) 7, was found to be the major cause of streptococcosis outbreaks in fish farms. In this study, we performed an in silico genomic comparison, aiming to investigate the phylogenetic relationship between the pathogenic fish strains of Thai ST7 and other ST7 from different hosts and geographical origins. In general, the genomes of Thai ST7 strains are closely related to other fish ST7s, as the core genome is shared by 92-95% of any individual fish ST7 genome. Among the fish ST7 genomes, we observed only small dissimilarities, based on the analysis of clustered regularly interspaced short palindromic repeats (CRISPRs), surface protein markers, insertions sequence (IS) elements and putative virulence genes. The phylogenetic tree based on single nucleotide polymorphisms (SNPs) of the core genome sequences clearly categorized the ST7 strains according to their geographical and host origins, with the human ST7 being genetically distant from other fish ST7 strains. A pan-genome analysis of ST7 strains detected a 48-kb gene island specifically in the Thai ST7 isolates. The orientations and predicted amino acid sequences of the genes in the island closely matched those of Tn5252, a streptococcal conjugative transposon, in GBS 2603V/R serotype V, Streptococcus pneumoniae and Streptococcus suis. Thus, it was presumed that Thai ST7 acquired this Tn5252 homologue from related streptococci. The close phylogenetic relationship between the fish ST7 strains suggests that these strains were derived from a common ancestor and have diverged in different geographical regions and in different hosts. PMID:26455417

  16. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions.

    PubMed

    Shabayek, Sarah; Bauer, Richard; Mauerer, Stefanie; Mizaikoff, Boris; Spellerberg, Barbara

    2016-05-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages. PMID:27150893

  17. Two Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX Availability in Streptococcus agalactiae

    PubMed Central

    Fernandez, Annabelle; Lechardeur, Delphine; Derré-Bobillot, Aurélie; Couvé, Elisabeth; Gaudu, Philippe; Gruss, Alexandra

    2010-01-01

    Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The ΔpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host. PMID:20421944

  18. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China.

    PubMed

    Yang, Yongchun; Liu, Yinglong; Ding, Yunlei; Yi, Li; Ma, Zhe; Fan, Hongjie; Lu, Chengping

    2013-01-01

    One hundred and two Streptococcus agalactiae (group B streptococcus [GBS]) isolates were collected from dairy cattle with subclinical mastitis in Eastern China during 2011. Clonal groups were established by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE), respectively. Capsular polysaccharides (CPS), pilus and alpha-like-protein (Alp) family genes were also characterized by molecular techniques. MLST analysis revealed that these isolates were limited to three clonal groups and were clustered in six different lineages, i.e. ST (sequence type) 103, ST568, ST67, ST301, ST313 and ST570, of which ST568 and ST570 were new genotypes. PFGE analysis revealed this isolates were clustered in 27 PFGE types, of which, types 7, 8, 14, 15, 16, 18, 23 and 25 were the eight major types, comprising close to 70% (71/102) of all the isolates. The most prevalent sequence types were ST103 (58% isolates) and ST568 (31% isolates), comprising capsular genotype Ia isolates without any of the detected Alp genes, suggesting the appearance of novel genomic backgrounds of prevalent strains of bovine S. agalactiae. All the strains possessed the pilus island 2b (PI-2b) gene and the prevalent capsular genotypes were types Ia (89% isolates) and II (11% isolates), the conserved pilus type providing suitable data for the development of vaccines against mastitis caused by S. agalactiae. PMID:23874442

  19. Efficacy of teat dips containing a hypochlorous acid germicide against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1996-09-01

    Two teat dip formulations containing sodium dichloroisocyanurate, which released hypochlorous acid (2800 ppm) as the active ingredient, were tested for efficacy against new Staphylococcus aureus and Streptococcus agalactiae IMI using an experimental challenge model. Product 1 reduced the number of new Staph. aureus IMI by 73.6% and reduced the number of new Strep. agalactiae IMI by 65.1%. Product 2 reduced the number of new Staph. aureus IMI by 69.0% and reduced the number of new Strep. agalactiae IMI by 63.5%. No adverse effects on teat skin condition were observed over the course of the studies. PMID:8899537

  20. Parallel Evolution in Streptococcus pneumoniae Biofilms

    PubMed Central

    Churton, Nicholas W. V.; Misra, Raju V.; Howlin, Robert P.; Allan, Raymond N.; Jefferies, Johanna; Faust, Saul N.; Gharbia, Saheer E.; Edwards, Richard J.; Clarke, Stuart C.; Webb, Jeremy S.

    2016-01-01

    Streptococcus pneumoniae is a commensal human pathogen and the causative agent of various invasive and noninvasive diseases. Carriage of the pneumococcus in the nasopharynx is thought to be mediated by biofilm formation, an environment where isogenic populations frequently give rise to morphological colony variants, including small colony variant (SCV) phenotypes. We employed metabolic characterization and whole-genome sequencing of biofilm-derived S. pneumoniae serotype 22F pneumococcal SCVs to investigate diversification during biofilm formation. Phenotypic profiling revealed that SCVs exhibit reduced growth rates, reduced capsule expression, altered metabolic profiles, and increased biofilm formation compared to the ancestral strain. Whole-genome sequencing of 12 SCVs from independent biofilm experiments revealed that all SCVs studied had mutations within the DNA-directed RNA polymerase delta subunit (RpoE). Mutations included four large-scale deletions ranging from 51 to 264 bp, one insertion resulting in a coding frameshift, and seven nonsense single-nucleotide substitutions that result in a truncated gene product. This work links mutations in the rpoE gene to SCV formation and enhanced biofilm development in S. pneumoniae and therefore may have important implications for colonization, carriage, and persistence of the organism. Furthermore, recurrent mutation of the pneumococcal rpoE gene presents an unprecedented level of parallel evolution in pneumococcal biofilm development. PMID:27190203

  1. Parallel Evolution in Streptococcus pneumoniae Biofilms.

    PubMed

    Churton, Nicholas W V; Misra, Raju V; Howlin, Robert P; Allan, Raymond N; Jefferies, Johanna; Faust, Saul N; Gharbia, Saheer E; Edwards, Richard J; Clarke, Stuart C; Webb, Jeremy S

    2016-01-01

    Streptococcus pneumoniae is a commensal human pathogen and the causative agent of various invasive and noninvasive diseases. Carriage of the pneumococcus in the nasopharynx is thought to be mediated by biofilm formation, an environment where isogenic populations frequently give rise to morphological colony variants, including small colony variant (SCV) phenotypes. We employed metabolic characterization and whole-genome sequencing of biofilm-derived S. pneumoniae serotype 22F pneumococcal SCVs to investigate diversification during biofilm formation. Phenotypic profiling revealed that SCVs exhibit reduced growth rates, reduced capsule expression, altered metabolic profiles, and increased biofilm formation compared to the ancestral strain. Whole-genome sequencing of 12 SCVs from independent biofilm experiments revealed that all SCVs studied had mutations within the DNA-directed RNA polymerase delta subunit (RpoE). Mutations included four large-scale deletions ranging from 51 to 264 bp, one insertion resulting in a coding frameshift, and seven nonsense single-nucleotide substitutions that result in a truncated gene product. This work links mutations in the rpoE gene to SCV formation and enhanced biofilm development in S. pneumoniae and therefore may have important implications for colonization, carriage, and persistence of the organism. Furthermore, recurrent mutation of the pneumococcal rpoE gene presents an unprecedented level of parallel evolution in pneumococcal biofilm development. PMID:27190203

  2. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae.

    PubMed

    Richards, Vincent P; Lang, Ping; Bitar, Paulina D Pavinski; Lefébure, Tristan; Schukken, Ynte H; Zadoks, Ruth N; Stanhope, Michael J

    2011-08-01

    In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p<0.0001). The majority of the bovine strain-specific genes (∼ 85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight into mechanisms facilitating environmental adaptation and acquisition of potential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment. PMID:21536150

  3. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment

    PubMed Central

    2013-01-01

    Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine

  4. Ribosomal Mutations in Streptococcus pneumoniae Clinical Isolates

    PubMed Central

    Pihlajamäki, Marja; Kataja, Janne; Seppälä, Helena; Elliot, John; Leinonen, Maija; Huovinen, Pentti; Jalava, Jari

    2002-01-01

    Eleven clinical isolates of Streptococcus pneumoniae, isolated in Finland during 1996 to 2000, had an unusual macrolide resistance phenotype. They were resistant to macrolides and streptogramin B but susceptible, intermediate, or low-level resistant to lincosamides. No acquired macrolide resistance genes were detected from the strains. The isolates were found to have mutations in domain V of the 23S rRNA or ribosomal protein L4. Seven isolates had an A2059C mutation in two to four out of the four alleles encoding the 23S rRNA, two isolates had an A2059G mutation in two alleles, one isolate had a C2611G mutation in all four alleles, and one isolate had a 69GTG71-to-69TPS71 substitution in ribosomal protein L4. PMID:11850244

  5. Degradation of C3 by Streptococcus pneumoniae.

    PubMed

    Angel, C S; Ruzek, M; Hostetter, M K

    1994-09-01

    After growth to exponential phase in Todd-Hewitt broth, clinical and laboratory isolates of Streptococcus pneumoniae serotypes 3, 4, and 14 readily degraded first the beta and then the alpha chains of purified human C3 in the absence of serum or other complement proteins, as assessed by SDS-PAGE. With exponentially growing pneumococci, degradation of native C3 was detectable within 30 min; methylamine-treated C3 and preformed C3b were degraded with equal avidity. Pneumococcal C3-degrading activity was cell associated, abolished by heat killing, and independent of the presence of the polysaccharide capsule. After degradation, 44% of C3 molecules contained a disrupted thiolester bond. Pneumococci treated with 100 micrograms of mutanolysin released 94% of C3-degrading activity from the pneumococcal surface into the supernatant. These studies demonstrate that clinical and laboratory isolates of virulent pneumococci degrade and inactivate soluble C3. PMID:8077717

  6. Case Report of Necrotizing Fasciitis Associated with Streptococcus pneumoniae.

    PubMed

    Jiao, Lei; Chagla, Zain; Kaki, Reham Mohammedsaeed; Gohla, Gabriela; Smieja, Marek

    2016-01-01

    Necrotizing fasciitis, caused by Streptococcus pneumoniae, is an extremely rare and life-threatening bacterial soft tissue infection. We report a case of early necrotizing fasciitis associated with Streptococcus pneumoniae infection in a 26-year-old man who was immunocompromised with mixed connective tissue disease. The patient presented with acute, painful, erythematous, and edematous skin lesions of his right lower back, which rapidly progressed to the right knee. The patient underwent surgical exploration, and a diagnosis of necrotizing fasciitis was confirmed by pathological evidence of necrosis of the fascia and neutrophil infiltration in tissue biopsies. Cultures of fascial tissue biopsies and blood samples were positive for Streptococcus pneumoniae. To our knowledge, this is the first report of necrotizing fasciitis resulting from Streptococcus pneumoniae diagnosed at early phase; the patient recovered well without surgical debridement. PMID:27366176

  7. Streptococcus agalactiae septicemia in a patient with diabetes and hepatic cirrhosis

    PubMed Central

    Ferreira, Cristiane Rúbia

    2015-01-01

    Streptococcus agalactiae is a well-known pathogen during pregnancy and in neonates. Among non-pregnant adults, invasive infection, although rare, is showing increasing frequency, especially in chronically ill, immunosuppressed, or older patients. Although rare, the clinical features of meningeal infection caused by S. agalactiae are similar to other bacterial meningitis. The authors report the case of a middle-aged man previously diagnosed with hypertension, diabetes mellitus, and alcoholic liver cirrhosis, who was admitted at the emergency department with a Glasgow Coma Scale of 11/12, generalized spasticity, bilateral Babinski sign, and hypertension. The clinical outcome was bad, with refractory shock and death within 24 hours of hospitalization. The bacteriological work-up isolated S. agalactiae in the cerebral spinal fluid (CSF), blood, and urine. An autopsy revealed meningoencephalitis, acute myocardial infarction, and pyelonephritis due to septic emboli. The authors point out the atypical CSF findings, the rapid fatal outcome, and the importance of including this pathogen among the etiologic possibilities of invasive infections in this group of patients. PMID:26894044

  8. Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish.

    PubMed

    Delannoy, C M J; Zadoks, R N; Crumlish, M; Rodgers, D; Lainson, F A; Ferguson, H W; Turnbull, J; Fontaine, M C

    2016-01-01

    Streptococcus agalactiae infections in fish are predominantly caused by beta-haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non-haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10(2) cfu per fish, whereas ST23 does not cause disease at 10(7) cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR-based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish-derived strains. Several fish-associated genes encode proteins that potentially provide fitness in the aquatic environment. PMID:25399660

  9. Efficacy of two barrier teat dips containing chlorous acid germicides against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Kemp, G K

    1994-10-01

    Two postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae using experimental challenge procedures recommended by the National Mastitis Council. Both dips contained chlorous acid as the primary germicidal agent and lactic acid or mandelic acid as the chlorous acid activator. The dip activated with mandelic acid significantly reduced new IMI by Staph. aureus and Strep. agalactiae. The IMI rate was reduced 68.7% for Staph. aureus and 56.4% for Strep. agalactiae. The dip activated with lactic acid significantly reduced new Staph. aureus IMI by 69.3% but did not significantly reduce new Strep. agalactiae IMI (35.2% reduction) through the full 11-wk study period. Teat skin condition did not change from pretrial status after using either teat dip during the study. PMID:7836608

  10. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline.

    PubMed

    Da Cunha, Violette; Davies, Mark R; Douarre, Pierre-Emmanuel; Rosinski-Chupin, Isabelle; Margarit, Immaculada; Spinali, Sebastien; Perkins, Tim; Lechat, Pierre; Dmytruk, Nicolas; Sauvage, Elisabeth; Ma, Laurence; Romi, Benedetta; Tichit, Magali; Lopez-Sanchez, Maria-José; Descorps-Declere, Stéphane; Souche, Erika; Buchrieser, Carmen; Trieu-Cuot, Patrick; Moszer, Ivan; Clermont, Dominique; Maione, Domenico; Bouchier, Christiane; McMillan, David J; Parkhill, Julian; Telford, John L; Dougan, Gordan; Walker, Mark J; Holden, Matthew T G; Poyart, Claire; Glaser, Philippe

    2014-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates. PMID:25088811

  11. Macrolide Resistance Gene mreA of Streptococcus agalactiae Encodes a Flavokinase

    PubMed Central

    Clarebout, Gervais; Villers, Corinne; Leclercq, Roland

    2001-01-01

    The mreA gene from Streptococcus agalactiae COH31 γ/δ, resistant to macrolides and clindamycin by active efflux, has recently been cloned in Escherichia coli, where it was reported to confer macrolide resistance (J. Clancy, F. Dib-Hajj, J. W. Petitpas, and W. Yuan, Antimicrob. Agents Chemother. 41:2719–2723, 1997). Cumulative data suggested that the mreA gene was located on the chromosome of S. agalactiae COH31 γ/δ. Analysis of the deduced amino acid sequence of mreA revealed significant homology with several bifunctional flavokinases/(flavin adenine dinucleotide (FAD) synthetases, which convert riboflavin to flavin mononucleotide (FMN) and FMN to FAD, respectively. High-performance liquid chromatography experiments showed that the mreA gene product had a monofunctional flavokinase activity, similar to that of RibR from Bacillus subtilis. Sequences identical to those of the mreA gene and of a 121-bp upstream region containing a putative promoter were detected in strains of S. agalactiae UCN4, UCN5, and UCN6 susceptible to macrolides. mreA and its allele from S. agalactiae UCN4 were cloned on the shuttle vector pAT28. Both constructs were introduced into E. coli, where they conferred a similar two- to fourfold increase in the MICs of erythromycin, spiramycin, and clindamycin. The MICs of a variety of other molecules, including crystal violet, acriflavin, sodium dodecyl sulfate, and antibiotics, such as certain cephalosporins, chloramphenicol, doxycycline, nalidixic acid, novobiocin, and rifampin, were also increased. In contrast, resistance to these compounds was not detected when the constructs were introduced into E. faecalis JH2–2. In conclusion, the mreA gene was probably resident in S. agalactiae and may encode a metabolic function. We could not provide any evidence that it was responsible for macrolide resistance in S. agalactiae COH31 γ/δ; broad-spectrum resistance conferred by the gene in E. coli could involve multidrug efflux pumps by a mechanism

  12. Molecular cloning and bioinformatic analysis of the Streptococcus agalactiae neuA gene isolated from tilapia.

    PubMed

    Wang, E L; Wang, K Y; Chen, D F; Geng, Y; Huang, L Y; Wang, J; He, Y

    2015-01-01

    Cytidine monophosphate (CMP) N-acetylneuraminic acid (NeuNAc) synthetase, which is encoded by the neuA gene, can catalyze the activation of sialic acid with CMP, and plays an important role in Streptococcus agalactiae infection pathogenesis. To study the structure and function of the S. agalactiae neuA gene, we isolated it from diseased tilapia, amplified it using polymerase chain reaction (PCR) with specific primers, and cloned it into a pMD19-T vector. The recombinant plasmid was confirmed by PCR and restriction enzyme digestion, and identified by sequencing. Molecular characterization analyses of the neuA nucleotide amino acid sequence were performed using bioinformatic tools and an online server. The results showed that the neuA nucleotide sequence contained a complete coding region, which comprised 1242 bp, encoding 413 amino acids (aa). The aa sequence was highly conserved and contained a Glyco_tranf_GTA_type superfamily and an SGNH_hydrolase superfamily conserved domain, which are related to sialic acid activation catalysis. The NeuA protein possessed many important sites related to post-translational modification, including 28 potential phosphorylation sites and 2 potential N-glycosylation sites, had no signal peptides or transmembrane regions, and was predicted to reside in the cytoplasm. Moreover, the protein had some B-cell epitopes, which suggests its potential in development of a vaccine against S. agalactiae infection. The codon usage frequency of neuA differed greatly in Escherichia coli and Homo sapiens genes, and neuA may be more efficiently expressed in eukaryotes (yeast). S. agalactiae neuA from tilapia maintains high structural homology and sequence identity with CMP-NeuNAc synthetases from other bacteria. PMID:26125800

  13. Molecular epidemiology and strain-specific characteristics of Streptococcus agalactiae at the herd and cow level.

    PubMed

    Mahmmod, Y S; Klaas, I C; Katholm, J; Lutton, M; Zadoks, R N

    2015-10-01

    Host-adaptation of Streptococcus agalactiae subpopulations has been described whereby strains that are commonly associated with asymptomatic carriage or disease in people differ phenotypically and genotypically from those causing mastitis in dairy cattle. Based on multilocus sequence typing (MLST), the most common strains in dairy herds in Denmark belong to sequence types (ST) that are also frequently found in people. The aim of this study was to describe epidemiological and diagnostic characteristics of such strains in relation to bovine mastitis. Among 1,199 cattle from 6 herds, cow-level prevalence of S. agalactiae was estimated to be 27.4% based on PCR and 7.8% based on bacteriological culture. Quarter-level prevalence was estimated at 2.8% based on bacteriological culture. Per herd, between 2 and 26 isolates were characterized by pulsed-field gel electrophoresis (PFGE) and MLST. Within each herd, a single PFGE type and ST predominated, consistent with a contagious mode of transmission or point source infection within herds. Evidence of within-herd evolution of S. agalactiae was detected with both typing methods, although ST belonged to a single clonal complex (CC) per herd. Detection of CC23 (3 herds) was associated with significantly lower approximate count (colony-forming units) at the quarter level and significantly lower cycle threshold value at the cow level than detection of CC1 (2 herds) or CC19 (1 herd), indicating a lower bacterial load in CC23 infections. Median values for the number of infected quarters and somatic cell count (SCC) were numerically but not significantly lower for cows infected with CC23 than for cows with CC1 or CC19. For all CC, an SCC threshold of 200,000 cells/mL was an unreliable indicator of infection status, and prescreening of animals based on SCC as part of S. agalactiae detection and eradication campaigns should be discouraged. PMID:26233443

  14. Evaluation of two herd-level diagnostic tests for Streptococcus agalactiae using a latent class approach.

    PubMed

    Mweu, Marshal M; Toft, Nils; Katholm, Jørgen; Nielsen, Søren S

    2012-09-14

    Streptococcus agalactiae mastitis persists as a significant economic problem for the dairy industry in many countries. In Denmark, the annual surveillance programme for this mastitis pathogen initially based only on bacteriological culture of bulk tank milk (BTM) samples, has recently incorporated the use of the real-time PathoProof Mastitis PCR assay with the goal of improving detection of infected herds. The objective of our study was to estimate the herd sensitivity (Se) and specificity (Sp) of both tests of BTM samples using latent class models in a Bayesian analysis while evaluating the effect of herd-level covariates on the Se and Sp of the tests. BTM samples were collected from all 4258 Danish dairy herds in 2009 and screened for the presence of S. agalactiae using both tests. The highest Se of PCR was realized at a cycle threshold (Ct) cut-off value of 40. At this cut-off, the Se of the PCR was significantly higher (95.2; 95% posterior credibility interval [PCI] [88.2; 99.8]) than that of bacteriological culture (68.0; 95% PCI [55.1; 90.0]). However, culture had higher Sp (99.7; 95% PCI [99.3; 100.0]) compared to PCR (98.8; 95% PCI [97.2; 99.9]). The accuracy of the tests was unaffected by the herd-level covariates. We propose that screenings of BTM samples for S. agalactiae be based on the PCR assay with Ct readings of <40 considered as positive. However, for higher Ct values, confirmation of PCR test positive herds by bacteriological culture is advisable especially when the between-herd prevalence of S. agalactiae is low. PMID:22542270

  15. Capsular gene typing of Streptococcus agalactiae compared to serotyping by latex agglutination.

    PubMed

    Yao, Kaihu; Poulsen, Knud; Maione, Domenico; Rinaudo, C Daniela; Baldassarri, Lucilla; Telford, John L; Sørensen, Uffe B Skov; Kilian, Mogens

    2013-02-01

    We evaluated three different PCR-based capsular gene typing methods applied to 312 human and bovine Streptococcus agalactiae (group B Streptococcus [GBS]) isolates and compared the results to serotyping results obtained by latex agglutination. Among 281 human isolates 27% could not be typed by latex agglutination. All 312 isolates except 5 could be typed by the three PCR methods combined. Two of these methods were multiplex assays. Among the isolates that were typeable by both latex agglutination and capsular gene typing, 94% showed agreement between the two methods. However, each of the PCR methods showed limitations. One of the methods did not include all 10 recognized serotypes, one misidentified eight isolates of serotypes Ib and IV as serotype Ia, and one did not distinguish between serotypes VII and IX. For five isolates that showed aberrant patterns in the capsular gene typing, long-range PCR targeting the cps operon disclosed large insertions or deletions affecting the cps gene cluster. A sensitive flow cytometric assay based on serotype-specific antibodies applied to 76 selected isolates that were nontypeable by latex agglutination revealed that approximately one-half of these did express capsular polysaccharide. A procedure for convenient and reliable capsular gene typing to be included in epidemiological and surveillance studies of S. agalactiae is proposed. PMID:23196363

  16. A TRANSPORT SYSTEM FOR THE MAINTENANCE OF VIABILITY OF ACINETOBACTER CALCOACETICUS, STREPTOCOCCUS INIAE, AND S. AGALACTIAE OVER VARYING TIME PERIODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the utility of Bacti-Swab NPG Modified Stuart's medium (Remel)in maintaining viable Gram negative (Acinetobacter calcoaceticus) and Gram positive bacteria (Streptococcus iniae and S. agalactiae) for up to 10 days. In the first experiment, qualitative assessment of the viability of S. i...

  17. Emerging resistant serotypes of invasive Streptococcus pneumoniae

    PubMed Central

    Elshafie, Sittana; Taj-Aldeen, Saad J

    2016-01-01

    Background Streptococcus pneumoniae is the leading cause of meningitis and sepsis. The aim of the study was to analyze the distribution, vaccine serotype coverage, and antibiotic resistance of S. pneumoniae serotypes isolated from patients with invasive diseases, after the introduction of pneumococcal 7-valent conjugated vaccine (PCV-7). Methods A total of 134 isolates were collected from blood and cerebrospinal fluid specimens at Hamad Hospital during the period from 2005 to 2009. Isolate serotyping was done using the Quellung reaction. The prevaccination period was considered before 2005. Results The most common serotypes for all age groups were 3 (12.70%), 14 (11.90%), 1 (11.90%), 19A (9.00%), 9V (5.20%), 23F (5.20%), and 19F (4.50%). Coverage rates for infant <2 years for PCV-7, the 10-valent conjugated vaccine (PCV-10), and the 13-valent conjugated vaccine (PCV-13) were 34.78%, 52.17%, and 78.26%, respectively. Coverage rates of these vaccines were 50%, 67.86%, and 75% for the 2–5 years age group; 27.12%, 40.68%, and 64.41% for the age group 6–64 years; and 25%, 33.33%, and 66.67% for the ≥65 years age group, respectively. The percentage of nonsusceptible isolates to penicillin, cefotaxime, and erythromycin were 43.86%, 16.66%, and 22.81%, respectively. Thirty-seven isolates (32.46%) were multidrug resistant (MDR) and belonged to serotypes 14, 19A, 19F, 23F, 1, 9V, 12F, 4, 6B, 3, and 15A. Compared to previous results before the introduction of PCV-7, there was a significant reduction in penicillin-nonsusceptable S. pneumoniae from 66.67% to 43.86%, and a slight insignificant reduction in erythromycin nonsusceptible strains from 27.60% to 22.8%, while there was a significant increase in cefotaxime nonsusceptible strains from 3.55% to 16.66%. Conclusion Invasive pneumococcal strains and the emergence of MDR serotypes is a global burden that must be addressed through multiple strategies, including vaccination, antibiotic stewardship, and continuous

  18. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China.

    PubMed

    Geng, Y; Wang, K Y; Huang, X L; Chen, D F; Li, C W; Ren, S Y; Liao, Y T; Zhou, Z Y; Liu, Q F; Du, Z J; Lai, W M

    2012-08-01

    Streptococcus agalactiae (Group B streptococcus) has emerged as an important pathogen that affects humans and animals, including aquatic species. S. agalactiae infections are becoming an increasing problem in aquaculture and have been reported worldwide in a variety of fish species, especially those living in warm water. Recently, a very serious infectious disease of unknown aetiology broke out in ya-fish (Schizothorax prenanti) farms in Sichuan Province. A Gram-positive, chain-forming coccus was isolated from moribund cultured ya-fish. The goals of this study were to identify the bacterial strains isolated from diseased fish between 2009 and 2011 in Sichuan Province, China, to evaluate the pathogenicity of the pathogen in ya-fish, crucian carp (Carassius carassius) and the Nile tilapia (Oreochromis niloticus); and to determine the susceptibility of the pathogen strains to many currently available anti-microbial agents. The virulence tests were conducted by intraperitoneal injection of bacterial suspensions. In this study, four strains of a Gram-positive, chain-forming coccus were isolated from moribund cultured ya-fish (S. prenanti). The coccoid microorganism was identified as S. agalactiae using a commercial streptococcal grouping kit and 16S rDNA sequencing analysis. Susceptibility of the isolates to 22 antibiotics was tested using the disc diffusion method. All isolates showed a similar antibiotic susceptibility, which were sensitive to amoxicillin, ciprofloxacin, lomefloxacin, chloramphenicol, rifampin, vancomycin, azithromycin, florfenicol, cefalexin, cefradine and deoxycycline and resistant to gentamicin, sinomin (SMZ/TMP), penicillin, tenemycin, fradiomycin and streptomycin. Furthermore, the virulence tests were conducted by intraperitoneal injection of the isolated strain GY101 in ya-fish, crucian carp and the Nile tilapia. This coccus was lethal to ya-fish, Nile tilapia and crucian carp. The mortality rates of infected ya-fish were 100%, 100%, 60% and 20

  19. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production

    PubMed Central

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S

  20. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production.

    PubMed

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S

  1. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    PubMed Central

    Barnum, D. A.; Johnson, R. E.; Brooks, B. W.

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control are discussed. PMID:17422110

  2. Major surfome and secretome profile of Streptococcus agalactiae from Nile tilapia (Oreochromis niloticus): Insight into vaccine development.

    PubMed

    Li, Wei; Wang, Hai-Qing; He, Run-Zhen; Li, Yan-Wei; Su, You-Lu; Li, An-Xing

    2016-08-01

    Streptococcus agalactiae is a major piscine pathogen that is responsible for huge economic losses to the aquaculture industry. Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against S. agalactiae. The proteins of S. agalactiae exposed to the environment, including surface proteins and secretory proteins, are important targets for the immune system and they are likely to be good vaccine candidates. To obtain a precise profile of its surface proteins, S. agalactiae strain THN0901, which was isolated from tilapia (Oreochromis niloticus), was treated with proteinase K to cleave surface-exposed proteins, which were identified by liquid chromatography-tandem spectrometry (LC-MS/MS). Forty surface-associated proteins were identified, including ten proteins containing cell wall-anchoring motifs, eight lipoproteins, eleven membrane proteins, seven secretory proteins, three cytoplasmic proteins, and one unknown protein. In addition, culture supernatant proteins of S. agalactiae were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all of the Coomassie-stained bands were subsequently identified by LC-MS/MS. A total of twenty-six extracellular proteins were identified, including eleven secretory proteins, seven cell wall proteins, three membrane proteins, two cytoplasmic proteins and three unknown proteins. Of these, six highly expressed surface-associated and secretory proteins are putative to be vaccine candidate of piscine S. agalactiae. Moreover, immunogenic secreted protein, a highly expressed protein screened from the secretome in the present study, was demonstrated to induce high antibody titer in tilapia, and it conferred protection against S. agalactiae, as evidenced by the relative percent survival (RPS) 48.61± 8.45%. The data reported here narrow the scope of screening protective antigens, and provide guidance in the development of a novel

  3. MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae.

    PubMed

    van Prehn, Joffrey; van Veen, Suzanne Q; Schelfaut, Jacqueline J G; Wessels, Els

    2016-05-01

    We compared the Vitek MS and Microflex MALDI-TOF mass spectrometry platform for species differentiation within the Streptococcus mitis group with PCR assays targeted at lytA, Spn9802, and recA as reference standard. The Vitek MS correctly identified 10/11 Streptococcus pneumoniae, 13/13 Streptococcus pseudopneumoniae, and 12/13 S. mitis/oralis. The Microflex correctly identified 9/11 S. pneumoniae, 0/13 S. pseudopneumoniae, and 13/13 S. mitis/oralis. MALDI-TOF is a powerful tool for species determination within the mitis group. Diagnostic accuracy varies depending on platform and database used. PMID:26971637

  4. Efficacy of .18% iodine teat dip against Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1989-04-01

    Effective postmilking teat dip products with lower iodine concentrations are being formulated as concern increases about iodine residues in milk. Increased free iodine concentration with greater germicidal activity in teat dip products is also possible with special formulation procedures. Low iodine concentration dips are cheaper and have reduced teat irritation. A concentrated iodine teat dip containing .18% iodine and 8 ppm free iodine upon dilution was evaluated under experimental bacterial challenge to determine efficacy for prevention of new intramammary infections. The undiluted product also contained 15% collagen protein emollient as a teat skin conditioner. Efficacy of the teat dip was 93.6 and 51. 7% for Staphylococcus aureus (Newbould 305) and Streptococcus agalactiae (McDonald 44). No adverse effects of the dip on teat skin were noted. PMID:2663939

  5. Nonencapsulated Streptococcus pneumoniae: Emergence and Pathogenesis

    PubMed Central

    Keller, Lance E.; Robinson, D. Ashley

    2016-01-01

    ABSTRACT While significant protection from pneumococcal disease has been achieved by the use of polysaccharide and polysaccharide-protein conjugate vaccines, capsule-independent protection has been limited by serotype replacement along with disease caused by nonencapsulated Streptococcus pneumoniae (NESp). NESp strains compose approximately 3% to 19% of asymptomatic carriage isolates and harbor multiple antibiotic resistance genes. Surface proteins unique to NESp enhance colonization and virulence despite the lack of a capsule even though the capsule has been thought to be required for pneumococcal pathogenesis. Genes for pneumococcal surface proteins replace the capsular polysaccharide (cps) locus in some NESp isolates, and these proteins aid in pneumococcal colonization and otitis media (OM). NESp strains have been isolated from patients with invasive and noninvasive pneumococcal disease, but noninvasive diseases, specifically, conjunctivitis (85%) and OM (8%), are of higher prevalence. Conjunctival strains are commonly of the so-called classical NESp lineages defined by multilocus sequence types (STs) ST344 and ST448, while sporadic NESp lineages such as ST1106 are more commonly isolated from patients with other diseases. Interestingly, sporadic lineages have significantly higher rates of recombination than classical lineages. Higher rates of recombination can lead to increased acquisition of antibiotic resistance and virulence factors, increasing the risk of disease and hindering treatment. NESp strains are a significant proportion of the pneumococcal population, can cause disease, and may be increasing in prevalence in the population due to effects on the pneumococcal niche caused by pneumococcal vaccines. Current vaccines are ineffective against NESp, and further research is necessary to develop vaccines effective against both encapsulated and nonencapsulated pneumococci. PMID:27006456

  6. Nonencapsulated Streptococcus pneumoniae: Emergence and Pathogenesis.

    PubMed

    Keller, Lance E; Robinson, D Ashley; McDaniel, Larry S

    2016-01-01

    While significant protection from pneumococcal disease has been achieved by the use of polysaccharide and polysaccharide-protein conjugate vaccines, capsule-independent protection has been limited by serotype replacement along with disease caused by nonencapsulatedStreptococcus pneumoniae(NESp). NESp strains compose approximately 3% to 19% of asymptomatic carriage isolates and harbor multiple antibiotic resistance genes. Surface proteins unique to NESp enhance colonization and virulence despite the lack of a capsule even though the capsule has been thought to be required for pneumococcal pathogenesis. Genes for pneumococcal surface proteins replace the capsular polysaccharide (cps) locus in some NESp isolates, and these proteins aid in pneumococcal colonization and otitis media (OM). NESp strains have been isolated from patients with invasive and noninvasive pneumococcal disease, but noninvasive diseases, specifically, conjunctivitis (85%) and OM (8%), are of higher prevalence. Conjunctival strains are commonly of the so-called classical NESp lineages defined by multilocus sequence types (STs) ST344 and ST448, while sporadic NESp lineages such as ST1106 are more commonly isolated from patients with other diseases. Interestingly, sporadic lineages have significantly higher rates of recombination than classical lineages. Higher rates of recombination can lead to increased acquisition of antibiotic resistance and virulence factors, increasing the risk of disease and hindering treatment. NESp strains are a significant proportion of the pneumococcal population, can cause disease, and may be increasing in prevalence in the population due to effects on the pneumococcal niche caused by pneumococcal vaccines. Current vaccines are ineffective against NESp, and further research is necessary to develop vaccines effective against both encapsulated and nonencapsulated pneumococci. PMID:27006456

  7. Efficacies of chlorine dioxide and lodophor teat dips during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Adkinson, R W

    2000-12-01

    We tested two postmilking teat dips for efficacy against Staphylococcus aureus and Streptococcus agalactiae using experimental challenge procedures recommended by the National Mastitis Council. The chlorine dioxide teat dip that contained 0.7% sodium chlorite reduced the number of new intramammary infections (IMI) caused by Staph. aureus by 86.6% and reduced new IMI caused by Strep. agalactiae by 88.4%. The 0.5% iodophor teat dip reduced the number of new IMI caused by Staph. aureus by 92.9% and reduced the number of new IMI caused by Strep. agalactiae by 43.4%. Teat skin and teat end conditions were evaluated before and after the study, and no deleterious effects were noted among dipped quarters compared with undipped control quarters for either teat dip. PMID:11132869

  8. In silico prediction of conserved vaccine targets in Streptococcus agalactiae strains isolated from fish, cattle, and human samples.

    PubMed

    Pereira, U P; Soares, S C; Blom, J; Leal, C A G; Ramos, R T J; Guimarães, L C; Oliveira, L C; Almeida, S S; Hassan, S S; Santos, A R; Miyoshi, A; Silva, A; Tauch, A; Barh, D; Azevedo, V; Figueiredo, H C P

    2013-01-01

    Streptococcus agalactiae (Lancefield group B; group B streptococci) is a major pathogen that causes meningoencephalitis in fish, mastitis in cows, and neonatal sepsis and meningitis in humans. The available prophylactic measures for conserving human and animal health are not totally effective and have limitations. Effective vaccines against the different serotypes or genotypes of pathogenic strains from the various hosts would be useful. We used an in silico strategy to identify conserved vaccine candidates in 15 genomes of group B streptococci strains isolated from human, bovine, and fish samples. The degree of conservation, subcellular localization, and immunogenic potential of S. agalactiae proteins were investigated. We identified 36 antigenic proteins that were conserved in all 15 genomes. Among these proteins, 5 and 23 were shared only by human or fish strains, respectively. These potential vaccine targets may help develop effective vaccines that will help prevent S. agalactiae infection. PMID:24065646

  9. Transfer of plasmids by conjugation in Streptococcus pneumoniae

    SciTech Connect

    Smith, M.D.; Shoemaker, N.B.; Burdett, V.; Guild, W.R.

    1980-01-01

    Transfer of resistance plasmids occurred by conjugation in Streptococcus pneumoniae (pneumococcus) similiarly to the process in other streptococcal groups. The 20-megadalton plasmid pIP501 mediated its own DNase-resistant transfer by filter mating and mobilized the 3.6-megadalton non-self-transmissible pMV158. Pneumococcal strains acted as donors or as recipients for intraspecies transfers and for interspecific transfers with Streptococcus faecalis. Transfer-deficient mutants of pIP501 have been found.

  10. Characterization and genome sequencing of a novel bacteriophage infecting Streptococcus agalactiae with high similarity to a phage from Streptococcus pyogenes.

    PubMed

    Bai, Qinqin; Zhang, Wei; Yang, Yongchun; Tang, Fang; Nguyen, Xuanhoa; Liu, Guangjin; Lu, Chengping

    2013-08-01

    A novel bacteriophage, JX01, specifically infecting bovine Streptococcus agalactiae was isolated from milk of mastitis-affected cattle. The phage morphology showed that JX01 belongs to the family Siphoviridae, and this phage demonstrated a broad host range. Microbiological characterization demonstrated that nearly 90 % of JX01 phage particles were adsorbed after 2.5 min of incubation, that the burst size was 20 virions released per infected host cell, and that there was a latent period of 30 min. JX01 was thermal sensitive and showed acid and alkaline resistance (pH 3-11). The genome of JX01 was found to consist of a linear, double-stranded 43,028-bp DNA molecule with a GC content of 36.81 % and 70 putative open reading frames (ORFs) plus one tRNA. Comparative genome analysis revealed high similarity between JX01 and the prophage 315.2 of Streptococcus pyogenes. PMID:23515875

  11. Complete genome sequence of Streptococcus agalactiae strain GBS85147 serotype of type Ia isolated from human oropharynx.

    PubMed

    de Aguiar, Edgar Lacerda; Mariano, Diego César Batista; Viana, Marcus Vinícius Canário; Benevides, Leandro de Jesus; de Souza Rocha, Flávia; de Castro Oliveira, Letícia; Pereira, Felipe Luiz; Dorella, Fernanda Alves; Leal, Carlos Augusto Gomes; de Carvalho, Alex Fiorini; Santos, Gabriela Silva; Mattos-Guaraldi, Ana Luiza; Nagao, Prescilla Emy; de Castro Soares, Siomar; Hassan, Syed Shah; Pinto, Anne Cybele; Figueiredo, Henrique César Pereira; Azevedo, Vasco

    2016-01-01

    Streptococcus agalactiae, also referred to as Group B Streptococcus, is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. The pathogen can also infect adults with underlying disease, particularly the elderly and immunocompromised ones. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. This study provides valuable structural, functional and evolutionary genomic information of a human S. agalactiae serotype Ia (ST-103) GBS85147 strain isolated from the oropharynx of an adult patient from Rio de Janeiro, thereby representing the first human isolate in Brazil. We used the Ion Torrent PGM platform with the 200 bp fragment library sequencing kit. The sequencing generated 578,082,183 bp, distributed among 2,973,022 reads, resulting in an approximately 246-fold mean coverage depth and was assembled using the Mira Assembler v3.9.18. The S. agalactiae strain GBS85147 comprises of a circular chromosome with a final genome length of 1,996,151 bp containing 1,915 protein-coding genes, 18 rRNA, 63 tRNA, 2 pseudogenes and a G + C content of 35.48 %. PMID:27274785

  12. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    PubMed

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish. PMID:25858765

  13. Characterisation of an oxidative response inhibitor produced by Streptococcus pneumoniae.

    PubMed Central

    Perry, F. E.; Elson, C. J.; Mitchell, T. J.; Andrew, P. W.; Catterall, J. R.

    1994-01-01

    BACKGROUND--Pneumonia caused by infection with Streptococcus pneumoniae is still a major clinical problem. Reactive oxygen species contribute to the killing of these bacteria by polymorphonuclear leucocytes (PMNs). Defence mechanisms of Str pneumoniae which counter reactive oxygen species are characterised. METHODS--PMNs were stimulated with phorbol myristate acetate (PMA) in the presence and absence of Str pneumoniae and supernatants from them, and superoxide (O2-) production was measured by the reduction of ferricytochrome c. RESULTS--Streptococcus pneumoniae, but not Klebsiella pneumoniae or Staphylococcus aureus, inhibited PMA stimulated superoxide production by PMNs. Washed PMNs which had been preincubated with Str pneumoniae autolysis phase supernatants also exhibited depressed H2O2 production in response to PMA. The inhibitory activity was not attributable to non-specific cytotoxicity as assessed by release of the cytoplasmic enzyme lactate dehydrogenase, nor did the supernatants inhibit PMA stimulated degranulation of PMNs. Fractionation of the autolysis phase supernatants revealed inhibitory activity in both the fractions greater than and less than 10 kD. Like pneumolysin the inhibitory activity was heat sensitive. However, both a parent and pneumolysin negative mutant Str pneumoniae, and autolysis phase supernatants from them, inhibited PMN superoxide production. Antisera to pneumolysin failed to abrogate the inhibitory effect of intact Str pneumoniae or autolysis phase supernatants from types 1 or 14 Str pneumoniae. CONCLUSIONS--The inhibitory effect of Str pneumoniae on the respiratory burst of PMNs is not shared by two other common lung pathogens. The existence of a novel inhibitor of the PMN respiratory burst, distinct from pneumolysin, has been demonstrated. The inhibitor is specific for the respiratory burst and is active both in the logarithmic phase of growth and during autolysis. PMID:8066562

  14. Absence of Streptococcus pneumoniae in pharyngeal swabs of geriatric inpatients.

    PubMed

    Jomrich, Nina; Kellner, Silvia; Djukic, Marija; Eiffert, Helmut; Nau, Roland

    2015-07-01

    Colonization of the pharynx by Streptococcus pneumoniae was studied in 185 in-hospital geriatric patients (median age 81 years) from 29 March 2011 to 22 June 2011. Swabs were plated on blood agar plates. Colonies with a morphology suggesting S. pneumoniae were further analyzed. Surprisingly, pneumococci were not found in any of the samples. Pneumococci chronically colonizing the pharynx of elderly people may be much rarer than previously thought and probably are not the source of pneumococcal pneumonia in old age. PMID:25746605

  15. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors

    PubMed Central

    Rosini, Roberto; Margarit, Immaculada

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail. PMID:25699242

  16. Chromosomally and Extrachromosomally Mediated High-Level Gentamicin Resistance in Streptococcus agalactiae.

    PubMed

    Sendi, Parham; Furitsch, Martina; Mauerer, Stefanie; Florindo, Carlos; Kahl, Barbara C; Shabayek, Sarah; Berner, Reinhard; Spellerberg, Barbara

    2016-03-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of sepsis in neonates. The rate of invasive GBS disease in nonpregnant adults also continues to climb. Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin has been shown in vitro. High-level gentamicin resistance (HLGR) in GBS isolates, however, leads to the loss of a synergistic effect. We therefore performed a multicenter study to determine the frequency of HLGR GBS isolates and to elucidate the molecular mechanisms leading to gentamicin resistance. From eight centers in four countries, 1,128 invasive and colonizing GBS isolates were pooled and investigated for the presence of HLGR. We identified two strains that displayed HLGR (BSU1203 and BSU452), both of which carried the aacA-aphD gene, typically conferring HLGR. However, only one strain (BSU1203) also carried the previously described chromosomal gentamicin resistance transposon designated Tn3706. For the other strain (BSU452), plasmid purification and subsequent DNA sequencing resulted in the detection of plasmid pIP501 carrying a remnant of a Tn3 family transposon. Its ability to confer HLGR was proven by transfer into an Enterococcus faecalis isolate. Conversely, loss of HLGR was documented after curing both GBS BSU452 and the transformed E. faecalis strain from the plasmid. This is the first report showing plasmid-mediated HLGR in GBS. Thus, in our clinical GBS isolates, HLGR is mediated both chromosomally and extrachromosomally. PMID:26729498

  17. Activity of faropenem against resistant isolates of Streptococcus pneumoniae.

    PubMed

    Black, J A; Moland, E S; Chartrand, S A; Thomson, K S

    2001-01-01

    An in vitro study of the activity of 9 agents against 181 US pediatric isolates of Streptococcus pneumoniae identified imipenem and faropenem as the most active agents. Overall, faropenem was the most potent oral agent inhibiting 98% of isolates at 1 microg/mL. PMID:11687320

  18. Complete Atrioventricular Block Complicating Mitral Infective Endocarditis Caused by Streptococcus Agalactiae.

    PubMed

    Arai, Masaru; Nagashima, Koichi; Kato, Mahoto; Akutsu, Naotaka; Hayase, Misa; Ogura, Kanako; Iwasawa, Yukino; Aizawa, Yoshihiro; Saito, Yuki; Okumura, Yasuo; Nishimaki, Haruna; Masuda, Shinobu; Hirayama, Astushi

    2016-01-01

    BACKGROUND Infective endocarditis (IE) involving the mitral valve can but rarely lead to complete atrioventricular block (CAVB). CASE REPORT A 74-year-old man with a history of infective endocarditis caused by Streptococcus gordonii (S. gordonii) presented to our emergency room with fever and loss of appetite, which had lasted for 5 days. On admission, results of serologic tests pointed to severe infection. Electrocardiography showed normal sinus rhythm with first-degree atrioventricular block and incomplete right bundle branch block, and transthoracic echocardiography and transesophageal echocardiography revealed severe mitral regurgitation caused by posterior leaflet perforation and 2 vegetations (5 mm and 6 mm) on the tricuspid valve. The patient was initially treated with ceftriaxone and gentamycin because blood and cutaneous ulcer cultures yielded S. agalactiae. On hospital day 2, however, sudden CAVB requiring transvenous pacing occurred, and the patient's heart failure and infection worsened. Although an emergent surgery is strongly recommended, even in patients with uncontrolled heart failure or infection, surgery was not performed because of the Child-Pugh class B liver cirrhosis. Despite intensive therapy, the patient's condition further deteriorated, and he died on hospital day 16. On postmortem examination, a 2×1-cm vegetation was seen on the perforated posterior mitral leaflet, and the infection had extended to the interventricular septum. Histologic examination revealed extensive necrosis of the AV node. CONCLUSIONS This rare case of CAVB resulting from S. agalactiae IE points to the fact that in monitoring patients with IE involving the mitral valve, clinicians should be aware of the potential for perivalvular extension of the infection, which can lead to fatal heart block. PMID:27604147

  19. Molecular Characterization of Streptococcus agalactiae Causing Community- and Hospital-Acquired Infections in Shanghai, China

    PubMed Central

    Jiang, Haoqin; Chen, Mingliang; Li, Tianming; Liu, Hong; Gong, Ye; Li, Min

    2016-01-01

    Streptococcus agalactiae, a colonizing agent in pregnant women and the main cause of neonatal sepsis and meningitis, has been increasingly associated with invasive disease in nonpregnant adults. We collected a total of 87 non-repetitive S. agalactiae isolates causing community-acquired (CA) and hospital-acquired (HA) infections in nonpregnant adults from a teaching hospital in Shanghai between 2009 and 2013. We identified and characterized their antibiotic resistance, sequence type (ST), serotype, virulence, and biofilm formation. The most frequent STs were ST19 (29.9%), ST23 (16.1%), ST12 (13.8%), and ST1 (12.6%). ST19 had significantly different distributions between CA- and HA-group B Streptococci (GBS) isolates. The most frequent serotypes were III (32.2%), Ia (26.4%), V (14.9%), Ib (13.8%), and II (5.7%). Serotype III/ST19 was significantly associated with levofloxacin resistance in all isoates. The HA-GBS multidrug resistant rate was much higher than that of CA-GBS. Virulence genes pavA, cfb were found in all isolates. Strong correlations exist between serotype Ib (CA and HA) and surface protein genes spb1 and bac, serotype III (HA) and surface protein gene cps and GBS pilus cluster. The serotype, epidemic clone, PFGE-based genotype, and virulence gene are closely related between CA-GBS and HA-GBS, and certain serotypes and clone types were significantly associated with antibiotic resistance. However, CA-GBS and HA-GBS still had significant differences in their distribution of clone types, antibiotic resistance, and specific virulence genes, which may provide a basis for infection control. PMID:27625635

  20. Molecular Characterization of Streptococcus agalactiae Causing Community- and Hospital-Acquired Infections in Shanghai, China.

    PubMed

    Jiang, Haoqin; Chen, Mingliang; Li, Tianming; Liu, Hong; Gong, Ye; Li, Min

    2016-01-01

    Streptococcus agalactiae, a colonizing agent in pregnant women and the main cause of neonatal sepsis and meningitis, has been increasingly associated with invasive disease in nonpregnant adults. We collected a total of 87 non-repetitive S. agalactiae isolates causing community-acquired (CA) and hospital-acquired (HA) infections in nonpregnant adults from a teaching hospital in Shanghai between 2009 and 2013. We identified and characterized their antibiotic resistance, sequence type (ST), serotype, virulence, and biofilm formation. The most frequent STs were ST19 (29.9%), ST23 (16.1%), ST12 (13.8%), and ST1 (12.6%). ST19 had significantly different distributions between CA- and HA-group B Streptococci (GBS) isolates. The most frequent serotypes were III (32.2%), Ia (26.4%), V (14.9%), Ib (13.8%), and II (5.7%). Serotype III/ST19 was significantly associated with levofloxacin resistance in all isoates. The HA-GBS multidrug resistant rate was much higher than that of CA-GBS. Virulence genes pavA, cfb were found in all isolates. Strong correlations exist between serotype Ib (CA and HA) and surface protein genes spb1 and bac, serotype III (HA) and surface protein gene cps and GBS pilus cluster. The serotype, epidemic clone, PFGE-based genotype, and virulence gene are closely related between CA-GBS and HA-GBS, and certain serotypes and clone types were significantly associated with antibiotic resistance. However, CA-GBS and HA-GBS still had significant differences in their distribution of clone types, antibiotic resistance, and specific virulence genes, which may provide a basis for infection control. PMID:27625635

  1. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  2. Serotypes, Antibiotic Susceptibilities, and Multi-Locus Sequence Type Profiles of Streptococcus agalactiae Isolates Circulating in Beijing, China

    PubMed Central

    Ma, Xiu-hua; Song, Feng-li; Fan, Ling; Guo, Cui-mei; Shi, Wei; Yu, Sang-jie; Yao, Kai-hu; Yang, Yong-hong

    2015-01-01

    Background To investigate the serotypes, antibiotic susceptibilities, and multi-locus sequence type (MLST) profiles of Streptococcus agalactiae (S. agalactiae) in Beijing to provide references for the prevention and treatment of S. agalactiae infections. Methods All isolates were identified using the CAMP test and the latex-agglutination assay and serotyped using a Strep-B-Latex kit, after which they were assessed for antibiotic susceptibility, macrolide-resistance genes, and MLST profiles. Results In total, 56 S. agalactiae isolates were identified in 863 pregnant women (6.5%). Serotypes Ia, Ib, II, III, and V were identified, among which types III (32.1%), Ia (17.9%), Ib (16.1%), and V (14.3%) were the predominant serotypes. All isolates were susceptible to penicillin and ceftriaxone. The nonsusceptiblity rates measured for erythromycin, clarithromycin, azithromycin, telithromycin, clindamycin, tetracycline, and levofloxacin were 85.7%, 92.9%, 98.2%, 30.4%, 73.2%, 91%, and 39.3%, respectively. We identified 14 sequence types (STs) for the 56 isolates, among which ST19 (30.4%) was predominant. The rate of fluoroquinolone resistance was higher in serotype III than in the other serotypes. Among the 44 erythromycin-resistant isolates, 32 (72.7%) carried ermB. Conclusion S. agalactiae isolates of the serotypes Ia, Ib, III, and V are common in Beijing. Among the S. agalactiae isolates, the macrolide and clindamycin resistance rates are extremely high. Most of the erythromycin-resistant isolates carry ermB. PMID:25781346

  3. Spatiotemporal patterns, annual baseline and movement-related incidence of Streptococcus agalactiae infection in Danish dairy herds: 2000-2009.

    PubMed

    Mweu, Marshal M; Nielsen, Søren S; Halasa, Tariq; Toft, Nils

    2014-02-01

    Several decades after the inception of the five-point plan for the control of contagious mastitis pathogens, Streptococcus agalactiae (S. agalactiae) persists as a fundamental threat to the dairy industry in many countries. A better understanding of the relative importance of within- and between-herd sources of new herd infections coupled with the spatiotemporal distribution of the infection, may aid in effective targeting of control efforts. Thus, the objectives of this study were: (1) to describe the spatiotemporal patterns of infection with S. agalactiae in the population of Danish dairy herds from 2000 to 2009 and (2) to estimate the annual herd-level baseline and movement-related incidence risks of S. agalactiae infection over the 10-year period. The analysis involved registry data on bacteriological culture of all bulk tank milk samples collected as part of the mandatory Danish S. agalactiae surveillance scheme as well as live cattle movements into dairy herds during the specified 10-year period. The results indicated that the predicted risk of a herd becoming infected with S. agalactiae varied spatiotemporally; the risk being more homogeneous and higher in the period after 2005. Additionally, the annual baseline risks yielded significant yet distinctive patterns before and after 2005 - the risk of infection being higher in the latter phase. On the contrary, the annual movement-related risks revealed a non-significant pattern over the 10-year period. There was neither evidence for spatial clustering of cases relative to the population of herds at risk nor spatial dependency between herds. Nevertheless, the results signal a need to beef up within-herd biosecurity in order to reduce the risk of new herd infections. PMID:24269038

  4. [Adult purulent meningitis caused by Streptococcus pneumoniae in Dakar, Senegal].

    PubMed

    Manga, N M; Ndour, C T; Diop, S A; Ka-Sall, R; Dia, N M; Seydi, M; Soumare, M; Diop, B M; Sow, A I; Sow, P S

    2008-12-01

    The purpose of this retrospective study was to describe epidemiological, clinical, bacteriological and outcome features of purulent meningitis caused by Streptococcus pneumoniae in adult patients hospitalized in the infectious diseases clinic of the Fann University Hospital in Dakar, Senegal from 1995 to 2004. A total of 73 cases of pneumococcal meningitis were recorded during the study period. Streptococcus pneumoniae was the second cause of purulent meningitis after meningococcal infection. Sickle-cell disease (n=3) and HIV infection (n=9) were the main underlying factors and pneumonia was the main portal of entry into the CNS (51.8%). Coma was a frequent complication (61.6%). Penicillin-nonsusceptible Streptococcus pneumoniae (PNSP) accounted for 27.3% of isolated strains. However strains were sensitive to third-generation cephalosporin (100%) and chloramphenicol (68.2%) which were the most frequently used antibiotics. The mortality rate was 69.8% and neurological complications occurred in 13.7% of patients. The main unfavorable prognostic factors were cardiovascular collapse and/or coma at the time of admission and detection of pneumococcal strains by direct examination of CSF. The high mortality of pneumococcal meningitis in adult patients in Dakar shows the need to improve intensive care facilities and the growing incidence of PNSP underlines the requirement for better control of antibiotic prescription. PMID:19639833

  5. Antigen I/II encoded by integrative and conjugative elements of Streptococcus agalactiae and role in biofilm formation.

    PubMed

    Chuzeville, Sarah; Dramsi, Shaynoor; Madec, Jean-Yves; Haenni, Marisa; Payot, Sophie

    2015-11-01

    Streptococcus agalactiae (i.e. Group B streptococcus, GBS) is a major human and animal pathogen. Genes encoding putative surface proteins and in particular an antigen I/II have been identified on Integrative and Conjugative Elements (ICEs) found in GBS. Antigens I/II are multimodal adhesins promoting colonization of the oral cavity by streptococci such as Streptococcus gordonii and Streptococcus mutans. The prevalence and diversity of antigens I/II in GBS were studied by a bioinformatic analysis. It revealed that antigens I/II, which are acquired by horizontal transfer via ICEs, exhibit diversity and are widespread in GBS, in particular in the serotype Ia/ST23 invasive strains. This study aimed at characterizing the impact on GBS biology of proteins encoded by a previously characterized ICE of S. agalactiae (ICE_515_tRNA(Lys)). The production and surface exposition of the antigen I/II encoded by this ICE was examined using RT-PCR and immunoblotting experiments. Surface proteins of ICE_515_tRNA(Lys) were found to contribute to GBS biofilm formation and to fibrinogen binding. Contribution of antigen I/II encoded by SAL_2056 to biofilm formation was also demonstrated. These results highlight the potential for ICEs to spread microbial adhesins between species. PMID:26232503

  6. Molecular investigation of Streptococcus agalactiae isolates from environmental samples and fish specimens during a massive fish kill in Kuwait Bay.

    PubMed

    Jafar, Qasem A; Sameer, Al-Zinki; Salwa, Al-Mouqati; Samee, Al-Amad; Ahmed, Al-Marzouk; Al-Sharifi, Faisal

    2008-11-01

    This study was undertaken to identify and characterize bacterial isolates obtained simultaneously from dead fish samples during a massive fish kill in Kuwait Bay and sewage-water samples running into Kuwait Bay using conventional and molecular techniques. Of the 71 bacterial isolates studied; 66 were recovered from 7 different fish species and 5 strains were isolated from sewage samples. The species-specific identity of the isolates was established by phenotypic characteristics and by PCR amplification of 16S rRNA by using Streptococcus agalactiae-specific primers. The genotyping of 12 isolates from fish samples and all 5 isolates from sewage samples was performed by random amplification of polymorphic DNA (RAPD) analysis. Culture methods identified 44 of 66 (67%) and 4 of 5 (80%) isolates obtained from fish and sewage samples, respectively, as S. agalactiae. The PCR amplification of 16S rRNA not only confirmed the results of conventional methods but also resulted in additional identification of 14 of 66 (21%) isolates obtained from fish samples and the remaining isolate recovered from sewage sample, as S. agalactiae. A total of 9 RAPD patterns were observed among the 17 isolates studied; these RAPD patterns were grouped into three clusters. Interestingly, four of the isolates recovered from sewage samples produced nearly identical RAPD band patterns (85-100% similarity) with some of the S. agalactiae strains isolated from Mullet kidney and brain indicting the possibility of sewage being the source of infection. PMID:19205271

  7. Two Novel Functions of Hyaluronidase from Streptococcus agalactiae Are Enhanced Intracellular Survival and Inhibition of Proinflammatory Cytokine Expression

    PubMed Central

    Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping

    2014-01-01

    Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl+ isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl+ strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity. PMID:24711564

  8. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.

    PubMed

    Bosward, Katrina L; House, John K; Deveridge, Amber; Mathews, Karen; Sheehy, Paul A

    2016-03-01

    Streptococcus agalactiae is a well-characterized bovine mastitis pathogen that is known to be highly contagious and capable of spreading rapidly in affected dairy herds. Loop-mediated isothermal amplification (LAMP) is a novel molecular diagnostic method that has the capability to provide rapid, cost-effective screening for pathogens to support on-farm disease control and eradication programs. In the current study, a LAMP test was developed to detect S. agalactiae in milk. The assay was validated on a bank of existing clinical mastitis milk samples that had previously been identified as S. agalactiae positive via traditional microbiological culture techniques and PCR. The LAMP assay was conducted on bacterial colonies and DNA extracted from milk in tube- and plate-based formats using multiple detection platforms. The 1-h assay conducted at 64 °C exhibited repeatability (coefficient of variation) of 2.07% (tube) and 8.3% (plate), sensitivity to ~20 pg of extracted DNA/reaction, and specificity against a panel of known bacterial mastitis pathogens. Of the 109 known S. agalactiae isolates assessed by LAMP directly from bacterial cells in culture, 108 were identified as positive, in accordance with PCR analysis. The LAMP analysis from the corresponding milk samples indicated that 104 of these milks exhibited a positive amplification curve. Although exhibiting some limitations, this assay provides an opportunity for rapid screening of milk samples to facilitate on-farm management of this pathogen. PMID:26778303

  9. The effect of pre-enrichment on recovery of Streptococcus agalactiae, Staphylococcus aureus and mycoplasma from bovine milk.

    PubMed Central

    Thurmond, M. C.; Tyler, J. W.; Luiz, D. M.; Holmberg, C. A.; Picanso, J. P.

    1989-01-01

    The study was conducted to determine whether pre-enrichment would increase sensitivity of detecting Streptococcus (Str.) agalactiae, Staphylococcus (S.) aureus, and mycoplasma in bovine milk. Two procedures were followed, one involving direct inoculation of milk on bovine blood agar, and the other involving preenrichment in broth followed by inoculation on agar. Logistic regression was used to predict the probability of isolation as a function of culture procedure and two additional covariates, the California Mastitis Test (CMT) score of the milk and the type of sample (indicating sample storage temperature and herd mastitis status). A total of 13778 milk samples was cultured for each of the three bacteria. By using results of both direct inoculation and pre-enrichment, the probability of isolation compared to use of direct inoculation only and adjusted for effects of other variables was increased 3.6-fold for Str. agalactiae, 1.6-fold for S. aureus and 1.7-fold for mycoplasma. The probability of isolation for all three bacteria increased as the CMT score increased. For Str. agalactiae, there was a statistical interaction predicting that enrichment improved the odds of isolation more from milk with high CMT scores than from milk with low scores. Results indicate that pre-enrichment can substantially increase the sensitivity of bacteriological screening of dairy cows for mastitis caused by Str. agalactiae, S. aureus, and mycoplasma. PMID:2691266

  10. vanG Element Insertions within a Conserved Chromosomal Site Conferring Vancomycin Resistance to Streptococcus agalactiae and Streptococcus anginosus

    PubMed Central

    Srinivasan, Velusamy; Metcalf, Benjamin J.; Knipe, Kristen M.; Ouattara, Mahamoudou; McGee, Lesley; Shewmaker, Patricia L.; Glennen, Anita; Nichols, Megin; Harris, Carol; Brimmage, Mary; Ostrowsky, Belinda; Park, Connie J.; Schrag, Stephanie J.; Frace, Michael A.; Sammons, Scott A.

    2014-01-01

    ABSTRACT Three vancomycin-resistant streptococcal strains carrying vanG elements (two invasive Streptococcus agalactiae isolates [GBS-NY and GBS-NM, both serotype II and multilocus sequence type 22] and one Streptococcus anginosus [Sa]) were examined. The 45,585-bp elements found within Sa and GBS-NY were nearly identical (together designated vanG-1) and shared near-identity over an ~15-kb overlap with a previously described vanG element from Enterococcus faecalis. Unexpectedly, vanG-1 shared much less homology with the 49,321-bp vanG-2 element from GBS-NM, with widely different levels (50% to 99%) of sequence identity shared among 44 related open reading frames. Immediately adjacent to both vanG-1 and vanG-2 were 44,670-bp and 44,680-bp integrative conjugative element (ICE)-like sequences, designated ICE-r, that were nearly identical in the two group B streptococcal (GBS) strains. The dual vanG and ICE-r elements from both GBS strains were inserted at the same position, between bases 1328 and 1329, within the identical RNA methyltransferase (rumA) genes. A GenBank search revealed that although most GBS strains contained insertions within this specific site, only sequence type 22 (ST22) GBS strains contained highly related ICE-r derivatives. The vanG-1 element in Sa was also inserted within this position corresponding to its rumA homolog adjacent to an ICE-r derivative. vanG-1 insertions were previously reported within the same relative position in the E. faecalis rumA homolog. An ICE-r sequence perfectly conserved with respect to its counterpart in GBS-NY was apparent within the same site of the rumA homolog of a Streptococcus dysgalactiae subsp. equisimilis strain. Additionally, homologous vanG-like elements within the conserved rumA target site were evident in Roseburia intestinalis. PMID:25053786

  11. Antigenic distribution of Streptococcus agalactiae isolates from pregnant women at Garankuwa hospital – South Africa

    PubMed Central

    Chukwu, Martina O; Mavenyengwa, Rooyen Tinago; Monyama, Charles M; Bolukaoto, John Y; Lebelo, Sogolo L; Maloba, Motlatji RB; Nchabeleng, Maphoshane; Moyo, Sylvester Rogers

    2015-01-01

    Introduction Streptococcus agalactiae (group B streptococcus; GBS) is globally recognised as one of the leading causes of neonatal sepsis and meningitis. It also causes adverse pregnancy outcomes such as stillbirth and miscarriages. Incidence of invasive disease is increasing in non-pregnant adults with underlying medical conditions (e.g., diabetes mellitus). Epidemiological studies of GBS infections are based on capsular serotyping. Genotyping of the surface anchored protein genes is also becoming an important tool for GBS studies. Currently ten different GBS serotypes have been identified. This study was performed to determine the prevalence of GBS capsular types (CTs) and surface anchored protein genes in isolates from colonized pregnant women attending antenatal clinic, at Dr George Mukhari Academic Hospital, Garankuwa, Pretoria, South Africa. Methods The samples were collected over 11 months and cultured on selective media. GBS was identified using different morphological and biochemical tests. Capsular typing was done using latex agglutination test and conventional PCR. Multiplex PCR with specific primers was used to detect the surface anchored protein genes. Results Of the 413 pregnant women recruited, 128 (30.9%) were colonized with GBS. The capsular polysaccharide (CPS) typing test showed that CPS type III (29.7%) was the most prevalent capsular type followed by CPS type Ia (25.8%), II (15.6%), IV (8.6%), V (10.9%) and Ib (8.6%); 0.7% of the isolates were nontypeable. Multiplex PCR revealed that the surface proteins genes were possessed by all the capsular types: rib (44.5%), bca (24.7%), alp2/3 (17.9%), epsilon (8.6%) and alp4 (4.7%). Conclusion The common capsular types found in this study are Ia, III, and II. The most common protein genes identified were rib and bca, and the distribution of the surface protein genes among the isolates of different capsular types showed similar trends to the distribution reported from previous studies. PMID:26716101

  12. Maternal colonization with Streptococcus agalactiae and associated stillbirth and neonatal disease in coastal Kenya.

    PubMed

    Seale, Anna C; Koech, Angela C; Sheppard, Anna E; Barsosio, Hellen C; Langat, Joyce; Anyango, Emily; Mwakio, Stella; Mwarumba, Salim; Morpeth, Susan C; Anampiu, Kirimi; Vaughan, Alison; Giess, Adam; Mogeni, Polycarp; Walusuna, Leahbell; Mwangudzah, Hope; Mwanzui, Doris; Salim, Mariam; Kemp, Bryn; Jones, Caroline; Mturi, Neema; Tsofa, Benjamin; Mumbo, Edward; Mulewa, David; Bandika, Victor; Soita, Musimbi; Owiti, Maureen; Onzere, Norris; Walker, A Sarah; Schrag, Stephanie J; Kennedy, Stephen H; Fegan, Greg; Crook, Derrick W; Berkley, James A

    2016-01-01

    Streptococcus agalactiae (group B streptococcus, GBS) causes neonatal disease and stillbirth, but its burden in sub-Saharan Africa is uncertain. We assessed maternal recto-vaginal GBS colonization (7,967 women), stillbirth and neonatal disease. Whole-genome sequencing was used to determine serotypes, sequence types and phylogeny. We found low maternal GBS colonization prevalence (934/7,967, 12%), but comparatively high incidence of GBS-associated stillbirth and early onset neonatal disease (EOD) in hospital (0.91 (0.25-2.3)/1,000 births and 0.76 (0.25-1.77)/1,000 live births, respectively). However, using a population denominator, EOD incidence was considerably reduced (0.13 (0.07-0.21)/1,000 live births). Treated cases of EOD had very high case fatality (17/36, 47%), especially within 24 h of birth, making under-ascertainment of community-born cases highly likely, both here and in similar facility-based studies. Maternal GBS colonization was less common in women with low socio-economic status, HIV infection and undernutrition, but when GBS-colonized, they were more probably colonized by the most virulent clone, CC17. CC17 accounted for 267/915 (29%) of maternal colonizing (265/267 (99%) serotype III; 2/267 (0.7%) serotype IV) and 51/73 (70%) of neonatal disease cases (all serotype III). Trivalent (Ia/II/III) and pentavalent (Ia/Ib/II/III/V) vaccines would cover 71/73 (97%) and 72/73 (99%) of disease-causing serotypes, respectively. Serotype IV should be considered for inclusion, with evidence of capsular switching in CC17 strains. PMID:27572968

  13. FbsC, a Novel Fibrinogen-binding Protein, Promotes Streptococcus agalactiae-Host Cell Interactions*

    PubMed Central

    Buscetta, Marco; Papasergi, Salvatore; Firon, Arnaud; Pietrocola, Giampiero; Biondo, Carmelo; Mancuso, Giuseppe; Midiri, Angelina; Romeo, Letizia; Teti, Giuseppe; Speziale, Pietro; Trieu-Cuot, Patrick; Beninati, Concetta

    2014-01-01

    Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine. PMID:24904056

  14. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    PubMed

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  15. Functional Analysis of the CpsA Protein of Streptococcus agalactiae

    PubMed Central

    Hanson, Brett R.; Runft, Donna L.; Streeter, Cale; Kumar, Abhin; Carion, Thomas W.

    2012-01-01

    Streptococcal pathogens, such as the group B streptococcus (GBS) Streptococcus agalactiae, are an important cause of systemic disease, which is facilitated in part by the presence of a polysaccharide capsule. The CpsA protein is a putative transcriptional regulator of the capsule locus, but its exact contribution to regulation is unknown. To address the role of CpsA in regulation, full-length GBS CpsA and two truncated forms of the protein were purified and analyzed for DNA-binding ability. Assays demonstrated that CpsA is able to bind specifically to two putative promoters within the capsule operon with similar affinity, and full-length protein is required for specificity. Functional characterization of CpsA confirmed that the ΔcpsA strain produced less capsule than did the wild type and demonstrated that the production of full-length CpsA or the DNA-binding region of CpsA resulted in increased capsule levels. In contrast, the production of a truncated form of CpsA lacking the extracellular LytR domain (CpsA-245) in the wild-type background resulted in a dominant-negative decrease in capsule production. GBS expressing CpsA-245, but not the ΔcpsA strain, was attenuated in human whole blood. However, the ΔcpsA strain showed significant attenuation in a zebrafish infection model. Furthermore, chain length was observed to be variable in a CpsA-dependent manner, but could be restored to wild-type levels when grown with lysozyme. Taken together, these results suggest that CpsA is a modular protein influencing multiple regulatory functions that may include not only capsule synthesis but also cell wall associated factors. PMID:22287515

  16. Increase in invasive Streptococcus pyogenes and Streptococcus pneumoniae infections in England, December 2010 to January 2011.

    PubMed

    Zakikhany, K; Degail, M A; Lamagni, T; Waight, P; Guy, R; Zhao, H; Efstratiou, A; Pebody, R; George, R; Ramsay, M

    2011-01-01

    Increases in invasive Streptococcus pyogenes and S. pneumoniae above the seasonally expected levels are currently being seen in England. Preliminary analyses suggest that the high level of influenza activity seen this winter may be contributing to an increased risk of concurrent invasive bacterial and influenza infections in children and young adults. PMID:21315057

  17. Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae.

    PubMed

    Yunis-Aguinaga, Jefferson; Claudiano, Gustavo S; Marcusso, Paulo F; Manrique, Wilson Gómez; de Moraes, Julieta R Engrácia; de Moraes, Flávio R; Fernandes, João B K

    2015-11-01

    Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia. PMID:26434713

  18. Comparative characterization of bovine testicular hyaluronidase and a hyaluronate lyase from Streptococcus agalactiae in pharmaceutical preparations.

    PubMed

    Oettl, Martin; Hoechstetter, Julia; Asen, Iris; Bernhardt, Günther; Buschauer, Armin

    2003-03-01

    Although bovine testicular hyaluronidase (BTH) has been used in several medical fields for many years, these drugs are poorly characterized. We compared pharmaceutical BTH preparations (Neopermease, Hylase "Dessau") and a hyaluronate lyase from Streptococcus agalactiae. The BTH preparations were complex mixtures of proteins (SDS-PAGE, gel filtration) with enzymatic activity in different fractions. In the case of Neopermease the highest specific activity was found in the 58 kDa fraction (optimum at pH 3.6), whereas the 77 and 33 kDa fractions showed markedly lower specific activities at an optimal pH of 6.2. Maximum specific activity of the bacterial enzyme (approx. 1000 micromol min(-1) mg(-1)) was found at pH 5.0, being 410- and 5100-times higher compared to Neopermease and Hylase "Dessau", respectively. The hyaluronate lyase preparation was separated into two main proteins [100 kDa (pI=8.9) and 85 kDa (pI=9.2)] which were enzymatically active in SDS substrate-PAGE. Zymography after limited proteolysis of the bacterial enzyme with trypsin revealed active fragments (75-50 kDa). Our results suggest that hyaluronate lyase is an alternative for BTH, of which there has been a shortage, since companies have stopped the production of BTH preparations due to the risk of BSE. PMID:12659938

  19. Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae

    PubMed Central

    Khosa, Sakshi; Frieg, Benedikt; Mulnaes, Daniel; Kleinschrodt, Diana; Hoeppner, Astrid; Gohlke, Holger; Smits, Sander H. J.

    2016-01-01

    Lantibiotics are potent antimicrobial peptides. Nisin is the most prominent member and contains five crucial lanthionine rings. Some clinically relevant bacteria express membrane-associated resistance proteins that proteolytically inactivate nisin. However, substrate recognition and specificity of these proteins is unknown. Here, we report the first three-dimensional structure of a nisin resistance protein from Streptococcus agalactiae (SaNSR) at 2.2 Å resolution. It contains an N-terminal helical bundle, and protease cap and core domains. The latter harbors the highly conserved TASSAEM region, which lies in a hydrophobic tunnel formed by all domains. By integrative modeling, mutagenesis studies, and genetic engineering of nisin variants, a model of the SaNSR/nisin complex is generated, revealing that SaNSR recognizes the last C-terminally located lanthionine ring of nisin. This determines the substrate specificity of SaNSR and ensures the exact coordination of the nisin cleavage site at the TASSAEM region. PMID:26727488

  20. Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections.

    PubMed

    Piccinelli, Giorgio; Biscaro, Valeria; Gargiulo, Franco; Caruso, Arnaldo; De Francesco, Maria Antonia

    2015-08-01

    Streptococcus agalactiae (GBS) has been implicated in urinary tract infections but the microbiological characteristics and antimicrobial susceptibility of these strains are poorly investigated. In this study, 87 isolates recovered from urine samples of patients who had attended the Spedali Civili of Brescia (Italy) and had single organism GBS cultured were submitted to antimicrobial susceptibility testing, molecular characterization of macrolide and levofloxacin resistance, PCR-based capsular typing and analysis of surface protein genes. By automated broth microdilution method, all isolates were susceptible to penicillin, cefuroxime, cefaclor, and ceftriaxone; 80%, 19.5% and 3.4% of isolates were non-susceptible to tetracycline, erythromycin, and levofloxacin, respectively. Macrolide resistance determinants were iMLS(B) (n=1), cMLS(B) (n=10) and M (n=5), associated with ermTR, ermB and mefA/E. Levofloxacin resistance was linked to mutations in gyrA and parC genes. Predominant capsular types were III, Ia, V, Ib and IX. Type III was associated with tetracycline resistance, while type Ib was associated with levofloxacin resistance. Different capsular type-surface protein gene combinations (serotype V-alp2, 3; serotype III-rib; serotype Ia-epsilon) were detected. A variety of capsular types are involved in significant bacteriuria. The emergence of multidrug resistant GBS may become a significant public health concern and highlights the importance of careful surveillance to prevent the emergence of these virulent GBS. PMID:26144658

  1. Validation of absolute quantitative real-time PCR for the diagnosis of Streptococcus agalactiae in fish.

    PubMed

    Sebastião, Fernanda de A; Lemos, Eliana G M; Pilarski, Fabiana

    2015-12-01

    Streptococcus agalactiae (GBS) are Gram-positive cocci responsible for substantial losses in tilapia fish farms in Brazil and worldwide. It causes septicemia, meningoencephalitis and mortality of whole shoals that can occur within 72 h. Thus, diagnostic methods are needed that are rapid, specific and sensitive. In this study, a pair of specific primers for GBS was generated based on the cfb gene sequence and initially evaluated by conventional PCR. The protocols for absolute quantitative real-time PCR (qPCR) were then adapted to validate the technique for the identification and quantification of GBS isolated by real-time detection of amplicons using fluorescence measurements. Finally, an infectivity test was conducted in tilapia infected with GBS strains. Total DNA from the host brain was subjected to the same technique, and the strains were re-isolated to validate Koch's postulates. The assay showed 100% specificity for the other bacterial species evaluated and a sensitivity of 367 gene copies per 20 mg of brain tissue within 4 h, making this test a valuable tool for health monitoring programs. PMID:26519771

  2. Effect of Eugenol against Streptococcus agalactiae and Synergistic Interaction with Biologically Produced Silver Nanoparticles

    PubMed Central

    Perugini Biasi-Garbin, Renata; Saori Otaguiri, Eliane; Fernandes da Silva, Mayara; Belotto Morguette, Ana Elisa; Armando Contreras Lancheros, César; Kian, Danielle; Perugini, Márcia Regina Eches; Durán, Nelson; Nakamura, Celso Vataru; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie

    2015-01-01

    Streptococcus agalactiae (group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced by Fusarium oxysporum (AgNPbio). Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections. PMID:25945115

  3. Conjugative transfer of resistance determinants among human and bovine Streptococcus agalactiae.

    PubMed

    Pinto, Tatiana Castro Abreu; Costa, Natália Silva; Corrêa, Ana Beatriz de Almeida; de Oliveira, Ivi Cristina Menezes; de Mattos, Marcos Correa; Rosado, Alexandre Soares; Benchetrit, Leslie Claude

    2014-01-01

    Streptococcus agalactiae (GBS) is a major source of human perinatal diseases and bovine mastitis. Erythromycin (Ery) and tetracycline (Tet) are usually employed for preventing human and bovine infections although resistance to such agents has become common among GBS strains. Ery and Tet resistance genes are usually carried by conjugative transposons (CTns) belonging to the Tn916 family, but their presence and transferability among GBS strains have not been totally explored. Here we evaluated the presence of Tet resistance genes (tetM and tetO) and CTns among Ery-resistant (Ery-R) and Ery-susceptible (Ery-S) GBS strains isolated from human and bovine sources; and analyzed the ability for transferring resistance determinants between strains from both origins. Tet resistance and int-Tn genes were more common among Ery-R when compared to Ery-S isolates. Conjugative transfer of all resistance genes detected among the GBS strains included in this study (ermA, ermB, mef, tetM and tetO), in frequencies between 1.10(-7) and 9.10(-7), was possible from bovine donor strains to human recipient strain, but not the other way around. This is, to our knowledge, the first report of in vitro conjugation of Ery and Tet resistance genes among GBS strains recovered from different hosts. PMID:25477908

  4. Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae.

    PubMed

    Blau, Karin; Portnoi, Maxim; Shagan, Marilou; Kaganovich, Antonina; Rom, Slava; Kafka, Daniel; Chalifa Caspi, Vered; Porgador, Angel; Givon-Lavi, Noga; Gershoni, Jonathan M; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2007-06-15

    Streptococcus pneumoniae fructose bisphosphate aldolase (FBA) is a cell wall-localized lectin. We demonstrate that recombinant (r) FBA and anti-rFBA antibodies inhibit encapsulated and unencapsulated S. pneumoniae serotype 3 adherence to A549 type II lung carcinoma epithelial cells. A random combinatorial peptide library expressed by filamentous phage was screened with rFBA. Eleven of 30 rFBA-binding phages inhibited 90% of S. pneumoniae adhesion to A549 cells. The insert peptide sequence of 9 of these phages matched the Flamingo cadherin receptor (FCR) when aligned against the human genome. A peptide comprising a putative FBA-binding region of FCR (FCRP) inhibited 2 genetically and capsularly unrelated pairs of encapsulated and unencapsulated S. pneumoniae strains from binding to A549 cells. Moreover, FCRP inhibited S. pneumoniae nasopharyngeal and lung colonization and, possibly, pneumonia development in the mouse intranasal inoculation model system. These data indicate that FBA is an S. pneumoniae adhesin and that FCR is its host receptor. PMID:17492599

  5. Mycoplasma pneumoniae and Streptococcus pneumoniae caused different microbial structure and correlation network in lung microbiota

    PubMed Central

    Wang, Heping; Dai, Wenkui; Qiu, Chuangzhao; Li, Shuaicheng; Wang, Wenjian; Xu, Jianqiang; Li, Zhichuan; Wang, Hongmei; Li, Yuzheng; Yang, Zhenyu; Feng, Xin; Zhou, Qian; Han, Lijuan; Li, Yinhu

    2016-01-01

    Pneumonia is one of the most serious diseases for children, with which lung microbiota are proved to be associated. We performed 16S rDNA analysis on broncho-alveolar lavage fluid (BALF) for 32 children with tracheomalacia (C group), pneumonia infected with Streptococcus pneumoniae (S. pneumoniae) (D1 group) or Mycoplasma pneumoniae (M. pneumoniae) (D2 group). Children with tracheomalacia held lower microbial diversity and accumulated Lactococcus (mean ± SD, 45.21%±5.07%, P value <0.05), Porphyromonas (0.12%±0.31%, P value <0.05). D1 and D2 group were enriched by Streptococcus (7.57%±11.61%, P value <0.01 when compared with D2 group) and Mycoplasma (0.67%±1.25%, P value <0.01) respectively. Bacterial correlation in C group was mainly intermediated by Pseudomonas and Arthrobacter. Whilst, D1 group harbored simplest microbial correlation in three groups, and D2 group held the most complicated network, involving enriched Staphylococcus (0.26%±0.71%), Massilia (0.81%±2.42%). This will be of significance for understanding pneumonia incidence and progression more comprehensively, and discerning between bacterial infection and carriage. PMID:27293852

  6. Mycoplasma pneumoniae and Streptococcus pneumoniae caused different microbial structure and correlation network in lung microbiota.

    PubMed

    Wang, Heping; Dai, Wenkui; Qiu, Chuangzhao; Li, Shuaicheng; Wang, Wenjian; Xu, Jianqiang; Li, Zhichuan; Wang, Hongmei; Li, Yuzheng; Yang, Zhenyu; Feng, Xin; Zhou, Qian; Han, Lijuan; Li, Yinhu; Zheng, Yuejie

    2016-06-01

    Pneumonia is one of the most serious diseases for children, with which lung microbiota are proved to be associated. We performed 16S rDNA analysis on broncho-alveolar lavage fluid (BALF) for 32 children with tracheomalacia (C group), pneumonia infected with Streptococcus pneumoniae (S. pneumoniae) (D1 group) or Mycoplasma pneumoniae (M. pneumoniae) (D2 group). Children with tracheomalacia held lower microbial diversity and accumulated Lactococcus (mean ± SD, 45.21%±5.07%, P value <0.05), Porphyromonas (0.12%±0.31%, P value <0.05). D1 and D2 group were enriched by Streptococcus (7.57%±11.61%, P value <0.01 when compared with D2 group) and Mycoplasma (0.67%±1.25%, P value <0.01) respectively. Bacterial correlation in C group was mainly intermediated by Pseudomonas and Arthrobacter. Whilst, D1 group harbored simplest microbial correlation in three groups, and D2 group held the most complicated network, involving enriched Staphylococcus (0.26%±0.71%), Massilia (0.81%±2.42%). This will be of significance for understanding pneumonia incidence and progression more comprehensively, and discerning between bacterial infection and carriage. PMID:27293852

  7. Streptococcus pneumoniae infections in western Nepal.

    PubMed

    Easow, Joshy Maducolil; Joseph, Noyal Mariya; Shankar, Pathiyil Ravi; Rajamony, Asish Purushothaman; Dhungel, Banodita Acharya; Shivananda, P G

    2011-07-01

    We conducted a study to determine the prevalence of antibiotic resistance among clinical isolates of S. pneumoniae. This study was conducted from January 2000 to August 2007 at a tertiary care teaching hospital in Nepal. The isolates were identified based on standard bacteriological techniques. Antibiotic susceptibility testing used the Kirby-Bauer disc diffusion method; penicillin resistance was confirmed by agar dilution method. During the study period, there were 312 S. pneumoniae isolates. Penicillin, trimethoprim-sulfamethoxazole, erythromycin, tetracycline and chloramphenicol resistance were observed in 5, 34.3, 7.4, 11.1 and 0.4% of isolates, respectively. Resistance to all tested antibiotics declined with time except for penicillin, in which resistance increased. Penicillin-resistant S. pneumoniae were significantly co-resistant to erythromycin. Co-resistance to tetracycline and erythromycin were observed in trimethoprim-sulfamethoxazole resistant isolates. Penicillin resistance is increasing; therefore, measures to ensure judicious use of beta-lactams and macrolides (inducers of penicillin resistance) should be advocated to control the development of penicillin-resistant S. pneumoniae. PMID:22299473

  8. Role of the Group B Antigen of Streptococcus agalactiae: A Peptidoglycan-Anchored Polysaccharide Involved in Cell Wall Biogenesis

    PubMed Central

    Chapot-Chartier, Marie-Pierre; Courtin, Pascal; Kulakauskas, Saulius; Péchoux, Christine; Trieu-Cuot, Patrick; Mistou, Michel-Yves

    2012-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta –hemolytic streptococci. PMID:22719253

  9. Streptococcus pneumoniae Is Desiccation Tolerant and Infectious upon Rehydration

    PubMed Central

    Walsh, Rebecca L.; Camilli, Andrew

    2011-01-01

    ABSTRACT Streptococcus pneumoniae (pneumococcus) is a frequent colonizer of the nasopharynx and one of the leading causative agents of otitis media, pneumonia, and meningitis. The current literature asserts that S. pneumoniae is transmitted person to person via respiratory droplets; however, environmental surfaces (fomites) have been linked to the spread of other respiratory pathogens. Desiccation tolerance has been to shown to be essential for long-term survival on dry surfaces. This study investigated the survival and infectivity of S. pneumoniae following desiccation under ambient conditions. We recovered viable bacteria after all desiccation periods tested, ranging from 1 h to 4 weeks. Experiments conducted under nutrient limitation indicate that desiccation is a condition separate from starvation. Desiccation of an acapsular mutant and 15 different clinical isolates shows that S. pneumoniae desiccation tolerance is independent of the polysaccharide capsule and is a species-wide phenomenon, respectively. Experiments demonstrating that nondesiccated and desiccated S. pneumoniae strains colonize the nasopharynx at comparable levels, combined with their ability to survive long-term desiccation, suggest that fomites may serve as alternate sources of pneumococcal infection. PMID:21610120

  10. Prevalence and mechanisms of erythromycin resistance in Streptococcus agalactiae from healthy pregnant women.

    PubMed

    Pinheiro, Sandra; Radhouani, Hajer; Coelho, Céline; Gonçalves, Alexandre; Carvalho, Eulália; Carvalho, José António; Ruiz-Larrea, Fernanda; Torres, Carmen; Igrejas, Gilberto; Poeta, Patrícia

    2009-06-01

    We sought to determine the resistance phenotypes for erythromycin and clindamycin and the mechanisms implicated in 93 Streptococcus agalactiae isolates recovered from healthy pregnant women. Susceptibility testing for erythromycin, clindamycin, penicillin, cefotaxime, vancomycin, quinupristin-dalfopristin, choramphenicol, ofloxacin, and meropenen was carried out by disc-diffusion test, and the E-test was also applied for erythromycin and clindamycin. The constitutive MLS(B) resistance (cMLS(B)) and inducible MLS(B) resistance (iMLS(B)) phenotypes, respectively, as well as the M resistance phenotype were determined by the erythromycin-clindamycin double-disc test. The presence of ermA, ermB, ermC, msrA, and mef(A/E) macrolide resistance genes was studied by PCR. Resistance to erythromycin and clindamycin was found in 15% and 9.6% of the isolates, respectively. The resistance phenotypes detected among the 14 erythromycin-resistant isolates were as follows (number of isolates): cMLS(B) (9), iMLS(B) (3), and M (2). The MICs for erythromycin and clindamycin were as follows: cMLS(B) isolates (128-256 and >or=32 mg/L, respectively), iMLS(B) isolates (16-256 and 1 mg/L), and M isolates (2-8 and 1 mg/L). The following combination of genes were detected among isolates with cMLS(B) or iMLS(B) phenotypes: erm(B) (6 isolates), ermA + ermTR (3), ermA + ermB + ermTR (1), and none of these genes (2). The two isolates with M phenotype harbored the mef(A/E), and msrA gene was also found in one of them. PMID:19432524

  11. Characterization of two novel gadd45a genes in hybrid tilapia and their responses to the infection of Streptococcus agalactiae.

    PubMed

    Shen, Yubang; Ma, Keyi; Liu, Feng; Yue, Gen Hua

    2016-07-01

    Diseases are one of the major challenges in tilapia aquaculture. Identification of DNA markers associated with disease resistance may facilitate the acceleration of the selection for disease resistance. Gadd45a (growth arrest and DNA damage 45 A), a stress-inducible gene in humans and mice, has not been studied in fish. We characterized the two prologues of Gadd45a genes in hybrid tilapia. Gadd45a1 and Gadd45a2 shared an identical gene structure and showed an amino acid sequence identity of 73.8%. Their expressions were detected in all 10 tissues examined, with the kidney and gill having high transcriptional expressions. The expression levels of Gadd45a1 were significantly lower than those of Gadd45a2 in all examined tissues. After a challenge with a bacterial pathogen Streptococcus agalactiae, the expressions of the two genes were up-regulated significantly in the spleen, kidney, liver and intestine. These findings suggest that the two Gadd45a genes play an important role in the resistance to S. agalactiae in tilapia. We identified 10 SNPs in the two genes. The SNP markers in the two Gadd45a genes could be used to examine whether they are associated with resistance to S. agalactiae. PMID:27103004

  12. Evaluation of the efficacy of intramuscular versus intramammary treatment of subclinical Streptococcus agalactiae mastitis in dairy cows in Colombia.

    PubMed

    Reyes, J; Chaffer, M; Sanchez, J; Torres, G; Macias, D; Jaramillo, M; Duque, P C; Ceballos, A; Keefe, G P

    2015-08-01

    A randomized controlled trial was performed in 17 Colombian dairy herds to determine the cure risk among cows subclinically infected with Streptococcus agalactiae exposed to 2 antibiotic therapies. Composite milk samples were collected before milking at the onset of the trial (pretreatment) and 2 subsequent times over a period of approximately 63 d. The intramammary application (IMM) of ampicillin-cloxacillin was compared with the intramuscular application (IM) of penethamate hydriodide, and cure risks after an initial and retreatment application were assessed. Cure risk after the initial treatment was higher (82.4%) for the IMM treatment than for IM therapy (65.8%). However, no difference was observed in the cure risk of refractory cases after retreatment (IMM=52.6% vs. IM=51.2%). The cumulative cure risk (both initial and retreatment) was 90.4 and 82.9% for the IMM and IM products, respectively. A 2-level random effects logistic model that controlled for pretreatment cow-level somatic cell count, indicated that IM treatment (odds ratio=0.37) had a lower cure risk than IMM and a tendency for a lower cure risk with increasing baseline somatic cell count. Our findings suggest that both products and administration routes can reduce the prevalence of S. agalactiae in affected herds, but the IMM product had a better efficacy in curing the infection. In addition to the treatment protocol, the cow somatic cell count should be considered when making management decisions for cows infected with S. agalactiae. PMID:26074229

  13. Molecular and bacteriological investigation of subclinical mastitis caused by Staphylococcus aureus and Streptococcus agalactiae in domestic bovids from Ismailia, Egypt.

    PubMed

    Elhaig, Mahmoud Mohey; Selim, Abdelfattah

    2015-02-01

    A study was carried out to establish the prevalence of subclinical mastitis (SCM) in smallholder dairy farms in Ismailia, Egypt. A total of 340 milking cows and buffaloes were sampled from 60 farms, and 50 nasal swabs were collected from consenting farm workers. Milk samples were subjected to California mastitis test (CMT) and the positive samples were examined by bacterial culture and PCR to identify etiological agents. Based on CMT, the prevalence of SCM was 71.6 % in cattle and 43.5 % in buffaloes while the prevalence was 25.2 % at cow-quarter level and 21.7 % at buffaloes-quarter level. Bacteriological analysis showed that the most frequently identified bacteria were Staphylococcus (S.) aureus (38.3 %) and Streptococcus (Str.) agalactiae (20 %). The diagnostic sensitivity of PCR compared to bacterial culture was superior with S. aureus and Str. agalactiae detection being 41 and 22.6 %, respectively. Furthermore, methicillin-resistant S. aureus (MRSA) strains occurred in 52.2 and 45 % of isolates of animals and workers, respectively. Subclinical mastitis due to S. aureus and Str. agalactiae is endemic in smallholder dairy herds in Ismailia. The occurrence of MRSA in animals and workers highlights a need for wide epidemiological studies of MRSA and adopting control strategies. PMID:25374070

  14. Short communication: Lipolytic activity on milk fat by Staphylococcus aureus and Streptococcus agalactiae strains commonly isolated in Swedish dairy herds.

    PubMed

    Vidanarachchi, Janak K; Li, Shengjie; Lundh, Åse Sternesjö; Johansson, Monika

    2015-12-01

    The objective of this study was to determine the lipolytic activity on milk fat of 2 bovine mastitis pathogens, that is, Staphylococcus aureus and Streptococcus agalactiae. The lipolytic activity was determined by 2 different techniques, that is, thin-layer chromatography and an extraction-titration method, in an experimental model using the most commonly occurring field strains of the 2 mastitic bacteria isolated from Swedish dairy farms. The microorganisms were inoculated into bacteria-free control milk and incubated at 37°C to reflect physiological temperatures in the mammary gland. Levels of free fatty acids (FFA) were analyzed at time of inoculation (t=0) and after 2 and 6h of incubation, showing significant increase in FFA levels. After 2h the FFA content had increased by approximately 40% in milk samples inoculated with Staph. aureus and Strep. agalactiae, and at 6h the pathogens had increased FFA levels by 47% compared with the bacteria-free control milk. Changes in lipid composition compared with the bacteria-free control were investigated at 2 and 6h of incubation. Diacylglycerols, triacylglycerols, and phospholipids increased significantly after 6h incubation with the mastitis bacteria, whereas cholesterol and sterol esters decreased. Our results suggest that during mammary infections with Staph. aureus and Strep. agalactiae, the action of lipases originating from the mastitis pathogens will contribute significantly to milk fat lipolysis and thus to raw milk deterioration. PMID:26409975

  15. Antimicrobial Susceptibility/Resistance of Streptococcus Pneumoniae

    PubMed Central

    Karcic, Emina; Aljicevic, Mufida; Bektas, Sabaheta; Karcic, Bekir

    2015-01-01

    Introduction: Pneumococcal infections are a major cause of morbidity and mortality worldwide, whose treatment is threatened with an increase in the number of strains resistant to antibiotic therapy. Goal: The main goal of this research was to investigate the presence of antimicrobial susceptibility/resistance of S. pneumoniae. Material and methods: Taken are swabs of the nose and nasopharynx, eye and ear. In vitro tests that were made in order to study the antimicrobial resistance of pneumococci are: disk diffusion method and E-test. Results: The resistance to inhibitors of cell wall synthesis was recorded at 39.17%, protein synthesis inhibitors 19.67%, folate antagonists 47.78% and quinolone in 1.11%. S. pneumoniae has shown drug resistance to erythromycin in 45%, clindamycin in 45%, chloramphenicol–0.56%, rifampicin–6.11%, tetracycline–4.67%, penicillin-G in 4.44%, oxacillin in 73.89%, ciprofloxacin in 1.11% and trimethoprim-sulfamethoxazole in 5.34% of cases. Conclusion: The highest resistance pneumococcus showed to erythromycin, clindamycin and trimethoprim-sulfamethoxazole and these should be avoided in the treatment. The least resistance pneumococcus showed to tetracycline, rifampicin, chloramphenicol, penicillin-G and ciprofloxacin. PMID:26236165

  16. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease.

    PubMed

    Landwehr-Kenzel, Sybille; Henneke, Philipp

    2014-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood-brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  17. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease

    PubMed Central

    Landwehr-Kenzel, Sybille; Henneke, Philipp

    2014-01-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood–brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are

  18. Successful off-label use of the Cepheid Xpert GBS in a late-onset neonatal meningitis by Streptococcus agalactiae.

    PubMed

    Savini, Vincenzo; Marrollo, Roberta; Coclite, Eleonora; Fusilli, Paola; D'Incecco, Carmine; Fazii, Paolo

    2014-01-01

    We report the case of a late-onset neonatal meningitis by Streptococcus agalactiae (group B Streptococcus - GBS) that was diagnosed with a latex agglutination assay (on cerebrospinal fluid, CSF), as well as by using, for the first time, Xpert GBS (Cepheid, US) on CSF. Due to empirical antibiotics given before sampling, both CSF and blood culture were negative, so the abovementioned diagnostics was crucial. Moreover, the Xpert GBS assay, performed according to an off-label, modified protocol (the system is designed for GBS-carriage intrapartum screening, based on a completely automated real time-Polymerase Chain Reaction) quickly detected the organism's genome target. Although further investigation on this test's performace on CSF is required, then, we trust it may be a promising, quick and precise diagnostic method for infections in newborns. PMID:25197396

  19. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli

    PubMed Central

    Kay, Emily J.; Yates, Laura E.; Terra, Vanessa S.; Cuccui, Jon; Wren, Brendan W.

    2016-01-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  20. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli.

    PubMed

    Kay, Emily J; Yates, Laura E; Terra, Vanessa S; Cuccui, Jon; Wren, Brendan W

    2016-04-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  1. Structure of Streptococcus agalactiae tip pilin GBS104: a model for GBS pili assembly and host interactions

    SciTech Connect

    Krishnan, Vengadesan; Dwivedi, Prabhat; Kim, Brandon J.; Samal, Alexandra; Macon, Kevin; Ma, Xin; Mishra, Arunima; Doran, Kelly S.; Ton-That, Hung; Narayana, Sthanam V. L.

    2013-06-01

    The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. In addition, a homology model of the remaining two domains of GBS104 was built and a model of full-length GBS104 was generated by combining the homology model (the N1 and N4 domains) and the crystal structure of the 75 kDa fragment (the N2 and N3 domains). This rod-shaped GBS104 model is constructed of three IgG-like domains (the N1, N2 and N4 domains) and one vWFA-like domain (the N3 domain). The N1 and N2 domains of GBS104 are assembled with distinct and remote segments contributed by the N- and C-termini. The metal-binding site in the N3 domain of GBS104 is in the closed/low-affinity conformation. Interestingly, this domain hosts two long arms that project away from the metal-binding site. Using site-directed mutagenesis, two cysteine residues that lock the N3 domain of GBS104 into the open/high-affinity conformation were introduced. Both wild-type and disulfide-locked recombinant proteins were tested for binding to extracellular matrix proteins such as collagen, fibronectin, fibrinogen and laminin, and an increase in fibronectin binding affinity was identified for the disulfide-locked N3 domain, suggesting that induced conformational changes may play a possible role in receptor binding.

  2. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae.

    PubMed

    Faikoh, Elok Ning; Hong, Yong-Han; Hu, Shao-Yang

    2014-05-01

    Cinnamaldehyde, which is extracted from cinnamon, is a natural compound with activity against bacteria and a modulatory immune function. However, the antibacterial activity and immunostimulation of cinnamaldehyde in fish has not been well investigated due to the compound's poor water solubility. Thus, liposome-encapsulated cinnamaldehyde (LEC) was used to evaluate the effects of cinnamaldehyde on in vitro antibacterial activity against aquatic pathogens and in vivo immunity and protection parameters against Vibrio vulnificus and Streptococcus agalactiae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as well as bactericidal agar plate assay results demonstrated the effective bacteriostatic and bactericidal potency of LEC against Aeromonas hydrophila, V. vulnificus, and S. agalactiae, as well as the antibiotic-resistant Vibrio parahaemolyticus and Vibrio alginolyticus. Bacteria challenge test results demonstrated that LEC significantly enhances the survival rate and inhibits bacterial growth in zebrafish infected with A. hydrophila, V. vulnificus, and S. agalactiae. A gene expression study using a real-time PCR showed that LEC immersion-treated zebrafish had increased endogenous interleukin (IL)-1β, IL-6, IL-15, IL-21, tumor necrosis factor (TNF)-α, and interferon (INF)-γ expression in vivo. After the zebrafish were infected with V. vulnificus or S. agalactiae, the LEC immersion treatment suppressed the expression of the inflammatory cytokines IL-1β, IL-6, IL-15, NF-κb, and TNF-α and induced IL-10 and C3b expression. These findings demonstrate that cinnamaldehyde exhibits antimicrobial activity against aquatic pathogens, even antibiotic-resistant bacterial strains and immune-stimulating effects to protect the host's defenses against pathogen infection in bacteria-infected zebrafish. These results suggest that LEC could be used as an antimicrobial agent and immunostimulant to protect bacteria-infected fish in aquaculture

  3. Infection and pathology in Queensland grouper, Epinephelus lanceolatus, (Bloch), caused by exposure to Streptococcus agalactiae via different routes.

    PubMed

    Delamare-Deboutteville, J; Bowater, R; Condon, K; Reynolds, A; Fisk, A; Aviles, F; Barnes, A C

    2015-12-01

    Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae. PMID:25117665

  4. Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae.

    PubMed

    Barichello, Tatiana; Lemos, Joelson C; Generoso, Jaqueline S; Carradore, Mirelle M; Moreira, Ana Paula; Collodel, Allan; Zanatta, Jessiele R; Valvassori, Samira S; Quevedo, João

    2013-03-01

    Streptococcus agalactiae (GBS) is a major cause of severe morbidity and mortality in neonates and young infants, causing sepsis, pneumonia and meningitis. The survivors from this meningitis can suffer serious long-term neurological consequences, such as, seizures, hearing loss, learning and memory impairments. Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) control the neuronal cell death during the brain development and play an important role in neuronal differentiation, survival and growth of neurons. Neonate Wistar rats, received either 10μL of sterile saline as a placebo or an equivalent volume of GBS suspension at a concentration of 1×10(6)cfu/mL. Sixty days after induction of meningitis, the animals underwent behavioral tests, after were killed and the hippocampus and cortex were retired for analyze of the BDNF and NGF levels. In the open-field demonstrated no difference in motor, exploratory activity and habituation memory between the groups. The step-down inhibitory avoidance, when we evaluated the long-term memory at 24h after training session, we found that the meningitis group had a decrease in aversive memory when compared with the long-term memory test of the sham group. BDNF levels decreased in hippocampus and cortex; however the NGF levels decreased only in hippocampus. These findings suggest that the meningitis model could be a good research tool for the study of the biological mechanisms involved in the behavioral alterations secondary to GBS meningitis. PMID:22683802

  5. Development of Streptococcus pneumoniae Vaccines Using Live Vectors

    PubMed Central

    Wang, Shifeng; Curtiss, Roy

    2014-01-01

    Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines. PMID:25309747

  6. Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties

    NASA Technical Reports Server (NTRS)

    Orihuela, C. J.; Janssen, R.; Robb, C. W.; Watson, D. A.; Niesel, D. W.

    2000-01-01

    We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro.

  7. Suppurative keratitis caused by Streptococcus pneumoniae after cataract surgery.

    PubMed Central

    Charteris, D G; Batterbury, M; Armstrong, M; Tullo, A B

    1994-01-01

    Six elderly patients are described (age range 76-86 years) in whom a characteristic peripheral suppurative keratitis developed 1-36 months after uncomplicated cataract surgery. A corneal section had been used in all patients and four or five interrupted nylon sutures were present at the time of onset. Streptococcus pneumoniae was cultured from a corneal scrape in all cases. Treatment with appropriate antibiotics resulted in slow resolution though supplementary topical steroids were necessary in five of the six patients, and corneal opacification persists in all cases. Images PMID:7848983

  8. Sortase A Confers Protection against Streptococcus pneumoniae in Mice▿

    PubMed Central

    Gianfaldoni, Claudia; Maccari, Silvia; Pancotto, Laura; Rossi, Giacomo; Hilleringmann, Markus; Pansegrau, Werner; Sinisi, Antonia; Moschioni, Monica; Masignani, Vega; Rappuoli, Rino; Del Giudice, Giuseppe; Ruggiero, Paolo

    2009-01-01

    Streptococcus pneumoniae sortase A (SrtA) is a transpeptidase that is highly conserved among pneumococcal strains, whose involvement in adhesion/colonization has been reported. We found that intraperitoneal immunization with recombinant SrtA conferred to mice protection against S. pneumoniae intraperitoneal challenge and that the passive transfer of immune serum before intraperitoneal challenge was also protective. Moreover, by using the intranasal challenge model, we observed a significant reduction of bacteremia when mice were intraperitoneally immunized with SrtA, while a moderate decrease of lung infection was achieved by intranasal immunization, even though no influence on nasopharynx colonization was seen. Taken together, our results suggest that SrtA is a good candidate for inclusion in a multicomponent, protein-based, pneumococcal vaccine. PMID:19433540

  9. Large-Scale Identification of Virulence Genes from Streptococcus pneumoniae

    PubMed Central

    Polissi, Alessandra; Pontiggia, Andrea; Feger, Georg; Altieri, Mario; Mottl, Harald; Ferrari, Livia; Simon, Daniel

    1998-01-01

    Streptococcus pneumoniae is the major cause of bacterial pneumonia, and it is also responsible for otitis media and meningitis in children. Apart from the capsule, the virulence factors of this pathogen are not completely understood. Recent technical advances in the field of bacterial pathogenesis (in vivo expression technology and signature-tagged mutagenesis [STM]) have allowed a large-scale identification of virulence genes. We have adapted to S. pneumoniae the STM technique, originally used for the discovery of Salmonella genes involved in pathogenicity. A library of pneumococcal chromosomal fragments (400 to 600 bp) was constructed in a suicide plasmid vector carrying unique DNA sequence tags and a chloramphenicol resistance marker. The recent clinical isolate G54 was transformed with this library. Chloramphenicol-resistant mutants were obtained by homologous recombination, resulting in genes inactivated by insertion of the suicide vector carrying a unique tag. In a mouse pneumonia model, 1.250 candidate clones were screened; 200 of these were not recovered from the lungs were therefore considered virulence-attenuated mutants. The regions flanking the chloramphenicol gene of the attenuated mutants were amplified by inverse PCR and sequenced. The sequence analysis showed that the 200 mutants had insertions in 126 different genes that could be grouped in six classes: (i) known pneumococcal virulence genes; (ii) genes involved in metabolic pathways; (iii) genes encoding proteases; (iv) genes coding for ATP binding cassette transporters; (v) genes encoding proteins involved in DNA recombination/repair; and (vi) DNA sequences that showed similarity to hypothetical genes with unknown function. To evaluate the virulence attenuation for each mutant, all 126 clones were individually analyzed in a mouse septicemia model. Not all mutants selected in the pneumonia model were confirmed in septicemia, thus indicating the existence of virulence factors specific for pneumonia

  10. Effects of Streptococcus pneumoniae Strain Background on Complement Resistance

    PubMed Central

    Hyams, Catherine; Opel, Sophia; Hanage, William; Yuste, Jose; Bax, Katie; Henriques-Normark, Birgitta; Spratt, Brian G.; Brown, Jeremy S.

    2011-01-01

    Background Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity. Methodology and Principal Findings C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS. Conclusions These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains. PMID:22022358

  11. Natural transformation and genome evolution in Streptococcus pneumoniae.

    PubMed

    Straume, Daniel; Stamsås, Gro Anita; Håvarstein, Leiv Sigve

    2015-07-01

    Streptococcus pneumoniae is a frequent colonizer of the human nasopharynx that has the potential to cause severe infections such as pneumonia, bacteremia and meningitis. Despite considerable efforts to reduce the burden of pneumococcal disease, it continues to be a major public health problem. After the Second World War, antimicrobial therapy was introduced to fight pneumococcal infections, followed by the first effective vaccines more than half a century later. These clinical interventions generated a selection pressure that drove the evolution of vaccine-escape mutants and strains that were highly resistant against antibiotics. The remarkable ability of S. pneumoniae to acquire drug resistance and evade vaccine pressure is due to its recombination-mediated genetic plasticity. S. pneumoniae is competent for natural genetic transformation, a property that enables the pneumococcus to acquire new traits by taking up naked DNA from the environment and incorporating it into its genome through homologous recombination. In the present paper, we review current knowledge on pneumococcal transformation, and discuss how the pneumococcus uses this mechanism to adapt and survive under adverse and fluctuating conditions. PMID:25445643

  12. Structure and Inhibition of Quorum Sensing Target from Streptococcus pneumoniae

    SciTech Connect

    Singh,V.; Shi, W.; Almo, S.; Evans, G.; Furneaux, R.; Tyler, P.; Painter, G.; Lenz, D.; Mee, S.; et al.

    2006-01-01

    Streptococcus pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects the growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative S{sub N}1 transition state for Escherichia coli MTAN, and transition state analogues resembling the transition state are powerful inhibitors of the enzyme [Singh, V., Lee, J. L., Nunez, S., Howell, P. L., and Schramm, V. L. (2005) Biochemistry 44, 11647-11659]. The sequence of MTAN from S. pneumoniae is 40% identical to that of E. coli MTAN, but S. pneumoniae MTAN exhibits remarkably distinct kinetic and inhibitory properties. 5'-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early S{sub N}1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a K{sub i} of 1.0 {mu}M. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA), or ethyl (EtT-ImmA) groups increases the affinity to give K{sub i} values of 335, 60, and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a K{sub i} value of 24 nM, and replacing the 5'-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a K{sub i}* value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT

  13. The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages

    PubMed Central

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170

  14. Small regulatory RNAs in Streptococcus pneumoniae: discovery and biological functions

    PubMed Central

    Wilton, Joana; Acebo, Paloma; Herranz, Cristina; Gómez, Alicia; Amblar, Mónica

    2015-01-01

    Streptococcus pneumoniae is a prominent human pathogen responsible for many severe diseases and the leading cause of childhood mortality worldwide. The pneumococcus is remarkably adept at colonizing and infecting different niches in the human body, and its adaptation to dynamic host environment is a central aspect of its pathogenesis. In the last decade, increasing findings have evidenced small RNAs (sRNAs) as vital regulators in a number of important processes in bacteria. In S. pneumoniae, a small antisense RNA was first discovered in the pMV158 plasmid as a copy number regulator. More recently, genome-wide screens revealed that the pneumococcal genome also encodes multiple sRNAs, many of which have important roles in virulence while some are implicated in competence control. The knowledge of the sRNA-mediated regulation in pneumococcus remains very limited, and future research is needed for better understanding of functions and mechanisms. Here, we provide a comprehensive summary of the current knowledge on sRNAs from S. pneumoniae, focusing mainly on the trans-encoded sRNAs. PMID:25904932

  15. The 2-Cys Peroxiredoxin Alkyl Hydroperoxide Reductase C Binds Heme and Participates in Its Intracellular Availability in Streptococcus agalactiae*

    PubMed Central

    Lechardeur, Delphine; Fernandez, Annabelle; Robert, Bruno; Gaudu, Philippe; Trieu-Cuot, Patrick; Lamberet, Gilles; Gruss, Alexandra

    2010-01-01

    Heme is a redox-reactive molecule with vital and complex roles in bacterial metabolism, survival, and virulence. However, few intracellular heme partners were identified to date and are not well conserved in bacteria. The opportunistic pathogen Streptococcus agalactiae (group B Streptococcus) is a heme auxotroph, which acquires exogenous heme to activate an aerobic respiratory chain. We identified the alkyl hydroperoxide reductase AhpC, a member of the highly conserved thiol-dependent 2-Cys peroxiredoxins, as a heme-binding protein. AhpC binds hemin with a Kd of 0.5 μm and a 1:1 stoichiometry. Mutagenesis of cysteines revealed that hemin binding is dissociable from catalytic activity and multimerization. AhpC reductase activity was unchanged upon interaction with heme in vitro and in vivo. A group B Streptococcus ahpC mutant displayed attenuation of two heme-dependent functions, respiration and activity of a heterologous catalase, suggesting a role for AhpC in heme intracellular fate. In support of this hypothesis, AhpC-bound hemin was protected from chemical degradation in vitro. Our results reveal for the first time a role for AhpC as a heme-binding protein. PMID:20332091

  16. Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia

    PubMed Central

    Rai, Aswathy N.; Thornton, Justin A.; Stokes, John; Sunesara, Imran; Swiatlo, Edwin; Nanduri, Bindu

    2016-01-01

    Streptococcus pneumoniae is the most common bacterial etiology of pneumococcal pneumonia in adults worldwide. Genomic plasticity, antibiotic resistance and extreme capsular antigenic variation complicates the design of effective therapeutic strategies. Polyamines are ubiquitous small cationic molecules necessary for full expression of pneumococcal virulence. Polyamine transport system is an attractive therapeutic target as it is highly conserved across pneumococcal serotypes. In this study, we compared an isogenic deletion strain of S. pneumoniae TIGR4 in polyamine transport operon (ΔpotABCD) with the wild type in a mouse model of pneumococcal pneumonia. Our results show that the wild type persists in mouse lung 24 h post infection while the mutant strain is cleared by host defense mechanisms. We show that intact potABCD is required for survival in the host by providing resistance to neutrophil killing. Comparative proteomics analysis of murine lungs infected with wild type and ΔpotABCD pneumococci identified expression of proteins that could confer protection to wild type strain and help establish infection. We identified ERM complex, PGLYRP1, PTPRC/CD45 and POSTN as new players in the pathogenesis of pneumococcal pneumonia. Additionally, we found that deficiency of polyamine transport leads to up regulation of the polyamine synthesis genes speE and cad in vitro. PMID:27247105

  17. Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia.

    PubMed

    Rai, Aswathy N; Thornton, Justin A; Stokes, John; Sunesara, Imran; Swiatlo, Edwin; Nanduri, Bindu

    2016-01-01

    Streptococcus pneumoniae is the most common bacterial etiology of pneumococcal pneumonia in adults worldwide. Genomic plasticity, antibiotic resistance and extreme capsular antigenic variation complicates the design of effective therapeutic strategies. Polyamines are ubiquitous small cationic molecules necessary for full expression of pneumococcal virulence. Polyamine transport system is an attractive therapeutic target as it is highly conserved across pneumococcal serotypes. In this study, we compared an isogenic deletion strain of S. pneumoniae TIGR4 in polyamine transport operon (ΔpotABCD) with the wild type in a mouse model of pneumococcal pneumonia. Our results show that the wild type persists in mouse lung 24 h post infection while the mutant strain is cleared by host defense mechanisms. We show that intact potABCD is required for survival in the host by providing resistance to neutrophil killing. Comparative proteomics analysis of murine lungs infected with wild type and ΔpotABCD pneumococci identified expression of proteins that could confer protection to wild type strain and help establish infection. We identified ERM complex, PGLYRP1, PTPRC/CD45 and POSTN as new players in the pathogenesis of pneumococcal pneumonia. Additionally, we found that deficiency of polyamine transport leads to up regulation of the polyamine synthesis genes speE and cad in vitro. PMID:27247105

  18. Molecular characterization and expression of CD2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Tang, Jufen; Lu, Yishan; Jian, JiChang; Wu, Zaohe; Nie, Pin

    2016-03-01

    The cluster of differentiation 2 (CD2), functioning as a cell adhesion and costimulatory molecule, plays a crucial role in T-cell activation. In this paper, the CD2 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD2) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed On-CD2 protein consists of two extracellular Ig-like domains, a transmembrane region, and a long proline-rich cytoplasmic tail, which is a hallmark of CD2, and several important structural characteristics required for T-cell activation were detected in the deduced amino acid sequence of On-CD2. In healthy tilapia, the On-CD2 transcripts were mainly detected in the head kidney, spleen, blood and thymus. Moreover, there was a clear time-dependent expression pattern of On-CD2 after immunized by formalin-inactivated S. agalactiae and the expression reached the highest level at 12 h in the brain and head kidney, 48 h in the spleen, and 72 h in the thymus, respectively. This is the first report on the expression of CD2 induced by bacteria vaccination in teleosts. These findings indicated that On-CD2 may play an important role in the immune response to intracellular bacteria in Nile tilapia. PMID:26804651

  19. Streptococcus agalactiae infective endocarditis complicated by large vegetations at aortic valve cusps along with intracoronary extension: An autopsy case report.

    PubMed

    Ro, Ayako

    2016-01-01

    Streptococcus agalactiae infective endocarditis is a rare condition with high mortality owing to complications of large vegetations and systemic emboli. A 49-year-old man was found dead in his house. He had a history of hepatic cirrhosis and had been diagnosed with type 2 diabetes 2years previously. He had presented with a high fever 10days before his death. An autopsy revealed 50mL of purulent pericardial effusion, and S. agalactiae was detected from the culture of this pericardial effusion. Two slender rope-like vegetations were present at the right aortic valve cusp and noncoronary aortic valve cusp. The vegetation at the right aortic valve cusp extended into the right coronary artery. The right coronary artery was broadly occluded by white rod-like material. The mitral valves were also affected, and the posterior papillary muscle was ruptured. Myocardial infarction was not observed. Systemic microscopic Gram-positive bacterial masses were observed in several organs. The death was attributed to acute myocardial ischemia caused by occlusive intracoronary extension of the vegetation at the proximal right coronary artery. PMID:26926519

  20. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance

    PubMed Central

    Khosa, Sakshi; Hoeppner, Astrid; Gohlke, Holger; Schmitt, Lutz; Smits, Sander H. J.

    2016-01-01

    Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding. PMID:26930060

  1. Overexpression, purification, crystallization and preliminary X-ray diffraction of the nisin resistance protein from Streptococcus agalactiae.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Kleinschrodt, Diana; Smits, Sander H J

    2015-06-01

    Nisin is a 34-amino-acid antimicrobial peptide produced by Lactococcus lactis belonging to the class of lantibiotics. Nisin displays a high bactericidal activity against various Gram-positive bacteria, including some human-pathogenic strains. However, there are some nisin-non-producing strains that are naturally resistant owing to the presence of the nsr gene within their genome. The encoded protein, NSR, cleaves off the last six amino acids of nisin, thereby reducing its bactericidal efficacy. An expression and purification protocol has been established for the NSR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method in hanging and sitting drops, resulting in crystals that diffracted X-rays to 2.8 and 2.2 Å, respectively. PMID:26057793

  2. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance.

    PubMed

    Khosa, Sakshi; Hoeppner, Astrid; Gohlke, Holger; Schmitt, Lutz; Smits, Sander H J

    2016-01-01

    Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding. PMID:26930060

  3. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran

    PubMed Central

    Ebrahimi, Azizollah; Moatamedi, Azar; Lotfalian, Sharareh; Mirshokraei, Pejhman

    2013-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT) positive milk samples were bacteriologically studied. A total of 31 (17.2%) S. agalactiae isolated. Twenty eight (90.3%) of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6%) isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases. PMID:25568683

  4. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran.

    PubMed

    Ebrahimi, Azizollah; Moatamedi, Azar; Lotfalian, Sharareh; Mirshokraei, Pejhman

    2013-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT) positive milk samples were bacteriologically studied. A total of 31 (17.2%) S. agalactiae isolated. Twenty eight (90.3%) of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6%) isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases. PMID:25568683

  5. Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae

    PubMed Central

    Iyer, Ramkumar; Camilli, Andrew

    2009-01-01

    Summary We characterized two sucrose-metabolizing systems – sus and scr – and describe their roles in the physiology and virulence of Streptococcus pneumoniae in murine models of carriage and pneumonia. The sus and scr systems are regulated by LacI family repressors SusR and ScrR respectively. SusR regulates an adjacent ABC transporter (susT1/susT2/susX) and sucrose-6-phosphate (S-6-P) hydrolase (susH). ScrR controls an adjacent PTS transporter (scrT), fructokinase (scrK) and second S-6-P hydrolase (scrH). sus and scr play niche-specific roles in virulence. The susH and sus locus mutants are attenuated in the lung, but dispensable in nasopharyngeal carriage. Conversely, the scrH and scr locus mutants, while dispensable in the lung, are attenuated for nasopharyngeal colonization. The scrH/susH double mutant is more attenuated than scrH in the nasopharynx, indicating SusH can substitute in this niche. Both systems are sucrose-inducible, with ScrH being the major in vitro hydrolase. The scrH/susH mutant does not grow on sucrose indicating that sus and scr are the only sucrose-metabolizing systems in S. pneumoniae. We propose a model describing hierarchical regulation of the scr and sus systems by the putative inducer, S-6-P. The transport and metabolism of sucrose or a related disaccharide thus contributes to S. pneumoniae colonization and disease. PMID:17880421

  6. Serotyping of Streptococcus pneumoniae Based on Capsular Genes Polymorphisms

    PubMed Central

    Raymond, Frédéric; Boucher, Nancy; Allary, Robin; Robitaille, Lynda; Lefebvre, Brigitte; Tremblay, Cécile

    2013-01-01

    Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. A novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Autolysin, pneumolysin and eight genes located in the capsular operon were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system to identify capsular serotypes. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. We show that typing only 12 polymorphisms located in the capsular operon allows the identification at the serotype level of 22 serotypes and the assignation of 24 other serotypes to a subgroup of serotypes. Overall, 126 samples (75.9%) were correctly serotyped, 14 were assigned to a member of the same serogroup, 8 rare serotypes were erroneously serotyped, and 18 gave negative serotyping results. Most of the discrepancies involved rare serotypes or serotypes that are difficult to discriminate using a DNA-based approach, for example 6A and 6B. The assay was also tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. Overall, 89% of specimens positive for pneumolysin were serotyped, demonstrating that this method does not require culture to serotype clinical specimens. The assay showed no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype

  7. Milk protein profiles in response to Streptococcus agalactiae subclinical mastitis in dairy cows.

    PubMed

    Pongthaisong, Pongphol; Katawatin, Suporn; Thamrongyoswittayakul, Chaiyapas; Roytrakul, Sittiruk

    2016-01-01

    The objective of this study was to investigate the milk protein profiles of normal milk and those of milk during the course of subclinical mastitis, caused by natural Streptococcus agalactiae infection. Two-dimensional gel electrophoresis and liquid chromatography mass spectrometry were used to assess protein profiles and to identify the proteins. The results showed that S. agalactiae subclinical mastitis altered the protein profiles of milk. Following Mascot database matching, 11 and 12 protein types were identified in the milk collected from healthy and S. agalactiae subclinical mastitic udders, respectively. The distinct presence of the antibacterial protein cathelicidin-1 was detected in infected milk samples, which in turn was highly correlated to the severity of subclinical mastitis as represented by the milk somatic cell count (r = 0.616), but not the bacterial count. The protein profile of milk reveals changes in the host response to S. agalactiae intramammary infection; cathelicidin-1 could therefore serve as a biomarker for the detection of subclinical mastitis in dairy cows. PMID:26632331

  8. Novel clones of Streptococcus pneumoniae causing invasive disease in Malaysia.

    PubMed

    Jefferies, Johanna M; Mohd Yusof, Mohd Yasim; Devi Sekaran, Shamala; Clarke, Stuart C

    2014-01-01

    Although Streptococcus pneumoniae is a leading cause of childhood disease in South East Asia, little has previously been reported regarding the epidemiology of invasive pneumococcal disease in Malaysia and very few studies have explored pneumococcal epidemiology using multilocus sequence typing (MLST). Here we describe serotype, multilocus sequence type (ST), and penicillin susceptibility of thirty pneumococcal invasive disease isolates received by the University of Malaya Medical Centre between February 2000 and January 2007 and relate this to the serotypes included in current pneumococcal conjugate vaccines. A high level of diversity was observed; fourteen serotypes and 26 sequence types (ST), (11 of which were not previously described) were detected from 30 isolates. Penicillin non-susceptible pneumococci accounted for 33% of isolates. The extent of molecular heterogeneity within carried and disease-causing Malaysian pneumococci remains unknown. Larger surveillance and epidemiological studies are now required in this region to provide robust evidence on which to base future vaccine policy. PMID:24941079

  9. Aromatic Esters of Bicyclic Amines as Antimicrobials against Streptococcus pneumoniae.

    PubMed

    de Gracia Retamosa, María; Díez-Martínez, Roberto; Maestro, Beatriz; García-Fernández, Esther; de Waal, Bas; Meijer, E W; García, Pedro; Sanz, Jesús M

    2015-11-01

    A double approach was followed in the search of novel inhibitors of the surface choline-binding proteins (CBPs) of Streptococcus pneumoniae (pneumococcus) with antimicrobial properties. First, a library of 49 rationally-designed esters of alkyl amines was screened for their specific binding to CBPs. The best binders, being esters of bicyclic amines (EBAs), were then tested for their in vitro effect on pneumococcal growth and morphology. Second, the efficiency of EBA-induced CBP inhibition was enhanced about 45,000-fold by multivalency effects upon synthesizing a poly(propylene imine) dendrimer containing eight copies of an atropine derivative. Both approaches led to compounds that arrest bacterial growth, dramatically decrease cell viability, and exhibit a protection effect in animal disease models, demonstrating that the pneumococcal CBPs are adequate targets for the discovery of novel antimicrobials that overcome the currently increasing antimicrobial resistance issues. PMID:26377931

  10. Altered lipid composition in Streptococcus pneumoniae cpoA mutants

    PubMed Central

    2014-01-01

    Background Penicillin-resistance in Streptococcus pneumoniae is mainly due to alterations in genes encoding the target enzymes for beta-lactams, the penicillin-binding proteins (PBPs). However, non-PBP genes are altered in beta-lactam-resistant laboratory mutants and confer decreased susceptibility to beta-lactam antibiotics. Two piperacillin resistant laboratory mutants of Streptococcus pneumoniae R6 contain mutations in the putative glycosyltransferase gene cpoA. The CpoA gene is part of an operon including another putative glycosyltransferase gene spr0982, both of which being homologous to glycolipid synthases present in other Gram-positive bacteria. Results We now show that the cpoA mutants as well as a cpoA deletion mutant are defective in the synthesis of galactosyl-glucosyl-diacylglycerol (GalGlcDAG) in vivo consistent with the in vitro function of CpoA as α-GalGlcDAG synthase as shown previously. In addition, the proportion of phosphatidylglycerol increased relative to cardiolipin in cpoA mutants. Moreover, cpoA mutants are more susceptible to acidic stress, have an increased requirement for Mg2+ at low pH, reveal a higher resistance to lysis inducing conditions and are hypersensitive to bacitracin. Conclusions The data show that deficiency of the major glycolipid GalGlcDAG causes a pleitotropic phenotype of cpoA mutant cells consistent with severe membrane alterations. We suggest that the cpoA mutations selected with piperacillin are directed against the lytic response induced by the beta-lactam antibiotic. PMID:24443834

  11. Streptococcus pneumoniae-associated pneumonia complicated by purulent pericarditis: case series *

    PubMed Central

    Cillóniz, Catia; Rangel, Ernesto; Barlascini, Cornelius; Piroddi, Ines Maria Grazia; Torres, Antoni; Nicolini, Antonello

    2015-01-01

    Abstract Objective: In the antibiotic era, purulent pericarditis is a rare entity. However, there are still reports of cases of the disease, which is associated with high mortality, and most such cases are attributed to delayed diagnosis. Approximately 40-50% of all cases of purulent pericarditis are caused by Gram-positive bacteria, Streptococcus pneumoniae in particular. Methods: We report four cases of pneumococcal pneumonia complicated by pericarditis, with different clinical features and levels of severity. Results: In three of the four cases, the main complication was cardiac tamponade. Microbiological screening (urinary antigen testing and pleural fluid culture) confirmed the diagnosis of severe pneumococcal pneumonia complicated by purulent pericarditis. Conclusions: In cases of pneumococcal pneumonia complicated by pericarditis, early diagnosis is of paramount importance to avoid severe hemodynamic compromise. The complications of acute pericarditis appear early in the clinical course of the infection. The most serious complications are cardiac tamponade and its consequences. Antibiotic therapy combined with pericardiocentesis drastically reduces the mortality associated with purulent pericarditis. PMID:26398760

  12. Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in northern Queensland, Australia.

    PubMed

    Bowater, R O; Forbes-Faulkner, J; Anderson, I G; Condon, K; Robinson, B; Kong, F; Gilbert, G L; Reynolds, A; Hyland, S; McPherson, G; Brien, J O'; Blyde, D

    2012-03-01

    Ninety-three giant Queensland grouper, Epinephelus lanceolatus (Bloch), were found dead in Queensland, Australia, from 2007 to 2011. Most dead fish occurred in northern Queensland, with a peak of mortalities in Cairns in June 2008. In 2009, sick wild fish including giant sea catfish, Arius thalassinus (Rüppell), and javelin grunter, Pomadasys kaakan (Cuvier), also occurred in Cairns. In 2009 and 2010, two disease epizootics involving wild stingrays occurred at Sea World marine aquarium. Necropsy, histopathology, bacteriology and PCR determined that the cause of deaths of 12 giant Queensland grouper, three wild fish, six estuary rays, Dasyatis fluviorum (Ogilby), one mangrove whipray, Himantura granulata (Macleay), and one eastern shovelnose ray, Aptychotrema rostrata (Shaw), was Streptococcus agalactiae septicaemia. Biochemical testing of 34 S. agalactiae isolates from giant Queensland grouper, wild fish and stingrays showed all had identical biochemical profiles. The 16S rRNA gene sequences of isolates confirmed all isolates were S. agalactiae; genotyping of selected S. agalactiae isolates showed the isolates from giant Queensland grouper were serotype Ib, whereas isolates from wild fish and stingrays closely resembled serotype II. This is the first report of S. agalactiae from wild giant Queensland grouper and other wild tropical fish and stingray species in Queensland, Australia. PMID:22324342

  13. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages.

    PubMed

    Romero, Patricia; Croucher, Nicholas J; Hiller, N Luisa; Hu, Fen Z; Ehrlich, Garth D; Bentley, Stephen D; García, Ernesto; Mitchell, Tim J

    2009-08-01

    Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them. PMID:19502408

  14. Conjugal mobilization of the mega element carrying mef(E) from Streptococcus salivarius to Streptococcus pneumoniae.

    PubMed

    Santagati, Maria; Lupo, Agnese; Scillato, Marina; Di Martino, Andrea; Stefani, Stefania

    2009-01-01

    We report the isolation and characterization of an unusual strain of Streptococcus salivarius, 3C30, displaying both the macrolide-lincosamide-streptogramin B and the tetracycline resistance phenotypes. It harbours the mef(E), erm(B), and tet(M) genes carried by different genetic elements. The genetic element carrying mef(E), named mega, was investigated by long PCR and sequencing, while the presence of the Tn3872-like element, carrying tet(M) and erm(B), was demonstrated by sequencing of both the int-xis-Tn and the fragment between the two resistance genes. In strain 3C30 the mega element is 5388 bp in size and its nucleotide sequence is identical to that of the element described previously in S. salivarius, with the exception of a 912 bp deletion at the left end. The composite Tn3872-like element appeared to be nonconjugative while the mega element was transferred by conjugation to Streptococcus pneumoniae. It was, however, impossible to transfer it again from these transconjugants to other strains. In addition, only in the 3C30 strain did mega form circular structures, as identified by real-time PCR. In conclusion, we found a clinical strain of S. salivarius carrying both mega and Tn3872-like genetic elements. Mega is transferable by conjugation to S. pneumoniae but it is not transferable again from the transconjugants, suggesting a possible mobilization by recombinases of the coresident Tn3872-like transposon. PMID:19025575

  15. Pharmacokinetics and Pharmacodynamics of Levofloxacin against Streptococcus pneumoniae and Staphylococcus aureus in Human Skin Blister Fluid

    PubMed Central

    Trampuz, Andrej; Wenk, Markus; Rajacic, Zarko; Zimmerli, Werner

    2000-01-01

    The pharmacokinetics of levofloxacin in serum and in skin blister fluid (SBF) was determined for 20 volunteers after a single 500-mg oral dose of levofloxacin. In addition, ex vivo bactericidal activity of SBF against Streptococcus pneumoniae and Staphylococcus aureus was studied. SBF containing levofloxacin and granulocytes killed 5.2 log of Streptococcus pneumoniae bacteria and 2.0 log of Staphylococcus aureus bacteria during a 6-h incubation. PMID:10770776

  16. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    SciTech Connect

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; Gutenkunst, Ryan N.; McAuley, Julie L.; McCullers, Jonathan A.; Perelson, Alan S.

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.

  17. AdcAII of Streptococcus pneumoniae Affects Pneumococcal Invasiveness

    PubMed Central

    Brown, Lindsey R.; Gunnell, Steven M.; Cassella, Adam N.; Keller, Lance E.; Scherkenbach, Lisa A.; Mann, Beth; Brown, Matthew W.; Hill, Rebecca; Fitzkee, Nicholas C.; Rosch, Jason W.; Tuomanen, Elaine I.; Thornton, Justin A.

    2016-01-01

    Across bacterial species, metal binding proteins can serve functions in pathogenesis in addition to regulating metal homeostasis. We have compared and contrasted the activities of zinc (Zn2+)-binding lipoproteins AdcA and AdcAII in the Streptococcus pneumoniae TIGR4 background. Exposure to Zn2+-limiting conditions resulted in delayed growth in a strain lacking AdcAII (ΔAdcAII) when compared to wild type bacteria or a mutant lacking AdcA (ΔAdcA). AdcAII failed to interact with the extracellular matrix protein laminin despite homology to laminin-binding proteins of related streptococci. Deletion of AdcA or AdcAII led to significantly increased invasion of A549 human lung epithelial cells and a trend toward increased invasion in vivo. Loss of AdcAII, but not AdcA, was shown to negatively impact early colonization of the nasopharynx. Our findings suggest that expression of AdcAII affects invasiveness of S. pneumoniae in response to available Zn2+ concentrations. PMID:26752283

  18. [Investigation of the antibacterial activity of faropenem against Streptococcus pneumoniae].

    PubMed

    Hanaki, H; Inaba, Y; Hiramatsu, K

    1999-09-01

    We evaluated the antibacterial activity of faropenem against penicillin-susceptible Streptococcus pneumoniae (PSSP) and penicillin-resistant S. pneumoniae (PRSP). It was shown that the minimum inhibitory concentrations against 90% of the clinically isolated strains (MIC90) of faropenem, penicillin G, cefaclor, cefcapene, and cefditoren against PSSP were 0.032, 0.063, 2, 0.25, and 0.125 micrograms/ml, respectively. While those against PRSP were 0.5, 2, > 128, 1, and 1 micrograms/ml, respectively. Furthermore, we evaluated the bactericidal activity, at the level of 1/4, 1, and 4 MIC, of faropenem and the above four reference antibacterial agents against PSSP and PRSP. Against PSSP No. 127, a sensitive strain to both penicillin G and cefcapene, faropenem showed almost the same bactericidal activity as those of reference agents. Against PSSP No. 108, a penicillin-susceptible and cephem-resistant strain, and PRSP No. 57, a resistant strain to both of penicillin and cephem, faropenem of 1 MIC showed bactericidal activity, but reference agents needed 4 MIC to show bactericidal activity. PMID:10746191

  19. Invasive Streptococcus pneumoniae infections of children in central Taiwan.

    PubMed

    Ma, J S; Chen, P Y; Chi, C S; Lin, J F; Lau, Y J

    2000-09-01

    We carried out a retrospective study on childhood invasive pneumococcal infections (IPI) diagnosed from the January 1990 through the April 2000 at a medical center in central Taiwan. Their clinical features, outcome of the patients and the resistance patterns of the isolates were analyzed. A total of 95 clinical isolates from 72 patients younger than 14 years of age were included in this study. Of these 72 patients, 51 had bacteremia, 28 meningitis, 14 bacteremic pneumonia, 12 pleural empyema, eight otitis media, four arthritis, three sinusitis, two periorbital abscesses, one deep neck infection, one psoas muscle abscess, one peritonitis, one urinary tract infection, and one cutaneous infection. Ancillary diagnostic tests, including Gram stain smears and latex agglutination tests, were applied and the sensitivities were 86.2% and 54.3%, respectively. The prevalence rate of penicillin nonsusceptible Streptococcus pneumoniae has increased dramatically since 1995 in central Taiwan, with rates of 5.6% and 74.1% before and after 1995, and the overall mortality rate was 20.8% and 53.3% respectively. Ten of 19 children (52.6%) with pneumococcal meningitis who survived had long-term sequelae. PMID:11045380

  20. Evaluation of microbial RNA extractions from Streptococcus pneumoniae.

    PubMed

    Li-Korotky, Ha-Sheng; Kelly, Lori A; Piltcher, Otavio; Hebda, Patricia A; Doyle, William J

    2007-02-01

    The mechanisms that control Streptococcus pneumoniae's ability to colonize the nasopharynx or to invade the middle ear and cause acute otitis media are not understood. Focused study of these mechanisms requires efficient methods for the extraction of microbial RNA from minute clinical samples. Several lysis/extraction methods were tested and compared to determine the optimal conditions for isolating intact total RNA from pneumococcal cells. The sensitivity and efficiency of the extractions were evaluated by reverse transcription polymerase chain reaction (RT-PCR). Compared to other methods, mechanical homogenization in TRIZOL was the most efficient for releasing microbial RNA, and addition of polyinosinic acid (Poly I) as an RNA carrier increased the assay sensitivity to 10(2) colony forming units when detected by RT-PCR amplification of 16S ribosomal RNA or messenger RNA for penicillin binding protein 2b. Quantitative results were confirmed using a ribonuclease protection assay. Penicillin binding protein 2b was also detected in rat middle ear mucosa recovered 5 weeks after middle ear challenge with S. pneumoniae. This study describes a useful core methodology for use in identifying pneumococcal virulence genes from small titer samples and has promising applications in clinical studies of pneumococcal nasopharyngeal colonization and otitis media pathogenesis. PMID:17095113

  1. Nonencapsulated Streptococcus pneumoniae as a cause of chronic adenoiditis

    PubMed Central

    Dixit, Cheshil; Keller, Lance E.; Bradshaw, Jessica L.; Robinson, D. Ashley; Swiatlo, Edwin; McDaniel, Larry S.

    2016-01-01

    Streptococcus pneumoniae is an important human pathogen. To cause disease, it must first colonize the nasopharynx. The widespread use of pneumococcal-conjugate vaccines which target the capsular polysaccharide has led to decreased nasopharyngeal carriage of vaccine serotypes, but a concomitant increase in carriage of non-vaccine serotypes and nonencapsulated S. pneumoniae (NESp). Some NESp express pneumococcal surface protein K (PspK), a virulence factor shown to contribute to nasopharyngeal colonization. We present the case of a child with chronic adenoiditis caused by a PspK+ NESp. We tested the pneumococcal isolate, designated C144.66, for antimicrobial resistance, the presence of the pspK gene and the expression of PspK. Sequence typing and genome sequencing were performed. C144.66 was found to be resistant to erythromycin and displayed intermediate resistance to penicillin and trimethoprim/sulfamethoxazole. C144.66 has the pspK gene in place of the capsule locus. Additionally, PspK expression was confirmed by flow cytometry. NESp are a growing concern as an emerging human pathogen, as current pneumococcal vaccines do not confer immunity against them. An inability to vaccinate against NESp may result in increased carriage and associated pathology. PMID:27144125

  2. Streptococcus pneumoniae: elusive mechanisms of the body's defense systems.

    PubMed

    Bondi, T; Canessa, C; Lippi, F; Iacopelli, J; Nieddu, F; Azzari, C

    2012-06-01

    Streptococcus pneumoniae is one of the most important human pathogens. It represents the most frequent cause of pneumonia, meningitis, sinusitis and otitis. After the PCV7 vaccine introduction, a serotypic switch was noticed. This phenomenon led to the replacement of the seven serotypes contained in the vaccine with other less common ones, some of which are invasive or characterised by antibiotic-resistance. This replacement is only partially due to the vaccination. Many causes have been suggested to explain this effect: apearance of new serotypes, diffusion of minority serotypes and replacement of common serotypes due to natural secular trend. Pneumococcus has a promiscuous "sex life", characterized by homologous recombinations within the same species and also between different species. This fact can unlock the secret of how these pathogens can develop antibiotic or vaccine-resistance. The serotypic switch involves big loci that are responsible for capsular polysaccharide synthesis. The most important region of the genome involved in this process is near the gene tetM. The same mechanisms are also responsible for antibiotic resistance. In recent years the growth of penicillin, macrolides and clindamycine resistance has been noticed. It is also important to underline that multidrug-resistant bacteria isolation has increased. In conclusion, to obtain more information about bacteria composition and evolution, antibiotic-resistance and vaccine response, it is fundamental to improve the epidemiological surveillance of pneumococcal infections using modern molecular diagnostic techinques. PMID:23240166

  3. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    DOE PAGESBeta

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; Gutenkunst, Ryan N.; McAuley, Julie L.; McCullers, Jonathan A.; Perelson, Alan S.

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determinedmore » that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.« less

  4. The post-vaccine microevolution of invasive Streptococcus pneumoniae.

    PubMed

    Cremers, Amelieke J H; Mobegi, Fredrick M; de Jonge, Marien I; van Hijum, Sacha A F T; Meis, Jacques F; Hermans, Peter W M; Ferwerda, Gerben; Bentley, Stephen D; Zomer, Aldert L

    2015-01-01

    The 7-valent pneumococcal conjugated vaccine (PCV7) has affected the genetic population of Streptococcus pneumoniae in pediatric carriage. Little is known however about pneumococcal population genomics in adult invasive pneumococcal disease (IPD) under vaccine pressure. We sequenced and serotyped 349 strains of S. pneumoniae isolated from IPD patients in Nijmegen between 2001 and 2011. Introduction of PCV7 in the Dutch National Immunization Program in 2006 preluded substantial alterations in the IPD population structure caused by serotype replacement. No evidence could be found for vaccine induced capsular switches. We observed that after a temporary bottleneck in gene diversity after the introduction of PCV7, the accessory gene pool re-expanded mainly by genes already circulating pre-PCV7. In the post-vaccine genomic population a number of genes changed frequency, certain genes became overrepresented in vaccine serotypes, while others shifted towards non-vaccine serotypes. Whether these dynamics in the invasive pneumococcal population have truly contributed to invasiveness and manifestations of disease remains to be further elucidated. We suggest the use of whole genome sequencing for surveillance of pneumococcal population dynamics that could give a prospect on the course of disease, facilitating effective prevention and management of IPD. PMID:26492862

  5. The post-vaccine microevolution of invasive Streptococcus pneumoniae

    PubMed Central

    Cremers, Amelieke J. H.; Mobegi, Fredrick M.; de Jonge, Marien I.; van Hijum, Sacha A. F. T.; Meis, Jacques F.; Hermans, Peter W. M.; Ferwerda, Gerben; Bentley, Stephen D.; Zomer, Aldert L.

    2015-01-01

    The 7-valent pneumococcal conjugated vaccine (PCV7) has affected the genetic population of Streptococcus pneumoniae in pediatric carriage. Little is known however about pneumococcal population genomics in adult invasive pneumococcal disease (IPD) under vaccine pressure. We sequenced and serotyped 349 strains of S. pneumoniae isolated from IPD patients in Nijmegen between 2001 and 2011. Introduction of PCV7 in the Dutch National Immunization Program in 2006 preluded substantial alterations in the IPD population structure caused by serotype replacement. No evidence could be found for vaccine induced capsular switches. We observed that after a temporary bottleneck in gene diversity after the introduction of PCV7, the accessory gene pool re-expanded mainly by genes already circulating pre-PCV7. In the post-vaccine genomic population a number of genes changed frequency, certain genes became overrepresented in vaccine serotypes, while others shifted towards non-vaccine serotypes. Whether these dynamics in the invasive pneumococcal population have truly contributed to invasiveness and manifestations of disease remains to be further elucidated. We suggest the use of whole genome sequencing for surveillance of pneumococcal population dynamics that could give a prospect on the course of disease, facilitating effective prevention and management of IPD. PMID:26492862

  6. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis.

    PubMed

    Keefe, Greg

    2012-07-01

    The primary method of spread for S agalactiae and S aureus is from cow to cow, so prevention focuses on within and between herd biosecurity to reduce or eliminate the reservoir of infection. S agalactiae is an obligate pathogen of the mammary gland, whereas S aureus is more widespread on other cow body sites and in the environment. Both organisms cause persistent infections, with S agalactiae typically causing higher SCC and bacteria counts in milk. Conventional methods of detection through culture perform well at the cow level. In bulk tanks, augmented procedures should be considered. PCR methods show promise of high sensitivity and specificity, at both the cow and bulk tank level. In developed dairy industries, prevalence of infection has decreased dramatically over the past 30 years for S agalactiae. For S aureus, the herd level of infection remains very high, although with rigorous, consistent application of control measures, within-herd prevalence has decreased. Because the milking time is the primary period for new IMI, it is the focal point of most prevention activities. Premilking and postmilking teat disinfection and proper stimulation and milk-out with adequately functioning equipment are key factors. There is growing evidence that the use of milking gloves is an integral part of contagious mastitis control and the production of high-quality milk. Treatment success is dramatically different between the 2 pathogens. For S agalactiae, eradication can be completed rapidly through a culture and treatment program with minimal culling. For S aureus, treatment success, particularly during lactation, is often disappointing and depends on cow, pathogen, and treatment factors. These factors should be reviewed prior to initiating any treatment to determine the potential for cure. Blanket dry cow therapy and strategic culling are important control procedures for contagious mastitis pathogens. Maintaining a closed herd or, at minimum, adhering to clearly defined

  7. In Vitro Destruction of Streptococcus pneumoniae Biofilms with Bacterial and Phage Peptidoglycan Hydrolases▿

    PubMed Central

    Domenech, Mirian; García, Ernesto; Moscoso, Miriam

    2011-01-01

    Host- and phage-coded cell wall hydrolases have been used to fight Streptococcus pneumoniae growing as planktonic cells in vitro as well as in animal models. Until now, however, the usefulness of these enzymes in biofilm-grown pneumococci has gone untested. The antipneumococcal activity of different cell wall hydrolases produced by S. pneumoniae and a number of its phages was examined in an in vitro biofilm model. The major pneumococcal autolysin LytA, an N-acetylmuramoyl-l-alanine amidase, showed the greatest efficiency in disintegrating S. pneumoniae biofilms. The phage-encoded lysozymes Cpl-1 and Cpl-7 were also very efficient. Biofilms formed by the close pneumococcal relatives Streptococcus pseudopneumoniae and Streptococcus oralis were also destroyed by the phage endolysins but not by the S. pneumoniae autolysin LytA. A cooperative effect of LytA and Cpl-1 in the disintegration of S. pneumoniae biofilms was recorded. PMID:21746941

  8. Combined effects of lactoferrin and lysozyme on Streptococcus pneumoniae killing.

    PubMed

    André, G O; Politano, W R; Mirza, S; Converso, T R; Ferraz, L F C; Leite, L C C; Darrieux, M

    2015-12-01

    Streptococcus pneumoniae is a common colonizer of the human nasopharynx, which can occasionally spread to sterile sites, causing diseases such as otitis media, sinusitis, pneumonia, meningitis and bacteremia. Human apolactoferrin (ALF) and lysozyme (LZ) are two important components of the mucosal innate immune system, exhibiting lytic effects against a wide range of microorganisms. Since they are found in similar niches of the host, it has been proposed that ALF and LZ could act synergistically in controlling bacterial spread throughout the mucosa. The combination of ALF and LZ has been shown to enhance killing of different pathogens in vitro, with ALF facilitating the latter action of LZ. The aim of the present work was to investigate the combined effects of ALF and LZ on S pneumoniae. Concomitant addition of ALF and LZ had a synergistic killing effect on one of the pneumococci tested. Furthermore, the combination of ALF and ALZ was more bactericidal than lysozyme alone in all pneumococcal strains. Pneumococcal surface protein A (PspA), an important vaccine candidate, partially protects pneumococci from ALF mediated killing, while antibodies against one PspA enhance killing of the homologous strain by ALF. However, the serological variability of this molecule could limit the effect of anti-PspA antibodies on different pneumococci. Therefore, we investigated the ability of anti-PspA antibodies to increase ALF-mediated killing of strains that express different PspAs, and found that antisera to the N-terminal region of PspA were able to increase pneumococcal lysis by ALF, independently of the sequence similarities between the molecule expressed on the bacterial surface and that used to produce the antibodies. LF binding to the pneumococcal surface was confirmed by flow cytometry, and found to be inhibited in presence of anti-PspA antibodies. On a whole, the results suggest a contribution of ALF and LZ to pneumococcal clearance, and confirm PspA's ability to interact

  9. An occurrence of equine transport pneumonia caused by mixed infection with Pasteurella caballi, Streptococcus suis and Streptococcus zooepidemicus.

    PubMed

    Hayakawa, Y; Komae, H; Ide, H; Nakagawa, H; Yoshida, Y; Kamada, M; Kataoka, Y; Nakazawa, M

    1993-06-01

    An acute death occurred in a racehorse with pneumonia after long-distance transportation in December, 1990. Pasteurella caballi, Streptococcus suis and Streptococcus zooepidemicus were isolated from the lung at high rate. Specific antigens of these bacteria were also demonstrated immunohistologically in the pneumonic lesion. These findings indicated that the disease is equine transport pneumonia caused by a mixed infection of the three bacterial species. This is the first report on the isolation of P. caballi and S. suis from a racehorse in Japan. PMID:8357920

  10. Diversity of Prophage DNA Regions of Streptococcus agalactiae Clonal Lineages from Adults and Neonates with Invasive Infectious Disease

    PubMed Central

    Salloum, Mazen; van der Mee-Marquet, Nathalie; Valentin-Domelier, Anne-Sophie; Quentin, Roland

    2011-01-01

    The phylogenetic position and prophage DNA content of the genomes of 142 S. agalactiae (group-B streptococcus, GBS) isolates responsible for bacteremia and meningitis in adults and neonates were studied and compared. The distribution of the invasive isolates between the various serotypes, sequence types (STs) and clonal complexes (CCs) differed significantly between adult and neonatal isolates. Use of the neighbor-net algorithm with the PHI test revealed evidence for recombination in the population studied (PHI, P = 2.01×10−6), and the recombination-mutation ratio (R/M) was 6∶7. Nevertheless, the estimated R/M ratio differed between CCs. Analysis of the prophage DNA regions of the genomes of the isolates assigned 90% of the isolates to five major prophage DNA groups: A to E. The mean number of prophage DNA fragments amplified per isolate varied from 2.6 for the isolates of prophage DNA group E to 4.0 for the isolates of prophage DNA group C. The isolates from adults and neonates with invasive diseases were distributed differently between the various prophage DNA groups (P<0.00001). Group C prophage DNA fragments were found in 52% of adult invasive isolates, whereas 74% of neonatal invasive isolates had prophage DNA fragments of groups A and B. Differences in prophage DNA content were also found between serotypes, STs and CCs (P<0.00001). All the ST-1 and CC1 isolates, mostly of serotype V, belonged to the prophage DNA group C, whereas 84% of the ST-17 and CC17 isolates, all of serotype III, belonged to prophage DNA groups A and B. These data indicate that the transduction mechanisms, i.e., gene transfer from one bacterium to another by a bacteriophage, underlying genetic recombination in S. agalactiae species, are specific to each intraspecies lineage and population of strains responsible for invasive diseases in adults and neonates. PMID:21633509

  11. Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316

    PubMed Central

    Morello, Eric; Mallet, Adeline; Konto-Ghiorghi, Yoan; Chaze, Thibault; Mistou, Michel-Yves; Oliva, Giulia; Oliveira, Liliana; Di Guilmi, Anne-Marie; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2015-01-01

    Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host. PMID:26407005

  12. Characterization of a Multipeptide Lantibiotic Locus in Streptococcus pneumoniae

    PubMed Central

    Maricic, Natalie; Anderson, Erica S.; Opipari, AnneMarie E.; Yu, Emily A.

    2016-01-01

    ABSTRACT Bacterial communities are established through a combination of cooperative and antagonistic interactions between the inhabitants. Competitive interactions often involve the production of antimicrobial substances, including bacteriocins, which are small antimicrobial peptides that target other community members. Despite the nearly ubiquitous presence of bacteriocin-encoding loci, inhibitory activity has been attributed to only a small fraction of gene clusters. In this study, we characterized a novel locus (the pld locus) in the pathogen Streptococcus pneumoniae that drives the production of a bacteriocin called pneumolancidin, which has broad antimicrobial activity. The locus encodes an unusual tandem array of four inhibitory peptides, three of which are absolutely required for antibacterial activity. The three peptide sequences are similar but appear to play distinct roles in regulation and inhibition. A modification enzyme typically found in loci encoding a class of highly modified bacteriocins called lantibiotics was required for inhibitory activity. The production of pneumolancidin is controlled by a two-component regulatory system that is activated by the accumulation of modified peptides. The locus is located on a mobile element that has been found in many pneumococcal lineages, although not all elements carry the pld genes. Intriguingly, a minimal region containing only the genes required for pneumolancidin immunity was found in several Streptococcus mitis strains. The pneumolancidin-producing strain can inhibit nearly all pneumococci tested to date and provided a competitive advantage in vivo. These peptides not only represent a unique strategy for bacterial competition but also are an important resource to guide the development of new antimicrobials. PMID:26814178

  13. Drug resistance profile and serotype of streptococcus of pneumoniae infected pediatric patients.

    PubMed

    Wang, Jiefei; Huang, Nannan; Wang, Guangzhou; Yu, Fengqin

    2016-07-01

    To investigate the surveillance of drug resistance and serotype monitoring of steptococcus pneumoniae in hospitalized children. the pathogenic bacteria isolation and identification methods were employed to do the bacteria isolation identification and drug sensitive test on the specimens from Women & Infants Hospital of Zhengzhou. From the specimens, there were 134 detected strains of Streptococcus pneumoniae, and the drug resistance to erythromycin and clindamycin were respectively 97.7% and 89.9%, and the drug resistance to tetracycline, azithromycin and paediatric compound sulfamethoxazole were respectively 86. 3%, 58. 3%, 51. 2%. The vancomycin resistant Streptococcus pneumoniae were often not found. the Streptococcus pneumoniae in children were generally with drug resistant in Zhengzhou area. It shall strengthen drug resistance surveillance, and reasonably choose antibacterial agents. PMID:27592480

  14. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    PubMed Central

    Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  15. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease.

    PubMed

    Chao, Yashuan; Marks, Laura R; Pettigrew, Melinda M; Hakansson, Anders P

    2014-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  16. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    SciTech Connect

    Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi; Rubens, Craig E.; Goldman, Adrian

    2006-09-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.

  17. Germicidal activity of a chlorous acid-chlorine dioxide teat dip and a sodium chlorite teat dip during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Adkinson, R W

    1998-08-01

    Three postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae in two separate studies using experimental challenge procedures that were recommended by the National Mastitis Council. The first study evaluated a barrier teat dip product containing chlorous acid-chlorine dioxide as the germicidal agent, and the second study evaluated a sodium chlorite product with a barrier component as well as a sodium chlorite product without a barrier component. The chlorous acid-chlorine dioxide teat dip reduced new intramammary infections (IMI) caused by Staph. aureus by 91.5% and reduced new IMI caused by Strep. agalactiae by 71.7%. The barrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus and Strep. agalactiae by 41.0 and 0%, respectively. The nonbarrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus by 65.6% and reduced new IMI caused by Strep. agalactiae by 39.1%. Teat skin and teat end conditions were evaluated before and after the second study; no deleterious effects among dipped quarters compared with control quarters were noted for the two sodium chlorite products. PMID:9749396

  18. Molecular and functional characterization of peptidoglycan-recognition protein SC2 (PGRP-SC2) from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae.

    PubMed

    Gan, Zhen; Chen, Shannan; Hou, Jing; Huo, Huijun; Zhang, Xiaolin; Ruan, Baiye; Laghari, Zubair Ahmed; Li, Li; Lu, Yishan; Nie, Pin

    2016-07-01

    PGRP-SC2, the member of PGRP family, plays an important role in regulation of innate immune response. In this paper, a PGRP-SC2 gene of Nile tilapia, Oreochromis niloticus (designated as On-PGRP-SC2) was cloned and its expression pattern under the infection of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for amidase activity were detected in the deduced amino acid sequence of On-PGRP-SC2. In healthy tilapia, the On-PGRP-SC2 transcripts could be detected in all the examined tissues, with the most abundant expression in the muscle. When infected with S. agalactiae, there was a clear time-dependent expression pattern of On-PGRP-SC2 in the spleen, head kidney and brain. The assays for the amidase activity suggested that recombinant On-PGRP-SC2 protein had a Zn(2+)-dependent PGN-degrading activity. Moreover, our works showed that recombinant On-PGRP-SC2 protein could significantly reduce bacterial load in target organs attacked by S. agalactiae. These findings indicated that On-PGRP-SC2 may play important roles in the immune response to S. agalactiae in Nile tilapia. PMID:27033804

  19. Surface Association of Pht Proteins of Streptococcus pneumoniae

    PubMed Central

    Plumptre, Charles D.; Ogunniyi, Abiodun D.

    2013-01-01

    Streptococcus pneumoniae is a major human pathogen responsible for massive global morbidity and mortality. The pneumococcus attaches a variety of proteins to its cell surface, many of which contribute to virulence; one such family are the polyhistidine triad (Pht) proteins PhtA, PhtB, PhtD, and PhtE. In this study, we have examined the mechanism of Pht surface attachment using PhtD as a model. Analysis of deletion and point mutants identified a three-amino-acid region of PhtD (Q27-H28-R29) that is critical for the process. The analogous region in PhtE was also necessary for its attachment to the cell surface. Furthermore, we show that a large proportion of the total amount of each Pht protein is released into bacterial culture supernatants. Other surface proteins were also released, albeit to lesser extents, and this was not due to pneumococcal autolysis. The extent of release of surface proteins was strain dependent and was not affected by the capsule. Lastly, we compared the fitness of wild-type and ΔphtABDE pneumococci in vivo in a mouse coinfection model. Release of Pht proteins by the wild type did not complement the mutant strain, consistent with surface-attached rather than soluble forms of the Pht proteins playing the major role in virulence. The significant degree of release of Pht proteins from intact bacteria may have implications for the use of these proteins in novel vaccines. PMID:23876799

  20. A new structural paradigm in copper resistance in Streptococcus pneumoniae

    PubMed Central

    Fu, Yue; Tsui, Ho-Ching Tiffany; Bruce, Kevin E.; Sham, Lok-To; Higgins, Khadine A.; Lisher, John P.; Kazmierczak, Krystyna M.; Maroney, Michael J.; Dann, Charles E.; Winkler, Malcolm E.; Giedroc, David P.

    2012-01-01

    Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA, and CopA, a copper effluxing P1B-type ATPase. We show here that CupA is a novel cell membrane-anchored Cu(I) chaperone, and that a Cu(I)-binding competent, membrane-localized CupA is obligatory for copper resistance. The crystal structures of the soluble domain of CupA (sCupA) and the N-terminal metal binding domain (MBD) of CopA (CopAMBD) reveal isostructural cupredoxin-like folds each harboring a binuclear Cu(I) cluster unprecedented in bacterial copper trafficking. NMR studies reveal unidirectional Cu(I) transfer from the low-affinity site on sCupA to the high-affinity site of CopAMBD. However, copper binding by CopAMBD is not essential for cellular copper resistance, consistent with a primary role of CupA in cytoplasmic Cu(I) sequestration and/or direct delivery to the transmembrane site of CopA for cellular efflux. PMID:23354287

  1. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis

    PubMed Central

    Grandgirard, Denis; Valente, Luca G.; Täuber, Martin G.; Leib, Stephen L.

    2016-01-01

    Streptococcus pneumoniae bacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement. PMID:27009189

  2. Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase

    PubMed Central

    Li, Songlin; Kelly, Stephen J.; Lamani, Ejvis; Ferraroni, Marta; Jedrzejas, Mark J.

    2000-01-01

    Streptococcus pneumoniae hyaluronate lyase (spnHL) is a pathogenic bacterial spreading factor and cleaves hyaluronan, an important constituent of the extra– cellular matrix of connective tissues, through an enzymatic β–elimination process, different from the hyaluronan degradation by hydrolases in animals. The mechanism of hyaluronan binding and degradation was proposed based on the 1.56 Å resolution crystal structure, substrate modeling and mutagenesis studies on spnHL. Five mutants, R243V, N349A, H399A, Y408F and N580G, were constructed and their activities confirmed our mechanism hypothesis. The important roles of Tyr408, Asn349 and His399 in enzyme catalysis were proposed, explained and confirmed by mutant studies. The remaining weak enzymatic activity of the H399A mutant, the role of the free carboxylate group on the glucuronate residue, the enzymatic behavior on chondroitin and chondroitin sulfate, and the small activity increase in the N580G mutant were explained based on this mechanism. A possible function of the C–terminal β–sheet domain is to modulate enzyme activity through binding to calcium ions. PMID:10716923

  3. Reduction of mastitis caused by experimental challenge with Staphylococcus aureus and Streptococcus agalactiae by use of a quaternary ammonium and halogen-mixture teat dip.

    PubMed

    Boddie, R L; Nickerson, S C

    2002-01-01

    A teat-dip formulation containing sodium dichloro isocyanuric acid, bronopol, and quaternary ammonium was tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae intramammary infections (IMI) using an experimental challenge model. Sixty-two Jersey cows from the Hill Farm Research Station (Homer, LA) were used in an 8-wk controlled infection trial to evaluate the teat dip. During the afternoon milking, Monday through Friday for 8 wk, all teats of each cow were immersed to a depth of approximately 25 mm in a challenge suspension containing approximately 5 x 10(7) cfu of Staphylococcus aureus and approximately 5 x 10(7) cfu of Streptococcus agalactiae immediately after milking machines were removed. Immediately after challenge, the distal 25 mm of two contralateral teats were dipped with the experimental teat dip; the remaining two teats served as undipped controls. The experimental teat dip reduced the number of new Staph. aureus IMI by 70.9% and reduced the number of new Strep. agalactiae IMI by 60.0%. Teat end and teat skin condition were characterized as normal and without irritation at the completion of the study. The combination of the three germicides in this experimental teat dip is unique and an effective formulation without adverse effects on condition of teat ends or teat skin. PMID:11860119

  4. Structure of Streptococcus agalactiae tip pilin GBS104: a model for GBS pili assembly and host interactions

    PubMed Central

    Krishnan, Vengadesan; Dwivedi, Prabhat; Kim, Brandon J.; Samal, Alexandra; Macon, Kevin; Ma, Xin; Mishra, Arunima; Doran, Kelly S.; Ton-That, Hung; Narayana, Sthanam V. L.

    2013-01-01

    The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. In addition, a homology model of the remaining two domains of GBS104 was built and a model of full-length GBS104 was generated by combining the homology model (the N1 and N4 domains) and the crystal structure of the 75 kDa fragment (the N2 and N3 domains). This rod-shaped GBS104 model is constructed of three IgG-like domains (the N1, N2 and N4 domains) and one vWFA-like domain (the N3 domain). The N1 and N2 domains of GBS104 are assembled with distinct and remote segments contributed by the N- and C-termini. The metal-binding site in the N3 domain of GBS104 is in the closed/low-affinity conformation. Interestingly, this domain hosts two long arms that project away from the metal-binding site. Using site-directed mutagenesis, two cysteine residues that lock the N3 domain of GBS104 into the open/high-affinity conformation were introduced. Both wild-type and disulfide-locked recombinant proteins were tested for binding to extracellular matrix proteins such as collagen, fibronectin, fibrinogen and laminin, and an increase in fibronectin binding affinity was identified for the disulfide-locked N3 domain, suggesting that induced conformational changes may play a possible role in receptor binding. PMID:23695252

  5. Molecular Characterization of Streptococcus agalactiae Isolates From Pregnant and Non-Pregnant Women at Yazd University Hospital, Iran

    PubMed Central

    Sadeh, Maryam; Firouzi, Roya; Derakhshandeh, Abdollah; Bagher Khalili, Mohammad; Kong, Fanrong; Kudinha, Timothy

    2016-01-01

    Background: Streptococcus agalactiae (Group B streptococcus, GBS) that colonize the vaginas of pregnant women may occasionally cause neonatal infections. It is one of the most common causes of sepsis and meningitis in neonates and of invasive diseases in pregnant women. It can also cause infectious disease among immunocompromised individuals. The distribution of capsular serotypes and genotypes varies over time and by geographic era. The serotyping and genotyping data of GBS in Iranian pregnant and non-pregnant women seems very limited. Objectives: The aim of this study was to investigate the GBS ‎molecular capsular serotype ‎and genotype distribution of pregnant and non-pregnant carrier ‎women at Yazd university hospital, in Iran.‎ Patients and Methods: In this cross-sectional study, a total of 100 GBS strains isolated from 237 pregnant and 413 non-pregnant women were investigated for molecular capsular serotypes and surface protein genes using the multiplex PCR assay. The Chi-square method was used for statistical analysis. Results: Out of 650 samples, 100 (15.4%) were identified as GBS, with a predominance of capsular serotypes III (50%) [III-1 (49), III-3 (1)], followed by II (25%), Ia (12%), V (11%), and Ib (2%), which was similar with another study conducted in Tehran, Iran, but they had no serotype Ia in their report. The surface protein antigen genes distribution was rib (53%), epsilon (38%), alp2/3 (6%), and alpha-c (3%). Conclusions: The determination of serotype and surface proteins of GBS strains distribution would ‎be ‎relevant ‎for the future possible formulation of a GBS vaccine. PMID:27127592

  6. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus

    PubMed Central

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-01-01

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain’s cDNA is composed of 3347 bp with a 31 bp of 5′-UTR, 3015 bp open reading frame (ORF) and 301 bp 3′-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia. PMID:27005611

  7. Structure of KRT4 binding domain of Srr-1 from Streptococcus agalactiae reveals a novel β-sheet complementation.

    PubMed

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2015-04-01

    The serine rich repeat protein-1 (Srr-1) is an adhesive protein of Streptococcus agalactiae. It is the first bacterial protein identified to interact with human keratin 4 (K4 or KRT4). Within Srr-1, the residues 311-641 constitute the non-repeat ligand binding region (Srr-1-BR(311-641)). The C-terminal part of Srr-1-BR(311-641), comprising of residues 485-642 (termed Srr-1-K4BD), have been identified to bind to K4. Here we report the crystal structure of recombinant Srr-1-K4BD(485-642) and its possible mode of interaction with K4 through docking studies. The dimeric structure of Srr-1-K4BD(485-642) reveals a novel two way "slide lock" parallel β-sheet complementation where the C-terminal strand of one monomer is positioned anti-parallel to the N-terminal strand of the adjacent monomer and this arrangement is not seen so far in any of the homologous structures. The dimerization of Srr-1-K4BD(485-642) observed both in the crystal structure and in solution suggests that similar domain association could also be possible in in vivo and we propose this association would likely generate a new binding site for another host molecule. It is likely that the adhesin can recognize multiple ligands using its ligand binding sub-domains through their intra and inter domain association with one another. PMID:25603146

  8. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus.

    PubMed

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-01-01

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain's cDNA is composed of 3347 bp with a 31 bp of 5'-UTR, 3015 bp open reading frame (ORF) and 301 bp 3'-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia. PMID:27005611

  9. Detection and Enumeration of Streptococcus agalactiae from Bovine Milk Samples by Real-Time Polymerase Chain Reaction.

    PubMed

    de Carvalho, Nara Ladeira; Gonçalves, Juliano Leonel; Botaro, Bruno Garcia; Silva, Luis Felipe de Prada E; dos Santos, Marcos Veiga

    2015-09-01

    The aim of this study was to evaluate the use of real-time polymerase chain reaction (qPCR) combined with DNA extraction directly from composite milk and bulk tank samples for detection and enumeration of Streptococcus agalactiae (SAG) causing subclinical mastitis. Dilutions of sterile reconstituted skim milk inoculated with SAG ATCC 13813 were used to establish a standard curve (cfu/mL) for the qPCR assay targeting SAG. The analytical sensitivity and repeatability of the qPCR assay were determined. Bulk tank (BTM; n = 38) and composite milk samples (CM; n = 26) collected from lactating cows with positive isolation of SAG were submitted to the qPCR protocol and SAG plate counting, with results from both methods compared. Amplification of DNA was not possible in two out of 64 samples, indicating that qPCR was able to detect SAG in 96 and 97% of BTM and CM samples, respectively. The inter-assay coefficient of variation was <5%, showing that the technique had adequate repeatability. The qPCR protocol can be a high-throughput and rapid diagnostic assay to accurately detect SAG from BTM and CM samples compared with conventional microbiological culture method. However, the evaluated qPCR protocol is not accurate for enumerating SAG in milk samples, probably due to quantification of DNA of non-viable cells. PMID:26134534

  10. A commercial rapid optical immunoassay detects Streptococcus agalactiae from aquatic cultures and clinical specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The BioStar STREPT B Optical ImmunoAssay (OIA) (BioStar® OIA® Strep B Assay Kit; Biostar Incorporation; Louisville, CO, USA) was used to identify 32 known group B streptococcus (GBS) isolates of fish, dolphin, bovine, and human origin. Thirteen non-GBS isolates from fish and other animals were test...

  11. Capsular Typing Method for Streptococcus agalactiae Using Whole-Genome Sequence Data

    PubMed Central

    Vaughan, Alison; Jones, Nicola; Turner, Paul; Turner, Claudia; Efstratiou, Androulla; Patel, Darshana; Walker, A. Sarah; Berkley, James A.; Crook, Derrick W.

    2016-01-01

    Group B streptococcus (GBS) capsular serotypes are major determinants of virulence and affect potential vaccine coverage. Here we report a whole-genome-sequencing-based method for GBS serotype assignment. This method shows strong agreement (kappa of 0.92) with conventional methods and increased serotype assignment (100%) to all 10 capsular types. PMID:26962081

  12. Draft Genome Sequences of Streptococcus agalactiae Serotype Ia and III Isolates from Tilapia Farms in Thailand.

    PubMed

    Areechon, Nontawith; Kannika, Korntip; Hirono, Ikuo; Kondo, Hidehiro; Unajak, Sasimanas

    2016-01-01

    Streptococcus agalactiaeserotypes Ia and III were isolated from infected tilapia in cage and pond culture farms in Thailand during 2012 to 2014, in which pathogenicity analysis demonstrated that serotype III showed higher virulence than serotype Ia. Here, we report the draft genome sequencing of piscineS. agalactiaeserotypes Ia and III. PMID:27013037

  13. Capsular Typing Method for Streptococcus agalactiae Using Whole-Genome Sequence Data.

    PubMed

    Sheppard, Anna E; Vaughan, Alison; Jones, Nicola; Turner, Paul; Turner, Claudia; Efstratiou, Androulla; Patel, Darshana; Walker, A Sarah; Berkley, James A; Crook, Derrick W; Seale, Anna C

    2016-05-01

    Group B streptococcus (GBS) capsular serotypes are major determinants of virulence and affect potential vaccine coverage. Here we report a whole-genome-sequencing-based method for GBS serotype assignment. This method shows strong agreement (kappa of 0.92) with conventional methods and increased serotype assignment (100%) to all 10 capsular types. PMID:26962081

  14. Representation of Streptococcus Pneumoniae in Outpatient Population of Sarajevo Canton

    PubMed Central

    Aljicevic, Mufida; Karcic, Emina; Bektas, Sabaheta; Karcic, Bekir

    2015-01-01

    Introduction: Streptococcus pneumoniae in asymptomatic manner colonize the mucous membranes of the nasopharynx of children and adults, but can cause serious illness in the media which are naturally sterile. In 5-40% of healthy population this bacteria colonize the nasopharyngeal mucosa thanks to the surface adhesin protein, which allow the bacteria to attach to the epithelial cells. The normal nasopharyngeal microflora retains pneumococcus in a small number and does not allow it to express its pathogenic potential and cause disease. If this dominance of the normal microflora is violated, after adherence and local duplication, pneumococcus can spread to the middle ear, sinuses or lungs. Colonization is more common in children than in adults. Goal: The goal of this study was to determine the prevalence of the carrier state and susceptibility of pneumococcal strains that circulate in the outpatient population of Sarajevo Canton as a potential source of infection. Material and methods: In the microbiological laboratory of the Institute of Public Health of Canton Sarajevo in the period from July 1, 2013 until April 15, 2014 were analyzed swabs of the nose and nasopharynx, eye and ear from a total of 4109 outpatients. Swabs were inoculated on blood agar nutrient medium. Then was performed catalase test, preparation by Gram and susceptibility test on Optochin. Isolates positive for S. pneumoniae were subjected to in vitro assays to investigate the antimicrobial susceptibility/resistance. Results: Out of 4109 analyzed swabs the pneumococcus positive was 180 (4.38%). Of these, 137 (76.11%) nasal and nasopharyngeal swabs, 33 (18.33%) of the eyes and 10 (5.56%) ear. The highest number of positive swabs were isolated in children aged 6 years and less, a total of 168 (93.33%), in children aged 7-13 years were positive 7 (3.89%), while among respondents aged 14-20 years only 5 (2.78%). Conclusions: The most common site for isolation of pneumococci is the nose and throat, and the

  15. Stability and assembly of pilus subunits of Streptococcus pneumoniae.

    PubMed

    El Mortaji, Lamya; Terrasse, Remi; Dessen, Andrea; Vernet, Thierry; Di Guilmi, Anne Marie

    2010-04-16

    Pili are surface-exposed virulence factors involved in bacterial adhesion to host cells. The Streptococcus pneumoniae pilus is composed of three structural proteins, RrgA, RrgB, and RrgC and three transpeptidase enzymes, sortases SrtC-1, SrtC-2, and SrtC-3. To gain insights into the mechanism of pilus formation we have exploited biochemical approaches using recombinant proteins expressed in Escherichia coli. Using site-directed mutagenesis, mass spectrometry, limited proteolysis, and thermal stability measurements, we have identified isopeptide bonds in RrgB and RrgC and demonstrate their role in protein stabilization. Co-expression in E. coli of RrgB together with RrgC and SrtC-1 leads to the formation of a covalent RrgB-RrgC complex. Inactivation of SrtC-1 by mutation of the active site cysteine impairs RrgB-RrgC complex formation, indicating that the association between RrgB and RrgC is specifically catalyzed by SrtC-1. Mass spectrometry analyses performed on purified samples of the RrgB-RrgC complex show that the complex has 1:1 stoichiometry. The deletion of the IPQTG RrgB sorting signal, but not the corresponding sequence in RrgC, abolishes complex formation, indicating that SrtC-1 recognizes exclusively the sorting motif of RrgB. Finally, we show that the intramolecular bonds that stabilize RrgB may play a role in its efficient recognition by SrtC-1. The development of a methodology to generate covalent pilin complexes in vitro, facilitating the study of sortase specificity and the importance of isopeptide bond formation for pilus biogenesis, provide key information toward the understanding of this complex macromolecular process. PMID:20147289

  16. Pherotype Influences Biofilm Growth and Recombination in Streptococcus pneumoniae

    PubMed Central

    Carrolo, Margarida; Pinto, Francisco Rodrigues; Melo-Cristino, José; Ramirez, Mário

    2014-01-01

    In Streptococcus pneumoniae the competence-stimulating peptide (CSP), encoded by the comC gene, controls competence development and influences biofilm growth. We explored the influence of pherotype, defined by the two major comC allelic variants (comC1 and comC2), on biofilm development and recombination efficiency. Among isolates recovered from human infections those presenting comC1 show a higher capacity to form in vitro biofilms. The influence of pherotype on biofilm growth was confirmed by experiments with isogenic strains differing in their comC alleles. Biofilm architecture evaluated by confocal laser scanning microscopy showed that strains carrying comC1 form biofilms that are denser and thicker than those carrying the comC2 allele. Isogenic strains carrying the comC1 allele yielded more transformants than those carrying the comC2 allele in both planktonic and biofilm growth. Transformation assays with comC knockout strains show that ComD1 needs lower doses of the signaling peptide to reach the same biological outcomes. In contrast to mixed planktonic growth, within mixed biofilms inter-pherotype genetic exchange is less frequent than that occurring between bacteria of the same pherotype. Since biofilms are a major bacterial lifestyle, these observations may explain the genetic differentiation between populations with different pherotypes reported previously. Considering that biofilms have been associated with colonization our results suggest that strains carrying the comC1 allele may be more transmissible and more efficient at persisting in carriage. Both effects may help explain the higher prevalence of the comC1 allele in the pneumococcal population. PMID:24646937

  17. RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis

    PubMed Central

    Gaudu, Philippe; Fleuchot, Betty; Besset, Colette; Rosinski-Chupin, Isabelle; Guillot, Alain; Monnet, Véronique; Gardan, Rozenn

    2015-01-01

    ABSTRACT  Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. Importance  Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we

  18. Streptococcus agalactiae Meningitis in Adult Patient: A Case Report and Literature Review.

    PubMed

    Khan, Fahmi Yousef

    2016-01-01

    We report a case of group B streptococcus meningitis in a 72-year-old female patient who was admitted in our hospital with a 21-day history of bilateral lower thigh pain and swelling associated with fever, headache, and vomiting. Her past medical history was remarkable for DM type 2, hypertension, and hypothyroidism. Upon admission, examination showed bilateral warmth and tender soft tissue swelling around the knees and MRI showed cellulitis of distal thirds of both thighs. The next day, the patient became drowsy. Neurologic examination showed neck rigidity and right sided hemiparesis. Cerebrospinal fluid and blood cultures yielded group B streptococcus sensitive to ceftriaxone, penicillin G, and vancomycin. The patient received ceftriaxone for a total of 14 days after which she improved and was discharged from the hospital with right sided weakness. PMID:26904325

  19. Streptococcus agalactiae Meningitis in Adult Patient: A Case Report and Literature Review

    PubMed Central

    Khan, Fahmi Yousef

    2016-01-01

    We report a case of group B streptococcus meningitis in a 72-year-old female patient who was admitted in our hospital with a 21-day history of bilateral lower thigh pain and swelling associated with fever, headache, and vomiting. Her past medical history was remarkable for DM type 2, hypertension, and hypothyroidism. Upon admission, examination showed bilateral warmth and tender soft tissue swelling around the knees and MRI showed cellulitis of distal thirds of both thighs. The next day, the patient became drowsy. Neurologic examination showed neck rigidity and right sided hemiparesis. Cerebrospinal fluid and blood cultures yielded group B streptococcus sensitive to ceftriaxone, penicillin G, and vancomycin. The patient received ceftriaxone for a total of 14 days after which she improved and was discharged from the hospital with right sided weakness. PMID:26904325

  20. Community-acquired pneumonia caused by carbapenem-resistant Streptococcus pneumoniae: re-examining its prevention and treatment

    PubMed Central

    Doi, Asako; Iwata, Kentaro; Takegawa, Hiroshi; Miki, Kanji; Sono, Yumi; Nishioka, Hiroaki; Takeshita, Jumpei; Tomii, Keisuke; Haruta, Tsunekazu

    2014-01-01

    A 73-year-old man with no significant past medical history or any history of health care visits was hospitalized for pneumonia. Sputum culture revealed multidrug-resistant Streptococcus pneumoniae, even to carbapenems. The patient was later treated successfully with levofloxacin. Throat cultures from his two grandchildren revealed S. pneumoniae with the same susceptibility pattern. Analysis for resistant genes revealed gPRSP (pbp1a + pbp2x + pbp2b gene variants) in both the patient and his grandchildren, none of whom had received pneumococcal vaccines of any kind. This case illustrates the importance of the emergence of carbapenem-resistant S. pneumoniae. Non-rational use of carbapenems for community-acquired infections may be counterproductive. This case also highlights the importance of pneumococcal vaccinations in children and the elderly. PMID:24899822

  1. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand.

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Katagiri, Takayuki; Hirono, Ikuo; Rodkhum, Channarong

    2014-05-19

    Streptococcus spp. were recovered from diseased tilapia in Thailand during 2009-2010 (n = 33), and were also continually collected from environmental samples (sediment and water) from tilapia farms for 9 months in 2011 (n = 25). The relative percent recovery of streptococci from environmental samples was 13-67%. All streptococcal isolates were identified as S. agalactiae (group B streptococci [GBS]) by a species-specific polymerase chain reaction. In molecular characterization assays, 4 genotypic categories comprised of 1) molecular serotypes, 2) the infB allele, 3) virulence gene profiling patterns (cylE, hylB, scpB, lmb, cspA, dltA, fbsA, fbsB, bibA, gap, and pili backbone-encoded genes), and 4) randomly amplified polymorphic DNA (RAPD) fingerprinting patterns, were used to describe the genotypic diversity of the GBS isolates. There was only 1 isolate identified as molecular serotype III, while the others were serotype Ia. Most GBS serotype Ia isolates had an identical infB allele and virulence gene profiling patterns, but a large diversity was established by RAPD analysis with diversity tending to be geographically dependent. Experimental infection of Nile tilapia (Oreochromis niloticus) revealed that the GBS serotype III isolate was nonpathogenic in the fish, while all 5 serotype Ia isolates (3 fish and 2 environmental isolates) were pathogenic, with a median lethal dose of 6.25-7.56 log10 colony-forming units. In conclusion, GBS isolates from tilapia farms in Thailand showed a large genetic diversity, which was associated with the geographical origins of the bacteria. PMID:24842288

  2. Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae.

    PubMed

    Rajagopal, Lakshmi; Vo, Anthony; Silvestroni, Aurelio; Rubens, Craig E

    2006-11-01

    Signal transducing mechanisms are essential for regulation of gene expression in both prokaryotic and eukaryotic organisms. Regulation of gene expression in eukaryotes is accomplished by serine/threonine and tyrosine kinases and cognate phosphatases. In contrast, gene expression in prokaryotes is controlled by two-component systems that comprise a sensor histidine kinase and a cognate DNA binding response regulator. Pathogenic bacteria utilize two-component systems to regulate expression of their virulence factors and for adaptive responses to the external environment. We have previously shown that the human pathogen Streptococcus agalactiae (Group B Streptococci, GBS) encodes a single eukaryotic-type serine/threonine kinase Stk1, which is important for virulence of the organism. In this study, we aimed to understand how Stk1 contributes to virulence of GBS. Our results indicate that Stk1 expression is important for resistance of GBS to human blood, neutrophils and oxidative stress. Consistent with these observations, Stk1 positively regulates transcription of a cytotoxin, beta-haemolysin/cytolysin (beta-H/C) that is critical for survival of GBS in the bloodstream and for resistance to oxidative stress. Interestingly, positive regulation of beta-H/C by Stk1 requires the two-component regulator CovR. Further, we show that Stk1 can negatively regulate transcription of CAMP factor in a CovR-dependent manner. As Stk1 phosphorylates CovR in vitro, these data suggest that serine/threonine phosphorylation impacts CovR-mediated regulation of GBS gene expression. In summary, our studies provide novel information that a eukaryotic-type serine/threonine kinase regulates two-component-mediated expression of GBS cytotoxins. PMID:17005013

  3. Distribution of serotypes and evaluation of antimicrobial susceptibility among human and bovine Streptococcus agalactiae strains isolated in Brazil between 1980 and 2006.

    PubMed

    Pinto, Tatiana Castro Abreu; Costa, Natália Silva; Vianna Souza, Aline Rosa; Silva, Ligia Guedes da; Corrêa, Ana Beatriz de Almeida; Fernandes, Flavio Gimenis; Oliveira, Ivi Cristina Menezes; Mattos, Marcos Corrêa de; Rosado, Alexandre Soares; Benchetrit, Leslie Claude

    2013-01-01

    Streptococcus agalactiae is a common agent of clinical and subclinical bovine mastitis and an important cause of human infections, mainly among pregnant women, neonates and nonpregnant adults with underlying diseases. The present study describes the genetic and phenotypic diversity among 392 S. agalactiae human and bovine strains isolated between 1980 and 2006 in Brazil. The most prevalent serotypes were Ia, II, III and V and all the strains were susceptible to penicillin, vancomycin and levofloxacin. Resistance to clindamycin, chloramphenicol, erythromycin, rifampicin and tetracycline was observed. Among the erythromycin resistant strains, mefA/E, ermA and, mainly, ermB gene were detected, and a shift of prevalence from the macrolide resistance phenotype to the macrolide-lincosamide-streptogramin B resistance phenotype over the years was observed. The 23 macrolide-resistant strains showed 19 different pulsed-field gel electrophoresis profiles. Regarding macrolide resistance, a major concern in S. agalactiae epidemiology, the present study describes an increase in erythromycin resistance from the 80s to the 90s followed by a decrease in the 2000-2006 period. Also, the genetic heterogeneity described points out that erythromycin resistance in Brazil is rather due to horizontal gene transmission than to spreading of specific macrolide-resistant clones. PMID:23453948

  4. Atraumatic splenic rupture in the course of a pneumonia with Streptococcus pneumoniae. Case report and literature review.

    PubMed

    Salame, J; Mojddehian, N; Kleiren, P; Petein, M; Lurquin, P; Dediste, A; Mendes da Costa, P

    1993-01-01

    Atraumatic splenic ruptures in the course of infectious diseases are rare but have been reported. Various germs of viruses can be at the origin of such rupture. The more often quoted viral disease is infectious mononucleosis. The more frequently involved bacteria are Streptococcus non pneumoniae, Pseudomonas, staphylococci and Clostridium. Rupture mechanism is not clearly elucidated; it can be connected with sepsis diffusion at spleen level via haematogenic way and consequently splenomegaly. Splenic rupture following septicaemia does not always entail major splenomegaly nor abscess formation but the attack of the splenic tissue itself is sometimes sufficient to bring about the rupture. The present case of atraumatic splenic rupture on spleen sepsis, no abscess, starting from a pulmonar infection with Streptococcus pneumoniae is, to our knowledge, the first case reported in literature. PMID:8470445

  5. Short communication: comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples.

    PubMed

    Zanardi, G; Caminiti, A; Delle Donne, G; Moroni, P; Santi, A; Galletti, G; Tamba, M; Bolzoni, G; Bertocchi, L

    2014-09-01

    For more than 30 yr, a control plan for Streptococcus agalactiae and Staphylococcus aureus has been carried out in more than 1,500 dairy herds of the province of Brescia (northern Italy). From 2010 to 2011, the apparent prevalence of Strep. agalactiae has been relatively stable around 10%, but the apparent prevalence of Staph. aureus has been greater than 40% with an increasing trend. The aim of this paper was to estimate and compare the diagnostic accuracy of 3 assays for the detection of Strep. agalactiae and Staph. aureus in bulk-tank milk samples (BTMS) in field conditions. The assays were a qualitative and a quantitative bacteriological culture (BC) for each pathogen and a homemade multiplex real-time PCR (rt-PCR). Because a gold standard was not available, the sensitivities (Se) and specificities (Sp) were evaluated using a Bayesian latent class approach. In 2012 we collected one BTMS from 165 dairy herds that were found positive for Strep. agalactiae in the previous 2-yr campaigns of eradication plan. In most cases, BTMS collected in these herds were positive for Staph. aureus as well, confirming the wide spread of this pathogen. At the same time we also collected composite milk samples from all the 8,624 lactating cows to evaluate the within-herd prevalence of Strep. agalactiae. Streptococcus agalactiae samples were cultured using a selective medium Tallium Kristalviolette Tossin, whereas for Staph. aureus, we used Baird Parker modified medium with added Rabbit Plasma Fibrinogen ISO-Formulation. In parallel, BTMS were tested using the rt-PCR. Regarding Strep. agalactiae, the posterior median of Se and Sp of the 2 BC was similar [qualitative BC: Se=98%, posterior credible interval (95%PCI): 94-100%, and Sp=99%, 95%PCI: 96-100%; quantitative BC: Se=99%, 95%PCI: 96-100%, and Sp=99%, 95%PCI: 95-100%] and higher than those of the rt-PCR (at 40 cycle threshold, Se=92%, 95%PCI: 85-97%; Sp=94%, 95%PCI: 88-98%). Also in case of Staph. aureus, the posterior medians

  6. Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel

    1991-01-01

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.

  7. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1991-03-26

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.

  8. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  9. Bilateral Acromioclavicular Septic Arthritis as an Initial Presentation of Streptococcus pneumoniae Endocarditis

    PubMed Central

    Hashemi-Sadraei, Neda; Gupta, Rohan; Machicado, Jorge D.; Govindu, Rukma

    2014-01-01

    Infective endocarditis (IE) is infrequently associated with septic arthritis. Moreover, septic arthritis of the acromioclavicular (AC) joint is rarely reported in the literature. We report a case of Streptococcus pneumoniae IE in a patient who presented with bilateral AC joint septic arthritis and we review the literature on the topic. PMID:24987538

  10. Changes in Streptococcus pneumoniae Serotype 19A Invasive Infections in Children from 1993 to 2011

    PubMed Central

    Kaplan, Sheldon L.; Lamberth, Linda B.; Barson, William J.; Romero, José R.; Lin, Philana Ling; Bradley, John S.; Givner, Laurence B.; Tan, Tina Q.; Hoffman, Jill A.; Mason, Edward O.

    2013-01-01

    Among 594 Streptococcus pneumoniae serotype 19A invasive pneumococcal disease (IPD) isolates collected from 1993 to 2011, we identified 85 sequence types by multilocus sequence typing. CC320 was associated with multidrug resistance and reduced susceptibility to penicillin and ceftriaxone and still predominated among declining serotype 19A IPD isolates following PCV13 introduction. PMID:23390277

  11. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  12. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  13. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Group B Streptococcus agalactiae (GBS) causes of infections in multiple animals. This study examined the genetic relatedness of piscine, dolphin, and human GBS isolates and bovine GBS reference strains from different geographical regions using serological and multilocus sequence typing (MLST) techni...

  14. Structure and molecular characterization of Streptococcus pneumoniae capsular polysaccharide 10F by carbohydrate engineering in Streptococcus oralis.

    PubMed

    Yang, Jinghua; Shelat, Nirav Y; Bush, C Allen; Cisar, John O

    2010-07-30

    Although closely related at the molecular level, the capsular polysaccharide (CPS) of serotype 10F Streptococcus pneumoniae and coaggregation receptor polysaccharide (RPS) of Streptococcus oralis C104 have distinct ecological roles. CPS prevents phagocytosis of pathogenic S. pneumoniae, whereas RPS of commensal S. oralis functions as a receptor for lectin-like adhesins on other members of the dental plaque biofilm community. Results from high resolution NMR identified the recognition region of S. oralis RPS (i.e. Galfbeta1-6GalNAcbeta1-3Galalpha) in the hexasaccharide repeat of S. pneumoniae CPS10F. The failure of this polysaccharide to support fimbriae-mediated adhesion of Actinomyces naeslundii was explained by the position of Galf, which occurred as a branch in CPS10F rather than within the linear polysaccharide chain, as in RPS. Carbohydrate engineering of S. oralis RPS with wzy from S. pneumoniae attributed formation of the Galf branch in CPS10F to the linkage of adjacent repeating units through sub terminal GalNAc in Galfbeta1-6GalNAcbeta1-3Galalpha rather than through terminal Galf, as in RPS. A gene (wcrD) from serotype 10A S. pneumoniae was then used to engineer a linear surface polysaccharide in S. oralis that was identical to RPS except for the presence of a beta1-3 linkage between Galf and GalNAcbeta1-3Galalpha. This polysaccharide also failed to support adhesion of A. naeslundii, thereby establishing the essential role of beta1-6-linked Galf in recognition of adjacent GalNAcbeta1-3Galalpha in wild-type RPS. These findings, which illustrate a molecular approach for relating bacterial polysaccharide structure to function, provide insight into the possible evolution of S. oralis RPS from S. pneumoniae CPS. PMID:20507989

  15. A commercial rapid optical immunoassay detects Streptococcus agalactiae from aquatic cultures and clinical specimens.

    PubMed

    Evans, Joyce J; Pasnik, David J; Klesius, Phillip H

    2010-08-26

    The BioStar STREP B Optical ImmunoAssay (STREP B OIA) (BioStar OIA Strep B Assay Kit; BioStar Incorporation, Louisville, CO, USA), commonly used for diagnosis of human maternal group B streptococcus (GBS) colonization, was evaluated for its diagnostic and analytical sensitivity and specificity to aquatic animal GBS isolates, cross-reactivity, and diagnosis and recovery of GBS directly from clinically- infected fish swabs. STREP B OIA identified 25 known fish and dolphin GBS isolates. Thirteen non-GBS negative control isolates from fish and other animals were negative, giving 100% analytical specificity and no cross-reactivity. Three groups of 6 Nile tilapia (Oreochromis niloticus) (mean weight of 40.60+/-1.70 g) each were inoculated intraperitoneally with either 10(6) colony-forming units (cfu) GBS/fish, 10(6) cfu Streptococcus iniae/fish or 100 microL of tryptic soy broth (TSB) and observed for mortality for 7 days. The nare and brain of all fish were swabbed and subjected to the STREP B OIA for detection of GBS antigen immediately after swabbing (0 h) or 24, 48 and 72 h post-swabbing and compared to conventional culture on trypticase soy agar with 5% sheep blood. The STREP B OIA method demonstrated a diagnostic sensitivity of 75.0% and a diagnostic specificity of 69.2% compared to direct TSA. The percent agreement between OIA and culture was 100%. GBS antigen could be retrieved by OIA following 72-h storage of swabs. These results demonstrate the utility of the STREP B OIA to identify GBS from culture and directly from swabs of clinically- infected fish. PMID:20430538

  16. A patient with fulminant influenza-related bacterial pneumonia due to Streptococcus pneumoniae followed by Mycobacterium tuberculosis infection.

    PubMed

    Seki, Masafumi; Suyama, Naofumi; Hashiguchi, Kohji; Hara, Atsuko; Kosai, Kosuke; Kurihara, Shintaro; Nakamura, Shigeki; Yamamoto, Kazuko; Imamura, Yoshifumi; Izumikawa, Koichi; Kakaya, Hiroshi; Yanagihara, Katsunori; Yamamoto, Yoshihiro; Mukae, Hiroshi; Tashiro, Takayoshi; Kohno, Shigeru

    2008-01-01

    A 74-year-old man with poorly controlled diabetes mellitus was admitted to our hospital because of severe respiratory disturbance, fever, and sputum. We found massive consolidation of the right lung and nodular shadows on the left lung on chest X-ray, and detected influenza virus and Streptococcus pneumoniae antigen from a nasopharyngeal swab and urine sample, respectively. Co-infection with influenza virus and bacteria was suspected, and oseltamivir and biapenem were prescribed. Laboratory data improved after the addition of sivelestat sodium hydrate, an inhibitor of neutrophil-derived elastase; however, chest X-ray findings became worse on Day 8, and we administered 1 g methylprednisolone intravenously for two days. On Day 12, we detected Mycobacterium tuberculosis in the sputum, even though we did not previously detect any acid-fast bacilli, and started anti-tuberculosis drugs, such as isoniazid, rifampicin, ethambutol hydrochloride, and pyrazinamide; however, the patient died 12 days later. Severe influenza-related bacterial pneumonia with Streptococcus pneumoniae and subsequently secondary tuberculosis infection were finally suspected in this case. This was a very rare case in which additional tuberculosis infection was found in a patient with fulminant pneumonia due to co-infection of influenza virus and bacteria. It is necessary to observe patients with influenza carefully, especially when steroids are used, even if antibiotics are also administered. PMID:19043258

  17. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae.

    PubMed Central

    Tait-Kamradt, A; Clancy, J; Cronan, M; Dib-Hajj, F; Wondrack, L; Yuan, W; Sutcliffe, J

    1997-01-01

    Recently, it was shown that a significant number of erythromycin-resistant Streptococcus pneumoniae and Streptococcus pyogenes strains contain a determinant that mediates resistance via a putative efflux pump. The gene encoding the erythromycin-resistant determinant was cloned and sequenced from three strains of S. pneumoniae bearing the M phenotype (macrolide resistant but clindamycin and streptogramin B susceptible). The DNA sequences of mefE were nearly identical, with only 2-nucleotide differences between genes from any two strains. When the mefE sequences were compared to the mefA sequence from S. pyogenes, the two genes were found to be closely related (90% identity). Strains of S. pneumoniae were constructed to confirm that mefE is necessary to confer erythromycin resistance and to explore the substrate specificity of the pump; no substrates other than 14- and 15-membered macrolides were identified. PMID:9333056

  18. Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S. pneumoniae to incidence of colds and serum antibody.

    PubMed

    Gwaltney, J M; Sande, M A; Austrian, R; Hendley, J O

    1975-07-01

    Factors that affect the spread of Streptococcus pneumoniae and the antibody responses associated with colonization were studied in 64 families for periods of eight to 52 weeks. Surveillance included daily recording of respiratory symptoms and bimonthly pharyngeal cultures for identification of the pneumococcal carrier state. Rhinovirus cultures were included for a portion of the study period. Intrafamilial carriage of a single type of S. pneumoniae and simultaneous spread to more than one family member were commonmspread often occurred in association with an upper respiratory tract infection; simultaneous transmission of S. pneumoniae and a rhinovirus was documented. Preexisting, type-specific serum antibody did not prevent acquisition of homotypic S. pneumoniae but did appear to shorten the duration of pharyngeal carriage. Sera of all 11 adults had greater than 150 ng of antibody nitrogen/ml of homotypic serum antibody (measured by a radioimmunoassay) before colonization. In contrast, only one of 13 preschool children had homotypic antibody concentrations of this magnitude before colonization. A threefold or greater rise in the concentration of homotypic antibody occurred in 13 of 24 children (54%) after acquisition of S. pneumoniae; the increase in antibody concentration was associated with illness in six of the children. On the other hand, acquisition of S. pneumoniae in adults was not associated with an increase in concentration of homotypic serum antibody. PMID:169309

  19. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance

    PubMed Central

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M.; Ruttimann, Ricardo

    2016-01-01

    Objectives: Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. Methods: From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Results: Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Conclusions: Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures – negative but presumably bacterial meningitis cases. PMID:27551428

  20. Emergence of the First Levofloxacin-Resistant Strains of Streptococcus agalactiae Isolated in Italy

    PubMed Central

    Piccinelli, G.; Gargiulo, F.; Corbellini, S.; Ravizzola, G.; Bonfanti, C.; Caruso, A.

    2015-01-01

    Of 901 group B streptococcus strains analyzed, 13 (1.4%) were resistant to levofloxacin (MICs of >32 μg/ml for seven isolates, 2 μg/ml for four isolates, and 1.5 μg/ml for four isolates). Mutations in the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV were identified. A double mutation involving the Ser-81 change to Leu for gyrA and the Ser-79 change to Phe or to Tyr for parC was linked to a high level of fluoroquinolone resistance. In addition, two other mutational positions in parC were observed, resulting in an Asp-83-to-Tyr substitution and an Asp-83-to-Asn substitution. Different mutations were also observed in gyrB, with unknown significance. Most levofloxacin-resistant GBS strains were of serotype Ib and belonged to sequence type 19 (ST19) and clonal complex 19 (CC-19). Most of them exhibited the epsilon gene. PMID:25666148

  1. Fever temperature enhances mechanisms of survival of Streptococcus agalactiae within human endothelial cells.

    PubMed

    Freitas Lione, Viviane Oliveira; Bittencourt Dos Santos, Michelle Hanthequeste; Ulisses Carvalho, Técia Maria; Hirata, Raphael; Mattos-Guaraldi, Ana Luiza; Arruda Mortara, Renato; Nagao, Prescilla Emy

    2010-10-01

    Group B streptococci (GBS) are the most common cause of pneumonia and sepsis during the neonatal period. However, the pathogenesis of invasive infection is poorly understood. We investigated the ability of GBS grown at 37 degrees C and 40 degrees C to adhere and invade human umbilical vein endothelial cells (HUVECs) at different periods of incubation (0, 0.5, 1, 2, 18 and 24 h). All strains tested, except strain 88641-vagina survived for 24 h in the intracellular environment at 40 degrees C. For serotype III grown at 40 degrees C, both strains (80340-vagina and 90356-liquor) showed increased adherence and intracellular survival when compared to bacteria grown at 37 degrees C (P<0.01). GBS serotype V strains (88641-vagina and 90186-blood) showed ability to survive inside HUVECs until 2 and 24 h post-infection at 40 degrees C and 37 degrees C, respectively (P<0.01). Influence of growth temperature in bacterial interaction with endothelial cells was partially dependent of serotypes and the clinical origin of strains. Serotypes III and V strains grown at both temperatures remained viable within acidic endothelial vacuoles which acquired Rab7 and LAMP-1 endosomal markers. The data emphasize the influence of temperature on cellular events of phagocytosis and pathogenesis of GBS diseases. PMID:20818490

  2. Effect of carryover and presampling procedures on the results of real-time PCR used for diagnosis of bovine intramammary infections with Streptococcus agalactiae at routine milk recordings.

    PubMed

    Mahmmod, Yasser S; Mweu, Marshal M; Nielsen, Søren S; Katholm, Jørgen; Klaas, Ilka C

    2014-03-01

    The use of PCR tests as diagnostics for intramammary infections (IMI) based on composite milk samples collected in a non-sterile manner at milk recordings is increasing. Carryover of sample material between cows and non-aseptic PCR sampling may be incriminated for misclassification of IMI with Streptococcus agalactiae (S. agalactiae) in dairy herds with conventional milking parlours. Misclassification may result in unnecessary costs for treatment and culling. The objectives of this study were to (1) determine the effect of carryover on PCR-positivity for S. agalactiae at different PCR cycle threshold (Ct) cut-offs by estimating the between-cow correlation while accounting for the milking order, and (2) evaluate the effect of aseptic presampling procedures (PSP) on PCR-positivity at the different Ct-value cut-offs. The study was conducted in four herds with conventional milking parlours at routine milk recordings. Following the farmers' routine pre-milking preparation, 411 of 794 cows were randomly selected for the PSP treatment. These procedures included removing the first streams of milk and 70% alcohol teat disinfection. Composite milk samples were then collected from all cows and tested using PCR. Data on milking order were used to estimate the correlation between consecutively milked cows in each milking unit. Factors associated with the PCR-positivity for S. agalactiae were analyzed using generalized estimating equations assuming a binomially-distributed outcome with a logit link function. Presampling procedures were only significant using cut-off 37. A first-order autoregressive correlation structure provided the best correlation between consecutively milked cows. The correlation was 13%, 11%, 9% at cut-offs <40, 37, and 34, respectively. PSP did not reduce the odds of cows being PCR-positive for S. agalactiae. In conclusion, carryover and non-aseptic sampling affected the PCR results and should therefore be considered when samples from routine milk

  3. Evaluation of Streptococcus pneumoniae in bile samples: A case series review.

    PubMed

    Itoh, Naoya; Kawamura, Ichiro; Tsukahara, Mika; Mori, Keita; Kurai, Hanako

    2016-06-01

    Although Streptococcus pneumoniae is an important pathogen of humans, pneumococcal cholangitis is rare because of the rapid autolysis of S. pneumoniae. The aim of this case series was to review patients with bile cultures positive for S. pneumoniae. This study was a single center retrospective case series review of patients with S. pneumoniae in their bile at a tertiary-care cancer center between September 2002 and August 2015. Subjects consisted of all patients in whom S. pneumoniae was isolated in their bile during the study period. Bile specimens for culture were obtained from biliary drainage procedures such as endoscopic retrograde biliary drainage, endoscopic nasobiliary drainage, and percutaneous transhepatic biliary drainage. There were 20 patients with bile cultures positive for S. pneumoniae during the study period. All patients presented with extrahepatic obstructive jaundice due to hepatopancreatobiliary tumors. Nineteen of 20 patients underwent the placement of plastic intrabiliary tubes. The mean time between the first-time drainage and the positive culture was 26 days (range 0-313 days). Although 12 of 20 patients met our definition of cholangitis, 5 were clinically treated with antibiotics based on a physician's assessment of whether there was a true infection. The present study is the largest case series of patients with S. pneumoniae in their bile. Based on our findings, the isolation of S. pneumoniae from bile may be attributed to the placement of biliary drainage devices. PMID:27025902

  4. Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster

    PubMed Central

    Valentino, Michael D.; McGuire, Abigail Manson; Rosch, Jason W.; Bispo, Paulo J. M.; Burnham, Corinna; Sanfilippo, Christine M.; Carter, Robert A.; Zegans, Michael E.; Beall, Bernard; Earl, Ashlee M.; Tuomanen, Elaine I.; Morris, Timothy W.; Haas, Wolfgang; Gilmore, Michael S.

    2014-01-01

    Streptococcus pneumoniae, an inhabitant of the upper respiratory mucosa, causes respiratory and invasive infections as well as conjunctivitis. Strains that lack the capsule, a main virulence factor and the target of current vaccines, are often isolated from conjunctivitis cases. Here we perform a comparative genomic analysis of 271 strains of conjunctivitis-causing S. pneumoniae from 72 postal codes in the US. We find that the vast majority of conjunctivitis strains are members of a distinct cluster of closely related unencapsulated strains. These strains possess divergent forms of pneumococcal virulence factors (such as CbpA and neuraminidases) that are not shared with other unencapsulated nasopharyngeal S. pneumoniae. They also possess putative adhesins that have not been described in encapsulated pneumococci. These findings suggest that the unencapsulated strains capable of causing conjunctivitis utilize a pathogenesis strategy substantially different from that described for S. pneumoniae at other infection sites. PMID:25388376

  5. Pelvic inflammatory disease due to Streptococcus pneumoniae: a usual pathogen at an unusual place.

    PubMed

    Lemoyne, S; Van Leemput, J; Smet, D; Desmedt, E; Devos, H; Van Schaeren, J; Jeurissen, A

    2008-01-01

    We report three cases of pelvic inflammatory disease (PID) due to Streptococcus pneumoniae in previously healthy young women. S. pneumoniae frequently causes bacteremia, meningitis and respiratory infections, but it very rarely infects the genital tract. All our patients presented with an acute onset of severe abdominal pain and had an intrauterine device (IUD) present. No abnormal sexual behavior was noticed. Although the relation between PID due to S. pneumoniae and the use of an IUD has been a topic for discussions, culture of IUD in all our patients and blood culture in 2 of 3 of our patients revealed S. pneumoniae. All patients recovered well with intravenous antibiotic treatment and removal of the IUD. PMID:19170357

  6. Oral immunization with bacterial lysate against infection with Streptococcus pneumoniae in mice.

    PubMed

    van Daal, G J; de Jong, P T; Tenbrinck, R; Mouton, J W; Petzoldt, K; Bergmann, K C; Lachmann, B

    1990-01-01

    The protective effect of oral immunization against infection with Streptococcus pneumoniae was investigated in mice. Two bacterial lysates, one with an additional lysate of Candida albicans, were investigated. Intranasal inoculation of adult Balb-C mice with a S. pneumoniae type I strain resulted in a lethal infection, with deaths occurring from the 2nd until the 6th day after infection. Oral immunization resulted in a significant decrease in mortality rate (18-48% reduction). No significant difference in mortality rates was observed between the groups immunized with different lysates in the same concentrations. PMID:2095604

  7. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses

    PubMed Central

    Wilson, R; Cohen, J M; Jose, R J; de Vogel, C; Baxendale, H; Brown, J S

    2015-01-01

    Streptococcus pneumoniae is a common cause of pneumonia and infective exacerbations of chronic lung disease, yet there are few data on how adaptive immunity can specifically prevent S. pneumoniae lung infection. We have used a murine model of nasopharyngeal colonization by the serotype 19F S. pneumoniae strain EF3030 followed by lung infection to investigate whether colonization protects against subsequent lung infection and the mechanisms involved. EF3030 colonization induced systemic and local immunoglobulin G against a limited number of S. pneumoniae protein antigens rather than capsular polysaccharide. During lung infection, previously colonized mice had increased early cytokine responses and neutrophil recruitment and reduced bacterial colony-forming units in the lungs and bronchoalveolar lavage fluid compared with control mice. Colonization-induced protection was lost when experiments were repeated in B-cell- or neutrophil-deficient mice. Furthermore, the improved interleukin (IL)-17 response to infection in previously colonized mice was abolished by depletion of CD4+ cells, and prior colonization did not protect against lung infection in mice depleted of CD4+ cells or IL17. Together these data show that naturally acquired protective immunity to S. pneumoniae lung infection requires both humoral and cell-mediated immune responses, providing a template for the design of improved vaccines that can specifically prevent pneumonia or acute bronchitis. PMID:25354319

  8. Tumor necrosis factor-alpha deficiency impairs host defense against Streptococcus pneumoniae

    PubMed Central

    Jeong, Dong-Gu; Seo, Jin-Hee; Heo, Seung-Ho; Choi, Yang-Kyu

    2015-01-01

    Streptococcus pneumoniae is a major human pathogen that is involved in community-acquired pneumonia. Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine that activates immune responses against infection, invasion, injury, or inflammation. To study the role of TNF-α during S. pneumoniae infection, a murine pneumococcal pneumonia model was used. We intranasally infected C57BL/6J wild-type (WT) and TNF-α knockout (KO) mice with S. pneumoniae D39 serotype 2. In TNF-α KO mice, continuous and distinct loss of body weight, and low survival rates were observed. Bacterial counts in the lungs and blood of TNF-α KO mice were significantly higher than those in WT mice. Histopathological lesions in the spleen of TNF-α KO mice were more severe than those in WT mice. In TNF-α KO mice, severe depletion of white pulp was observed and the number of apoptotic cells was significantly increased. Interferon-gamma (IFN-γ), IL-12p70 and IL-10 levels in serum were significantly increased in TNF-α KO mice. TNF-α is clearly involved in the regulation of S. pneumoniae infections. Early death and low survival rates of TNF-α KO mice were likely caused by a combination of impaired bacterial clearance and damage to the spleen. Our findings suggest that TNF-α plays a critical role in protecting the host from systemic S. pneumoniae infection. PMID:26155202

  9. MicroRNA-155 Is Required for Clearance of Streptococcus pneumoniae from the Nasopharynx

    PubMed Central

    Verschoor, Chris P.; Dorrington, Michael G.; Novakowski, Kyle E.; Kaiser, Julie; Radford, Katherine; Nair, Parameswaran; Anipindi, Varun; Kaushic, Charu; Surette, Michael G.

    2014-01-01

    Pneumonia caused by Streptococcus pneumoniae is a major cause of death and an economic burden worldwide. S. pneumoniae is an intermittent colonizer of the human upper respiratory tract, and the ability to control asymptomatic colonization determines the likelihood of developing invasive disease. Recognition of S. pneumoniae by resident macrophages via Toll-like receptor 2 (TLR-2) and the macrophage receptor with collagenous structure (MARCO) and the presence of interleukin-17 (IL-17)-secreting CD4+ T cells are required for macrophage recruitment and bacterial clearance. Despite the fact that the primary cellular effectors needed for bacterial clearance have been identified, much of the underlying regulatory mechanisms are unknown. Herein, we demonstrate that the small, noncoding RNA microRNA-155 (mir-155) is critical for the effective clearance of S. pneumoniae. Our studies show that mir-155-deficient mice maintain the ability to prevent acute invasive pneumococcal infection but have significantly higher bacterial burdens following colonization, independently of macrophage recognition by TLR-2, MARCO expression, or bactericidal capacity. The observed defects in bacterial clearance parallel reduced IL-17A and gamma interferon CD4+ T-cell responses in vivo, lower IL-17A mRNA levels in the nasopharynx, and a reduced capacity to induce Th17 cell polarization. Given that knockout mice are also limited in the capacity to generate high-titer S. pneumoniae-specific antibodies, we conclude that mir-155 is a critical mediator of the cellular effectors needed to clear primary and secondary S. pneumoniae colonizations. PMID:25156727

  10. In vitro antimicrobial activity of Combretum molle (Combretaceae) against Staphylococcus aureus and Streptococcus agalactiae isolated from crossbred dairy cows with clinical mastitis.

    PubMed

    Regassa, Fekadu; Araya, Mengistu

    2012-08-01

    Following the rapidly expanding dairy enterprise, mastitis has remained the most economically damaging disease. The objective of this study was mainly to investigate the in vitro antibacterial activities of ethanol extracts of Combretum molle (R.Br.Ex.G.Don) Engl & Diels (Combretaceae) against antibiotic-resistant and susceptible Staphylococcus aureus and Streptococcus agalactiae isolated from clinical cases of bovine mastitis using agar disc diffusion method. The leaf and bark extracts showed antibacterial activity against S. aureus at concentrations of 3 mg/ml while the stem and seed extract did not show any bioactivity. Although both leaf and bark extracts were handled in the same manner, the antibacterial activity of the bark extract against the bacterial strains had declined gradually to a lower level as time advanced after extraction. The leaf extract had sustained bioactivity for longer duration. The susceptibility of the bacteria to the leaf extract is not obviously different between S. aureus and S. agalactiae. Also, there was no difference in susceptibility to the leaf extract between the antibiotic-resistant and antibiotic-sensitive bacteria. Further phytochemical and in vivo efficacy and safety studies are required to evaluate the therapeutic value of the plant against bovine mastitis. PMID:22207479

  11. Draft Genome Sequence of an Atypical Strain of Streptococcus pneumoniae Serotype 19A Isolated from Cerebrospinal Fluid

    PubMed Central

    Hinojosa-Robles, Rosa Maria; Barcenas-Walls, Jose Ramon; Rojas-Martinez, Augusto; Barrera-Saldaña, Hugo Alberto

    2016-01-01

    We present here the draft genome sequence of Streptococcus pneumoniae strain MTY32702340SN814 isolated in Monterrey, Mexico, from a girl with bacterial meningitis. The strain belongs to the atypical and multidrug-resistant serogroup 19A. This is the first report in the literature of sequence type 3936 (ST3936) in S. pneumoniae serotype 19A. PMID:27103715

  12. Fatal Levofloxacin Failure in Treatment of a Bacteremic Patient Infected with Streptococcus pneumoniae with a Preexisting parC Mutation▿

    PubMed Central

    de Cueto, M.; Rodríguez, J. M.; Soriano, M. J.; López-Cerero, L.; Venero, J.; Pascual, A.

    2008-01-01

    The fatal outcome of levofloxacin treatment in a patient with bacteremic pneumonia caused by Streptococcus pneumoniae with a preexisting parC mutation is reported. Failure was due to the emergence of a gyrA mutation after 4 days of therapy. Problems encountered in detecting first-step mutation isolates are discussed. PMID:18287316

  13. Estimation of test characteristics of real-time PCR and bacterial culture for diagnosis of subclinical intramammary infections with Streptococcus agalactiae in Danish dairy cattle in 2012 using latent class analysis.

    PubMed

    Mahmmod, Yasser S; Toft, Nils; Katholm, Jørgen; Grønbæk, Carsten; Klaas, Ilka C

    2013-05-01

    The misdiagnosis of intramammary infections (IMI) with Streptococcus agalactiae (S. agalactiae) could lead farmers to treat or cull animals unnecessarily. The objective of this field study was to estimate the sensitivity (Se) and specificity (Sp) of real-time PCR at different cut-offs for cycle threshold (Ct) values against bacterial culture (BC) for diagnosis of S. agalactiae IMI using latent class analysis to avoid the assumption of a perfect reference test. A total of 614 dairy cows were randomly selected from 6 herds with bulk tank PCR Ct value ≤ 39 for S. agalactiae and S. aureus. At milk recording, 2456 quarter milk samples were taken aseptically for BC and the routinely taken cow level milk samples were analyzed by PCR. Results showed that 53 cows (8.6%) were positive for S. agalactiae IMI by BC. Sensitivity of PCR at cut-offs; ≤ 39, ≤ 37, ≤ 34, and ≤ 32, was 96.2%, 91.9%, 87.2% and 73.9%, while Se of BC was 25.7%, 29.9%, 59.9% and 72.1%. Specificity of PCR at cut-offs; ≤ 39, ≤ 37, ≤ 34, and ≤ 32, was 96.8%, 96.9%, 96.7%, and 97.22%, while Sp of BC was 99.7%, 99.5%, 99.2%, and 98.9%. The estimated prevalence of S. agalactiae IMI by PCR was higher than the apparent prevalence at the tested cut-offs, indicating under estimation of S. agalactiae IMI in the examined dairy cows. In conclusion, Se of PCR is always higher than Se of BC at all tested cut-offs. The lower cut-off, the more comparable becomes Se of PCR and Se of BC. The changes in Se in both PCR and BC at different Ct-value cut-offs may indicate a change in the definition of the latent infection. The similar Se of both tests at cut-off ≤ 32 may indicate high concentrations of S. agalactiae viable cells, representing a cow truly/heavily infected with S. agalactiae and thus easier to detect with BC. At cut-off ≤ 39 the latent definition of infection may reflect a more general condition of cows being positive for S. agalactiae. Our findings indicate that PCR Ct-value cut-offs should

  14. Complete Genome Sequence of Streptococcus pneumoniae Serotype 19A, a Blood Clinical Isolate from Northeast Mexico

    PubMed Central

    Hinojosa-Robles, Rosa Maria; Barcenas-Walls, Jose Ramon; Vignau-Cantu, Armando; Barrera-Saldaña, Hugo A.

    2016-01-01

    We report here the draft genome sequence of a Streptococcus pneumoniae strain isolated in Monterrey, Mexico, MTY1662SN214, from a man with purpura fulminans. The strain belongs to the invasive and multidrug-resistant serogroup 19A, sequence type 320 (ST320). The draft genome sequence consists of 60 large contigs, a total of 2,069,474 bp, and has a G+C content of 39.7%. PMID:27034499

  15. Coinfection with Streptococcus pneumoniae Modulates the B Cell Response to Influenza Virus

    PubMed Central

    Wolf, Amaya I.; Strauman, Maura C.; Mozdzanowska, Krystyna; Whittle, James R. R.; Williams, Katie L.; Sharpe, Arlene H.; Weiser, Jeffrey N.; Caton, Andrew J.; Hensley, Scott E.

    2014-01-01

    ABSTRACT Pathogen-specific antibodies (Abs) protect against respiratory infection with influenza A virus (IAV) and Streptococcus pneumoniae and are the basis of effective vaccines. Sequential or overlapping coinfections with both pathogens are common, yet the impact of coinfection on the generation and maintenance of Ab responses is largely unknown. We report here that the B cell response to IAV is altered in mice coinfected with IAV and S. pneumoniae and that this response differs, depending on the order of pathogen exposure. In mice exposed to S. pneumoniae prior to IAV, the initial virus-specific germinal center (GC) B cell response is significantly enhanced in the lung-draining mediastinal lymph node and spleen, and there is an increase in CD4+ T follicular helper (TFH) cell numbers. In contrast, secondary S. pneumoniae infection exaggerates early antiviral antibody-secreting cell formation, and at later times, levels of GCs, TFH cells, and antiviral serum IgG are elevated. Mice exposed to S. pneumoniae prior to IAV do not maintain the initially robust GC response in secondary lymphoid organs and exhibit reduced antiviral serum IgG with diminished virus neutralization activity a month after infection. Our data suggest that the history of pathogen exposures can critically affect the generation of protective antiviral Abs and may partially explain the differential susceptibility to and disease outcomes from IAV infection in humans. IMPORTANCE Respiratory tract coinfections, specifically those involving influenza A viruses and Streptococcus pneumoniae, remain a top global health burden. We sought to determine how S. pneumoniae coinfection modulates the B cell immune response to influenza virus since antibodies are key mediators of protection. PMID:25100838

  16. Metabolomic Profiling of Infectious Parapneumonic Effusions Reveals Biomarkers for Guiding Management of Children with Streptococcus pneumoniae Pneumonia

    PubMed Central

    Chiu, Chih-Yung; Lin, Gigin; Cheng, Mei-Ling; Chiang, Meng-Han; Tsai, Ming-Han; Lai, Shen-Hao; Wong, Kin-Sun; Hsieh, Sen-Yung

    2016-01-01

    Metabolic markers in biofluids represent an attractive tool for guiding clinical management. The aim of this study was to identify metabolic mechanisms during the progress of pleural infection in children with Streptococcus pneumoniae pneumonia. Forty children diagnosed with pneumococcal pneumonia were enrolled and analysis of pleural fluid metabolites categorized by complicated parapneumonic effusions (CPE) and non-CPE was assessed by using 1H-NMR spectroscopy. Multivariate statistical analysis including principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were performed. Metabolites identified were studied in relation to subsequent intervention procedures by receiver operating characteristic (ROC) curve analysis. Ten metabolites significantly different between CPE and non-CPE were identified. A significantly lower level of glucose for glycolysis was found in CPE compared to non-CPE. Six metabolites involving bacterial biosynthesis and three metabolites involving bacterial fermentation were significantly higher in CPE compared to non-CPE. Glucose and 3-hydroxybutyric acid were the metabolites found to be useful in discriminating from receiving intervention procedures. Metabolic profiling of pleural fluid using 1H-NMR spectroscopy provides direct observation of bacterial metabolism in the progress of pneumococcal pneumonia. An increase in the metabolism of butyric acid fermentation of glucose could potentially lead to the need of aggressive pleural drainage. PMID:27103079

  17. Metabolomic Profiling of Infectious Parapneumonic Effusions Reveals Biomarkers for Guiding Management of Children with Streptococcus pneumoniae Pneumonia.

    PubMed

    Chiu, Chih-Yung; Lin, Gigin; Cheng, Mei-Ling; Chiang, Meng-Han; Tsai, Ming-Han; Lai, Shen-Hao; Wong, Kin-Sun; Hsieh, Sen-Yung

    2016-01-01

    Metabolic markers in biofluids represent an attractive tool for guiding clinical management. The aim of this study was to identify metabolic mechanisms during the progress of pleural infection in children with Streptococcus pneumoniae pneumonia. Forty children diagnosed with pneumococcal pneumonia were enrolled and analysis of pleural fluid metabolites categorized by complicated parapneumonic effusions (CPE) and non-CPE was assessed by using (1)H-NMR spectroscopy. Multivariate statistical analysis including principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were performed. Metabolites identified were studied in relation to subsequent intervention procedures by receiver operating characteristic (ROC) curve analysis. Ten metabolites significantly different between CPE and non-CPE were identified. A significantly lower level of glucose for glycolysis was found in CPE compared to non-CPE. Six metabolites involving bacterial biosynthesis and three metabolites involving bacterial fermentation were significantly higher in CPE compared to non-CPE. Glucose and 3-hydroxybutyric acid were the metabolites found to be useful in discriminating from receiving intervention procedures. Metabolic profiling of pleural fluid using (1)H-NMR spectroscopy provides direct observation of bacterial metabolism in the progress of pneumococcal pneumonia. An increase in the metabolism of butyric acid fermentation of glucose could potentially lead to the need of aggressive pleural drainage. PMID:27103079

  18. Susceptibility of ponies to infection with Streptococcus pneumoniae (capsular type 3)

    PubMed

    Blunden, A S; Hannant, D; Livesay, G; Mumford, J A

    1994-01-01

    Welsh Mountain ponies were inoculated with an isolate of Streptococcus pneumoniae, SPE 1618 (capsular type 3) recovered from the equine respiratory tract: 10 ml of a suspension of 10(8) or 10(9) cfu/ml were instilled intratracheally. Fever was observed after either dose but the greater concentration also produced coughing, ocular and nasal discharge, depression and enlargement of submandibular lymph nodes. Cytological evidence of infection was also observed in tracheal washings during the first week after inoculation and corresponded with isolation of S. pneumoniae from the washes. Morbid anatomical and histopathological examinations of selected animals revealed focal pneumonia affecting the ventral lung, especially the cardiac area and accessory lobe, with a propensity to affect the right lung. S. pneumoniae was isolated directly in pure culture from these lesions or was demonstrable by immunostaining of macrophages bearing specific capsular type 3 antigen. By 10 days after inoculation, the ponies were healthy and had developed antibodies to S. pneumoniae. S. pneumoniae was therefore a primary pathogen in the horse under the conditions of the challenge. PMID:8143658

  19. Ethanol-Induced Alcohol Dehydrogenase E (AdhE) Potentiates Pneumolysin in Streptococcus pneumoniae

    PubMed Central

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E.; Pyo, Suhkneung

    2014-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. PMID:25312953

  20. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  1. Novel type of Streptococcus pneumoniae causing multidrug-resistant acute otitis media in children.

    PubMed

    Xu, Qingfu; Pichichero, Michael E; Casey, Janet R; Zeng, Mingtao

    2009-04-01

    After our recent discovery of a Streptococcus pneumoniae 19A "superbug" (Legacy strain) that is resistant to all Food and Drug Administration-approved antimicrobial drugs for treatment of acute otitis media (AOM) in children, other S. pneumoniae isolates from children with AOM were characterized by multilocus sequence typing (MLST). Among 40 isolates studied, 16 (40%) were serotype 19A, and 9 (23%) were resistant to multiple antimicrobial drugs. Two others had unreported sequence types (STs) that expressed the 19A capsule, and 8 (88%) of the 9 multidrug-resistant strains were serotype 19A, including the Legacy strain with the new ST-2722. In genetic relatedness, ST-2722 belonged to a cluster of reported strains of S. pneumoniae in which all strains had 6 of the same alleles as ST-156. The multidrug-resistant strains related to ST-156 expressed different capsular serotypes: 9V, 14, 11A, 15C, and 19F. PMID:19331730

  2. A case of necrotizing fasciitis due to Streptococcus pneumoniae serotype 5 in Saskatchewan

    PubMed Central

    Dawar, Meenakshi; Russell, Bob; McClean, Karen; Levett, Paul N; Tyrrell, Gregory J; Irvine, James

    2008-01-01

    Necrotizing fasciitis due to Streptococcus pneumoniae is a rare and grave condition, and only a few cases have been reported. Suggested risk factors include minor trauma, systemic lupus erythematosus, immunosuppression secondary to medication, use of intramuscular anti-inflammatories and alcoholism. A fatal case of pneumococcal necrotizing fasciitis that occurred in a 51-year-old woman with a history of alcohol abuse and oral anti-inflammatory use is presented. Her condition was caused by a multi-etiology outbreak of community-acquired pneumonia, from which S pneumoniae serotype 5 was also isolated. The case description outlines the subtle presentation and rapid clinical progression of this condition. Because serotype 5 antigen is included in the polysaccharide 23-valent pneumococcal vaccine, the present case highlights the importance of pneumococcal immunization programs in Canada. PMID:19145265

  3. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation.

    PubMed

    Lawrence, Sara L; Feil, Susanne C; Morton, Craig J; Farrand, Allison J; Mulhern, Terrence D; Gorman, Michael A; Wade, Kristin R; Tweten, Rodney K; Parker, Michael W

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world's leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  4. Frequency of Spontaneous Resistance to Peptide Deformylase Inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae.

    PubMed

    Min, Sharon; Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A; Zalacain, Magdalena; Holmes, David J; O'Dwyer, Karen

    2015-08-01

    The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system). PMID:26014938

  5. Spontaneous meningitis due to Streptococcus salivarius subsp. salivarius: cross-reaction in an assay with a rapid diagnostic kit that detected Streptococcus pneumoniae antigens.

    PubMed

    Shirokawa, Taijiro; Nakajima, Jun; Hirose, Kazuhito; Suzuki, Hiromichi; Nagaoka, Shoko; Suzuki, Masatsune

    2014-01-01

    Streptococcus salivarius subsp. salivarius occasionally causes meningitis associated with iatrogenic or traumatic events. We herein describe a case of meningitis caused by this organism in a patient without any apparent risk factors. In an assay of the patient's cerebrospinal fluid, cross-reaction occurred with Streptococcus pneumoniae antigen-coated latex particles in the Pastorex Meningitis Kit. In the in vitro assays, three of the five clinically isolated S. salivarius strains showed cross-reactions with the kit, indicating that these strains expressed pneumococcal antigen-like antigens. This case shows that meningitis caused by S. salivarius can occur spontaneously and it may sometimes be misdiagnosed as S. pneumoniae infection. PMID:24492701

  6. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

    PubMed Central

    2010-01-01

    Background Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group. Results Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence. Conclusions Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments. PMID:21034474

  7. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae.

    PubMed

    Hoogendijk, Arie J; Roelofs, Joris J T H; Duitman, Janwillem; van Lieshout, Miriam H P; Blok, Dana C; van der Poll, Tom; Wieland, Catharina W

    2012-01-01

    Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. R-roscovitine, a purine analog, is a potent cyclin-dependent kinase (CDK)-1, -2, -5 and -7 inhibitor that has the ability to inhibit the cell cycle and to induce polymorphonuclear cell (PMN) apoptosis. We sought to investigate the effect of R-roscovitine on LTA-induced activation of cell lines with relevance for lung inflammation in vitro and on lung inflammation elicited by either LTA or viable S. pneumoniae in vivo. In vitro R-roscovitine enhanced apoptosis in PMNs and reduced tumor necrosis factor (TNF)-α and keratinocyte chemoattractant (KC) production in MH-S (alveolar macrophage) and MLE-12/MLE-15 (respiratory epithelial) cell lines. In vivo R-roscovitine treatment reduced PMN numbers in bronchoalveolar lavage fluid during LTA-induced lung inflammation; this effect was reversed by inhibiting apoptosis. Postponed treatment with R-roscovitine (24 and 72 h) diminished PMN numbers in lung tissue during gram-positive pneumonia; this step was associated with a transient increase in pulmonary bacterial loads. R-roscovitine inhibits proinflammatory responses induced by the gram-positive stimuli LTA and S. pneumoniae. R-roscovitine reduces PMN numbers in lungs upon LTA administration by enhancing apoptosis. The reduction in PMN numbers caused by R-roscovitine during S. pneumoniae pneumonia may hamper antibacterial defense. PMID:22692577

  8. Spontaneous bacterial peritonitis due to streptococcus pneumoniae--case report.

    PubMed

    Litarski, Andrzej; Janczak, Dariusz; Cianciara, Jan; Merenda, Marcin

    2011-05-01

    Spontaneous bacterial peritonitis is caused by infection of ascitic fluid without any apparent intraabdominal source of infection. The disease most commonly occurs in patients with cirrhosis and 70% of cases of infections are caused by pathogenes from gastrointestinal tract. The article presents the case of 38-year-old patient with spontaneous peritonitis who was treated surgically. The primary nature of the disease was confirmed by laparotomy and bacteriological examination results (Streptoccocus pneumonia) of ascitic fluid. After 54 days of hospitalisation and undergoing re-laparotomy, he was discharged in good condition. PMID:22166482

  9. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages

    PubMed Central

    Campisi, Edmondo; Rinaudo, C. Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S.; Baker, Carol J.; Margarit, Imma; Rosini, Roberto

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV. PMID:27411639

  10. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages.

    PubMed

    Campisi, Edmondo; Rinaudo, C Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S; Baker, Carol J; Margarit, Imma; Rosini, Roberto

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV. PMID:27411639

  11. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element

    PubMed Central

    2013-01-01

    Camels are the most valuable livestock species in the Horn of Africa and play a pivotal role in the nutritional sustainability for millions of people. Their health status is therefore of utmost importance for the people living in this region. Streptococcus agalactiae, a Group B Streptococcus (GBS), is an important camel pathogen. Here we present the first epidemiological study based on genetic and phenotypic data from African camel derived GBS. Ninety-two GBS were characterized using multilocus sequence typing (MLST), capsular polysaccharide typing and in vitro antimicrobial susceptibility testing. We analysed the GBS using Bayesian linkage, phylogenetic and minimum spanning tree analyses and compared them with human GBS from East Africa in order to investigate the level of genetic exchange between GBS populations in the region. Camel GBS sequence types (STs) were distinct from other STs reported so far. We mapped specific STs and capsular types to major disease complexes caused by GBS. Widespread resistance (34%) to tetracycline was associated with acquisition of the tetM gene that is carried on a Tn916-like element, and observed primarily among GBS isolated from mastitis. The presence of tetM within different MLST clades suggests acquisition on multiple occasions. Wound infections and mastitis in camels associated with GBS are widespread and should ideally be treated with antimicrobials other than tetracycline in East Africa. PMID:24083845

  12. Characterization of Mucoid and Non-Mucoid Streptococcus pneumoniae Isolated From Outpatients

    PubMed Central

    Saito, Ryoichi; Akikura, Teru; Iwama, Akiko; Adachi, Yukari; Kaji, Daiki; Kakinuma, Kyoka; Takahashi, Hiroshi

    2015-01-01

    Background Streptococcus pneumoniae causes pneumonia, sepsis, and meningitis. This study aimed to investigate the clinical characteristics of mucoid and non-mucoid isolates of S. pneumoniae, and to explore the relationship between the isolate phenotypes and their antibiotic susceptibility. Methods Clinical isolates from 3,453 non-repetitive S. pneumoniae (189 mucoid and 3,264 non-mucoid) infections obtained between January 2008 and December 2012 from outpatients at the Kimitsu-Central Hospital were evaluated. Results Compared to the non-mucoid isolates, the mucoid phenotypes were more susceptible to certain antibiotics such as erythromycin, clarithromycin, and tetracycline as opposed to clindamycin, chloramphenicol, and rifampicin. The mucoid phenotype was isolated more frequently from schoolchildren, adults, and elderly adults in a variety of clinical sites, including otorrhea, genitalia, pus, and eye discharge than the non-mucoid phenotype. This suggested that mucoid isolates are more likely to be involved than non-mucoid isolates in various local infections. Systemic infection, which indicates invasiveness, was not associated with the mucoid or non-mucoid phenotype. Conclusions The results of this study suggest that mucoid isolates tend to have higher susceptibility than non-mucoid isolates to antibiotics. To the best of our knowledge, mucoid and non-mucoid S. pneumoniae isolates considerably differ in terms of clinical isolation site and age-specific prevalence. PMID:26131412

  13. Silica desiccant packets for storage and transport of Streptococcus pneumoniae and other clinically relevant species.

    PubMed

    Pell, Casey L; Williams, Melanie J; Dunne, Eileen M; Porter, Barbara D; Satzke, Catherine

    2013-01-01

    Bacterial isolates are often transported between laboratories for research and diagnostic purposes. Silica desiccant packets (SDPs), which are inexpensive and do not require freezing, were evaluated for storage and recovery of bacterial isolates. Conditions such as inoculum size, swab type and temperature of storage were investigated using ten Streptococcus pneumoniae isolates. The optimized protocol was then tested using 49 additional S. pneumoniae isolates representing 40 serogroups. Overall, S. pneumoniae growth was considered satisfactory (>100 colony forming units) for 98/109 (89.9%) and 20/20 (100%) swabs after 14 days at room temperature or 28 days at 4° C, respectively. Storage in SDPs did not impact on the ability of S. pneumoniae isolates to be subsequently serotyped. When the survival of nine other clinically relevant bacterial species was tested, seven were viable after 28 days at room temperature, the exceptions being Neisseria gonorrhoeae and Haemophilus influenzae. SDPs are suitable for transport and short-term storage of bacterial species including S. pneumoniae. PMID:23940811

  14. Antimicrobial susceptibility and analysis of macrolide resistance genes in Streptococcus pneumoniae isolated in Hamadan

    PubMed Central

    Mosleh, Mohammad Najafi; Gharibi, Marzieh; Alikhani, Mohammad Yousef; Saidijam, Massoud; Vakhshiteh, Faezeh

    2014-01-01

    Objective(s): Macrolide resistant Streptococcus pneumoniae pose an emerging problem globally. The aim of this study was to investigate the prevalence of ermB and mefA genes (macrolide resistant genes) by polymerase chain reaction (PCR) method and to detect drug resistance patterns of S. pneumoniae isolated from clinical samples to macrolides and other antibiotic agents by E-test method. Materials and Methods: Fifty five isolates of S. pneumoniae were obtained from clinical samples with microbial tests. The antibiotic susceptibility of isolates for erythromycin, azithromycin, clarithromycin, ceftazidime, ciprofloxacin and vancomycin were determined by E-test method. Genotypic antibiotic resistance pattern was determined by PCR with primer designed for ermB and mefA genes. Results: The number of S. pneumoniae isolates resistance to erythromycin, azithromycin, clarithromycin, ceftazidim, ciprofloxacin were 25.5%, 18.2%, 16.4%, 21.8% and 10.9%, respectively while no resistance to vancomycin was observed. The macrolide resistance genes of ermB and mefA were found in 10.9% and 18.2% of the isolates, respectively. Conclusion: The result of the current study suggests the necessity of evaluation the changes in MIC (minimum inhibitory concentration) values as well as genetic mutations to estimate the prevalence of the resistance antimicrobial agents in S. pneumoniae. PMID:25422753

  15. Integrated Translatomics with Proteomics to Identify Novel Iron–Transporting Proteins in Streptococcus pneumoniae

    PubMed Central

    Yang, Xiao-Yan; He, Ke; Du, Gaofei; Wu, Xiaohui; Yu, Guangchuang; Pan, Yunlong; Zhang, Gong; Sun, Xuesong; He, Qing-Yu

    2016-01-01

    Streptococcus pneumoniae (S.pneumoniae) is a major human pathogen causing morbidity and mortality worldwide. Efficiently acquiring iron from the environment is critical for S. pneumoniae to sustain growth and cause infection. There are only three known iron-uptake systems in Streptococcal species responsible for iron acquisition from the host, including ABC transporters PiaABC, PiuABC, and PitABC. Besides, no other iron-transporting system has been suggested. In this work, we employed our newly established translating mRNA analysis integrated with proteomics to evaluate the possible existence of novel iron transporters in the bacterium. We simultaneously deleted the iron-binding protein genes of the three iron-uptake systems to construct a piaA/piuA/pitA triple mutant (Tri-Mut) of S. pneumoniae D39, in which genes and proteins related to iron transport should be regulated in response to the deletion. With ribosome associated mRNA sequencing-based translatomics focusing on translating mRNA and iTRAQ quantitative proteomics based on the covalent labeling of peptides with tags of varying mass, we indeed observed a large number of genes and proteins representing various coordinated biological pathways with significantly altered expression levels in the Tri-Mut mutant. Highlighted in this observation is the identification of several new potential iron-uptake ABC transporters participating in iron metabolism of Streptococcus. In particular, putative protein SPD_1609 in operon 804 was verified to be a novel iron-binding protein with similar function to PitA in S. pneumoniae. These data derived from the integrative translatomics and proteomics analyses provided rich information and insightful clues for further investigations on iron-transporting mechanism in bacteria and the interplay between Streptococcal iron availability and the biological metabolic pathways. PMID:26870030

  16. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression

    PubMed Central

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N. Luisa

    2015-01-01

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well as applied to other bacterial species as long as multiple whole genome sequences are available that collectively capture the vast majority of the species supragenome. PMID:25641101

  17. [Antibiotic sensitivity of Streptococcus pneumoniae in Tunisia: results of a multicenter study (1998-1999)].

    PubMed

    Mahjoubi-Rhimi, Faouzia; Kechrid, Amel; Boutiba, Ilhem; Mezghani, Senda; Kamoun, Aouatef; Smaoui, Hanene; Thabet, Lamia; Ben Redjeb, Saïda; Hammami, Adnène

    2003-03-01

    We report the results of a multicenter tunisian study, performed over a two-year period (1998-1999), to determine the susceptibility pattern of Streptococcus pneumoniae in our country. A total of 146 S. pneumoniae were collected during the study period. 76 were recovered from adults and 70 from children. 53% of isolates have decreased susceptibility to penicillin, 24% with low level resistance, and 11% with high level resistance. Amoxicillin and cefotaxime decreased susceptibility rates were: 12% (low level resistance exclusively). and 14% (10% with low level resistance and 4% with high level resistance) respectively. Strains isolated from children, showed higher resistance to b lactams than those isolated from adults. Resistance rates to other antibiotics were as follow: erythromycin 28%, choramphenicol 14%, cyclins 23%, thrimethoprim-sulfamethoxazole 28% and rifampin 1%. No vancomycin resistant strain was found. The acquire resistance rates of Streptococcus pneumoniae in Tunisia are worrying, essentially for penicillin and erythomycin. Amoxicillin and cefotaxime have conserved a good activity. PMID:12793066

  18. Interaction between Streptococcus pneumoniae and Staphylococcus aureus in paediatric patients suffering from an underlying chronic disease.

    PubMed

    Esposito, Susanna; Marseglia, Gian Luigi; Colombo, Carla; Iughetti, Lorenzo; Terranova, Leonardo; Ierardi, Valentina; Gambino, Monia; Principi, Nicola

    2015-12-01

    Little is known about the interaction between Streptococcus pneumoniae and Staphylococcus aureus in school-age children and adolescents suffering from an underlying chronic disease. To increase our knowledge in this regard, an oropharyngeal swab was obtained from school-age children and adolescents suffering from asthma (n = 423), cystic fibrosis (CF) (n = 212) and type 1 diabetes mellitus (DM1) (n = 296). S. pneumoniae detection and serotyping were performed using a real-time polymerase chain reaction, and S. aureus detection was performed using the RIDAGENE MRSA system. Among asthmatic, CF and DM1 patients, both pathogens were identified in 65/423 (15.4%), 21/212 (9.9%) and 62/296 (20.9%) children, respectively; S. pneumoniae alone was identified in 127/434 (30.0%), 21/212 (9.9%) and 86/296 (29.1%), respectively; S. aureus alone was identified in 58/434 (13.7%), 78/212 (36.8%) and 49/296 (16.6%), respectively. S. pneumoniae colonisation rates were higher in younger children and declined with age, whereas the frequency of S. aureus colonisation was quite similar in the different age groups. Among asthmatic and CF patients aged 6-9 years, S. aureus carriage was significantly higher in children who were positive for S. pneumoniae (P <0.05). No significant association emerged between S. aureus carriage and carriage of S. pneumoniae serotypes included in the pneumococcal conjugate vaccines (PCVs). This study shows for the first time that school-age children and adolescents with asthma, CF and DM1 are frequently colonised by S. pneumoniae and S. aureus and that no negative relationship seems to exist between these pathogens. Moreover, the supposed protection offered by PCV administration against S. aureus colonisation was not demonstrated. PMID:26395386

  19. Streptococcus pneumoniae induces pyroptosis through the regulation of autophagy in murine microglia.

    PubMed

    Kim, Ji-Yun; Paton, James C; Briles, David E; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-12-29

    Streptococcus pneumoniae is responsible for significant mortality and morbidity worldwide and causes invasive pneumococcal diseases including pneumococcal meningitis. Pyroptosis is caspase-1-dependent inflammatory cell death and is known to be induced by various microbial infections. In the present study, we investigated the molecular mechanisms that regulate pyroptosis induced by S. pneumoniae in microglia. Our results revealed that S. pneumoniae induced pyroptosis through caspase-1 activation and IL-1β production. We also found that the activation of caspase-1 and the maturation of IL-1β and IL-18 in the S. pneumoniae-triggered pyroptotic cell death process were mediated by NLRP3 inflammasome. In addition, pneumococcal infection increased the expression of autophagy-related genes and induced autophagosome formation. We also showed that the inhibition of autophagy promoted pneumococcus-induced pyroptosis. Furthermore, ROS was generated by pneumococcal infection and inhibited caspase-1 activation within 4 h of infection. However, in the late phase of infection, IL-1β secretion and caspase-1-dependent cell death were induced by ROS. These results suggest that autophagy induction transiently delay pyroptosis induced by S. pneumoniae in microglia. Our study also revealed that the activation of caspase-1 and the production of IL-1β were induced by pneumolysin and that pneumolysin triggered pyroptosis in microglial cells. Similar to the in vitro results, S. pneumoniae induced caspase-1 activation and caspase-1-dependent cytokine maturation in the mouse meningitis model. Thus, the present data demonstrate that S. pneumoniae induces pyroptosis in murine microglia and that NLRP3 inflammasome is critical for caspase-1 activation during the process. Furthermore, the induction of autophagy could transiently protect microglia from pyroptosis. PMID:26683708

  20. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae.

    PubMed

    Eijkelkamp, Bart A; Morey, Jacqueline R; Ween, Miranda P; Ong, Cheryl-lynn Y; McEwan, Alastair G; Paton, James C; McDevitt, Christopher A

    2014-01-01

    Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA), a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a 'toxic' effect on bacterial pathogens, such as S. pneumoniae. PMID:24558498

  1. Pneumococcal Surface Protein A Plays a Major Role in Streptococcus pneumoniae-Induced Immunosuppression.

    PubMed

    Saumyaa; Pujanauski, Lindsey; Colino, Jesus; Flora, Michael; Torres, Raul M; Tuomanen, Elaine; Snapper, Clifford M

    2016-05-01

    Intact, inactivated Streptococcus pneumoniae [including the unencapsulated S. pneumoniae, serotype 2 strain (R36A)] markedly inhibits the humoral immune response to coimmunized heterologous proteins, a property not observed with several other intact Gram-positive or Gram-negative bacteria. In this study, we determined the nature of this immunosuppressive property. Because phosphorylcholine (PC), a major haptenic component of teichoic acid in the S. pneumoniae cell wall, and lipoteichoic acid in the S. pneumoniae membrane were previously reported to be immunosuppressive when derived from filarial parasites, we determined whether R36A lacking PC (R36A(pc-)) was inhibitory. Indeed, although R36A(pc-) exhibited a markedly reduced level of inhibition of the IgG response to coimmunized chicken OVA (cOVA), no inhibition was observed when using several other distinct PC-expressing bacteria or a soluble, protein-PC conjugate. Further, treatment of R36A with periodate, which selectively destroys PC residues, had no effect on R36A-mediated inhibition. Because R36A(pc-) also lacks choline-binding proteins (CBPs) that require PC for cell wall attachment, and because treatment of R36A with trypsin eliminated its inhibitory activity, we incubated R36A in choline chloride, which selectively strips CBPs from its surface. R36A lacking CBPs lost most of its inhibitory property, whereas the supernatant of choline chloride-treated R36A, containing CBPs, was markedly inhibitory. Coimmunization studies using cOVA and various S. pneumoniae mutants, each genetically deficient in one of the CBPs, demonstrated that only S. pneumoniae lacking the CBP pneumococcal surface protein A lost its ability to inhibit the IgG anti-cOVA response. These results strongly suggest that PspA plays a major role in mediating the immunosuppressive property of S. pneumoniae. PMID:27029587

  2. Streptococcus pneumoniae induces pyroptosis through the regulation of autophagy in murine microglia

    PubMed Central

    Kim, Ji-Yun; Paton, James C.; Briles, David E.; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-01-01

    Streptococcus pneumoniae is responsible for significant mortality and morbidity worldwide and causes invasive pneumococcal diseases including pneumococcal meningitis. Pyroptosis is caspase-1-dependent inflammatory cell death and is known to be induced by various microbial infections. In the present study, we investigated the molecular mechanisms that regulate pyroptosis induced by S. pneumoniae in microglia. Our results revealed that S. pneumoniae induced pyroptosis through caspase-1 activation and IL-1β production. We also found that the activation of caspase-1 and the maturation of IL-1β and IL-18 in the S. pneumoniae-triggered pyroptotic cell death process were mediated by NLRP3 inflammasome. In addition, pneumococcal infection increased the expression of autophagy-related genes and induced autophagosome formation. We also showed that the inhibition of autophagy promoted pneumococcus-induced pyroptosis. Furthermore, ROS was generated by pneumococcal infection and inhibited caspase-1 activation within 4 h of infection. However, in the late phase of infection, IL-1β secretion and caspase-1-dependent cell death were induced by ROS. These results suggest that autophagy induction transiently delay pyroptosis induced by S. pneumoniae in microglia. Our study also revealed that the activation of caspase-1 and the production of IL-1β were induced by pneumolysin and that pneumolysin triggered pyroptosis in microglial cells. Similar to the in vitro results, S. pneumoniae induced caspase-1 activation and caspase-1-dependent cytokine maturation in the mouse meningitis model. Thus, the present data demonstrate that S. pneumoniae induces pyroptosis in murine microglia and that NLRP3 inflammasome is critical for caspase-1 activation during the process. Furthermore, the induction of autophagy could transiently protect microglia from pyroptosis. PMID:26683708

  3. Extracellular Zinc Competitively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae

    PubMed Central

    Eijkelkamp, Bart A.; Morey, Jacqueline R.; Ween, Miranda P.; Ong, Cheryl-lynn Y.; McEwan, Alastair G.; Paton, James C.; McDevitt, Christopher A.

    2014-01-01

    Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA), a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a ‘toxic’ effect on bacterial pathogens, such as S. pneumoniae. PMID:24558498

  4. Macrolide-Resistant Streptococcus pneumoniae and Streptococcus pyogenes in the Pediatric Population in Germany during 2000-2001

    PubMed Central

    Reinert, Ralf René; Lütticken, Rudolf; Bryskier, André; Al-Lahham, Adnan

    2003-01-01

    In a nationwide study in Germany covering 13 clinical microbiology laboratories, a total of 307 Streptococcus pyogenes (mainly pharyngitis) and 333 Streptococcus pneumoniae (respiratory tract infections) strains were collected from outpatients less than 16 years of age. The MICs of penicillin G, amoxicillin, cefotaxime, erythromycin A, clindamycin, levofloxacin, and telithromycin were determined by the microdilution method. In S. pyogenes isolates, resistance rates were as follows: penicillin, 0%; erythromycin A, 13.7%; and levofloxacin, 0%. Telithromycin showed good activity against S. pyogenes isolates (MIC90 = 0.25 μg/ml; MIC range, 0.016 to 16 μg/ml). Three strains were found to be telithromycin-resistant (MIC ≥ 4 μg/ml). Erythromycin-resistant strains were characterized for the underlying resistance genotype, with 40.5% having the efflux type mef(A), 38.1% having the erm(A), and 9.5% having the erm(B) genotypes. emm typing of macrolide-resistant S. pyogenes isolates showed emm types 4 (45.2%), 77 (26.2%), and 12 (11.9%) to be predominant. In S. pneumoniae, resistance rates were as follows: penicillin intermediate, 7.5%; penicillin resistant, 0%; erythromycin A, 17.4%; and levofloxacin, 0%. Telithromycin was highly active against pneumococcal isolates (MIC90 ≤ 0.016 μg/ml; range, 0.016 to 0.5 μg/ml). The overall resistance profile of streptococcal respiratory tract isolates is still favorable, but macrolide resistance is of growing concern in Germany. PMID:12543648

  5. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis.

    PubMed

    Hathaway, Lucy J; Grandgirard, Denis; Valente, Luca G; Täuber, Martin G; Leib, Stephen L

    2016-03-01

    Streptococcus pneumoniaebacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement. PMID:27009189

  6. Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing.

    PubMed

    Wang, Bei; Gan, Zhen; Cai, Shuanghu; Wang, Zhongliang; Yu, Dapeng; Lin, Ziwei; Lu, Yishan; Wu, Zaohe; Jian, Jichang

    2016-07-01

    MicroRNAs are a kind of small non-coding RNAs that participate in various biological processes. Deregulated microRNA expression is associated with several types of diseases. Tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify miRNAs and investigate immune-related miRNAs of O. niloticus, we applied high-throughput sequencing technology to identify and analyze miRNAs from tilapia infected with Streptococcus agalactiae at a timescale of 72 h divided into six different time points. The results showed that a total of 3009 tilapia miRNAs were identified, including in 1121 miRNAs which have homologues in the currently available databases and 1878 novel miRNAs. The expression levels of 218 tilapia miRNAs were significantly altered at 6 h-72 h post-bacterial infection (pi), and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. For the 1121 differentially expressed tilapia miRNAs target 41961 genes. GO and KEGG enrichment analysis revealed that some target genes of tilapia miRNAs were grouped mainly into the categories of apoptotic process, signal pathway, and immune response. This is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in spleen in normal conditions relating to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions. PMID:27050313

  7. Effects of some dietary crude plant extracts on the growth and gonadal maturity of Nile tilapia (Oreochromis niloticus) and their resistance to Streptococcus agalactiae infection.

    PubMed

    Kareem, Zana H; Abdelhadi, Yasser M; Christianus, Annie; Karim, Murni; Romano, Nicholas

    2016-04-01

    A 90-day feeding trial was conducted on the growth performance, feeding efficacy, body indices, various hematological and plasma biochemical parameters, and histopathological examination of the gonads from male and female Nile tilapia fingerlings when fed different crude plant extracts from Cinnamomum camphora, Euphorbia hirta, Azadirachta indica, or Carica papaya at 2 g kg(-1) compared to a control diet. This was followed by a 14-day challenge to Streptococcus agalactiae. All treatments were triplicated, and each treatment consisted of 30 fish. Results showed that C. papaya extracts were the most effective at delaying gonadal maturation to both male and female tilapia, as well as significantly increasing (P < 0.05) growth performance compared to the control treatment. Similarly, dietary C. camphora and E. hirta extracts also significantly improved growth, while no significant growth effect was detected between the A. indica and control treatments (P > 0.05). Further, crude body lipid was lower in the C. camphora, E. hirta and C. papaya treatments, but was only significantly lower for the E. hirta treatment compared to the control. Meanwhile, none of the hematological or biochemical parameters were significantly affected, although plasma ALT was significantly lower for tilapia fed A. indica compared to the control. After the 14-day bacterial challenge, tilapia fed C. camphora supplementation had significantly higher survival, compared to the control, but was not significantly higher than the other supplemented diets. Results indicate that dietary C. papaya extract can significantly promote growth and delay gonadal maturation to both male and female tilapia, while C. camphora was the most effective prophylactic to S. agalactiae and may be a cost-effective and eco-friendly alternative to antibiotics. PMID:26643907

  8. Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNA(Lys CTT) gene.

    PubMed

    Puymège, Aurore; Bertin, Stéphane; Guédon, Gérard; Payot, Sophie

    2015-10-01

    Streptococcus agalactiae is the first cause of invasive infections in human neonates and is also a major bovine and fish pathogen. High genomic diversity was observed in this species that hosts numerous mobile genetic elements, in particular elements transferable by conjugation. This works aims to evaluate the contribution of these elements to GBS genome diversity. Focusing on genomic islands integrated in the tRNA(Lys) (CTT) gene, a known hotspot of recombination, an extensive in silico search was performed on the sequenced genome of 303 strains of S. agalactiae isolated from different hosts. In all the isolates (except 9), whatever their origin (human, bovine, camel, dog, gray seal, dolphin, fish species or bullfrog), this locus carries highly diverse genomic islands transferable by conjugation such as integrative and conjugative elements (ICEs), integrative and mobilizable elements (IMEs), CIs-mobilizable elements (CIMEs) or composite elements. Transfer of an ICE from an ST67 bovine strain to a phylogenetically distant ST23 human isolate was obtained experimentally indicating that there was no barrier to ICE transfer between strains from different hosts. Interestingly, a novel family of putative IMEs that site-specifically integrate in the nic site of oriT of ICEs belonging to Tn916/ICESt3 superfamily was detected in silico. These elements carry an antibiotic resistance gene (lsa(C)) already described to confer cross-resistance to lincosamides, streptogramins A and pleuromutilins. Further work is needed to evaluate the impact of these IMEs on the transfer of targeted ICEs and the mobility and the dissemination of these IMEs. PMID:25832353

  9. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages

    PubMed Central

    Lier, Clément; Baticle, Elodie; Horvath, Philippe; Haguenoer, Eve; Valentin, Anne-Sophie; Glaser, Philippe; Mereghetti, Laurent; Lanotte, Philippe

    2015-01-01

    CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) are found in 90% of archaea and about 40% of bacteria. In this original system, CRISPR arrays comprise short, almost unique sequences called spacers that are interspersed with conserved palindromic repeats. These systems play a role in adaptive immunity and participate to fight non-self DNA such as integrative and conjugative elements, plasmids, and phages. In Streptococcus agalactiae, a bacterium implicated in colonization and infections in humans since the 1960s, two CRISPR-Cas systems have been described. A type II-A system, characterized by proteins Cas9, Cas1, Cas2, and Csn2, is ubiquitous, and a type I–C system, with the Cas8c signature protein, is present in about 20% of the isolates. Unlike type I–C, which appears to be non-functional, type II-A appears fully functional. Here we studied type II-A CRISPR-cas loci from 126 human isolates of S. agalactiae belonging to different clonal complexes that represent the diversity of the species and that have been implicated in colonization or infection. The CRISPR-cas locus was analyzed both at spacer and repeat levels. Major distinctive features were identified according to the phylogenetic lineages previously defined by multilocus sequence typing, especially for the sequence type (ST) 17, which is considered hypervirulent. Among other idiosyncrasies, ST-17 shows a significantly lower number of spacers in comparison with other lineages. This characteristic could reflect the peculiar virulence or colonization specificities of this lineage. PMID:26124774

  10. Characterisation of Invasive Streptococcus pneumoniae Isolated from Cambodian Children between 2007 – 2012

    PubMed Central

    Giess, Adam; Soeng, Sona; Sar, Poda; Kumar, Varun; Nhoung, Pheakdey; Bousfield, Rachel; Turner, Paul; Stoesser, Nicole; Day, Nicholas P. J.; Parry, Christopher M.

    2016-01-01

    Background The 13-valent pneumococcal vaccine (PCV13) was introduced in Cambodia in January 2015. There are limited data concerning the common serotypes causing invasive pneumococcal disease (IPD). Knowledge of the circulating pneumococcal serotypes is important to monitor epidemiological changes before and after vaccine implementation. Methods All episodes of IPD defined by the isolation of Streptococcus pneumoniae from blood, cerebrospinal fluid or other sterile site in Cambodian children admitted to the Angkor Hospital for Children in Siem Reap, Northwestern Cambodia, between 1st January 2007 and 1st July 2012 were retrospectively studied. Streptococcus pneumoniae isolates that could be retrieved underwent phenotypic typing and whole genome sequencing. Results There were 90 Cambodian children hospitalized with IPD with a median (IQR) age of 2.3 years (0.9–6.2). The case fatality was 15.6% (95% CI 8–23). Of 50 Streptococcus pneumoniae isolates available for further testing, 46% were penicillin non-susceptible and 8% were ceftriaxone non-susceptible, 78% were cotrimoxazole resistant, 30% were erythromycin resistant and 30% chloramphenicol resistant. There were no significant changes in resistance levels over the five-year period. The most common serotypes were 1 (11/50; 22%), 23F (8/50; 16%), 14 (6/50; 12%), 5 (5/50; 10%) and 19A (3/50; 6%). Coverage by PCV7, PCV10 and PCV13 was 44%, 76% and 92% respectively. We identified novel multilocus sequence types and resistotypes using whole genome sequencing. Conclusions This study suggests IPD is an important disease in Cambodian children and can have a significant mortality. PCV13 coverage of the serotypes determined in studied strains was high and consistent with another recent study. The phenotypic resistance patterns observed were similar to other regional studies. The use of whole genome sequencing in the present study provides additional typing and resistance information together with the description of novel

  11. Antigenicity, Expression, and Molecular Characterization of Surface-Located Pullulanase of Streptococcus pneumoniae

    PubMed Central

    Bongaerts, Roger J. M.; Heinz, Hans-Peter; Hadding, Ulrich; Zysk, Gregor

    2000-01-01

    A putative pullulanase-encoding gene from Streptococcus pneumoniae was identified by screening a genomic expression library with human convalescent-phase serum. The 3,864-bp gene encoded a 143-kDa protein. Surface location and pullulanase activity of the protein, designated SpuA, was demonstrated. SpuA was present in all investigated pneumococcal isolates of different serotypes. The spuA 5′ end was highly conserved among clinical isolates except for a 75-bp region. The properties of SpuA reported here indicate that this novel immunogenic surface protein might have potential as a vaccine target. PMID:11083842

  12. [PNEUMOCOCCAL VACCINE IN ADULTS REDUCES THE RISK OF INFECTIONS CAUSED BY STREPTOCOCCUS PNEUMONIAE].

    PubMed

    Belocerkovskaja, Ju G; Romanovskih, A G; Styrt, E A

    2016-01-01

    Streptococcus pneumoniae is a major cause of severe disease worldwide, particularly in the risk population. Two pneumococcal vaccines are currently available for specific prevention of pneumococcal infections among adults in Russia: a 23-valent pneumococcal polysaccharide vaccine (PPSV23) and a 13-valent pneumococcal conjugate vaccine (PCV13). The article describes modern views on the effectiveness and safety of two pneumococcal vaccines in adults with underlying medical conditions and adults aged ≥ 65 years and provides current recommendations for routine use of PPSV23 and PCV13 among persons included in the risk group. PMID:27172726

  13. Streptococcus pneumoniae Meningitis Presenting with Acute Urinary Retention and Emphysematous Cystitis.

    PubMed

    Mizuno, Yasushi; Doi, Asako; Endo, Akiko; Nishioka, Hiroaki

    2016-01-01

    A combination of acute urinary retention and aseptic meningitis has occasionally been described, which is referred to as meningitis-retention syndrome. In contrast, acute urinary retention has rarely been reported in bacterial meningitis. We herein report a case of Streptococcus pneumoniae meningitis presenting with acute urinary retention which led to emphysematous cystitis in an elderly woman. She presented with impaired consciousness and a distended lower abdomen. She was diagnosed with pneumococcal meningitis by lumbar puncture. Abdominal computed tomography revealed the presence of emphysematous cystitis. She completely recovered with antibiotic therapy without any complications. Acute urinary retention can occur secondary to pneumococcal meningitis. PMID:27477423

  14. Population genetics and evolution of the pan-genome of Streptococcus pneumoniae.

    PubMed

    Muzzi, Alessandro; Donati, Claudio

    2011-12-01

    The genetic variability in bacterial species is much larger than in other kingdoms of life. The gene content between pairs of isolates can diverge by as much as 30% in species like Escherichia coli or Streptococcus pneumoniae. This unexpected finding led to the introduction of the concept of the pan-genome, the set of genes that can be found in a given bacterial species. The genome of any isolate is thus composed by a "core genome" shared by all strains and characteristic of the species, and a "dispensable genome" that accounts for many of the phenotypic differences between strains. The pan-genome is usually much larger than the genome of any single isolate and, given the ability of many bacteria to exchange genetic material with the environment, constitutes a reservoir that could enhance their ability to survive in a mutating environment. To understand the evolution of the pan-genome of an important pathogen and its interactions with the commensal microbial flora, we have analyzed the genomes of 44 strains of Streptococcus pneumoniae, one of the most important causes of microbial diseases in humans. Despite evidence of extensive homologous recombination, the S. pneumoniae phylogenetic tree reconstructed from polymorphisms in the core genome identified major groups of genetically related strains. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange with related species sharing the same ecological niche was the main mechanism of evolution of S. pneumonia; and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome of S. pneumoniae

  15. Purpura fulminans associated with Streptococcus pneumoniae septicemia in an asplenic pediatric patient.

    PubMed

    Konda, S; Zell, D; Milikowski, C; Alonso-Llamazares, J

    2013-09-01

    Purpura fulminans is a rapidly progressive syndrome of small-vessel thrombosis and hemorrhagic necrosis of the skin accompanied by disseminated intravascular coagulation. We describe a case of Streptococcus pneumoniae septicemia in an asplenic 5-year-old boy on oral tacrolimus, with a past medical history of multivisceral organ transplantation and subsequent development of purpura fulminans on his chest and distal extremities. The acute infectious form of purpura fulminans is usually caused by gram-negative bacteria. Cases secondary to gram-positive encapsulated bacteria usually occur when individuals are immuno-suppressed or have anatomic or functional asplenia. Our patient had both, which likely increased his susceptibility, and he responded well to antimicrobial therapy in addition to prophylactic coverage in the setting of his immunosuppression. We review the literature for similar cases due to S. pneumoniae in the pediatric population and discuss the etiology and treatment of purpura fulminans. PMID:23985086

  16. Macrolide resistance determinants in erythromycin-resistant Streptococcus pneumoniae in Turkey.

    PubMed

    Gulay, Zeynep; Ozbek, Ozgen Alpay; Bicmen, Meral; Gur, Deniz

    2008-11-01

    To determine the major molecular mechanisms of macrolide resistance among Streptococcus pneumoniae isolates in Turkey, we examined a total of 151 isolates collected from different regions of Turkey. Overall, 40 (26.4%) isolates were resistant to erythromycin. The most common mechanism (38/40) was target site modification due to erm (B) genes. Only two isolates harbored the mef (A)/(E) efflux gene. A clonal spread of resistant strains could not be demonstrated by BOX-polymerase chain reaction. The results from this study have shown that the erm (B) gene is predominant in Turkish S. pneumoniae isolates, as in isolates from the rest of the world, and a clonal dissemination is not responsible for this resistance profile. PMID:19050364

  17. Prevalence and antibiotic resistance of commensal Streptococcus pneumoniae in nine European countries.

    PubMed

    Yahiaoui, Rachid Y; den Heijer, Casper Dj; van Bijnen, Evelien Me; Paget, W John; Pringle, Mike; Goossens, Herman; Bruggeman, Cathrien A; Schellevis, François G; Stobberingh, Ellen E

    2016-06-01

    The human microbiota represents an important reservoir of antibiotic resistance. Moreover, the majority of antibiotics are prescribed in primary care. For this reason, we assessed the prevalence and antibiotic resistance of nasal carriage strains of Streptococcus pneumoniae, the most prevalent bacterial causative agent of community-acquired respiratory tract infections, in outpatients in nine European countries. Nasal swabs were collected between October 2010 and May 2011, from 32,770 patients, recruited by general practices in nine European countries. Overall prevalence of S. pneumoniae nasal carriage in the nine countries was 2.9%. The carriage was higher in men (3.7%) than in women (2.7%). Children (4-9 years) had a higher carriage prevalence (27.2%) compared with those older than 10 years (1.9%). The highest resistance observed was to cefaclor. The highest prevalence of multidrug resistance was found in Spain and the lowest prevalence was observed in Sweden. PMID:27191588

  18. Streptococcus pneumoniae-associated cellulitis in a two-month-old Domestic Shorthair kitten.

    PubMed

    Zhang, Shuping; Wilson, Floyd; Pace, Lanny

    2006-03-01

    An approximately 2-month-old, reproductively intact female Domestic Shorthair kitten was presented to the Mississippi Veterinary Research and Diagnostic Laboratory with a history of possible trauma to the left shoulder region while playing with children, and was found dead the following day. Marked swelling, with subcutaneous edema and hemorrhages, was observed in the left forelimb. Severe pleocellular, but largely suppurative cellulitis, fasciitis, and interstitial myositis with edema were observed microscopically in sections from the affected limb. Massive numbers of gram-positive diplococci also were observed. Other pathologic changes included moderate interstitial pneumonia, mild cholangitis, lymph node hemorrhage, gastrointestinal nematodiasis, mild enteritis, and mild interstitial nephritis. Bacteriologic culture identified Streptococcus pneumoniae as the causative agent, which was confirmed by polymerase chain reaction amplification of the pneumolysin gene from chromosomal DNA of the isolate. PMID:16617709

  19. Connection between Trimethoprim-Sulfamethoxazole Use and Resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis▿

    PubMed Central

    Kärpänoja, Pauliina; Nyberg, Solja T.; Bergman, Miika; Voipio, Tinna; Paakkari, Pirkko; Huovinen, Pentti; Sarkkinen, Hannu

    2008-01-01

    The association between trimethoprim-sulfamethoxazole use and resistance among the major respiratory tract pathogens was investigated by comparing regional consumption of the drug to regional resistance in the following year in 21 central hospital districts in Finland. A total of 23,530 Streptococcus pneumoniae isolates, 28,320 Haemophilus influenzae isolates, and 14,138 Moraxella catarrhalis isolates were tested for trimethoprim-sulfamethoxazole susceptibility during the study period (1998-2004). Among the S. pneumoniae isolates, a statistically significant connection was found between regional consumption and resistance. No statistically significant connection was found between regional trimethoprim-sulfamethoxazole use and resistance among H. influenzae and M. catarrhalis isolates. According to our results, it seems that only in pneumococci can the development of trimethoprim-sulfamethoxazole resistance be influenced by restricting its use. However, trimethoprim-sulfamethoxazole remains an important antimicrobial agent because of its reasonable price. Hence, resistance to trimethoprim-sulfamethoxazole among these pathogens needs continuous monitoring. PMID:18443116

  20. Absence of capsule reveals glycan-mediated binding and recognition of salivary mucin MUC7 by Streptococcus pneumoniae.

    PubMed

    Thamadilok, S; Roche-Håkansson, H; Håkansson, A P; Ruhl, S

    2016-04-01

    Salivary proteins modulate bacterial colonization in the oral cavity and interact with systemic pathogens that pass through the oropharynx. An interesting example is the opportunistic respiratory pathogen Streptococcus pneumoniae that normally resides in the nasopharynx, but belongs to the greater Mitis group of streptococci, most of which colonize the oral cavity. Streptococcus pneumoniae also expresses a serine-rich repeat (SRR) adhesin, PsrP, which is a homologue to oral Mitis group SRR adhesins, such as Hsa of Streptococcus gordonii and SrpA of Streptococcus sanguinis. As the latter bind to salivary glycoproteins through recognition of terminal sialic acids, we wanted to determine whether S. pneumoniae also binds to salivary proteins through possibly the same mechanism. We found that only a capsule-free mutant of S. pneumoniae TIGR4 binds to salivary proteins, most prominently to mucin MUC7, but that this binding was not mediated through PsrP or recognition of sialic acid. We also found, however, that PsrP is involved in agglutination of human red blood cells (RBCs). After removal of PsrP, an additional previously masked lectin-like adhesin activity mediating agglutination of sialidase-treated RBCs becomes revealed. Using a custom-spotted glycoprotein and neoglycoprotein dot blot array, we identify candidate glycan motifs recognized by PsrP and by the putative S. pneumoniae adhesin that could perhaps be responsible for pneumococcal binding to salivary MUC7 and glycoproteins on RBCs. PMID:26172471

  1. Allergic airway inflammation disrupts interleukin-17 mediated host defense against streptococcus pneumoniae infection.

    PubMed

    Guo, Sheng; Wu, Liang-Xia; Jones, Can-Xin; Chen, Ling; Hao, Chun-Li; He, Li; Zhang, Jian-Hua

    2016-02-01

    Despite decreasing rates of invasive pneumococcal disease caused by vaccine serotypes, the prevalence of invasive pneumococcal pneumonia in asthmatic patients remains high. However, little is known about the mechanisms underlying the susceptibility of the asthmatic airway to bacterial infections. In this study, we used a combined model of allergic airway inflammation and Streptococcus pneumoniae lung infection to investigate the association between persistent allergic inflammation in the airway and antibacterial host defenses against S. pneumoniae. When challenged with S. pneumoniae, allergic mice exhibited higher airway bacterial burdens, greater eosinophil infiltration, lower neutrophil infiltration, and more severe structural damage than non-allergic mice. In sensitized mice, S. pneumoniae infection elicited higher IL-4 but lower IFN-γ, IL-17 and defensin-β2 expression than in control mice. These results indicate that persistent allergic inflammation impaired airway host defense against S. pneumoniae is associated with the insufficient IL-17 responses. To elicit IL-17 induced-anti-bacterial immune responses, mice were intranasally immunized with rIL-17. Immunized mice exhibited fewer bacterial colonies in the respiratory tract and less severe lung pathology than unimmunized mice. rIL-17 contributed to airway host defense enhancement and innate immune response promotion, which was associated with increased IL-23, MIP-2 and defensin-β2 expression. Administration of exogenous IL-17 (2μg/mouse) suppressed eosinophil-related immune responses. The results demonstrate IL-17 plays a key role in host defenses against bacterial infection in allergic airways and suggest that exogenous IL-17 administration promotes the anti-becterial immune responses and attenuates the existed allergic inflammation. PMID:26699848

  2. Nasopharyngeal carriage of Streptococcus pneumoniae in adults infected with human immunodeficiency virus in Jakarta, Indonesia.

    PubMed

    Harimurti, Kuntjoro; Saldi, Siti R F; Dewiasty, Esthika; Khoeri, Miftahuddin M; Yunihastuti, Evi; Putri, Tiara; Tafroji, Wisnu; Safari, Dodi

    2016-01-01

    This study investigated the distribution of serotype and antimicrobial susceptibility of Streptococcus pneumoniae carried by adults infected with human immunodeficiency virus (HIV) in Jakarta, Indonesia. Specimens of nasopharyngeal swab were collected from 200 HIV infected adults aged 21 to 63 years. Identification of S. pneumoniae was done by optochin susceptibility test and PCR for the presence of psaA and lytA genes. Serotyping was performed with sequential multiplex PCR and antibiotic susceptibility with the disk diffusion method. S. pneumoniae strains were carried by 10% adults with serotype 6A/B 20% was common serotype among cultured strains in 20 adults. Most of isolates were susceptible to chloramphenicol (80%) followed by clindamycin (75%), erythromycin (75%), penicillin (55%), and tetracycline (50%). This study found resistance to sulphamethoxazole/trimethoprim was most common with only 15% of strains being susceptible. High non-susceptibility to sulphamethoxazole/trimethoprim was observed in S. pneumoniae strains carried by HIV infected adults in Jakarta, Indonesia. PMID:26896285

  3. Visualization of Streptococcus pneumoniae within Cardiac Microlesions and Subsequent Cardiac Remodeling

    PubMed Central

    Brown, Armand O.; Orihuela, Carlos J.

    2016-01-01

    During bacteremia Streptococcus pneumoniae can translocate across the vascular endothelium into the myocardium and form discrete bacteria-filled microscopic lesions (microlesions) that are remarkable due to the absence of infiltrating immune cells. Due to their release of cardiotoxic products, S. pneumoniae within microlesions are thought to contribute to the heart failure that is frequently observed during fulminate invasive pneumococcal disease in adults. Herein is demonstrated a protocol for experimental mouse infection that leads to reproducible cardiac microlesion formation within 30 hr. Instruction is provided on microlesion identification in hematoxylin & eosin stained heart sections and the morphological distinctions between early and late microlesions are highlighted. Instruction is provided on a protocol for verification of S. pneumoniae within microlesions using antibodies against pneumococcal capsular polysaccharide and immunofluorescent microscopy. Last, a protocol for antibiotic intervention that rescues infected mice and for the detection and assessment of scar formation in the hearts of convalescent mice is provided. Together, these protocols will facilitate the investigation of the molecular mechanisms underlying pneumococcal cardiac invasion, cardiomyocyte death, cardiac remodeling as a result of exposure to S. pneumoniae, and the immune response to the pneumococci in the heart. PMID:25939051

  4. Streptococcus pyogenes Pneumonia in Adults: Clinical Presentation and Molecular Characterization of Isolates 2006-2015

    PubMed Central

    Tamayo, Esther; Montes, Milagrosa; Vicente, Diego; Pérez-Trallero, Emilio

    2016-01-01

    Introduction In the preantibiotic era Streptococcus pyogenes was a common cause of severe pneumonia but currently, except for postinfluenza complications, it is not considered a common cause of community-acquired pneumonia in adults. Aim and Material and Methods This study aimed to identify current clinical episodes of S. pyogenes pneumonia, its relationship with influenza virus circulation and the genotypes of the involved isolates during a decade in a Southern European region (Gipuzkoa, northern Spain). Molecular analysis of isolates included emm, multilocus-sequence typing, and superantigen profile determination. Results Forty episodes were detected (annual incidence 1.1 x 100,000 inhabitants, range 0.29–2.29). Thirty-seven episodes were community-acquired, 21 involved an invasive infection and 10 developed STSS. The associated mortality rate was 20%, with half of the patients dying within 24 hours after admission. Influenza coinfection was confirmed in four patients and suspected in another. The 52.5% of episodes occurred outside the influenza seasonal epidemic. The 67.5% of affected persons were elderly individuals and adults with severe comorbidities, although 13 patients had no comorbidities, 2 of them had a fatal outcome. Eleven clones were identified, the most prevalent being emm1/ST28 (43.6%) causing the most severe cases. Conclusions S. pyogenes pneumonia had a continuous presence frequently unrelated to influenza infection, being rapidly fatal even in previously healthy individuals. PMID:27027618

  5. Identification of the Smallest Structure Capable of Evoking Opsonophagocytic Antibodies against Streptococcus pneumoniae Type 14▿

    PubMed Central

    Safari, Dodi; Dekker, Huberta A. T.; Joosten, John A. F.; Michalik, Dirk; de Souza, Adriana Carvalho; Adamo, Roberto; Lahmann, Martina; Sundgren, Andreas; Oscarson, Stefan; Kamerling, Johannis P.; Snippe, Harm

    2008-01-01

    Synthetic overlapping oligosaccharide fragments of Streptococcus pneumoniae serotype 14 capsular polysaccharide (Pn14PS), {6)-[β-d-Galp-(1→4)-]β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-β-d-Glcp-(1→}n, were conjugated to CRM197 protein and injected into mice to determine the smallest immunogenic structure. The resulting antibodies were then tested for Pn14PS specificity and for their capacity to promote the phagocytosis of S. pneumoniae type 14 bacteria. Earlier studies have reported that the oligosaccharide corresponding to one structural repeating unit of Pn14PS, i.e., Gal-Glc-(Gal-)GlcNAc, induces a specific antibody response to Pn14PS. The broader study described here, which evaluated 16 oligosaccharides, showed that the branched trisaccharide element Glc-(Gal-)GlcNAc is essential in inducing Pn14PS-specific antibodies and that the neighboring galactose unit at the nonreducing end contributes clearly to the immunogenicity of the epitope. Only the oligosaccharide conjugates that produce antibodies recognizing Pn14PS were capable of promoting the phagocytosis of S. pneumoniae type 14. In conclusion, the branched tetrasaccharide Gal-Glc-(Gal-)GlcNAc may be a serious candidate for a synthetic oligosaccharide conjugate vaccine against infections caused by S. pneumoniae type 14. PMID:18678667

  6. Antimicrobial activities of Eugenia caryophyllata extract and its major chemical constituent eugenol against Streptococcus pneumoniae.

    PubMed

    Yadav, Mukesh Kumar; Park, Seok-Won; Chae, Sung-Won; Song, Jae-Jun; Kim, Ho Chul

    2013-12-01

    In this study, we investigate the antimicrobial activities of both Eugenia caryophyllata (Ec) extract and its major component eugenol (4-allyl-2-methoxyphenol) against Streptococcus pneumoniae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microdilution method. Pneumococcal biofilms were detected by crystal-violet microtiter plate assay, followed by colony-forming unit counts and visualized by scanning electron microscope (SEM). The synergistic effect of eugenol and penicillin was determined by checker-board method. Both the eugenol and the Ec extract inhibited pneumococcal growth in a concentration-dependent manner. The MIC and MBC of eugenol were 0.06% and 0.12%, respectively. Eugenol at a concentration of 0.12% completely killed S. pneumoniae within 60 min of exposure. The kill rate of planktonic cells was most rapid during the first 15 min of contact with eugenol. The addition of eugenol or Ec extract inhibited in vitro biofilm formation. In already established biofilms, the inhibitory effect of eugenol or Ec extract was more significant in terms of cell viability than in terms of disruption of the biofilm matrix. SEM analysis revealed non-viable and disruptive action of eugenol on the cell membrane of bacteria of biofilms. It was found that eugenol and penicillin produced a synergistic effect against S. pneumoniae. In conclusion, eugenol and Ec extract efficiently inhibited S. pneumoniae in planktonic growth and within biofilms. PMID:23594212

  7. Interferon-γ from Brain Leukocytes Enhances Meningitis by Type 4 Streptococcus pneumoniae

    PubMed Central

    Pettini, Elena; Fiorino, Fabio; Cuppone, Anna Maria; Iannelli, Francesco; Medaglini, Donata; Pozzi, Gianni

    2015-01-01

    Streptococcus pneumoniae is the leading cause of bacterial meningitis. Pneumococcal meningitis is a life-threatening disease with high rates of mortality and neurological sequelae. Immune targeting of S. pneumoniae is essential for clearance of infection; however, within the brain, the induced inflammatory response contributes to pathogenesis. In this study we investigate the local inflammatory response and the role of IFN-γ in a murine model of pneumococcal meningitis induced by intracranial injection of type 4 S. pneumoniae. Lymphoid and myeloid cell populations involved in meningitis, as well as cytokine gene expression, were investigated after infection. Animals were treated with a monoclonal antibody specific for murine IFN-γ to evaluate its role in animal survival. Intracranial inoculation of 3 × 104 colony-forming units of type 4 strain TIGR4 caused 75% of mice to develop meningitis within 4 days. The amount of lymphocytes, NK cells, neutrophils, monocytes and macrophages in the brain increased 48 h post infection. IFN-γ mRNA levels were about 240-fold higher in brains of infected mice compared to controls. Pro-inflammatory cytokines such as IL-1β and TNF-α, and TLR2 were also upregulated. In vivo treatment with anti-IFN-γ antibody increased survival of infected mice. This study shows that IFN-γ produced during meningitis by type 4 S. pneumoniae enhances bacterial pathogenesis exerting a negative effect on the disease outcome. PMID:26648922

  8. Interferon-γ from Brain Leukocytes Enhances Meningitis by Type 4 Streptococcus pneumoniae.

    PubMed

    Pettini, Elena; Fiorino, Fabio; Cuppone, Anna Maria; Iannelli, Francesco; Medaglini, Donata; Pozzi, Gianni

    2015-01-01

    Streptococcus pneumoniae is the leading cause of bacterial meningitis. Pneumococcal meningitis is a life-threatening disease with high rates of mortality and neurological sequelae. Immune targeting of S. pneumoniae is essential for clearance of infection; however, within the brain, the induced inflammatory response contributes to pathogenesis. In this study we investigate the local inflammatory response and the role of IFN-γ in a murine model of pneumococcal meningitis induced by intracranial injection of type 4 S. pneumoniae. Lymphoid and myeloid cell populations involved in meningitis, as well as cytokine gene expression, were investigated after infection. Animals were treated with a monoclonal antibody specific for murine IFN-γ to evaluate its role in animal survival. Intracranial inoculation of 3 × 10(4) colony-forming units of type 4 strain TIGR4 caused 75% of mice to develop meningitis within 4 days. The amount of lymphocytes, NK cells, neutrophils, monocytes and macrophages in the brain increased 48 h post infection. IFN-γ mRNA levels were about 240-fold higher in brains of infected mice compared to controls. Pro-inflammatory cytokines such as IL-1β and TNF-α, and TLR2 were also upregulated. In vivo treatment with anti-IFN-γ antibody increased survival of infected mice. This study shows that IFN-γ produced during meningitis by type 4 S. pneumoniae enhances bacterial pathogenesis exerting a negative effect on the disease outcome. PMID:26648922

  9. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae

    PubMed Central

    Abbott, D. Wade; Higgins, Melanie A.; Hyrnuik, Susanne; Pluvinage, Benjamin; van Bueren, Alicia Lammerts; Boraston, Alisdair B.

    2010-01-01

    SUMMARY The genome of Streptococcus pneumoniae strains, as typified by the TIGR4 strain, contains several genes encoding proteins putatively involved in α-glucan degradation, modification and synthesis. The extracellular components comprise an ABC-transporter with its solute-binding protein, MalX, and the hydrolytic enzyme SpuA. We show that of the commonly occurring exogenous α-glucans, S. pneumoniae TIGR4 is only able to grow on glycogen in a MalX and SpuA-dependent manner. SpuA is able to degrade glycogen into a ladder of α-1,4-glucooligosaccharides while the high affinity interaction (Ka ~ 106 M−1) of MalX with maltooligosaccharides plays a key role in promoting the selective uptake of the glycogen degradation products that are produced by SpuA. The X-ray crystallographic analyses of apo- and complexed MalX illuminate the protein’s specificity for the degradation products of glycogen and its striking ability to recognize the helical structure of the ligand. Overall, the results of this work provide new structural and functional insight into streptococcal α-glucan metabolism while supplying biochemical support for the hypothesis that the substrate of the S. pneumoniae α-glucan metabolizing machinery is glycogen, which in a human host is abundant lung epithelial cells, a common target for invasive S. pneumoniae. PMID:20497336

  10. Induction of ribosome methylation in MLS-resistant Streptococcus pneumoniae by macrolides and ketolides.

    PubMed

    Zhong, P; Cao, Z; Hammond, R; Chen, Y; Beyer, J; Shortridge, V D; Phan, L Y; Pratt, S; Capobianco, J; Reich, K A; Flamm, R K; Or, Y S; Katz, L

    1999-01-01

    One major mechanism for resistance to macrolide antibiotics in Streptococcus pneumoniae is MLS (macrolide, lincosamide, and streptogramin B) resistance, manifested when the 23S rRNA is methylated by the product of an erm gene. This modification results in the decreased binding of all known macrolide, lincosamide, and streptogramin B antibiotics to the ribosome. More than 30 ermAM-containing clinical isolates of S. pneumoniae were examined in our lab and showed high-level resistance (MIC > or =128 microg/ml) to erythromycin, azithromycin, tylosin, clindamycin, and ketolide (macrolides that lack the cladinose sugar) TE-802. We found that the new generation of ketolides A965 and A088 displayed variable activity against the same group of resistant S. pneumoniae strains. To understand the basis of variability of the minimal inhibitory concentration (MIC) values of A965 and A088, we examined the effects of a series of macrolides and ketolides on the level of 23S rRNA methylation in five ermAM-containing resistant S. pneumoniae isolates. We show here that the basal levels of ribosomal methylation vary from strain to strain. The level of rRNA methylation can be strongly induced by erythromycin, azithromycin, and TE-802, resulting in high-level of resistance to these compounds. Ketolide A965 and A088, however, are weak inducers at sub-MIC drug concentrations, therefore showing variable activities in strains with differential methylation levels. PMID:10566867

  11. Genomic Analysis of a Serotype 5 Streptococcus pneumoniae Outbreak in British Columbia, Canada, 2005–2009

    PubMed Central

    Miller, Ruth R.; Langille, Morgan G. I.; Montoya, Vincent; Crisan, Anamaria; Stefanovic, Aleksandra; Martin, Irene; Patrick, David M.; Romney, Marc; Tyrrell, Gregory; Jones, Steven J. M.; Brinkman, Fiona S. L.; Tang, Patrick

    2016-01-01

    Background. Streptococcus pneumoniae can cause a wide spectrum of disease, including invasive pneumococcal disease (IPD). From 2005 to 2009 an outbreak of IPD occurred in Western Canada, caused by a S. pneumoniae strain with multilocus sequence type (MLST) 289 and serotype 5. We sought to investigate the incidence of IPD due to this S. pneumoniae strain and to characterize the outbreak in British Columbia using whole-genome sequencing. Methods. IPD was defined according to Public Health Agency of Canada guidelines. Two isolates representing the beginning and end of the outbreak were whole-genome sequenced. The sequences were analyzed for single nucleotide variants (SNVs) and putative genomic islands. Results. The peak of the outbreak in British Columbia was in 2006, when 57% of invasive S. pneumoniae isolates were serotype 5. Comparison of two whole-genome sequenced strains showed only 10 SNVs between them. A 15.5 kb genomic island was identified in outbreak strains, allowing the design of a PCR assay to track the spread of the outbreak strain. Discussion. We show that the serotype 5 MLST 289 strain contains a distinguishing genomic island, which remained genetically consistent over time. Whole-genome sequencing holds great promise for real-time characterization of outbreaks in the future and may allow responses tailored to characteristics identified in the genome. PMID:27366170

  12. Effects of recombinant IL-17F intranasal inoculation against Streptococcus pneumoniae infection in a murine model.

    PubMed

    Chen, Ling; Guo, Sheng; Wu, Liangxia; Hao, Chunli; Xu, Wanting; Zhang, Jianhua

    2015-01-01

    Interleukin-17F (IL-17F) is an important member of IL-17 cytokine family, which plays important roles in host defense against microbial infections. Streptococcus pneumoniae is a common pathogen associated with several invasive and noninvasive pneumococcal diseases, and mucosal immune response plays crucial roles in defenses against pneumococcal infection. Thus, intranasal inoculation may be an alternative approach against pneumococci. In this study, BALB/c mice were intranasally inoculated with recombinant IL-17F (rIL-17F) prior to S. pneumoniae (American Type Culture Collection 6303, serotype 3) infection. As compared with the control group, numbers of total leukocyte, neutrophil, and macrophage in lungs were significantly increased in mice inoculated with rIL-17F. The levels of macrophage inflammatory protein 1α (MIP-1α), MIP-2β, and interferon γ were significantly increased in bronchoalveolar lavage fluid and culture supernatant of splenocytes from mice inoculated with rIL-17F. rIL-17F inoculation also significantly elevated β-defensin-2 expression in lung tissues. Furthermore, compared with S. pneumoniae infection group, rIL-17F inoculation prior to infection significantly reduced S. pneumoniae colonization in lungs. These findings demonstrated that rIL-17F intranasal inoculation strengthened host defense against pneumococci, which may be developed to prevent pneumococcal infection. PMID:25196250

  13. Gestational Hypothyroidism Improves the Ability of the Female Offspring to Clear Streptococcus pneumoniae Infection and to Recover From Pneumococcal Pneumonia.

    PubMed

    Nieto, Pamela A; Peñaloza, Hernán F; Salazar-Echegarai, Francisco J; Castellanos, Raquel M; Opazo, Maria Cecilia; Venegas, Luis; Padilla, Oslando; Kalergis, Alexis M; Riedel, Claudia A; Bueno, Susan M

    2016-06-01

    Maternal thyroid hormones are essential for proper fetal development. A deficit of these hormones during gestation has enduring consequences in the central nervous system of the offspring, including detrimental learning and impaired memory. Few studies have shown that thyroid hormone deficiency has a transient effect in the number of T and B cells in the offspring gestated under hypothyroidism; however, there are no studies showing whether maternal hypothyroidism during gestation impacts the response of the offspring to infections. In this study, we have evaluated whether adult mice gestated in hypothyroid mothers have an altered response to pneumococcal pneumonia. We observed that female mice gestated in hypothyroidism have increased survival rate and less bacterial dissemination to blood and brain after an intranasal challenge with Streptococcus pneumoniae. Further, these mice had higher amounts of inflammatory cells in the lungs and reduced production of cytokines characteristic of sepsis in spleen, blood, and brain at 48 hours after infection. Interestingly, mice gestated in hypothyroid mothers had basally increased vascular permeability in the lungs. These observations suggest that gestational hypothyroidism alters the immune response and the physiology of lungs in the offspring, increasing the resistance to respiratory bacterial infections. PMID:27035652

  14. Molecular Detection of Streptococcus pneumoniae on Dried Blood Spots from Febrile Nigerian Children Compared to Culture

    PubMed Central

    Iroh Tam, Pui-Ying; Hernandez-Alvarado, Nelmary; Schleiss, Mark R.; Hassan-Hanga, Fatimah; Onuchukwu, Chuma; Umoru, Dominic; Obaro, Stephen K.

    2016-01-01

    Background Nigeria has one of the highest burdens of pneumococcal disease in the world, but accurate surveillance is lacking. Molecular detection of infectious pathogens in dried blood spots (DBS) is an ideal method for surveillance of infections in resource-limited settings because of its low cost, minimal blood volumes involved, and ease of storage at ambient temperature. Our study aim was to evaluate a Streptococcus pneumoniae real-time polymerase chain reaction (rt-PCR) assay on DBS from febrile Nigerian children on Whatman 903 and FTA filter papers, compared to the gold standard of culture. Methods Between September 2011 to May 2015, blood was collected from children 5 years of age or under who presented to six hospital study sites throughout northern and central Nigeria with febrile illness, and inoculated into blood culture bottles or spotted onto Whatman 903 or FTA filter paper. Culture and rt-PCR were performed on all samples. Results A total of 537 DBS specimens from 535 children were included in the study, of which 15 were culture-positive for S. pneumoniae. The rt-PCR assay detected S. pneumoniae in 12 DBS specimens (2.2%). One positive rt-PCR result was identified in a culture-negative specimen from a high-risk subject, and two positive rt-PCR results were negative on repeat testing. Six culture-confirmed cases of S. pneumoniae bacteremia were missed. Compared to culture, the overall sensitivities of Whatman 903 and FTA DBS for detection of S. pneumoniae were 57.1% (95% CI 18.4–90.1%) and 62.5% (95% CI 24.5–91.5%), respectively. Nonspecific amplification was noted in an additional 22 DBS (4.1%). Among these, six were positive for a non-S. pneumoniae pathogen on culture. Conclusions Rt-PCR was able to detect S. pneumoniae from clinical DBS specimens, including from a culture-negative specimen. Our findings show promise of this approach as a surveillance diagnostic, but also raise important cautionary questions. Several DBS specimens were detected as

  15. [Epidemiological analysis of Streptococcus pneumoniae in Gifu prefecture and the northern district of Aichi prefecture--2009].

    PubMed

    Yamagishi, Yuka; Mikamo, Hiroshige; Sawamura, Haruki; Suematsu, Hiroyuki; Asano, Yuko; Ishigo, Shiomi; Hatano, Masakazu; Matsubara, Shigenori; Ohta, Hirotoshi; Matsukawa, Yoko; Saeki, Hiroikazu; Mutou, Toshihiro; Teraji, Mayumi; Mouri, Tetsuo; Kawahara, Yuki; Akita, Shigeki; Miyabe, Takanori; Okada, Masako; Terada, Hiroshi; Sakuma, Takashi; Morita, Eri; Miyamoto, Naoya; Tuchiya, Yoko; Yamada, Yukiji; Yamaoka, Kazukiyo; Miyaki, Yuki; Tanaka, Kaori; Watanabe, Kunitomo

    2012-02-01

    High pathogenicity and drug resistance of Streptococcus pneumoniae are serious problem in clinical practice. Since 1999, we have conducted epidemiologic analyses of S. pneumoniae in Chubu district. We report the results of the analysis conducted in 2009. Three hundred and eight (308) S. pneumoniae isolates with a gene coding for autolysin lyt-A, which had been isolated from patients at 21 medical institutions in Gifu prefecture and the northern part of Aichi prefecture in 2009, were enrolled in this study. The strains were classified according to their drug resistance based on the presence of the pbp mutation, and examined for the presence of the two macrolide-resistance genes, ermB and mefA. Moreover, they were serotyped using type-specific antisera. The mean age of the patients from whom these S. pneumoniae strains were isolated, was 23.4 +/- 30.1 years old, and children aged 15 years old or less accounted for 66% of all the patients. Genotype penicillin-susceptible S. pneumoniae (gPSSP), genotype penicillin-intermediate S. pneumoniae (gPISP) and genotype penicillin-resistant S. pneumoniae (gPRSP) were 22 (7.1%), 131 (42.5%) and 155 (50.3%), respectively. The strains with mefA positive and ermB negative, mefA negative and ermB positive, and mefA positive and ermB positive were 80 (26.0%), 153 (49.7%), and 47 (15.3%), respectively. The MIC90 values of tebipenem (TBPM) and faropenem were 0.06 microg/mL and 0.5 microg/mL, respectively. TBPM showed the high bactericidal activity against gPRSP. In carbapenems, panipenem and biapenem exhibited higher bactericidal activities. Quinolone-resistant S. pneumoniae (QRSP) were isolated from 10 (3.2%). QRSP dominated 5 (7.9%) and 3 (1.5%) among the elderly (over 65 years old) and children, respectively. (As for the serotype, serotypes 6, 19 and 23 were 60 (19.5%), 62 (20.1%), and 44 (14.3%), respectively. Further epidemiologic studies on S. pneumoniae might be required also in the future, including the relationship between the

  16. Molecular epidemiology and distribution of serotypes, genotypes, and antibiotic resistance genes of Streptococcus agalactiae clinical isolates from Guelma, Algeria and Marseille, France.

    PubMed

    Bergal, A; Loucif, L; Benouareth, D E; Bentorki, A A; Abat, C; Rolain, J-M

    2015-12-01

    This study describes, for the first time, the genetic and phenotypic diversity among 93 Streptococcus agalactiae (group B Streptococcus, GBS) isolates collected from Guelma, Algeria and Marseille, France. All strains were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The molecular support of antibiotic resistance and serotyping were investigated by polymerase chain reaction (PCR). The phylogenetic lineage of each GBS isolate was determined by multilocus sequence typing (MLST) and grouped into clonal complexes (CCs) using eBURST. The isolates represented 37 sequence types (STs), 16 of which were novel, grouped into five CCs, and belonging to seven serotypes. Serotype V was the most prevalent serotype in our collection (44.1%). GBS isolates of each serotype were distributed among multiple CCs, including cps III/CC19, cps V/CC1, cps Ia/CC23, cps II/CC10, and cps III/CC17. All isolates presented susceptibility to penicillin, whereas resistance to erythromycin was detected in 40% and tetracycline in 82.2% of isolates. Of the 37 erythromycin-resistant isolates, 75.7% showed the macrolide-lincosamide-streptogramin B (MLSB)-resistant phenotype and 24.3% exhibited the macrolide (M)-resistant phenotype. Constitutive MLSB resistance (46%) mediated by the ermB gene was significantly associated with the Guelma isolates, whereas the M resistance phenotype (24.3%) mediated by the mefA/E gene dominated among the Marseille isolates and belonged to ST-23. Tetracycline resistance was predominantly due to tetM, which was detected alone (95.1%) or associated with tetO (3.7%). These results provide epidemiological data in these regions that establish a basis for monitoring increased resistance to erythromycin and also provide insight into correlations among clones, serotypes, and resistance genes. PMID:26415872

  17. Serotype distribution and antimicrobial susceptibilities of Streptococcus agalactiae isolated from infected cultured tilapia (Oreochromis niloticus) in Thailand: Nine-year perspective.

    PubMed

    Dangwetngam, Machalin; Suanyuk, Naraid; Kong, Fanrong; Phromkunthong, Wutiporn

    2016-03-01

    Streptococcus agalactiae (group B Streptococcus, GBS) infection remains a major problem associated with high mortality of cultured tilapia worldwide. The present study reports the serotype distribution and antimicrobial susceptibilities of GBS isolated from infected tilapia cultured in Thailand. One hundred and forty-four GBS isolates were identified by biochemical, serological and molecular analyses. Of these 144 GBS isolates, 126 were serotype Ia and 18 were serotype III. Antimicrobial susceptibilities of the 144 GBS isolates were determined by the disc diffusion method. Most GBS isolates were susceptible to lincomycin, norfloxacin, oxytetracycline, ampicillin, erythromycin and chloramphenicol, but resistant to oxolinic acid, gentamicin, sulfamethoxazole and trimethoprim. However, 17 isolates displayed an oxytetracycline-resistant phenotype and harboured the tet(M) gene. The broth microdilution method was used to determine the minimal inhibitory concentrations (MICs) of 17 oxytetracycline-resistant GBS isolates, and then minimal bactericidal concentrations (MBCs) of these isolates were evaluated. Oxytetracyline-resistant isolates were found to be susceptible to ampicillin, lincomycin, norfloxacin, erythromycin and chloramphenicol, with the MIC and MBC ranging from ≤ 0.125 to 0.5 μg ml- 1 and ≤ 0.125 to 2 μg ml- 1, respectively. Moreover, all 17 oxytetracycline-resistant isolates demonstrated resistance to trimethoprim, oxolinic acid, gentamicin, sulfamethoxazole and oxytetracycline, with the MIC and MBC ranging from 16 to ≥ 128 μg ml- 1 and ≥ 128 μg ml- 1, respectively. These findings are useful information for antibiotic usage in fish aquaculture. PMID:26701807

  18. RNA-Seq revealed the impairment of immune defence of tilapia against the infection of Streptococcus agalactiae with simulated climate warming.

    PubMed

    Wang, Le; Liu, Peng; Wan, Zi Yi; Huang, Shu Qing; Wen, Yan Fei; Lin, Grace; Yue, Gen Hua

    2016-08-01

    Global warming is one of the causes of disease outbreaks in fishes. Understanding its mechanisms is critical in aquaculture and fisheries. We used tilapia to study the effects of a high temperature on the infection of a bacterial pathogen Streptococcus agalactiae using RNA-Seq. We found that the dissolved oxygen level in water at 32 °C is lower than at 22 °C, and tilapia infected with the pathogen died more rapidly at 32 °C. The gene expression profiles showed significant differences in fish raised under different conditions. We identified 126 and 576 differentially expressed genes (DEGs) at 4 and 24 h post infection at 22 °C, respectively, whereas at 32 °C, the data were 312 and 1670, respectively. Almost all responding pathways at 22 °C were involved in the immune responses, whereas at 32 °C, the enriched pathways were not only involved in immune responses but also involved in oxygen and energy metabolisms. We identified significant signals of immunosuppression of immune responses at 32 °C. In addition, many of the enriched transcription factors and DEGs under positive selection were involved in immune responses, oxygen and/or energy metabolisms. Our results suggest that global warming could reduce the oxygen level in water and impair the defence of tilapia against bacterial infection. PMID:27377027

  19. Genetic diversity of rRNA operons of unrelated Streptococcus agalactiae strains isolated from cerebrospinal fluid of neonates suffering from meningitis.

    PubMed Central

    Chatellier, S; Huet, H; Kenzi, S; Rosenau, A; Geslin, P; Quentin, R

    1996-01-01

    The genetic diversity of a collection of 54 unrelated Streptococcus agalactiae strains isolated from the cerebrospinal fluid of neonates and of 60 unrelated carrier strains was evaluated by investigating the restriction fragment length polymorphism of the rRNA gene region. Three restriction enzymes were selected for use: PstI, HindIII, and CfoI. Clustering analysis revealed two phylogenetic groups of strains with 40% divergence. Group I contained two clusters, A and B, and group II contained three clusters, C, D, and E. Strains of serotype Ia were mostly distributed in cluster A, and strains of serotype Ib were mostly distributed in cluster E. Serotype III isolates did not cluster. Nevertheless, 37 of 39 isolates belonging to cluster B were serotype III. With HindIII, two rRNA gene banding patterns characterized 38 of the 39 strains of cluster B, which represents a high-virulence group. In addition, two rRNA gene banding patterns with each enzyme and/or a pair of CfoI fragments of 905 and 990 bp identified 81% of the invasive strains. On account of the genetic homogeneity of the cerebrospinal fluid strains, ribotyping is a powerful typing method for investigation of nosocomial or epidemic invasive infections only when all three enzymes are used or when PstI and HindIII or PstI and CfoI are combined with serotyping (index of discrimination, > 0.95). PMID:8897176

  20. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus).

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Hirono, Ikuo; Rodkhum, Channarong

    2014-08-01

    Temperature strongly affects the health of aquatic poikilotherms. In Nile tilapia (Oreochromis niloticus), elevated water temperatures increase the severity of streptococcosis. Here we investigated the effects of temperature on the vulnerability and inflammatory response of Nile tilapia to Streptococcus agalactiae (Group B streptococci; GBS). At 35 and 28 °C, GBS took 4 and 7h, respectively to reach the log-phase and, when incubated with tilapia whole blood, experienced survival rates of 97% and 2%, respectively. The hemolysis activity of GBS grown at 35 °C was five times higher than that of GBS grown at 28 °C. GBS expressed cylE (β-hemolysin/cytolysin), cfb (CAMP factor) and PI-2b (pili-backbone) much more strongly at 35 °C than at 28 °C. Challenging Nile tilapia reared at 35 and 28 °C with GBS resulted in accumulated mortalities of about 85% and 45%, respectively. At 35 °C, infected tilapia exhibited tremendous inflammatory responses due to a dramatic up-regulation (30-40-fold) of inflammatory-related genes (cyclooxygenase-2, IL-1β and TNF-α) between 6 and 96 h-post infection. These results suggest that the increase of GBS pathogenicity to Nile tilapia induced by elevated temperature is associated with massive inflammatory responses, which may lead to acute mortality. PMID:24856132

  1. Comparison of Z and R3 antigen expression and of genes encoding other antigenic markers in invasive human and bovine Streptococcus agalactiae strains from Norway.

    PubMed

    Maeland, Johan A; Radtke, Andreas

    2013-12-27

    Streptococcus agalactiae (GBS) may cause a variety of infectious diseases in humans caused by human GBS and mastitis in cattle caused by bovine GBS. Over the last few years molecular testing has provided evidence that human and bovine GBS have evolved along diverse phylogenetic lines. In the present study 173 invasive human GBS strains and 52 invasive bovine strains were tested for altogether 18 strain-variable and surface-localized antigenic markers including all 10 capsular polysaccharides (CPS) and proteins including Cβ, the alpha-like proteins, R3 and the recently described Z1 and Z2 antigens. PCR was used to detect encoding genes and antibody-based methods to detect expression of antigens. Thirteen of the 18 markers were detected in isolates of both strain categories. Seven of the ten CPS antigens were detected in both groups with types III and V predominating in the human GBS strains, types IV and V in the bovine isolates. Z1, Z2 and/or R3 expression and the genes encoding Cβ, Cα, Alp1, Alp2/3 or R4 (Rib) were detected in both groups. Protein antigen-CPS associations well known for human strains were essentially the same in the bovine isolates. The results show that in spite of evolution along different lines, human and bovine GBS share a variety of surface-exposed antigenic markers, substantiating close relationship between the two GBS subpopulations. PMID:24120184

  2. Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae--United States, 2006-2007.

    PubMed

    2008-12-19

    Streptococcus pneumoniae (pneumococcus) is a common cause of pneumonia and meningitis in the United States. Antimicrobial resistance, which can result in pneumococcal infection treatment failure, is identified by measuring the minimum inhibitory concentration (MIC) of an antimicrobial that will inhibit pneumococcal growth. Breakpoints are MICs that define infections as susceptible (treatable), intermediate (possibly treatable with higher doses), and resistant (not treatable) to certain antimicrobials. In January 2008, after a reevaluation that included more recent clinical studies, the Clinical and Laboratory Standards Institute (CLSI) published new S. pneumoniae breakpoints for penicillin (the preferred antimicrobial for susceptible S. pneumoniae infections). To assess the potential effects of the new breakpoints on susceptibility categorization, CDC applied them to MICs of invasive pneumococcal disease (IPD) isolates collected by the Active Bacterial Core surveillance (ABCs) system at sites in 10 states during 2006-2007. This report summarizes the results of that analysis, which found that the percentage of IPD nonmeningitis S. pneumoniae isolates categorized as susceptible, intermediate, and resistant to penicillin changed from 74.7%, 15.0%, and 10.3% under the former breakpoints to 93.2%, 5.6%, and 1.2%, respectively, under the new breakpoints. Microbiology laboratories should be aware of the new breakpoints to interpret pneumococcal susceptibility accurately, and clinicians should be aware of the breakpoints to prescribe antimicrobials appropriately for pneumococcal infections. State and local health departments also should be aware of the new breakpoints because they might result in a decrease in the number of reported cases of penicillin-resistant pneumococcus. PMID:19092758

  3. Mutant prevention concentration of tigecycline for clinical isolates of Streptococcus pneumoniae and Staphylococcus aureus

    PubMed Central

    Hesje, C. K.; Drlica, K.; Blondeau, J. M.

    2015-01-01

    Background The mutant prevention concentration (MPC) reflects the antimicrobial susceptibility of the resistant mutant subpopulations present in large bacterial populations. In principle, combining the MPC with pharmacokinetic measurements can guide treatment to restrict the enrichment of resistant subpopulations, just as the MIC is used with pharmacokinetics to restrict the growth of bulk, susceptible populations. Little is known about the MPC of tigecycline, one of the more recently approved antimicrobials. Tigecycline is particularly interesting because it shows good activity against Gram-positive pathogens. Methods MPCs were determined using tigecycline-containing agar plates for clinical isolates of Streptococcus pneumoniae (n = 47), MRSA (n = 50) and MSSA (n = 50). Results Trypticase soy agar containing sheep red blood cells, commonly used for the growth of S. pneumoniae, gave tigecycline MPC90 values that were two orders of magnitude higher than expected. The addition of agar to Todd–Hewitt broth (solidified Todd–Hewitt broth) allowed the high-density growth of S. pneumoniae in the absence of red blood cells and lowered the MPC90 of tigecycline by 100-fold to 0.5 mg/L. The addition of red blood cells to solidified Todd–Hewitt broth raised the MPC90 by 100-fold. Thus, red blood cells reduce the efficacy of tigecycline against S. pneumoniae. The growth of Staphylococcus aureus was not sensitive to red blood cells; values of MPC90 were 2 and 4 mg/L for MSSA and MRSA, respectively. Conclusions Values of MPC constitute a concentration threshold for restricting the emergence of tigecycline resistance that can now be used in animal studies to determine pharmacodynamic thresholds. The off-label treatment of S. pneumoniae blood infections with tigecycline may require caution due to blood-cell-mediated interference with the antimicrobial. PMID:25324419

  4. 220D-F2 from Rubus ulmifolius Kills Streptococcus pneumoniae Planktonic Cells and Pneumococcal Biofilms

    PubMed Central

    Talekar, Sharmila J.; Chochua, Sopio; Nelson, Katie; Klugman, Keith P.; Quave, Cassandra L.; Vidal, Jorge E.

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms. PMID:24823499

  5. 220D-F2 from Rubus ulmifolius kills Streptococcus pneumoniae planktonic cells and pneumococcal biofilms.

    PubMed

    Talekar, Sharmila J; Chochua, Sopio; Nelson, Katie; Klugman, Keith P; Quave, Cassandra L; Vidal, Jorge E

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC's, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms. PMID:24823499

  6. Emergence of Neoteric Serotypes Among Multidrug Resistant Strains of Streptococcus pneumoniae Prevalent in Egypt

    PubMed Central

    Bahy, Rehab H; Hamouda, Hayam M; Shahat, Amal S; Yassin, Aymen S; Amin, Magdy A

    2016-01-01

    Background Streptococcus pneumoniae is still one of the major causes of morbidity and mortality worldwide. The prevalent serotype distribution had shown variation along different studies conducted at different time intervals. In order to efficiently assess the epidemiology of the diseases for effective preventive and treatment strategies, serotype prevalence need to be periodically reassessed. Objectives Conducting a reassessment of the prevalent S. pneumoniae serotypes in Egypt as an essential step in the search for a regional vaccine. In addition, monitoring the antibiotic susceptibility patterns of pneumococcal strains currently causing infections as an evaluation of therapeutic strategies applied. Materials and Methods A total of 100 specimens of different sources were collected in Cairo, Egypt, from 2011 to 2013, representing almost all different types of diseases caused by S. pneumoniae such as meningitis, pneumonia, otitis media and sinusitis. Conventional and molecular identification methods were performed, the antimicrobial susceptibility patterns were assessed and serotyping was done using PCR assays to identify the most prevalent types. In addition, detection of certain virulence genes for the most prevalent serotypes was carried out. Results Our results revealed that in Egypt, currently, the most prevalent serotypes were serogroup 6 and serotype 19F as they represented 58% of all isolates. High rates of resistance were found to different antibiotic classes. The lytA and psaA genes were found to be more sensitive for S. pneumoniae identification than ply. Conclusions Our study illustrates the importance of constantly monitoring the prevalent serotypes in any region in order to aid in the development of more effective vaccines. PMID:27303614

  7. Streptococcus pneumoniae from Palestinian Nasopharyngeal Carriers: Serotype Distribution and Antimicrobial Resistance

    PubMed Central

    Ramlawi, Asad; Salman, Nisreen; Salem, Ibrahim; Abdeen, Ziad

    2013-01-01

    Infections of Streptococcus pneumoniae in children can be prevented by vaccination; left untreated, they cause high morbidity and fatalities. This study aimed at determining the nasopharyngeal carrier rates, serotype distribution and antimicrobial resistance patterns of S. pneumoniae in healthy Palestinian children under age two prior to the full introduction of the pneumococcal 7-valent conjugate vaccine (PCV7), which was originally introduced into Palestine in a pilot trial in September, 2010. In a cross sectional study, nasopharyngeal specimens were collected from 397 healthy children from different Palestinian districts between the beginning of November 2012 to the end of January 2013. Samples were inoculated into blood agar and suspected colonies were examined by amplifying the pneumococcal-specific autolysin gene using a real-time PCR. Serotypes were identified by a PCR that incorporated different sets of specific primers. Antimicrobial susceptibility was measured by disk diffusion and MIC methods. The resulting carrier rate of Streptococcus pneumoniae was 55.7% (221/397). The main serotypes were PCV7 serotypes 19F (12.2%), 23F (9.0%), 6B (8.6%) and 14 (4%) and PCV13 serotypes 6A (13.6%) and 19A (4.1%). Notably, serotype 6A, not included in the pilot trial (PCV7) vaccine, was the most prevalent. Resistance to more than two drugs was observed for bacteria from 34.1% of the children (72/211) while 22.3% (47/211) carried bacteria were susceptible to all tested antibiotics. All the isolates were sensitive to cefotaxime and vancomycin. Any or all of these might impinge on the type and efficacy of the pneumococcal conjugate vaccines and antibiotics to be used for prevention and treatment of pneumococcal disease in the country. PMID:24339987

  8. Clinical evaluation of a disposable amperometric magneto-genosensor for the detection and identification of Streptococcus pneumoniae.

    PubMed

    Sotillo, Alma; Pedrero, María; de Pablos, Manuela; García, José Luis; García, Ernesto; García, Pedro; Pingarrón, José Manuel; Mingorance, Jesús; Campuzano, Susana

    2014-08-01

    A disposable PCR-based amperometric magneto-genosensor for detection and identification of Streptococcus pneumoniae was evaluated. ROC curve analysis used to determine optimal signal cutoff values yielded a sensitivity of 91% and a specificity of 90%. The method was also tested for the direct detection of pneumococci in clinical samples. PMID:24858449

  9. Pharmacokinetics and Pharmacodynamics of Gatifloxacin against Streptococcus pneumoniae and Staphylococcus aureus in a Granulocyte-Rich Exudate

    PubMed Central

    Trampuz, Andrej; Laifer, Gerd; Wenk, Markus; Rajacic, Zarko; Zimmerli, Werner

    2002-01-01

    The pharmacokinetics of gatifloxacin were assessed in serum and in skin blister fluid (SBF), as was the pharmacodynamic activity in SBF. Five hours after a single dose of gatifloxacin, SBF killed 2.5 logs of Streptococcus pneumoniae and 1.5 log of Staphylococcus aureus during a 2-h incubation ex vivo. PMID:12384378

  10. Characterization of a New CAMP Factor Carried by an Integrative and Conjugative Element in Streptococcus agalactiae and Spreading in Streptococci

    PubMed Central

    Chuzeville, Sarah; Puymège, Aurore; Madec, Jean-Yves; Haenni, Marisa; Payot, Sophie

    2012-01-01

    Genetic exchanges between Streptococci occur frequently and contribute to their genome diversification. Most of sequenced streptococcal genomes carry multiple mobile genetic elements including Integrative and Conjugative Elements (ICEs) that play a major role in these horizontal gene transfers. In addition to genes involved in their mobility and regulation, ICEs also carry genes that can confer selective advantages to bacteria. Numerous elements have been described in S. agalactiae especially those integrated at the 3′ end of a tRNALys encoding gene. In strain 515 of S. agalactiae, an invasive neonate human pathogen, the ICE (called 515_tRNALys) is functional and carries different putative virulence genes including one encoding a putative new CAMP factor in addition to the one previously described. This work demonstrated the functionality of this CAMP factor (CAMP factor II) in Lactococcus lactis but also in pathogenic strains of veterinary origin. The search for co-hemolytic factors in a collection of field strains revealed their presence in S. uberis, S. dysgalactiae, but also for the first time in S. equisimilis and S. bovis. Sequencing of these genes revealed the prevalence of a species-specific factor in S. uberis strains (Uberis factor) and the presence of a CAMP factor II encoding gene in S. bovis and S. equisimilis. Furthermore, most of the CAMP factor II positive strains also carried an element integrated in the tRNALys gene. This work thus describes a CAMP factor that is carried by a mobile genetic element and has spread to different streptococcal species. PMID:23152820

  11. Characteristics and Outcome of Streptococcus pneumoniae Endocarditis in the XXI Century

    PubMed Central

    de Egea, Viviana; Muñoz, Patricia; Valerio, Maricela; de Alarcón, Arístides; Lepe, José Antonio; Miró, José M.; Gálvez-Acebal, Juan; García-Pavía, Pablo; Navas, Enrique; Goenaga, Miguel Angel; Fariñas, María Carmen; Vázquez, Elisa García; Marín, Mercedes; Bouza, Emilio

    2015-01-01

    Abstract Streptococcus pneumoniae is an infrequent cause of severe infectious endocarditis (IE). The aim of our study was to describe the epidemiology, clinical and microbiological characteristics, and outcome of a series of cases of S. pneumoniae IE diagnosed in Spain and in a series of cases published since 2000 in the medical literature. We prospectively collected all cases of IE diagnosed in a multicenter cohort of patients from 27 Spanish hospitals (n = 2539). We also performed a systematic review of the literature since 2000 and retrieved all cases with complete clinical data using a pre-established protocol. Predictors of mortality were identified using a logistic regression model. We collected 111 cases of pneumococcal IE: 24 patients from the Spanish cohort and 87 cases from the literature review. Median age was 51 years, and 23 patients (20.7%) were under 15 years. Men accounted for 64% of patients, and infection was community-acquired in 96.4% of cases. The most important underlying conditions were liver disease (27.9%) and immunosuppression (10.8%). A predisposing heart condition was present in only 18 patients (16.2%). Pneumococcal IE affected a native valve in 93.7% of patients. Left-sided endocarditis predominated (aortic valve 53.2% and mitral valve 40.5%). The microbiological diagnosis was obtained from blood cultures in 84.7% of cases. In the Spanish cohort, nonsusceptibility to penicillin was detected in 4.2%. The most common clinical manifestations included fever (71.2%), a new heart murmur (55%), pneumonia (45.9%), meningitis (40.5%), and Austrian syndrome (26.1%). Cardiac surgery was performed in 47.7% of patients. The in-hospital mortality rate was 20.7%. The multivariate analysis revealed the independent risk factors for mortality to be meningitis (OR, 4.3; 95% CI, 1.4–12.9; P < 0.01). Valve surgery was protective (OR, 0.1; 95% CI, 0.04–0.4; P < 0.01). Streptococcus pneumoniae IE is a community-acquired disease that mainly

  12. Dried Saliva Spots: A Robust Method for Detecting Streptococcus pneumoniae Carriage by PCR

    PubMed Central

    Krone, Cassandra L.; Oja, Anna E.; van de Groep, Kirsten; Sanders, Elisabeth A. M.; Bogaert, Debby; Trzciński, Krzysztof

    2016-01-01

    The earliest studies in the late 19th century on Streptococcus pneumoniae (S. pneumoniae) carriage used saliva as the primary specimen. However, interest in saliva declined after the sensitive mouse inoculation method was replaced by conventional culture, which made isolation of pneumococci from the highly polymicrobial oral cavity virtually impossible. Here, we tested the feasibility of using dried saliva spots (DSS) for studies on pneumococcal carriage. Saliva samples from children and pneumococcus-spiked saliva samples from healthy adults were applied to paper, dried, and stored, with and without desiccant, at temperatures ranging from −20 to 37 °C for up to 35 days. DNA extracted from DSS was tested with quantitative-PCR (qPCR) specifically for S. pneumoniae. When processed immediately after drying, the quantity of pneumococcal DNA detected in spiked DSS from adults matched the levels in freshly spiked raw saliva. Furthermore, pneumococcal DNA was stable in DSS stored with desiccant for up to one month over a broad range of temperatures. There were no differences in the results when spiking saliva with varied pneumococcal strains. The collection of saliva can be a particularly useful in surveillance studies conducted in remote settings, as it does not require trained personnel, and DSS are resilient to various transportation conditions. PMID:26959014

  13. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae.

    PubMed

    Yuzenkova, Yulia; Gamba, Pamela; Herber, Martijn; Attaiech, Laetitia; Shafeeq, Sulman; Kuipers, Oscar P; Klumpp, Stefan; Zenkin, Nikolay; Veening, Jan-Willem

    2014-01-01

    Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes. PMID:25190458

  14. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae

    PubMed Central

    Yuzenkova, Yulia; Gamba, Pamela; Herber, Martijn; Attaiech, Laetitia; Shafeeq, Sulman; Kuipers, Oscar P.; Klumpp, Stefan; Zenkin, Nikolay; Veening, Jan-Willem

    2014-01-01

    Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in ‘transcription traffic jams’ on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes. PMID:25190458

  15. Dried Saliva Spots: A Robust Method for Detecting Streptococcus pneumoniae Carriage by PCR.

    PubMed

    Krone, Cassandra L; Oja, Anna E; van de Groep, Kirsten; Sanders, Elisabeth A M; Bogaert, Debby; Trzciński, Krzysztof

    2016-01-01

    The earliest studies in the late 19th century on Streptococcus pneumoniae (S. pneumoniae) carriage used saliva as the primary specimen. However, interest in saliva declined after the sensitive mouse inoculation method was replaced by conventional culture, which made isolation of pneumococci from the highly polymicrobial oral cavity virtually impossible. Here, we tested the feasibility of using dried saliva spots (DSS) for studies on pneumococcal carriage. Saliva samples from children and pneumococcus-spiked saliva samples from healthy adults were applied to paper, dried, and stored, with and without desiccant, at temperatures ranging from -20 to 37 °C for up to 35 days. DNA extracted from DSS was tested with quantitative-PCR (qPCR) specifically for S. pneumoniae. When processed immediately after drying, the quantity of pneumococcal DNA detected in spiked DSS from adults matched the levels in freshly spiked raw saliva. Furthermore, pneumococcal DNA was stable in DSS stored with desiccant for up to one month over a broad range of temperatures. There were no differences in the results when spiking saliva with varied pneumococcal strains. The collection of saliva can be a particularly useful in surveillance studies conducted in remote settings, as it does not require trained personnel, and DSS are resilient to various transportation conditions. PMID:26959014

  16. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae.

    PubMed

    Romero-Espejel, María E; Rodríguez, Mario A; Chávez-Munguía, Bibiana; Ríos-Castro, Emmanuel; Olivares-Trejo, José de Jesús

    2016-01-01

    Streptococcus pneumoniae is a Gram-positive microorganism that is the cause of bacterial pneumonia, sinusitis and otitis media. This human pathogen also can cause invasive diseases such as meningitis, bacteremia and septicemia. Hemoglobin (Hb) and haem can support the growth and viability of S. pneumoniae as sole iron sources. Unfortunately, the acquisition mechanism of Hb and haem in this bacterium has been poorly studied. Previously we identified two proteins of 37 and 22 kDa as putative Hb- and haem-binding proteins (Spbhp-37 and Spbhp-22, respectively). The sequence of Spbhp-37 protein was database annotated as lipoprotein without any function or localization. Here it was immunolocalized in the surface cell by transmission electron microscopy using specific antibodies produced against the recombinant protein. The expression of Spbhp-37 was increased when bacteria were grown in media culture supplied with Hb. In addition, the affinity of Sphbp-37 for Hb was determined. Thus, in this work we are presenting new findings that attempt to explain the mechanism involved in iron acquisition of this pathogen. In the future these results could help to develop new therapy targets in order to avoid the secondary effects caused by the traditional therapies. PMID:27200302

  17. Silver polyvinyl pyrrolidone nanoparticles exhibit a capsular polysaccharide influenced bactericidal effect against Streptococcus pneumoniae

    PubMed Central

    Bibbs, Ronda K.; Harris, Rhonda D.; Peoples, Veolanda A.; Barnett, Cleon; Singh, Shree R.; Dennis, Vida A.; Coats, Mamie T.

    2014-01-01

    Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. The highly adaptive nature of S. pneumoniae exemplifies the need for next generation antimicrobials designed to avoid high level resistance. Metal based nanomaterials fit this criterion. Our study examined the antimicrobial activity of gold nanospheres, silver coated polyvinyl pyrrolidone (AgPVP), and titanium dioxide (TiO2) against various serotypes of S. pneumoniae. Twenty nanometer spherical AgPVP demonstrated the highest level of killing among the tested materials. AgPVP (0.6 mg/mL) was able to kill pneumococcal serotypes 2, 3, 4, and 19F within 4 h of exposure. Detailed analysis of cultures during exposure to AgPVP showed that both the metal ions and the solid nanoparticles participate in the killing of the pneumococcus. The bactericidal effect of AgPVP was lessened in the absence of the pneumococcal capsular polysaccharide. Capsule negative strains, JD908 and RX1, were only susceptible to AgPVP at concentrations at least 33% higher than their respective capsule expressing counterparts. These findings suggest that mechanisms of killing used by nanomaterials are not serotype dependent and that the capsular polysaccharide participates in the inhibition. In the near future these mechanisms will be examined as targets for novel antimicrobials. PMID:25520713

  18. Molecular Basis for Different Levels of tet(M) Expression in Streptococcus pneumoniae Clinical Isolates

    PubMed Central

    Grohs, Patrick; Trieu-Cuot, Patrick; Podglajen, Isabelle; Grondin, Sophie; Firon, Arnaud; Poyart, Claire; Varon, Emmanuelle

    2012-01-01

    Seventy-four unrelated clinical isolates of Streptococcus pneumoniae harboring the tet(M) gene were studied. Seven strains with low tetracycline (Tc) MICs (0.25 to 0.5 μg/ml) were found to harbor truncated tet(M) alleles that were inactivated by different frameshift mutations. In contrast, five strains bore deletions in the tet(M) promoter region, among which four displayed increased Tc MICs (16 to 64 μg/ml). The same promoter mutations were detected in Tc-resistant mutants selected in vitro from various susceptible strains. Sequence analysis revealed that these deletions might impede the formation of the transcriptional attenuator located immediately upstream of tet(M). Expression in Enterococcus faecalis of a tet(M) reporter gene transcribed from these promoter mutants conferred a level of Tc resistance similar to that observed in the parental S. pneumoniae strains. These results show that different levels of Tc susceptibility found in clinical isolates of S. pneumoniae can be explained by frameshift mutations within tet(M) and by alterations of the upstream transcriptional attenuator. PMID:22802249

  19. IL-22 Defect During Streptococcus pneumoniae Infection Triggers Exacerbation of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Pichavant, Muriel; Sharan, Riti; Le Rouzic, Olivier; Olivier, Cécile; Hennegrave, Florence; Rémy, Gaëlle; Pérez-Cruz, Magdiel; Koné, Bachirou; Gosset, Pierre; Just, Nicolas; Gosset, Philippe

    2015-01-01

    Progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS) and to stimulate peripheral blood mononuclear cells (PBMC) from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1β and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1β and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation. PMID:26870795

  20. Pyruvate Oxidase Influences the Sugar Utilization Pattern and Capsule Production in Streptococcus pneumoniae

    PubMed Central

    Carvalho, Sandra M.; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P.; Neves, Ana R.; Bijlsma, Jetta J. E.

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps) transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host. PMID:23844180

  1. [Relationship between protein binding and antimicrobial activities of antibiotics against Streptococcus pneumoniae and Haemophilus influenzae].

    PubMed

    Sakata, Hiroshi

    2006-10-01

    Fifty isolates of Streptococcus pneumoniae and 42 isolates of Haemophilus influenzae were isolated from the blood of children admitted to pediatric wards of hospitals in subprefucture between January 1998 and December 2005. The susceptibilities were measured by a microbroth dilution method using a standard broth and a broth containing 4.5% albumin. Against S. pneumoniae, penicillin G, ampicillin, cefotaxime, ceftriaxone, panipenem, meropenem, vancomycin, cefditoren, cefcapene, cefteram, faropenem and tebipenem were used and against H. influenzae, ampicillin, piperacillin, cefotaxime, ceftriaxone, panipenem, meropenem, clavulanic acid/ amoxicillin, cefditoren, cefcapene, cefteram, faropenem and tebipenem were used. Against S. pneumoniae, tebipenem was the highest antimicrobial activity in oral antibiotics (MIC90; < or = 0.06 microg/ml) and panipenem showed the highest activity for intravenous antibiotics (MIC90; < or = 0.12 microg/ml). Against H. influenzae, cefditoren was the highest activity for oral antibiotics (MIC90; < or = 0.06 microg/ml) and meropenem showed the highest activity for intravenous antibiotics (MIC90; < or = 50.06 microg/ml). The MIC90s measured by albumin containing broth were higher than those measured by standard broth. Protein binding rates of ceftriaxone, cefditoren, and faropenem were greater than 90%, and the MIC90 of these antibiotics measured by albumin addition methods were over 4-fold higher than those measured by standard methods. PMID:17180806

  2. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    SciTech Connect

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  3. MicroRNAs Constitute a Negative Feedback Loop in Streptococcus pneumoniae-Induced Macrophage Activation.

    PubMed

    Griss, Kathrin; Bertrams, Wilhelm; Sittka-Stark, Alexandra; Seidel, Kerstin; Stielow, Christina; Hippenstiel, Stefan; Suttorp, Norbert; Eberhardt, Martin; Wilhelm, Jochen; Vera, Julio; Schmeck, Bernd

    2016-07-15

    Streptococcus pneumoniae causes high mortality as a major pneumonia-inducing pathogen. In pneumonia, control of innate immunity is necessary to prevent organ damage. We assessed the role of microRNAs (miRNAs) as regulators in pneumococcal infection of human macrophages. Exposure of primary blood-derived human macrophages with pneumococci resulted in transcriptional changes in several gene clusters and a significant deregulation of 10 microRNAs. Computational network analysis retrieved miRNA-146a as one putatively important regulator of pneumococci-induced host cell activation. Its induction depended on bacterial structural integrity and was completely inhibited by blocking Toll-like receptor 2 (TLR-2) or depleting its mediator MyD88. Furthermore, induction of miRNA-146a release did not require the autocrine feedback of interleukin 1β and tumor necrosis factor α released from infected macrophages, and it repressed the TLR-2 downstream mediators IRAK-1 and TRAF-6, as well as the inflammatory factors cyclooxygenase 2 and interleukin 1β. In summary, pneumococci recognition induces a negative feedback loop, preventing excessive inflammation via miR-146a and potentially other miRNAs. PMID:26984146

  4. β-sitosterol interacts with pneumolysin to prevent Streptococcus pneumoniae infection

    PubMed Central

    Li, Hongen; Zhao, Xiaoran; Wang, Jianfeng; Dong, Yu; Meng, Song; Li, Rui; Niu, Xiaodi; Deng, Xuming

    2015-01-01

    Pneumolysin is one of the major virulence factors elaborated by Streptococcus pneumoniae; this toxin is a member of the cholesterol-dependent cytolysins. Engagement of cholesterol induces the formation of a multi-subunit complex by pneumolysin that lyses host cells by forming pores on the membrane. Because pneumolysin released by bacteria which have been killed by conventional antibiotics is still active, agents capable of directly attacking the toxin are considered advantageous against antimicrobials in the treatment of S. pneumoniae infections. Here we found that the phytosterol, β-sitosterol, effectively protects against cell lysis caused by pneumolysin. This compound interacts with the toxin at Thr459 and Leu460, two sites important for being recognized by its natural ligand, cholesterol. Similar to cholesterol, β-sitosterol induces pneumolysin oligomerization. This compound also protects cells from damage by other cholesterol-dependent toxins. Finally, this compound protects mice against S. pneumoniae infection. Thus, β-sitosterol is a candidate for the development of anti-virulence agents against pathogens that rely on cholesterol-dependent toxins for successful infections. PMID:26631364

  5. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors

    PubMed Central

    Hava, David L.; Camilli, Andrew

    2009-01-01

    Summary Streptococcus pneumoniae (the pneumococcus) is carried in the nasopharynx of healthy individuals, but can spread to other host sites and lead to pneumonia, bacteraemia, otitis media and meningitis. Although it is logical to think a priori that differential gene expression would contribute to the ability of this pathogen to colonize different sites, in fact very few genes have been demonstrated to play tissue specific roles in virulence or carriage. Using signature-tagged mutagenesis to screen 6149 mariner-transposon insertion strains, we identified 387 mutants attenuated for infection in a murine model of pneumonia. Among these mutants are ones with disruptions in a number of putative tissue-specific transcriptional regulators, surface proteins, metabolic proteins and proteins of unknown function, most of which had not previously been associated with virulence. A subset of these, including most of those with insertions in putative transcriptional regulators, was examined for phenotypes in murine models of bacteraemia and nasopharyngeal carriage. Four classes of mutants defective in infection models of the: (I) lung, (II) lung and blood, (III) lung and nasopharynx, and (IV) all three tissues were identified, thus demonstrating the existence of tissue-specific pneumococcal virulence factors. Included in these strains were two with disruptions in a genetic locus that putatively codes for a transcriptional regulator, three surface proteins and three sortase homologues. Mutation analysis revealed that three of the seven genes in this locus are virulence factors that are specific to mucosal surfaces. PMID:12207705

  6. Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae

    PubMed Central

    Afzal, Muhammad; Shafeeq, Sulman; Manzoor, Irfan; Kuipers, Oscar P.

    2015-01-01

    The maltose regulon (mal regulon) has previously been shown to consist of the mal gene cluster (malMP, malXCD and malAR operons) in Streptococcus pneumoniae. In this study, we have further elucidated the complete mal regulon in S. pneumoniae D39 using microarray analyses and β-galactosidase assays. In addition to the mal gene cluster, the complete mal regulon of S. pneumoniae D39 consists of a pullulanase (PulA), a glucosidase (DexB), a glucokinase (RokB), a PTS component (PtsG) and an amylase (AmyA2). Our microarray studies and β-galactosidase assays further showed that the LacI-family transcriptional regulator MalR represses the expression of the mal regulon in the absence of maltose. Furthermore, the role of the pleiotropic transcriptional regulator CcpA in the regulation of the mal regulon in the presence of maltose was explored. Our microarray analysis with a ΔccpA strain showed that CcpA only represses the expression of the malXCD operon and the pulA gene in the presence of maltose. Hence, we extend the mal regulon now consisting of pulA, dexB, rokB, ptsG and amyA2 in addition to malMP, malXCD and malAR operons. PMID:26030923

  7. Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae.

    PubMed

    Afzal, Muhammad; Shafeeq, Sulman; Manzoor, Irfan; Kuipers, Oscar P

    2015-01-01

    The maltose regulon (mal regulon) has previously been shown to consist of the mal gene cluster (malMP, malXCD and malAR operons) in Streptococcus pneumoniae. In this study, we have further elucidated the complete mal regulon in S. pneumoniae D39 using microarray analyses and β-galactosidase assays. In addition to the mal gene cluster, the complete mal regulon of S. pneumoniae D39 consists of a pullulanase (PulA), a glucosidase (DexB), a glucokinase (RokB), a PTS component (PtsG) and an amylase (AmyA2). Our microarray studies and β-galactosidase assays further showed that the LacI-family transcriptional regulator MalR represses the expression of the mal regulon in the absence of maltose. Furthermore, the role of the pleiotropic transcriptional regulator CcpA in the regulation of the mal regulon in the presence of maltose was explored. Our microarray analysis with a ΔccpA strain showed that CcpA only represses the expression of the malXCD operon and the pulA gene in the presence of maltose. Hence, we extend the mal regulon now consisting of pulA, dexB, rokB, ptsG and amyA2 in addition to malMP, malXCD and malAR operons. PMID:26030923

  8. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae

    PubMed Central

    Romero-Espejel, María E.; Rodríguez, Mario A.; Chávez-Munguía, Bibiana; Ríos-Castro, Emmanuel; Olivares-Trejo, José de Jesús

    2016-01-01

    Streptococcus pneumoniae is a Gram-positive microorganism that is the cause of bacterial pneumonia, sinusitis and otitis media. This human pathogen also can cause invasive diseases such as meningitis, bacteremia and septicemia. Hemoglobin (Hb) and haem can support the growth and viability of S. pneumoniae as sole iron sources. Unfortunately, the acquisition mechanism of Hb and haem in this bacterium has been poorly studied. Previously we identified two proteins of 37 and 22 kDa as putative Hb- and haem-binding proteins (Spbhp-37 and Spbhp-22, respectively). The sequence of Spbhp-37 protein was database annotated as lipoprotein without any function or localization. Here it was immunolocalized in the surface cell by transmission electron microscopy using specific antibodies produced against the recombinant protein. The expression of Spbhp-37 was increased when bacteria were grown in media culture supplied with Hb. In addition, the affinity of Sphbp-37 for Hb was determined. Thus, in this work we are presenting new findings that attempt to explain the mechanism involved in iron acquisition of this pathogen. In the future these results could help to develop new therapy targets in order to avoid the secondary effects caused by the traditional therapies. PMID:27200302

  9. Use of the Agilent 2100 bioanalyzer for rapid and reproducible molecular typing of Streptococcus pneumoniae.

    PubMed

    Hathaway, Lucy J; Brugger, Silvio; Martynova, Alina; Aebi, Suzanne; Mühlemann, Kathrin

    2007-03-01

    Restriction fragment length polymorphism (RFLP) analysis is an economic and fast technique for molecular typing but has the drawback of difficulties in accurately sizing DNA fragments and comparing banding patterns on agarose gels. We aimed to improve RFLP for typing of the important human pathogen Streptococcus pneumoniae and to compare the results with the commonly used typing techniques of pulsed-field gel electrophoresis and multilocus sequence typing. We designed primers to amplify a noncoding region adjacent to the pneumolysin gene. The PCR product was digested separately with six restriction endonucleases, and the DNA fragments were analyzed using an Agilent 2100 bioanalyzer for accurate sizing. The combined RFLP results for all enzymes allowed us to assign each of the 47 clinical isolates of S. pneumoniae tested to one of 33 RFLP types. RFLP analyzed using the bioanalyzer allowed discrimination between strains similar to that obtained by the more commonly used techniques of pulsed-field gel electrophoresis, which discriminated between 34 types, and multilocus sequence typing, which discriminated between 35 types, but more quickly and with less expense. RFLP of a noncoding region using the Agilent 2100 bioanalyzer could be a useful addition to the molecular typing techniques in current use for S. pneumoniae, especially as a first screen of a local population. PMID:17202282

  10. Structure of a quinolone-stabilized cleavage complex of topoisomerase IV from Klebsiella pneumoniae and comparison with a related Streptococcus pneumoniae complex.

    PubMed

    Veselkov, Dennis A; Laponogov, Ivan; Pan, Xiao-Su; Selvarajah, Jogitha; Skamrova, Galyna B; Branstrom, Arthur; Narasimhan, Jana; Prasad, Josyula V N Vara; Fisher, L Mark; Sanderson, Mark R

    2016-04-01

    Klebsiella pneumoniae is a Gram-negative bacterium that is responsible for a range of common infections, including pulmonary pneumonia, bloodstream infections and meningitis. Certain strains of Klebsiella have become highly resistant to antibiotics. Despite the vast amount of research carried out on this class of bacteria, the molecular structure of its topoisomerase IV, a type II topoisomerase essential for catalysing chromosomal segregation, had remained unknown. In this paper, the structure of its DNA-cleavage complex is reported at 3.35 Å resolution. The complex is comprised of ParC breakage-reunion and ParE TOPRIM domains of K. pneumoniae topoisomerase IV with DNA stabilized by levofloxacin, a broad-spectrum fluoroquinolone antimicrobial agent. This complex is compared with a similar complex from Streptococcus pneumoniae, which has recently been solved. PMID:27050128

  11. Structure of a quinolone-stabilized cleavage complex of topoisomerase IV from Klebsiella pneumoniae and comparison with a related Streptococcus pneumoniae complex

    PubMed Central

    Veselkov, Dennis A.; Laponogov, Ivan; Pan, Xiao-Su; Selvarajah, Jogitha; Skamrova, Galyna B.; Branstrom, Arthur; Narasimhan, Jana; Prasad, Josyula V. N. Vara; Fisher, L. Mark; Sanderson, Mark R.

    2016-01-01

    Klebsiella pneumoniae is a Gram-negative bacterium that is responsible for a range of common infections, including pulmonary pneumonia, bloodstream infections and meningitis. Certain strains of Klebsiella have become highly resistant to antibiotics. Despite the vast amount of research carried out on this class of bacteria, the molecular structure of its topoisomerase IV, a type II topoisomerase essential for catalysing chromosomal segregation, had remained unknown. In this paper, the structure of its DNA-cleavage complex is reported at 3.35 Å resolution. The complex is comprised of ParC breakage-reunion and ParE TOPRIM domains of K. pneumoniae topoisomerase IV with DNA stabilized by levofloxacin, a broad-spectrum fluoroquinolone antimicrobial agent. This complex is compared with a similar complex from Streptococcus pneumoniae, which has recently been solved. PMID:27050128

  12. Functionally Cloned pdrM from Streptococcus pneumoniae Encodes a Na+ Coupled Multidrug Efflux Pump

    PubMed Central

    Hashimoto, Kohei; Ogawa, Wakano; Nishioka, Toshihiro; Tsuchiya, Tomofusa; Kuroda, Teruo

    2013-01-01

    Multidrug efflux pumps play an important role as a self-defense system in bacteria. Bacterial multidrug efflux pumps are classified into five families based on structure and coupling energy: resistance−nodulation−cell division (RND), small multidrug resistance (SMR), major facilitator (MF), ATP binding cassette (ABC), and multidrug and toxic compounds extrusion (MATE). We cloned a gene encoding a MATE-type multidrug efflux pump from Streptococcus pneumoniae R6, and designated it pdrM. PdrM showed sequence similarity with NorM from Vibrio parahaemolyticus, YdhE from Escherichia coli, and other bacterial MATE-type multidrug efflux pumps. Heterologous expression of PdrM let to elevated resistance to several antibacterial agents, norfloxacin, acriflavine, and 4′,6-diamidino-2-phenylindole (DAPI) in E. coli KAM32 cells. PdrM effluxes acriflavine and DAPI in a Na+- or Li+-dependent manner. Moreover, Na+ efflux via PdrM was observed when acriflavine was added to Na+-loaded cells expressing pdrM. Therefore, we conclude that PdrM is a Na+/drug antiporter in S. pneumoniae. In addition to pdrM, we found another two genes, spr1756 and spr1877,that met the criteria of MATE-type by searching the S. pneumoniae genome database. However, cloned spr1756 and spr1877 did not elevate the MIC of any of the investigated drugs. mRNA expression of spr1756, spr1877, and pdrM was detected in S. pneumoniae R6 under laboratory growth conditions. Therefore, spr1756 and spr1877 are supposed to play physiological roles in this growth condition, but they may be unrelated to drug resistance. PMID:23555691

  13. [Detection and Serotyping of Streptococcus pneumoniae Carried in Healthy Adults with a Modified PCR Method].

    PubMed

    Ishihara, Yuka; Okamoto, Akira; Ohta, Michio

    2015-05-01

    Detection of Streptococcus pneumoniae colonized in the pharynx of healthy carriers currently relies on conventional culture methods of direct plating with pharyngeal swab specimens. The accurate measurement of the carriage of pneumococci, however, has not been necessarily achieved with these methods due to low density colonization and contamination of numerous oral streptococci that express α-hemolysis. A PCR-based detection method of pneumococci-specific for lytA as well as PCR serotyping of S. pneumoniae was recently developed and their effectiveness was confirmed. We modified the reaction conditions of these methods to improve the detection rate and applied them to the measurement of S. pneumoniae carried in healthy adults. Pharyngeal swab specimens obtained from 110 healthy volunteers over 40 and living in Nagoya were enriched for 5 hours with broth medium supplemented with rabbit serum and the template DNA for PCR was extracted from the mixed enriched culture. Of 110 specimens 36 (32.7%) were lytA-positive, the rate of which was much higher than the results of previous culture-based studies. The DNA template preparations were then used for PCR-based serotyping with primers specific for each of the types included in pneumococcal 23 valent vaccine (PPV23). We found that 28 out of 36 lytA-positive carriers were identified as being positive for the serotypes belonging to PPV23, although serotypes 6A and 6B were indistinguishable with the PCR method. The most frequent serotype was serotype 14, and serotypes 4, 18C, and 6A/B were also frequently identified. Five lytA-positive carriers were previously vaccinated with PPV23, and among them, 4 were positive for serotypes contained in PPV23. We recommend PCR-based identification and serotyping of S. pneumoniae in broth enrichment culture of pharyngeal swab specimens as a reliable method for the surveillance of healthy carriers with low density colonization. PMID:26552129

  14. Interaction of pneumolysin-sufficient and -deficient isogenic variants of Streptococcus pneumoniae with human respiratory mucosa.

    PubMed Central

    Rayner, C F; Jackson, A D; Rutman, A; Dewar, A; Mitchell, T J; Andrew, P W; Cole, P J; Wilson, R

    1995-01-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and pneumolysin, a hemolytic toxin, is thought to be an important virulence factor. We have studied the interaction of a pneumolysin-sufficient type II S. pneumoniae strain (PL+) and an otherwise identical pneumolysin-deficient derivative (PL-) with human respiratory mucosa in an organ culture with an air interface for up to 48 h. Ciliary beat frequency (CBF) was measured by a photometric technique, and adherence to and invasion of the epithelium were assessed by scanning and transmission electron microscopy. PL+ and PL- caused a progressive fall in CBF compared with the control which became significant (P < 0.01) at 24 h for PL+ and at 48 h for PL-. At 24 h, there was a significant increase in the percentage of the mucosa of the organ culture that was damaged for PL+ compared with the control (P < 0.01) and PL- (P < 0.02). At 48 h, there was a significant increase in mucosal damage for both PL+ (P < 0.005) and PL- (P < 0.05) compared with the control. At 24 and 48 h, PL+ and PL- adhered predominantly to mucus and damaged cells. PL+ infection alone caused separation of tight junctions between epithelial cells, and at 48 h PL+ cells were adherent to the separated edges of otherwise healthy unciliated cells. PL+ and PL- both caused damage to the epithelial cell ultrastructure. S. pneumoniae infection caused patchy damage to the respiratory mucosa and a lowered CBF. These changes were more severe and occurred earlier with the pneumolysin-sufficient variant. PMID:7822008

  15. Thiol Peroxidase Is an Important Component of Streptococcus pneumoniae in Oxygenated Environments

    PubMed Central

    Hajaj, Barak; Yesilkaya, Hasan; Benisty, Rachel; David, Maayan; Andrew, Peter W.

    2012-01-01

    Streptococcus pneumoniae is an aerotolerant Gram-positive bacterium that causes an array of diseases, including pneumonia, otitis media, and meningitis. During aerobic growth, S. pneumoniae produces high levels of H2O2. Since S. pneumoniae lacks catalase, the question of how it controls H2O2 levels is of critical importance. The psa locus encodes an ABC Mn2+-permease complex (psaBCA) and a putative thiol peroxidase, tpxD. This study shows that tpxD encodes a functional thiol peroxidase involved in the adjustment of H2O2 homeostasis in the cell. Kinetic experiments showed that recombinant TpxD removed H2O2 efficiently. However, in vivo experiments revealed that TpxD detoxifies only a fraction of the H2O2 generated by the pneumococcus. Mass spectrometry analysis demonstrated that TpxD Cys58 undergoes selective oxidation in vivo, under conditions where H2O2 is formed, confirming the thiol peroxidase activity. Levels of TpxD expression and synthesis in vitro were significantly increased in cells grown under aerobic versus anaerobic conditions. The challenge with D39 and TIGR4 with H2O2 resulted in tpxD upregulation, while psaBCA expression was oppositely affected. However, the challenge of ΔtpxD mutants with H2O2 did not affect psaBCA, implying that TpxD is involved in the regulation of the psa operon, in addition to its scavenging activity. Virulence studies demonstrated a notable difference in the survival time of mice infected intranasally with D39 compared to that of mice infected intranasally with D39ΔtpxD. However, when bacteria were administered directly into the blood, this difference disappeared. The findings of this study suggest that TpxD constitutes a component of the organism's fundamental strategy to fine-tune cellular processes in response to H2O2. PMID:23027531

  16. Deletion of a Cation Transporter Promotes Lysis in Streptococcus pneumoniae ▿ †

    PubMed Central

    Neef, Jolanda; Andisi, Vahid Farshchi; Kim, Kwang S.; Kuipers, Oscar P.; Bijlsma, Jetta J. E.

    2011-01-01

    Streptococcus pneumoniae is a significant human pathogen which causes respiratory and serious invasive diseases. Mg2+ is essential for life, and its concentration varies throughout the human body. Magnesium uptake plays an important role in the virulence of many bacterial pathogens. To study the Mg2+ uptake of S. pneumoniae strain D39, a mutant was generated in SPD1383, a P-type ATPase with homology to the Salmonella Mg2+ transporter MgtA, which has also been shown to be a Ca2+ exporter in strain TIGR4. Under low-Ca2+ conditions, mutation led to a growth defect in complex medium and the gene was nearly essential for growth under low-Mg2+ conditions. Addition of Mg2+ restored the normal growth of the mutant in all cases, but the addition of other divalent cations had no effect. Addition of Ca2+, Mn2+, and Zn2+ in the presence of high Mg2+ concentrations inhibited restoration of growth. The mutant was unable to proliferate in blood, which was also alleviated by the addition of Mg2+. The protein was located in the membrane and produced in various S. pneumoniae strains and pathogenic streptococcal species. Surprisingly, mutation of the gene led to an elevated toxicity for endothelial cells. This was caused by an increased amount of pneumolysin in the medium, mediated by elevated lysis of the mutant. Thus, in this study, we uncovered a role for SPD1383 in Mg2+ uptake and hypothesize that the protein is a Mg2+/Ca2+ antiporter. Furthermore, a disturbance in Mg2+ homeostasis seems to promote lysis of S. pneumoniae. PMID:21422174

  17. Carbonic Anhydrase Is Essential for Streptococcus pneumoniae Growth in Environmental Ambient Air▿ †

    PubMed Central

    Burghout, Peter; Cron, Lorelei E.; Gradstedt, Henrik; Quintero, Beatriz; Simonetti, Elles; Bijlsma, Jetta J. E.; Bootsma, Hester J.; Hermans, Peter W. M.

    2010-01-01

    The respiratory tract pathogen Streptococcus pneumoniae needs to adapt to the different levels of carbon dioxide (CO2) it encounters during transmission, colonization, and infection. Since CO2 is important for various cellular processes, factors that allow optimal CO2 sequestering are likely to be important for pneumococcal growth and survival. In this study, we showed that the putative pneumococcal carbonic anhydrase (PCA) is essential for in vitro growth of S. pneumoniae under the CO2-poor conditions found in environmental ambient air. Enzymatic analysis showed that PCA catalyzes the reversible hydration of CO2 to bicarbonate (HCO3−), an essential step to prevent the cellular release of CO2. The addition of unsaturated fatty acids (UFAs) reversed the CO2-dependent in vitro growth inhibition of S. pneumoniae strains lacking the pca gene (Δpca), indicating that PCA-mediated CO2 fixation is at least associated with HCO3−-dependent de novo biosynthesis of UFAs. Besides being necessary for growth in environmental ambient conditions, PCA-mediated CO2 fixation pathways appear to be required for intracellular survival in host cells. This effect was especially pronounced during invasion of human brain microvascular endothelial cells (HBMEC) and uptake by murine J774 macrophage cells but not during interaction of S. pneumoniae with Detroit 562 pharyngeal epithelial cells. Finally, the highly conserved pca gene was found to be invariably present in both CO2-independent and naturally circulating CO2-dependent strains, suggesting a conserved essential role for PCA and PCA-mediated CO2 fixation pathways for pneumococcal growth and survival. PMID:20525828

  18. Streptococcus pneumoniae DNA Gyrase and Topoisomerase IV: Overexpression, Purification, and Differential Inhibition by Fluoroquinolones

    PubMed Central

    Pan, Xiao-Su; Fisher, L. Mark

    1999-01-01

    Streptococcus pneumoniae gyrA and gyrB genes specifying the DNA gyrase subunits have been cloned into pET plasmid vectors under the control of an inducible T7 promoter and have been separately expressed in Escherichia coli. Soluble 97-kDa GyrA and 72-kDa GyrB proteins bearing polyhistidine tags at their respective C-terminal and N-terminal ends were purified to apparent homogeneity by one-step nickel chelate column chromatography and were free of host E. coli topoisomerase activity. Equimolar amounts of the gyrase subunits reconstituted ATP-dependent DNA supercoiling with comparable activity to gyrase of E. coli and Staphylococcus aureus. In parallel, S. pneumoniae topoisomerase IV ParC and ParE subunits were similarly expressed in E. coli, purified to near homogeneity as 93- and 73-kDa proteins, and shown to generate efficient ATP-dependent DNA relaxation and DNA decatenation activities. Using the purified enzymes, we examined the inhibitory effects of three paradigm fluoroquinolones—ciprofloxacin, sparfloxacin, and clinafloxacin—which previous genetic studies with S. pneumoniae suggested act preferentially through topoisomerase IV, through gyrase, and through both enzymes, respectively. Surprisingly, all three quinolones were more active in inhibiting purified topoisomerase IV than gyrase, with clinafloxacin showing the greatest inhibitory potency. Moreover, the tested agents were at least 25-fold more effective in stabilizing a cleavable complex (the relevant cytotoxic lesion) with topoisomerase IV than with gyrase, with clinafloxacin some 10- to 32-fold more potent against either enzyme, in line with its superior activity against S. pneumoniae. The uniform target preference of the three fluoroquinolones for topoisomerase IV in vitro is in apparent contrast to the genetic data. We interpret these results in terms of a model for bacterial killing by quinolones in which cellular factors can modulate the effects of target affinity to determine the cytotoxic

  19. Streptococcus pneumoniae pharyngeal colonization in school-age children and adolescents with cancer.

    PubMed

    Principi, Nicola; Preti, Valentina; Gaspari, Stefania; Colombini, Antonella; Zecca, Marco; Terranova, Leonardo; Cefalo, Maria Giuseppina; Ierardi, Valentina; Pelucchi, Claudio; Esposito, Susanna

    2016-02-01

    Patients with cancer, particularly those with hematologic malignancies, are at an increased risk of invasive pneumococcal disease (IPD) and they are included in the list of subjects for whom pneumococcal vaccination is recommended. The main aim of this study was to evaluate Streptococcus pneumoniae colonization in school-aged children and adolescents with cancer to determine the potential protective efficacy of 13-valent pneumococcal conjugate vaccine (PCV13). An oropharyngeal swab was obtained from 277 patients (age range 6-17 years) with cancer during routine clinical visits and analyzed for S. pneumoniae using real-time polymerase chain reaction. S. pneumoniae was identified in 52 patients (18.8%), including 47/235 (20.0%) with hematologic malignancies and 5/42 (11.9%) with solid tumors. Colonization declined significantly with an increase in age (odds ratio [OR] 0.34, 95% confidence interval [CI] 0.16-0.71, and OR 0.30, 95% CI 0.11-0.82 in children aged 10-14 and ≥15 years, respectively, as compared to those <10 years). Carriage was more common among patients with leukemia or lymphoma than in children with solid tumors. Co-trimoxazole prophylaxis was significantly associated with reduced pneumococcal carriage (OR 0.41, 95% CI 0.19-0.89). A total of 15/58 (25.9%) and 26/216 (12.0%) children were colonized by PCV13 serotypes among cancer patients previously vaccinated and not vaccinated with 7-valent pneumococcal conjugate vaccine (PCV7), respectively. In conclusion, this study indicates that children and adolescents with cancer are frequently colonized by S. pneumoniae. Because most of the carried serotypes are included in PCV13, this vaccine is presently the best solution to reduce the risk of IPD in these patients. PMID:26367101

  20. Streptococcus pneumoniae Serotype 3 among Costa Rican Children with Otitis Media: clinical, epidemiological characteristics and antimicrobial resistance patterns

    PubMed Central

    Abdelnour, Arturo; Soley, Carolina; Guevara, Silvia; Porat, Nurith; Dagan, Ron; Arguedas, Adriano

    2009-01-01

    Background After the introduction of the seven valent-pneumococcal conjugated vaccine into our National Immunization Program, it is important to establish and track local serotype distribution in order to evaluate its impact specially because serotype replacement phenomena has been described. To describe the clinical, epidemiological and antimicrobial resistance patterns of Costa Rican children with otitis media caused by Streptococcus pneumoniae serotype 3. Methods Middle ear fluid samples were obtained from Costa Rican children with otitis media who participated in various antimicrobial clinical trials between 1992 and 2007. Streptococcus pneumoniae was identified according to laboratory standard procedures. Strains were serotyped and antimicrobial susceptibility to penicillin, amoxicillin, cefuroxime, ceftriaxone, azithromycin and levofloxacin was determined by E-test. Results Throughout 1992–2007 a total of 1919 tympanocentesis were performed in children with otitis media (median age: 19 months) and yielded a total of 1208 middle ear isolates. The most common pathogens were: Streptococcus pneumoniae, 511 isolates (49%); Non-Typable Haemophilus influenzae, 386 isolates (37%); Moraxella catarrahalis, 100 isolates (9.5%); and Streptococcus pyogenes, 54 isolates (5%). Streptococcus pneumoniae serotyping was performed in 346/511 isolates (68%) recovered during years 1999–2006. The most common serotypes were 19F (101/30.0%), 14 (46/13.7%), 3 (34/10.1%), 6B (30/8.9%) and 23F (23/6.8%). Analysis performed per years showed a higher prevalence of serotype 3 Streptococcus pneumoniae during the study period 2004 and 2005. During the entire study period (1999–2006) serotype 3 was most commonly isolated in children older than 24 months (61.2% vs 40.6%;P = 0.05) and showed a lower rate of penicillin non-susceptibility (4.0% vs 18%; P = 0.003). Conclusion Streptococcus pneumoniae serotype 3 is an important pathogen in Costa Rican children with otitis media, especially in

  1. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate

    PubMed Central

    2011-01-01

    Background Streptococcus pneumoniae is an important human pathogen representing a major cause of morbidity and mortality worldwide. We sequenced the genome of a serotype 11A, ST62 S. pneumoniae invasive isolate (AP200), that was erythromycin-resistant due to the presence of the erm(TR) determinant, and carried out analysis of the genome organization and comparison with other pneumococcal genomes. Results The genome sequence of S. pneumoniae AP200 is 2,130,580 base pair in length. The genome carries 2216 coding sequences (CDS), 56 tRNA, and 12 rRNA genes. Of the CDSs, 72.9% have a predicted biological known function. AP200 contains the pilus islet 2 and, although its phenotype corresponds to serotype 11A, it contains an 11D capsular locus. Chromosomal rearrangements resulting from a large inversion across the replication axis, and horizontal gene transfer events were observed. The chromosomal inversion is likely implicated in the rebalance of the chromosomal architecture affected by the insertions of two large exogenous elements, the erm(TR)-carrying Tn1806 and a functional prophage designated ϕSpn_200. Tn1806 is 52,457 bp in size and comprises 49 ORFs. Comparative analysis of Tn1806 revealed the presence of a similar genetic element or part of it in related species such as Streptococcus pyogenes and also in the anaerobic species Finegoldia magna, Anaerococcus prevotii and Clostridium difficile. The genome of ϕSpn_200 is 35,989 bp in size and is organized in 47 ORFs grouped into five functional modules. Prophages similar to ϕSpn_200 were found in pneumococci and in other streptococcal species, showing a high degree of exchange of functional modules. ϕSpn_200 viral particles have morphologic characteristics typical of the Siphoviridae family and are capable of infecting a pneumococcal recipient strain. Conclusions The sequence of S. pneumoniae AP200 chromosome revealed a dynamic genome, characterized by chromosomal rearrangements and horizontal gene transfers

  2. Clinical Features and Outcomes of Spontaneous Bacterial Peritonitis Caused by Streptococcus pneumoniae

    PubMed Central

    Kim, Taeeun; Hong, Sun In; Park, Se Yoon; Jung, Jiwon; Chong, Yong Pil; Kim, Sung-Han; Lee, Sang-Oh; Kim, Yang Soo; Woo, Jun Hee; Lim, Young-Suk; Sung, Heungsup; Kim, Mi-Na; Choi, Sang-Ho

    2016-01-01

    Abstract Streptococcus pneumoniae is a well-known cause of spontaneous bacterial peritonitis (SBP) in cirrhotic patients. However, little information is available regarding clinical characteristics and outcomes of SBP caused by S. pneumoniae. It has been suggested that spontaneous pneumococcal peritonitis (SPP) often spreads hematogenously from concomitant pneumococcal pneumonia, and is associated with a higher rate of mortality. During the period between January 1997 and December 2013, 50 SPP cases were identified. These cases were then age/sex-matched with 100 patients with SBP due to causes other than S. pneumoniae (controls). SPP accounted for 4.3% (50/1172) of all culture-proven SBPs. The baseline Child-Pugh class, etiology of cirrhosis, and model for end-stage liver disease scores were comparable for the 2 groups. SPP patients were more likely than control patients to have a community-acquired infection (90.0% vs. 76.0%; P = 0.04), concurrent bacteremia (84.0% vs. 59.0%; P = 0.002), and to present with variceal bleeding (10.0% vs. 1.0%; P = 0.02). None of the study patients had pneumococcal pneumonia. The most common initial empirical therapy for both groups was third-generation cephalosporins (96.0% vs. 91.0%; P = 0.34) which was active against a significantly higher proportion of the cases than of the controls (97.8% vs. 78.7%; P = 0.003). Thirty-day mortality was significantly lower in the case group than in the control group (10.0% vs. 24.0%; P = 0.04). SPP was not associated with pneumococcal pneumonia and showed lower mortality than SBP caused by other organisms. However, the present study was constrained by the natural limitations characteristic of a small, retrospective study. Therefore, large-scale, well-controlled studies are required to demonstrate the influence of SPP on mortality, which was marginal in the present study. PMID:27258513

  3. Designing Fluoroquinolone Breakpoints for Streptococcus pneumoniae by Using Genetics instead of Pharmacokinetics-Pharmacodynamics

    PubMed Central

    Smith, H. J.; Noreddin, A. M.; Siemens, C. G.; Schurek, K. N.; Greisman, J.; Hoban, C. J.; Hoban, D. J.; Zhanel, G. G.

    2004-01-01

    We determined fluoroquinolone microbiological resistance breakpoints for Streptococcus pneumoniae by using genetic instead of pharmacokinetic-pharmacodynamic parameters. The proposed microbiological breakpoints define resistance as the MIC at which >50% of the isolates carry quinolone resistance-determining region mutations and/or, if data are available, when Monte Carlo simulations demonstrate a <90% chance of bacteriological eradication. The proposed microbiological resistant breakpoints are as follows (in micrograms per milliliter): gatifloxacin, >0.25; gemifloxacin, >0.03; levofloxacin, >1; and moxifloxacin, >0.12. Monte Carlo simulations of the once daily 400-mg doses of gatifloxacin and 750-mg doses levofloxacin demonstrated a high level of target attainment (free-drug area under the concentration-time curve from 0 to 24 h/MIC ratio of 30) by using these new genetically derived breakpoints. PMID:15328145

  4. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae

    PubMed Central

    Begg, Stephanie L.; Eijkelkamp, Bart A.; Luo, Zhenyao; Couñago, Rafael M.; Morey, Jacqueline R.; Maher, Megan J.; Ong, Cheryl-lynn Y.; McEwan, Alastair G.; Kobe, Bostjan; O’Mara, Megan L.; Paton, James C.; McDevitt, Christopher A.

    2015-01-01

    Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth’s crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress. PMID:25731976

  5. Effects of clinical isolates of Streptococcus pneumoniae on THP-1 human monocytic cells.

    PubMed

    Zhang, Jin; Hu, Da-Kang; Wang, Dong-Guo; Liu, Yang; Liu, Chi-Bo; Yu, Lian-Hua; Qu, Ying; Luo, Xin-Hua; Yang, Jin-Hong; Yu, Jian; Liu, Shuang-Chun; Li, Xiang-Yang

    2013-11-01

    Twenty‑three clinical Streptococcus pneumoniae (SP) strains were isolated from blood and sputum specimens from the Second Affiliated Hospital of Wenzhou Medical College in 2009. These strains and the ATCC 49619 standard strain were cultured and suspended in normal saline (at a turbidity of 1.0 McFarland). The production of interleukin (IL)‑8, intracellular adhesion molecule‑1 (ICAM‑1) and IL‑10 in THP‑1 cells following stimulation with the SP suspension was analyzed by an enzyme-linked immunosorbent assay. The concentrations of IL‑8, ICAM‑1 and IL‑10 from the THP‑1 monocytes were greater than those of the blank control following stimulation with the SP suspension. No significant difference was identified in the levels of IL‑8, ICAM‑1 and IL‑10 secretion between THP‑1 monocytes stimulated by blood‑borne SP (bb‑SP) and sputum‑borne SP (sb‑SP). PMID:24045590

  6. Identification of two proteins encoded by com, a competence control locus of Streptococcus pneumoniae.

    PubMed Central

    Chandler, M S; Morrison, D A

    1988-01-01

    The com locus, which controls competence for genetic transformation in Streptococcus pneumoniae, was analyzed by construction of a series of subclones, insertion mutations, and deletions of the cloned DNA in Escherichia coli. In vitro transcription-translation of these com plasmids revealed two neighboring genes, comA and comB, encoding proteins of 77,000 and 49,000 daltons, respectively. Their map positions and orientations were determined. Insertions in either gene eliminated the corresponding protein and had no effect on the other. In addition, a 15,000-dalton com protein was tentatively identified, although the exact location of this gene remains to be determined. Features of the DNA adjacent to the com locus are also described. Images PMID:3384803

  7. Identification of potential vaccine candidates against Streptococcus pneumoniae by reverse vaccinology approach.

    PubMed

    Talukdar, Sandipan; Zutshi, Shubhranshu; Prashanth, K S; Saikia, Kandarpa K; Kumar, Parveen

    2014-03-01

    In the past few decades, genome-based approaches have contributed significantly to vaccine development. Our aim was to identify the most conserved and immunogenic antigens of Streptococcus pneumoniae, which can be potential vaccine candidates in the future. BLASTn was done to identify the most conserved antigens. PSORTb 3.0.2 was run to predict the subcellular localization of the proteins. B cell epitope prediction was done for the immunogenicity testing. Finally, BLASTp was done for verifying the extent of similarity to human proteome to exclude the possibility of autoimmunity. Proteins failing to comply with the set parameters were filtered at each step. Based on the above criteria, out of the initial 22 pneumococcal proteins selected for screening, pavB and pullulanase were the most promising candidate proteins. PMID:24482282

  8. The Efficacy of Pneumococcal Capsular Polysaccharide-specific Antibodies to Serotype 3 Streptococcus pneumoniae requires Macrophages

    PubMed Central

    Fabrizio, Kevin; Manix, Catherine; Tian, Haijun; van Rooijen, Nico; Pirofski, Liise-anne

    2010-01-01

    The efficacy of antibody immunity against Streptococcus pneumoniae stems from the ability of opsonic, serotype (ST)-specific antibodies to pneumococcal capsular polysaccharide (PPS) to facilitate killing of the homologous ST by host phagocytes. However, PPS-specific antibodies have been identified that are protective in mice, but do not promote opsonic killing in vitro, raising the question of how they mediate protection in vivo. To probe this question, we investigated the dependence of antibody efficacy against lethal systemic (intraperitoneal, i.p.) infection with Streptococcus pneumoniae serotype 3 (ST3) on macrophages and neutrophils for the following PPS3-specific monoclonal antibodies (MAbs) in survival experiments in mice using a non-opsonic human IgM (A7), a non-opsonic mouse IgG1 (1E2) and an opsonic mouse IgG1 (5F6). The survival of A7- and PPS3-specific and isotype control-MAb-treated neutrophil-depleted and neutrophil-sufficient and macrophage-depleted and macrophage-sufficient mice were determined after i.p. challenge with ST3 strains 6303 and WU2. Neutrophils were dispensable for A7 and the mouse MAbs to mediate protection in this model, but macrophages were required for the efficacy of A7 and optimal mouse MAb-mediated protection. For A7-treated mice, macrophage-depleted mice had higher blood CFU, cytokines and peripheral neutrophil levels than macrophage-sufficient mice, and macrophage-sufficient mice had lower tissue bacterial burdens than control MAb-treated mice. These findings demonstrate that macrophages contribute to opsonic and non-opsonic PPS3-specific MAb-mediated protection against ST3 infection by enhancing bacterial clearance and suggest that neutrophils do not compensate for the absence of macrophages in the model used in this study. PMID:20800700

  9. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    PubMed

    Yadav, Mukesh Kumar; Go, Yoon Young; Chae, Sung-Won; Song, Jae-Jun

    2015-01-01

    Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered

  10. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro

    PubMed Central

    Yadav, Mukesh Kumar; Go, Yoon Young; Chae, Sung-Won; Song, Jae-Jun

    2015-01-01

    Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered

  11. A Novel Metallo-β-Lactamase Involved in the Ampicillin Resistance of Streptococcus pneumoniae ATCC 49136 Strain

    PubMed Central

    Chang, Chia-Yu; Lin, Hui-Jen; Li, Yaw-Kuen

    2016-01-01

    Streptococcus pneumoniae, a penicillin-sensitive bacterium, is recognized as a major cause of pneumonia and is treated clinically with penicillin-based antibiotics. The rapid increase in resistance to penicillin and other antibiotics affects 450 million people globally and results in 4 million deaths every year. To unveil the mechanism of resistance of S. pneumoniae is thus an important issue to treat streptococcal disease that might consequently save millions of lives around the world. In this work, we isolated a streptococci-conserved L-ascorbate 6-phosphate lactonase, from S. pneumoniae ATCC 49136. This protein reveals a metallo-β-lactamase activity in vitro, which is able to deactivate an ampicillin-based antibiotic by hydrolyzing the amide bond of the β-lactam ring. The Michaelis parameter (Km) = 25 μM and turnover number (kcat) = 2 s-1 were obtained when nitrocefin was utilized as an optically measurable substrate. Through confocal images and western blot analyses with a specific antibody, the indigenous protein was recognized in S. pneumoniae ATCC 49136. The protein-overexpressed S. pneumonia exhibits a high ampicillin-tolerance ability in vivo. In contrast, the protein-knockout S. pneumonia reveals the ampicillin-sensitive feature relative to the wild type strain. Based on these results, we propose that this protein is a membrane-associated metallo-β-lactamase (MBL) involved in the antibiotic-resistant property of S. pneumoniae. PMID:27214294

  12. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae

    PubMed Central

    Peñaloza, Hernán F; Nieto, Pamela A; Muñoz-Durango, Natalia; Salazar-Echegarai, Francisco J; Torres, Javiera; Parga, María J; Alvarez-Lobos, Manuel; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2015-01-01

    Streptococcus pneumoniae is a major aetiological agent of pneumonia worldwide, as well as otitis media, sinusitis, meningitis and sepsis. Recent reports have suggested that inflammation of lungs due to S. pneumoniae infection promotes bacterial dissemination and severe disease. However, the contribution of anti-inflammatory molecules to the pathogenesis of S. pneumoniae remains unknown. To elucidate whether the production of the anti-inflammatory cytokine interleukin-10 (IL-10) is beneficial or detrimental for the host during pneumococcal pneumonia, we performed S. pneumoniae infections in mice lacking IL-10 (IL-10−/− mice). The IL-10−/− mice showed increased mortality, higher expression of pro-inflammatory cytokines, and an exacerbated recruitment of neutrophils into the lungs after S. pneumoniae infection. However, IL-10−/− mice showed significantly lower bacterial loads in lungs, spleen, brain and blood, when compared with mice that produced this cytokine. Our results support the notion that production of IL-10 during S. pneumoniae infection modulates the expression of pro-inflammatory cytokines and the infiltration of neutrophils into the lungs. This feature of IL-10 is important to avoid excessive inflammation of tissues and to improve host survival, even though bacterial dissemination is less efficient in the absence of this cytokine. PMID:26032199

  13. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae.

    PubMed

    Peñaloza, Hernán F; Nieto, Pamela A; Muñoz-Durango, Natalia; Salazar-Echegarai, Francisco J; Torres, Javiera; Parga, María J; Alvarez-Lobos, Manuel; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2015-09-01

    Streptococcus pneumoniae is a major aetiological agent of pneumonia worldwide, as well as otitis media, sinusitis, meningitis and sepsis. Recent reports have suggested that inflammation of lungs due to S. pneumoniae infection promotes bacterial dissemination and severe disease. However, the contribution of anti-inflammatory molecules to the pathogenesis of S. pneumoniae remains unknown. To elucidate whether the production of the anti-inflammatory cytokine interleukin-10 (IL-10) is beneficial or detrimental for the host during pneumococcal pneumonia, we performed S. pneumoniae infections in mice lacking IL-10 (IL-10(-/-) mice). The IL-10(-/-) mice showed increased mortality, higher expression of pro-inflammatory cytokines, and an exacerbated recruitment of neutrophils into the lungs after S. pneumoniae infection. However, IL-10(-/-) mice showed significantly lower bacterial loads in lungs, spleen, brain and blood, when compared with mice that produced this cytokine. Our results support the notion that production of IL-10 during S. pneumoniae infection modulates the expression of pro-inflammatory cytokines and the infiltration of neutrophils into the lungs. This feature of IL-10 is important to avoid excessive inflammation of tissues and to improve host survival, even though bacterial dissemination is less efficient in the absence of this cytokine. PMID:26032199

  14. Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol

    PubMed Central

    Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti

    2001-01-01

    Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960

  15. Characterization of Streptococcus agalactiae strains by multilocus enzyme genotype and serotype: identification of multiple virulent clone families that cause invasive neonatal disease.

    PubMed Central

    Quentin, R; Huet, H; Wang, F S; Geslin, P; Goudeau, A; Selander, R K

    1995-01-01

    The chromosomal genotypes of 277 isolates of 16 serotypes of Streptococcus agalactiae were characterized by analysis of electrophoretically demonstrable allele profiles at 12 metabolic enzyme loci. The collection comprised the type strain and 276 strains recovered from French symptomatic and asymptomatic subjects. Sixty-one distinctive electrophoretic types (ETs), representing multilocus clonal genotypes, were identified. Cluster analysis of the ETs revealed two primary phylogenetic divisions separated by a genetic distance of 0.62, Division I contained 67 isolates which could be assigned to 13 ETs. Twenty-seven of these isolates were from samples of cerebrospinal fluid (CSF) from neonatal meningitis patients. Two ETs, separated by a genetic distance of 0.217, contained 26 of these 27 isolates. Division II contained 210 isolates, of which 27 were isolated from CSF. This division was more polymorphic and included 48 ETs. Spanning a genetic distance of 0.3, three clusters and one ET were identified within this group. Twenty-four of 27 strains isolated from CSF belonged to one cluster, and 19 of them belonged to two adjacent ETs with a genetic distance of 0.083. Fifty-five of the 68 serotype Ia strains and 24 of the 26 serotype Ib strains were each confined to one of the evolutionary lineages, and 85 of the 86 strains which carried protein antigen c belonged to phylogenetic division II. Most of the type III organisms were assigned to two clone families. The characteristics of this French population argue for the existence of particular groups of strains responsible for neonatal meningitis and demonstrate that serotyping can supply information about the genetic distribution of strains. PMID:8567885

  16. Comparison of four different sampling methods for detecting pharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae in children.

    PubMed Central

    Rapola, S; Salo, E; Kiiski, P; Leinonen, M; Takala, A K

    1997-01-01

    Samples from 96 children with acute respiratory infection were obtained simultaneously with nasal, nasopharyngeal, and oropharyngeal swabs and by nasopharyngeal aspiration and were cultured on chocolate and blood agar plates. The rates of isolation of Streptococcus pneumoniae and Haemophilus influenzae detected by the four sampling methods were compared. Nasopharyngeal aspirates were optimal for the detection of both S. pneumoniae (isolation rate, 33%) and H. influenzae (isolation rate, 31%). When a nasopharyngeal aspirate is not available, such as for healthy children or children with no obtainable secretions, the nasopharyngeal swab seems optimal for the detection of both S. pneumoniae and H. influenzae among children younger than 13 months of age. Among older children, similarly, the nasopharyngeal swab seems optimal for the detection of S. pneumoniae; however, for H. influenzae, the oropharyngeal swab seems optimal. PMID:9114384

  17. Allelic Variation of the Capsule Promoter Diversifies Encapsulation and Virulence In Streptococcus pneumoniae

    PubMed Central

    Wen, Zhensong; Liu, Yanni; Qu, Fen; Zhang, Jing-Ren

    2016-01-01

    The polysaccharide capsule is the major virulence factor of Streptococcus pneumoniae (pneumococcus), a major human pathogen. The sequences in the promoter and coding regions of the capsule gene locus undergo extensive variations through the natural transformation-mediated horizontal gene transfer. The sequence variations in the coding region have led to at least 97 capsular serotypes. However, it remains unclear whether the sequence polymorphisms in the promoter region have any biological significance. In this study, we determined the sequences of the cps promoter region from 225 invasive pneumococcal isolates, and identified modular composition and remarkable inter-strain sequence variations in this region. The strain-to strain variations in the cps promoter are characterized by diversity in sequence and size, mosaic combinations of nucleotide polymorphisms and sequence modules, selective preservation of the sequence combinations, and promiscuous assortments of the sequences between the promoter and coding regions. Isogenic pneumococci carrying allelic variants of the cps promoter displayed significant differences in the transcription of the capsule genes, capsule production, adhesion to host epithelial cells, anti-phagocytosis and virulence in mouse bacteremia model. This study has thus indicated that the sequence polymorphisms in the cps promoter represent a novel mechanism for fine-tuning the level of encapsulation and virulence among S. pneumoniae strains. PMID:27465908

  18. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae.

    PubMed

    Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M

    2016-01-01

    Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4'-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems. PMID:27257160

  19. Overexpression, purification and crystallization of a choline-binding protein CbpI from Streptococcus pneumoniae

    SciTech Connect

    Paterson, Neil G. Riboldi-Tunicliffe, Alan; Mitchell, Timothy J.; Isaacs, Neil W.

    2006-07-01

    The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γ = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.

  20. Serotype prevalence of Streptococcus pneumoniae in Malaysia - the need for carriage studies.

    PubMed

    McNeil, H C; Clarke, S C

    2016-06-01

    Pneumococcal disease, caused by the bacterium Streptococcus pneumoniae, is a major burden to global health. Although the World Health Organisation (WHO) strongly recommends the inclusion of pneumococcal conjugate vaccines in national immunisation programmes (NIP's) worldwide, this has not occurred in many countries in the WHO South East Asia and Western Pacific regions - particularly longstanding middle-income countries. It is widely accepted that carriage of S. pneumoniae is a precursor to developing any pneumococcal disease. The reduction in pneumococcal disease from vaccine serotypes (VT) following widespread implementation of the pneumococcal conjugate vaccine (PCV) is believed to be through the direct immunogenic protective effect of immunised individuals as well as indirectly through herd immunity diminishing the incidence of disease in nonimmunised individuals. In Malaysia, pneumococcal disease is not included in national surveillance programmes and although PCVs have been licensed, they have not been included in the NIP. Hence, the vaccine is only available privately and the majority of the population is not able to afford it. There is an urgent need to develop surveillance programmes in Malaysia to include pneumococcal serotype data from carriage and invasive disease so that it may help guide national vaccine policy prior to a decision being taken on the inclusion of PCVs in the NIP. PMID:27495888

  1. Overlapping Functionality of the Pht Proteins in Zinc Homeostasis of Streptococcus pneumoniae

    PubMed Central

    Plumptre, Charles D.; Hughes, Catherine E.; Harvey, Richard M.; Eijkelkamp, Bart A.; McDevitt, Christopher A.

    2014-01-01

    Streptococcus pneumoniae is a globally significant pathogen that causes a range of diseases, including pneumonia, sepsis, meningitis, and otitis media. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including transition metal ions such as zinc. The pneumococcus employs a number of surface proteins to achieve this, among which are four highly similar polyhistidine triad (Pht) proteins. It has previously been established that these proteins collectively aid in the delivery of zinc to the ABC transporter substrate-binding protein AdcAII. Here we have investigated the contribution of each individual Pht protein to pneumococcal zinc homeostasis by analyzing mutant strains expressing only one of the four pht genes. Under conditions of low zinc availability, each of these mutants showed superior growth and zinc accumulation profiles relative to a mutant strain lacking all four genes, indicating that any of the four Pht proteins are able to facilitate delivery of zinc to AdcAII. However, optimal growth and zinc accumulation in vitro and pneumococcal survival and proliferation in vivo required production of all four Pht proteins, indicating that, despite their overlapping functionality, the proteins are not dispensable without incurring a fitness cost. We also show that surface-attached forms of the Pht proteins are required for zinc recruitment and that they do not contribute to defense against extracellular zinc stress. PMID:25069983

  2. High-Level Genetic Diversity among Invasive Streptococcus pneumoniae Isolates in Turkey.

    PubMed

    Guldemir, Dilek; Acar, Sumeyra; Otgun, Selin Nar; Unaldi, Ozlem; Gozalan, Aysegul; Ertek, Mustafa; Durmaz, Riza

    2016-05-20

    This study obtained information on the serotypes and molecular typing characteristics of Streptococcus pneumoniae strains causing invasive diseases in Turkey. Sixty-eight S. pneumoniae isolates causing invasive pneumococcal diseases were collected from different regions of Turkey from 2009 to 2011. The isolates were characterized by performing multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and capsular serotyping, and 25 different serotypes were identified. Serotypes 19F, 23F, 1, 14, and 7F were common and accounted for 52.9% of all the serotypes. In addition, 54 different PFGE profiles (pulsotypes) were observed. Twenty-three of the 68 (33.8%) isolates were clustered into 9 pulsotypes. MLST analysis yielded 36 sequence types, of which 12 (33.3%) were novel. A comparison of results with the global pneumococcal MLST database by performing eBURST analysis showed that our strains belonged to 20 different clonal complexes and 5 singletons. In addition, we identified 4 new alleles: 2 gdh, 1 xpt, and 1 ddl. Thus, the results of this study highlighted a high level of diversity among pneumococcal isolates. In addition, the study identified a case of possible capsular switching. PMID:26255730

  3. Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus pneumoniae Pilus

    PubMed Central

    Spraggon, Glen; Koesema, Eric; Scarselli, Maria; Malito, Enrico; Biagini, Massimiliano; Norais, Nathalie; Emolo, Carla; Barocchi, Michèle Anne; Giusti, Fabiola; Hilleringmann, Markus; Rappuoli, Rino; Lesley, Scott; Covacci, Antonello; Masignani, Vega; Ferlenghi, Ilaria

    2010-01-01

    Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility. PMID:20559564

  4. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae

    PubMed Central

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345

  5. Characterization of NAD salvage pathways and their role in virulence in Streptococcus pneumoniae.

    PubMed

    Johnson, Michael D L; Echlin, Haley; Dao, Tina H; Rosch, Jason W

    2015-11-01

    NAD is a necessary cofactor present in all living cells. Some bacteria cannot de novo synthesize NAD and must use the salvage pathway to import niacin or nicotinamide riboside via substrate importers NiaX and PnuC, respectively. Although homologues of these two importers and their substrates have been identified in other organisms, limited data exist in Streptococcus pneumoniae, specifically, on its effect on overall virulence. Here, we sought to characterize the substrate specificity of NiaX and PnuC in Str. pneumoniae TIGR4 and the contribution of these proteins to virulence of the pathogen. Although binding affinity of each importer for nicotinamide mononucleotide may overlap, we found NiaX to specifically import nicotinamide and nicotinic acid, and PnuC to be primarily responsible for nicotinamide riboside import. Furthermore, a pnuC mutant is completely attenuated during both intranasal and intratracheal infections in mice. Taken together, these findings underscore the importance of substrate salvage in pneumococcal pathogenesis and indicate that PnuC could potentially be a viable small-molecule therapeutic target to alleviate disease progression in the host. PMID:26311256

  6. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae

    PubMed Central

    Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M.

    2016-01-01

    Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4′-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems. PMID:27257160

  7. iTRAQ-Based Proteomics Revealed the Bactericidal Mechanism of Sodium New Houttuyfonate against Streptococcus pneumoniae.

    PubMed

    Yang, Xiao-Yan; Shi, Tianyuan; Du, Gaofei; Liu, Wanting; Yin, Xing-Feng; Sun, Xuesong; Pan, Yunlong; He, Qing-Yu

    2016-08-17

    Sodium new houttuyfonate (SNH), an addition product of active ingredient houttuynin from the plant Houttuynia cordata Thunb., inhibits a variety of bacteria, yet the mechanism by which it induces cell death has not been fully understood. In the present study, we utilized iTRAQ-based quantitative proteomics to analyze the protein alterations in Streptococcus pneumoniae in response to SNH treatment. Numerous proteins related to the production of reactive oxygen species (ROS) were found to be up-regulated by SNH, suggesting that ROS pathways may be involved as analyzed via bioinformatics. As reported recently, cellular reactions stimulated by ROS including superoxide anion (O2(•-)), hydrogen peroxide (H2O2), and hydroxyl radicals (OH(•)) have been implicated as mechanisms whereby bactericidal antibiotics kill bacteria. We then validated that SNH killed S. pneumoniae in a dose-dependent manner accompanied by the increasing level of H2O2. On the other hand, the addition of catalase, which can neutralize H2O2 in cells, showed a significant recovery in bacterial survival. These results indicate that SNH indeed induced H2O2 formation to contribute to the cell lethality, providing new insights into the bactericidal mechanism of SNH and expanding our understanding of the common mechanism of killing induced by bactericidal agents. PMID:27458754

  8. Nasopharyngeal carriage of community-acquired, antibiotic-resistant Streptococcus pneumoniae in a Zambian paediatric population.

    PubMed Central

    Woolfson, A.; Huebner, R.; Wasas, A.; Chola, S.; Godfrey-Faussett, P.; Klugman, K.

    1997-01-01

    The emergence of antibiotic-resistant Streptococcus pneumoniae is an international health problem. Apart from South Africa few data on pneumococcal resistance are available for sub-Saharan Africa. This study examines the nasopharyngeal carriage and prevalence of antibiotic resistance in pneumococci isolated from 260 Zambian children aged < 6 years. Pneumococci were isolated from 71.9% of the children; the odds of carrying organisms were twice as high among children < 2 years of age compared with older children. Antibacterial resistance was found in 34.1% of the isolates; resistance to tetracycline, penicillin, sulfamethoxazole + trimethoprim, and chloramphenicol occurred in 23.0%, 14.3%, 12.7%, and 3.9% of the isolates, respectively. Only 4% of the isolates were resistant to three drugs. High-level resistance was found in all isolates resistant to tetracycline; but only intermediate level penicillin resistance was found. A total of 11.1% of the isolates demonstrated intermediate resistance to sulfamethoxazole + trimethoprim. Children aged < 6 months were less likely to carry antibiotic-resistant organisms. Antibiotic resistance in S. pneumoniae appears to be an emerging public health problem in Zambia, and the national policy for the empirical treatment of pneumococcal meningitis and acute respiratory tract infections may need to be re-evaluated. The establishment of ongoing surveillance to monitor trends in pneumococcal resistance should be considered. PMID:9447779

  9. Antibacterial Activity of a Competence-Stimulating Peptide in Experimental Sepsis Caused by Streptococcus pneumoniae

    PubMed Central

    Oggioni, Marco R.; Iannelli, Francesco; Ricci, Susanna; Chiavolini, Damiana; Parigi, Riccardo; Trappetti, Claudia; Claverys, Jean-Pierre; Pozzi, Gianni

    2004-01-01

    Streptococcus pneumoniae, a major cause of human disease, produces a 17-mer autoinducer peptide pheromone (competence-stimulating peptide [CSP]) for the control of competence for genetic transformation. Due to previous work linking CSP to stress phenotypes, we set up an in vivo sepsis model to assay its effect on virulence. Our data demonstrate a significant increase in the rates of survival of mice, reductions of blood S. pneumoniae counts, and prolonged times to death for mice treated with CSP. In vitro the dose of CSP used in the animal model produced a transitory inhibition of growth. When a mutant with a mutation in the CSP sensor histidine kinase was assayed, no bacteriostatic phenotype was detected in vitro and no change in disease outcome was observed in vivo. The data demonstrate that CSP, which induces in vitro a temporary growth arrest through stimulation of its cognate histidine kinase receptor, is able to block systemic disease in mice. This therapeutic effect is novel, in that the drug-like effect is obtained by stimulation, rather than inhibition, of a bacterial drug target. PMID:15561850

  10. Uptake of extracellular DNA: Competence induced pili in natural transformation of Streptococcus pneumoniae

    PubMed Central

    Muschiol, Sandra; Balaban, Murat; Normark, Staffan; Henriques-Normark, Birgitta

    2015-01-01

    Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae. PMID:25640084

  11. Mevalonate Analogues as Substrates of Enzymes in the Isoprenoid Biosynthetic Pathway of Streptococcus pneumoniae

    PubMed Central

    Kudoh, Takashi; Park, Chan Sun; Lefurgy, Scott T.; Sun, Meihao; Michels, Theodore; Leyh, Thomas S.; Silverman, Richard B.

    2010-01-01

    Survival of the human pathogen Streptococcus pneumoniae requires a functional mevalonate pathway, which produces isopentenyl diphosphate, the essential building block of isoprenoids. Flux through this pathway appears to be regulated at the mevalonate kinase (MK) step, which is strongly feedback-inhibited by diphosphomevalonate (DPM), the penultimate compound in the pathway. The human mevalonate pathway is not regulated by DPM, making the bacterial pathway an attractive antibiotic target. Since DPM has poor drug characteristics, being highly charged, we propose to use unphosphorylated, cell-permeable prodrugs based on mevalonate that will be phosphorylated in turn by MK and phosphomevalonate kinase (PMK) to generate the active compound in situ. To test the limits of this approach, we synthesized a series of C3-substituted mevalonate analogues to probe the steric and electronic requirements of the MK and PMK active sites. MK and PMK accepted substrates with up to two additional carbons, showing a preference for small substitutents. This result establishes the feasibility of using a prodrug strategy for DPM-based antibiotics in S. pneumoniae and identified several analogues to be tested as inhibitors of MK. Among the substrates accepted by both enzymes were cyclopropyl, vinyl, and ethynyl mevalonate analogues that, when diphosphorylated, might be mechanism-based inactivators of the next enzyme in the pathway, diphosphomevalonate decarboxylase. PMID:20056424

  12. Simplified protocol for pulsed-field gel electrophoresis analysis of Streptococcus pneumoniae.

    PubMed

    McEllistrem, M C; Stout, J E; Harrison, L H

    2000-01-01

    A variety of pulsed-field gel electrophoresis (PFGE) protocols for the molecular subtyping of Streptococcus pneumoniae have been reported; most are time-consuming and complex. We sought to modify reference PFGE protocols to reduce the time required while creating high-quality gels. Only protocol modifications that resulted in high-quality banding patterns were considered. The following protocol components were modified. Lysis enzymes (lysozyme, mutanolysin, and RNase A) were deleted in a stepwise fashion, and then the lysis buffer was deleted. Lysis and digestion were accomplished in a single step with EDTA and N-lauroyl sarcosine (ES; pH 8.5 to 9.3) incubation at 50 degrees C in the absence of proteinase K. All enzymes except the restriction enzyme were omitted. A minimum incubation time of 6 h was required to achieve high-quality gels. All of the reactions were performed within 9 h, and the total protocol time from lysis to gel completion was reduced from 3 days to only 36 h. Combining lysis and digestion into a single step resulted in a substantial reduction in the time required to perform PFGE for S. pneumoniae. The ES solution may have caused cell lysis by activating N-acetylmuramyl-L-alanine amidase, the pneumococcal autolysin. PMID:10618114

  13. Pathophysiology of acute meningitis caused by Streptococcus pneumoniae and adjunctive therapy approaches.

    PubMed

    Barichello, Tatiana; Generoso, Jaqueline S; Collodel, Allan; Moreira, Ana Paula; Almeida, Sérgio Monteiro de

    2012-05-01

    Pneumococcal meningitis is a life-threatening disease characterized by an acute purulent infection affecting piamater, arachnoid and the subarachnoid space. The intense inflammatory host's response is potentially fatal and contributes to the neurological sequelae. Streptococcus pneumoniae colonizes the nasopharynx, followed by bacteremia, microbial invasion and blood-brain barrier traversal. S. pneumoniae is recognized by antigen-presenting cells through the binding of Toll-like receptors inducing the activation of factor nuclear kappa B or mitogen-activated protein kinase pathways and subsequent up-regulation of lymphocyte populations and expression of numerous proteins involved in inflammation and immune response. Many brain cells can produce cytokines, chemokines and others pro-inflammatory molecules in response to bacteria stimuli, as consequence, polymorphonuclear are attracted, activated and released in large amounts of superoxide anion and nitric oxide, leading to the peroxynitrite formation, generating oxidative stress. This cascade leads to lipid peroxidation, mitochondrial damage, blood-brain barrier breakdown contributing to cell injury during pneumococcal meningitis. PMID:22618789

  14. Preparation of inocula for experimental infection of blood with Streptococcus pneumoniae

    PubMed Central

    Vivas-Alegre, Santiago; Fernández-Natal, Isabel; López-Fidalgo, Eduardo; Rivero-Lezcano, Octavio Miguel

    2015-01-01

    Experimental infections of either cells or animals require the preparation of good quality inocula. Unfortunately, the important pulmonary pathogen Streptococcus pneumoniae is a fastidious microorganism that suffers an autolysis process when cultured in vitro. Supplementation of Todd–Hewitt broth with a biological buffer (20 mM Tris–HCl, pH = 7.8) promotes a six hours delay in the beginning of the autolysis process. Additional improvements include washing bacteria before freezing, avoiding manipulations after thawing, and the use of glycerol (<18%) as a cryoprotectant, instead of reagents like skimmed milk that may affect cell cultures. With the proposed protocol >70% of the frozen bacteria was viable after 28 weeks at −80 °C, and aliquots were highly homogeneous. We have tested their utility in a whole blood infection model and have found that human plasma exhibits a higher microbicidal activity than whole blood, a result that we have not found previously reported. Additionally, we have also observed significant variations in the antimicrobial activity against different strains, which might be related to their virulence.•Media culture buffering extends S. pneumoniae viability for 6 h.•Washing before freezing of single use aliquots minimizes manipulation after thawing.•Experimental infection with the frozen inocula has shown that plasma has higher bactericidal activity than blood. PMID:26844211

  15. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    PubMed

    Carrolo, Margarida; Frias, Maria João; Pinto, Francisco Rodrigues; Melo-Cristino, José; Ramirez, Mário

    2010-01-01

    Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population. PMID:21187931

  16. The ParB-parS Chromosome Segregation System Modulates Competence Development in Streptococcus pneumoniae

    PubMed Central

    Attaiech, Laetitia; Minnen, Anita; Kjos, Morten; Gruber, Stephan

    2015-01-01

    ABSTRACT ParB proteins bind centromere-like DNA sequences called parS sites and are involved in plasmid and chromosome segregation in bacteria. We previously showed that the opportunistic human pathogen Streptococcus pneumoniae contains four parS sequences located close to the origin of replication which are bound by ParB. Using chromatin immunoprecipitation (ChIP), we found here that ParB spreads out from one of these parS sites, parS(−1.6°), for more than 5 kb and occupies the nearby comCDE operon, which drives competence development. Competence allows S. pneumoniae to take up DNA from its environment, thereby mediating horizontal gene transfer, and is also employed as a general stress response. Mutating parS(−1.6°) or deleting parB resulted in transcriptional up-regulation of comCDE and ssbB (a gene belonging to the competence regulon), demonstrating that ParB acts as a repressor of competence. However, genome-wide transcription analysis showed that ParB is not a global transcriptional regulator. Different factors, such as the composition of the growth medium and antibiotic-induced stress, can trigger the sensitive switch driving competence. This work shows that the ParB-parS chromosome segregation machinery also influences this developmental process. PMID:26126852

  17. In Vitro Activity of Tebipenem, a New Oral Carbapenem Antibiotic, against Penicillin-Nonsusceptible Streptococcus pneumoniae

    PubMed Central

    Kobayashi, Reiko; Konomi, Mami; Hasegawa, Keiko; Morozumi, Miyuki; Sunakawa, Keisuke; Ubukata, Kimiko

    2005-01-01

    The in vitro activity of tebipenem (TBM), a new oral carbapenem antibiotic, against Streptococcus pneumoniae clinical isolates (n = 202) was compared with those of 15 reference agents. The isolates were classified into five genotypic classes after PCR identification of abnormal pbp1a, pbp2x, and pbp2b genes: (i) penicillin-susceptible S. pneumoniae (PSSP) isolates with no abnormal pbp genes (n = 34; 16.8%), (ii) genotypic penicillin-intermediate S. pneumoniae (gPISP) isolates with only an abnormal pbp2x gene [gPISP (2x)] (n = 48; 23.8%), (iii) gPISP isolates with abnormal pbp1a and pbp2x genes (n = 32; 15.8%), (iv) gPISP isolates with abnormal pbp2x and pbp2b genes (n = 16; 7.9%), and (v) genotypic penicillin-resistant S. pneumoniae (gPRSP) isolates with three abnormal pbp genes (n = 72; 35.6%). The majority of the strains tested had mefA (n = 59; 29.2%) or ermB (n = 91; 45%) gene-mediating macrolide resistance. For these isolates the MIC at which 90% of isolates are inhibited was significantly lower for TBM than for the reference oral antibiotics, as follows: 0.002 μg/ml for PSSP, 0.004 μg/ml for gPISP (2x), 0.016 μg/ml for gPISP (isolates with abnormal pbp1a and pbp2x genes and isolates with abnormal pbp2x and pbp2b genes), and 0.063 μg/ml for gPRSP. In addition, TBM showed excellent bactericidal activity against gPRSP isolates, which exhibited a 3-log10 decrease within 2 h when they were incubated with a concentration greater than or equal to the MIC. Inhibition of cell wall synthesis toward the long axis and subsequent cell lysis were observed by scanning electron microscopy after a short-term exposure to TBM, unlike the effects seen with cephalosporins. These data suggest that TBM has potent activity against multidrug-resistant S. pneumoniae, the causative pathogen of community-acquired respiratory tract infections. PMID:15728880

  18. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    PubMed Central

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.; Nijland, Reindert

    2014-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis. PMID:25512311

  19. Profiling of β-Lactam Selectivity for Penicillin-Binding Proteins in Streptococcus pneumoniae D39

    PubMed Central

    Kocaoglu, Ozden; Tsui, Ho-Ching T.; Winkler, Malcolm E.

    2015-01-01

    Selective fluorescent β-lactam chemical probes enable the visualization of the transpeptidase activity of penicillin-binding proteins (PBPs) at different stages of bacterial cell division. To facilitate the development of new fluorescent probes for PBP imaging, we evaluated 20 commercially available β-lactams for selective PBP inhibition in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae. Live cells were treated with β-lactam antibiotics at different concentrations and subsequently incubated with Bocillin FL (Boc-FL; fluorescent penicillin) to saturate uninhibited PBPs. Fluorophore-labeled PBPs were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence scanning. Among 20 compounds tested, carbapenems (doripenem and meropenem) were coselective for PBP1a, PBP2x, and PBP3, while six of the nine penicillin compounds were coselective for PBP2x and PBP3. In contrast, the seven cephalosporin compounds tested display variability in their PBP-binding profiles. Three cephalosporin compounds (cefoxitin, cephalexin, and cefsulodin) and the monobactam aztreonam exhibited selectivity for PBP3, while only cefuroxime (a cephalosporin) was selective for PBP2x. Treatment of S. pneumoniae cultures with a sublethal concentration of cefuroxime that inhibited 60% of PBP2x activity and less than 20% of the activity of other PBPs resulted in formation of elongated cells. In contrast, treatment of S. pneumoniae cultures with concentrations of aztreonam and cefoxitin that inhibited up to 70% of PBP3 activity and less than 30% of other PBPs resulted in no discernible morphological changes. Additionally, correlation of the MIC and IC50s for each PBP, with the exception of faropenem, amdinocillin (mecillinam), and 6-APA, suggests that pneumococcal growth inhibition is primarily due to the inhibition of PBP2x. PMID:25845878

  20. Profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39.

    PubMed

    Kocaoglu, Ozden; Tsui, Ho-Ching T; Winkler, Malcolm E; Carlson, Erin E

    2015-01-01

    Selective fluorescent β-lactam chemical probes enable the visualization of the transpeptidase activity of penicillin-binding proteins (PBPs) at different stages of bacterial cell division. To facilitate the development of new fluorescent probes for PBP imaging, we evaluated 20 commercially available β-lactams for selective PBP inhibition in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae. Live cells were treated with β-lactam antibiotics at different concentrations and subsequently incubated with Bocillin FL (Boc-FL; fluorescent penicillin) to saturate uninhibited PBPs. Fluorophore-labeled PBPs were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence scanning. Among 20 compounds tested, carbapenems (doripenem and meropenem) were coselective for PBP1a, PBP2x, and PBP3, while six of the nine penicillin compounds were coselective for PBP2x and PBP3. In contrast, the seven cephalosporin compounds tested display variability in their PBP-binding profiles. Three cephalosporin compounds (cefoxitin, cephalexin, and cefsulodin) and the monobactam aztreonam exhibited selectivity for PBP3, while only cefuroxime (a cephalosporin) was selective for PBP2x. Treatment of S. pneumoniae cultures with a sublethal concentration of cefuroxime that inhibited 60% of PBP2x activity and less than 20% of the activity of other PBPs resulted in formation of elongated cells. In contrast, treatment of S. pneumoniae cultures with concentrations of aztreonam and cefoxitin that inhibited up to 70% of PBP3 activity and less than 30% of other PBPs resulted in no discernible morphological changes. Additionally, correlation of the MIC and IC50s for each PBP, with the exception of faropenem, amdinocillin (mecillinam), and 6-APA, suggests that pneumococcal growth inhibition is primarily due to the inhibition of PBP2x. PMID:25845878

  1. High prevalence of antimicrobial resistance among clinical Streptococcus pneumoniae isolates in Asia (an ANSORP study).

    PubMed

    Song, Jae-Hoon; Jung, Sook-In; Ko, Kwan Soo; Kim, Na Young; Son, Jun Seong; Chang, Hyun-Ha; Ki, Hyun Kyun; Oh, Won Sup; Suh, Ji Yoeun; Peck, Kyong Ran; Lee, Nam Yong; Yang, Yonghong; Lu, Quan; Chongthaleong, Anan; Chiu, Cheng-Hsun; Lalitha, M K; Perera, Jennifer; Yee, Ti Teow; Kumarasinghe, Gamini; Jamal, Farida; Kamarulzaman, Adeeba; Parasakthi, Navaratnam; Van, Pham Hung; Carlos, Celia; So, Thomas; Ng, Tak Keung; Shibl, Atef

    2004-06-01

    A total of 685 clinical Streptococcus pneumoniae isolates from patients with pneumococcal diseases were collected from 14 centers in 11 Asian countries from January 2000 to June 2001. The in vitro susceptibilities of the isolates to 14 antimicrobial agents were determined by the broth microdilution test. Among the isolates tested, 483 (52.4%) were not susceptible to penicillin, 23% were intermediate, and 29.4% were penicillin resistant (MICs >/= 2 mg/liter). Isolates from Vietnam showed the highest prevalence of penicillin resistance (71.4%), followed by those from Korea (54.8%), Hong Kong (43.2%), and Taiwan (38.6%). The penicillin MICs at which 90% of isolates are inhibited (MIC(90)s) were 4 mg/liter among isolates from Vietnam, Hong Kong, Korea, and Taiwan. The prevalence of erythromycin resistance was also very high in Vietnam (92.1%), Taiwan (86%), Korea (80.6%), Hong Kong (76.8%), and China (73.9%). The MIC(90)s of erythromycin were >32 mg/liter among isolates from Korea, Vietnam, China, Taiwan, Singapore, Malaysia, and Hong Kong. Isolates from Hong Kong showed the highest rate of ciprofloxacin resistance (11.8%), followed by isolates from Sri Lanka (9.5%), the Philippines (9.1%), and Korea (6.5%). Multilocus sequence typing showed that the spread of the Taiwan(19F) clone and the Spain(23F) clone could be one of the major reasons for the rapid increases in antimicrobial resistance among S. pneumoniae isolates in Asia. Data from the multinational surveillance study clearly documented distinctive increases in the prevalence rates and the levels of antimicrobial resistance among S. pneumoniae isolates in many Asian countries, which are among the highest in the world published to date. PMID:15155207

  2. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  3. Molecular surveillance of nasopharyngeal carriage of Streptococcus pneumoniae in children vaccinated with conjugated polysaccharide pneumococcal vaccines.

    PubMed

    Wyllie, Anne L; Wijmenga-Monsuur, Alienke J; van Houten, Marlies A; Bosch, Astrid A T M; Groot, James A; van Engelsdorp Gastelaars, Jody; Bruin, Jacob P; Bogaert, Debby; Rots, Nynke Y; Sanders, Elisabeth A M; Trzciński, Krzysztof

    2016-01-01

    Following the introduction of pneumococcal conjugate vaccines (PCVs) for infants, surveillance studies on Streptococcus pneumoniae carriage have proven valuable for monitoring vaccine effects. Here, we compared molecular versus conventional diagnostic methods in prospective cross-sectional surveillances in vaccinated infants in the Netherlands. Nasopharyngeal samples (n = 1169) from 11- and 24-month-old children, collected during autumn/winter 2010/2011 and 2012/2013, were tested by conventional culture for S. pneumoniae. DNA extracted from all culture-plate growth was tested by qPCR for pneumococcal-specific genes (lytA/piaB) and selected serotypes (including PCV13-serotypes). qPCR significantly increased the number of carriers detected compared to culture (69% vs. 57%, p < 0.0001). qPCR assays targeting vaccine-serotypes 4 and 5 proved non-specific (results excluded). For serotypes reliably targeted by qPCR, the number of serotype-carriage events detected by qPCR (n = 709) was 1.68× higher compared to culture (n = 422). There was a strong correlation (rho = 0.980; p < 0.0001) between the number of serotypes detected using qPCR and by culture. This study demonstrates the high potential of molecular methods in pneumococcal surveillances, particularly for enhanced serotype detection. We found no evidence of a hidden circulation of vaccine-targeted serotypes, despite vaccine-serotypes still significantly contributing to invasive pneumococcal disease in unvaccinated individuals, supporting the presence of a substantial S. pneumoniae reservoir outside vaccinated children. PMID:27046258

  4. Reduction of Streptococcus pneumoniae Colonization and Dissemination by a Nonopsonic Capsular Polysaccharide Antibody

    PubMed Central

    Doyle, Christopher R.

    2016-01-01

    ABSTRACT Streptococcus pneumoniae colonization of the nasopharynx (NP) is a prerequisite for invasive pneumococcal disease (IPD). The marked reduction in IPD that followed the routine use of pneumococcal polysaccharide conjugate vaccines (PCVs) has been linked to reduced NP colonization with vaccine-included serotypes (STs), with the caveat that PCVs are less effective against pneumonia than against IPD. Although PCV-elicited opsonic antibodies that enhance phagocytic killing of the homologous ST are considered a key correlate of PCV-mediated protection, recent studies question this relationship for some STs, including ST3. Studies with monoclonal antibodies (MAbs) to the pneumococcal capsular polysaccharide (PPS) of ST3 (PPS3) have shown that nonopsonic, as well as opsonic, antibodies can each protect mice against pneumonia and sepsis, but the effect of these types of MAbs on NP colonization is unknown. In this study, we determined the effects of protective opsonic and nonopsonic PPS3 MAbs on ST3 NP colonization in mice. Our results show that a nonopsonic MAb reduced early NP colonization and prevented ST3 dissemination to the lungs and blood, but an opsonic MAb did not. Moreover, the opsonic MAb induced a proinflammatory NP cytokine response, but the nonopsonic MAb had an antiinflammatory effect. The effect of the nonopsonic MAb on colonization did not require its Fc region, but its antiinflammatory effect did. Our findings challenge the paradigm that opsonic MAbs are required to prevent NP colonization and suggest that further studies of the activity of nonopsonic antibodies could advance our understanding of mechanisms of PCV efficacy and provide novel correlates of protection. PMID:26838726

  5. A new variant of the capsule 3 cluster occurs in Streptococcus pneumoniae from deceased wild chimpanzees.

    PubMed

    Denapaite, Dalia; Hakenbeck, Regine

    2011-01-01

    The presence of new Streptococcus pneumoniae clones in dead wild chimpanzees from the Taï National Park, Côte d'Ivoire, with previous respiratory problems has been demonstrated recently by DNA sequence analysis from samples obtained from the deceased apes. In order to broadenour understanding on the relatedness of these pneumococcal clones to those from humans, the gene locus responsible for biosynthesis of the capsule polysaccharide (CPS) has now been characterized. DNA sequence analysis of PCR fragments identified a cluster named cps3(Taï) containing the four genes typical for serotype 3 CPS, but lacking a 5'-region of ≥2 kb which is degenerated in other cps3 loci and not required for type 3 biosynthesis. CPS3 is composed of a simple disaccharide repeat unit comprising glucose and glucuronic acid (GlcUA). The two genes ugd responsible for GlcUA synthesis and wchE encoding the type 3 synthase are essential for CPS3 biosynthesis, whereas both, galU and the 3'-truncated gene pgm are not required due to the presence of homologues elsewhere in the genome. The DNA sequence of cps3(Taï) diverged considerably from those of other cps3 loci. Also, the gene pgm(Taï) represents a full length version with a nonsense mutation at codon 179. The two genes ugd(Taï) and wchE(Taï) including the promoter region were transformed into a nonencapsulated laboratory strain S. pneumoniae R6. Transformants which expressed type 3 capsule polysaccharide were readily obtained, documenting that the gene products are functional. In summary, the data indicate that cps3(Taï) evolved independent from other cps3 loci, suggesting the presence of specialized serotype 3 S. pneumoniae clones endemic to the Taï National Park area. PMID:21969869

  6. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  7. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    PubMed

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  8. Molecular surveillance of nasopharyngeal carriage of Streptococcus pneumoniae in children vaccinated with conjugated polysaccharide pneumococcal vaccines

    PubMed Central

    Wyllie, Anne L.; Wijmenga-Monsuur, Alienke J.; van Houten, Marlies A.; Bosch, Astrid A. T. M.; Groot, James A.; van Engelsdorp Gastelaars, Jody; Bruin, Jacob P.; Bogaert, Debby; Rots, Nynke Y.; Sanders, Elisabeth A. M.; Trzciński, Krzysztof

    2016-01-01

    Following the introduction of pneumococcal conjugate vaccines (PCVs) for infants, surveillance studies on Streptococcus pneumoniae carriage have proven valuable for monitoring vaccine effects. Here, we compared molecular versus conventional diagnostic methods in prospective cross-sectional surveillances in vaccinated infants in the Netherlands. Nasopharyngeal samples (n = 1169) from 11- and 24-month-old children, collected during autumn/winter 2010/2011 and 2012/2013, were tested by conventional culture for S. pneumoniae. DNA extracted from all culture-plate growth was tested by qPCR for pneumococcal-specific genes (lytA/piaB) and selected serotypes (including PCV13-serotypes). qPCR significantly increased the number of carriers detected compared to culture (69% vs. 57%, p < 0.0001). qPCR assays targeting vaccine-serotypes 4 and 5 proved non-specific (results excluded). For serotypes reliably targeted by qPCR, the number of serotype-carriage events detected by qPCR (n = 709) was 1.68× higher compared to culture (n = 422). There was a strong correlation (rho = 0.980; p < 0.0001) between the number of serotypes detected using qPCR and by culture. This study demonstrates the high potential of molecular methods in pneumococcal surveillances, particularly for enhanced serotype detection. We found no evidence of a hidden circulation of vaccine-targeted serotypes, despite vaccine-serotypes still significantly contributing to invasive pneumococcal disease in unvaccinated individuals, supporting the presence of a substantial S. pneumoniae reservoir outside vaccinated children. PMID:27046258

  9. Immunoblot Method To Detect Streptococcus pneumoniae and Identify Multiple Serotypes from Nasopharyngeal Secretions

    PubMed Central

    Bronsdon, Melinda A.; O'Brien, Katherine L.; Facklam, Richard R.; Whitney, Cynthia G.; Schwartz, Benjamin; Carlone, George M.

    2004-01-01

    Conventional culture techniques are limited in the ability to detect multiple Streptococcus pneumoniae serotypes in nasopharyngeal (NP) secretions. We developed an immunoblot (IB) method with monoclonal antibodies (MAbs) to detect S. pneumoniae and to identify serotypes. NP specimens stored in skim milk-tryptone-glucose-glycerol medium were assessed by the IB method and the reference culture method (RM). In the RM, four optochin-sensitive alpha-hemolytic colonies resembling pneumococci were typed by the Quellung reaction. In the IB method, a nitrocellulose membrane blot of surface growth was reacted with a pneumococcal surface adhesion (PsaA) MAb and visualized. Of 47 NP specimens, 32 (68%) were found to be positive and 13 (28%) were found to be negative for pneumococci by both methods; each method alone yielded one positive result. The sensitivity and specificity of the IB method for the detection of pneumococci were 97 and 93%, respectively. To identify serotypes, blots were tested with serotype-specific MAbs (4, 6A, 6B, 9V, 14, 18C, 19F, and 23F). To detect the remaining serotypes, positive serotype-specific replicate blots were compared visually to an original anti-PsaA-positive blot; four unidentified colonies were subcultured and serotyped by the Quellung reaction. Fifty-eight S. pneumoniae-positive NP specimens containing 69 pneumococcal strains (23 serotypes) were tested; 68 (98.6%) of the strains were detected by the IB method, and 66 (95.6%) were detected by the RM. For 11 specimens found to contain two serotypes, both methods detected both serotypes in 7 (63.6%), the IB method alone detected the two serotypes in 3 (27.3%), and the RM alone detected both serotypes in 1 (9%). The IB method identified multiple clones and minor populations of pneumococci in NP secretions. This method is useful for detecting specific serotypes and carriage of multiple serotypes in epidemiologic surveillance and carriage studies. PMID:15071010

  10. Nasal Carriage in Vietnamese Children of Streptococcus pneumoniae Resistant to Multiple Antimicrobial Agents

    PubMed Central

    Parry, Christopher M.; Diep, To Song; Wain, John; Hoa, Nguyen Thi Tuyet; Gainsborough, Mary; Nga, Diem; Davies, Catrin; Phu, Nguyen Hoan; Hien, Tran Tinh; White, Nicholas J.; Farrar, Jeremy J.

    2000-01-01

    Resistance to antimicrobial agents in Streptococcus pneumoniae is increasing rapidly in many Asian countries. There is little recent information concerning resistance levels in Vietnam. A prospective study of pneumococcal carriage in 911 urban and rural Vietnamese children, of whom 44% were nasal carriers, was performed. Carriage was more common in children <5 years old than in those ≥5 years old (192 of 389 [49.4%] versus 212 of 522 [40.6%]; P, 0.01). A total of 136 of 399 isolates (34%) had intermediate susceptibility to penicillin (MIC, 0.1 to 1 mg/liter), and 76 of 399 isolates (19%) showed resistance (MIC, >1.0 mg/liter). A total of 54 of 399 isolates (13%) had intermediate susceptibility to ceftriaxone, and 3 of 399 isolates (1%) were resistant. Penicillin resistance was 21.7 (95% confidence interval, 7.0 to 67.6) times more common in urban than in rural children (35 versus 2%; P, <0.001). More than 40% of isolates from urban children were also resistant to erythromycin, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline. Penicillin resistance was independently associated with an urban location when the age of the child was controlled for. Multidrug resistance (resistance to three or more antimicrobial agent groups) was present in 32% of isolates overall but in 39% of isolates with intermediate susceptibility to penicillin and 86% of isolates with penicillin resistance. The predominant serotypes of the S. pneumoniae isolates were 19, 23, 14, 6, and 18. Almost half of the penicillin-resistant isolates serotyped were serotype 23, and these isolates were often multidrug resistant. This study suggests that resistance to penicillin and other antimicrobial agents is common in carriage isolates of S. pneumoniae from children in Vietnam. PMID:10681307

  11. Recurrent systemic infections with Streptococcus pneumoniae do not aggravate the course of experimental neurodegenerative diseases.

    PubMed

    Ebert, Sandra; Goos, Miriam; Rollwagen, Lena; Baake, Daniel; Zech, Wolf-Dieter; Esselmann, Hermann; Wiltfang, Jens; Mollenhauer, Brit; Schliebs, Reinhard; Gerber, Joachim; Nau, Roland

    2010-04-01

    Neurological symptoms of patients suffering from neurodegenerative diseases such as Alzheimer's dementia (AD), Parkinson's disease (PD), or amyotrophic lateral sclerosis (ALS) often worsen during infections. We assessed the disease-modulating effects of recurrent systemic infections with the most frequent respiratory pathogen, Streptococcus pneumoniae, on the course of AD, PD, and ALS in mouse models of these neurodegenerative diseases [transgenic Tg2576 mice, (Thy1)-[A30P]alpha SYN mice, and Tg(SOD1-G93A) mice]. Mice were repeatedly challenged intraperitoneally with live S. pneumoniae type 3 and treated with ceftriaxone for 3 days. Infection caused an increase of interleukin-6 concentrations in brain homogenates. The clinical status of (Thy1)-[A30P]alpha SYN mice and Tg(SOD1-G93A) mice was monitored by repeated assessment with a clinical score. Motor performance was controlled by the tightrope test and the rotarod test. In Tg2576 mice, spatial memory and learning deficits were assessed in the Morris water maze. In none of the three mouse models onset or course of the disease as evaluated by the clinical tests was affected by the recurrent systemic infections performed. Levels of alpha-synuclein in brains of (Thy1)-[A30P]alpha SYN mice did not differ between infected animals and control animals. Plaque sizes and concentrations of A beta 1-40 and A beta 1-42 were not significantly different in brains of infected and uninfected Tg2576 mice. In conclusion, onset and course of disease in mouse models of three common neurodegenerative disorders were not influenced by repeated systemic infections with S. pneumoniae, indicating that the effect of moderately severe acute infections on the course of neurodegenerative diseases may be less pronounced than suspected. PMID:19859962

  12. Characterization of IS1515, a Functional Insertion Sequence in Streptococcus pneumoniae

    PubMed Central

    Muñoz, Rosario; López, Rubens; García, Ernesto

    1998-01-01

    We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585–602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain I41R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus. PMID:9580131

  13. Chemical Interference with Iron Transport Systems to Suppress Bacterial Growth of Streptococcus pneumoniae

    PubMed Central

    Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics. PMID:25170896

  14. Extracellular Adenosine Protects against Streptococcus pneumoniae Lung Infection by Regulating Pulmonary Neutrophil Recruitment.

    PubMed

    Bou Ghanem, Elsa N; Clark, Stacie; Roggensack, Sara E; McIver, Sally R; Alcaide, Pilar; Haydon, Philip G; Leong, John M

    2015-08-01

    An important determinant of disease following Streptococcus pneumoniae (pneumococcus) lung infection is pulmonary inflammation mediated by polymorphonuclear leukocytes (PMNs). We found that upon intratracheal challenge of mice, recruitment of PMNs into the lungs within the first 3 hours coincided with decreased pulmonary pneumococci, whereas large numbers of pulmonary PMNs beyond 12 hours correlated with a greater bacterial burden. Indeed, mice that survived infection largely resolved inflammation by 72 hours, and PMN depletion at peak infiltration, i.e. 18 hours post-infection, lowered bacterial numbers and enhanced survival. We investigated host signaling pathways that influence both pneumococcus clearance and pulmonary inflammation. Pharmacologic inhibition and/or genetic ablation of enzymes that generate extracellular adenosine (EAD) (e.g. the ectoenzyme CD73) or degrade EAD (e.g. adenosine deaminase) revealed that EAD dramatically increases murine resistance to S. pneumoniae lung infection. Moreover, adenosine diminished PMN movement across endothelial monolayers in vitro, and although inhibition or deficiency of CD73 had no discernible impact on PMN recruitment within the first 6 hours after intratracheal inoculation of mice, these measures enhanced PMN numbers in the pulmonary interstitium after 18 hours of infection, culminating in dramatically elevated numbers of pulmonary PMNs at three days post-infection. When assessed at this time point, CD73-/- mice displayed increased levels of cellular factors that promote leukocyte migration, such as CXCL2 chemokine in the murine lung, as well as CXCR2 and β-2 integrin on the surface of pulmonary PMNs. The enhanced pneumococcal susceptibility of CD73-/- mice was significantly reversed by PMN depletion following infection, suggesting that EAD-mediated resistance is largely mediated by its effects on PMNs. Finally, CD73-inhibition diminished the ability of PMNs to kill pneumococci in vitro, suggesting that EAD alters

  15. Phenotypic and genotypic characterization of Streptococcus pneumoniae resistant to macrolide in Casablanca, Morocco.

    PubMed

    Diawara, Idrissa; Zerouali, Khalid; Katfy, Khalid; Barguigua, Abouddihaj; Belabbes, Houria; Timinouni, Mohammed; Elmdaghri, Naima

    2016-06-01

    In Morocco, the 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced in the national immunization program (NIP) in October 2010 and replaced by the PCV-10 in July 2012. The present study aimed to determine the prevalence of erythromycin-resistant Streptococcus pneumoniae (ERSP) and to analyze the phenotypic and genotypic characteristics of these isolates in Casablanca, Morocco from January 2007 to December 2014. Isolates were obtained from the Microbiology Laboratory of Ibn Rochd University Hospital Centre of Casablanca. Serogrouping was done using Pneumotest Kit and serotyping by the Quellung capsular swelling. Antibiotic susceptibility pattern was determined by disk diffusion and Etest methods. A total of 655S. pneumoniae isolates were collected from 2007 to 2014 from pediatric and adult patients. Fifty-five percent of these isolates were from invasive pneumococcal diseases. Of the 655 isolates, 92 (14%) were ERSP. Globally, the proportion of ERSP from 2007 to 2010 (before vaccination) and from 2011 to 2014 (after vaccination) were 11.6% and 17.2% (p=0.04), respectively. Of the 92 ERSP, 89%, 4% and 7% displayed constitutive MLSB (resistance to macrolide, lincosamide and streptogramin B), inducible MLSB, and M phenotype (resistance to macrolide only), respectively. ERSP genotypic analysis showed that 90.2% carried the ermB gene, 6.5% the mefE gene, and 3.3% both the genes (ermB+mefE). The most prevalent ERSP serotypes were 6B, 19F and 23F before vaccination and 19F, 6B, 6A and 23F after vaccination. Erythromycin resistance among S. pneumoniae is relatively high in Casablanca. The contribution of PCVs to the reduction in antibiotic use is encouraging but this should be accompanied by a rational use of antibiotic. PMID:26961592

  16. NASOPHARYNGEAL CARRIAGE OF STREPTOCOCCUS PNEUMONIAE IN HEALTHY CHILDREN UNDER FIVE YEARS OLD IN CENTRAL LOMBOK REGENCY, INDONESIA.

    PubMed

    Hadinegoro, Sri Rezeki; Prayitno, Ari; Khoeri, Miftahuddin Majid; Djelantik, I Gusti Gede; Dewi, Nurhandini Eka; Indriyani, Sang Ayu Kompiang; Muttaqin, Zainul; Mudaliana, Siti; Safari, Dodi

    2016-05-01

    Colonization with Streptococcus pneumoniae is mostly symptomless, but can progress to respiratory or even systemic disease. We investigated nasopharyngeal carriage of Streptococcus pneumoniae in healthy children under five years of age in Central Lombok Regency, Indonesia. This cross sectional study was carried out in 2012 among 1,200 healthy children aged 2 to 60 months. A multiplex sequential PCR was employed to determine serotype of cultured S. pneumoniae and a disk diffusion method to assess susceptibility to antimicrobial drugs. S. pneumoniae was cultured from 554 children and the most frequent serotypes found were 6A/B (22% of pneumococcal strains), 19F (11%), 23F (10%), 15B/C (8%), and 19A and 14 (4% each). The majority of strains were still susceptible to clindamycin (97%), erythromycin (87%), chloramphenicol (81%), and penicillin (72%), with only 41% and 38% susceptible to tetracycline and sulfamethoxazole/trimethoprim, respectively. Continuous surveillance of S. pneumoniae carriage is important for future pneumococcal vaccination programs in Indonesia. PMID:27405132

  17. Using the synergism strategy for highly sensitive and specific electrochemical sensing of Streptococcus pneumoniae Lyt-1 gene sequence.

    PubMed

    Li, Fengqin; Yu, Zhigang; Xu, Yanmei; Ma, Huiyuan; Zhang, Guiling; Song, Yongbin; Yan, Hong; He, Xunjun

    2015-07-30

    With the help of the interaction mode of capture probe-target-signal probe (CP-T-SP), an electrochemical sensing method based on the synergism strategy of dual-hybridized signaling probes modified with 6 MB (methylene blue), background suppression and large surface area Au electrode is developed for the detection of Streptococcus pneumoniae (S. pneumoniae) Lyt-1 gene sequence. The proposed sensor features a very low detection limit (LOD) of ∼0.5 fM for the target. This method also exhibits highly versatility and can apply to the construction of other sensors for the analysis of similar designated pathogenic bacteria gene sequence (PBGS). PMID:26320650

  18. Comparative in vitro activity of faropenem and 11 other antimicrobial agents against 250 invasive Streptococcus pneumoniae isolates from France.

    PubMed

    Decousser, J W; Pina, P; Picot, F; Allouch, P Y

    2003-09-01

    The aim of the study presented here was to evaluate the in vitro activity of faropenem, a new member of the penem class intended for oral administration, compared with 11 other antimicrobial agents against a large number of Streptococcus pneumoniae strains isolated from adults and children with bloodstream infections in France. The minimum inhibitory concentration of faropenem against 90% of the pediatric strains tested was generally one to two dilutions lower than the most potent beta-lactam agents (i.e., 0.5 micro g/ml for faropenem vs. 1 for amoxicillin, 1 for cefotaxime and 0.5 micro g/ml for ceftriaxone). Against the adult strains, only moxifloxacin had a MIC(90) value similar to faropenem (i.e., 0.25 micro g/ml for both agents). Faropenem seems to be a promising antimicrobial agent for the treatment of adult and pediatric Streptococcus pneumoniae infections. PMID:12942341

  19. Isolated Streptococcus agalactiae tricuspid endocarditis in elderly patient without known predisposing factors: Case report and review of the literature.

    PubMed

    Abid, Leila; Charfeddine, Salma; Kammoun, Samir

    2016-04-01

    Group B streptococcal (GBS) tricuspid infective endocarditis is a very rare clinical entity. It affects intravenous drug users, pregnant, postpartum women, and the elderly. We report the case of a 68-year-old patient without known predisposing factors who presented a GBS tricuspid endocarditis treated by penicillin and aminoglycosides with no response. The patient was operated with a good evolution. Our case is the 25th reported in the literature. GBS disease is increasing in the elderly and is mainly associated to comorbid conditions. Tricuspid infective endocarditis with Group B streptococcus predominantly presents as a persistent fever with respiratory symptoms due to pulmonary embolism. Therefore, it requires a medicosurgical treatment and close follow-up. PMID:27053903

  20. Toll-Like Receptor Signalling Is Not Involved in Platelet Response to Streptococcus pneumoniae In Vitro or In Vivo

    PubMed Central

    Schaap, Marianne C. L.; Hou, Baidong; van der Poll, Tom; Nieuwland, Rienk; van ‘t Veer, Cornelis

    2016-01-01

    Streptococcus (S.) pneumoniae strains vary considerably in their ability to cause invasive disease in humans, which is at least in part determined by the capsular serotype. Platelets have been implicated as sentinel cells in the circulation for host defence. One of their utensils for this function is the expression of Toll-like receptors (TLRs). We here aimed to investigate platelet response to S. pneumoniae and a role for TLRs herein. Platelets were stimulated using four serotypes of S. pneumonia including an unencapsulated mutant strain. In vitro aggregation and flow cytometry assays were performed using blood of healthy volunteers, or blood of TLR knock out and WT mice. For in vivo pneumonia experiments, platelet specific Myd88 knockout (Plt-Myd88-/-) mice were used. We found that platelet aggregation was induced by unencapsulated S. pneumoniae only. Whole blood incubation with all S. pneumoniae serotypes tested resulted in platelet degranulation and platelet-leukocyte complex formation. Platelet activation was TLR independent, as responses were not inhibited by TLR blocking antibodies, not induced by TLR agonists and were equally induced in wild-type and Tlr2-/-, Tlr4-/-, Tlr2/4-/-, Tlr9-/- and Myd88-/- blood. Plt-Myd88-/- and control mice displayed no differences in bacterial clearance or immune response to pneumonia by unencapsulated S. pneumoniae. In conclusion, S. pneumoniae activates platelets through a TLR-independent mechanism that is impeded by the bacterial capsule. Additionally, platelet MyD88-dependent TLR signalling is not involved in host defence to unencapsulated S. pneumoniae in vivo. PMID:27253707

  1. In Vitro Activity of ABT-773, a New Ketolide, against Recent Clinical Isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis

    PubMed Central

    Brueggemann, Angela B.; Doern, Gary V.; Huynh, Holly K.; Wingert, Elizabeth M.; Rhomberg, Paul R.

    2000-01-01

    The in vitro activity of ABT-773 was evaluated against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis isolates. ABT-773 was the most active antimicrobial tested against S. pneumoniae. ABT-773 and azithromycin were equivalent in activity against H. influenzae and M. catarrhalis and more active than either clarithromycin or erythromycin. PMID:10639382

  2. Antibacterial effects of Traditional Chinese Medicine monomers against Streptococcus pneumoniae via inhibiting pneumococcal histidine kinase (VicK)

    PubMed Central

    Zhang, Shuai; Wang, Jianmin; Xu, Wenchun; Liu, Yusi; Wang, Wei; Wu, Kaifeng; Wang, Zhe; Zhang, Xuemei

    2015-01-01

    Two-component systems (TCSs) have the potential to be an effective target of the antimicrobials, and thus received much attention in recent years. VicK/VicR is one of TCSs in Streptococcus pneumoniae (S. pneumoniae), which is essential for pneumococcal survival. We have previously obtained several Traditional Chinese Medicine monomers using a computer-based screening. In this study, either alone or in combination with penicillin, their antimicrobial activities were evaluated based on in vivo and in vitro assays. The results showed that the MICs of 5′-(Methylthio)-5′-deoxyadenosine, octanal 2, 4-dinitrophenylhydrazone, deoxyshikonin, kavahin, and dodecyl gallate against S. pneumoniae were 37.1, 38.5, 17, 68.5, and 21 μg/mL, respectively. Time-killing assays showed that these compounds elicited bactericidal effects against S. pneumoniae D39 strain, which led to a 6-log reduction in CFU after exposure to compounds at four times of the MIC for 24 h. The five compounds inhibited the growth of Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans or Streptococcus pseudopneumoniae, meanwhile, deoxyshikonin and dodecyl gallate displayed strong inhibitory activities against Staphylococcus aureus. These compounds showed no obvious cytotoxicity effects on Vero cells. Survival time of the mice infected by S. pneumoniae strains was prolonged by the treatment with the compounds. Importantly, all of the five compounds exerted antimicrobial effects against multidrug-resistant clinical strains of S. pneumoniae. Moreover, even at sub-MIC concentration, they inhibited cell division and biofilm formation. The five compounds all have enhancement effect on penicillin. Deoxyshikonin and dodecyl gallate showed significantly synergic antimicrobial activity with penicillin in vivo and in vitro, and effectively reduced nasopharyngeal and lung colonization caused by different penicillin-resistant pneumococcal serotypes. In addition, the two compounds also showed synergic

  3. EFFECTS OF MICROWAVE-EXPOSURE AND TEMPERATURE ON SURVIVAL OF MICE INFECTED WITH 'STREPTOCOCCUS PNEUMONIAE' (JOURNAL VERSION)

    EPA Science Inventory

    Female CD-1 mice were injected with an LD50 dose of Streptococcus pneumoniae and then exposed to 2.45 GHz (CW) microwave radiation at an incident power density of 10 mW/cm2 (SAR approximately equals 6.8 W/kg), 4 h/d for 5 d at ambient temperatures of 19, 22, 25, 28, 31, 34, 37 an...

  4. Quinine specifically inhibits the proteolipid subunit of the F0F1 H+ -ATPase of Streptococcus pneumoniae.

    PubMed Central

    Muñoz, R; García, E; De la Campa, A G

    1996-01-01

    Streptococcus pneumoniae is uniquely sensitive to quinine and its derivatives, but only those alkaloids having antimalarial properties, i.e., those in the erythro configuration, also possess antipneumococcal activity. Quinine and related compounds inhibit the pneumococcal H+ -ATPase. Quinine- and optochin-resistant pneumococci showed mutations that change amino acid residues located in one of the two transmembrane alpha-helices of the c subunit of the F0F1, H+ -ATPase. PMID:8636056

  5. Multiple Streptococcus pneumoniae Serotypes in Aural Discharge Samples from Children with Acute Otitis Media with Spontaneous Otorrhea

    PubMed Central

    Rodrigues, Fernanda; Morales-Aza, Begonia; Turner, Katy M. E.; Sikora, Paulina; Gould, Katherine; Hinds, Jason; Gonçalves, Guilherme; Januário, Luís

    2013-01-01

    Among 55 children with cultures positive for acute otitis media with spontaneous otorrhea, 28 (51%) had cultures positive for aural Streptococcus pneumoniae, and in 10 of these, two distinct strains were detected, in which 5 had pairs of strains that were both capsule-bearing serotypes. Such cases were more likely to have cultures positive for other otopathogens than those with only one pneumococcus present. PMID:23885003

  6. Pharmacodynamics of Glycopeptides in the Mouse Peritonitis Model of Streptococcus pneumoniae or Staphylococcus aureus Infection

    PubMed Central

    Knudsen, Jenny Dahl; Fuursted, Kurt; Raber, Susan; Espersen, Frank; Frimodt-Møller, Niels

    2000-01-01

    The emergence of resistance to various antibiotics in pneumococci leaves the glycopeptides as the only antibiotics against which pneumococci have no resistance mechanism. This situation has led to a renewed interest in the use of glycopeptides. It has not yet been possible to conclude which one or more of the pharmacokinetic or pharmacodynamic (PK/PD) parameters are the most important and best predictors for the effects of treatment with glycopeptides in animal models or in humans. We used the mouse peritonitis model with immunocompetent mice and with Staphylococcus aureus and Streptococcus pneumoniae as infective organisms. A wide spectrum of different treatment regimens with vancomycin and teicoplanin was tested to study the pharmacodynamics of these drugs. In studies in which the single dose that protected 50% of lethally infected mice (ED50) was given as one dose or was divided into two doses, survival was significantly decreased when the dose was divided. The only statistically significant correlations between the percentage of survival of the mice after 6 days and each of the PK/PD parameters were for peak concentration (Cmax)/MIC and S. aureus and for the free fraction of Cmax (Cmax-free)/MIC and S. pneumoniae. For S. pneumoniae, the ED50 for different dosing regimens increased with the number of doses given; e.g., the single-dose ED50s for vancomycin and teicoplanin were 0.65 and 0.45 mg/kg, respectively, but the ED50s for dosing regimens with 2-h doses given for 48 h were 6.79 and 5.67 mg/kg, respectively. In experiments with 39 different vancomycin dosing regimens and 40 different teicoplanin dosing regimens against S. pneumoniae, the different PK/PD parameters were analyzed using logistic regression. The Cmax-free/MIC was one of two parameters that best explained the effect for both drugs; for vancomycin, the other important parameter was the AUC/MIC, and for teicoplanin, the other parameter was the time the free fraction of the drug is above the MIC

  7. Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection.

    PubMed

    Knudsen, J D; Fuursted, K; Raber, S; Espersen, F; Frimodt-Moller, N

    2000-05-01

    The emergence of resistance to various antibiotics in pneumococci leaves the glycopeptides as the only antibiotics against which pneumococci have no resistance mechanism. This situation has led to a renewed interest in the use of glycopeptides. It has not yet been possible to conclude which one or more of the pharmacokinetic or pharmacodynamic (PK/PD) parameters are the most important and best predictors for the effects of treatment with glycopeptides in animal models or in humans. We used the mouse peritonitis model with immunocompetent mice and with Staphylococcus aureus and Streptococcus pneumoniae as infective organisms. A wide spectrum of different treatment regimens with vancomycin and teicoplanin was tested to study the pharmacodynamics of these drugs. In studies in which the single dose that protected 50% of lethally infected mice (ED(50)) was given as one dose or was divided into two doses, survival was significantly decreased when the dose was divided. The only statistically significant correlations between the percentage of survival of the mice after 6 days and each of the PK/PD parameters were for peak concentration (C(max))/MIC and S. aureus and for the free fraction of C(max) (C(max-free))/MIC and S. pneumoniae. For S. pneumoniae, the ED(50) for different dosing regimens increased with the number of doses given; e.g., the single-dose ED(50)s for vancomycin and teicoplanin were 0.65 and 0. 45 mg/kg, respectively, but the ED(50)s for dosing regimens with 2-h doses given for 48 h were 6.79 and 5.67 mg/kg, respectively. In experiments with 39 different vancomycin dosing regimens and 40 different teicoplanin dosing regimens against S. pneumoniae, the different PK/PD parameters were analyzed using logistic regression. The C(max-free)/MIC was one of two parameters that best explained the effect for both drugs; for vancomycin, the other important parameter was the AUC/MIC, and for teicoplanin, the other parameter was the time the free fraction of the drug is

  8. Serotype Distribution, Antibiotic Resistance and Clonality of Streptococcus pneumoniae Isolated from Immunocompromised Patients in Tunisia

    PubMed Central

    Baaboura, Rekaya; Félix, Sofia; Achour, Wafa; Ben Othman, Tarek; Béjaoui, Mohamed; Sá-Leão, Raquel; Ben Hassen, Assia

    2015-01-01

    Background Pneumococcal disease, a major cause of morbidity and mortality globally, has higher incidence among young children, the elderly and the immunocompromised of all ages. In Tunisia, pneumococcal conjugate vaccines (PCVs) are not included in the national immunization program. Also, few studies have described the epidemiology of S. pneumoniae in this country and, in particular, no molecular typing studies have been performed. The aim of this study was to evaluate serotype distribution, antimicrobial resistance and clonality of Streptococcus pneumoniae isolated from neutropenic patients in Tunisia. Methods Fifty-nine S. pneumoniae were isolated from infection (n = 31) and colonization (n = 28) sites of patients (children and adults) attending the National Centre of Bone Marrow Transplantation in Tunis between 2005–2011. All isolates were characterized by serotype, antimicrobial resistance pattern and multilocus sequence typing (MLST). Results The majority (66.1%) of the isolates belonged to five serotypes all included in PCVs: 6B, 9V, 14, 19F and 23F. The potential coverage of the 10-valent and 13-valent PCV was of 71.2% and 76.3% respectively. Resistance rates were very high and 69.5% of the isolates were multidrug resistant: non-susceptibility rates to penicillin, amoxicillin and cefotaxime were 66.1%, 40.7% and 27.1%, respectively; resistance rates to erythromycin, clindamycin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole, were 69.5%, 61.0%, 37.3%, 22.0% and 67.8%, respectively. The most frequent serotypes had STs characteristic of multidrug resistant international clones known to be highly successful and important causes of pneumococcal infection: Spain 23F-ST81, France 9V/14-ST156, Spain 6B-ST90, 19F-ST320, and Portugal 19F-ST177. Conclusions The majority of S. pneumoniae strains recovered from immunocompromised patients in Tunisia are representatives of multidrug resistant pandemic clones that express serotypes targeted by PCVs. To

  9. Nile Tilapia Infectivity by Genomically Diverse Streptoccocus agalactiae Isolates from Multiple Hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, Lancefield group B Streptococcus (GBS), is recognized for causing cattle mastitis, human neonatal meningitis, and fish meningo-encephalitis. We investigated the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions using serological t...

  10. A Case Report on the Successful Treatment of Streptococcus pneumoniae-Induced Infectious Abdominal Aortic Aneurysm Initially Presenting with Meningitis

    PubMed Central

    Kawatani, Yohei; Nakamura, Yoshitsugu; Hayashi, Yujiro; Taneichi, Tetsuyoshi; Ito, Yujiro; Kurobe, Hirotsugu; Suda, Yuji; Hori, Takaki

    2015-01-01

    Infectious abdominal aortic aneurysms often present with abdominal and lower back pain, but prolonged fever may be the only symptom. Infectious abdominal aortic aneurysms initially presenting with meningitis are extremely rare; there are no reports of their successful treatment. Cases with Streptococcus pneumoniae as the causative bacteria are even rarer with a higher mortality rate than those caused by other bacteria. We present the case of a 65-year-old man with lower limb weakness and back pain. Examination revealed fever and neck stiffness. Cerebrospinal fluid showed leukocytosis and low glucose levels. The patient was diagnosed with meningitis and bacteremia caused by Streptococcus pneumoniae and treated with antibiotics. Fever, inflammatory response, and neurologic findings showed improvement. However, abdominal computed tomography revealed an aneurysm not present on admission. Antibiotics were continued, and a rifampicin soaked artificial vascular graft was implanted. Tissue cultures showed no bacteria, and histological findings indicated inflammation with high leukocyte levels. There were no postoperative complications or neurologic abnormalities. Physical examination, blood tests, and computed tomography confirmed there was no relapse over the following 13 months. This is the first reported case of survival of a patient with an infectious abdominal aortic aneurysm initially presenting with meningitis caused by Streptococcus pneumoniae. PMID:26779361

  11. IDENTIFICATION AND EPIDEMIOLOGY OF STREPTOCCOCUS INIAE AND S. AGALACTIAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being known mainly as mammalian disease agents, Streptococcus iniae and S. agalactiae have become recognized as emerging pathogens of wild and cultured fish. The worldwide economic impact of S. iniae and S. agalactiae to the aquaculture industry is estimated in hundreds of millions annually...

  12. Serotypes, Clones, and Mechanisms of Resistance of Erythromycin-Resistant Streptococcus pneumoniae Isolates Collected in Spain▿

    PubMed Central

    Calatayud, Laura; Ardanuy, C.; Cercenado, E.; Fenoll, A.; Bouza, E.; Pallares, R.; Martín, R.; Liñares, J.

    2007-01-01

    The aim of this study was to analyze the distributions of antibiotic susceptibility patterns, serotypes, phenotypes, genotypes, and macrolide resistance genes among 125 nonduplicated erythromycin-resistant Streptococcus pneumoniae clinical isolates collected in a Spanish point prevalence study. The prevalence of resistance to macrolides in this study was 34.7%. Multiresistance (to three or more antimicrobials) was observed in 81.6% of these strains. Among 15 antimicrobials studied, cefotaxime, moxifloxacin, telithromycin, and quinupristin-dalfopristin were the most active drugs. The most frequent serotypes of erythromycin-resistant isolates were 19F (25%), 19A (17%), 6B (12%), 14 (10%), and 23F (10%). Of the 125 strains, 109 (87.2%) showed the MLSB phenotype [103 had the erm(B) gene and 6 had both erm(B) and mef(E) genes]. Sixteen (12.8%) strains showed the M phenotype [14 with mef(E) and 2 with mef(A)]. All isolates were tested by PCR for the presence of the int, xis, tnpR, and tnpA genes associated with conjugative transposons (Tn916 family and Tn917). Positive detection of erm(B), tet(M), int, and xis genes related to the Tn916 family was found in 77.1% of MLSB phenotype strains. In 16 strains, only the tndX, erm(B), and tet(M) genes were detected, suggesting the presence of Tn1116, a transposon recently described for Streptococcus pyogenes. Five clones, namely, Sweden15A-25, clone19F ST87, Spain23F-1, Spain6B-2, and clone19A ST276, accounted for half of the MLSB strains. In conclusion, the majority of erythromycin-resistant pneumococci isolated in Spain had the MLSB phenotype, belonged to multiresistant international clones, and carried the erm(B), tet(M), xis, and int genes, suggesting the spread of transposons of the Tn916 family. PMID:17606677

  13. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China.

    PubMed

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    BACKGROUND Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. MATERIAL AND METHODS Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. RESULTS Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. CONCLUSIONS SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  14. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China

    PubMed Central

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    Background Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. Material/Methods Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. Results Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. Conclusions SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  15. Pneumonia

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Pneumonia KidsHealth > For Teens > Pneumonia Print A A A ... having to go to the hospital. What Is Pneumonia? Pneumonia (pronounced: noo-MOW-nyuh) is an infection ...

  16. Phenotypic and genotypic characterization of Streptococcus agalactiae in pregnant women. First study in a province of Argentina

    PubMed Central

    Oviedo, P; Pegels, E; Laczeski, M; Quiroga, M; Vergara, M

    2013-01-01

    Group B Streptococcus (GBS) is the leading cause of neonatal infections. Our purpose was to characterize GBS colonization in pregnant women, current serotypes, resistance phenotypes and genes associated with virulence. In Misiones, Argentina, there are no previous data on this topic. Vaginal-rectal swabs from 3125 pregnant women were studied between 2004 and 2010. GBS strains were identified by conventional and serological methods (Phadebact Strep B Test, ETC International, Bactus AB, Sweden). Serotypes were detected using Strep-B Latex (Statens Serum Institut, Denmark). Resistance phenotypes were determined by the double-disk test. Genes were studied by PCR. Maternal colonization was 9.38%. Resistance to erythromycin was 11.6%, and the constitutive phenotype was the predominant one. Serotype Ia was the most frequent, whereas serotypes IV, VI, VII and VIII were not detected. The lmb, bca and hylB genes were detected in more than 79% of the strains. In this study, the colonization rate with GBS and the serotype distribution were compared with studies reported in other areas of the country. The high resistance to erythromycin in Misiones justifies performing antibiotic susceptibility testing. The serotype distribution, the genes encoding putative virulence factors, and the patterns of resistance phenotypes of GBS may vary in different areas. They thus need to be evaluated in each place to devise strategies for prevention. PMID:24159312

  17. Validation of an immunodiagnostic assay for detection of 13 Streptococcus pneumoniae serotype-specific polysaccharides in human urine.

    PubMed

    Pride, Michael W; Huijts, Susanne M; Wu, Kangjian; Souza, Victor; Passador, Sherry; Tinder, Chunyan; Song, Esther; Elfassy, Arik; McNeil, Lisa; Menton, Ronald; French, Roger; Callahan, Janice; Webber, Chris; Gruber, William C; Bonten, Marc J M; Jansen, Kathrin U

    2012-08-01

    To improve the clinical diagnosis of pneumococcal infection in bacteremic and nonbacteremic community-acquired pneumonia (CAP), a Luminex technology-based multiplex urinary antigen detection (UAD) diagnostic assay was developed and validated. The UAD assay can simultaneously detect 13 different serotypes of Streptococcus pneumoniae by capturing serotype-specific S. pneumoniae polysaccharides (PnPSs) secreted in human urine. Assay specificity is achieved by capturing the polysaccharides with serotype-specific monoclonal antibodies (MAbs) on spectrally unique microspheres. Positivity for each serotype was based on positivity cutoff values calculated from a standard curve run on each assay plate together with positive- and negative-control urine samples. The assay is highly specific, since significant signals are detected only when each PnPS was paired with its homologous MAb-coated microspheres. Validation experiments demonstrated excellent accuracy and precision. The UAD assay and corresponding positivity cutoff values were clinically validated by assessing 776 urine specimens obtained from patients with X-ray-confirmed CAP. The UAD assay demonstrated 97% sensitivity and 100% specificity using samples obtained from patients with bacteremic, blood culture-positive CAP. Importantly, the UAD assay identified Streptococcus pneumoniae (13 serotypes) in a proportion of individuals with nonbacteremic CAP, a patient population for which the pneumococcal etiology of CAP was previously difficult to assess. Therefore, the UAD assay provides a specific, noninvasive, sensitive, and reproducible tool to support vaccine efficacy as well as epidemiological evaluation of pneumococcal disease, including CAP, in adults. PMID:22675155

  18. Validation of an Immunodiagnostic Assay for Detection of 13 Streptococcus pneumoniae Serotype-Specific Polysaccharides in Human Urine

    PubMed Central

    Huijts, Susanne M.; Wu, Kangjian; Souza, Victor; Passador, Sherry; Tinder, Chunyan; Song, Esther; Elfassy, Arik; McNeil, Lisa; Menton, Ronald; French, Roger; Callahan, Janice; Webber, Chris; Gruber, William C.; Bonten, Marc J. M.; Jansen, Kathrin U.

    2012-01-01

    To improve the clinical diagnosis of pneumococcal infection in bacteremic and nonbacteremic community-acquired pneumonia (CAP), a Luminex technology-based multiplex urinary antigen detection (UAD) diagnostic assay was developed and validated. The UAD assay can simultaneously detect 13 different serotypes of Streptococcus pneumoniae by capturing serotype-specific S. pneumoniae polysaccharides (PnPSs) secreted in human urine. Assay specificity is achieved by capturing the polysaccharides with serotype-specific monoclonal antibodies (MAbs) on spectrally unique microspheres. Positivity for each serotype was based on positivity cutoff values calculated from a standard curve run on each assay plate to