Science.gov

Sample records for agar-well diffusion method

  1. Susceptibility of a polycaprolactone-based root canal filling material to degradation using an agar-well diffusion assay

    PubMed Central

    Hiraishi, Noriko; Sadek, Fernanda T.; King, Nigel M.; Ferrari, Marco; Pashley, David H.; Tay, Franklin R

    2013-01-01

    Purpose Cholesterol esterase is both a component of salivary hydrolases as well as an inflammatory cell-derived enzyme and has been shown to cause biodegradation of methacrylate-based resin composites. This study examined whether Resilon, a polycaprolactone-based thermoplastic root filling material is susceptible to biodegradation by cholesterol esterase using agar-well diffusion assay of serially-diluted aqueous Resilon emulsions that were dispersed in agar. Materials and methods Emulsions of Resilon and polycaprolactone were prepared and dispersed in agar on culture plates. Two different concentrations of a cholesterol esterase (0.3 and 1.2 U/mL) were prepared and fed to wells prepared in the agar plates using an agar-well diffusion assay for examination the degradation of polymeric materials. Results Degradation of the emulsified Resilon was manifested as the formation of clear zones of different sizes around the agar wells. No clear zones were observed in agar wells that contain sterile distilled water as the negative control. Clinical significance Although dispersion Resilon into an emulsion is not the way in which this material is employed as a root filling material, the potential for Resilon to be degraded by cholesterol esterase is of potential concern as one cannot limit the degradation of extruded Resilon from a root apex by monocyte-derived macrophages to just the anatomical root apex. As the present study employed a high concentration of cholesterol esterase, further studies should be directed to examining the degradation of Resilon using macrophage cell cultures. PMID:18578181

  2. Mathematical Methods for Diffusion MRI Processing

    PubMed Central

    Lenglet, C.; Campbell, J.S.W.; Descoteaux, M.; Haro, G.; Savadjiev, P.; Wassermann, D.; Anwander, A.; Deriche, R.; Pike, G.B.; Sapiro, G.; Siddiqi, K.; Thompson, P.

    2009-01-01

    In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). PMID:19063977

  3. Diffusion method of seperating gaseous mixtures

    DOEpatents

    Pontius, Rex B.

    1976-01-01

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  4. Diffusion in Condensed Matter: Methods, Materials, Models

    NASA Astrophysics Data System (ADS)

    Heitjans, Paul; Kärger, Jög

    This comprehensive, handbook-style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. It is understood and presented as a phenomenon of crucial relevance for a large variety of processes and materials. In this book, all aspects of the theoretical fundamentals, experimental techniques, highlights of current developments and results for solids, liquids and interfaces are presented.

  5. New method to measure liquid diffusivity by analyzing an instantaneous diffusion image.

    PubMed

    Sun, Licun; Meng, Weidong; Pu, Xiaoyun

    2015-09-01

    A novel optical method was applied to measure the binary liquid diffusion coefficient (D) quickly. Equipped with an asymmetric liquid-core cylindrical lens (ALCL), the spatially resolving ability of the ALCL in measuring refractive index of liquid was utilized to obtain the gradient distribution of the liquid concentration along diffusive direction. Based on Fick's second law, the D value was then calculated by analyzing diffusion images. It was worth mentioning that only one instantaneous diffusive image was required to measure D value by the method, reducing the measurement time greatly from several hours in traditional methods to a few seconds. The diffusion coefficients of ethylene glycol diffusing in pure water, at temperatures from 288.15 to 308.15 K, were measured by analyzing instantaneous diffusion images, the results were consistent well with the values measured by using holographic interferometry and Taylor dispersion methods. The method is characterized by faster measurement, direct observation of diffusive process, and easy operation, which provides a new method in measuring diffusion coefficient of liquids rapidly. PMID:26368418

  6. Diffuse-Interface Methods in Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  7. A vertical diffusion method for the microbiological assay of isoniazid

    PubMed Central

    Lloyd, Janet; Mitchison, D. A.

    1964-01-01

    A method is described for the assay of isoniazid in serum and other fluids by diffusion along slopes of Löwenstein-Jensen medium inoculated with tubercle bacilli. The method is convenient, rapid and robust, but is less accurate than diffusion systems for the assay of some other substances. PMID:14227431

  8. Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity

    NASA Astrophysics Data System (ADS)

    Asvestas, M.; Sifalakis, A. G.; Papadopoulou, E. P.; Saridakis, Y. G.

    2014-03-01

    Motivated by proliferation-diffusion mathematical models for studying highly diffusive brain tumors, that also take into account the heterogeneity of the brain tissue, in the present work we consider a multi-domain linear reaction-diffusion equation with a discontinuous diffusion coefficient. For the solution of the problem at hand we implement Fokas transform method by directly following, and extending in this way, our recent work for a white-gray-white matter brain model pertaining to high grade gliomas. Fokas's novel approach for the solution of linear PDE problems, yields novel integral representations of the solution in the complex plane that, for appropriately chosen integration contours, decay exponentially fast and converge uniformly at the boundaries. Combining these method-inherent advantages with simple numerical quadrature rules, we produce an efficient method, with fast decaying error properties, for the solution of the discontinuous reaction-diffusion problem.

  9. Comparison of radon diffusion coefficients measured by transient-diffusion and steady-state laboratory methods

    SciTech Connect

    Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.

    1982-11-01

    A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations.

  10. Capturing correlations in chaotic diffusion by approximation methods.

    PubMed

    Knight, Georgie; Klages, Rainer

    2011-10-01

    We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line that contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher-order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, while the third method approximates Markov partitions and transition matrices by using a slight variation of the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence, and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in the case of dynamics where exact results for the diffusion coefficient are not available. PMID:22181115

  11. Lattice Boltzmann method for the fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  12. Lattice Boltzmann method for the fractional advection-diffusion equation.

    PubMed

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering. PMID:27176431

  13. The method for detecting diffusion ring diameter in Hemagglutinin measuring

    NASA Astrophysics Data System (ADS)

    Jing, Wenbo; Liu, Xue; Duan, Jin; Wang, Xiao-man

    2014-11-01

    The diffuser ring diameter measurement is the most critical in hemagglutinin Measuring. The traditional methods, such as a vernier caliper or high-definition scanned images are subjective and low for the measurement data reliability. Propose high-resolution diffusion ring image for drop-resolution processing, adaptive Canny operator and local detection method to extract complete and clear diffusion ring boundaries, and finally make use of polynomial interpolation algorithm to make diffusion ring outer boundary pixel coordinates achieve sub-pixel accuracy and the least-squares fitting circle algorithm to calculate the precise center of the circle and the diameter of the diffuser ring. Experimental results show that the method detection time is only 63.61ms, which is a faster speed; diffuser ring diameter estimation error can achieve 0.55 pixel, high stability in experimental data. This method is adapted to the various types of influenza vaccine hemagglutinin content measurements, and has important value in the influenza vaccine quality detection.

  14. A novel method to evaluate spin diffusion length of Pt

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-qing; Sun, Niu-yi; Che, Wen-ru; Shan, Rong; Zhu, Zhen-gang

    2016-05-01

    Spin diffusion length of Pt is evaluated via proximity effect of spin orbit coupling (SOC) and anomalous Hall effect (AHE) in Pt/Co2FeAl bilayers. By varying the thicknesses of Pt and Co2FeAl layer, the thickness dependences of AHE parameters can be obtained, which are theoretically predicted to be proportional to the square of the SOC strength. According to the physical image of the SOC proximity effect, the spin diffusion length of Pt can easily be identified from these thickness dependences. This work provides a novel method to evaluate spin diffusion length in a material with a small value.

  15. Adaptive domain decomposition methods for advection-diffusion problems

    SciTech Connect

    Carlenzoli, C.; Quarteroni, A.

    1995-12-31

    Domain decomposition methods can perform poorly on advection-diffusion equations if diffusion is dominated by advection. Indeed, the hyperpolic part of the equations could affect the behavior of iterative schemes among subdomains slowing down dramatically their rate of convergence. Taking into account the direction of the characteristic lines we introduce suitable adaptive algorithms which are stable with respect to the magnitude of the convective field in the equations and very effective on bear boundary value problems.

  16. Practical method for diffusion welding of steel plate in air.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H.

    1972-01-01

    Description of a simple and easily applied method of diffusion welding steel plate in air which does not require a vacuum furnace or hot press. The novel feature of the proposed welding method is that diffusion welds are made in air with deadweight loading. In addition, the use of an autogenous (self-generated) surface-cleaning principle (termed 'auto-vac cleaning') to reduce the effects of surface oxides that normally hinder diffusion welding is examined. A series of nine butt joints were diffusion welded in thick sections of AISI 1020 steel plate. Diffusion welds were attempted at three welding temperatures (1200, 1090, and 980 C) using a deadweight pressure of 34,500 N/sq m (5 psi) and a two-hour hold time at temperature. Auto-vac cleaning operations prior to welding were also studied for the same three temperatures. Results indicate that sound welds were produced at the two higher temperatures when the joints were previously fusion seal welded completely around the periphery. Also, auto-vac cleaning at 1200 C for 2-1/2 hours prior to diffusion welding was highly beneficial, particularly when subsequent welding was accomplished at 1090 C.

  17. Efficient stochastic Galerkin methods for random diffusion equations

    SciTech Connect

    Xiu Dongbin Shen Jie

    2009-02-01

    We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We employ generalized polynomial chaos (gPC) expansion to express the solution in a convergent series and obtain a set of deterministic equations for the expansion coefficients by Galerkin projection. Although the resulting system of diffusion equations are coupled, we show that one can construct fast numerical methods to solve them in a decoupled fashion. The methods are based on separation of the diagonal terms and off-diagonal terms in the matrix of the Galerkin system. We examine properties of this matrix and show that the proposed method is unconditionally stable for unsteady problems and convergent for steady problems with a convergent rate independent of discretization parameters. Numerical examples are provided, for both steady and unsteady random diffusions, to support the analysis.

  18. A method for thermal diffusivity measurement in fluids.

    PubMed

    Marín, E; Hernández-Rosales, E; Mansanares, A M; Ivanov, R; Rojas-Trigos, J B; Calderón, A

    2013-10-01

    A technique is proposed for thermal diffusivity measurement in fluids. It is based on the Angstrom method, but with excitation of thermal waves by electromagnetic energy absorption and pyroelectric detection. The good agreement between measured thermal diffusivity of air and some test liquids with literature values shows the validity of the method. It is free of some limitations of conventional photopyroelectric technique with length scanning because it is free of moving parts inside the sample and because it avoids problems associated with the non-parallelism between thermal wave generator surface and sensor. It does not require any data normalization procedure or special sample preparation. PMID:24182147

  19. A method for thermal diffusivity measurement in fluids

    NASA Astrophysics Data System (ADS)

    Marín, E.; Hernández-Rosales, E.; Mansanares, A. M.; Ivanov, R.; Rojas-Trigos, J. B.; Calderón, A.

    2013-10-01

    A technique is proposed for thermal diffusivity measurement in fluids. It is based on the Angstrom method, but with excitation of thermal waves by electromagnetic energy absorption and pyroelectric detection. The good agreement between measured thermal diffusivity of air and some test liquids with literature values shows the validity of the method. It is free of some limitations of conventional photopyroelectric technique with length scanning because it is free of moving parts inside the sample and because it avoids problems associated with the non-parallelism between thermal wave generator surface and sensor. It does not require any data normalization procedure or special sample preparation.

  20. Comparison of thermal diffusivity and thermal conductivity methods

    SciTech Connect

    Sheffield, G.S.; Schorr, J.R. )

    1991-01-01

    This paper reports on applications involving ceramics which require that this diverse group of materials act as either thermal insulators or thermal conductors. Values of thermal conductivity can range over more than 4 orders of magnitude from 0.1 W/(m {center dot} K) (0.7 BTU {center dot} in./(h {center dot} ft{sup 2} {center dot} {degrees}F)) for fiberboard insulation to 1300 W/(M {center dot} K) (9013 BTU {center dot} in./(h {center dot} {degrees}F)) for boron nitride. The magnitude of temperature gradients in materials is governed by thermal diffusivity and thermal conductivity. In ceramic materials, gradients can create significant thermal stresses, cause heat flow (causing furnaces to heat but also causing usually undesirable heat losses) and be a controlling factor in reaction rates. In general, no single method is dominant because of the wide range of temperatures involved, the large variations in diffusivity and conductivity encountered, the differences in sampling requirements (homogeneity), and the duration of measurement time. Five thermal diffusivity and conductivity methods, all of which have been successfully applied to ceramic materials are reviewed. The methods covered are dynamic radial heat flow, laser flash, hot wire, calorimeter, and guarded hot plate. The dynamic radial heat flow and laser flash methods are diffusivity methods, whereas the remaining three are representative of conductivity methods.

  1. Stochastic operator-splitting method for reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Choi, TaiJung; Maurya, Mano Ram; Tartakovsky, Daniel M.; Subramaniam, Shankar

    2012-11-01

    Many biochemical processes at the sub-cellular level involve a small number of molecules. The local numbers of these molecules vary in space and time, and exhibit random fluctuations that can only be captured with stochastic simulations. We present a novel stochastic operator-splitting algorithm to model such reaction-diffusion phenomena. The reaction and diffusion steps employ stochastic simulation algorithms and Brownian dynamics, respectively. Through theoretical analysis, we have developed an algorithm to identify if the system is reaction-controlled, diffusion-controlled or is in an intermediate regime. The time-step size is chosen accordingly at each step of the simulation. We have used three examples to demonstrate the accuracy and robustness of the proposed algorithm. The first example deals with diffusion of two chemical species undergoing an irreversible bimolecular reaction. It is used to validate our algorithm by comparing its results with the solution obtained from a corresponding deterministic partial differential equation at low and high number of molecules. In this example, we also compare the results from our method to those obtained using a Gillespie multi-particle (GMP) method. The second example, which models simplified RNA synthesis, is used to study the performance of our algorithm in reaction- and diffusion-controlled regimes and to investigate the effects of local inhomogeneity. The third example models reaction-diffusion of CheY molecules through the cytoplasm of Escherichia coli during chemotaxis. It is used to compare the algorithm's performance against the GMP method. Our analysis demonstrates that the proposed algorithm enables accurate simulation of the kinetics of complex and spatially heterogeneous systems. It is also computationally more efficient than commonly used alternatives, such as the GMP method.

  2. The Flux-integral Method for Multidimensional Convection and Diffusion

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Macvean, M. K.; Lock, A. P.

    1994-01-01

    The flux-integral method is a procedure for constructing an explicit, single-step, forward-in-time, conservative, control volume update of the unsteady, multidimensional convection-diffusion equation. The convective plus diffusive flux at each face of a control-volume cell is estimated by integrating the transported variable and its face-normal derivative over the volume swept out by the convecting velocity field. This yields a unique description of the fluxes, whereas other conservative methods rely on nonunique, arbitrary pseudoflux-difference splitting procedures. The accuracy of the resulting scheme depends on the form of the subcell interpolation assumed, given cell-average data. Cellwise constant behavior results in a (very artificially diffusive) first-order convection scheme. Second-order convection-diffusion schemes correspond to cellwise linear (or bilinear) subcell interpolation. Cellwise quadratic subcell interpolants generate a highly accurate convection-diffusion scheme with excellent phase accuracy. Under constant-coefficient conditions, this is a uniformly third-order polynomial interpolation algorithm (UTOPIA).

  3. Methods for diffusive relaxation in the Pn equation

    SciTech Connect

    Hauck, Cory D; Mcclarren, Ryan G; Lowrie, Robert B

    2008-01-01

    We present recent progress in the development of two substantially different approaches for simulating the so-called of P{sub N} equations. These are linear hyperbolic systems of PDEs that are used to model particle transport in a material medium, that in highly collisional regimes, are accurately approximated by a simple diffusion equation. This limit is based on a balance between function values and gradients of certain variables in the P{sub N} system. Conventional reconstruction methods based on upwinding approximate such gradients with an error that is dependent on the size of the computational mesh. Thus in order to capture the diffusion limit, a given mesh must resolve the dynamics of the continuum equation at the level of the mean-free-path, which tends to zero in the diffusion limit. The two methods analyzed here produce accurate solutions in both collisional and non-collisional regimes; in particular, they do not require resolution of the mean-free-path in order to properly capture the diffusion limit. The first method is a straight-forward application of the discrete Galerkin (DG) methodology, which uses additional variables in each computational cell to capture the balance between function values and gradients, which are computed locally. The second method uses a temporal splitting of the fast and slow dynamics in the P{sub N} system to derive so-called regularized equations for which the diffusion limit is built-in. We focus specifically on the P{sub N} equations for one-dimensional, slab geometries. Preliminary results for several benchmark problems are presented which highlight the advantages and disadvantages of each method. Further improvements and extensions are also discussed.

  4. Modeling the flow in diffuse interface methods of solidification

    NASA Astrophysics Data System (ADS)

    Subhedar, A.; Steinbach, I.; Varnik, F.

    2015-08-01

    Fluid dynamical equations in the presence of a diffuse solid-liquid interface are investigated via a volume averaging approach. The resulting equations exhibit the same structure as the standard Navier-Stokes equation for a Newtonian fluid with a constant viscosity, the effect of the solid phase fraction appearing in the drag force only. This considerably simplifies the use of the lattice Boltzmann method as a fluid dynamics solver in solidification simulations. Galilean invariance is also satisfied within this approach. Further, we investigate deviations between the diffuse and sharp interface flow profiles via both quasiexact numerical integration and lattice Boltzmann simulations. It emerges from these studies that the freedom in choosing the solid-liquid coupling parameter h provides a flexible way of optimizing the diffuse interface-flow simulations. Once h is adapted for a given spatial resolution, the simulated flow profiles reach an accuracy comparable to quasiexact numerical simulations.

  5. Modeling the flow in diffuse interface methods of solidification.

    PubMed

    Subhedar, A; Steinbach, I; Varnik, F

    2015-08-01

    Fluid dynamical equations in the presence of a diffuse solid-liquid interface are investigated via a volume averaging approach. The resulting equations exhibit the same structure as the standard Navier-Stokes equation for a Newtonian fluid with a constant viscosity, the effect of the solid phase fraction appearing in the drag force only. This considerably simplifies the use of the lattice Boltzmann method as a fluid dynamics solver in solidification simulations. Galilean invariance is also satisfied within this approach. Further, we investigate deviations between the diffuse and sharp interface flow profiles via both quasiexact numerical integration and lattice Boltzmann simulations. It emerges from these studies that the freedom in choosing the solid-liquid coupling parameter h provides a flexible way of optimizing the diffuse interface-flow simulations. Once h is adapted for a given spatial resolution, the simulated flow profiles reach an accuracy comparable to quasiexact numerical simulations. PMID:26382542

  6. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C–O–C, 1113 cm-1) present in the cements, and the mineral content (P–O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  7. Thermal diffusivity of nonflat plates using the flash method

    SciTech Connect

    Salazar, Agustin; Fuente, Raquel; Apinaniz, Estibaliz; Mendioroz, Arantza

    2011-01-15

    The flash method is the standard technique to measure the thermal diffusivity of solid samples. It consists of heating the front surface of an opaque sample by a brief light pulse and detecting the temperature evolution at its rear surface. The thermal diffusivity is obtained by measuring the time corresponding to the half maximum of the temperature rise, which only depends on the sample thickness and thermal diffusivity through a simple formula. Up to now, the flash method has been restricted to flat samples. In this work, we extend the flash method to measure the thermal diffusivity of nonflat samples. In particular, we focus on plates with cylindrical and spherical shapes. The theoretical model indicates that the same expression for flat samples can also be applied to cylindrical and spherical plates, except for extremely curved samples. Accordingly, a curvature limit for the application of the expression for flat samples is established. Flash measurements on lead foils of cylindrical shape confirm the validity of the model.

  8. Method of making gas diffusion layers for electrochemical cells

    DOEpatents

    Frisk, Joseph William; Boand, Wayne Meredith; Larson, James Michael

    2002-01-01

    A method is provided for making a gas diffusion layer for an electrochemical cell comprising the steps of: a) combining carbon particles and one or more surfactants in a typically aqueous vehicle to make a preliminary composition, typically by high shear mixing; b) adding one or more highly fluorinated polymers to said preliminary composition by low shear mixing to make a coating composition; and c) applying the coating composition to an electrically conductive porous substrate, typically by a low shear coating method.

  9. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, Kβ(t)D radβ/sα, where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γβgβδβDf1 tα), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γβgβδβDf2 tα), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α = 1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1 ∫0τ Kβ (t)dtα ] . The results obtained in this study are in good agreement with the results in literature. Several expressions that describe signal

  10. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions.

    PubMed

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, K(β)(t)D rad(β)/s(α), where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γ(β)g(β)δ(β)Df1t(α)), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γ(β)g(β)δ(β)Df2t(α)), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α=1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1∫0(τ) K(β)(t)dt(α)]. The results obtained in this study are in good agreement with the results in literature. Several expressions that

  11. Instantaneous signal attenuation method for analysis of PFG fractional diffusions.

    PubMed

    Lin, Guoxing

    2016-08-01

    An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t'),t'+dt')/A(K(t'),t'), where A(K(t'),t'+dt') and A(K(t'),t') are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained here such as [Formula: see

  12. Instantaneous signal attenuation method for analysis of PFG fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2016-08-01

    An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t‧), t‧ + dt‧)/A(K(t‧), t‧), where A(K(t‧), t‧ + dt‧) and A(K(t‧), t‧) are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained

  13. Measurement of gas diffusion through soils: comparison of laboratory methods.

    PubMed

    Allaire, Suzanne E; Lafond, Jonathan A; Cabral, Alexandre R; Lange, Sébastien F

    2008-11-01

    Gas movement through soils is important for ecosystems and engineering in many ways such as for microbial and plant respiration, passive methane oxidation in landfill covers and oxidation of mine residues. Diffusion is one of the most important gas movement processes and the determination of the diffusion coefficient is a crucial step in any study. Five laboratory methods used for measuring the relative gas diffusion coefficient (D(s)/D(o)) were compared using a loamy sand, a porous media commonly found in agricultural fields and in several engineered structures, such as in landfill final covers. In the absence of macropores, all methods gave rather similar values of D(s)/D(o). Methods allowing the study of microscale variability indicated that the presence of macropores highly influenced gas movement, thus the value of D(s)/D(o), which, near a macropore may be one order of magnitude higher than in regions without macropores. Repacked columns do not allow the study of heterogeneity in D(s)/D(o). Natural spatial variability in D(s)/D(o) due to water distribution and preferential pathways can only be studied in large systems, but these systems are difficult to handle. Advantages and disadvantages of each method are discussed. PMID:18974902

  14. Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications

    NASA Technical Reports Server (NTRS)

    Giere, A. C.

    1977-01-01

    An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.

  15. A Numerical Method for Determining Diffusivity from Annealing Experiments

    NASA Astrophysics Data System (ADS)

    Harris-Kuhlman, K. R.; Kulcinski, G. L.

    1998-12-01

    Terrestrial analogs of lunar ilmenite (FeTiO3) have been implanted with solar-wind energy 4He at 4 keV and 3He at 3 keV using Plasma Source Ion Implantation (PSII). Isochronal annealing of the samples revealed thermally induced 4He evolution similar to the helium release of the Apollo 11 regoliths reported by Pepin, et. al., [1970]. These annealing experiments are analyzed with a three dimensional numerical method based on Fick's law for diffusion. An iterative method is used to calculate the diffusivity. The code uses an assumed diffusivity to calculate the amount of gas released during a temperature step. The initial depth profile of the implanted species is generated using the TRIM electronic stopping code [Ziegler, 1996]. The calculated value is compared to the measured value and a linear regression is used to calculate a new diffusivity until there is convergence within a specified tolerance level. The diffusivity as a function of temperature is then fitted to an Arrhenius equation. Analysis of results for 4 keV 4He on ilmenite shows two distinct regions of Arrehnius behavior with activation energies of 0.5 +/- 0.1 eV at emperatures below 800 deg C and 1.5 +/- 0.2 eV at temperatures from 800 deg C to 1100 deg C. Pepin, R. O., L. E. Nyquist, D. Phinney, and D. C. Black (1970) "Rare Gases in Apollo 11 Lunar Material," Proceedings of the Apollo 11 Lunar Science Conference, 2, pp. 1435-1454. Ziegler, J. P. (1996) SRIM Instruction Manual: The Stopping and Range of Ions in Matter, (Yorktown, New York: IBM - Research); based on Ziegler, J. P., J. P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, (New York: Pergamon Press, 1985).

  16. Linear method of fluorescent source reconstruction in a diffusion medium.

    PubMed

    Janunts, Edgar; Pöschinger, Thomas; Brünner, Holger; Langenbucher, Achim

    2008-01-01

    A new method is described for obtaining a 2D reconstruction of a fluorescent source distribution inside a diffusion medium from planar measurements of the emission light at the surface after excitation by a plane wave. Point sources are implanted at known locations of a rectangular phantom. The forward model of the photon transport is based on the diffusion approximation of the radiative transport equation (RTE) for homogeneous media. This can be described by a hierarchical system of two time-independent RTE's, one for the excitation plane wave originating from the external light source to the medium and another one for the fluorescence emission originating from the fluorophore marker to the detector. A linear inverse source problem was solved for image reconstruction. The applicability of the theoretical method is demonstrated in some representative working examples. For an optimization of the problem we used least squares minimization technique. PMID:18826162

  17. Support Operators Method for the Diffusion Equation in Multiple Materials

    SciTech Connect

    Winters, Andrew R.; Shashkov, Mikhail J.

    2012-08-14

    A second-order finite difference scheme for the solution of the diffusion equation on non-uniform meshes is implemented. The method allows the heat conductivity to be discontinuous. The algorithm is formulated on a one dimensional mesh and is derived using the support operators method. A key component of the derivation is that the discrete analog of the flux operator is constructed to be the negative adjoint of the discrete divergence, in an inner product that is a discrete analog of the continuum inner product. The resultant discrete operators in the fully discretized diffusion equation are symmetric and positive definite. The algorithm is generalized to operate on meshes with cells which have mixed material properties. A mechanism to recover intermediate temperature values in mixed cells using a limited linear reconstruction is introduced. The implementation of the algorithm is verified and the linear reconstruction mechanism is compared to previous results for obtaining new material temperatures.

  18. A localized meshless method for diffusion on folded surfaces

    NASA Astrophysics Data System (ADS)

    Cheung, Ka Chun; Ling, Leevan; Ruuth, Steven J.

    2015-09-01

    Partial differential equations (PDEs) on surfaces arise in a variety of application areas including biological systems, medical imaging, fluid dynamics, mathematical physics, image processing and computer graphics. In this paper, we propose a radial basis function (RBF) discretization of the closest point method. The corresponding localized meshless method may be used to approximate diffusion on smooth or folded surfaces. Our method has the benefit of having an a priori error bound in terms of percentage of the norm of the solution. A stable solver is used to avoid the ill-conditioning that arises when the radial basis functions (RBFs) become flat.

  19. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGESBeta

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  20. Minutes to Millennia: Diffusion Methods in Subduction-Related Volcanism

    NASA Astrophysics Data System (ADS)

    Morgan, D. J.; Allan, A.; Wilson, C. J. N.; Charlier, B. L.; Davidson, J.

    2014-12-01

    Diffusion methods have several advantages as relative geochronometers in volcano-related magmatic processes: diffusion stops on eruption, locking in short timescale information; methods are relatively easy to implement; and suitable material is generally abundant. Such methods also pose significant, accompanying challenges: the need for accurate melt palaeothermometry, uncertainties in diffusion parameters, and sometimes even a cryptic connection between mineral zonation and timescale. As all timescales are relative to an event, timing is not absolute, and care must be taken in interpretation. Yet for all the difficulties, diffusion tools are seeing more widespread usage. This has come about because of the potential of diffusion methods to interrogate certain pre-eruptive processes operating over timescales of relevance to human timescales and responses, having direct bearing on hazard mitigation procedures. In studying subduction zone systems we have a wide range of minerals to choose from but will, in subduction-related, andesitic-to-rhyolitic systems, usually be operating away from the relatively well-constrained system of olivine, and instead be dealing with mineral phases that offer different challenges, such as plagioclase, quartz, sanidine, amphibole, orthopyroxene, Fe-Ti oxides and mica. Timescales here span a wide range across different mineral-element combinations, from minutes for Li in plagioclase and quartz to days by Fe-Ti oxides, years by orthopyroxene Fe-Mg and decades to millennia with plagioclase, sanidine and quartz. This contribution will focus on the interpretation of diffusion signals in minerals found in subduction-related volcanic systems. To understand what any modelled timescale means, the process which formed the relevant zonation pattern is absolutely key, yet often elusive. Variations in P, T, X conditions really drive the crystallisation process yet certain zonation patterns are non-unique. This ambiguity necessitates painstaking

  1. Diffusely reflecting paints including polytetrafluoroethylene and method of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Shai, M. C. (Inventor)

    1985-01-01

    The invention pertains to a high diffuse, reflective paint comprising an alcohol soluble binder, polytetrafluoroethylene (TFE) and an alcohol for coating a substrate and forming an optical reference with a superior Lambertian characteristic. A method for making the paint by first mixing the biner and alcohol, and thereafter by mixing in outgassed TFE is described. A wetting agent may be employed to aid the mixing process.

  2. Effective Thermal Diffusivity Study of Powder Biocomposites via Photoacoustic Method

    NASA Astrophysics Data System (ADS)

    Mariucci, V. V. G.; da Cruz, J. A.; Bonadio, T. G. M.; Picolloto, A. M.; Weinand, W. R.; Lima, W. M.; Medina, A. N.; Bento, A. C.

    2015-10-01

    The effective thermal diffusivity for biocomposites of hydroxyapatite (HAp), and niobium pentoxide (Nb2O5) on powder form was studied via photoacoustic method adapted for porous materials. The concentration of each element was accompanied with the results of X-ray diffractometer (XRD) and scanning electron microscopy (SEM). A theoretical model for the thermal coupling of a three layered sample, designed to contain the powder material is proposed. The method for mixtures obeyed the formula [(1 - x) H A p + ( x) N b 2O5] for 0.0 ≤ x ≤ 1.0. Experimental results for effective thermal diffusivity ranged between (6.4 ± 0.3) × 10-6 m2 s-1 and (9.8 ± 0.4) × 10-6 m2 s-1 for x ≤ 0.7. Values of the effective thermal diffusivity have decreased sharply to (0.7 ± 0.03) ×10-6 m2 s-1 for x > 0.7. SEM micrographs showed a coating of HAp over the particles of Nb2O5 for some mixtures.

  3. A diffusive information preservation method for small Knudsen number flows

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Fan, Jing

    2013-06-01

    The direct simulation Monte Carlo (DSMC) method is a powerful particle-based method for modeling gas flows. It works well for relatively large Knudsen (Kn) numbers, typically larger than 0.01, but quickly becomes computationally intensive as Kn decreases due to its time step and cell size limitations. An alternative approach was proposed to relax or remove these limitations, based on replacing pairwise collisions with a stochastic model corresponding to the Fokker-Planck equation [J. Comput. Phys., 229, 1077 (2010); J. Fluid Mech., 680, 574 (2011)]. Similar to the DSMC method, the downside of that approach suffers from computationally statistical noise. To solve the problem, a diffusion-based information preservation (D-IP) method has been developed. The main idea is to track the motion of a simulated molecule from the diffusive standpoint, and obtain the flow velocity and temperature through sampling and averaging the IP quantities. To validate the idea and the corresponding model, several benchmark problems with Kn ˜ 10-3-10-4 have been investigated. It is shown that the IP calculations are not only accurate, but also efficient because they make possible using a time step and cell size over an order of magnitude larger than the mean collision time and mean free path, respectively.

  4. A diffusive information preservation method for small Knudsen number flows

    SciTech Connect

    Fei, Fei; Fan, Jing

    2013-06-15

    The direct simulation Monte Carlo (DSMC) method is a powerful particle-based method for modeling gas flows. It works well for relatively large Knudsen (Kn) numbers, typically larger than 0.01, but quickly becomes computationally intensive as Kn decreases due to its time step and cell size limitations. An alternative approach was proposed to relax or remove these limitations, based on replacing pairwise collisions with a stochastic model corresponding to the Fokker–Planck equation [J. Comput. Phys., 229, 1077 (2010); J. Fluid Mech., 680, 574 (2011)]. Similar to the DSMC method, the downside of that approach suffers from computationally statistical noise. To solve the problem, a diffusion-based information preservation (D-IP) method has been developed. The main idea is to track the motion of a simulated molecule from the diffusive standpoint, and obtain the flow velocity and temperature through sampling and averaging the IP quantities. To validate the idea and the corresponding model, several benchmark problems with Kn ∼ 10{sup −3}–10{sup −4} have been investigated. It is shown that the IP calculations are not only accurate, but also efficient because they make possible using a time step and cell size over an order of magnitude larger than the mean collision time and mean free path, respectively.

  5. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    SciTech Connect

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-03-10

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton`s method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton`s method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step.

  6. On matrix diffusion: formulations, solution methods and qualitative effects

    NASA Astrophysics Data System (ADS)

    Carrera, Jesús; Sánchez-Vila, Xavier; Benet, Inmaculada; Medina, Agustín; Galarza, Germán; Guimerà, Jordi

    Matrix diffusion has become widely recognized as an important transport mechanism. Unfortunately, accounting for matrix diffusion complicates solute-transport simulations. This problem has led to simplified formulations, partly motivated by the solution method. As a result, some confusion has been generated about how to properly pose the problem. One of the objectives of this work is to find some unity among existing formulations and solution methods. In doing so, some asymptotic properties of matrix diffusion are derived. Specifically, early-time behavior (short tests) depends only on φm2RmDm / Lm2, whereas late-time behavior (long tracer tests) depends only on φmRm, and not on matrix diffusion coefficient or block size and shape. The latter is always true for mean arrival time. These properties help in: (a) analyzing the qualitative behavior of matrix diffusion; (b) explaining one paradox of solute transport through fractured rocks (the apparent dependence of porosity on travel time); (c) discriminating between matrix diffusion and other problems (such as kinetic sorption or heterogeneity); and (d) describing identifiability problems and ways to overcome them. RésuméLa diffusion matricielle est un phénomène reconnu maintenant comme un mécanisme de transport important. Malheureusement, la prise en compte de la diffusion matricielle complique la simulation du transport de soluté. Ce problème a conduit à des formulations simplifiées, en partie à cause de la méthode de résolution. Il s'en est suivi une certaine confusion sur la façon de poser correctement le problème. L'un des objectifs de ce travail est de trouver une certaine unité parmi les formulations et les méthodes de résolution. C'est ainsi que certaines propriétés asymptotiques de la diffusion matricielle ont été dérivées. En particulier, le comportement à l'origine (expériences de traçage courtes) dépend uniquement du terme φm2RmDm / Lm2, alors que le comportement à long terme

  7. On matrix diffusion: formulations, solution methods and qualitative effects

    NASA Astrophysics Data System (ADS)

    Carrera, Jesús; Sánchez-Vila, Xavier; Benet, Inmaculada; Medina, Agustín; Galarza, Germán; Guimerà, Jordi

    Matrix diffusion has become widely recognized as an important transport mechanism. Unfortunately, accounting for matrix diffusion complicates solute-transport simulations. This problem has led to simplified formulations, partly motivated by the solution method. As a result, some confusion has been generated about how to properly pose the problem. One of the objectives of this work is to find some unity among existing formulations and solution methods. In doing so, some asymptotic properties of matrix diffusion are derived. Specifically, early-time behavior (short tests) depends only on φm2RmDm / Lm2, whereas late-time behavior (long tracer tests) depends only on φmRm, and not on matrix diffusion coefficient or block size and shape. The latter is always true for mean arrival time. These properties help in: (a) analyzing the qualitative behavior of matrix diffusion; (b) explaining one paradox of solute transport through fractured rocks (the apparent dependence of porosity on travel time); (c) discriminating between matrix diffusion and other problems (such as kinetic sorption or heterogeneity); and (d) describing identifiability problems and ways to overcome them. RésuméLa diffusion matricielle est un phénomène reconnu maintenant comme un mécanisme de transport important. Malheureusement, la prise en compte de la diffusion matricielle complique la simulation du transport de soluté. Ce problème a conduit à des formulations simplifiées, en partie à cause de la méthode de résolution. Il s'en est suivi une certaine confusion sur la façon de poser correctement le problème. L'un des objectifs de ce travail est de trouver une certaine unité parmi les formulations et les méthodes de résolution. C'est ainsi que certaines propriétés asymptotiques de la diffusion matricielle ont été dérivées. En particulier, le comportement à l'origine (expériences de traçage courtes) dépend uniquement du terme φm2RmDm / Lm2, alors que le comportement à long terme

  8. Diffuse optical methods for assessing breast cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Tromberg, Bruce J.

    2014-03-01

    In his talk, "Diffuse Optical Methods for Assessing Breast Cancer Chemotherapy," SPIE Fellow Bruce Tromberg (Beckman Laser Institute and Medical Clinic) describes a method combining frequency domain photon migration, essentially a method of tracking photon motion in tissue, with a NIR spectroscopy technique using 850nm LEDs. The result is a scatter corrected absorption spectra. The technique takes advantage of elevated blood and water levels and decreased lipid levels in the presence of tumors to provide a more accurate mapping of the breast, allowing more effective treatment. Tromberg's team recently completed their first full mapping of the breast and have taken the instrument from a standalone unit to a portable one suitable for travel. In addition to providing feedback to enhance breast cancer treatment, Tromberg expects that this technique will be applicable in treating other forms of cancer as well.

  9. Compact finite volume methods for the diffusion equation

    NASA Technical Reports Server (NTRS)

    Rose, Milton E.

    1989-01-01

    The paper describes an approach to treating initial-boundary-value problems by finite volume methods in which the parallel between differential and difference arguments is closely maintained. By using intrinsic geometrical properties of the volume elements, it is possible to describe discrete versions of the div, curl, and grad operators which lead, using summation-by-parts techniques, to familiar energy equations as well as the div curl = 0 and curl grad = 0 identities. For the diffusion equation, these operators describe compact schemes whose convergence is assured by the energy equations and which yield both the potential and the flux vector with second-order accuracy. A simplified potential form is especially useful for obtaining numerical results by multigrid and ADI methods.

  10. Extrapolation techniques applied to matrix methods in neutron diffusion problems

    NASA Technical Reports Server (NTRS)

    Mccready, Robert R

    1956-01-01

    A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.

  11. Compact finite volume methods for the diffusion equation

    NASA Technical Reports Server (NTRS)

    Rose, Milton E.

    1989-01-01

    An approach to treating initial-boundary value problems by finite volume methods is described, in which the parallel between differential and difference arguments is closely maintained. By using intrinsic geometrical properties of the volume elements, it is possible to describe discrete versions of the div, curl, and grad operators which lead, using summation-by-parts techniques, to familiar energy equations as well as the div curl = 0 and curl grad = 0 identities. For the diffusion equation, these operators describe compact schemes whose convergence is assured by the energy equations and which yield both the potential and the flux vector with second order accuracy. A simplified potential form is especially useful for obtaining numerical results by multigrid and alternating direction implicit (ADI) methods. The treatment of general curvilinear coordinates is shown to result from a specialization of these general results.

  12. A method for quantitatively estimating diffuse and discrete hydrothermal discharge

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.; Walker, Sharon L.; Embley, Robert W.

    1993-07-01

    Submarine hydrothermal fluids discharge as undiluted, high-temperature jets and as diffuse, highly diluted, low-temperature percolation. Estimates of the relative contribution of each discharge type, which are important for the accurate determination of local and global hydrothermal budgets, are difficult to obtain directly. In this paper we describe a new method of using measurements of hydrothermal tracers such as Fe/Mn, Fe/heat, and Mn/heat in high-temperature fluids, low-temperature fluids, and the neutrally buoyant plume to deduce the relative contribution of each discharge type. We sampled vent fluids from the north Cleft vent field on the Juan de Fuca Ridge in 1988, 1989 and 1991, and plume samples every year from 1986 to 1991. The tracers were, on average, 3 to 90 times greater in high-temperature than in low-temperature fluids, with plume values intermediate. A mixing model calculates that high-temperature fluids contribute only ˜ 3% of the fluid mass flux but > 90% of the hydrothermal Fe and > 60% of the hydrothermal Mn to the overlying plume. Three years of extensive camera-CTD sled tows through the vent field show that diffuse venting is restricted to a narrow fissure zone extending for 18 km along the axial strike. Linear plume theory applied to the temperature plumes detected when the sled crossed this zone yields a maximum likelihood estimate for the diffuse heat flux of8.9 × 10 4 W/m, for a total flux of 534 MW, considering that diffuse venting is active along only one-third of the fissure system. For mean low- and high-temperature discharge of 25°C and 319°C, respectively, the discrete heat flux must be 266 MW to satisfy the mass flux partitioning. If the north Cleft vent field is globally representative, the assumption that high-temperature discharge dominates the mass flux in axial vent fields leads to an overestimation of the flux of many non-conservative hydrothermal species by about an order of magnitude.

  13. An efficient method for model refinement in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zirak, A. R.; Khademi, M.

    2007-11-01

    Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.

  14. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  15. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  16. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems.

  17. Evaluation of Hamaker coefficients using Diffusion Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Maezono, Ryo; Hongo, Kenta

    We evaluated the Hamaker's constant for Cyclohexasilane to investigate its wettability, which is used as an ink of 'liquid silicon' in 'printed electronics'. Taking three representative geometries of the dimer coalescence (parallel, lined, and T-shaped), we evaluated these binding curves using diffusion Monte Carlo method. The parallel geometry gave the most long-ranged exponent, ~ 1 /r6 , in its asymptotic behavior. Evaluated binding lengths are fairly consistent with the experimental density of the molecule. The fitting of the asymptotic curve gave an estimation of Hamaker's constant being around 100 [zJ]. We also performed a CCSD(T) evaluation and got almost similar result. To check its justification, we applied the same scheme to Benzene and compared the estimation with those by other established methods, Lifshitz theory and SAPT (Symmetry-adopted perturbation theory). The result by the fitting scheme turned to be twice larger than those by Lifshitz and SAPT, both of which coincide with each other. It is hence implied that the present evaluation for Cyclohexasilane would be overestimated.

  18. Note: Molecular diffusivity in a small pore zeolite measured by a variable pressure (piezometric) uptake method

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Kobayashi, Yasukazu; Muhammad, Usman; Wang, Dezheng; Wang, Yao

    2016-03-01

    The use of numerical analysis to solve the diffusion equation in the uptake method allowed the measurement of molecular diffusivity in a zeolite with a variable pressure around it. The diffusivity was obtained from the data in the measurement of the adsorption isotherm, which means that the diffusivity measurement now needs neither a special instrument nor procedure. The diffusivities of all the gases are readily available from the measurement of their adsorption isotherms and these data include how the diffusivity changes versus adsorbed concentration. The modeling introduced can also be used for a zeolite with a surface barrier.

  19. Method for applying a diffusion barrier interlayer for high temperature components

    DOEpatents

    Wei, Ronghua; Cheruvu, Narayana S.

    2016-03-08

    A coated substrate and a method of forming a diffusion barrier coating system between a substrate and a MCrAl coating, including a diffusion barrier coating deposited onto at least a portion of a substrate surface, wherein the diffusion barrier coating comprises a nitride, oxide or carbide of one or more transition metals and/or metalloids and a MCrAl coating, wherein M includes a transition metal or a metalloid, deposited on at least a portion of the diffusion barrier coating, wherein the diffusion barrier coating restricts the inward diffusion of aluminum of the MCrAl coating into the substrate.

  20. Method of evaluating thermal diffusivity near lossy boundaries as an alternative to the Parker method

    NASA Astrophysics Data System (ADS)

    Ringermacher, Harry I.

    2013-04-01

    We describe an analysis of a flash thermographic method to measure thermal diffusivity that is particularly insensitive to heat loss mechanisms near thermal boundaries. This approach is an alternative to the "Parker method" which requires that a plate-like region subject to a uniform energy flux must reach a maximum constant temperature in order to obtain an accurate measurement of thermal diffusivity at the half-temperature point in time. The present approach relies on evaluating another unique point, the inflection point, of the same back-side thermal response curve as Parker's or, from the front side, using a contrast versus time curve in the sample region of interest. This inflection point occurs so early in the response history that little heat loss, for example, near heat-sink boundaries or surface convection, is expressed. Since the method is insensitive to the achieved temperature, it is also insensitive to surface emissivity variations.

  1. Improved agar diffusion method for detecting residual antimicrobial agents.

    PubMed

    Tsai, C E; Kondo, F

    2001-03-01

    The improved agar diffusion method for determination of residual antimicrobial agents was investigated, and the sensitivities of various combinations of test organisms and assay media were determined using 7 organisms, 5 media, and 31 antimicrobial agents. Bacillus stearothermophilus and synthetic assay medium (SAM) showed the greatest sensitivity for screening penicillins (penicillin G and ampicillin). The combination of Bacillus subtilis and minimum medium (MM) was the most sensitive for tetracyclines (oxytetracycline and chlortetracycline), B. stearothermophilus and SAM or Micrococcus luteus and Mueller-Hinton agar (MHA) for detecting tylosin and erythromycin, B. subtilis and MHA for aminoglycosides (streptomycin, kanamycin, gentamicin, and dihydrostreptomycin), B. stearothermophilus and SAM for polyethers (salinomycin and lasalocid), and B. subtilis and MM or Clostridium perfringens and GAM for polypeptides (thiopeptin, enramycin, virginiamycin, and bacitracin). However, gram-negative bacterium Escherichia coli ATCC 27166 and MM were better for screening for colistin and polymixin-B. For detecting the synthetic drugs tested, the best combination was B. subtilis and MM for sulfonamides, E. coli 27166 and MM for quinolones (oxolinic acid and nalidixic acid), B. subtilis and MM for furans (furazolidone), and the bioluminescent bacterium Photobacterium phosphoreum and luminescence assay medium for chloramphenicol and oxolinic acid. The results showed that the use of four assay plates, B. stearothermophilus and SAM, B. subtilis and MM, M. luteus and MHA, and E. coli 27166 and MM, was superior to the currently available techniques for screening for residual antimicrobial agents in edible animal tissues. PMID:11252480

  2. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A.

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  3. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A.

    2004-09-07

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  4. An integration factor method for stochastic and stiff reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Ta, Catherine; Wang, Dongyong; Nie, Qing

    2015-08-01

    Stochastic effects are often present in the biochemical systems involving reactions and diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction diffusion equations require either very small time steps for any explicit schemes or solving large nonlinear systems at each time step for the implicit schemes. Here we present a class of semi-implicit integration factor methods that treat the diffusion term exactly and reaction implicitly for a system of stochastic reaction-diffusion equations. Our linear stability analysis shows the advantage of such methods for both small and large amplitudes of noise. Direct use of the method to solving several linear and nonlinear stochastic reaction-diffusion equations demonstrates good accuracy, efficiency, and stability properties. This new class of methods, which are easy to implement, will have broader applications in solving stochastic reaction-diffusion equations arising from models in biology and physical sciences.

  5. An integration factor method for stochastic and stiff reaction–diffusion systems

    SciTech Connect

    Ta, Catherine; Wang, Dongyong; Nie, Qing

    2015-08-15

    Stochastic effects are often present in the biochemical systems involving reactions and diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction diffusion equations require either very small time steps for any explicit schemes or solving large nonlinear systems at each time step for the implicit schemes. Here we present a class of semi-implicit integration factor methods that treat the diffusion term exactly and reaction implicitly for a system of stochastic reaction–diffusion equations. Our linear stability analysis shows the advantage of such methods for both small and large amplitudes of noise. Direct use of the method to solving several linear and nonlinear stochastic reaction–diffusion equations demonstrates good accuracy, efficiency, and stability properties. This new class of methods, which are easy to implement, will have broader applications in solving stochastic reaction–diffusion equations arising from models in biology and physical sciences.

  6. AEROSOL SIZE MEASUREMENT BY ELECTRICAL MOBILITY AND DIFFUSION ANALYSIS - A COMPARISON OF METHODS

    EPA Science Inventory

    The principle of the electrical aerosol analyzer method is reviewed and the diffusion battery method is described in detail. An appendix explains the basis of the calculations used. The diffusion battery method is complicated by counting losses of very small particles, inherent t...

  7. A method for distinguishing between propagons, diffusions, and locons

    NASA Astrophysics Data System (ADS)

    Seyf, Hamid Reza; Henry, Asegun

    2016-07-01

    The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity fields for the normal modes of vibration. However, it has been known for several decades that whenever a system lacks periodicity, either compositional or structural, the normal modes of vibration can still be determined (in the harmonic limit), but the solutions take on different characteristics and many modes may not be plane wave modulated. Previous work has classified the types of vibrations into three primary categories, namely, propagons, diffusions, and locons. One can use the participation ratio to distinguish locons, from propagons and diffusons, which measures the extent to which a mode is localized. However, distinguishing between propagons and diffusons has remained a challenge, since both are spatially delocalized. Here, we present a new method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation. This then allows for clear and quantitative distinctions between propagons and diffusons. By resolving this issue quantitatively, one can now automate the classification of modes for any arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably around their respective equilibrium sites. Several example test cases are studied including crystalline silicon and germanium, crystalline silicon with different defect concentrations, as well as amorphous silicon, germanium, and silica.

  8. A Multiresolution Method for Parameter Estimation of Diffusion Processes

    PubMed Central

    Kou, S. C.; Olding, Benjamin P.; Lysy, Martin; Liu, Jun S.

    2014-01-01

    Diffusion process models are widely used in science, engineering and finance. Most diffusion processes are described by stochastic differential equations in continuous time. In practice, however, data is typically only observed at discrete time points. Except for a few very special cases, no analytic form exists for the likelihood of such discretely observed data. For this reason, parametric inference is often achieved by using discrete-time approximations, with accuracy controlled through the introduction of missing data. We present a new multiresolution Bayesian framework to address the inference difficulty. The methodology relies on the use of multiple approximations and extrapolation, and is significantly faster and more accurate than known strategies based on Gibbs sampling. We apply the multiresolution approach to three data-driven inference problems – one in biophysics and two in finance – one of which features a multivariate diffusion model with an entirely unobserved component. PMID:25328259

  9. FAST TRACK COMMUNICATION: The origin of Bohm diffusion, investigated by a comparison of different modelling methods

    NASA Astrophysics Data System (ADS)

    Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.

    2010-07-01

    'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.

  10. A new gauge-invariant method for diagnosing eddy diffusivities

    NASA Astrophysics Data System (ADS)

    Mak, J.; Maddison, J. R.; Marshall, D. P.

    2016-08-01

    Coarse resolution numerical ocean models must typically include a parameterisation for mesoscale turbulence. A common recipe for such parameterisations is to invoke mixing of some tracer quantity, such as potential vorticity or buoyancy. However, it is well known that eddy fluxes include large rotational components which necessarily do not lead to any mixing; eddy diffusivities diagnosed from unfiltered fluxes are thus contaminated by the presence of these rotational components. Here a new methodology is applied whereby eddy diffusivities are diagnosed directly from the eddy force function. The eddy force function depends only upon flux divergences, is independent of any rotational flux components, and is inherently non-local and smooth. A one-shot inversion procedure is applied, minimising the mis-match between parameterised force functions and force functions derived from eddy resolving calculations. This enables diffusivities associated with the eddy potential vorticity and Gent-McWilliams coefficients associated with eddy buoyancy fluxes to be diagnosed. This methodology is applied to multi-layer quasi-geostrophic ocean gyre simulations. It is found that: (i) a strictly down-gradient scheme for mixing potential vorticity and quasi-geostrophic buoyancy has limited success in reducing the mis-match compared to one with no sign constraint on the eddy diffusivity or Gent--McWilliams coefficient, with prevalent negative signals around the time-mean jet; (ii) the diagnostic is successful away from the jet region and wind-forced top layer; (iii) the locations of closed mean stream lines correlate with signals of positive eddy potential vorticity diffusivity; (iv) there is indication that the magnitude of the eddy potential vorticity diffusivity correlates well with the eddy energy. Implications for parameterisation are discussed in light of these diagnostic results.

  11. Multilevel methods for transport equations in diffusive regimes

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; Ressel, Klaus

    1993-01-01

    We consider the numerical solution of the single-group, steady state, isotropic transport equation. An analysis by means of the moment equations shows that a discrete ordinate S(sub N) discretization in direction (angle) with a least squares finite element discretization in space does not behave properly in the diffusion limit. A scaling of the S(sub N) equations is introduced so that the least squares discretization has the correct diffusion limit. For the resulting discrete system a full multigrid algorithm was developed.

  12. Thermal diffusivity measurement by lock-in photothermal shadowgraph method

    NASA Astrophysics Data System (ADS)

    Cifuentes, A.; Alvarado, S.; Cabrera, H.; Calderón, A.; Marín, E.

    2016-04-01

    Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.

  13. Diffusion NMR methods applied to xenon gas for materials study.

    PubMed

    Mair, R W; Rosen, M S; Wang, R; Cory, D G; Walsworth, R L

    2002-12-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. PMID:12807139

  14. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  15. Method of independently operating a group of stages within a diffusion cascade

    DOEpatents

    Benedict, Manson; Fruit, Allen J.; Levey, Horace B.

    1976-06-08

    1. A method of operating a group of the diffusion stages of a productive diffusion cascade with countercurrent flow, said group comprising a top and a bottom stage, which comprises isolating said group from said cascade, circulating the diffused gas produced in said top stage to the feed of said bottom stage while at the same time circulating the undiffused gas from said bottom stage to the feed of said top stage whereby major changes in

  16. Kernel weights optimization for error diffusion halftoning method

    NASA Astrophysics Data System (ADS)

    Fedoseev, Victor

    2015-02-01

    This paper describes a study to find the best error diffusion kernel for digital halftoning under various restrictions on the number of non-zero kernel coefficients and their set of values. As an objective measure of quality, WSNR was used. The problem of multidimensional optimization was solved numerically using several well-known algorithms: Nelder- Mead, BFGS, and others. The study found a kernel function that provides a quality gain of about 5% in comparison with the best of the commonly used kernel introduced by Floyd and Steinberg. Other kernels obtained allow to significantly reduce the computational complexity of the halftoning process without reducing its quality.

  17. Volume imaging with diffuse light: method, device, and clinical application

    NASA Astrophysics Data System (ADS)

    Hampel, Uwe; Schleicher, Eckhard; Freyer, Richard

    2000-11-01

    Diffuse optical imaging and tomography is of some interest in the diagnosis of testicular pathologies. For a clinical evaluation of 3D optical tomography a special laser scanning device as well as dedicated tomography algorithms have been developed. With the device we are able to obtain continuous- wave tomographic scans from an object under investigation using different laser wavelengths. Tomographic image reconstruction is based on the solution of the linearized inverse problem of optical absorption imaging for a three- dimensional volume. Priority is given to a spatial resolution adapted volume discretization and an efficient matrix solution algorithm based on singular value decomposition.

  18. Cosmic-ray diffusion modeling: Solutions using variational methods

    NASA Astrophysics Data System (ADS)

    Tautz, R. C.; Lerche, I.

    2013-05-01

    The diffusion of energetic particles in turbulent magnetic fields is usually described via the two-point, two-time velocity correlation function. A variational principle is used to determine the characteristic function that results from the Fourier-transformed correlation function. Both for a linear approximation and for the wave vector set to zero, explicit solutions are derived that depend on the Fokker-Planck coefficient of pitch-angle scattering. It is shown that, for an isotropic form of the Fokker-Planck coefficient, the characteristic function is divergent, which can be remedied only by using a Fokker-Planck coefficient that is finite at all pitch angles.

  19. A Review of Diffusion Tensor Magnetic Resonance Imaging Computational Methods and Software Tools

    PubMed Central

    Hasan, Khader M.; Walimuni, Indika S.; Abid, Humaira; Hahn, Klaus R.

    2010-01-01

    In this work we provide an up-to-date short review of computational magnetic resonance imaging (MRI) and software tools that are widely used to process and analyze diffusion-weighted MRI data. A review of different methods used to acquire, model and analyze diffusion-weighted imaging data (DWI) is first provided with focus on diffusion tensor imaging (DTI). The major preprocessing, processing and post-processing procedures applied to DTI data are discussed. A list of freely available software packages to analyze diffusion MRI data is also provided. PMID:21087766

  20. A review of diffusion tensor magnetic resonance imaging computational methods and software tools.

    PubMed

    Hasan, Khader M; Walimuni, Indika S; Abid, Humaira; Hahn, Klaus R

    2011-12-01

    In this work we provide an up-to-date short review of computational magnetic resonance imaging (MRI) and software tools that are widely used to process and analyze diffusion-weighted MRI data. A review of different methods used to acquire, model and analyze diffusion-weighted imaging data (DWI) is first provided with focus on diffusion tensor imaging (DTI). The major preprocessing, processing and post-processing procedures applied to DTI data are discussed. A list of freely available software packages to analyze diffusion MRI data is also provided. PMID:21087766

  1. A multigrid Newton-Krylov method for flux-limited radiation diffusion

    SciTech Connect

    Rider, W.J.; Knoll, D.A.; Olson, G.L.

    1998-09-01

    The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques.

  2. Validation of the diffusion-barrier charcoal canister method

    SciTech Connect

    Martz, D.E.; George, J.L.; Mamich, S.T.; Langner, G.H. Jr.

    1989-05-01

    A six-month study was conducted by the Technical Measurements Center, US Department of Energy Grand Junction Projects Office, to evaluate the accuracy and reliability of indoor radon measurements using an intermittent diffusion-barrier charcoal canister sampling protocol. Diffusion-barrier charcoal canisters (DBCC) were exposed for seven days in sixteen occupied residences each week during the 26-week study. The radon concentrations measured by the DBCCs were compared to radon concentrations measured by triplicate sets of four different types of alpha-track monitors and integrated hourly radon concentrations measured by a Pylon Model AB-5 continuous radon monitor. The results were also compared with radon-daughter concentrations measured in these same residences by an Eberline WLM-1 working level monitor. Excellent agreement was observed between the integrated mean radon concentrations measured by the DBCCs compared with the six-month alpha-track results, and between the weekly DBCC readings and average weekly radon concentrations measured by the Pylon radon monitors. An intermittent sampling protocol employing six weekly DBCC measurements spaced approximately every two months throughout the year should provide estimates of the average annual indoor radon concentrations that meet the criteria established for the Grand Junction Remedial Action Program. 9 refs., 17 figs., 9 tabs.

  3. A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.

    SciTech Connect

    Siefert, Christopher; Robinson, Allen Conrad

    2009-09-01

    We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.

  4. Experimental Verification to Obtain Intrinsic Thermal Diffusivity by Laser-Flash Method

    NASA Astrophysics Data System (ADS)

    Akoshima, M.; Hay, B.; Neda, M.; Grelard, M.

    2013-05-01

    There is a need to obtain highly reliable values of thermophysical properties. The thermal conductivity of solids is often calculated from the thermal diffusivity, specific heat, and density, respectively, measured by the laser-flash method, differential scanning calorimetry, and Archimedes' method. The laser-flash method is one of the most well-known methods for measuring the thermal diffusivity of solids above room temperature. This method is very convenient to measure the thermal diffusivity without contact in a short time. On the other hand, it is considered as an absolute reference measurement method, in particular, because only measurements of basic quantities such as time, temperature, length, and electrical quantities are required, and because the uncertainty of measurement can be analytically evaluated. However, it could be difficult in some cases to obtain reliable thermal-diffusivity values. The measurement results can indeed depend on experimental conditions; in particular, the pulse heating energy. A procedure to obtain the intrinsic thermal-diffusivity value was proposed by National Metrology Institute of Japan (NMIJ). Here, "intrinsic" means unique for the material, independent of measurement conditions. In this method, apparent thermal-diffusivity values are first measured by changing the pulse heating energy at the same test temperature. Then, the intrinsic thermal diffusivity is determined by extrapolating these apparent thermal diffusivities to a zero energy pulse. In order to verify and examine the applicability of the procedure for intrinsic thermal-diffusivity measurements, we have measured the thermal diffusivity of some materials (metals, ceramics) using the laser-flash method with this extrapolation procedure. NMIJ and Laboratoire National de Metrologie et d'essais (LNE) have laser-flash thermal-diffusivity measurement systems that are traceable to SI units. The thermal diffusivity measured by NMIJ and LNE on four materials shows good

  5. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods.

    PubMed

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  6. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods

    PubMed Central

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  7. Universality and specificity in molecular orientation in anisotropic gels prepared by diffusion method.

    PubMed

    Maki, Yasuyuki; Furusawa, Kazuya; Yasuraoka, Sho; Okamura, Hideki; Hosoya, Natsuki; Sunaga, Mari; Dobashi, Toshiaki; Sugimoto, Yasunobu; Wakabayashi, Katsuzo

    2014-08-01

    Molecular orientation in anisotropic gels of chitosan, Curdlan and DNA obtained by dialysis of those aqueous solutions in gelation-inducing solutions was investigated. In this diffusion method (or dialysis method), the gel formation was induced by letting small molecules diffuse in or out of the polymer solutions through the surface. For the gels of DNA and chitosan, the polymer chains aligned perpendicular to the diffusion direction. The same direction of molecular orientation was observed for the Curdlan gel prepared in the dialysis cell. On the other hand, a peculiar nature was observed for the Curdlan gel prepared in the dialysis tube: the molecular orientation was perpendicular to the diffusion direction in the outermost layer of the gel, while the orientation was parallel to the diffusion direction in the inner translucent layer. The orientation parallel to the diffusion direction is attributed to a small deformation of the inner translucent layer caused by a slight shrinkage of the central region after the gel formation. At least near the surface of the gel, the molecular orientation perpendicular to the diffusion direction is a universal characteristic for the gels prepared by the diffusion method. PMID:24751255

  8. A comparison between protein crystals grown with vapor diffusion methods in microgravity and protein crystals using a gel liquid-liquid diffusion ground-based method

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y.; He, Xiao-Min; Carter, Daniel C.

    1992-01-01

    Crystals of human serum albumin have been successfully grown in a variety of gels using crystallization conditions otherwise equivalent to those utilized in the popular hanging-drop vapor-equilibrium method. Preliminary comparisons of gel grown crystals with crystals grown by the vapor diffusion method via both ground-based and microgravity methods indicate that crystals superior in size and quality may be grown by limiting solutal convection. Preliminary X-ray diffraction statistics are presented.

  9. Diffusion Rate Tomography for Time Domain Electromagnetic Induction Methods

    NASA Astrophysics Data System (ADS)

    Kazlauskas, E. M.; Weiss, C. J.

    2010-12-01

    Although it is now routine to invert near-surface electromagnetic induction data in terms of ground conductivity, geoelectromagnetic inversion remains an open research problem because of its intrinsic non-uniqueness and the need to balance computational efficiency with recovering models bearing some resemblance to real geologic structure. The most popular approach for fitting electromagnetic data is analogous to seismic full-waveform inversion. Whether the data are in the time- or frequency-domain, a model is sought which recovers either the amplitude and phase, or the transient response of some measured waveform. However, imperfect knowledge of the source waveform has the potential to erroneously introduce unwarranted geologic structure in the final recovered earth model. Hence, we explore here an alternative approach that mitigates these effects in highly attenuated electromagnetic data. Rather than inverting for the full waveform response, Diffusion Rate Tomography (DiRT) is based on inverting for the arrival time of some key, diagnostic feature in the measured data. This procedure eliminates any error introduced by incomplete knowledge of the source amplitude due to miscalibration, instrument drift, or battery drainage. Time-domain electromagnetic sounding experiments conducted with a horizontal loop transmitter and offset receiver coil provide a useful test of the concept. As induced eddy currents from the transmitter diffuse beneath the receiver, a polarity change occurs in the vertical component of the observed magnetic field. This polarity change (or zero crossing) is our invertible diagnostic, and given a range of offsets between the transmitter and receiver antennae, the zero-crossing moveout curve constitutes the data we invert. Examples of DiRT for a range of geologic settings will be presented and compared against results from smooth, full-waveform inversion. Interestingly, although DiRT works on fewer data than the full-waveform inversion, there is

  10. Diffusion limitations of the lung - comparison of different measurement methods.

    PubMed

    Preisser, A M; Seeber, M; Harth, V

    2015-01-01

    Pulmonary fibrosis leads to a decrease of oxygen diffusion, in particular during exercise. Bronchial obstruction also could decrease the partial pressure of oxygen (P(a)O(2)). In this study we investigated the validity of blood gas content, especially P(a)O(2) and P(a)O(2) affected by hyperventilation (P(a)O(2corr)) and alveolo-arterial oxygen gradient (P(A-a)O(2)) in comparison with the CO diffusion capacity (DLCO) in different lung diseases. A total of 250 subjects were studied (52.3 ± 12.5 year; F/M 40/210), among which there were 162 subjects with different lung disorders and 88 healthy controls. Pearson's correlation coefficients (r) of DLCO with P(a)O(2), P(a)O(2corr), and PA-aO(2) were analyzed in each group. The results show that the diagnostic power of P(A-a)O(2) against P(a)O(2corr) was equivalent, especially during exercise (r = -0.89 and -0.92, respectively). DLCO showed only weak correlations with P(a)O(2corr) and P(A-a)O(2) (r = 0.17 and -0.19, respectively). In conclusion, DLCO shows a better match with blood gas content during exercise than at rest during which it is routinely tested. Thus, the exercise test is advisable. The P(A-a)O(2) takes into account the level of ventilation, which makes it correlate better with DLCO rather than with blood gas content. The most significant problems in clinical evaluation of blood gas parameters during exercise are the insufficiently defined limits of normal-to-pathological range. PMID:25381558

  11. Comparative study of methods used to estimate ionic diffusion coefficients using migration tests

    SciTech Connect

    Narsilio, G.A. Li, R. Pivonka, P. Smith, D.W.

    2007-08-15

    Ionic diffusion coefficients are estimated rapidly using electromigration tests. In this paper, electromigration tests are accurately simulated by numerically solving the Nernst-Planck (NP) equation (coupled with the electroneutrality condition (EN)) using the finite element method. Numerical simulations are validated against experimental data obtained elsewhere [E. Samson, J. Marchand, K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures/Materiaux et Constructions 36 (257) (2003) 156-165., H. Friedmann, O. Amiri, A. Ait-Mokhtar, A direct method for determining chloride diffusion coefficient by using migration test, Cement and Concrete Research 34 (11) (2004) 1967-1973.]. It is shown that migration due to the non-linear electric potential completely overwhelms diffusion due to concentration gradients. The effects of different applied voltage differences and chloride source concentrations on estimations of chloride diffusion coefficients are explored. We show that the pore fluid within concrete and mortar specimens generally differs from the curing solution, lowering the apparent diffusion coefficient, primarily due to interactions of chloride ions with other ions in the pore fluid. We show that the variation of source chloride concentration strongly affects the estimation of diffusion coefficients in non-steady-state tests; however this effect vanishes under steady-state conditions. Most importantly, a comparison of diffusion coefficients obtained from sophisticated analyses (i.e., NP-EN) and a variety of commonly used simplifying methods to estimate chloride diffusion coefficients allows us to identify those methods and experimental conditions where both approaches deliver good estimates for chloride diffusion coefficients. Finally, we demonstrate why simultaneous use and monitoring of current density and fluxes are recommended for both the non-steady and steady-state migration tests.

  12. A method for optimizing the cosine response of solar UV diffusers

    NASA Astrophysics Data System (ADS)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  13. Efficacy of capsicum oleoresin nanocapsules formulation by the modified emulsion-diffusion method.

    PubMed

    Surassmo, Suvimol; Min, Sang-Gi; Bejrapha, Piyawan; Choi, Mi-Jung

    2011-01-01

    In this study, we investigated the effect of high pressure homogenizer on the physico-chemical properties of capsicum oleoresin loaded nanoemulsion (NE) or nanocapsules (NCs) based on the emulsion-diffusion method. According to the application stage of high pressure process at principle emulsion-diffusion method, NCs was prepared by conventional-emulsion-diffusion method (CED), modified-emulsion-microfluidization-diffusion method (MEMD) and modified-emulsion-diffusion-microfluidization method (MEDM). The nanocapsules of MEMD showed homogeneous and the smallest particle size as compared with CED. In addition, MEMD presented the surface tension at the value 36.5 mN/m. The encapsulated capsicum oleoresin was generated the bright color and suppressed the dark red color. Furthermore, MEMD gave the high encapsulation efficiency of capsicum oleoresin around 95% and showed the slow release rate. On the other hand, MEDM presented the non-homogeneous and agglomerate of the particle, low percentage of encapsulation efficiency and the high initial release rate when compared with CED and MEMD methods. According these results, it was supposed that the microfluidization was interesting technique to ameliorate the physical properties and efficiency of NCs. However, it was depending on the appropriate combination of microfluidization based on the emulsion-diffusion method. PMID:21446515

  14. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  15. Parameters estimation using the first passage times method in a jump-diffusion model

    NASA Astrophysics Data System (ADS)

    Khaldi, K.; Meddahi, S.

    2016-06-01

    The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time (FPT method) generalized for all passage times (GPT method), in order to estimate the parameters of stochastic Jump-Diffusion process. (2) it compares in a time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the GPT method and those obtained by the moments method and the FPT method applied to the Merton Jump-Diffusion (MJD) model.

  16. An efficient wavelet analysis method to film-pore diffusion model arising in mathematical chemistry.

    PubMed

    Hariharan, G

    2014-04-01

    In this paper, we have established an efficient Legendre wavelet based approximation method to solve film-pore diffusion model arising in engineering. Film-pore diffusion model is widely used to determine study the kinetics of adsorption systems. The use of Legendre wavelet based approximation method is found to be accurate, simple, fast, flexible, convenient, and computationally attractive. It is shown that film-pore diffusion model satisfactorily describe kinetics of methylene blue adsorption onto the three low-cost adsorbents, Guava, teak and gulmohar plant leaf powders, used in this study. PMID:24562792

  17. A fast finite volume method for conservative space-fractional diffusion equations in convex domains

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2016-04-01

    We develop a fast finite volume method for variable-coefficient, conservative space-fractional diffusion equations in convex domains via a volume-penalization approach. The method has an optimal storage and an almost linear computational complexity. The method retains second-order accuracy without requiring a Richardson extrapolation. Numerical results are presented to show the utility of the method.

  18. Accurate determination of specific heat at high temperatures using the flash diffusivity method

    NASA Technical Reports Server (NTRS)

    Vandersande, J. W.; Zoltan, A.; Wood, C.

    1989-01-01

    The flash diffusivity method of Parker et al. (1961) was used to measure accurately the specific heat of test samples simultaneously with thermal diffusivity, thus obtaining the thermal conductivity of these materials directly. The accuracy of data obtained on two types of materials (n-type silicon-germanium alloys and niobium), was + or - 3 percent. It is shown that the method is applicable up to at least 1300 K.

  19. Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations

    SciTech Connect

    Zhou Tao; Tang Tao

    2010-11-01

    In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.

  20. Diffuse interface method for a compressible binary fluid.

    PubMed

    Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh

    2016-01-01

    Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO_{2} + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO_{2} + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO_{2} the smaller the surface tension and the easier the drop deforms. PMID:26871168

  1. Diffuse interface method for a compressible binary fluid

    NASA Astrophysics Data System (ADS)

    Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh

    2016-01-01

    Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO2 + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO2 + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO2 the smaller the surface tension and the easier the drop deforms.

  2. A combined reconstruction-classification method for diffuse optical tomography.

    PubMed

    Hiltunen, P; Prince, S J D; Arridge, S

    2009-11-01

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels. PMID:19820265

  3. Diffusive Shock Acceleration Simulations: Comparison with Particle Methods and Bow Shock Measurements

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Jones, T. W.

    1995-07-01

    Direct comparisons of diffusive particle acceleration numerical simulations have been made against Monte Carlo and hybrid plasma simulations by Ellison et al. (1993) and against observations at the Earth's bow shock presented by Ellison et al. (1990). Toward this end we have introduced a new numerical scheme for injection of cosmic-ray particles out of the thermal plasma, modeled by way of the diffusive scattering process itself; that is, the diffusion and acceleration across the shock front of particles out of the suprathermal tail of the Maxwellian distribution. Our simulations take two forms. First, we have solved numerically the timedependent diffusion-advection equation for the high-energy (cosmic-ray) protons in one-dimensional quasiparallel shocks. Dynamical feedback between the particles and thermal plasma is included. The proton fluxes on both sides of the shock derived from our method are consistent with those calculated by Ellison et al. (1993). A similar test has compared our methods to published measurements at the Earth's bow shock when the interplanetary magnetic field was almost parallel to the solar wind velocity (Ellison et al. 1990). Again our results are in good agreement. Second, the same shock conditions have been simulated with the two-fluid version of diffusive shock acceleration theory by adopting injection rates and the closure parameters inferred from the diffusion-advection equation calculations. The acceleration efficiency and the shock structure calculated with the two-fluid method are in good agreement with those computed with the diffusion-advection method. Thus, we find that all of these computational methods (diffusion-advection, two-fluid, Monte Carlo, and hybrid) are in substantial agreement on the issues they can simultaneously address, so that the essential physics of diffusive particle acceleration is adequately contained within each. This is despite the fact that each makes what appear to be very different assumptions or

  4. Development of a numerical method for the prediction of turbulent flows in dump diffusers

    NASA Astrophysics Data System (ADS)

    Ando, Yasunori; Kawai, Masafumi; Sato, Yukinori; Toh, Hidemi

    1987-01-01

    In order to obtain an effective tool to design dump diffusers for gas turbine combustors, a finite-volume numerical calculation method has been developed for the solution of two-dimensional/axisymmetric incompressible steady Navier-Stokes equation in general curvilinear coordinate system. This method was applied to the calculations of turbulent flows in a two-dimensional dump diffuser with uniform and distorted inlet velocity profiles as well as an annular dump diffuser with uniform inlet velocity profile, and the calculated results were compared with experimental data. The numerical results showed a good agreement with experimental data in case of both inlet velocity profiles; eventually, the numerical method was confirmed to be an effective tool for the development of dump diffusers which can predict the flow pattern, velocity distribution and the pressure loss.

  5. Numerical approximation of Lévy-Feller fractional diffusion equation via Chebyshev-Legendre collocation method

    NASA Astrophysics Data System (ADS)

    Sweilam, N. H.; Abou Hasan, M. M.

    2016-08-01

    This paper reports a new spectral algorithm for obtaining an approximate solution for the Lévy-Feller diffusion equation depending on Legendre polynomials and Chebyshev collocation points. The Lévy-Feller diffusion equation is obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative. A new formula expressing explicitly any fractional-order derivatives, in the sense of Riesz-Feller operator, of Legendre polynomials of any degree in terms of Jacobi polynomials is proved. Moreover, the Chebyshev-Legendre collocation method together with the implicit Euler method are used to reduce these types of differential equations to a system of algebraic equations which can be solved numerically. Numerical results with comparisons are given to confirm the reliability of the proposed method for the Lévy-Feller diffusion equation.

  6. Convergence of the binomial tree method for Asian options in jump-diffusion models

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Ik; Qian, Xiao-Song

    2007-06-01

    The binomial tree methods (BTM), first proposed by Cox, Ross and Rubinstein [J. Cox, S. Ross, M. Rubinstein, Option pricing: A simplified approach, J. Finan. Econ. 7 (1979) 229-264] in diffusion models and extended by Amin [K.I. Amin, Jump diffusion option valuation in discrete time, J. Finance 48 (1993) 1833-1863] to jump-diffusion models, is one of the most popular approaches to pricing options. In this paper, we present a binomial tree method for Asian options in jump-diffusion models and show its equivalence to certain explicit difference scheme. Employing numerical analysis and the notion of viscosity solution, we prove the uniform convergence of the binomial tree method for European-style and American-style Asian options.

  7. Data on the verification and validation of segmentation and registration methods for diffusion MRI.

    PubMed

    Esteban, Oscar; Zosso, Dominique; Daducci, Alessandro; Bach-Cuadra, Meritxell; Ledesma-Carbayo, María J; Thiran, Jean-Philippe; Santos, Andres

    2016-09-01

    The verification and validation of segmentation and registration methods is a necessary assessment in the development of new processing methods. However, verification and validation of diffusion MRI (dMRI) processing methods is challenging for the lack of gold-standard data. The data described here are related to the research article entitled "Surface-driven registration method for the structure-informed segmentation of diffusion MR images" [1], in which publicly available data are used to derive golden-standard reference-data to validate and evaluate segmentation and registration methods in dMRI. PMID:27508235

  8. A comparison of the Monte Carlo and the flux gradient method for atmospheric diffusion

    SciTech Connect

    Lange, R.

    1990-05-01

    In order to model the dispersal of atmospheric pollutants in the planetary boundary layer, various methods of parameterizing turbulent diffusion have been employed. The purpose of this paper is to use a three-dimensional particle-in-cell transport and diffusion model to compare the Markov chain (Monte Carlo) method of statistical particle diffusion with the deterministic flux gradient (K-theory) method. The two methods are heavily used in the study of atmospheric diffusion under complex conditions, with the Monte Carlo method gaining in popularity partly because of its more direct application of turbulence parameters. The basis of comparison is a data set from night-time drainage flow tracer experiments performed by the US Department of Energy Atmospheric Studies in Complex Terrain (ASCOT) program at the Geysers geothermal region in northern California. The Atmospheric Diffusion Particle-In-Cell (ADPIC) model used is the main model in the Lawrence Livermore National Laboratory emergency response program: Atmospheric Release Advisory Capability (ARAC). As a particle model, it can simulate diffusion in both the flux gradient and Monte Carlo modes. 9 refs., 6 figs.

  9. Study of acid diffusion behaves form PAG by using top coat method

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi; Matsumoto, Yoko

    2014-03-01

    Our past research on measurements of simulation parameters for ArF resists focused on establishing methods for measuring the following parameters:[1]-[4] • Development parameters[1] • PEB parameters[2] • Dill's ABC parameters[3] • Quencher parameter[4] We entered these parameters into a lithography simulator and performed ArF resist simulations.We then explored ways to optimize the ArF resist material and process. This paper reports on our study of methods for measuring the diffusion length of acid generated from PAG during exposures. In our experiment, we applied a PAG-containing top coat (TC) material (second layer) to a PAG-free ArF resist (first layer), then performed the exposure and PEB processes. The acid generated in the TC during the exposure diffused into the ArF resist in the lower layer (first layer) when PEB was performed. The process of developing this sample removed the TC in the second layer and the parts of the first layer into which the acid had diffused.We obtained the acid diffusion length based on the quantity of film removed by the development. We calculated the acid diffusion coefficient after varying the exposure value and repeating the measurement. For this report, we also performed measurements to determine how differences in PAG anion size, amount of quencher additive, and PEB temperature affected the acid diffusion coefficient.We entered the measurements obtained into the PROLITH simulator and explored the effects of acid diffusion on pattern profile.

  10. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D.; Alman, David E.

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  11. A New Method for the Calculation of Diffusion Coefficients with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dorval, Eric

    2014-06-01

    This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.

  12. Practical method of diffusion-welding steel plate in air

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.

    1971-01-01

    Method is ideal for critical service requirements where parent metal properties are equaled in notch toughness, stress rupture and other characteristics. Welding technique variations may be used on a variety of materials, such as carbon steels, alloy steels, stainless steels, ceramics, and reactive and refractory materials.

  13. A coarse-mesh nodal method-diffusive-mesh finite difference method

    SciTech Connect

    Joo, H.; Nichols, W.R.

    1994-05-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.

  14. A tracers method for studying double diffusive convection in the liquid layers of planetary interiors

    NASA Astrophysics Data System (ADS)

    Bouffard, M.; Labrosse, M.; Choblet, M.; Fournier, M.; Aubert, M.; Tackley, M.

    2015-10-01

    Convection in the liquid layers of planetary interiors is usually driven by a combination of thermal and compositional sources of buoyancy. The low molecular diffusivity of composition causes troubles in the description of this field on the Eulerian grids typically employed in current codes of geodynamo because numerical diffusion on these grids is potentially larger than the real diffusivity. We developed a Lagrangian description of composition based on a method of tracers. The absence of numerical diffusion inherent to this method allows modeling of thermo-chemical convection with infinite Lewis number. The validation of this new tool on benchmark cases will be presented at EPSC as well as its first applications to the ocean of Ganymede with consistently coupled boundary condi- tions for temperature and composition.

  15. Hierarchical modeling of diffusive transport through nanochannels by coupling molecular dynamics with finite element method

    NASA Astrophysics Data System (ADS)

    Ziemys, A.; Kojic, M.; Milosevic, M.; Kojic, N.; Hussain, F.; Ferrari, M.; Grattoni, A.

    2011-06-01

    We present a successful hierarchical modeling approach which accounts for interface effects on diffusivity, ignored in classical continuum theories. A molecular dynamics derived diffusivity scaling scheme is incorporated into a finite element method to model transport through a nanochannel. In a 5 nm nanochannel, the approach predicts 2.2 times slower mass release than predicted by Fick's law by comparing time spent to release 90% of mass. The scheme was validated by predicting experimental glucose diffusion through a nanofluidic membrane with a correlation coefficient of 0.999. Comparison with experiments through a nanofluidic membrane showed interface effects to be crucial. We show robustness of our discrete continuum model in addressing complex diffusion phenomena in biomedical and engineering applications by providing flexible hierarchical coupling of molecular scale effects and preserving computational finite element method speed.

  16. A new method of optimal design for a two-dimensional diffuser by using dynamic programming

    NASA Technical Reports Server (NTRS)

    Gu, Chuangang; Zhang, Moujin; Chen, XI; Miao, Yongmiao

    1991-01-01

    A new method for predicting the optimal velocity distribution on the wall of a two dimensional diffuser is presented. The method uses dynamic programming to solve the optimal control problem with inequality constraints of state variables. The physical model of optimization is designed to prevent the separation of the boundary layer while approaching the maximum pressure ratio in a diffuser of a specified length. The computational results are in fair agreement with the experimental ones. Optimal velocity distribution on a diffuser wall is said to occur when the flow decelerates quickly at first and then smoothly, while the flow is near separation, but always protected from it. The optimal velocity distribution can be used to design the contour of the diffuser.

  17. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  18. A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations

    SciTech Connect

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2012-08-15

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.

  19. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGESBeta

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  20. Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method

    NASA Astrophysics Data System (ADS)

    Sarwar, S.; Rashidi, M. M.

    2016-07-01

    This paper deals with the investigation of the analytical approximate solutions for two-term fractional-order diffusion, wave-diffusion, and telegraph equations. The fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], (1,2), and [1,2], respectively. In this paper, we extended optimal homotopy asymptotic method (OHAM) for two-term fractional-order wave-diffusion equations. Highly approximate solution is obtained in series form using this extended method. Approximate solution obtained by OHAM is compared with the exact solution. It is observed that OHAM is a prevailing and convergent method for the solutions of nonlinear-fractional-order time-dependent partial differential problems. The numerical results rendering that the applied method is explicit, effective, and easy to use, for handling more general fractional-order wave diffusion, diffusion, and telegraph problems.

  1. Inaccuracy of the Disk Diffusion Method Compared with the Agar Dilution Method for Susceptibility Testing of Campylobacter spp.

    PubMed Central

    Kotilainen, Pirkko; Puukka, Pauli; Nakari, Ulla-Maija; Siitonen, Anja; Eerola, Erkki; Huovinen, Pentti; Hakanen, Antti J.

    2012-01-01

    The agar dilution method has been standardized by the CLSI for the susceptibility testing of Campylobacter species, and according to these standards, the disk diffusion method should be used only in screening for macrolide and ciprofloxacin resistance. Nevertheless, the disk diffusion test is currently widely used, since it is easy to perform in clinical microbiology laboratories. In this study, the disk diffusion method was compared to the agar dilution method by analyzing the in vitro activities of seven antimicrobial agents against 174 Campylobacter strains collected in Finland between 2003 and 2008. Recommendations of the CLSI were followed using Mueller-Hinton agar plates with 5% of sheep blood. For each strain, the disk diffusion tests were performed two to four times. Of the 33 erythromycin-resistant strains (MIC, ≥16 μg/ml), 24 (73%) constantly showed a 6-mm erythromycin inhibition zone (i.e., no inhibition), while for seven strains the inhibition zone varied from 6 to 44 mm in repeated measurements. Among the 141 erythromycin-susceptible strains (MIC, <16 μg/ml), erythromycin inhibition zones varied between 6 and 61 mm. Of the 87 ciprofloxacin-resistant strains, 47 (54%) showed 6-mm inhibition zones, while 40 strains showed inhibition zones between 6 and 60 mm. Significant differences between the repetitions were observed in the disk diffusion for all antimicrobial agents and all strains except for the macrolide-resistant strains regarding the macrolides. For 17 (10%) strains, the variation in repeated measurements was substantial. These results show that the disk diffusion method may not be a reliable tool for the susceptibility testing of Campylobacter spp. Further studies are needed to assess whether the disk diffusion test could be improved or whether all susceptibilities of campylobacters should be tested using an MIC-based method. PMID:22075583

  2. Method of fluxless brazing and diffusion bonding of aluminum containing components

    NASA Technical Reports Server (NTRS)

    Featherston, A. B.; Okelly, K. P. (Inventor)

    1976-01-01

    A method of diffusion bonding and fluxless brazing of aluminum containing components is reported. The aluminum surfaces are freed of any aluminum oxide coating and are coated with a polymeric sealer which can be thermally removed leaving essentially no residue. The polymeric sealer is being removed in a substantially oxygen free environment, and the aluminum components are then being brazed or diffusion bonded without the use of a flux to remove oxide coating.

  3. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.

    PubMed

    Martelli, Fabrizio; Zaccanti, Giovanni

    2007-01-22

    In spite of many progresses achieved both with theories and with experiments in studying light propagation through diffusive media, a reliable method for accurate measurements of the optical properties of diffusive media at NIR wavelengths is, in our opinion, still missing. It is therefore difficult to create a diffusive medium with well known optical properties to be used as a reference. In this paper we describe a method to calibrate the reduced scattering coefficient, mu'(s) , of a liquid diffusive medium and the absorption coefficient, mu(a), of an absorbing medium with a standard error smaller than 2% both on mu'(s) and on mu(a). The method is based on multidistance measurements of fluence into an infinite medium illuminated by a CW source. The optical properties are retrieved with simple inversion procedures (linear fits) exploiting the knowledge of the absorption coefficient of the liquid into which the diffuser and the absorber are dispersed. In this study Intralipid diluted in water has been used as diffusive medium and Indian ink as absorber. For a full characterization of these media measurements of collimated transmittance have also been carried out, from which the asymmetry factor of the scattering function of Intralipid and the single scattering albedo of Indian ink have been determined. PMID:19532267

  4. An adaptive pseudo-spectral method for reaction diffusion problems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Gottlieb, D.; Matkowsky, B. J.; Minkoff, M.

    1987-01-01

    The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.

  5. Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.

    SciTech Connect

    Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl

    2011-09-01

    Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

  6. Advanced computational methods for nodal diffusion, Monte Carlo, and S[sub N] problems

    SciTech Connect

    Martin, W.R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  7. Advanced computational methods for nodal diffusion, Monte Carlo, and S(sub N) problems

    NASA Astrophysics Data System (ADS)

    Martin, W. R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. An alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  8. Method of fabricating reflection-mode EUV diffusers

    DOEpatents

    Anderson, Erik; Naulleau, Patrick P.

    2005-03-01

    Techniques for fabricating well-controlled, random relief, engineered surfaces that serve as substrates for EUV optical devices are accomplished with grayscale exposure. The method of fabricating a multilevel EUV optical element includes: (a) providing a substrate; (b) depositing a layer of curable material on a surface of the substrate; (c) creating a relief profile in a layer of cured material from the layer of curable material wherein the relief profile comprises multiple levels of cured material that has a defined contour; and (d) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. The curable material can comprise photoresist or a low dielectric constant material.

  9. A First-Passage Kinetic Monte Carlo method for reaction–drift–diffusion processes

    SciTech Connect

    Mauro, Ava J.; Sigurdsson, Jon Karl; Shrake, Justin; Atzberger, Paul J.; Isaacson, Samuel A.

    2014-02-15

    Stochastic reaction–diffusion models are now a popular tool for studying physical systems in which both the explicit diffusion of molecules and noise in the chemical reaction process play important roles. The Smoluchowski diffusion-limited reaction model (SDLR) is one of several that have been used to study biological systems. Exact realizations of the underlying stochastic processes described by the SDLR model can be generated by the recently proposed First-Passage Kinetic Monte Carlo (FPKMC) method. This exactness relies on sampling analytical solutions to one and two-body diffusion equations in simplified protective domains. In this work we extend the FPKMC to allow for drift arising from fixed, background potentials. As the corresponding Fokker–Planck equations that describe the motion of each molecule can no longer be solved analytically, we develop a hybrid method that discretizes the protective domains. The discretization is chosen so that the drift–diffusion of each molecule within its protective domain is approximated by a continuous-time random walk on a lattice. New lattices are defined dynamically as the protective domains are updated, hence we will refer to our method as Dynamic Lattice FPKMC or DL-FPKMC. We focus primarily on the one-dimensional case in this manuscript, and demonstrate the numerical convergence and accuracy of our method in this case for both smooth and discontinuous potentials. We also present applications of our method, which illustrate the impact of drift on reaction kinetics.

  10. Methods for calculating X-ray diffuse scattering from a crystalline medium with spheroidal quantum dots

    NASA Astrophysics Data System (ADS)

    Punegov, V. I.; Sivkov, D. V.

    2015-03-01

    Two independent approaches to calculate the angular distribution of X-ray diffusion scattering from a crystalline medium with spheroidal quantum dots (QDs) have been proposed. The first method is based on the analytical solution involving the multipole expansion of elastic strain fields beyond QDs. The second approach is based on calculations of atomic displacements near QDs by the Green's function method. An analysis of the diffuse scattering intensity distribution in the reciprocal space within these two approaches shows that both methods yield similar results for the chosen models of QD spatial distribution.

  11. Implicit Monte Carlo diffusion - an acceleration method for Monte Carlo time dependent radiative transfer simulations

    SciTech Connect

    Gentile, N A

    2000-10-01

    We present a method for accelerating time dependent Monte Carlo radiative transfer calculations by using a discretization of the diffusion equation to calculate probabilities that are used to advance particles in regions with small mean free path. The method is demonstrated on problems with on 1 and 2 dimensional orthogonal grids. It results in decreases in run time of more than an order of magnitude on these problems, while producing answers with accuracy comparable to pure IMC simulations. We call the method Implicit Monte Carlo Diffusion, which we abbreviate IMD.

  12. Methods for calculating X-ray diffuse scattering from a crystalline medium with spheroidal quantum dots

    SciTech Connect

    Punegov, V. I. Sivkov, D. V.

    2015-03-15

    Two independent approaches to calculate the angular distribution of X-ray diffusion scattering from a crystalline medium with spheroidal quantum dots (QDs) have been proposed. The first method is based on the analytical solution involving the multipole expansion of elastic strain fields beyond QDs. The second approach is based on calculations of atomic displacements near QDs by the Green’s function method. An analysis of the diffuse scattering intensity distribution in the reciprocal space within these two approaches shows that both methods yield similar results for the chosen models of QD spatial distribution.

  13. An improved strip FRAP method for estimating diffusion coefficients: correcting for the degree of photobleaching.

    PubMed

    Yang, J; Köhler, K; Davis, D M; Burroughs, N J

    2010-06-01

    Fluorescence recovery after photobleaching is a widely established method for the estimation of diffusion coefficients, strip bleaching with an associated recovery curve analysis being one of the simplest techniques. However, its implementation requires near 100% bleaching in the region of interest with negligible fluorescence loss outside, both constraints being hard to achieve concomitantly for fast diffusing molecules. We demonstrate that when these requirements are not met there is an error in the estimation of the diffusion coefficient D, either an under- or overestimation depending on which assumption is violated the most. We propose a simple modification to the recovery curve analysis incorporating the concept of the relative bleached mass m giving a revised recovery time parametrization tau=m(2)w(2)/4piD for a strip of width w. This modified model removes the requirement of 100% bleaching in the region of interest and allows for limited diffusion of the fluorophore during bleaching. We validate our method by estimating the (volume) diffusion coefficient of FITC-labelled IgG in 60% glycerol solution, D= 4.09 +/- 0.21 microm(2) s(-1), and the (surface) diffusion coefficient of a green-fluorescent protein-tagged class I MHC protein expressed at the surface of a human B cell line, D= 0.32 +/- 0.03 microm(2) s(-1) for a population of cells. PMID:20579262

  14. A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation.

    PubMed

    Wang, Kangle; Liu, Sanyang

    2016-01-01

    In this paper, a new Sumudu transform iterative method is established and successfully applied to find the approximate analytical solutions for time-fractional Cauchy reaction-diffusion equations. The approach is easy to implement and understand. The numerical results show that the proposed method is very simple and efficient. PMID:27386314

  15. Method of hepatitis diagnostics of changes in human skin diffuse reflectivity

    NASA Astrophysics Data System (ADS)

    Kirsh, M. L.; Sokol, A. M.; Lomanets, V. S.; Gayka, O. R.

    1999-11-01

    The results on the study of influence of bilirubinum concentration in a human blood on the spectrum of a diffuse reflectivity of his skin are represented. On this basis, the method for hepatitis diagnostics has been developed, and the laboratory device implementing this method has been designed.

  16. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1997-01-01

    In this paper, we study the Local Discontinuous Galerkin methods for nonlinear, time-dependent convection-diffusion systems. These methods are an extension of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic systems to convection-diffusion systems and share with those methods their high parallelizability, their high-order formal accuracy, and their easy handling of complicated geometries, for convection dominated problems. It is proven that for scalar equations, the Local Discontinuous Galerkin methods are L(sup 2)-stable in the nonlinear case. Moreover, in the linear case, it is shown that if polynomials of degree k are used, the methods are k-th order accurate for general triangulations; although this order of convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical examples displaying the performance of the method are shown.

  17. Diffusion constant of K+ inside Gramicidin A: A comparative study of four computational methods

    PubMed Central

    Mamonov, Artem B.; Kurnikova, Maria G.; Coalson, Rob D.

    2007-01-01

    The local diffusion constant of K+ inside the Gramicidin A (GA) channel has been calculated using four computational methods based on molecular dynamics (MD) simulations, specifically: Mean Square Displacement (MSD), Velocity Autocorrelation Function (VACF), Second Fluctuation Dissipation Theorem (SFDT) and analysis of the Generalized Langevin Equation for a Harmonic Oscillator (GLE-HO). All methods were first tested and compared for K+ in bulk water—all predicted the correct diffusion constant. Inside GA, MSD and VACF methods were found to be unreliable because they are biased by the systematic force exerted by the membrane-channel system on the ion. SFDT and GLE-HO techniques properly unbias the influence of the systematic force on the diffusion properties and predicted a similar diffusion constant of K+ inside GA, namely, ca. 10 times smaller than in the bulk. It was found that both SFDT and GLE-HO methods require extensive MD sampling on the order of tens of nanoseconds to predict a reliable diffusion constant of K+ inside GA. PMID:16797116

  18. Diffused interface ghost fluid method for incompressible multiphase, phase change simulations

    NASA Astrophysics Data System (ADS)

    Lee, Moon Soo; Riaz, Amir

    2013-11-01

    Sharp interface methods for simulating multiphase flow often suffer from unstable pressure and velocity fluctuations for problems involving mass transfer. An improved sharp interface method is developed for multiphase flow with phase change using both sharp and diffused interfacial properties. The approach is based on defining continuous, phase averaged velocity and density fields within a diffused interfacial region while using the sharp treatment for the implementation of the jumps in the pressure and the temperature gradient. The method implements interface advection with diffused and stable velocity field but can represent accurate movement of the sharp interface. Two-dimensional film boiling problems are solved on a horizontal surface to demonstrate the performance of the new approach.

  19. Laser interferometric method for determining the carrier diffusion length in semiconductors

    SciTech Connect

    Manukhov, V. V.; Fedortsov, A. B.; Ivanov, A. S.

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  20. Individual Differences and Fitting Methods for the Two-Choice Diffusion Model of Decision Making

    PubMed Central

    Ratcliff, Roger; Childers, Russ

    2015-01-01

    Methods of fitting the diffusion model were examined with a focus on what the model can tell us about individual differences. Diffusion model parameters were obtained from the fits to data from two experiments and consistency of parameter values, individual differences, and practice effects were examined using different numbers of observations from each subject. Two issues were examined, first, what sizes of differences between groups can be obtained to distinguish between groups and second, what sizes of differences would be needed to find individual subjects that had a deficit relative to a control group. The parameter values from the experiments provided ranges that were used in a simulation study to examine recovery of individual differences. This study used several diffusion model fitting programs, fitting methods, and published packages. In a second simulation study, 64 sets of simulated data from each of 48 sets of parameter values (spanning the range of typical values obtained from fits to data) were fit with the different methods and biases and standard deviations in recovered model parameters were compared across methods. Finally, in a third simulation study, a comparison between a standard chi-square method and a hierarchical Bayesian method was performed. The results from these studies can be used as a starting point for selecting fitting methods and as a basis for understanding the strengths and weaknesses of using diffusion model analyses to examine individual differences in clinical, neuropsychological, and educational testing. PMID:26236754

  1. Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2015-07-01

    Numerical methods for space-fractional diffusion equations often generate dense or even full stiffness matrices. Traditionally, these methods were solved via Gaussian type direct solvers, which requires O (N3) of computational work per time step and O (N2) of memory to store where N is the number of spatial grid points in the discretization. In this paper we develop a preconditioned fast Krylov subspace iterative method for the efficient and faithful solution of finite difference methods (both steady-state and time-dependent) space-fractional diffusion equations with fractional derivative boundary conditions in one space dimension. The method requires O (N) of memory and O (Nlog ⁡ N) of operations per iteration. Due to the application of effective preconditioners, significantly reduced numbers of iterations were achieved that further reduces the computational cost of the fast method. Numerical results are presented to show the utility of the method.

  2. An investigation on the use of removal-diffusion theory for BNCT treatment planning: a method for determining proper removal-diffusion parameters.

    PubMed

    Albertson, B J; Blue, T E; Niemkiewicz, J

    2001-09-01

    This paper outlines a method for determining proper removal-diffusion parameters to be used in removal-diffusion theory calculations for the purpose of BNCT treatment planning. Additionally, this paper demonstrates that, given the proper choice of removal-diffusion parameters, removal-diffusion theory may provide an accurate calculation technique for determining absorbed dose distributions for the purpose of BNCT treatment planning. For a four-group, one-dimensional calculation in water, this method was used to determine values for the neutron scattering cross sections, neutron removal cross sections, neutron diffusion coefficients, and extrapolation distances. These values were then used in a one-dimensional DIF3D calculation. The results of the DIF3D calculation showed a maximum deviation of 2.5% from a MCNP calculation performed for the same geometry. PMID:11585220

  3. Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.

    1987-01-01

    The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.

  4. Calculation of the neutron diffusion equation by using Homotopy Perturbation Method

    NASA Astrophysics Data System (ADS)

    Koklu, H.; Ersoy, A.; Gulecyuz, M. C.; Ozer, O.

    2016-03-01

    The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent results consistent with the existing literature.

  5. An asymptotic induced numerical method for the convection-diffusion-reaction equation

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.; Sorensen, Danny C.

    1988-01-01

    A parallel algorithm for the efficient solution of a time dependent reaction convection diffusion equation with small parameter on the diffusion term is presented. The method is based on a domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. Parallelism is evident at two levels. Domain decomposition provides parallelism at the highest level, and within each domain there is ample opportunity to exploit parallelism. Run time results demonstrate the viability of the method.

  6. Monte Carlo-based diffusion tensor tractography with a geometrically corrected voxel-centre connecting method

    NASA Astrophysics Data System (ADS)

    Bodammer, N. C.; Kaufmann, J.; Kanowski, M.; Tempelmann, C.

    2009-02-01

    Diffusion tensor tractography (DTT) allows one to explore axonal connectivity patterns in neuronal tissue by linking local predominant diffusion directions determined by diffusion tensor imaging (DTI). The majority of existing tractography approaches use continuous coordinates for calculating single trajectories through the diffusion tensor field. The tractography algorithm we propose is characterized by (1) a trajectory propagation rule that uses voxel centres as vertices and (2) orientation probabilities for the calculated steps in a trajectory that are obtained from the diffusion tensors of either two or three voxels. These voxels include the last voxel of each previous step and one or two candidate successor voxels. The precision and the accuracy of the suggested method are explored with synthetic data. Results clearly favour probabilities based on two consecutive successor voxels. Evidence is also provided that in any voxel-centre-based tractography approach, there is a need for a probability correction that takes into account the geometry of the acquisition grid. Finally, we provide examples in which the proposed fibre-tracking method is applied to the human optical radiation, the cortico-spinal tracts and to connections between Broca's and Wernicke's area to demonstrate the performance of the proposed method on measured data.

  7. Development of Reference Materials for Thermal-Diffusivity Measurements by the Flash Method

    NASA Astrophysics Data System (ADS)

    Akoshima, M.; Abe, H.; Baba, T.

    2015-12-01

    The thermal conductivity of solid materials used for thermal simulations and thermal designs can be obtained as the product of thermal diffusivity, specific heat capacity, and bulk density in many cases. The thermal diffusivity is usually measured by the flash method, and the specific heat capacity is usually measured by differential scanning calorimetry. In order to obtain reliable thermal conductivities for strict thermal design, it is necessary to measure the thermal diffusivity using the flash method, a well-validated apparatus. Reference materials are an effective means for validation of most practical measurement apparatus. For the flash method, isotropic graphite was selected as a candidate reference material. A batch of isotropic graphite samples was prepared and characterized in detail in order to be a certified reference material for thermal-diffusivity measurement. The detailed characterization ensures the traceability of the measurement results to the international system of units (SI). A convenient reference material for thermal conductivity was also obtained by using the known thermal-diffusivity measurements, specific heat capacity, and density of the material.

  8. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations

    SciTech Connect

    Densmore, Jeffery D. . E-mail: jdd@lanl.gov; Urbatsch, Todd J. . E-mail: tmonster@lanl.gov; Evans, Thomas M. . E-mail: tme@lanl.gov; Buksas, Michael W. . E-mail: mwbuksas@lanl.gov

    2007-03-20

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the

  9. An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation.

    PubMed

    Ryabov, Yaroslav E; Geraghty, Charles; Varshney, Amitabh; Fushman, David

    2006-12-01

    We propose a new computational method for predicting rotational diffusion properties of proteins in solution. The method is based on the idea of representing protein surface as an ellipsoid shell. In contrast to other existing approaches this method uses principal component analysis of protein surface coordinates, which results in a substantial increase in the computational efficiency of the method. Direct comparison with the experimental data as well as with the recent computational approach (Garcia de la Torre; et al. J. Magn. Reson. 2000, B147, 138-146), based on representation of protein surface as a set of small spherical friction elements, shows that the method proposed here reproduces experimental data with at least the same level of accuracy and precision as the other approach, while being approximately 500 times faster. Using the new method we investigated the effect of hydration layer and protein surface topography on the rotational diffusion properties of a protein. We found that a hydration layer constructed of approximately one monolayer of water molecules smoothens the protein surface and effectively doubles the overall tumbling time. We also calculated the rotational diffusion tensors for a set of 841 protein structures representing the known protein folds. Our analysis suggests that an anisotropic rotational diffusion model is generally required for NMR relaxation data analysis in single-domain proteins, and that the axially symmetric model could be sufficient for these purposes in approximately half of the proteins. PMID:17132010

  10. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method.

    PubMed

    Li, Jing-Rebecca; Calhoun, Donna; Poupon, Cyril; Le Bihan, Denis

    2014-01-20

    The effect on the MRI signal of water diffusion in biological tissues in the presence of applied magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey partial differential equation. We present a method for the numerical solution of this equation by coupling a standard Cartesian spatial discretization with an adaptive time discretization. The time discretization is done using the explicit Runge-Kutta-Chebyshev method, which is more efficient than the forward Euler time discretization for diffusive-type problems. We use this approach to simulate the diffusion MRI signal from the extra-cylindrical compartment in a tissue model of the brain gray matter consisting of cylindrical and spherical cells and illustrate the effect of cell membrane permeability. PMID:24351275

  11. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method

    NASA Astrophysics Data System (ADS)

    Li, Jing-Rebecca; Calhoun, Donna; Poupon, Cyril; Le Bihan, Denis

    2014-01-01

    The effect on the MRI signal of water diffusion in biological tissues in the presence of applied magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey partial differential equation. We present a method for the numerical solution of this equation by coupling a standard Cartesian spatial discretization with an adaptive time discretization. The time discretization is done using the explicit Runge-Kutta-Chebyshev method, which is more efficient than the forward Euler time discretization for diffusive-type problems. We use this approach to simulate the diffusion MRI signal from the extra-cylindrical compartment in a tissue model of the brain gray matter consisting of cylindrical and spherical cells and illustrate the effect of cell membrane permeability.

  12. Development of advanced methods for analysis of experimental data in diffusion

    NASA Astrophysics Data System (ADS)

    Jaques, Alonso V.

    There are numerous experimental configurations and data analysis techniques for the characterization of diffusion phenomena. However, the mathematical methods for estimating diffusivities traditionally do not take into account the effects of experimental errors in the data, and often require smooth, noiseless data sets to perform the necessary analysis steps. The current methods used for data smoothing require strong assumptions which can introduce numerical "artifacts" into the data, affecting confidence in the estimated parameters. The Boltzmann-Matano method is used extensively in the determination of concentration - dependent diffusivities, D(C), in alloys. In the course of analyzing experimental data, numerical integrations and differentiations of the concentration profile are performed. These methods require smoothing of the data prior to analysis. We present here an approach to the Boltzmann-Matano method that is based on a regularization method to estimate a differentiation operation on the data, i.e., estimate the concentration gradient term, which is important in the analysis process for determining the diffusivity. This approach, therefore, has the potential to be less subjective, and in numerical simulations shows an increased accuracy in the estimated diffusion coefficients. We present a regression approach to estimate linear multicomponent diffusion coefficients that eliminates the need pre-treat or pre-condition the concentration profile. This approach fits the data to a functional form of the mathematical expression for the concentration profile, and allows us to determine the diffusivity matrix directly from the fitted parameters. Reformulation of the equation for the analytical solution is done in order to reduce the size of the problem and accelerate the convergence. The objective function for the regression can incorporate point estimations for error in the concentration, improving the statistical confidence in the estimated diffusivity matrix

  13. Spectral approximation to advection-diffusion problems by the fictitious interface method

    NASA Astrophysics Data System (ADS)

    Frati, A.; Pasquarelli, F.; Quarteroni, A.

    1993-08-01

    The algorithmic aspects of the 'fictitious interface' method used in numerical approximations of convection-dominated flows are discussed. The solution algorithm presented alternates the advection-equation solution with that of the advection-diffusion equation within complementary subdomains. For the problems presently considered, spatial discretization is obtained by the spectral collocation method via Legendre-Gaussian modes. Attention is given to the the fictitious interface method's application to the Burgers equation.

  14. Group iterative methods for the solution of two-dimensional time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Balasim, Alla Tareq; Ali, Norhashidah Hj. Mohd.

    2016-06-01

    Variety of problems in science and engineering may be described by fractional partial differential equations (FPDE) in relation to space and/or time fractional derivatives. The difference between time fractional diffusion equations and standard diffusion equations lies primarily in the time derivative. Over the last few years, iterative schemes derived from the rotated finite difference approximation have been proven to work well in solving standard diffusion equations. However, its application on time fractional diffusion counterpart is still yet to be investigated. In this paper, we will present a preliminary study on the formulation and analysis of new explicit group iterative methods in solving a two-dimensional time fractional diffusion equation. These methods were derived from the standard and rotated Crank-Nicolson difference approximation formula. Several numerical experiments were conducted to show the efficiency of the developed schemes in terms of CPU time and iteration number. At the request of all authors of the paper an updated version of this article was published on 7 July 2016. The original version supplied to AIP Publishing contained an error in Table 1 and References 15 and 16 were incomplete. These errors have been corrected in the updated and republished article.

  15. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  16. Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Yoonsang; Engquist, Bjorn

    2016-07-01

    We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow.

  17. New contactless method for thermal diffusivity measurements using modulated photothermal radiometry.

    PubMed

    Pham Tu Quoc, S; Cheymol, G; Semerok, A

    2014-05-01

    Modulated photothermal radiometry is a non-destructive and contactless technique for the characterization of materials. It has two major advantages: a good signal-to-noise ratio through a synchronous detection and a low dependence on the heating power and the optical properties of the sample surface. This paper presents a new method for characterizing the thermal diffusivity of a material when the phase shift between a modulated laser power signal and the thermal signal of a plate sample is known at different frequencies. The method is based on a three-dimensional analytical model which is used to determine the temperature amplitude and the phase in the laser heating of the plate. A new simple formula was developed through multi-parametric analysis to determine the thermal diffusivity of the plate with knowledge of the frequency at the minimum phase shift, the laser beam radius r0 and the sample thickness L. This method was developed to control the variation of the thermal diffusivity of nuclear components and it was first applied to determine the thermal diffusivity of different metals: 304 L stainless steel, nickel, titanium, tungsten, molybdenum, zinc, and iron. The experimental results were obtained with 5%-10% accuracy and corresponded well with the reference values. The present paper also demonstrates the limit of application of this method for plate with thickness r0/100 ≤ L ≤ r0/2. The technique is deemed interesting for the characterization of barely accessible components that require a contactless measurement. PMID:24880399

  18. A moving mesh finite difference method for equilibrium radiation diffusion equations

    SciTech Connect

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  19. A moving mesh finite difference method for equilibrium radiation diffusion equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  20. New contactless method for thermal diffusivity measurements using modulated photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Pham Tu Quoc, S.; Cheymol, G.; Semerok, A.

    2014-05-01

    Modulated photothermal radiometry is a non-destructive and contactless technique for the characterization of materials. It has two major advantages: a good signal-to-noise ratio through a synchronous detection and a low dependence on the heating power and the optical properties of the sample surface. This paper presents a new method for characterizing the thermal diffusivity of a material when the phase shift between a modulated laser power signal and the thermal signal of a plate sample is known at different frequencies. The method is based on a three-dimensional analytical model which is used to determine the temperature amplitude and the phase in the laser heating of the plate. A new simple formula was developed through multi-parametric analysis to determine the thermal diffusivity of the plate with knowledge of the frequency at the minimum phase shift, the laser beam radius r0 and the sample thickness L. This method was developed to control the variation of the thermal diffusivity of nuclear components and it was first applied to determine the thermal diffusivity of different metals: 304 L stainless steel, nickel, titanium, tungsten, molybdenum, zinc, and iron. The experimental results were obtained with 5%-10% accuracy and corresponded well with the reference values. The present paper also demonstrates the limit of application of this method for plate with thickness r0/100 ≤ L ≤ r0/2. The technique is deemed interesting for the characterization of barely accessible components that require a contactless measurement.

  1. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  2. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  3. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  4. Anti-diffusion method for interface steepening in two-phase incompressible flow

    NASA Astrophysics Data System (ADS)

    So, K. K.; Hu, X. Y.; Adams, N. A.

    2011-06-01

    In this paper, we present a method for obtaining sharp interfaces in two-phase incompressible flows by an anti-diffusion correction, that is applicable in a straight-forward fashion for the improvement of two-phase flow solution schemes typically employed in practical applications. The underlying discretization is based on the volume-of-fluid (VOF) interface-capturing method on unstructured meshes. The key idea is to steepen the interface, independently of the underlying volume-fraction transport equation, by solving a diffusion equation with reverse time, i.e. an anti-diffusion equation, after each advection time step of the volume fraction. As the solution of the anti-diffusion equation requires regularization, a limiter based on the directional derivative is developed for calculating the gradient of the volume fraction. This limiter ensures the boundedness of the volume fraction. In order to control the amount of anti-diffusion introduced by the correction algorithm we propose a suitable stopping criterion for interface steepening. The formulation of the limiter and the algorithm for solving the anti-diffusion equation are applicable to 3-dimensional unstructured meshes. Validation computations are performed for passive advection of an interface, for 2-dimensional and 3-dimensional rising-bubbles, and for a rising drop in a periodically constricted channel. The results demonstrate that sharp interfaces can be recovered reliably. They show that the accuracy is similar to or even better than that of level-set methods using comparable discretizations for the flow and the level-set evolution. Also, we observe a good agreement with experimental results for the rising drop where proper interface evolution requires accurate mass conservation.

  5. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  6. Numerical solution of a diffusion problem by exponentially fitted finite difference methods.

    PubMed

    D'Ambrosio, Raffaele; Paternoster, Beatrice

    2014-01-01

    This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver. PMID:26034665

  7. A method to simulate viscous diffusion of vorticity by convective transport of vortices at a non-solenoidal velocity

    SciTech Connect

    Kempka, S.N.; Strickland, J.H.

    1993-08-01

    A numerical method to simulate viscous diffusion of vorticity using vortex blobs (i.e., without a grid) is presented. The method consists of casting the effects of viscous diffusion into an effective ``diffusion velocity`` at which vortex blobs convect. The diffusion velocity was proposed previously by Ogami and Akamatsu, but they did not consider the effects of the divergence of the diffusion velocity. In fact, the diffusion velocity is highly non-solenoidal, which significantly affects the area over which a vortex blob diffuses. A formulation is presented that relates the area expansion to the diffusion velocity divergence. By taking into account the area expansion, more accurate simulations of diffusion are obtained, as demonstrated by a comparison of numerical and analytical diffusion solutions. Results from simulations show that vortex areas expand significantly in regions of large vorticity gradients. As a result of the area expansion, adjacent vortices remain overlapped, thereby maintaining smooth solution fields. The non-solenoidal diffusion velocity method is easily implemented in vortex blob algorithms, thus facilitating the development of vortex methods to simulate flows with finite Reynolds numbers.

  8. Diffuse interface methods for inverse problems: case study for an elliptic Cauchy problem

    NASA Astrophysics Data System (ADS)

    Burger, Martin; Løseth Elvetun, Ole; Schlottbom, Matthias

    2015-12-01

    Many inverse problems have to deal with complex, evolving and often not exactly known geometries, e.g. as domains of forward problems modeled by partial differential equations. This makes it desirable to use methods which are robust with respect to perturbed or not well resolved domains, and which allow for efficient discretizations not resolving any fine detail of those geometries. For forward problems in partial differential equations methods based on diffuse interface representations have gained strong attention in the last years, but so far they have not been considered systematically for inverse problems. In this work we introduce a diffuse domain method as a tool for the solution of variational inverse problems. As a particular example we study ECG inversion in further detail. ECG inversion is a linear inverse source problem with boundary measurements governed by an anisotropic diffusion equation, which naturally cries for solutions under changing geometries, namely the beating heart. We formulate a regularization strategy using Tikhonov regularization and, using standard source conditions, we prove convergence rates. A special property of our approach is that not only operator perturbations are introduced by the diffuse domain method, but more important we have to deal with topologies which depend on a parameter \\varepsilon in the diffuse domain method, i.e. we have to deal with \\varepsilon -dependent forward operators and \\varepsilon -dependent norms. In particular the appropriate function spaces for the unknown and the data depend on \\varepsilon . This prevents the application of some standard convergence techniques for inverse problems, in particular interpreting the perturbations as data errors in the original problem does not yield suitable results. We consequently develop a novel approach based on saddle-point problems. The numerical solution of the problem is discussed as well and results for several computational experiments are reported. In

  9. An efficient and positivity-preserving layer method for modeling radiation belt diffusion processes

    NASA Astrophysics Data System (ADS)

    Tao, X.; Zhang, L.; Wang, C.; Li, X.; Albert, J. M.; Chan, A. A.

    2016-01-01

    An efficient and positivity-preserving layer method is introduced to solve the radiation belt diffusion equation and is applied to study the bounce resonance interaction between relativistic electrons and magnetosonic waves. The layer method with linear interpolation, denoted by LM-L (layer method-linear), requires the use of a large number of grid points to ensure accurate solutions. We introduce a monotonicity- and positivity-preserving cubic interpolation method to be used with the Milstein-Tretyakov layer method. The resulting method, called LM-MC (layer method-monotone cubic), can be used to solve the radiation belt diffusion equation with a much smaller number of grid points than LM-L while still being able to preserve the positivity of the solution. We suggest that LM-MC can be used to study long-term dynamics of radiation belts. We then develop a 2-D LM-MC code and use it to investigate the bounce resonance diffusion of radiation belt electrons by magnetosonic waves. Using a previously published magnetosonic wave model, we demonstrate that bounce resonance with magnetosonic waves is as important as gyroresonance; both can cause several orders of magnitude increase of MeV electron fluxes within 1 day. We conclude that bounce resonance with magnetosonic waves should be taken into consideration together with gyroresonance.

  10. Novel front-surface thermal-diffusivity measurement method based on phase analysis

    NASA Astrophysics Data System (ADS)

    Braggiotti, Alberto; Marinetti, Sergio

    2000-05-01

    The technique described in this paper is for one-side thermal diffusivity measurement. A single stripe-shaped pulse provided by a flash lamp is used to heat the front surface of a specimen slab. Classical methods for estimating a parameter out of a distribution involve fitting the temperature distribution with its theoretical model. With the technique described in this paper the evolution of the temperature distribution along a line perpendicular to the heated stripe is analyzed in the frequency domain. An estimate of the thermal diffusivity is then obtained from comparison of the phase component behavior with an abacus similarly built from the theoretical model. This technique is valid for any shape of flash lamp pulse (i.e. laser spot), and can be used also for estimating the thermal diffusivity of anisotropic materials. The choice of the stripe shape is due to the limitations of the simulation environment used.

  11. A new method of measuring hydrogen diffusivity by hydrogen permeation technique. 2: Experimental studies

    SciTech Connect

    Zheng, Y.P.; Zhang, T.Y.

    1998-12-31

    In order to verify the results predicted by the model in Part 1 of this work, permeation experiments were conducted at room and high temperatures on fully-annealed-commercially-pure iron with two kinds of surface treatment, one group with plasma cleaning and presputtering and the other without it. The experimental results show that the diffusivity evaluated by the new model is independent of sample thickness and surface treatment, while the diffusivity evaluated by the time-lag model varies two orders of magnitude. The experimental results confirm that a fine surface treatment yields a low energy barrier for desorption. The energy barrier for either group is higher than the activation energy of diffusion. Consequently, the ratio of drift velocity through surface to that in bulk increases with increasing temperature and makes the time-lag method appropriate at elevated temperatures.

  12. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  13. Analysis of Preconditioning and Relaxation Operators for the Discontinuous Galerkin Method Applied to Diffusion

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Shu, Chi-Wang

    2001-01-01

    The explicit stability constraint of the discontinuous Galerkin method applied to the diffusion operator decreases dramatically as the order of the method is increased. Block Jacobi and block Gauss-Seidel preconditioner operators are examined for their effectiveness at accelerating convergence. A Fourier analysis for methods of order 2 through 6 reveals that both preconditioner operators bound the eigenvalues of the discrete spatial operator. Additionally, in one dimension, the eigenvalues are grouped into two or three regions that are invariant with order of the method. Local relaxation methods are constructed that rapidly damp high frequencies for arbitrarily large time step.

  14. COMPARISON OF THE COMPLETE FOURIER DIRECT MRI WITH EXISTING DIFFUSION WEIGHTED MRI METHODS

    PubMed Central

    Özcan, Alpay

    2011-01-01

    The Complete Fourier Direct (CFD) MRI method introduced in earlier work for modeling the diffusion weighted MRI signal is compared with the existing methods. The preservation of Hermitian symmetry in the diffusion weighted MRI signal without affecting its energy is the key point that differentiates CFD–MRI from the existing methods. By keeping the correct Fourier relationship intact, the joint distribution function is represented ‘as it is’, without any constraints, e.g. being symmetric. The necessity to model or assume models for spin motion and try to fit the model to the samples of the Fourier transform as in case of model matching methods is not required because the Discrete Fourier Transform applied to correctly processed signal in CFD–MRI gives more accurate results. PMID:21918715

  15. Preconditioned time-difference methods for advection-diffusion-reaction equations

    SciTech Connect

    Aro, C.; Rodrigue, G.; Wolitzer, D.

    1994-12-31

    Explicit time differencing methods for solving differential equations are advantageous in that they are easy to implement on a computer and are intrinsically very parallel. The disadvantage of explicit methods is the severe restrictions placed on stepsize due to stability. Stability bounds for explicit time differencing methods on advection-diffusion-reaction problems are generally quite severe and implicit methods are used instead. The linear systems arising from these implicit methods are large and sparse so that iterative methods must be used to solve them. In this paper the authors develop a methodology for increasing the stability bounds of standard explicit finite differencing methods by combining explicit methods, implicit methods, and iterative methods in a novel way to generate new time-difference schemes, called preconditioned time-difference methods.

  16. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOEpatents

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  17. Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI.

    PubMed

    Daducci, Alessandro; Canales-Rodríguez, Erick Jorge; Descoteaux, Maxime; Garyfallidis, Eleftherios; Gur, Yaniv; Lin, Ying-Chia; Mani, Merry; Merlet, Sylvain; Paquette, Michael; Ramirez-Manzanares, Alonso; Reisert, Marco; Reis Rodrigues, Paulo; Sepehrband, Farshid; Caruyer, Emmanuel; Choupan, Jeiran; Deriche, Rachid; Jacob, Mathews; Menegaz, Gloria; Prčkovska, Vesna; Rivera, Mariano; Wiaux, Yves; Thiran, Jean-Philippe

    2014-02-01

    Validation is arguably the bottleneck in the diffusion magnetic resonance imaging (MRI) community. This paper evaluates and compares 20 algorithms for recovering the local intra-voxel fiber structure from diffusion MRI data and is based on the results of the "HARDI reconstruction challenge" organized in the context of the "ISBI 2012" conference. Evaluated methods encompass a mixture of classical techniques well known in the literature such as diffusion tensor, Q-Ball and diffusion spectrum imaging, algorithms inspired by the recent theory of compressed sensing and also brand new approaches proposed for the first time at this contest. To quantitatively compare the methods under controlled conditions, two datasets with known ground-truth were synthetically generated and two main criteria were used to evaluate the quality of the reconstructions in every voxel: correct assessment of the number of fiber populations and angular accuracy in their orientation. This comparative study investigates the behavior of every algorithm with varying experimental conditions and highlights strengths and weaknesses of each approach. This information can be useful not only for enhancing current algorithms and develop the next generation of reconstruction methods, but also to assist physicians in the choice of the most adequate technique for their studies. PMID:24132007

  18. A quantitative radioluminographic imaging method for evaluating lateral diffusion rates in skin.

    PubMed

    Rush, Allison K; Miller, Matthew A; Smith, Edward D; Kasting, Gerald B

    2015-10-28

    A method is presented for measuring the lateral diffusion coefficients of exogenously applied compounds on excised skin. The method involves sequential high resolution imaging of the spatial distribution of β-radiation associated with [(14)C]-labeled compounds to monitor the development of the concentration profile on the skin surface. It is exemplified by measurements made on three radiolabeled test compounds--caffeine, testosterone, and zinc pyrithione (ZnPT)--administered as solutions. Lateral diffusivity is expected to be an important determinant of the topical bioavailability of ZnPT, which is characteristically administered as a fine suspension and must reach microorganisms in molecular form to exert biocidal activity. Application of the test compounds at levels below and above their estimated saturation doses in the upper stratum corneum allows one to distinguish between diffusion-limited and dissolution rate-limited kinetics. The effective lateral diffusivities of the two chemically stable reference compounds, caffeine and testosterone, were (1-4) × 10(-9) cm(2)/s and (3-9) × 10(-9) cm(2)/s, respectively. Lateral transport of [(14)C] associated with ZnPT was formulation-dependent, with effective diffusivities of (1-2) × 10(-9) cm(2)/s in water and (3-9) × 10(-9) cm(2)/s in a 1% body wash solution. These differences are thought to be related to molecular speciation and/or the presence of a residual surfactant phase on the skin surface. All values were greater than those estimated for the transverse diffusivities of these compounds in stratum corneum by factors ranging from 250 to over 2000. Facile lateral transport on skin, combined with a low transdermal permeation rate, may thus be seen to be a key factor in the safe and effective use of ZnPT as a topical antimicrobial agent. PMID:26241749

  19. Data Assimilation Using a Variational Method for a 1D Radiation Belt Diffusion Model

    NASA Astrophysics Data System (ADS)

    Marchand, R.; Degeling, A. W.; O'Donnell, S.; Rankin, R.; Kabin, K.

    2009-12-01

    A variational data assimilation algorithm has been developed to incorporate electron flux time-series data from satellites into a simple one dimensional diffusion model for the radial transport of radiation belt electrons. The model developed assumes a power law scaling for the radial diffusion coefficient with L shell. The effectiveness of this method is investigated by means of a series of identical twin numerical experiments. This involves using the diffusion model to produce synthetic observations along various satellite trajectories. These observations are in turn used to estimate time-dependent parameters input to the diffusion model, which are compared against the values initially used. The data assimilation algorithm considers the time dependent source located at the outer boundary as a function to be determined. Using synthetic satellite electron flux observations, the algorithm computes a source function that, when used as an input to the diffusion model, most closely reproduces the synthetic observations in a least-squares sense. Observational errors are taken into account, and an estimate of the uncertainty in the output source function is also produced. This uncertainty is found to consistently reflect the quality of the source function estimation during identical twin numerical experiments. Initial tests indicate that the quality of the outer boundary source estimation is strongly dependent on the satellite location, indicating that the outer boundary source estimation becomes poor as information relating to the outer boundary contained in the observations is reduced. The potential of using this data assimilation method to estimate one or more parameters that determine the radial diffusion coefficient, and the possibility of determining whether physical processes affecting the observations are missing in the dynamical model will be discussed.

  20. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  1. GPU-accelerated 3D neutron diffusion code based on finite difference method

    SciTech Connect

    Xu, Q.; Yu, G.; Wang, K.

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  2. A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.

    2013-02-01

    Digital breast tomosynthesis (DBT) has strong promise to improve sensitivity for detecting breast cancer. DBT reconstruction estimates the breast tissue attenuation using projection views (PVs) acquired in a limited angular range. Because of the limited field of view (FOV) of the detector, the PVs may not completely cover the breast in the x-ray source motion direction at large projection angles. The voxels in the imaged volume cannot be updated when they are outside the FOV, thus causing a discontinuity in intensity across the FOV boundaries in the reconstructed slices, which we refer to as the truncated projection artifact (TPA). Most existing TPA reduction methods were developed for the filtered backprojection method in the context of computed tomography. In this study, we developed a new diffusion-based method to reduce TPAs during DBT reconstruction using the simultaneous algebraic reconstruction technique (SART). Our TPA reduction method compensates for the discontinuity in background intensity outside the FOV of the current PV after each PV updating in SART. The difference in voxel values across the FOV boundary is smoothly diffused to the region beyond the FOV of the current PV. Diffusion-based background intensity estimation is performed iteratively to avoid structured artifacts. The method is applicable to TPA in both the forward and backward directions of the PVs and for any number of iterations during reconstruction. The effectiveness of the new method was evaluated by comparing the visual quality of the reconstructed slices and the measured discontinuities across the TPA with and without artifact correction at various iterations. The results demonstrated that the diffusion-based intensity compensation method reduced the TPA while preserving the detailed tissue structures. The visibility of breast lesions obscured by the TPA was improved after artifact reduction.

  3. A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction.

    PubMed

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M

    2013-02-01

    Digital breast tomosynthesis (DBT) has strong promise to improve sensitivity for detecting breast cancer. DBT reconstruction estimates the breast tissue attenuation using projection views (PVs) acquired in a limited angular range. Because of the limited field of view (FOV) of the detector, the PVs may not completely cover the breast in the x-ray source motion direction at large projection angles. The voxels in the imaged volume cannot be updated when they are outside the FOV, thus causing a discontinuity in intensity across the FOV boundaries in the reconstructed slices, which we refer to as the truncated projection artifact (TPA). Most existing TPA reduction methods were developed for the filtered backprojection method in the context of computed tomography. In this study, we developed a new diffusion-based method to reduce TPAs during DBT reconstruction using the simultaneous algebraic reconstruction technique (SART). Our TPA reduction method compensates for the discontinuity in background intensity outside the FOV of the current PV after each PV updating in SART. The difference in voxel values across the FOV boundary is smoothly diffused to the region beyond the FOV of the current PV. Diffusion-based background intensity estimation is performed iteratively to avoid structured artifacts. The method is applicable to TPA in both the forward and backward directions of the PVs and for any number of iterations during reconstruction. The effectiveness of the new method was evaluated by comparing the visual quality of the reconstructed slices and the measured discontinuities across the TPA with and without artifact correction at various iterations. The results demonstrated that the diffusion-based intensity compensation method reduced the TPA while preserving the detailed tissue structures. The visibility of breast lesions obscured by the TPA was improved after artifact reduction. PMID:23318346

  4. Application of Electrode Methods in Studies of Nitric Oxide Metabolism and Diffusion Kinetics

    PubMed Central

    Liu, Xiaoping; Zweier, Jay L.

    2012-01-01

    Nitric oxide (NO) has many important physiological roles in the body. Since NO electrodes can directly measure NO concentration in the nM range and in real time, NO electrode methods have been generally used in laboratories for measuring NO concentration in vivo and in vitro. This review focuses on the application of electrode methods in studies of NO diffusion and metabolic kinetics. We have described the physical and chemical properties that need to be considered in the preparation of NO stock solution, discussed the effect of several interfering factors on the measured curves of NO concentration that need to be eliminated in the experimental setup for NO measurements, and provided an overview of the application of NO electrode methods in measuring NO diffusion and metabolic kinetics in solution and in biological systems. This overview covers NO metabolism by oxygen (O2), superoxide, heme proteins, cells and tissues. Important conclusions and physiological implication of these studies are discussed. PMID:23730264

  5. Application of numerical methods for diffusion-based modeling of skin permeation.

    PubMed

    Frasch, H Frederick; Barbero, Ana M

    2013-02-01

    The application of numerical methods for mechanistic, diffusion-based modeling of skin permeation is reviewed. Methods considered here are finite difference, method of lines, finite element, finite volume, random walk, cellular automata, and smoothed particle hydrodynamics. First the methods are briefly explained with rudimentary mathematical underpinnings. Current state of the art numerical models are described, and then a chronological overview of published models is provided. Key findings and insights of reviewed models are highlighted. Model results support a primarily transcellular pathway with anisotropic lipid transport. Future endeavors would benefit from a fundamental analysis of drug/vehicle/skin interactions. PMID:22261307

  6. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  7. A Monte Carlo synthetic-acceleration method for solving the thermal radiation diffusion equation

    SciTech Connect

    Evans, Thomas M.; Mosher, Scott W.; Slattery, Stuart R.; Hamilton, Steven P.

    2014-02-01

    We present a novel synthetic-acceleration-based Monte Carlo method for solving the equilibrium thermal radiation diffusion equation in three spatial dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that our Monte Carlo method is an effective solver for sparse matrix systems. For solutions converged to the same tolerance, it performs competitively with deterministic methods including preconditioned conjugate gradient and GMRES. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  8. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined ‘geometric surface area’ of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60–350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility–mass measurement and microscopy. Our results indicate that the tandem mobility–mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility–mass and microscopy method by a factor of 3–10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3. PMID:26692585

  9. A novel method for calculating the energy barriers for carbon diffusion in ferrite under heterogeneous stress

    SciTech Connect

    Tchitchekova, Deyana S.; Morthomas, Julien; Perez, Michel; Ribeiro, Fabienne; Ducher, Roland

    2014-07-21

    A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.

  10. A novel method for calculating the energy barriers for carbon diffusion in ferrite under heterogeneous stress.

    PubMed

    Tchitchekova, Deyana S; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel

    2014-07-21

    A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress. PMID:25053312

  11. A novel method for calculating the energy barriers for carbon diffusion in ferrite under heterogeneous stress

    NASA Astrophysics Data System (ADS)

    Tchitchekova, Deyana S.; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel

    2014-07-01

    A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ˜3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.

  12. Theoretical principles of experimental methods for determining the thermal diffusivity of soils

    NASA Astrophysics Data System (ADS)

    Mikayilov, F. D.; Shein, E. V.

    2010-05-01

    Mathematical models for predicting the heat transfer in soils are used for the management of the soil thermal conditions; the development of different soil constructions; the analysis of the thermal effects related to the loosening or compaction of the surface soil layers, the sanding of peat, and the application of friable mulching materials; and the description of many other phenomena and processes. The experimental support of the development and functioning of these models is provided by the function of thermal diffusivity, which describes the thermal diffusivity as a function of the water content and can be derived using the methods based on the solution of direct and inverse problems of heat transfer. On the basis of the different boundary conditions and sine-shaped daily and annual temperature cycles, a number of equations were proposed for calculating the thermal diffusivity that contained logarithms, arctangents of amplitudes, and the phase shift between the daily temperatures at two depths. A mean-integral solution was obtained for the estimation of the average temperature in a specific soil layer. A number of methods were developed starting from the analysis of the temperature dynamics on the basis of four daily observations at the same depth with 6-hour intervals, and nomograms were given for the rapid and simple calculation of the soil thermal diffusivity at a specific depth. The developed methods can be used for assessing the soil thermal diffusivity under natural conditions, which should improve the reliability, accuracy, and adequacy and expand the application range of predictive mathematical models for the thermal regime of soils.

  13. Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations

    NASA Astrophysics Data System (ADS)

    Jiang, Tian; Zhang, Yong-Tao

    2016-04-01

    Implicit integration factor (IIF) methods were developed in the literature for solving time-dependent stiff partial differential equations (PDEs). Recently, IIF methods were combined with weighted essentially non-oscillatory (WENO) schemes in Jiang and Zhang (2013) [19] to efficiently solve stiff nonlinear advection-diffusion-reaction equations. The methods can be designed for arbitrary order of accuracy. The stiffness of the system is resolved well and the methods are stable by using time step sizes which are just determined by the non-stiff hyperbolic part of the system. To efficiently calculate large matrix exponentials, Krylov subspace approximation is directly applied to the implicit integration factor (IIF) methods. So far, the IIF methods developed in the literature are multistep methods. In this paper, we develop Krylov single-step IIF-WENO methods for solving stiff advection-diffusion-reaction equations. The methods are designed carefully to avoid generating positive exponentials in the matrix exponentials, which is necessary for the stability of the schemes. We analyze the stability and truncation errors of the single-step IIF schemes. Numerical examples of both scalar equations and systems are shown to demonstrate the accuracy, efficiency and robustness of the new methods.

  14. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    SciTech Connect

    Farzad Rahnema; Dingkang Zhang; Abderrafi Ougouag; Frederick Gleicher

    2011-04-04

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  15. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts.

    PubMed

    Klancnik, Anja; Piskernik, Sasa; Jersek, Barbara; Mozina, Sonja Smole

    2010-05-01

    The aim of this study was to evaluate diffusion and dilution methods for determining the antibacterial activity of plant extracts and their mixtures. Several methods for measurement of the minimal inhibitory concentration (MIC) of a plant extract are available, but there is no standard procedure as there is for antibiotics. We tested different plant extracts, their mixtures and phenolic acids on selected gram-positive (Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes) and gram-negative bacteria (Escherichia coli O157:H7, Salmonella Infantis, Campylobacter jejuni, Campylobacter coli) with the disk diffusion, agar dilution, broth microdilution and macrodilution methods. The disk diffusion method was appropriate only as a preliminary screening test prior to quantitative MIC determination with dilution methods. A comparison of the results for MIC obtained by agar dilution and broth microdilution was possible only for gram-positive bacteria, and indicated the latter as the most accurate way of assessing the antimicrobial effect. The microdilution method with TTC (2,3,5-triphenyl tetrazolium chloride) or INT (2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) to indicate the viability of aerobic bacteria was found to be the best alternative approach, while only ATP determination was appropriate for microaerophilic Campylobacter spp. Using survival curves the kinetics of bacterial inactivation on plant extract exposure was followed for 24h and in this way the MIC values determined by the microdilution method were confirmed as the concentrations of extracts that inhibited bacterial growth. We suggest evaluation of the antibacterial activity of plant extracts using the broth microdilution method as a fast screening method for MIC determination and the macrodilution method at selected MIC values to confirm bacterial inactivation. Campylobacter spp. showed a similar sensitivity to plant extracts as the tested gram-positive bacteria, but S

  16. A simple method for the determination of resistance to gas diffusion in plant organs.

    PubMed

    Cameron, A C; Yang, S F

    1982-07-01

    A simple method was developed for the determination of resistance coefficients for ethylene diffusion in plant tissues based on the kinetic analysis of the efflux of preloaded ethane gas. Efflux curves were analyzed to obtain first-order rate constants and resistance coefficients. Resistance coefficients determined by the ethane efflux and steady-state methods were found to agree well. Employing the ethane efflux method, it was shown that over 97% of gas exchange of tomato (Lycopersicum esculentum Mill., cv. ;Ace') fruits occurs through the stem scar. The resistances to diffusion of tomato skin and stem scar were found to be 280,000 and 300 seconds per centimeter, respectively; the combined resistance of intact tomato fruits was approximately 7,800 seconds per centimeter. The ethane efflux method was employed to show that plastic shrink-wrapping of English cucumbers (Cucumis sativus L. var anglicus Bailey) increased the resistance to ethane diffusion from 1.1 x 10(3) to 23 x 10(3) seconds per centimeter. PMID:16662447

  17. A novel model for diffusion based release kinetics using an inverse numerical method.

    PubMed

    Mohammadi, Hadi; Herzog, Walter

    2011-10-01

    We developed and analyzed an inverse numerical model based on Fick's second law on the dynamics of drug release. In contrast to previous models which required two state descriptions of diffusion for long- and short-term release processes, our model is valid for the entire release process. The proposed model may be used for identifying and reducing experimental errors associated with measurements of diffusion based release kinetics. Knowing the initial and boundary conditions, and assuming Fick's second law to be appropriate, we use the methods of Lagrange multiplier along with least-square algorithms to define a cost function which is discretized using finite difference methods and is optimized so as to minimize errors. Our model can describe diffusion based release kinetics for static and dynamic conditions as accurately as finite element methods, but results are obtained in a fraction of CPU time. Our method can be widely used for drug release procedures and for tissue engineering/repair applications where oxygenation of cells residing within a matrix is important. PMID:21382735

  18. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  19. Prediction of Shale Transport Properties Using the Lattice Boltzmann Method: Permeability and Effective Knudsen Diffusivity

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Chen, L.

    2014-12-01

    Although short-term production of unconventional gas depends on the area of contact created by hydraulic fracturing and connections with pre-existing natural fracture networks, sustainable recovery is limited by transfer of gas from nanoporous matrix into the fractures, because the permeability of hydraulic fractures is orders of magnitude higher than that of the shale matrix. Therefore, a fundamental understanding of hydrocarbon mobility in shale matrix is urgently needed for improving recovery efficiencies. Shale transport properties (diffusivity, permeability, and electronic conductivity), which are critical for understanding the fundamental transport mechanisms, are still poorly understood. There have been some studies using experimental techniques such as scanning electron microscopy (SEM) to visualize the nanoscale structures of shale. Due to the ultra-low porosity and permeability, it is difficult to experimentally investigate the fundamental transport processes inside the shale or accurately measure the transport properties. Advanced pore-scale numerical methods, e.g., the lattice Boltzman method (LBM) may provide an alternative approach. In the present study, three-dimensional nanoscale porous structures of shale are reconstructed based on SEM images of shale samples. Characterization analysis of the nanoscale reconstructed shale is performed, including determination of porosity, pore size distribution, specific surface area, and pore connectivity. The LBM flow model and diffusion model are adopted to simulate fluid flow and Knudsen diffusion in the reconstructed shale, respectively. Tortuosity, intrinsic permeability, and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than what is commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under

  20. Cu diffusion as an alternative method for nanopatterned CuTCNQ film growth

    NASA Astrophysics Data System (ADS)

    Capitán, M. J.; Álvarez, J.; Navío, C.; Miranda, R.

    2016-05-01

    In this paper we show by means of ‘in situ’ x-ray diffraction studies that CuTCNQ formation from Cu(solid)–TCNQ(solid tetracyanoquinodimethane) goes through Cu diffusion at room temperature. The film quality depends on the TCNQ evaporation rate. At low evaporation rate we get a single phase-I CuTCNQ film very well crystallized and well oriented. The film has a CuTCNQ(0 2 0) orientation. The film is formed by CuTCNQ nanorods of a very homogeneous size. The film homogeneity has also been seen by atomic force microscopy (AFM). The electronic properties of the film have been measured by x-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS). Thus, the Cu-diffusion method has arisen as a very simple, clean and efficient method to grow localized CuTCNQ nanorods on Cu, opening up new insights for technological applications.

  1. Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls

    PubMed Central

    O’Donnell, Lauren J.; Pasternak, Ofer

    2014-01-01

    One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering “Does dMRI tell us anything about the white matter?” We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail. PMID:25278106

  2. Errors associated with standard nodal diffusion methods as applied to mixed oxide fuel problems

    SciTech Connect

    Brantley, P. S., LLNL

    1998-07-24

    The evaluation of the disposition of plutonium using light water reactors is receiving increased attention. However, mixed-oxide (MOX) fuel assemblies possess much higher absorption and fission cross- sections when compared to standard UO2 assemblies. Those properties yield very high thermal flux gradients at the interfaces between MOX and UO2 assemblies. It has already been reported that standard flux reconstruction methods (that recover the homogeneous intranodal flux shape using the converged nodal solution) yield large errors in the presence of MOX assemblies. In an accompanying paper, we compare diffusion and simplified PN calculations of a mixed-oxide benchmark problem to a reference transport calculation. In this paper, we examine the errors associated with standard nodal diffusion methods when applied to the same benchmark problem. Our results show that a large portion of the error is associated with the quadratic leakage approximation (QLA) that is commonly used in the standard nodal codes.

  3. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Padgett, Jill M. A.; Ilie, Silvana

    2016-03-01

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating the solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.

  4. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand

    2015-06-01

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion paths and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. This study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.

  5. Method for the measurement of the diffusion coefficient of benzalkonium chloride.

    PubMed

    Smith, M J; Flowers, T H; Cowling, M J; Duncan, H J

    2002-03-01

    Biofilm formation on the optical ports of cameras and underwater sensors is the primary cause of their reduced useful deployment time. The use of a transparent hydrogel coating containing the cationic surfactant benzalkonium chloride has been shown to extend the deployment times for up to 12 weeks for these instruments. In order to predict the effective lifetime of these coatings it was necessary to obtain the diffusion coefficient of the benzalkonium chloride used in the coatings. Benzalkonium chloride can have different alkyl chain lengths ranging from C8H17 to C18H37 with chain length greatly affecting its chemical properties. The benzalkonium chloride materials investigated here were mixtures of C12H25 and C14H29 as well as C14H29 on its own. These materials were selected for their proven biofilm resistant qualities. The diaphragm diffusion cell technique was investigated for its applicability to the measurement of diffusion coefficients of molecules with surfactant properties and the ability to form micelles. The method was found to be satisfactory for the cationic surfactant benzalkonium chloride. The average value of the membrane cell integral diffusion coefficient D was 7.78 x 10(-6) cm2 s(-1) at 25 degrees C and there was no significant effect of alkyl chain length on the measured value of D. PMID:11996332

  6. A Proposal for a Novel Method to Measure the Diffusivity of Species in Slag

    NASA Astrophysics Data System (ADS)

    Muhmood, Luckman; Viswanathan, Nurni Neelakantan; Seetharaman, Seshadri

    2011-04-01

    The rate of reactions involved in steel-refining operations largely depend on the transport of species through the slag or metal phase at steel refining temperatures; the intrinsic reaction rates are expected to be high. Therefore, the study of diffusivity of species in slag is of great importance. The present work proposes a new methodology, in which experiments can be designed to determine the diffusivity of species in liquid slag. In this article, a mathematical description for the methodology is formulated and subsequently solved using numerical methods. This exercise will help in identifying appropriate bounds for experimental parameters for a desired accuracy. The proposed methodology is generic for any species in the liquid slag phase. However, diffusion of sulfur through slag has been illustrated as a case study. The order of magnitude for the diffusion coefficient for sulfur was taken from the classic works of Saito and Kawai, the sulfide capacity and sulfur partition ratio were retrieved from the works of Taniguchi et al., and the slag density was retrieved from earlier experimental results of the present authors. The slag density was obtained from earlier experimental results from the present group. The Henrian activity coefficients were retrieved from literature. Subsequent to the present work, the design of experiments and measurements carried out using the proposed methodology and the results obtained are presented as the second article on this subject.

  7. A hybrid method for efficient and accurate simulations of diffusion compartment imaging signals

    NASA Astrophysics Data System (ADS)

    Rensonnet, Gaëtan; Jacobs, Damien; Macq, Benoît; Taquet, Maxime

    2015-12-01

    Diffusion-weighted imaging is sensitive to the movement of water molecules through the tissue microstructure and can therefore be used to gain insight into the tissue cellular architecture. While the diffusion signal arising from simple geometrical microstructure is known analytically, it remains unclear what diffusion signal arises from complex microstructural configurations. Such knowledge is important to design optimal acquisition sequences, to understand the limitations of diffusion-weighted imaging and to validate novel models of the brain microstructure. We present a novel framework for the efficient simulation of high-quality DW-MRI signals based on the hybrid combination of exact analytic expressions in simple geometric compartments such as cylinders and spheres and Monte Carlo simulations in more complex geometries. We validate our approach on synthetic arrangements of parallel cylinders representing the geometry of white matter fascicles, by comparing it to complete, all-out Monte Carlo simulations commonly used in the literature. For typical configurations, equal levels of accuracy are obtained with our hybrid method in less than one fifth of the computational time required for Monte Carlo simulations.

  8. A novel grating-imaging method to measure carrier diffusion coefficient in graphene

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Wang, Yaguo; Akinwande, Deji; Bank, Seth; Lin, Jung-Fu

    Similar to carrier mobility, carrier diffusion coefficient in graphene determines the response rate of future graphene-based electronics. Here we present a simple, sensitive and non-destructive technique integrated with ultrafast pump-probe spectroscopy to measure carrier diffusion in CVD-grown graphene. In the method, the pump and the probe beams pass through the same area of a photomask with metal strips i.e. a transmission amplitude grating, and get diffracted. The diffracted light is collected by an objective lens and focused onto the sample to generate carrier density grating. Relaxation of this carrier density grating is governed by both carrier recombination and carrier diffusion in the sample. Transient transmission change of the probe beams, which reflects this relaxation process, is recorded. The measured diffusion coefficients of multilayer and monolayer CVD-grown graphene are 2000cm2/s and 10000cm2/s, respectively, comparable with the reported values of epitaxial graphene and reduced graphene. This transmission grating technique can be used to measure carrier dynamics in versatile 2D materials.

  9. New contactless method for thermal diffusivity measurements using modulated photothermal radiometry

    SciTech Connect

    Pham Tu Quoc, S. Cheymol, G.; Semerok, A.

    2014-05-15

    Modulated photothermal radiometry is a non-destructive and contactless technique for the characterization of materials. It has two major advantages: a good signal-to-noise ratio through a synchronous detection and a low dependence on the heating power and the optical properties of the sample surface. This paper presents a new method for characterizing the thermal diffusivity of a material when the phase shift between a modulated laser power signal and the thermal signal of a plate sample is known at different frequencies. The method is based on a three-dimensional analytical model which is used to determine the temperature amplitude and the phase in the laser heating of the plate. A new simple formula was developed through multi-parametric analysis to determine the thermal diffusivity of the plate with knowledge of the frequency at the minimum phase shift, the laser beam radius r{sub 0} and the sample thickness L. This method was developed to control the variation of the thermal diffusivity of nuclear components and it was first applied to determine the thermal diffusivity of different metals: 304 L stainless steel, nickel, titanium, tungsten, molybdenum, zinc, and iron. The experimental results were obtained with 5%–10% accuracy and corresponded well with the reference values. The present paper also demonstrates the limit of application of this method for plate with thickness r{sub 0}/100 ≤ L ≤ r{sub 0}/2. The technique is deemed interesting for the characterization of barely accessible components that require a contactless measurement.

  10. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-05-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3O 4 and SrFe 12O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  11. Using Diffusion of Innovations Theory to implement the confusion assessment method for the intensive care unit.

    PubMed

    Bowen, Constance Mary; Stanton, Marietta; Manno, Martin

    2012-01-01

    Routine screening of mechanically ventilated patients for delirium is essential for prompt recognition and management; however, this represents a change in practice. Rogers' Diffusion of Innovations Theory can be useful as a strategy to facilitate adoption of a practice change. This case study describes the effectiveness of identifying barriers to a change in practice and developing strategies, specific to Rogers' innovation decision process, for implementing the Confusion Assessment Method for the intensive care unit. PMID:22367153

  12. Efficient variance reduction methods for Asian option pricing under exponential jump-diffusion models

    NASA Astrophysics Data System (ADS)

    Lai, Yongzeng; Zeng, Yan; Xi, Xiaojing

    2011-11-01

    In this paper, we discuss control variate methods for Asian option pricing under exponential jump diffusion model for the underlying asset prices. Numerical results show that the new control variate XNCV is much more efficient than the classical control variate XCCV when used in pricing Asian options. For example, the variance reduction ratios by XCCV are no more than 120 whereas those by XNCV vary from 15797 to 49171 on average over sample sizes 1024, 2048, 4096, 8192, 16384 and 32768.

  13. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Ramanujam, Nirmala

    2007-04-01

    A scaling Monte Carlo method has been developed to calculate diffuse reflectance from multilayered media with a wide range of optical properties in the ultraviolet-visible wavelength range. This multilayered scaling method employs the photon trajectory information generated from a single baseline Monte Carlo simulation of a homogeneous medium to scale the exit distance and exit weight of photons for a new set of optical properties in the multilayered medium. The scaling method is particularly suited to simulating diffuse reflectance spectra or creating a Monte Carlo database to extract optical properties of layered media, both of which are demonstrated in this paper. Particularly, it was found that the root-mean-square error (RMSE) between scaled diffuse reflectance, for which the anisotropy factor and refractive index in the baseline simulation were, respectively, 0.9 and 1.338, and independently simulated diffuse reflectance was less than or equal to 5% for source-detector separations from 200 to 1500 μm when the anisotropy factor of the top layer in a two-layered epithelial tissue model was varied from 0.8 to 0.99; in contrast, the RMSE was always less than 5% for all separations (from 0 to 1500 μm) when the anisotropy factor of the bottom layer was varied from 0.7 to 0.99. When the refractive index of either layer in the two-layered tissue model was varied from 1.3 to 1.4, the RMSE was less than 10%. The scaling method can reduce computation time by more than 2 orders of magnitude compared with independent Monte Carlo simulations.

  14. Impact of the emulsification-diffusion method on the development of pharmaceutical nanoparticles.

    PubMed

    Quintanar-Guerrero, David; Zambrano-Zaragoza, María de la Luz; Gutierrez-Cortez, Elsa; Mendoza-Munoz, Nestor

    2012-12-01

    Nanotechnology is having a profound impact in many scientific fields and it has become one of the most important and exciting discipline. Like all technological advances, nanotechnology has its own scientific basis with a broad interdisciplinary effect. Perhaps, we are witnessing an exponential growth of nanotechnology, reflection of this is the important increase in the number of patents, scientific papers and specialized "nano" meetings and journals. The impact in the pharmaceutical area is related to the use of colloidal drug delivery systems as carriers for bioactive agents, in particular, the nanoparticle technology. The term nanoparticles designates solid submicronic particles formed of acceptable materials (e.g. polymers, lipids, etc.) containing an active substance. It includes both nanospheres (matricial systems) and nanocapsules (membrane systems). The knowledge of the nanoparticle preparation methods is a key issue for the formulator involved with drug-delivery research and development. In general, the methods based on preformed polymers, in particular biodegradable polymers, are preferred due to their easy implementation and lower potential toxicity. One of the most widely used methods to prepare polymeric nanoparticles is emulsification-diffusion. This method has been discussed in some reviews that compile research works but has a small number of patents. In this review, the emulsification-diffusion method is discussed from a technological point of view in order to show the operating conditions and formulation variables from data extracted of recent patents and experimental works. The main idea is to provide the reader with a general guide for formulators to make decisions about the usefulness of this method to develop specific nanoparticulate systems. The first part of this review provides an overview of the emulsification-diffusion method to prepare polymeric nanoparticles, while the second part evaluates the influence of preparative variables on the

  15. A modified evaluation method to reduce finite pulse time effects in flash diffusivity measurement

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Yang, Liping; Zhong, Qiu; Xu, Zijun; Luo, Caiyun

    2015-12-01

    A modified evaluation method for laser flash is proposed. In this method, the moment of laser-heating cutoff time is considered as zero point. The penetration depth and formula equation of the sample temperature distribution are obtained with the approximate analytical solution before time zero (during laser heating) for the physical model of a continuously heated half-infinite, well-distributed sample. The weighted-average and approximate-equation methods are then used to quantitatively determine the laser effect depth, which leads to the formulation of a modified evaluation method in flash thermal diffusivity measurement. Results of the simulation calculations and experiments confirm the correctness of the modified method, which remarkably increases flash method applications. The modified method is applicable only to cases in which δ(x) does not exceed the sample thickness ( √{ 12 α τ 0 } ≤ L ) during laser heating.

  16. A modified evaluation method to reduce finite pulse time effects in flash diffusivity measurement.

    PubMed

    Tao, Ye; Yang, Liping; Zhong, Qiu; Xu, Zijun; Luo, Caiyun

    2015-12-01

    A modified evaluation method for laser flash is proposed. In this method, the moment of laser-heating cutoff time is considered as zero point. The penetration depth and formula equation of the sample temperature distribution are obtained with the approximate analytical solution before time zero (during laser heating) for the physical model of a continuously heated half-infinite, well-distributed sample. The weighted-average and approximate-equation methods are then used to quantitatively determine the laser effect depth, which leads to the formulation of a modified evaluation method in flash thermal diffusivity measurement. Results of the simulation calculations and experiments confirm the correctness of the modified method, which remarkably increases flash method applications. The modified method is applicable only to cases in which δ(x) does not exceed the sample thickness (√(12ατ0)≤L) during laser heating. PMID:26724057

  17. Contribution to an effective design method for stationary reaction-diffusion patterns.

    PubMed

    Szalai, István; Horváth, Judit; De Kepper, Patrick

    2015-06-01

    The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences. PMID:26117122

  18. Contribution to an effective design method for stationary reaction-diffusion patterns

    NASA Astrophysics Data System (ADS)

    Szalai, István; Horváth, Judit; De Kepper, Patrick

    2015-06-01

    The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.

  19. Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2016-07-01

    We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.

  20. A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection

    PubMed Central

    Song, Yun S.; Steinrücken, Matthias

    2012-01-01

    The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899

  1. Computing quasi-linear diffusion coefficients using the delta-f particle-in-cell method

    SciTech Connect

    Austin, T. M.; Smithe, D. N.; Ranjbar, V.

    2009-11-26

    Linear wave codes AORSA and TORIC couple to the bounce-averaged nonlinear Fokker-Planck code CQL3D through quasi-linear diffusion coefficients. Both linear wave codes rely on the quasi-local approximation that includes only first-order parallel and perpendicular gradient variations of cyclotron frequency and ignores field line curvature along with temperature and density gradient effects. The delta-f particle-in-cell (DFPIC) method has been successfully used for simulating ion-cyclotron fast wave behavior. This method also permits particle behavior such as multiple pass resonance, banana orbits, and superadiabaticity. We present new work on generating quasi-linear diffusion coefficients using the DFPIC method that will permit the electromagnetic particle-in-cell (EMPIC) code, VORPAL, to couple to CQL3D and to compare to AORSA and TORIC. A new multiple weight delta-f approach will be presented that converts velocity derivatives to action derivatives and yields a full tensor quasi-linear diffusion coefficient.

  2. The diffuse-scattering method for investigating locally ordered binary solid solutions

    SciTech Connect

    Epperson, J.E. ); Anderson, J.P. ); Chen, H. . Materials Science and Engineering Dept.)

    1994-01-01

    Diffuse-scattering investigations comprise a series of maturing methods for detailed characterization of the local-order structure and atomic displacements of binary alloy systems. The distribution of coherent diffuse scattering is determined by the local atomic ordering, and analytical techniques are available for extracting the relevant structural information. An extension of such structural investigations, for locally ordered alloys at equilibrium, allows one to obtain pairwise interaction energies. Having experimental pairwise interaction energies for the various coordination shells offers one the potential for more realistic kinetic Ising modeling of alloy systems as they relax toward equilibrium. Although the modeling of atomic displacements in conjunction with more conventional studies of chemical ordering is in its infancy, the method appears to offer considerable promise for revealing additional information about the strain fields in locally ordered and clustered alloys. The diffuse-scattering methods for structural characterization and for the recovery of interaction energies are reviewed, and some preliminary results are used to demonstrate the potential of the kinetic Ising modeling technique to follow the evolution of ordering or phase separation in an alloy system.

  3. Contribution to an effective design method for stationary reaction-diffusion patterns

    SciTech Connect

    Szalai, István; Horváth, Judit; De Kepper, Patrick

    2015-06-15

    The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.

  4. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  5. Fabrication of graded-index plastic optical fiber by the diffusion-assisted coextrusion method

    NASA Astrophysics Data System (ADS)

    Sohn, In-Sung

    Recently, plastic optical fibers (POFs) have drawn significant attention as high-speed transmission media due to their advantages over conventional glass optical fibers such as flexibility and durability. In addition, Grade-Index (GRIN) POFs with smoothly varying refractive indices provide increased data transmission speeds suitable for the short-distance communications such as local area networking or home networking. In this research, the diffusion-assisted coextrusion process is introduced as a method to fabricate GRIN POFs. In this process, two or more polymeric materials containing additives for refractive index modification are fed separately into a coextrusion die where a concentric multi-layer structure is formed. Subsequently, the diffusion of additives take places in a diffusion zone creating a non-equilibrium concentration profile, hence the refractive index profile. A theoretical analysis for the prediction of the refractive index profile obtainable by this process indicates that it is difficult to obtain a near-parabolic refractive index profile with the tubular flow design unless a very large residence time in the diffusion zone is provided. However, significant changes in the refractive index profile can be induced by adopting a multi-layer approach and an annulus flow design. Furthermore, the bandwidth estimated by the ray analysis indicates that even a small variation of the refractive index profile created by the additive diffusion can result in a significant increase in the bandwidth. To verify the findings from theoretical analysis, poly(methyl methacrylate)-base GRIN POFs with diphenyl sulfide and diphenyl sulfoxide as refractive index-modifying dopants were prepared and the effects of various operating conditions such as melt temperatures, flow rates and core-cladding interface positions were investigated. The dopant concentration profile, thus the refractive index profile, characterized by FT-IR spectroscopy, has been shown to be controllable

  6. A deterministic particle method for one-dimensional reaction-diffusion equations

    NASA Technical Reports Server (NTRS)

    Mascagni, Michael

    1995-01-01

    We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.

  7. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

    PubMed Central

    Li, Xiaofan; Nie, Qing

    2015-01-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green’s functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated. PMID:26487788

  8. Construction of the Jacobian matrix for fluorescence diffuse optical tomography using a perturbation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng

    2012-03-01

    Image formation in fluorescence diffuse optical tomography is critically dependent on construction of the Jacobian matrix. For clinical and preclinical applications, because of the highly heterogeneous characteristics of the medium, Monte Carlo methods are frequently adopted to construct the Jacobian. Conventional adjoint Monte Carlo method typically compute the Jacobian by multiplying the photon density fields radiated from the source at the excitation wavelength and from the detector at the emission wavelength. Nonetheless, this approach assumes that the source and the detector in Green's function are reciprocal, which is invalid in general. This assumption is particularly questionable in small animal imaging, where the mean free path length of photons is typically only one order of magnitude smaller than the representative dimension of the medium. We propose a new method that does not rely on the reciprocity of the source and the detector by tracing photon propagation entirely from the source to the detector. This method relies on the perturbation Monte Carlo theory to account for the differences in optical properties of the medium at the excitation and the emission wavelengths. Compared to the adjoint methods, the proposed method is more valid in reflecting the physical process of photon transport in diffusive media and is more efficient in constructing the Jacobian matrix for densely sampled configurations.

  9. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity

    NASA Astrophysics Data System (ADS)

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S.; Yao, Jun; Tao, Wenquan

    2015-01-01

    Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.

  10. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity

    DOE PAGESBeta

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S.; Yao, Jun; Tao, Wenquan

    2015-01-28

    Here, porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsicmore » permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. We find that for the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.« less

  11. Fixed and pulsed gradient diffusion methods in low-field core analysis.

    PubMed

    Leu, Gabriela; Fordham, Edmund J; Hürlimann, Martin D; Frulla, Phil

    2005-02-01

    We review diffusion-weighted relaxation protocols for two-dimensional diffusion/relaxation time (D, T(2)) distributions and their application to fluid-saturated sedimentary rocks at low fields typical of oil-well logging tools (< or = 2 MHz for 1H). Fixed field gradient (FFG) protocols may be implemented in logging tools and in the laboratory; there, pulsed field gradient (PFG) protocols are also available. In either category, direct or stimulated echoes may be used for the diffusion evolution periods. We compare the results of several variant FFG and PFG protocols obtained on liquids and two contrasting sedimentary rocks. For liquids and rocks of negligible internal gradients (g(int)), results are comparable, as expected, for all the studied protocols. For rocks of strong g(int), protocol-dependent artifacts are seen in the joint (D, T2) distributions, consistent with the effects of the internal fields. For laboratory petrophysics, the PFG methods offer several advantages: (a) significantly improved signal-to-noise ratio and acquisition times for repetitions over many samples; (b) freedom from heteronuclear contamination when fluorinated liquids are used in core holders; and (c) a palette of variants--one comparable with the FFG--for the study of rocks of significant g(int). Given suitable hardware, both PFG and FFG methods can be implemented in the same bench-top apparatus, providing a versatile test bed for application in a petrophysical laboratory. PMID:15833632

  12. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity

    SciTech Connect

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S.; Yao, Jun; Tao, Wenquan

    2015-01-28

    Here, porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. We find that for the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.

  13. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity

    PubMed Central

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S.; Yao, Jun; Tao, Wenquan

    2015-01-01

    Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed. PMID:25627247

  14. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity.

    PubMed

    Chen, Li; Zhang, Lei; Kang, Qinjun; Viswanathan, Hari S; Yao, Jun; Tao, Wenquan

    2015-01-01

    Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed. PMID:25627247

  15. An explicit approach to capture diffusive effects in finite water-content method for solving vadose zone flow

    NASA Astrophysics Data System (ADS)

    Zhu, Jianting; Ogden, Fred L.; Lai, Wencong; Chen, Xiangfeng; Talbot, Cary A.

    2016-04-01

    Vadose zone flow problems are usually solved from the Richards equation. Solution to the Richards equation is generally challenging because the hydraulic conductivity and diffusivity in the equation are strongly non-linear functions of water content. The finite water-content method was proposed as an alternative general solution method of the vadose zone flow problem for infiltration, falling slugs, and vadose zone response to water table dynamics based on discretizing the water content domain into numerous bins instead of the traditional spatial discretization. In this study, we develop an improved approach to the original finite water-content method (referred to as TO method hereinafter) that better simulates diffusive effects but retains the robustness of the TO method. The approach treats advection and diffusion separately and considers diffusion on a bin by bin basis. After discretizing into water content bins, we treat the conductivity and diffusivity in individual bins as water content dependent constant evaluated at given water content corresponding to each bin. For each bin, we can solve the flow equations analytically since the hydraulic conductivity and diffusivity can be treated as a constant. We then develop solutions for each bin to determine the diffusive water amounts at each time step. The water amount ahead of the convective front for each bin is redistributed among water content bins to account for diffusive effects. The application of developed solution is straightforward only involving algebraic manipulations at each time step. The method can mainly improve water content profiles, but has no significant difference for the total infiltration rate and cumulative infiltration compared to the TO method. Although the method separately deals with advection and diffusion, it can account for the coupling effects of advection and diffusion reasonably well.

  16. Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods.

    PubMed

    D'Andrea, Cosimo; Obraztsova, Ekaterina A; Farina, Andrea; Taroni, Paola; Lanzani, Guglielmo; Pifferi, Antonio

    2012-11-10

    In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Inkparticles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed. PMID:23142900

  17. Properties of alloy steel powders produced by the method of diffusion impregnation (review)

    SciTech Connect

    Napara-Volgina, S.G.

    1985-06-01

    In their review of research on the properties of alloy steel powders produced by the method of diffusion impregnation, the authors systematize their data into three charts, one on the characteristics of charges and the recommended areas of use of powders, one on the chemical and particle size compositions and technological properties of the powders, and one on the fine crystalline structure of alloy powders of different compositions. The authors recommend the use of such powders, especially powder metallurgy constructional steels, produced by hot stamping and other methods providing high density.

  18. Diffusive Plasma Dechucking Method for Wafers to Reduce Falling Dust Particles

    NASA Astrophysics Data System (ADS)

    Jun, Hyun-Su

    2013-06-01

    A plasma dechucking method capable of effectively eliminating dust particles created during the plasma process was developed. Referred to as diffusive plasma dechucking (DPD), the method reduces the plasma potential and includes an argon gas purge to remove dust particles floating on top of the sheath after the main process. Experimental results indicate that DPD reduces the amount of falling dust particles after the process by approximately 50-80%. To analyze these results quantitatively, the Coulomb force and the neutral drag force exerted on the dust particles were considered. In addition, dust particle exhaust conditions were proposed with respect to dust particle size, plasma potential, and spatial electric field.

  19. A balancing domain decomposition method by constraints for advection-diffusion problems

    SciTech Connect

    Tu, Xuemin; Li, Jing

    2008-12-10

    The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.

  20. Determination of Thermal-Diffusivity Dependence on Temperature of Transparent Samples by Thermal Wave Method

    NASA Astrophysics Data System (ADS)

    Kaźmierczak-Bałata, Anna; Bodzenta, Jerzy; Trefon-Radziejewska, Dominika

    2010-01-01

    The use of a typical measuring cryostat with a standard temperature controller was proposed for investigation of the temperature dependence of the thermal diffusivity of transparent samples. The basic idea is to use the cryostat heater to control the mean sample temperature and to generate the thermal wave in it, simultaneously. Because of the relatively high thermal inertia of the system, the measurements are carried out at frequencies not exceeding 50 mHz. The periodic temperature disturbance in the sample was detected optically by the use of the mirage effect. The proposed method was used for determination of the thermal diffusivity of yttrium aluminum garnet single crystals in a temperature range from 20 °C to 200 °C.

  1. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  2. GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography

    PubMed Central

    Schweiger, Martin

    2011-01-01

    We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution of the inverse problem. The GPU forward solver uses a CUDA implementation that evaluates on the graphics hardware the sparse linear system arising in the finite element formulation of the diffusion equation. We present solutions for both time-domain and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest gains are achieved for high mesh resolutions. PMID:22013431

  3. New method for obtaining drift mobility and diffusion coefficient and their relation in photorefractive polymers

    NASA Astrophysics Data System (ADS)

    Hirao, Akiko; Nishizawa, Hideyuki; Tsukamoto, Takayuki; Matsumoto, Kazuki

    1999-10-01

    A new easy method for obtaining a drift mobility and a diffusion coefficient from a nondispersive time-of-flight transient has been developed. Nondispersive transients are described well in the theoretical photocurrent equation (PTE) based on the fact that a carrier packet drifts at a constant velocity and is spread by diffusion, the top electrode acts as a reflecting and partially absorbing wall, and the counter electrode acts as an absorbing wall. The fitting of the PTE to photocurrent transients gives the mobility and the diffusion coefficient (D) simultaneously. These are suitable characteristic values for descriptions of carriers transport because they do not show the thickness dependence and the negative field dependence in a low electric field. The mobility that sometimes shows the thickness dependence and the negative field dependence in a low electric field, however, has usually been measured from the time of the intersection of the asymptotes to the plateau and trailing edge of the transients. In order to obtain (mu) a from photocurrent transients by a simple method, we have tried to describe t0 and tail-broadening parameter W as functions of (mu) a and D, where W is defined as (t1/2 - t0)/t1/2 and t1/2 is the time at which the current is a half of that in the plateau region. The dependences of calculated (mu) k and W on the electric field and the sample thickness agreed well with those of the experimental data. These results verify the PTE and suggest that (mu) a and D can be calculated from t0 and W. We also report that the diffusion coefficient is proportional to the power of 2 of the mobility. This result agrees with a theory based on the Langevin equation which describes motions of carriers in a fluctuated field.

  4. Social diffusion of novel foraging methods in brown capuchin monkeys (Cebus apella)

    PubMed Central

    Dindo, Marietta; Thierry, Bernard; Whiten, Andrew

    2007-01-01

    It has been reported that wild capuchin monkeys exhibit several group-specific behavioural traditions. By contrast, experiments have found little evidence for the social learning assumed necessary to support such traditions. The present study used a diffusion chain paradigm to investigate whether a novel foraging task could be observationally learned by capuchins (Cebus apella) and then transmitted along a chain of individuals. We used a two-action paradigm to control for independent learning. Either of two methods (lift or slide) could be used to open the door of a foraging apparatus to retrieve food. Two chains were tested (N1=4; N2=5), each beginning with an experimenter-trained model who demonstrated to a partner its group-specific method for opening the foraging apparatus. After the demonstration, if the observer was able to open the apparatus 20 times by either method, then it became the demonstrator for a new subject, thus simulating the spread of a foraging tradition among ‘generations’ of group members. Each method was transmitted along these respective chains with high fidelity, echoing similar results presently available only for chimpanzees and children. These results provide the first clear evidence for faithful diffusion of alternative foraging methods in monkeys, consistent with claims for capuchin traditions in the wild. PMID:17971322

  5. Determination of the thermal diffusivity of pure and doped yttrium orthovanadate by Ångström's method

    NASA Astrophysics Data System (ADS)

    Bodzenta, J.; Kaźmierczak-Bałata, A.; Łukasiewicz, T.; Pyka, M.

    2008-01-01

    Thermal diffusivities of pure YVO{4} single crystal and single crystals doped with Nd, Tm and Ca ions are measured using a modified Ångström's method. Measurements were carried out for main crystallographic directions ([100], [010] and [001]). Obtained results show that the thermal diffusivity in [001] direction is considerably higher than in (001) plane. Decrease of the thermal diffusivity is observed with growing concentration of dopants. For the heavier doped sample (5% at. of Tm + 0.4% at. of Ca) a drop of the thermal diffusivity is about 35%. The current investigation is a part of research project 3 T08A 035 29.

  6. Characterizing magnetic resonance signal decay due to Gaussian diffusion: the path integral approach and a convenient computational method

    PubMed Central

    Özarslan, Evren; Westin, Carl-Fredrik; Mareci, Thomas H.

    2016-01-01

    The influence of Gaussian diffusion on the magnetic resonance signal is determined by the apparent diffusion coefficient (ADC) and tensor (ADT) of the diffusing fluid as well as the gradient waveform applied to sensitize the signal to diffusion. Estimations of ADC and ADT from diffusion-weighted acquisitions necessitate computations of, respectively, the b-value and b-matrix associated with the employed pulse sequence. We establish the relationship between these quantities and the gradient waveform by expressing the problem as a path integral and explicitly evaluating it. Further, we show that these important quantities can be conveniently computed for any gradient waveform using a simple algorithm that requires a few lines of code. With this representation, our technique complements the multiple correlation function (MCF) method commonly used to compute the effects of restricted diffusion, and provides a consistent and convenient framework for studies that aim to infer the microstructural features of the specimen. PMID:27182208

  7. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.

    PubMed

    Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan

    2016-08-01

    The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too. PMID:26729528

  8. Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method

    NASA Astrophysics Data System (ADS)

    Price, H. C.; Murray, B. J.; Mattsson, J.; O'Sullivan, D.; Wilson, T. W.; Baustian, K. J.; Benning, L. G.

    2014-04-01

    Recent research suggests that under certain temperature and relative humidity conditions atmospheric aerosol may be present in the form of a glassy solid. In order to understand the impacts that this may have on aerosol-cloud interactions and atmospheric chemistry, knowledge of water diffusion within such aerosol particles is required. Here, a method is described in which Raman spectroscopy is used to observe D2O diffusion in high-viscosity aqueous solutions, enabling a quantitative assessment of water diffusion coefficients, Dwater, as a function of relative humidity. Results for sucrose solutions compare well with literature data at 23.5 ± 0.3 °C, and demonstrate that water diffusion is slow (Dwater ~5 × 10-17 m2 s-1), but not arrested, just below the glass transition at a water activity of 0.2. Room temperature water diffusion coefficients are also presented for aqueous levoglucosan and an aqueous mixture of raffinose, dicarboxylic acids and ammonium sulphate: at low humidity, diffusion is retarded but still occurs on millisecond to second timescales in atmospherically relevant-sized particles. The effect of gel formation on diffusion in magnesium sulfate solutions is shown to be markedly different from the gradual decrease in diffusion coefficients of highly viscous liquids. We show that using the Stokes-Einstein equation to determine diffusion timescales from viscosity leads to values which are more than 5 orders of magnitude too big, which emphasises the need to make measurements of diffusion coefficients. In addition, comparison of bounce fraction data for levoglucosan with measured diffusion data reveals that even when particles bounce the diffusion timescales for water are a fraction of a second for a 100 nm particle. This suggests a high bounce fraction does not necessarily indicate retarded water diffusion.

  9. Lattice simulation method to model diffusion and NMR spectra in porous materials.

    PubMed

    Merlet, Céline; Forse, Alexander C; Griffin, John M; Frenkel, Daan; Grey, Clare P

    2015-03-01

    A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques. PMID:25747093

  10. Diffusivity and porosity in rock matrix-laboratory methods using artificial and natural tracers

    SciTech Connect

    Valkiainen, M.; Olin, M.; Uusheimo, K.; Kumpulainen, H.; Lehikoinene, J.; Muurinen, A.

    1993-12-31

    The nature of diffusivity and porosity in crystalline rock was studied by electrical conductivity measurements, steady-state diffusion experiments, saturation-leaching of tracers with cylindrical rock samples and analysis of the concentrations of different elements from core samples or pore water near fractures. The phenomena of main interest were dead-end porosity, ion-exclusion, sorption, and the continuity of pore networks. The modelling of experimental results was based on a modified Fick`s second law for diffusion, which was solved either by analytical or numerical methods. The measured D{sub e} and {epsilon} were found to statistically follow an exponential presentation: Archie`s law. The existence of ion-exclusion for anions was confirmed. The connectivity of the pore network extended in the laboratory experiments at least six centimetres, in coarse of the pore network extended in the laboratory experiments at least six centimetres, in coarse-grained granite in nature several metres but in fine-grained rock samples of a uranium deposit the element mobilization effects could be seen only to the depth of 2-3 centimetres.

  11. A method to analyze the diffuse gamma-ray emission with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, Markus; Johannesson, Gueolaugur; Digel, Seth; Moskalenko, Igor V.; Reimer, Olaf; Porter, Troy; Strong, Andrew

    2008-12-24

    The Fermi Gamma-Ray Space Telescope with its main instrument the LAT is the most sensitive {gamma}-ray telescope in the energy region between 30 MeV and 100 GeV. One of the prime scientific goals of this mission is the measurement and interpretation of the diffuse Galactic and extragalactic {gamma}-ray emission. While not limited by photon statistics, this analysis presents several challenges: Instrumental response functions, residual background from cosmic rays as well as resolved and unresolved foreground {gamma}-ray sources have to be taken carefully into account in the interpretation of the data. Detailed modeling of the diffuse {gamma}-ray emission is being performed and will form the basis of the investigations. We present the analysis approach to be applied to the Fermi LAT data, namely the modeling of the diffuse emission components and the background contributions, followed by an all-sky maximum-likelihood fitting procedure. We also report on the performance of this method evaluated in tests on simulated Fermi LAT and real EGRET data.

  12. Localized axial Green's function method for the convection-diffusion equations in arbitrary domains

    NASA Astrophysics Data System (ADS)

    Lee, Wanho; Kim, Do Wan

    2014-10-01

    A localized axial Green's function method (LAGM) is proposed for the convection-diffusion equation. The axial Green's function method (AGM) enables us to calculate the numerical solution of a multi-dimensional problem using only one-dimensional Green's functions for the axially split differential operators. This AGM has been developed not only for the elliptic boundary value problems but also for the steady Stokes flows, however, this paper is concerned with the localization of the AGM. This localization of the method is needed for practical purpose when computing the axial Green's function, specifically for the convection-diffusion equation on a line segment that we call the local axial line. Although our focus is mainly on the convection-dominated cases in arbitrary domains, this method can solve other cases in a unified way. Numerical results show that, despite irregular types of discretization on an arbitrary domain, we can calculate the numerical solutions using the LAGM without loss of accuracy even in cases of large convection. In particular, it is also shown that randomly distributed axial lines are available in our LAGM and complicated domains are not a burden.

  13. Nuclemeter: a reaction-diffusion based method for quantifying nucleic acids undergoing enzymatic amplification.

    PubMed

    Liu, Changchun; Sadik, Mohamed M; Mauk, Michael G; Edelstein, Paul H; Bushman, Frederic D; Gross, Robert; Bau, Haim H

    2014-01-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in medical and biotechnological applications. In the case of infectious diseases, such as HIV, quantification of the pathogen-load in patient specimens is critical to assess disease progression and effectiveness of drug therapy. Typically, nucleic acid quantification requires expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low-resource settings. This paper describes a simple, low-cost, reaction-diffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. The method was tested for HIV viral load monitoring and performed on par with conventional benchtop methods. The proposed method is suitable for nucleic acid quantification at point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. PMID:25477046

  14. Self-feeding MUSE: a robust method for high resolution diffusion imaging using interleaved EPI.

    PubMed

    Zhang, Zhe; Huang, Feng; Ma, Xiaodong; Xie, Sheng; Guo, Hua

    2015-01-15

    Single-shot echo planar imaging (EPI) with parallel imaging techniques has been well established as the most popular method for clinical diffusion imaging, due to its fast acquisition and motion insensitivity. However, this approach is limited by the relatively low spatial resolution and image distortion. Interleaved EPI is able to break the limitations but the phase variations among different shots must be considered for artifact suppression. The introduction of multiplexed sensitivity-encoding (MUSE) can address the phase issue using sensitivity encoding (SENSE) for self-navigation of each interleave. However, MUSE has suboptimal results when the number of shots is high. To achieve higher spatial resolution and lower geometric distortion, we introduce two new schemes into the MUSE framework: 1) a self-feeding mechanism is adopted by using prior information regularized SENSE in order to obtain reliable phase estimation; and 2) retrospective motion detection and data rejection strategies are performed to exclude unusable data corrupted by severe pulsatile motions. The proposed method is named self-feeding MUSE (SF-MUSE). Experiments on healthy volunteers demonstrate that this new SF-MUSE approach provides more accurate motion-induced phase estimation and fewer artifacts caused by data corruption when compared with the original MUSE method. SF-MUSE is a robust method for high resolution diffusion imaging and suitable for practical applications with reasonable scan time. PMID:25451470

  15. A Method for Studying Atomic Diffusion by STM Tip-Crash Induced Vacancy Island Coalescence

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Lange, A. P.; Ray, M. P.; Sosolik, C. E.

    2007-11-01

    The study of vacancy and adatom island motion on single crystal metals with the scanning tunneling microscope (STM) has explained many of the underlying atomic diffusion mechanisms responsible for movement of atoms on a surface. We present a new method for vacancy island creation at room temperature using a controlled mechanical tip-surface interaction. The method allows us to control the relative positions and initial sizes of vacancy islands with respect to one another and to surface defects. Complicated and closely spaced vacancy island configurations can also be engineered. This enhances our ability to collect statistics on the movement of the macro-scale vacancy islands and distinguish between mass transport channels. To demonstrate the technique, time series analysis of coalescence events on the surface of Ag(111) is presented. Diffusion coefficients of the Ag surface atoms obtained with this method are in general agreement with previous stochastic methods for creating vacancy islands such as low-dose sputtering [1]. [1] M. Eßer, K. Morgenstern, G. Rosenfeld, G. Comsa, Surf. Sci. 402-404, 341 (1998).

  16. Velocity, correlation time and diffusivity measurements in highly turbulent gas flow by an MRI method

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Newling, Ben

    2007-03-01

    We present non-invasive, quantitative MRI wind-tunnel measurements in flowing gas (velocity > 10 m/s) at high Reynolds numbers (Re > 10^5). Our measurement method is three-dimensional and has the potential for saving time over traditional pointwise techniques. The method is suitable for liquids and for gases. We demonstrate the use of the technique on different test sections (bluff obstruction, clark Y-wing and cylinder). The mean velocity of gas flowing past those sections has been measured. We also investigate methods to measure flow correlation times by changing the acquisition interval between excitation of the sample and detection of the signal. This may be accomplished by making separate measurements or by using a multiple-point acquisition method. A measurement of correlation time allows us to map turbulent diffusivity. The MRI data are compared with computational fluid dynamics.

  17. A diffuse-interface method for two-phase flows with soluble surfactants.

    PubMed

    Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel

    2011-01-20

    A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier-Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125

  18. A diffuse-interface method for two-phase flows with soluble surfactants

    PubMed Central

    Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel

    2010-01-01

    A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125

  19. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Jamelot, Erell; Ciarlet, Patrick

    2013-05-01

    Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart-Thomas-Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code. APOLLO3 is a registered trademark in France.

  20. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation

    SciTech Connect

    Jamelot, Erell; Ciarlet, Patrick

    2013-05-15

    Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart–Thomas–Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code.

  1. A new method for choosing the computational cell in stochastic reaction–diffusion systems

    PubMed Central

    Kang, Hye-Won; Zheng, Likun; Othmer, Hans G.

    2013-01-01

    How to choose the computational compartment or cell size for the stochastic simulation of a reaction–diffusion system is still an open problem, and a number of criteria have been suggested. A generalized measure of the noise for finite-dimensional systems based on the largest eigenvalue of the covariance matrix of the number of molecules of all species has been suggested as a measure of the overall fluctuations in a multivariate system, and we apply it here to a discretized reaction–diffusion system. We show that for a broad class of first-order reaction networks this measure converges to the square root of the reciprocal of the smallest mean species number in a compartment at the steady state. We show that a suitably re-normalized measure stabilizes as the volume of a cell approaches zero, which leads to a criterion for the maximum volume of the compartments in a computational grid. We then derive a new criterion based on the sensitivity of the entire network, not just of the fastest step, that predicts a grid size that assures that the concentrations of all species converge to a spatially-uniform solution. This criterion applies for all orders of reactions and for reaction rate functions derived from singular perturbation or other reduction methods, and encompasses both diffusing and non-diffusing species. We show that this predicts the maximal allowable volume found in a linear problem, and we illustrate our results with an example motivated by anterior-posterior pattern formation in Drosophila, and with several other examples. PMID:22071651

  2. Estimating Effective Vertical Diffusivity in Shallow Ponds by a Constrained Flux-Gradient Method

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Torgersen, T.

    2004-12-01

    Shallow ponds have been used to mitigate the deleterious effects of storm water run-off by acting as detention/retention basins that sequester run-off associated pollutants in sediments. Studies show that the retention efficiency of these systems can decrease over time as a result of the internal loading of nutrients/contaminants from the sediments back to the water column where they are available for export downstream. Quantifying the vertical transport of gases (down) and sediment derived materials (up) is vital to the modeling and understanding of the processes that contribute to the magnitude of internal loading. A critical parameter is the effective vertical diffusion coefficient: Kz=Dmolecular +Deddy (cm2 sec-1). The flux gradient method for estimating effective vertical thermal diffusivity has been applied with success in large lakes which undergo stratification cycles on seasonal or longer time scales. We offer a constrained version of the flux-gradient method that has been adapted for use in a shallow pond with a daily stratification cycle. The method employs heat as a tracer and assumes that transport in the face of a stable gradient is diffusive. By shrinking the spatial and temporal resolution of measurement to scales appropriate to the system of interest and carefully accounting for internal source and sink terms of heat (e.g solar radiation and sediment heat fluxes) we are able to calculate Kz as a function of time and depth during periods of stable stratification, i.e when the pond is not vertically well-mixed. Results show the magnitude of Kz varies from ca. 10-3 to 10-1 (cm2 sec-1) under stratified conditions depending primarily on the strength of stratification.

  3. cAMP diffusion in Dictyostelium discoideum: A Green's function method

    NASA Astrophysics Data System (ADS)

    Calovi, Daniel S.; Brunnet, Leonardo G.; de Almeida, Rita M. C.

    2010-07-01

    A Green’s function method is developed to approach the spatiotemporal equations describing the cAMP production in Dictyostelium discoideum, markedly reducing numerical calculations times: cAMP concentrations and gradients are calculated just at the amoeba locations. A single set of parameters is capable of reproducing the different observed behaviors, from cAMP synchronization, spiral waves and reaction-diffusion patterns to streaming and mound formation. After aggregation, the emergence of a circular motion of amoebas, breaking the radial cAMP field symmetry, is observed.

  4. Axial expansion methods for solution of the multi-dimensional neutron diffusion equation

    SciTech Connect

    Beaklini Filho, J.F.

    1984-01-01

    The feasibility and practical implementation of axial expansion methods for the solution of the multi-dimensional multigroup neutron diffusion (MGD) equations is investigated. The theoretical examination which is applicable to the general MGD equations in arbitrary geometry includes the derivation of a new weak (reduced) form of the MGD equations by expanding the axial component of the neutron flux in a series of known trial functions and utilizing the Galerkin weighting. A general two-group albedo boundary condition is included in the weak form as a natural boundary condition. The application of different types of trial functions is presented.

  5. An Ion Diffusion Method for Visualising a Solid-like Water Nanofilm

    PubMed Central

    Wang, Ya; Duan, Zhiguang; Fan, Daidi

    2013-01-01

    A nano-thick solid-like water film on solid surfaces plays an important role in various fields, including biology, materials science, atmospheric chemistry, catalysis and astrophysics. Visualising the water nanofilm has been a challenge due to its dynamic nature and nanoscale thickness. Here we report an ion diffusion method to address this problem using a membrane formed with a BSA-Na2CO3 (BSA, bovine serum albumin) mixture. After a solid-like water nanofilm deposits onto the membrane, Na+ and CO32− ions diffuse into the film to form a solid Na2CO3 phase in its place. Consequently, the morphology of the nanofilm can be visualised by the space filled by the Na2CO3. Using this method, we successfully observed polygon-like, ribbon-like and spot-like nanofilms at 193 K, 253 K and room temperature, respectively. Our method may provide a tool for characterising confined water films ranging from a few nanometres to hundreds of nanometres in thickness. PMID:24336341

  6. Synthesis of metal-organic framework films by pore diffusion method

    NASA Astrophysics Data System (ADS)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  7. 3D modeling for solving forward model of no-contact fluorescence diffuse optical tomography method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Chabrier, R.; Torregrossa, M.; Poulet, P.

    2009-07-01

    This paper presents detailed computational aspects of a new 3D modeling for solving the direct problem in a no-contact time-resolved Fluorescent Diffuse Optical Tomography (FDOT) method that rely on near-infrared scattered and fluorescent photons to image the optical properties and distribution of fluorescent probes in small laboratory animals. An optical scanner allowing performing in-vivo measurements in no-contact scheme was built in our laboratory and is presented. We use the three-dimensional Finite Element Method (FEM) to solve the coupled diffusion equations of excitation and fluorescence photons in highly scattering objects. The computed results allowed yielding photon density maps and the temporal profiles of photons on the surface of the small animal. Our 3D modeling of propagation of photons in the void space between the surface of the object and the detectors allows calculating the quantity of photons reaching the optodes. Simulations were carried-out on two test objects: a resin cylinder and a mouse phantom. The results demonstrate the potential applications of the method to pre-clinical imaging.

  8. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    SciTech Connect

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence rate of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.

  9. Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method

    PubMed Central

    Akhgari, Abbas; Sadeghi, Hasti; Dabbagh, Mohammad Ali

    2014-01-01

    Objective(s): The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Materials and Methods: Corn starch was dissolved in hydrochloric acid at 80°C and then ethanol as a non-solvent was added with lowering temperature until the formation of a precipitate of modified starch. Flow parameters, particle size and thermal behavior of the treated powders were compared with the native starch. Finally, the 1:1 mixture of naproxen and each excipient was tabletted, and hardness and friability of different tablets were evaluated. Results: Larger and well shaped agglomerates were formed which showed different thermal behavior. Treated starch exhibited suitable flow properties and tablets made by the treated powder had relatively high hardness. Conclusion: It was found that recrystallization of corn starch by quasi emulsion solvent diffusion method could improve its flowability and compressibility characteristics. PMID:25422746

  10. Calculation methods for ventricular diffusion-weighted imaging thermometry: phantom and volunteer studies.

    PubMed

    Sakai, Koji; Yamada, Kei; Sugimoto, Naozo

    2012-02-01

    A method for the measurement of temperature in the lateral ventricle using diffusion-weighted imaging (DWI) has been proposed recently. This method uses predetermined arbitrary thresholds, but a more objective method of calculation would be useful. We therefore compared four different calculation methods, two of which were newly created and did not require predetermined thresholds. A rectangular polyethylene terephthalate bottle (8 × 10 × 28 cm(3)) was filled with heated water (35.0-38.8 °C) and used as a water phantom. The DWI data of 23 healthy subjects (aged 26-75 years; mean ± standard deviation, 50.13 ± 19.1 years) were used for this study. The temperature was calculated using the following equation: T(°C) = 2256.74/ln(4.39221/D) - 273.15, where D is the diffusion coefficient. The mean ventricular temperature was calculated by four methods: two thresholding methods and two histogram curve-fitting methods. As a reference, we used the temperature measured at the tympanic membrane, which is known to be approximately 1 °C lower than the brain temperature. The averaged differences in temperature between mercury thermometry and classical predetermined thresholding methods for the water phantom were 0.10 ± 0.42 and 0.05 ± 0.41 °C, respectively. The histogram curve-fitting methods, however, yielded temperatures a little lower (averaged differences of -0.24 ± 0.32 and -0.14 ± 0.31 °C, respectively) than mercury thermometry. There was very little difference in temperature between tympanic thermometry and classical predetermined thresholding methods (+0.01 and -0.07 °C, respectively). In humans, however, the histogram curve-fitting methods yielded temperatures approximately 1 °C higher (+1.04 °C and +1.36 °C, respectively), suggesting that temperatures measured in this way more closely approximate the true brain temperature. The histogram curve-fitting methods were more objective and better

  11. Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method

    NASA Astrophysics Data System (ADS)

    Price, H. C.; Murray, B. J.; Mattsson, J.; O'Sullivan, D.; Wilson, T. W.; Baustian, K. J.; Benning, L. G.

    2013-11-01

    Recent research suggests that under certain temperature and relative humidity conditions atmospheric aerosol may be present in the form of a glassy solid. In order to understand the impacts that this may have on aerosol-cloud interactions and atmospheric chemistry, knowledge of water diffusion within such aerosol particles is required. Here, a method is described in which Raman spectroscopy is used to observe D2O diffusion in high-viscosity aqueous solutions, enabling a quantitative assessment of water diffusion coefficients, Dwater, as a function of relative humidity. Results for sucrose solutions compare well with literature data at 23.5 ± 0.3 °C, and demonstrate that water diffusion is slow (Dwater~5 ×10-17m2s-1), but not arrested, just below the glass transition. Room temperature water diffusion coefficients are also presented for aqueous levoglucosan and an aqueous mixture of raffinose, dicarboxylic acids and ammonium sulphate: at low humidity, diffusion is retarded but still occurs on millisecond to second timescales in atmospherically relevant-sized particles. The effect of gel formation on diffusion in magnesium sulfate solutions is shown to be markedly different from the gradual decrease in diffusion coefficients of highly viscous liquids. We show that using the Stokes-Einstein equation to determine diffusion timescales from viscosity leads to values which are more than five orders of magnitude too big, which emphasises the need to make measurements of diffusion coefficients. In addition, comparison of bounce fraction data for levoglucosan with measured diffusion data reveals that even when particles bounce the equilibration timescales for water are a fraction of a second for a 100 nm particle. This suggests a high bounce fraction does not necessarily indicate retarded water diffusion.

  12. A comparison between the fission matrix method, the diffusion model and the transport model

    SciTech Connect

    Dehaye, B.; Hugot, F. X.; Diop, C. M.

    2013-07-01

    The fission matrix method may be used to solve the critical eigenvalue problem in a Monte Carlo simulation. This method gives us access to the different eigenvalues and eigenvectors of the transport or fission operator. We propose to compare the results obtained via the fission matrix method with those of the diffusion model, and an approximated transport model. To do so, we choose to analyse the mono-kinetic and continuous energy cases for a Godiva-inspired critical sphere. The first five eigenvalues are computed with TRIPOLI-4{sup R} and compared to the theoretical ones. An extension of the notion of the extrapolation distance is proposed for the modes other than the fundamental one. (authors)

  13. Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Song, Yicheng; Zhang, Junqian

    2016-07-01

    This article demonstrates the design of charging strategies for lithium ion batteries with considering the balance between diffusion induced stress and total charge time for two- and three-stage charge methods. For the two-stage galvanostatic-potentiostatic charge method the low mechanical stress can be achieved without increasing total charge time by switching the galvanostatic to the potentiostatic at the time moment when the lithium concentration at the surface of particles reaches the limit cbarsurf = 0 . A three-stage method, which consists of an initial galvanostatic stage of high current, a galvanostatic stage of low current and a potentiostatic ending stage, is suggested. Employing the initial galvanostatic stage of high current is helpful not only in accelerating the charge process, but also in controlling the mechanical stress once the electrical current and time duration of the initial galvanostatic stage are properly designed.

  14. An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Fernandes, Ryan I.; Fairweather, Graeme

    2012-08-01

    An alternating direction implicit (ADI) orthogonal spline collocation (OSC) method is described for the approximate solution of a class of nonlinear reaction-diffusion systems. Its efficacy is demonstrated on the solution of well-known examples of such systems, specifically the Brusselator, Gray-Scott, Gierer-Meinhardt and Schnakenberg models, and comparisons are made with other numerical techniques considered in the literature. The new ADI method is based on an extrapolated Crank-Nicolson OSC method and is algebraically linear. It is efficient, requiring at each time level only O(N) operations where N is the number of unknowns. Moreover, it is shown to produce approximations which are of optimal global accuracy in various norms, and to possess superconvergence properties.

  15. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    SciTech Connect

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figure 1 is the evolution of the diffusion profiles of a containment granuloma over time.

  16. A method for modeling oxygen diffusion in an agent-based model with application to host-pathogen infection

    DOE PAGESBeta

    Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.

    2015-01-01

    This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figuremore » 1 is the evolution of the diffusion profiles of a containment granuloma over time.« less

  17. A Sparse Representation Based Method to Classify Pulmonary Patterns of Diffuse Lung Diseases

    PubMed Central

    Xu, Rui; Tachibana, Rie; Kido, Shoji

    2015-01-01

    We applied and optimized the sparse representation (SR) approaches in the computer-aided diagnosis (CAD) to classify normal tissues and five kinds of diffuse lung disease (DLD) patterns: consolidation, ground-glass opacity, honeycombing, emphysema, and nodule. By using the K-SVD which is based on the singular value decomposition (SVD) and orthogonal matching pursuit (OMP), it can achieve a satisfied recognition rate, but too much time was spent in the experiment. To reduce the runtime of the method, the K-Means algorithm was substituted for the K-SVD, and the OMP was simplified by searching the desired atoms at one time (OMP1). We proposed three SR based methods for evaluation: SR1 (K-SVD+OMP), SR2 (K-Means+OMP), and SR3 (K-Means+OMP1). 1161 volumes of interest (VOIs) were used to optimize the parameters and train each method, and 1049 VOIs were adopted to evaluate the performances of the methods. The SR based methods were powerful to recognize the DLD patterns (SR1: 96.1%, SR2: 95.6%, SR3: 96.4%) and significantly better than the baseline methods. Furthermore, when the K-Means and OMP1 were applied, the runtime of the SR based methods can be reduced by 98.2% and 55.2%, respectively. Therefore, we thought that the method using the K-Means and OMP1 (SR3) was efficient for the CAD of the DLDs. PMID:25821509

  18. A sparse representation based method to classify pulmonary patterns of diffuse lung diseases.

    PubMed

    Zhao, Wei; Xu, Rui; Hirano, Yasushi; Tachibana, Rie; Kido, Shoji

    2015-01-01

    We applied and optimized the sparse representation (SR) approaches in the computer-aided diagnosis (CAD) to classify normal tissues and five kinds of diffuse lung disease (DLD) patterns: consolidation, ground-glass opacity, honeycombing, emphysema, and nodule. By using the K-SVD which is based on the singular value decomposition (SVD) and orthogonal matching pursuit (OMP), it can achieve a satisfied recognition rate, but too much time was spent in the experiment. To reduce the runtime of the method, the K-Means algorithm was substituted for the K-SVD, and the OMP was simplified by searching the desired atoms at one time (OMP1). We proposed three SR based methods for evaluation: SR1 (K-SVD+OMP), SR2 (K-Means+OMP), and SR3 (K-Means+OMP1). 1161 volumes of interest (VOIs) were used to optimize the parameters and train each method, and 1049 VOIs were adopted to evaluate the performances of the methods. The SR based methods were powerful to recognize the DLD patterns (SR1: 96.1%, SR2: 95.6%, SR3: 96.4%) and significantly better than the baseline methods. Furthermore, when the K-Means and OMP1 were applied, the runtime of the SR based methods can be reduced by 98.2% and 55.2%, respectively. Therefore, we thought that the method using the K-Means and OMP1 (SR3) was efficient for the CAD of the DLDs. PMID:25821509

  19. Electrochemical Sensing of Dopamine and Antibacterial Properties of ZnO Nanoparticles Synthesized from Solution Combustion Method

    NASA Astrophysics Data System (ADS)

    Manjunath, K.; Lingaraju, K.; Kumar, D.; Nagabhushan, H.; Samrat, D.; Reddy, V.; Dupont, J.; Ramakrishnappa, T.; Nagaraju, G.

    2015-03-01

    We have successfully synthesized ZnO nanoparticles (NPs) from solution combustion method using combustible fuel (Green gram). XRD pattern confirms that the prepared compound is composed of wurtzite hexagonal zinc-oxide. FTIR spectrum of ZnO NPs shows the band at 417 cm-1 associated with the characteristic vibration of Zn-O. The UV-Vis spectrum shows a strong absorption band at 365 nm which is blue shifted due to quantum confinement effect. TEM images show the average sizes of the nanoparticles are found to be almost 15-30 nm. The as-synthesized product shows good electrochemical sensing of dopamine. Furthermore the antibacterial properties of ZnO NPs were investigated by their bactericidal activity against four bacterial strains using the agar well diffusion method.

  20. Numerical Modeling of Deep Mantle Convection: Advection and Diffusion Schemes for Marker Methods

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2013-04-01

    Thermal and chemical evolution of Earth's deep mantle can be studied by modeling vigorous convection in a chemically heterogeneous fluid. Numerical modeling of such a system poses several computational challenges. Dominance of heat advection over the diffusive heat transport, and a negligible amount of chemical diffusion results in sharp gradients of thermal and chemical fields. The exponential dependence of the viscosity of mantle materials on temperature also leads to high gradients of the velocity field. The accuracy of many numerical advection schemes degrades quickly with increasing gradient of the solution, while the computational effort, in terms of the scheme complexity and required resolution, grows. Additional numerical challenges arise due to a large range of length-scales characteristic of a thermochemical convection system with highly variable viscosity. To examplify, the thickness of the stem of a rising thermal plume may be a few percent of the mantle thickness. An even thinner filament of an anomalous material that is entrained by that plume may consitute less than a tenth of a percent of the mantle thickness. We have developed a two-dimensional FEM code to model thermochemical convection in a hollow cylinder domain, with a depth- and temperature-dependent viscosity representative of the mantle (Steinberger and Calderwood, 2006). We use marker-in-cell method for advection of chemical and thermal fields. The main advantage of perfoming advection using markers is absence of numerical diffusion during the advection step, as opposed to the more diffusive field-methods. However, in the common implementation of the marker-methods, the solution of the momentum and energy equations takes place on a computational grid, and nodes do not generally coincide with the positions of the markers. Transferring velocity-, temperature-, and chemistry- information between nodes and markers introduces errors inherent to inter- and extrapolation. In the numerical scheme

  1. Blood species identification using Near-Infrared diffuse transmitted spectra and PLS-DA method

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Zhang, Shengzhao; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2016-05-01

    Blood species identification is of great significance for blood supervision and wildlife investigations. The current methods used to identify the blood species are destructive. Near-Infrared spectroscopy method is known for its non-invasive properties. In this research, we combined Near-Infrared diffuse transmitted spectra and Partial Least Square Discrimination Analysis (PLS-DA) to identify three blood species, including macaque, human and mouse. Blind test and external test were used to assess the PLS-DA model. The model performed 100% accuracy in its identification between three blood species. This approach does not require a specific knowledge of biochemical features for each individual class but relies on a spectroscopic statistical differentiation of the whole components. This is the first time to demonstrate Near-Infrared diffuse transmitted spectra have the ability to identify the species of origin of blood samples. The results also support a good potential of absorption and scattering spectroscopy for species identification in practical applications for real-time detection.

  2. A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows

    SciTech Connect

    Ray A. Berry; Richard Saurel; Fabien Petitpas

    2009-05-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.

  3. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  4. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  5. Application of a Particle Method to the Advection-Diffusion-Reaction Equation

    NASA Astrophysics Data System (ADS)

    Paster, A.; Bolster, D.; Benson, D. A.

    2012-12-01

    A reaction between two chemical species can only happen if molecules collide and react. Thus, the mixing of a system can become a limiting factor in the onset of reaction. Solving for reaction rate in a well-mixed system is typically a straightforward task. However, when incomplete mixing kicks in, obtaining a solution becomes more challenging. Since reaction can only happen in regions where both reactants co-exist, the incomplete mixing may slow down the reaction rate, when compared to a well-mixed system. The effect of incomplete mixing upon reaction is a highly important aspect of various processes in natural and engineered systems, ranging from mineral precipitation in geological formations to groundwater remediation in aquifers. We study a relatively simple system with a bi-molecular irreversible kinetic reaction A+B → Ø where the underlying transport of reactants is governed by an advection-diffusion equation, and the initial concentrations are given in terms of an average and a perturbation. Such a system does not have an analytical solution to date, even for the zero advection case. We model the system by a Monte Carlo particle tracking method, where particles represent some reactant mass. In this method, diffusion is modeled by a random walk of the particles, and reaction is modeled by annihilation of particles. The probability of the annihilation is proportional to the reaction rate constant and the probability density associated with particle co-location. We study the numerical method in depth, characterizing typical numerical errors and time step restrictions. In particular, we show that the numerical method converges to the advection-diffusion-reaction equation at the limit Δt →0. We also rigorously derive the relationship between the initial number of particles in the system and the initial concentrations perturbations represented by that number. We then use the particle simulations of zero-advection system to demonstrate the well

  6. Efficient method for near real-time diffuse optical tomography of the human brain

    NASA Astrophysics Data System (ADS)

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-07-01

    Previous studies have showed only regions with a sensitivity higher that 1% of the maximum value can affect the recovery result for diffuse optical tomography (DOT). Two methods of efficient sensitivity map generation based on Finite Element Models (FEM) are developed based on (1) reduced sensitivity matrix and (2) parallelisation process. Time and memory efficiency of these processes are evaluated and compared with conventional methods. It is shown that the computational time for a full head model containing 200k nodes is reduced from 3 hours to 48 minutes and the required memory is reduced from 5.5 GB to 0.5 GB. For a range of mesh densities up to 320k nodes, the required memory is improved by ~1000% and computational time by ~400% to allow near real-time image recovery.

  7. Biodegradable and magnetic core-shell composite particle prepared by emulsion solvent diffusion method

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2016-02-01

    The present paper describes optimization of preparation conditions of a core-shell composite particle, and its heat generation by alternating magnetic fields. The composite particles are prepared with a modified emulsion solvent diffusion method, which is combined with Pickering emulsion stabilized by magnetic nanoparticles. In this method, the magnetic nanoparticles act as an emulsifier, and its amount and size are crucial to morphology of the composite particles. The magnetic nanoparticles of 8-9 nm would be strongly adsorbed at a liquid-liquid interface rather than the larger nanoparticles. At the optimized concentration of the magnetic nanoparticle’s suspension for the preparation, small and uniform composite particles are obtained since the amount of the nanoparticles is enough to prevent coalescence of droplets during the formation of the composites. The heat generation by alternating magnetic fields emerged certainly. This result suggests the composite particles have a property as a heat-generating carrier for hyperthermia treatment.

  8. Electrochemical time of flight method for determination of diffusion coefficients of glucose in solutions and gels.

    PubMed

    Varga, Agnes; Gyetvai, Gergely; Nagy, Lívia; Nagy, Géza

    2009-08-01

    The diffusion coefficient of glucose in different media is an important parameter in life sciences, as well as in biotechnology and microbiology. In this work a simple, fast method is proposed that is based on the electrochemical time of flight principle. In most of the earlier time of flight experiments performed, a constant flight distance was applied. In the present work a scanning electrochemical microscope (SECM) was applied as a measuring tool. With use of the SECM, the flying distance could be changed with high precision, making measurements with several flight distances more accurate and reliable values could be obtained for solutions as well as for gels. The conventional voltammetric methods are not applicable for glucose detection. In our work electrocatalytic copper oxide coated copper microelectrodes and micro-sized amperometric enzyme sensors were used as detectors, while microdroplet-ejecting pneumatically driven micropipettes were used as a source. PMID:19517100

  9. Lattice Boltzmann methods for some 2-D nonlinear diffusion equations:Computational results

    SciTech Connect

    Elton, B.H.; Rodrigue, G.H. . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Levermore, C.D. . Dept. of Mathematics)

    1990-01-01

    In this paper we examine two lattice Boltzmann methods (that are a derivative of lattice gas methods) for computing solutions to two two-dimensional nonlinear diffusion equations of the form {partial derivative}/{partial derivative}t u = v ({partial derivative}/{partial derivative}x D(u){partial derivative}/{partial derivative}x u + {partial derivative}/{partial derivative}y D(u){partial derivative}/{partial derivative}y u), where u = u({rvec x},t), {rvec x} {element of} R{sup 2}, v is a constant, and D(u) is a nonlinear term that arises from a Chapman-Enskog asymptotic expansion. In particular, we provide computational evidence supporting recent results showing that the methods are second order convergent (in the L{sub 1}-norm), conservative, conditionally monotone finite difference methods. Solutions computed via the lattice Boltzmann methods are compared with those computed by other explicit, second order, conservative, monotone finite difference methods. Results are reported for both the L{sub 1}- and L{sub {infinity}}-norms.

  10. Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-05-01

    In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  11. Testing the U-Th/4He dating method on carbonates I. Helium diffusion

    NASA Astrophysics Data System (ADS)

    Pinti, D. L.; Ghaleb, B. G.; Sano, Y.; Blanchette, S.; Mathouchanh, E.; Takahata, N.

    2012-12-01

    Corals and other carbonates, such as speleothems, are important climatic-change proxies which need to be precisely dated for paleoclimatic reconstructions. Yet, U-Th disequilibrium method is applicable up to ca. 500 ka old carbonates. Calcite is difficult to date precisely by U-Pb method because of the low U amounts often found and difficulties in correcting for the common lead. Radiogenic 4He produced by decay of 238U and 235U incorporated into carbonates is a potential chronometer of Quaternary, and possibly Tertiary, corals and speleothems. However, several limitations exist for this method, related to the few data on the He diffusion [1] and on the alpha recoil effect in carbonate minerals. We decided to measure 4He by step heating in carbonate samples dated previously by U-Th disequilibrium: a coral (Scleractinia) from Cape Verde dated at 125 ka; a stalagmite from Patagonia dated at 128 ka; and two hydrothermal travertines from the Ziz Valley in Morocco with ages ≥ 500 ka. A one cm3 of each sample was cut by saw, crushed, washed and sieved to 80-100μm and 100-125μm fractions. Crushed samples (0.5 to 1 gram) were loaded in a vacuum crucible and 4He extracted by step heating. Previous step heating experiments on a sub-Arctic flowstone suggested that 4He is mainly released between 400 and 600°C [2]. However, the first coral sample heated at 100°C steps, showed a release pattern profile with 4He mainly released between 200 and 400°C. Measured 4He amount of 2.05 x 10-8 (±0.03% 1σ) ccSTP/g and U content of 2.7 ppm yield a U-4He age of 62.5 ka, lower than that obtained by U-Th disequilibrium. Data were not precise enough to calculate diffusion parameters using the Arrhenius diagram. The second step-heating pyrolysis of the coral using 50°C-steps indicated that all 4He is released between 250 and 350°C. The measured 4He amount was 2.27 x 10-8 (±0.04% 1σ) ccSTP/g, yielding an age of 83 ka, again lower compared to that obtained by U-Th disequilibrium. The

  12. Operational methods for minimising soil compaction and diffuse pollution risk from wheelings in winter cereals

    NASA Astrophysics Data System (ADS)

    Jackson, Bob; Silgram, Martyn; Quinton, John

    2010-05-01

    Recent UK government-funded research has shown that compacted, unvegetated tramlines wheelings can represent an important source and transport pathway, which can account for 80% of surface runoff, sediment and phosphorus losses to edge-of-field from cereals on moderate slopes. For example, recent research found 5.5-15.8% of rainfall lost as runoff, and losses of 0.8-2.9 kg TP/ha and 0.3-4.8 T/ha sediment from tramline wheelings. When compaction was released by shallow cultivation, runoff was reduced to 0.2-1.7% of rainfall with losses of 0.0-0.2 kg TP/ha and 0.003-0.3 T/ha sediment respectively i.e. close to reference losses from control areas without tramlines. Recent independent assessments using novel tracer techniques have also shown that tramline wheelings can represent important sediment sources at river catchment scale. In response to these latest findings, a new project is now underway investigating the most cost-effective and practical ways of operationalising methods for managing tramline wheelings in autumn-sown cereal systems to reduce the risk of soil compaction from the autumn spray operation and the associated risk of surface runoff and diffuse pollution loss of sediment, phosphorus and nitrogen to edge of field. Research is focusing on the over-winter period when soils are close to field capacity and the physical protection of the soil surface granted by growing crop is limited. This paper outlines this new multi-disciplinary project and associated methodologies, which include hillslope-scale event-based evaluations of the effectiveness of novel mitigation methods on surface runoff and diffuse pollution losses to edge of field, assessments of the economic and practical viability of mitigation methods, and modelling the impact on water quality of implementation of the most promising techniques at both farm and catchment scale. The study involves a large consortium with 20 partners, including many industrial organisations representing tractor, crop

  13. Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Nagasaka, Y.; Hatakeyama, T.; Okuda, M.; Nagashima, A.

    1988-07-01

    This article is devoted to the theory and experiment of the forced Rayleigh scattering method for measurement of thermal diffusivity of liquids which can be employed in the form of an instrument operated optically in a contact-free manner. The theoretical considerations included are: (1) effect of cell wall, (2) effect of dye, (3) effect of Gaussian beam intensity distribution, (4) effect of heating duration time, and (5) effect of coupled dye and wall for a heavily absorbing sample. The errors caused by inadequate setting of optical conditions are also analyzed: (1) effects of grating thickness and (2) effects of initial temperature amplitude. Experimental verifications of the theory have been carried out through the measurements on toluene and water as standard reference substances. As a result of these experiments and theory, the criteria for optimum measuring conditions became available. To demonstrate the applicability of the present theory and the apparatus, the thermal diffusivities of toluene and methanol have been measured near room temperature under atmospheric pressure. The accuracy of the present measurement is estimated to be ±3%.

  14. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions

    NASA Astrophysics Data System (ADS)

    Hu, Zexi; Huang, Juntao; Yong, Wen-An

    2016-04-01

    In this work, we propose an interfacial scheme accompanying the lattice Boltzmann method for convection-diffusion equations with general interfacial conditions, including conjugate conditions with or without jumps in heat and mass transfer, continuity of macroscopic variables and normal fluxes in ion diffusion in porous media with different porosity, and the Kapitza resistance in heat transfer. The construction of this scheme is based on our boundary schemes [Huang and Yong, J. Comput. Phys. 300, 70 (2015), 10.1016/j.jcp.2015.07.045] for Robin boundary conditions on straight or curved boundaries. It gives second-order accuracy for straight interfaces and first-order accuracy for curved ones. In addition, the new scheme inherits the advantage of the boundary schemes in which only the current lattice nodes are involved. Such an interfacial scheme is highly desirable for problems with complex geometries or in porous media. The interfacial scheme is numerically validated with several examples. The results show the utility of the constructed scheme and very well support our theoretical predications.

  15. Mapping of minority carrier diffusion length and heavy metal contamination with ultimate surface photovoltage method

    NASA Astrophysics Data System (ADS)

    Lagowski, J.; Aleynikov, A.; Savtchouk, A.; Edelman, P.

    2004-07-01

    The Ultimate surface photovoltage method of minority carrier diffusion length measurements reffered to as Ultimate SPV, replaces a sequential “one wavelength at a time” approach with simultaneous illumination with the entire set of wavelengths. In this multiwavelength beam, each monochromatic component is chopped with slightly different frequency. This enables simultaneous monitoring of all component SPV signals corresponding to different wavelengths using multi-frequency signal processing. The amplitude and phase of each component signals are then analyzed and used to calculate the diffusion length and surface lifetime. In-flight Ultimate SPV measurement, whereby the wafer continuously moves under SPV probe, is used for fast whole wafer mapping. In addition to speed advantages, Ultimate SPV offers a fundemental accuracy advantage due to elimination of differences in wafer condition during sequential illumination with individual wavelengths. High-speed measurements make it possible to add additional wafer treatments and perform multi-mapping required for separation of Fe and Cu in the silicon bulk. Wafer mapping in time of 2 minutes realized with Ultimate SPV is critical for monitoring of cobalt in silicon.

  16. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods

    NASA Astrophysics Data System (ADS)

    Lee, Zhong-Ping; Darecki, Miroslaw; Carder, Kendall L.; Davis, Curtiss O.; Stramski, Dariusz; Rhea, W. Joseph

    2005-02-01

    The propagation of downwelling irradiance at wavelength λ from surface to a depth (z) in the ocean is governed by the diffuse attenuation coefficient, ?(λ). There are two standard methods for the derivation of ?(λ) in remote sensing, which both are based on empirical relationships involving the blue-to-green ratio of ocean color. Recently, a semianalytical method to derive ?(λ) from reflectance has also been developed. In this study, using ?(490) and ?(443) as examples, we compare the ?(λ) values derived from the three methods using data collected in three different regions that cover oceanic and coastal waters, with ?(490) ranging from ˜0.04 to 4.0 m-1. The derived values are compared with the data calculated from in situ measurements of the vertical profiles of downwelling irradiance. The comparisons show that the two standard methods produced satisfactory estimates of ?(λ) in oceanic waters where attenuation is relatively low but resulted in significant errors in coastal waters. The newly developed semianalytical method appears to have no such limitation as it performed well for both oceanic and coastal waters. For all data in this study the average of absolute percentage difference between the in situ measured and the semianalytically derived ? is ˜14% for λ = 490 nm and ˜11% for λ = 443 nm.

  17. Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Long, Feixiao; Li, Fengyan; Intes, Xavier; Kotha, Shiva P.

    2016-03-01

    Optical tomography has a wide range of biomedical applications. Accurate prediction of photon transport in media is critical, as it directly affects the accuracy of the reconstructions. The radiative transfer equation (RTE) is the most accurate deterministic forward model, yet it has not been widely employed in practice due to the challenges in robust and efficient numerical implementations in high dimensions. Herein, we propose a method that combines the discrete ordinate method (DOM) with a streamline diffusion modified continuous Galerkin method to numerically solve RTE. Additionally, a phase function normalization technique was employed to dramatically reduce the instability of the DOM with fewer discrete angular points. To illustrate the accuracy and robustness of our method, the computed solutions to RTE were compared with Monte Carlo (MC) simulations when two types of sources (ideal pencil beam and Gaussian beam) and multiple optical properties were tested. Results show that with standard optical properties of human tissue, photon densities obtained using RTE are, on average, around 5% of those predicted by MC simulations in the entire/deeper region. These results suggest that this implementation of the finite element method-RTE is an accurate forward model for optical tomography in human tissues.

  18. A texture classification method for diffused liver diseases using Gabor wavelets.

    PubMed

    Ahmadian, A; Mostafa, A; Abolhassani, M; Salimpour, Y

    2005-01-01

    We proposed an efficient method for classification of diffused liver diseases based on Gabor wavelet. It is well known that Gabor wavelets attain maximum joint space-frequency resolution which is highly significant in the process of texture extraction and presentation. This property has been explored here as the proposed method outperforms the classification rate obtained by using dyadic wavelets and methods based on statistical properties of textures. The feature vector is relatively small compared to other methods. This has a significant impact on the speed of retrieval process. In addition, the proposed algorithm is not sensitive to shift of the image contents. Since shifting the contents of an image will cause a circular shift of the Gabor filter coefficients in each sub-band. The proposed algorithm applied to discriminate ultrasonic liver images into three disease states that are normal liver, liver hepatitis and cirrhosis. In our experiment 45 liver sample images from each three disease states which already proven by needle biopsy were used. We achieved the sensitivity 85% in the distinction between normal and hepatitis liver images and 86% in the distinction between normal and cirrhosis liver images. Based on our experiments, the Gabor wavelet is more appropriate than dyadic wavelets and statistical based methods for texture classification as it leads to higher classification accuracy. PMID:17282503

  19. Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method.

    PubMed

    Long, Feixiao; Li, Fengyan; Intes, Xavier; Kotha, Shiva P

    2016-03-01

    Optical tomography has a wide range of biomedical applications. Accurate prediction of photon transport in media is critical, as it directly affects the accuracy of the reconstructions. The radiative transfer equation (RTE) is the most accurate deterministic forward model, yet it has not been widely employed in practice due to the challenges in robust and efficient numerical implementations in high dimensions. Herein, we propose a method that combines the discrete ordinate method (DOM) with a streamline diffusion modified continuous Galerkin method to numerically solve RTE. Additionally, a phase function normalization technique was employed to dramatically reduce the instability of the DOM with fewer discrete angular points. To illustrate the accuracy and robustness of our method, the computed solutions to RTE were compared with Monte Carlo (MC) simulations when two types of sources (ideal pencil beam and Gaussian beam) and multiple optical properties were tested. Results show that with standard optical properties of human tissue, photon densities obtained using RTE are, on average, around 5% of those predicted by MC simulations in the entire/deeper region. These results suggest that this implementation of the finite element method-RTE is an accurate forward model for optical tomography in human tissues. PMID:26953662

  20. Comparison of EPI Distortion Correction Methods in Diffusion Tensor MRI Using a Novel Framework

    PubMed Central

    Wu, M.; Chang, L.-C.; Walker, L.; Lemaitre, H.; Barnett, A.S.; Marenco, S.; Pierpaoli, C.

    2016-01-01

    Diffusion weighted images (DWIs) are commonly acquired with Echo-planar imaging (EPI). B0 inhomogeneities affect EPI by producing spatially nonlinear image distortions. Several strategies have been proposed to correct EPI distortions including B0 field mapping (B0M) and image registration. In this study, an experimental framework is proposed to evaluation the performance of different EPI distortion correction methods in improving DT-derived quantities. A deformable registration based method with mutual information metric and cubic B-spline modeled constrained deformation field (BSP) is proposed as an alternative when B0 mapping data are not available. BSP method is qualitatively and quantitatively compared to B0M method using the framework. Both methods can successful reduce EPI distortions and significantly improve the quality of DT-derived quantities. Overall, B0M was clearly superior in infratentorial regions including brainstem and cerebellum, as well as in the ventral areas of the temporal lobes while BSP was better in all rostral brain regions. PMID:18982621

  1. Diffusion Weighted Imaging for Differentiating Benign from Malignant Orbital Tumors: Diagnostic Performance of the Apparent Diffusion Coefficient Based on Region of Interest Selection Method

    PubMed Central

    Xu, Xiao-Quan; Hu, Hao; Su, Guo-Yi; Liu, Hu; Shi, Hai-Bin

    2016-01-01

    Objective To evaluate the differences in the apparent diffusion coefficient (ADC) measurements based on three different region of interest (ROI) selection methods, and compare their diagnostic performance in differentiating benign from malignant orbital tumors. Materials and Methods Diffusion-weighted imaging data of sixty-four patients with orbital tumors (33 benign and 31 malignant) were retrospectively analyzed. Two readers independently measured the ADC values using three different ROIs selection methods including whole-tumor (WT), single-slice (SS), and reader-defined small sample (RDSS). The differences of ADC values (ADC-ROIWT, ADC-ROISS, and ADC-ROIRDSS) between benign and malignant group were compared using unpaired t test. Receiver operating characteristic curve was used to determine and compare their diagnostic ability. The ADC measurement time was compared using ANOVA analysis and the measurement reproducibility was assessed using Bland-Altman method and intra-class correlation coefficient (ICC). Results Malignant group showed significantly lower ADC-ROIWT, ADC-ROISS, and ADC-ROIRDSS than benign group (all p < 0.05). The areas under the curve showed no significant difference when using ADC-ROIWT, ADC-ROISS, and ADC-ROIRDSS as differentiating index, respectively (all p > 0.05). The ROISS and ROIRDSS required comparable measurement time (p > 0.05), while significantly shorter than ROIWT (p < 0.05). The ROISS showed the best reproducibility (mean difference ± limits of agreement between two readers were 0.022 [-0.080–0.123] × 10-3 mm2/s; ICC, 0.997) among three ROI methods. Conclusion Apparent diffusion coefficient values based on the three different ROI selection methods can help to differentiate benign from malignant orbital tumors. The results of measurement time, reproducibility and diagnostic ability suggest that the ROISS method are potentially useful for clinical practice. PMID:27587953

  2. Second-order curved boundary treatments of the lattice Boltzmann method for convection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Huang, Juntao; Hu, Zexi; Yong, Wen-An

    2016-04-01

    In this paper, we present a kind of second-order curved boundary treatments for the lattice Boltzmann method solving two-dimensional convection-diffusion equations with general nonlinear Robin boundary conditions. The key idea is to derive approximate boundary values or normal derivatives on computational boundaries, with second-order accuracy, by using the prescribed boundary condition. Once the approximate information is known, the second-order bounce-back schemes can be perfectly adopted. Our boundary treatments are validated with a number of numerical examples. The results show the utility of our boundary treatments and very well support our theoretical predications on the second-order accuracy thereof. The idea is quite universal. It can be directly generalized to 3-dimensional problems, multiple-relaxation-time models, and the Navier-Stokes equations.

  3. Boundary conditions of the lattice Boltzmann method for convection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Huang, Juntao; Yong, Wen-An

    2015-11-01

    In this paper, we employ an asymptotic analysis technique and construct two boundary schemes accompanying the lattice Boltzmann method for convection-diffusion equations with general Robin boundary conditions. One scheme is for straight boundaries, with the boundary points locating at any distance from the lattice nodes, and has second-order accuracy. The other is for curved boundaries, has only first-order accuracy and is much simpler than the existing schemes. Unlike those in the literature, our schemes involve only the current lattice node. Such a "single-node" boundary schemes are highly desirable for problems with complex geometries. The two schemes are validated numerically with a number of examples. The numerical results show the utility of the constructed schemes and very well support our theoretical predications.

  4. The Hirota Method for Reaction-Diffusion Equations with Three Distinct Roots

    SciTech Connect

    Tanoglu, Gamze; Pashaev, Oktay

    2004-10-04

    The Hirota Method, with modified background is applied to construct exact analytical solutions of nonlinear reaction-diffusion equations of two types. The first equation has only nonlinear reaction part, while the second one has in addition the nonlinear transport term. For both cases, the reaction part has the form of the third order polynomial with three distinct roots. We found analytic one-soliton solutions and the relationships between three simple roots and the wave speed of the soliton. For the first case, if one of the roots is the mean value of other two roots, the soliton is static. We show that the restriction on three distinct roots to obtain moving soliton is removed in the second case by, adding nonlinear transport term to the first equation.

  5. Scalable implicit methods for reaction-diffusion equations in two and three space dimensions

    SciTech Connect

    Veronese, S.V.; Othmer, H.G.

    1996-12-31

    This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.

  6. Local delivery methods of therapeutic agents in the treatment of diffuse intrinsic brainstem gliomas.

    PubMed

    Goodwin, C Rory; Xu, Risheng; Iyer, Rajiv; Sankey, Eric W; Liu, Ann; Abu-Bonsrah, Nancy; Sarabia-Estrada, Rachel; Frazier, James L; Sciubba, Daniel M; Jallo, George I

    2016-03-01

    Brainstem gliomas comprise 10-20% of all pediatric central nervous system (CNS) tumors and diffuse intrinsic pontine gliomas (DIPGs) account for the majority of these lesions. DIPG is a rapidly progressive disease with almost universally fatal outcomes and a median survival less than 12 months. Current standard-of-care treatment for DIPG includes radiation therapy, but its long-term survival effects are still under debate. Clinical trials investigating the efficacy of systemic administration of various therapeutic agents have been associated with disappointing outcomes. Recent efforts have focused on improvements in chemotherapeutic agents employed and in methods of localized and targeted drug delivery. This review provides an update on current preclinical and clinical studies investigating treatment options for brainstem gliomas. PMID:26849840

  7. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  8. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.

    PubMed

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method. PMID:12790437

  9. Fast optimization method based on the diffuser dot density for uniformity of the backlight module.

    PubMed

    Huang, Bing-Le; Guo, Tai-Liang

    2016-02-20

    A fast optimization method based on the diffuser dot density (DDD) for uniformity of the backlight module (BLM) is proposed in the paper. First, the relationship between the efficiency of the light emerging and the DDD is analyzed, and then a simulation model that is employed to acquire a serial of simulating data is constructed. Second, a mathematic method to profit the relationship is adopted, and a polynomial relationship is derived. Finally, an algorithm to adjust the DDD and optimize the uniformity of the BLM based on the DDD is constructed. The simulation results prove that only by three times optimization, the uniformity of the BLM can reach 85.6%, and the experimental result indicates that the algorithm proposed in the paper can improve the uniformity rapidly. The final experimental result is that the uniformity of the third optimization reaches 77.4%, which satisfies the target 75% in the phase of designing the BLM. Compared to the conventional optimization method, the method can speed up the procedure and lower the expense of developing the BLM in fabricating the liquid-crystal display. PMID:26906605

  10. Evaluation of rigid registration methods for whole head imaging in diffuse optical tomography.

    PubMed

    Wu, Xue; Eggebrecht, Adam T; Ferradal, Silvina L; Culver, Joseph P; Dehghani, Hamid

    2015-07-01

    Functional brain imaging has become an important neuroimaging technique for the study of brain organization and development. Compared to other imaging techniques, diffuse optical tomography (DOT) is a portable and low-cost technique that can be applied to infants and hospitalized patients using an atlas-based light model. For DOT imaging, the accuracy of the forward model has a direct effect on the resulting recovered brain function within a field of view and so the accuracy of the spatially normalized atlas-based forward models must be evaluated. Herein, the accuracy of atlas-based DOT is evaluated on models that are spatially normalized via a number of different rigid registration methods on 24 subjects. A multileveled approach is developed to evaluate the correlation of the geometrical and sensitivity accuracies across the full field of view as well as within specific functional subregions. Results demonstrate that different registration methods are optimal for recovery of different sets of functional brain regions. However, the "nearest point to point" registration method, based on the EEG 19 landmark system, is shown to be the most appropriate registration method for image quality throughout the field of view of the high-density cap that covers the whole of the optically accessible cortex. PMID:26217675

  11. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily Kara

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  12. Evaluation of depth profiling using laser resonant desorption as a method to measure diffusion coefficients in ice.

    PubMed

    Dominé, F; Xueref, I

    2001-09-01

    Diffusion of gases in ice is involved in cloud, snow, and ice core chemistry, but few data exist on the relevant diffusion coefficients. A novel method to measure diffusion coefficients in ice has recently been proposed by Livingston et al. (Anal. Chem., 2000, 72, 5590-5599). It is based on depth profiling of doped ice crystals epitaxially grown on Ru(001) by laser resonant desorption (LRD). Using this method, Livingston et al. obtained a value of the diffusion coefficient of the HCl hydrate in ice at 190 K of about 5 x 10(-11) cm2/s. We argue here that this value is many orders of magnitude higher than what could be expected from literature values, which are not reported in sufficient detail by Livingston et al. We investigate the possibilities that their high value could be due to (1) diffusion in defects in the ice, which would be present in very high concentrations because of the ice growth method; and (2) the fact that diffusion of high concentrations of HCl in ice at 190 K forms an amorphous HCl:H2O solid mixture, where HCl diffusion is fast. We present new infrared spectroscopic data on solid HCl:H2O mixtures that confirm that such mixtures can indeed be formed in an amorphous state at 190 K. Our proposed interpretation is that by depositing large amounts of HCl on epitaxially grown ice, Livingston et al. created a superficial amorphous binary mixture and that fast diffusion of HCl in the ice, possibly accelerated by a high defect density, produced an amorphous HCl:H2O mixture. We conclude that the processes studied by Livingston et al. are different from those involved in the atmospheric and cryospheric sciences, and that their data, obtained by depth profiling using LRD, probably cannot be applied to those fields. PMID:11569830

  13. Development of a method to study positron diffusion in metals by the observation of positronium negative ions

    NASA Astrophysics Data System (ADS)

    Suzuki, Takuji; Terabe, Hiroki; Iida, Shimpei; Yamashita, Takashi; Nagashima, Yasuyuki

    2014-09-01

    We have developed a new method to study positron diffusion in metals. In this method, we observe positronium negative ions emitted from the sample surfaces after coating with alkali-metals to evaluate the yields of the positrons which return to the surfaces. γ-rays from the ions accelerated using an electric field are clearly distinguished from those emitted from pair-annihilation of positrons in the bulk or on the surface and self-annihilation of emitted positronium atoms. Reliable studies on positron diffusion in metals have been enabled by this method.

  14. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    PubMed Central

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio

    2014-01-01

    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  15. Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

    PubMed Central

    Flegga, Mark B.; Hellander, Stefan; Erban, Radek

    2015-01-01

    In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a “ghost cell” in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: (i) Δt → 0 and h is fixed; (ii) Δt → 0 and h → 0 such that √Δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model. PMID:26568640

  16. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    PubMed Central

    Khan, Ahmed Nawaz; Khar, Roop Krishen; Ajayakumar, P. V.

    2016-01-01

    Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX) in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH) and European Medicine Agency (EMA) developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC), 2.38% root mean square error of prediction (RMSEP), 2.43% root mean square error of cross-validation (RMSECV). Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated using developed

  17. A reaction-diffusion model of the Darien Gap Sterile Insect Release Method

    NASA Astrophysics Data System (ADS)

    Alford, John G.

    2015-05-01

    The Sterile Insect Release Method (SIRM) is used as a biological control for invasive insect species. SIRM involves introducing large quantities of sterilized male insects into a wild population of invading insects. A fertile/sterile mating produces offspring that are not viable and the wild insect population will eventually be eradicated. A U.S. government program maintains a permanent sterile fly barrier zone in the Darien Gap between Panama and Columbia to control the screwworm fly (Cochliomyia Hominivorax), an insect that feeds off of living tissue in mammals and has devastating effects on livestock. This barrier zone is maintained by regular releases of massive quantities of sterilized male screwworm flies from aircraft. We analyze a reaction-diffusion model of the Darien Gap barrier zone. Simulations of the model equations yield two types of spatially inhomogeneous steady-state solutions representing a sterile fly barrier that does not prevent invasion and a barrier that does prevent invasion. We investigate steady-state solutions using both phase plane methods and monotone iteration methods and describe how barrier width and the sterile fly release rate affects steady-state behavior.

  18. Multiscale diffusion method for simulations of long-time defect evolution with application to dislocation climb

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Curtin, W. A.

    2016-07-01

    In many problems of interest to materials scientists and engineers, the evolution of crystalline extended defects (dislocations, cracks, grain boundaries, interfaces, voids, precipitates) is controlled by the flow of point defects (interstitial/substitutional atoms and/or vacancies) through the crystal into the extended defect. Precise modeling of this behavior requires fully atomistic methods in and around the extended defect, but the flow of point defects entering the defect region can be treated by coarse-grained methods. Here, a multiscale algorithm is presented to provide this coupling. Specifically, direct accelerated molecular dynamics (AMD) of extended defect evolution is coupled to a diffusing point defect concentration field that captures the long spatial and temporal scales of point defect motion in the presence of the internal stress fields generated by the evolving defect. The algorithm is applied to study vacancy absorption into an edge dislocation in aluminum where vacancy accumulation in the core leads to nucleation of a double-jog that then operates as a sink for additional vacancies; this corresponds to the initial stages of dislocation climb modeled with explicit atomistic resolution. The method is general and so can be applied to many other problems associated with nucleation, growth, and reaction due to accumulation of point defects in crystalline materials.

  19. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.

    PubMed

    Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas

    2012-04-01

    Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing. PMID:22559695

  20. Fast solute diffusivity in ionic liquids with silyl or siloxane groups studied by the transient grating method

    NASA Astrophysics Data System (ADS)

    Endo, Takatsugu; Nemugaki, Shinya; Matsushita, Yuki; Sakai, Yasuhiro; Ozaki, Hiroaki; Hiejima, Yusuke; Kimura, Yoshifumi; Takahashi, Kenji

    2016-06-01

    To achieve ionic liquids (ILs) that show fast solute diffusivity independent of viscosity domination, sixteen ILs containing Si or Si-O-Si groups (SiILs) were synthesized. Diffusion coefficients of three solute molecules with different molecular sizes, i.e., CO, diphenylacetylene, and diphenylcyclopropenone, were determined in SiILs using the transient grating method and the results were compared to other solvent system. SiILs showed distinguishably faster diffusivity for the smallest solute, CO, than conventional ILs at the same viscosity, particularly in the high viscosity region. Based on previous results and our estimation, three plausible factors exists that contribute to the faster solute diffusivity in SiILs, i.e., the flexibility of the Si or Si-O-Si group, decreased interaction between the cation and the solute, and increased free volume because of the bulky structure.

  1. Diffusion studies of Ra and Pb in GaAs by the alpha-particle energy loss method

    NASA Astrophysics Data System (ADS)

    Adamcyk, M.; Beaudoin, M.; Kelson, I.; Levy, Y.; Tiedje, T.

    1998-12-01

    The temperature dependence of the diffusion of lead in GaAs is determined by measuring the modification to the energy spectrum of emitted alpha particles from the decay chain of implanted 212Pb atoms. Diffusion rates are measured for temperatures up to 900 °C. Higher rates are observed for the diffusion in silicon-doped GaAs than in semi-insulating GaAs. An upper limit for the diffusion of radium in GaAs is similarly obtained from the decay of the 224Ra isotope. Implications for the use of implanted alpha sources for thickness monitoring during epitaxial film growth by the alpha-particle energy loss method are discussed.

  2. Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization.

    PubMed

    Wang, Yangyang; Sun, Che-Nan; Fan, Fei; Sangoro, Joshua R; Berman, Marc B; Greenbaum, Steve G; Zawodzinski, Thomas A; Sokolov, Alexei P

    2013-04-01

    Electrode polarization analysis is frequently used to determine free-ion diffusivity and number density in ionic conductors. In the present study, this approach is critically examined in a wide variety of electrolytes, including aqueous and nonaqueous solutions, polymer electrolytes, and ionic liquids. It is shown that the electrode polarization analysis based on the Macdonald-Trukhan model [J. Chem. Phys. 124, 144903 (2006); J. Non-Cryst. Solids 357, 3064 (2011)] progressively fails to give reasonable values of free-ion diffusivity and number density with increasing salt concentration. This should be expected because the original model of electrode polarization is designed for dilute electrolytes. An empirical correction method which yields ion diffusivities in reasonable agreement with pulsed-field gradient nuclear magnetic resonance measurements is proposed. However, the analysis of free-ion diffusivity and number density from electrode polarization should still be exercised with great caution because there is no solid theoretical justification for the proposed corrections. PMID:23679415

  3. Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization

    SciTech Connect

    Wang, Yangyang; Sun, Che-Nan; Fan, Fei; Sangoro, Joshua R; Berman, Marc; Greenbaum, Steve; Zawodzinski, Thomas; Sokolov, Alexei P

    2013-01-01

    Electrode polarization analysis is frequently used to determine free-ion diffusivity and number density in ionic conductors. In the present study, this approach is critically examined in a wide variety of electrolytes, including aqueous and nonaqueous solutions, polymer electrolytes, and ionic liquids. It is shown that the electrode polarization analysis based on theMacdonald-Trukhan model [J. Chem. Phys. 124, 144903 (2006); J. Non-Cryst. Solids 357, 3064 (2011)] progressively fails to give reasonable values of free-ion diffusivity and number density with increasing salt concentration. This should be expected because the original model of electrode polarization is designed for dilute electrolytes. An empirical correction method which yields ion diffusivities in reasonable agreement with pulsed-field gradient nuclear magnetic resonance measurements is proposed. However, the analysis of free-ion diffusivity and number density from electrode polarization should still be exercised with great caution because there is no solid theoretical justification for the proposed corrections.

  4. Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods.

    PubMed

    Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław

    2009-03-01

    Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally. PMID:19252616

  5. Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Rottler, Jörg; Sinclair, Chad W.; Provatas, Nikolas

    2015-10-01

    The nonequilibrium dynamics of diffusion-mediated plasticity and creep in materials subjected to constant load at high homologous temperatures is studied atomistically using phase field crystal (PFC) methods. Creep stress and grain size exponents obtained for nanopolycrystalline systems, m ≃1.02 and p ≃1.98 , respectively, closely match those expected for idealized diffusional Nabarro-Herring creep. These exponents are observed in the presence of significant stress-assisted diffusive grain boundary migration, indicating that Nabarro-Herring creep and stress-assisted boundary migration contribute in the same manner to the macroscopic constitutive relation. When plastic response is dislocation-mediated, power-law stress exponents inferred from dislocation climb rates are found to increase monotonically from m ≃3 , as expected for generic climb-mediated natural creep, to m ≃5.8 as the dislocation density ρd is increased beyond typical experimental values. Stress exponents m ≳3 directly measured from simulations that include dislocation nucleation, climb, glide, and annihilation are attributed primarily to these large ρd effects. Extrapolation to lower ρd suggests that m ≃4 -4.5 should be obtained from our PFC description at typical experimental ρd values, which is consistent with expectations for power-law creep via mixed climb and glide. The anomalously large stress exponents observed in our atomistic simulations at large ρd may nonetheless be relevant to systems in which comparable densities are obtained locally within heterogeneous defect domains such as dislocation cell walls or tangles.

  6. Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields.

    PubMed

    Shibukawa, Atsushi; Okamoto, Atsushi; Takabayashi, Masanori; Tomita, Akihisa

    2014-02-24

    We propose a spatial cross modulation method using a random diffuser and a phase-only spatial light modulator (SLM), by which arbitrary complex-amplitude fields can be generated with higher spatial resolution and diffraction efficiency than off-axis and double-phase computer-generated holograms. Our method encodes the original complex object as a phase-only diffusion image by scattering the complex object using a random diffuser. In addition, all incoming light to the SLM is consumed for a single diffraction order, making a diffraction efficiency of more than 90% possible. This method can be applied for holographic data storage, three-dimensional displays, and other such applications. PMID:24663718

  7. Bifurcation analysis of brown tide by reaction-diffusion equation using finite element method

    SciTech Connect

    Kawahara, Mutsuto; Ding, Yan

    1997-03-01

    In this paper, we analyze the bifurcation of a biodynamics system in a two-dimensional domain by virtue of reaction-diffusion equations. The discretization method in space is the finite element method. The computational algorithm for an eigenspectrum is described in detail. On the basis of an analysis of eigenspectra according to Helmholtz`s equation, the discrete spectra in regards to the physical variables are numerically obtained in two-dimensional space. In order to investigate this mathematical model in regards to its practical use, we analyzed the stability of two cases, i.e., hydranth regeneration in the marine hydroid Tubularia and a brown tide in a harbor in Japan. By evaluating the stability according to the linearized stability definition, the critical parameters for outbreaks of brown tide can be theoretically determined. In addition, results for the linear combination of eigenspectrum coincide with the distribution of the observed brown tide. Its periodic characteristic was also verified. 10 refs., 8 figs., 5 tabs.

  8. Diffusion of innovation: enhancing the dissemination of the Ponseti method in Latin America through virtual forums.

    PubMed

    Jayawardena, Asitha; Boardman, Allison; Cook, Thomas; Oprescu, Florin; Morcuende, Jose A

    2011-01-01

    This ethnographic study evaluated the use of low-bandwidth web-conferencing to enhance diffusion of a specific best practice, the Ponseti method to treat clubfoot, in three economically diverse countries in Latin America. A "Ponseti Virtual Forum" (PVF) was organized in Guatemala, Peru and Chile to examine the influences of economic level and telecommunication infrastructure on the effectiveness of tins approach. Across the three countries, a total of 14 different sites participated in the PVFs. Thirty-three Ponseti-trained practitioners were interviewed before and after each PVF, which included interactions with a Spanish-speaking Ponseti method expert. Semi-structured interviews, observations, and IP address data were triangulated and analyzed. The results demonstrated that 100% of the practitioners rated the sessions as very useful and that they would use this approach again. The largest obstacles to using PVFs were financial (7 out of 9 practitioners) in Guatemala; a lack of equipment and network access (6 out of 11) in Peru; and the organization and implementation of the conferences themselves (7 out of 9) in Chile. This study illustrates the usefulness of Ponseti Virtual Forums in Latin America. Health officials in Peru are currently developing a large-scale information session for traumatologists about the Ponseti method, while practitioners in Guatemala and Chile are organizing monthly scholarly meetings for physicians in remote areas. This initial feedback suggests that low-bandwidth web-conferencing can be an important vehicle for the dissemination of best practices, such as the Ponseti method, in developing countries. PMID:22096417

  9. Adaptive meshless local maximum-entropy finite element method for convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Young, D. L.; Hong, H. K.

    2014-01-01

    In this paper, a meshless local maximum-entropy finite element method (LME-FEM) is proposed to solve 1D Poisson equation and steady state convection-diffusion problems at various Peclet numbers in both 1D and 2D. By using local maximum-entropy (LME) approximation scheme to construct the element shape functions in the formulation of finite element method (FEM), additional nodes can be introduced within element without any mesh refinement to increase the accuracy of numerical approximation of unknown function, which procedure is similar to conventional p-refinement but without increasing the element connectivity to avoid the high conditioning matrix. The resulted LME-FEM preserves several significant characteristics of conventional FEM such as Kronecker-delta property on element vertices, partition of unity of shape function and exact reproduction of constant and linear functions. Furthermore, according to the essential properties of LME approximation scheme, nodes can be introduced in an arbitrary way and the continuity of the shape function along element edge is kept at the same time. No transition element is needed to connect elements of different orders. The property of arbitrary local refinement makes LME-FEM be a numerical method that can adaptively solve the numerical solutions of various problems where troublesome local mesh refinement is in general necessary to obtain reasonable solutions. Several numerical examples with dramatically varying solutions are presented to test the capability of the current method. The numerical results show that LME-FEM can obtain much better and stable solutions than conventional FEM with linear element.

  10. A Simple Educational Method for the Measurement of Liquid Binary Diffusivities

    ERIC Educational Resources Information Center

    Rice, Nicholas P.; de Beer, Martin P.; Williamson, Mark E.

    2014-01-01

    A simple low-cost experiment has been developed for the measurement of the binary diffusion coefficients of liquid substances. The experiment is suitable for demonstrating molecular diffusion to small or large undergraduate classes in chemistry or chemical engineering. Students use a cell phone camera in conjunction with open-source image…

  11. Analyzing the special PFG signal attenuation behavior of intermolecular MQC via the effective phase shift diffusion equation method

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2015-10-01

    Inter-molecular multiple quantum coherence (iMQC) has important applications in NMR and MRI. However, the current theoretical methods still have some difficulties in analyzing the behavior of iMQC signal attenuation of pulsed field gradient diffusion experiments. In this paper, the iMQC diffusion experiments were analyzed by an effective phase shift diffusion equation (EPSDE) method, which is based on the idea that the accumulating phase shift (APS) can be viewed as the result of a diffusion process in virtual phase space (VPS) with effective diffusion coefficient K2(t) D (rad2/s) where K ( t ) = ∫0 t γ g ( t ' ) d t ' is a wavenumber and D is the physical diffusion coefficient of the spin carrier in the real space. The term K(ttot) z1 needs to be added to the APS when K(ttot) is not zero. Most of the time, K(ttot) equals zero. However, in iMQC experiments, the condition K(ttot) equaling zero or being non-zero for each spin depends on the gradient pulse setting. The signal attenuations of these two types of iMQC, zero or non-zero K(ttot), were analyzed in detail for free and restricted diffusions, which shows that there are significant differences between these two types of iMQC. Particularly, if an apparent diffusion coefficient Dapp is used to analyze the signal attenuation, it equals nD for zero K(ttot) which agrees with current theoretical and experimental reports, while for non-zero K(ttot), it equals (2n - 1) D which agrees with experimental results from the literature; there are no similar theoretical results reported for comparison. The result that Dapp equals (2n - 1) D is important because the higher value of Dapp means that non-zero K(ttot) iMQC can potentially provide more contrast and measure slower diffusion rates than zero K(ttot) iMQC. The EPSDE method provides a new way to analyze iMQC diffusion experiments.

  12. A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods.

    PubMed

    Wen, Tianlong; Brush, Lucien N; Krishnan, Kannan M

    2014-04-01

    A nanoparticle growth model is developed to predict and guide the syntheses of monodisperse colloidal nanoparticles in the liquid phase. The model, without any a priori assumptions, is based on the Fick's law of diffusion, conservation of mass and the Gibbs-Thomson equation for crystal growth. In the limiting case, this model reduces to the same expression as the currently accepted model that requires the assumption of a diffusion layer around each nanoparticle. The present growth model bridges the two limiting cases of the previous model i.e. complete diffusion controlled and adsorption controlled growth of nanoparticles. Specifically, the results show that a monodispersion of nanoparticles can be obtained both with fast monomer diffusion and with surface reaction under conditions of small diffusivity to surface reaction constant ratio that results is growth 'focusing'. This comprehensive description of nanoparticle growth provides new insights and establishes the required conditions for fabricating monodisperse nanoparticles critical for a wide range of applications. PMID:24491334

  13. Thickness Mapping of Eleven Retinal Layers Segmented Using the Diffusion Maps Method in Normal Eyes

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2015-01-01

    This study was conducted to determine the thickness map of eleven retinal layers in normal subjects by spectral domain optical coherence tomography (SD-OCT) and evaluate their association with sex and age. Mean regional retinal thickness of 11 retinal layers was obtained by automatic three-dimensional diffusion map based method in 112 normal eyes of 76 Iranian subjects. We applied our previously reported 3D intraretinal fast layer segmentation which does not require edge-based image information but rather relies on regional image texture. The thickness maps are compared among 9 macular sectors within 3 concentric circles as defined by ETDRS. The thickness map of central foveal area in layers 1, 3, and 4 displayed the minimum thickness. Maximum thickness was observed in nasal to the fovea of layer 1 and in a circular pattern in the parafoveal retinal area of layers 2, 3, and 4 and in central foveal area of layer 6. Temporal and inferior quadrants of the total retinal thickness and most of other quadrants of layer 1 were significantly greater in the men than in the women. Surrounding eight sectors of total retinal thickness and a limited number of sectors in layers 1 and 4 significantly correlated with age. PMID:25960888

  14. Optimal Analysis Method for Dynamic Contrast-Enhanced Diffuse Optical Tomography

    PubMed Central

    Ghijsen, Michael; Lin, Yuting; Hsing, Mitchell; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-01-01

    Diffuse Optical Tomography (DOT) is an optical imaging modality that has various clinical applications. However, the spatial resolution and quantitative accuracy of DOT is poor due to strong photon scatting in biological tissue. Structural a priori information from another high spatial resolution imaging modality such as Magnetic Resonance Imaging (MRI) has been demonstrated to significantly improve DOT accuracy. In addition, a contrast agent can be used to obtain differential absorption images of the lesion by using dynamic contrast enhanced DOT (DCE-DOT). This produces a relative absorption map that consists of subtracting a reconstructed baseline image from reconstructed images in which optical contrast is included. In this study, we investigated and compared different reconstruction methods and analysis approaches for regular endogenous DOT and DCE-DOT with and without MR anatomical a priori information for arbitrarily-shaped objects. Our phantom and animal studies have shown that superior image quality and higher accuracy can be achieved using DCE-DOT together with MR structural a priori information. Hence, implementation of a combined MRI-DOT system to image ICG enhancement can potentially be a promising tool for breast cancer imaging. PMID:21811492

  15. Thermal diffusivity of few-layers graphene measured by an all-optical method

    NASA Astrophysics Data System (ADS)

    Cabrera, H.; Mendoza, D.; Benítez, J. L.; Bautista Flores, C.; Alvarado, S.; Marín, E.

    2015-11-01

    We report on the measurement of the thermal diffusivity, D, of few-layers graphene obtained by chemical vapor deposition, using a noncontact optical microscopy method based on a mode mismatched thermal lens technique in a pump-probe two-laser beams configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams in an improved thermal lens microscopy setup. The obtained results: D  =  (6.5  ±  0.09)  ×  10-4 m2 s-1, D  =  (1.9  ±  0.07)  ×  10-4 m2 s-1 and D  =  (1.3  ±  0.05)  ×  10-4 m2 s-1 for four (on a glass slide), eight and sixteen graphene (freestanding) layers are reasonable values, as can be concluded from reported literature data.

  16. Integration of experimental and computational methods for identifying geometric, thermal and diffusive properties of biomaterials

    NASA Astrophysics Data System (ADS)

    Weres, Jerzy; Kujawa, Sebastian; Olek, Wiesław; Czajkowski, Łukasz

    2016-04-01

    Knowledge of physical properties of biomaterials is important in understanding and designing agri-food and wood processing industries. In the study presented in this paper computational methods were developed and combined with experiments to enhance identification of agri-food and forest product properties, and to predict heat and water transport in such products. They were based on the finite element model of heat and water transport and supplemented with experimental data. Algorithms were proposed for image processing, geometry meshing, and inverse/direct finite element modelling. The resulting software system was composed of integrated subsystems for 3D geometry data acquisition and mesh generation, for 3D geometry modelling and visualization, and for inverse/direct problem computations for the heat and water transport processes. Auxiliary packages were developed to assess performance, accuracy and unification of data access. The software was validated by identifying selected properties and using the estimated values to predict the examined processes, and then comparing predictions to experimental data. The geometry, thermal conductivity, specific heat, coefficient of water diffusion, equilibrium water content and convective heat and water transfer coefficients in the boundary layer were analysed. The estimated values, used as an input for simulation of the examined processes, enabled reduction in the uncertainty associated with predictions.

  17. A grey diffusion acceleration method for time-dependent radiative transfer calculations

    SciTech Connect

    Nowak, P.F.

    1991-07-01

    The equations of thermal radiative transfer describe the emission, absorption and transport of photons in a material. As photons travel through the material they are absorbed and re-emitted in a Planckian distribution characterized by the material temperature. As a result of these processes, the material can change resulting in a change in the Planckian emission spectrum. When the coupling between the material and radiation is strong, as occurs when the material opacity or the time step is large, standard iterative techniques converge very slowly. As a result, nested iterative algorithms have been applied to the problem. One algorithm, is to use multifrequency DSA to accelerate the convergence of the multifrequency transport iteration and a grey transport acceleration (GTA) followed by a single group DSA. Here we summarize a new method which uses a grey diffusion equation (GDA) to directly solve the multifrequency transport (S{sub N}) problem. Results of Fourier analysis for both the continuous and discretized equations are discussed and the computational efficiency of GDA is compared with the DSA and GTA nested algorithms. 5 refs., 1 fig., 1 tab.

  18. Method of coating the interior surface of hollow objects with a diffusion coating

    DOEpatents

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  19. Comparison of dialysis membrane diffusion samplers and two purging methods in bedrock wells

    USGS Publications Warehouse

    Imbrigiotta, T.E.; Ehlke, T.A.; Lacombe, P.J.; Dale, J.M.

    2002-01-01

    Collection of ground-water samples from bedrock wells using low-flow purging techniques is problematic because of the random spacing, variable hydraulic conductivity, and variable contamination of contributing fractures in each well's open interval. To test alternatives to this purging method, a field comparison of three ground-water-sampling techniques was conducted on wells in fractured bedrock at a site contaminated primarily with volatile organic compounds. Constituent concentrations in samples collected with a diffusion sampler constructed from dialysis membrane material were compared to those in samples collected from the same wells with a standard low-flow purging technique and a hybrid (high-flow/low-flow) purging technique. Concentrations of trichloroethene, cis-1,2-dichloroethene, vinyl chloride, calcium, chloride, and alkalinity agreed well among samples collected with all three techniques in 9 of the 10 wells tested. Iron concentrations varied more than those of the other parameters, but their pattern of variation was not consistent. Overall, the results of nonparametric analysis of variance testing on the nine wells sampled twice showed no statistically significant difference at the 95-percent confidence level among the concentrations of volatile organic compounds or inorganic constituents recovered by use of any of the three sampling techniques.

  20. New experimental method to measure pure and cross diffusion coefficients of transparent ternary mixtures using Mach-Zehnder interferometry

    NASA Astrophysics Data System (ADS)

    Ahadi, Amirhossein; Saghir, M. Ziad

    2014-08-01

    In this study, a Mach-Zehnder interferometer that is equipped with two lasers of different wavelengths was used to conduct high resolution measurements of concentration profiles of a ternary mixture inside a diffusion cell. Windowed Fourier transform along with an advanced unwrapping procedure was employed to extract the phase image from fringe images. Then the phase difference was obtained for a spatial resolution of 1920×1240. According to the measured refractive index profile, concentration contours of two components (out of three) were measured. Consequently, the concentration profile of the third components was calculated. Previously, the analytical solution for binary mixtures was used to estimate only the pure diffusion coefficients. In this study, for the first time, the refractive indices measured by two lasers along with the analytical solution for the ternary system, based on Fick's law, and an evolutionary algorithm (EA) known as a genetic algorithm (GA) were employed to measure the pure and cross diffusion coefficients of a transparent ternary mixture simultaneously. The optimization method to estimate diffusion coefficients was tested against various objective functions, and the best approach was that which was proposed herein. In order to validate the proposed measurement method, the experimental results of the Selectable Optical Diagnostics Instrument-Diffusion Coefficients in Mixtures (SODI-DCMIX1 project) on board the International Space Station (ISS) were analyzed using this technique and the obtained results were compared with previous techniques.

  1. METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT

    DOEpatents

    Dole, M.

    1959-09-22

    An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

  2. Secular resonant dressed orbital diffusion - I. Method and WKB limit for tepid discs

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe; Prunet, Simon

    2015-05-01

    The equation describing the secular diffusion of a self-gravitating collisionless system induced by an exterior perturbation is derived while assuming that the time-scale corresponding to secular evolution is much larger than that corresponding to the natural frequencies of the system. Its two-dimensional formulation for a tepid galactic disc is also derived using the epicyclic approximation. Its Wentzel-Kramers-Brillouin (WKB) limit is found while assuming that only tightly wound transient spirals are sustained by the disc. It yields a simple quadrature for the diffusion coefficients which provides a straightforward understanding of the loci of maximal diffusion within the disc.

  3. A rapid method for the measurement and estimation of CO2 diffusivity in liquid hydrocarbon-saturated porous media using MRI.

    PubMed

    Zhao, Yuechao; Chen, Junlin; Yang, Mingjun; Liu, Yu; Song, Yongchen

    2016-05-01

    In this study, magnetic resonance imaging (MRI) was used to dynamically visualize the diffusion process of CO2 in porous media saturated with liquid hydrocarbon. Based on the assumption of semi-infinite media, effective CO2 diffusivity was obtained directly by the nonlinear fitting of one MR profile during the diffusion process. These experimental findings obtained based on MRI method showed a close agreement with the conventional pressure-volume-temperature method. The novel MRI-based technique is a time-saving approach that can reduce the duration of CO2 diffusivity measurement more than 90%, and realize rapid and accurate measurement and estimation of CO2 diffusivity. PMID:26707850

  4. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  5. The True Color of Yogi: An Accurate Method for Removing Diffuse Illumination from Multispectral Images of Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Rages, Kathy

    2002-01-01

    We correct spectra of Yogi to remove diffuse illumination and show that the part of Yogi facing the wind is less red than other faces of the rock. Our method eliminates ambiguity in interpreting spectra obtained under Mars illumination conditions. Additional information is contained in the original extended abstract.

  6. Effect of the 5E Model on Prospective Teachers' Conceptual Understanding of Diffusion and Osmosis: A Mixed Method Approach

    ERIC Educational Resources Information Center

    Artun, Huseyin; Costu, Bayram

    2013-01-01

    The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting…

  7. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  8. Investigation to develop a method to apply diffusion barrier to high strength fibers

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Paradis, R. D.; Douglas, F. C.

    1975-01-01

    A radio frequency powered ion plating process was used to apply the diffusion barriers of aluminum oxide, yttrium oxide, hafnium oxide and titanium carbide to a substrate tungsten fiber. Each of the coatings was examined as to its effect on both room temperature strength and tensile strength of the base tungsten fiber. The coated fibers were then overcoated with a nickel alloy to become single cell diffusion couples. These diffusion couples were exposed to 1093 C for 24 hours, cycled between room temperature and 1093 C, and given a thermal anneal for 100 hours at 1200 C. Tensile testing and metallographic examinations determined that the hafnium oxide coating produced the best high temperature diffusion barrier for tungsten of the four coatings.

  9. A comparison of implicit numerical methods for solving the transient spherical diffusion equation

    NASA Technical Reports Server (NTRS)

    Curry, D. M.

    1977-01-01

    Comparative numerical temperature results obtained by using two implicit finite difference procedures for the solution of the transient diffusion equation in spherical coordinates are presented. The validity and accuracy of these solutions are demonstrated by comparison with exact analytical solutions.

  10. Airfoil and diffused cooling holes and method and apparatus for making the same

    SciTech Connect

    Vertz, R.J.; Mosavi, R.K.

    1988-08-09

    This patent describes a body shell for a gas-turbine airfoil and having one or more cooling holes between an inner surface and an outer surface, each of the one or more holes having a laser-drilled inner bore portion and an EDM-machined outer diffuser portion, whereby the inner bore portion has a surface roughness which substantially exceeds the surface roughness which substantially exceeds the surface roughness of the outer diffuser portion.

  11. Evaluation of ceramic and membrane diffusers under operating conditions with the dynamic offgas method.

    PubMed

    Libra, J A; Sahlmann, C; Schuchardt, A; Handschag, J; Wiesmann, U; Gnirss, R

    2005-01-01

    The aeration systems of two full-scale, activated-sludge basins were compared during a period of three years, under the same operating conditions, using dynamic offgas testing. Only the material of the diffuser was different (membrane versus ceramic-tube diffusers). The investigation has shown that, although the membrane diffusers have higher initial standard-oxygen-transfer efficiency (alphaSOTE) and standard-aeration efficiency (alphaSAE), these decreased over time, while the alphaSAE of the ceramic diffusers started lower, but increased slightly over the whole period. A cost comparison makes clear how important it is to evaluate the aeration system under process conditions. The operating costs were the dominant factor (approximately 10x higher than capital costs), and operating costs were approximately 20% higher for membrane versus ceramic diffusers. The poor performance of the membrane-tube diffusers under process conditions could be explained on the basis of the actual alphaAE values in the basin, not the standardized values. PMID:16274078

  12. Phenomenological model of diffuse global and regional atrophy using finite-element methods.

    PubMed

    Camara, Oscar; Schweiger, Martin; Scahill, Rachael I; Crum, William R; Sneller, Beatrix I; Schnabel, Julia A; Ridgway, Gerard R; Cash, David M; Hill, Derek L G; Fox, Nick C

    2006-11-01

    The main goal of this work is the generation of ground-truth data for the validation of atrophy measurement techniques, commonly used in the study of neurodegenerative diseases such as dementia. Several techniques have been used to measure atrophy in cross-sectional and longitudinal studies, but it is extremely difficult to compare their performance since they have been applied to different patient populations. Furthermore, assessment of performance based on phantom measurements or simple scaled images overestimates these techniques' ability to capture the complexity of neurodegeneration of the human brain. We propose a method for atrophy simulation in structural magnetic resonance (MR) images based on finite-element methods. The method produces cohorts of brain images with known change that is physically and clinically plausible, providing data for objective evaluation of atrophy measurement techniques. Atrophy is simulated in different tissue compartments or in different neuroanatomical structures with a phenomenological model. This model of diffuse global and regional atrophy is based on volumetric measurements such as the brain or the hippocampus, from patients with known disease and guided by clinical knowledge of the relative pathological involvement of regions and tissues. The consequent biomechanical readjustment of structures is modelled using conventional physics-based techniques based on biomechanical tissue properties and simulating plausible tissue deformations with finite-element methods. A thermoelastic model of tissue deformation is employed, controlling the rate of progression of atrophy by means of a set of thermal coefficients, each one corresponding to a different type of tissue. Tissue characterization is performed by means of the meshing of a labelled brain atlas, creating a reference volumetric mesh that will be introduced to a finite-element solver to create the simulated deformations. Preliminary work on the simulation of acquisition

  13. Exciton diffusion length and concentration of holes in MEH-PPV polymer using the surface voltage and surface photovoltage methods

    NASA Astrophysics Data System (ADS)

    Toušek, J.; Toušková, J.; Remeš, Z.; Čermák, J.; Kousal, J.; Kindl, D.; Kuřitka, I.

    2012-11-01

    Novelized method of the surface photovoltage (SPV) measurement convenient for evaluation of exciton diffusion length and thickness of the space charge region (SCR) in organic semiconductors is applied to poly[2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) polymer. Exciton diffusion length and thickness of the SCR was found. The experiment is complemented by measurements of surface potential by the Kelvin probe force microscopy yielding the work function and concentration of free holes. The latter value is much lower than the concentration of ionized states determined from the thickness of the space charge region, which can be ascribed to the presence of traps.

  14. Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen

    PubMed Central

    Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti

    2015-01-01

    Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079

  15. An improved simulation of the deep Pacific Ocean using optimally estimated vertical diffusivity based on the Green's function method

    NASA Astrophysics Data System (ADS)

    Toyoda, Takahiro; Sugiura, Nozomi; Masuda, Shuhei; Sasaki, Yuji; Igarashi, Hiromichi; Ishikawa, Yoichi; Hatayama, Takaki; Kawano, Takeshi; Kawai, Yoshimi; Kouketsu, Shinya; Katsumata, Katsuro; Uchida, Hiroshi; Doi, Toshimasa; Fukasawa, Masao; Awaji, Toshiyuki

    2015-11-01

    An improved vertical diffusivity scheme is introduced into an ocean general circulation model to better reproduce the observed features of water property distribution inherent in the deep Pacific Ocean structure. The scheme incorporates (a) a horizontally uniform background profile, (b) a parameterization depending on the local static stability, and (c) a parameterization depending on the bottom topography. Weighting factors for these parameterizations are optimally estimated based on the Green's function method. The optimized values indicate an important role of both the intense vertical diffusivity near rough topography and the background vertical diffusivity. This is consistent with recent reports that indicate the presence of significant vertical mixing associated with finite-amplitude internal wave breaking along the bottom slope and its remote effect. The robust simulation with less artificial trend of water properties in the deep Pacific Ocean illustrates that our approach offers a better modeling analysis for the deep ocean variability.

  16. A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models.

    PubMed

    Lansky, Petr; Ditlevsen, Susanne

    2008-11-01

    Parameters in diffusion neuronal models are divided into two groups; intrinsic and input parameters. Intrinsic parameters are related to the properties of the neuronal membrane and are assumed to be known throughout the paper. Input parameters characterize processes generated outside the neuron and methods for their estimation are reviewed here. Two examples of the diffusion neuronal model, which are based on the integrate-and-fire concept, are investigated--the Ornstein--Uhlenbeck model as the most common one and the Feller model as an illustration of state-dependent behavior in modeling the neuronal input. Two types of experimental data are assumed-intracellular describing the membrane trajectories and extracellular resulting in knowledge of the interspike intervals. The literature on estimation from the trajectories of the diffusion process is extensive and thus the stress in this review is set on the inference made from the interspike intervals. PMID:18496710

  17. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    SciTech Connect

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  18. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-01

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches. PMID:26583215

  19. Efficient gradient-free simplex method for estimation of optical properties in image-guided diffuse optical tomography.

    PubMed

    Jagannath, Ravi Prasad K; Yalavarthy, Phaneendra K

    2013-03-01

    Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. PMID:23515862

  20. Efficient gradient-free simplex method for estimation of optical properties in image-guided diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jagannath, Ravi Prasad K.; Yalavarthy, Phaneendra K.

    2013-03-01

    Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations.

  1. Measuring thermal diffusivity of mechanical and optical grades of polycrystalline diamond using an AC laser calorimetry method

    SciTech Connect

    Rule, Toby D.; Cai, Wei; Wang, Hsin

    2013-01-01

    Because of its extremely high thermal conductivity, measuring the thermal conductivity or diffusivity of optical-grade diamond can be challenging. Various methods have been used to measure the thermal conductivity of thick diamond films. For the purposes of commercial quality control, the AC laser calorimetry method is appealing because it enables fairly rapid and convenient sample preparation and measurement. In this paper, the method is used to measure the thermal diffusivity of optical diamond. It is found that sample dimensions and measurement parameters are critical, and data analysis must be performed with great care. The results suggest that the method as it is applied to optical-grade diamond could be enhanced by a more powerful laser, higher frequency beam modulation, and post-processing based on 2D thermal simulation.

  2. Diffusion of small two-dimensional Cu islands on Cu(111) studied with a kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Karim, Altaf; Al-Rawi, Ahlam N.; Kara, Abdelkader; Rahman, Talat S.; Trushin, Oleg; Ala-Nissila, Tapio

    2006-04-01

    Diffusion of small two-dimensional Cu islands (containing up to 10 atoms) on Cu(111) has been studied using the newly developed self-learning Kinetic Monte Carlo (SLKMC) method which is based on a database of diffusion processes and their energetics accumulated automatically during the implementation of the SLKMC code. Results obtained from simulations in which atoms hop from one fcc hollow site to another are compared with those obtained from a parallel set of simulations in which the database is supplemented by processes revealed in complementary molecular dynamics simulations at 500K . They include processes involving the hcp (stacking-fault) sites, which facilitate concerted motion of the islands (simultaneous motion of all atoms in the island). A significant difference in the scaling of the effective diffusion barriers with island size is observed in the two cases. In particular, the presence of concerted island motion leads to an almost linear increase in the effective diffusion barrier with size, while its absence accounts for strong size-dependent oscillations and anomalous behavior for trimers and heptamers. We also identify and discuss in detail the key microscopic processes responsible for the diffusion and examine the frequencies of their occurrence, as a function of island size and substrate temperature.

  3. A finite difference method with periodic boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue

    NASA Astrophysics Data System (ADS)

    Russell, Greg; Harkins, Kevin D.; Secomb, Timothy W.; Galons, Jean-Philippe; Trouard, Theodore P.

    2012-02-01

    A new finite difference (FD) method for calculating the time evolution of complex transverse magnetization in diffusion-weighted magnetic resonance imaging and spectroscopy experiments is described that incorporates periodic boundary conditions. The new FD method relaxes restrictions on the allowable time step size employed in modeling which can significantly reduce computation time for simulations of large physical extent and allow for more complex, physiologically relevant, geometries to be simulated.

  4. In vitro antifungal susceptibility testing of Scopulariopsis brevicaulis strains using agar diffusion method.

    PubMed

    Skóra, Magdalena; Macura, Anna B

    2011-01-01

    The genus Scopulariopsis is a common soil saprotroph and has been isolated from air, organic waste and also from plant, animal and human tissues. Scopulariopsis has mainly been associated in humans with superficial mycoses, but it has also been described as the cause of subcutaneous and invasive infections. The most common aetiological agent of infections in humans is Scopulariopsis brevicaulis. This species has been reported to be resistant in vitro to broad-spectrum antifungal agents available today. The aim of the study was to establish in vitro antifungal susceptibility of 35 S. brevicaulis strains against amphotericin B (AMB), flucytosine (FC), caspofungin (CAS), terbinafine (TER), ciclopirox (CIC), voriconazole (VOR), clotrimazole (CTR), miconazole (MCZ), econazole (ECO), ketoconazole (KET), itraconazole (ITR), and fluconazole (FLU). Antifungal susceptibility tests were evaluated by an agar diffusion method (Neo-Sensitabs, Rosco, Denmark). AMB, FC, CAS, ITR and FLU showed no antifungal activity against S. brevicaulis. TER, CIC, CTR, KET, VOR, ECO, and MCZ revealed inhibitory activity for S. brevicaulis, but it varied for each of the drugs. The best antifungal effect was observed for TER and CIC. All isolates had large inhibition zones for TER and CIC. CTR was also inhibitory for all tested S. brevicaulis isolates, but the diameters of inhibition zones were smaller than for TER and CIC. Nearly 89% isolates showed inhibition zones for KET and the mean diameter of the inhibition zone was comparable to CTR. The least antifungal activity exhibited VQR, ECO and MCZ. Because of the multiresistance of S. brevicaulis, infections due to this species may not respond to particular antifungal treatment and other therapeutic approaches should be considered, e.g., combined therapy and/or surgery. PMID:21682097

  5. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method

    PubMed Central

    Urbán-Morlán, Zaida; Ganem-Rondero, Adriana; Melgoza-Contreras, Luz María; Escobar-Chávez, José Juan; Nava-Arzaluz, María Guadalupe; Quintanar-Guerrero, David

    2010-01-01

    Solid lipid nanoparticles (SLNs) have been used for carrying different therapeutic agents because they improve absorption and bioavailability. The aim of the study was to prepare lipidic nanoparticles containing cyclosporine (CyA) by the emulsification-diffusion method and to study their physicochemical stability. Glyceryl behenate (Compritol® ATO 888) and lauroyl macrogolglycerides (Gelucire® 44/14) were used as carrier materials. Nanoparticles with good stability were obtained with Gelucire®, while it was difficult to obtain stable systems with Compritol®. Systems with Gelucire® were characterized by particle size, Z-potential, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), entrapment efficiency and in vitro release. Particle size and Z-potential were evaluated for at least three months. With a high CyA content (≥60 mg) in Gelucire® SLNs, variations in size were greater and particle size also increased over time in all batches; this effect may have been caused by a probable expulsion of the drug due to the lipid’s partial rearrangement. While the Z-potential decreased 10 mV after three months, this effect may be explained by the superficial properties of the drug that make the molecules to be preferably oriented at the solid-liquid interface, causing a change in the net charge of the particle. SEM confirmed size and shape of the nanoparticles. DSC studies evidenced that CyA affects the lipid structure by a mechanism still unknown. The entrapment efficiency was higher than 92%, and CyA release from SLNs was relatively fast (99.60% in 45 min). PMID:20856836

  6. A modified method for diffusive monitoring of 3-ethenylpyridine as a specific marker of environmental tobacco smoke

    NASA Astrophysics Data System (ADS)

    Kuusimäki, Leea; Peltonen, Kimmo; Vainiotalo, Sinikka

    A previously introduced method for monitoring environmental tobacco smoke (ETS) was further validated. The method is based on diffusive sampling of a vapour-phase marker, 3-ethenylpyridine (3-EP), with 3 M passive monitors (type 3500). Experiments were done in a dynamic chamber to assess diffusive sampling in comparison with active sampling in charcoal tubes or XAD-4 tubes. The sampling rate for 3-EP collected on the diffusive sampler was 23.1±0.6 mL min -1. The relative standard deviation for parallel samples ( n=6) ranged from 4% to 14% among experiments ( n=9). No marked reverse diffusion of 3-EP was detected nor any significant effect of relative humidity at 20%, 50% or 80%. The diffusive sampling of 3-EP was validated in field measurements in 15 restaurants in comparison with 3-EP and nicotine measurements using active sampling. The 3-EP concentration in restaurants ranged from 0.01 to 9.8 μg m -3, and the uptake rate for 3-EP based on 92 parallel samples was 24.0±0.4 mL min -1. A linear correlation ( r=0.98) was observed between 3-EP and nicotine concentrations, the average ratio of 3-EP to nicotine being 1:8. Active sampling of 3-EP and nicotine in charcoal tubes provided more reliable results than sampling in XAD-4 tubes. All samples were analysed using gas chromatography-mass spectrometry after elution with a 15% solution of pyridine in toluene. For nicotine, the limit of quantification of the charcoal tube method was 4 ng per sample, corresponding to 0.04 μg m -3 for an air sample of 96 L. For 3-EP, the limit of quantification of the diffusive method was 0.5-1.0 ng per sample, corresponding to 0.04-0.09 μg m -3 for 8 h sampling. The diffusive method proved suitable for ETS monitoring, even at low levels of ETS.

  7. Total Antioxidant Capacity of Serum Determined Using the Potassium Permanganate Agar Method Based on Serum Diffusion in Agar.

    PubMed

    Zhou, Ying; Zhang, Meijuan; Liu, Hui

    2015-01-01

    Objectives. To develop a new method for determining total antioxidants in serum and to evaluate the total antioxidant capacity of organisms. Design and Methods. Sodium hyposulfite (Na2S2O3) and serum were used to evaluate the linearity and precision of the potassium permanganate agar method. The area of serum diffusion in samples from 30 intensive care unit (ICU) patients compared with 44 healthy subjects was determined by the potassium permanganate agar method. Results. The linearity (R (2) in the linear experiment of Na2S2O3 was 0.994; R (2) in the linear experiment of serum was 0.987) and precision (coefficient of variation of area of high level serum diffusion within-run, between-run, and between-day and coefficient of variation of area of low serum diffusion within-run, between-run, and between-day were all less than 10%) were acceptable using the potassium permanganate agar method. Total antioxidants of serum between the ICU group and the healthy group were different (p = 0.002, two tailed). Conclusions. Total antioxidants in serum can be determined by the potassium permanganate agar method. The total antioxidant capacity of an organism can be evaluated by the amount of total antioxidants in serum. PMID:26347595

  8. Total Antioxidant Capacity of Serum Determined Using the Potassium Permanganate Agar Method Based on Serum Diffusion in Agar

    PubMed Central

    Zhou, Ying; Zhang, Meijuan; Liu, Hui

    2015-01-01

    Objectives. To develop a new method for determining total antioxidants in serum and to evaluate the total antioxidant capacity of organisms. Design and Methods. Sodium hyposulfite (Na2S2O3) and serum were used to evaluate the linearity and precision of the potassium permanganate agar method. The area of serum diffusion in samples from 30 intensive care unit (ICU) patients compared with 44 healthy subjects was determined by the potassium permanganate agar method. Results. The linearity (R2 in the linear experiment of Na2S2O3 was 0.994; R2 in the linear experiment of serum was 0.987) and precision (coefficient of variation of area of high level serum diffusion within-run, between-run, and between-day and coefficient of variation of area of low serum diffusion within-run, between-run, and between-day were all less than 10%) were acceptable using the potassium permanganate agar method. Total antioxidants of serum between the ICU group and the healthy group were different (p = 0.002, two tailed). Conclusions. Total antioxidants in serum can be determined by the potassium permanganate agar method. The total antioxidant capacity of an organism can be evaluated by the amount of total antioxidants in serum. PMID:26347595

  9. The Conforming Virtual Element Method for the convection-diffusion-reaction equation with variable coeffcients.

    SciTech Connect

    Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver

    2014-10-02

    This document describes the conforming formulations for virtual element approximation of the convection-reaction-diffusion equation with variable coefficients. Emphasis is given to construction of the projection operators onto polynomial spaces of appropriate order. These projections make it possible the virtual formulation to achieve any order of accuracy. We present the construction of the internal and the external formulation. The difference between the two is in the way the projection operators act on the derivatives (laplacian, gradient) of the partial differential equation. For the diffusive regime we prove the well-posedness of the external formulation and we derive an estimate of the approximation error in the H1-norm. For the convection-dominated case, the streamline diffusion stabilization (aka SUPG) is also discussed.

  10. A new method of real-time signal extraction for diffuse reflection laser ranging based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Zhang, Yan; Qian, Weiping

    2015-10-01

    Diffuse reflection laser ranging is one of the feasible ways to realize high precision measurement of the space debris. However, the weak echo of diffuse reflection results in a poor signal-to-noise ratio. Thus, it is difficult to realize the real-time signal extraction for diffuse reflection laser ranging when echo signal photons are blocked by a large amount of noise photons. The Genetic Algorithm, originally evolved from the idea of natural selection process, is a heuristic search algorithm which is famous for the adaptive optimization and the global search ability. To the best of our knowledge, this paper is the first one to propose a method of real-time signal extraction for diffuse reflection laser ranging based on Genetic Algorithm. The extraction results are regarded as individuals in the population. Besides, short-term linear fitting degree and data correlation level are used as selection criteria to search for an optimal solution. Fine search in the real-time data part gives the suitable new data quickly in real-time signal extraction. A coarse search in both historical data and real-time data after the fine search is designed. The co-evolution of both parts can increase the search accuracy of real-time data as well as the precision of the history data. Simulation experiments show that our method has good signal extraction capability in poor signal-to-noise ratio circumstance, especially for data with high correlation.

  11. Generalization of the CCLADS method for modeling anisotropic diffusion tensors on three-dimensional finite-volume grids

    NASA Astrophysics Data System (ADS)

    Provost, A.; Langevin, C.

    2012-12-01

    A number of numerical methods exist for incorporating anisotropic diffusion tensors, such as hydraulic or thermal conductivity, into two- and three-dimensional numerical models. The methods vary in mathematical approach, complexity, performance, and applicability to different types of model grids. The CCLADS variant of the CCLAD (Cell-Centered LAgrangian Diffusion) method of Maire & Breil (2011) is applicable to two-dimensional, unstructured, cell-centered finite-volume grids. It has a local stencil and exhibits nearly second-order accuracy on smooth distorted grids. As originally derived, CCLADS is not directly generalizable to three dimensions, and the derivation breaks down when adjacent cell edges meet at 180 degrees. Here, we rederive CCLADS to overcome these limitations and investigate the performance of the generalized method in a suite of three-dimensional test problems on structured, rectangular grids. As in two dimensions, the generalized method should be applicable to unstructured grids. Maire, P.-H., and Breil J., 2012, A nominally second-order accurate finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids, J. Comput. Phys., 231 (5), 2259-2299.

  12. The Validation of Complete Fourier Direct MR Method for Diffusion MRI via Biological and Numerical Phantoms

    PubMed Central

    Özcan, Alpay; Quirk, James D.; Wang, Yong; Wang, Qing; Sun, Peng; Spees, William M.; Song, Sheng–Kwei

    2012-01-01

    The equations of the Complete Fourier Direct (CFD) MR model are explicitly derived for diffusion weighted NMR experiments. The CFD–MR theory is validated by comparing a biological phantom constructed from nerve bundles and agar gel with its numerical implementation. The displacement integral distribution function estimated from the experimental data is in high agreement with the numerical phantom. CFD–MR’s ability to estimate accurately and fully spin diffusion properties demonstrated here, provides the experimental validation of the theoretical CFD–MR model. PMID:22255156

  13. Extension of Newman's method to electrochemical reaction-diffusion in a fuel cell catalyst layer

    NASA Astrophysics Data System (ADS)

    Duan, Tianping; Weidner, John W.; White, Ralph E.

    A numerical technique is developed for solving coupled electrochemical reaction-diffusion equations. Through analyzing the nonlinearity of the problem, a trial and error iterating procedure is constructed. The coefficient matrix is arranged as a tridiagonal form with elements of block matrix and is decomposed to LU form. A compact forward and backward substitution algorithm based on the shift of inversing block matrix by Gauss-Jordan full pivoting is developed. A large number of node points is required to converge the calculation. Computation experiences show that the iteration converges very quickly. The effects of inner diffusion on the electrochemical reaction are analyzed by numerical solutions.

  14. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.

    PubMed

    Hart, Vern P; Doyle, Timothy E

    2013-09-01

    A Monte Carlo method was derived from the optical scattering properties of spheroidal particles and used for modeling diffuse photon migration in biological tissue. The spheroidal scattering solution used a separation of variables approach and numerical calculation of the light intensity as a function of the scattering angle. A Monte Carlo algorithm was then developed which utilized the scattering solution to determine successive photon trajectories in a three-dimensional simulation of optical diffusion and resultant scattering intensities in virtual tissue. Monte Carlo simulations using isotropic randomization, Henyey-Greenstein phase functions, and spherical Mie scattering were additionally developed and used for comparison to the spheroidal method. Intensity profiles extracted from diffusion simulations showed that the four models differed significantly. The depth of scattering extinction varied widely among the four models, with the isotropic, spherical, spheroidal, and phase function models displaying total extinction at depths of 3.62, 2.83, 3.28, and 1.95 cm, respectively. The results suggest that advanced scattering simulations could be used as a diagnostic tool by distinguishing specific cellular structures in the diffused signal. For example, simulations could be used to detect large concentrations of deformed cell nuclei indicative of early stage cancer. The presented technique is proposed to be a more physical description of photon migration than existing phase function methods. This is attributed to the spheroidal structure of highly scattering mitochondria and elongation of the cell nucleus, which occurs in the initial phases of certain cancers. The potential applications of the model and its importance to diffusive imaging techniques are discussed. PMID:24085080

  15. Comparison of diffusion- and pumped-sampling methods to monitor volatile organic compounds in ground water, Massachusetts Military Reservation, Cape Cod, Massachusetts, July 1999-December 2002

    USGS Publications Warehouse

    Archfield, Stacey A.; LeBlanc, Denis R.

    2005-01-01

    To evaluate diffusion sampling as an alternative method to monitor volatile organic compound (VOC) concentrations in ground water, concentrations in samples collected by traditional pumped-sampling methods were compared to concentrations in samples collected by diffusion-sampling methods for 89 monitoring wells at or near the Massachusetts Military Reservation, Cape Cod. Samples were analyzed for 36 VOCs. There was no substantial difference between the utility of diffusion and pumped samples to detect the presence or absence of a VOC. In wells where VOCs were detected, diffusion-sample concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) were significantly lower than pumped-sample concentrations. Because PCE and TCE concentrations detected in the wells dominated the calculation of many of the total VOC concentrations, when VOC concentrations were summed and compared by sampling method, visual inspection also showed a downward concentration bias in the diffusion-sample concentration. The degree to which pumped- and diffusion-sample concentrations agreed was not a result of variability inherent within the sampling methods or the diffusion process itself. A comparison of the degree of agreement in the results from the two methods to 13 quantifiable characteristics external to the sampling methods offered only well-screen length as being related to the degree of agreement between the methods; however, there is also evidence to indicate that the flushing rate of water through the well screen affected the agreement between the sampling methods. Despite poor agreement between the concentrations obtained by the two methods at some wells, the degree to which the concentrations agree at a given well is repeatable. A one-time, well-bywell comparison between diffusion- and pumped-sampling methods could determine which wells are good candidates for the use of diffusion samplers. For wells with good method agreement, the diffusion-sampling method is a time

  16. Integration of biological control with other methods to restore rangeland infested with spotted and diffuse knapweed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A four-year field study was conducted to test alternative control strategies for spotted knapweed and at Fort Carson, CO and diffuse knapweed at Yakima Training Center, WA. We evaluated the control of these alien invasive weeds with a combination of four manipulations to speed up restoration of des...

  17. Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films.

    PubMed

    Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj

    2016-08-01

    A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm(2)) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm(2)) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature. PMID:27587146

  18. Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj

    2016-08-01

    A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.

  19. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  20. An Innovative Method for Preparing Semiconductor Change Used in Crystal Growth and Shear Cell Diffusion Experiments

    NASA Technical Reports Server (NTRS)

    Anrold, William A.; Matthiesen, David; Benett, Robert J.; Jayne, Douglas T.

    1997-01-01

    An innovative technique for machining semiconductors has been developed. This technique was used to prepare semiconductor charges for crystal growth and shear cell diffusion experiments. The technique allows brittle semiconductor materials to be quickly and accurately machined. Lightly doping the semiconductor material increases the conductivity enough to allow the material to be shaped by an electrical discharge machine (EDM).

  1. Comparison of the antibacterial activity of chelating agents using the agar diffusion method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of 2 metal chelators. Concentrations of 0 to 40 mM of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N,N’-disuccinic acid (EDDS) were prepared in 1.0 M potassium hydroxide (KOH). The pH of the solutions was adjusted to 1...

  2. Antibacterial properties of Au doped polycarbonate synthesized by gamma radiation assisted diffusion method

    NASA Astrophysics Data System (ADS)

    Hareesh, K.; Deore, Avinash V.; Dahiwale, S. S.; Sanjeev, Ganesh; Kanjilal, D.; Ojha, Sunil; Dhole, N. A.; Kodam, K. M.; Bhoraskar, V. N.; Dhole, S. D.

    2015-07-01

    Gold (Au)-Polycarbonate (PC) matrix was prepared by gamma radiation assisted diffusion of Au nanoparticles in PC matrix. UV-Visible spectroscopy showed the surface plasmon resonance around 550 nm which corresponds to Au and this peak shift towards lower wavelength i.e. blue shift indicating the decrease in particle size of Au. Rutherford Backscattering (RBS) experiment confirmed the diffusion of Au in PC and depth of diffusion is found to be around 0.85 μm. X-ray Diffractogram (XRD) results also revealed the diffusion of Au in PC where the peak observed at 2θ∼38.29° which correspond to the FCC structure. Scanning Electron Microscope (SEM) images showed the hexagonal shaped Au nanoparticles and average particle size is found to be around 110 nm. These samples also showed anti-bacterial properties with both gram positive and gram negative bacteria's and revealed the inhibition of the overall growth of the bacteria with gamma dose.

  3. A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from Restrained Molecular Simulations of Diffusive Processes.

    PubMed

    Ovchinnikov, Victor; Nam, Kwangho; Karplus, Martin

    2016-08-25

    A method is developed to obtain simultaneously free energy profiles and diffusion constants from restrained molecular simulations in diffusive systems. The method is based on low-order expansions of the free energy and diffusivity as functions of the reaction coordinate. These expansions lead to simple analytical relationships between simulation statistics and model parameters. The method is tested on 1D and 2D model systems; its accuracy is found to be comparable to or better than that of the existing alternatives, which are briefly discussed. An important aspect of the method is that the free energy is constructed by integrating its derivatives, which can be computed without need for overlapping sampling windows. The implementation of the method in any molecular simulation program that supports external umbrella potentials (e.g., CHARMM) requires modification of only a few lines of code. As a demonstration of its applicability to realistic biomolecular systems, the method is applied to model the α-helix ↔ β-sheet transition in a 16-residue peptide in implicit solvent, with the reaction coordinate provided by the string method. Possible modifications of the method are briefly discussed; they include generalization to multidimensional reaction coordinates [in the spirit of the model of Ermak and McCammon (Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352-1360)], a higher-order expansion of the free energy surface, applicability in nonequilibrium systems, and a simple test for Markovianity. In view of the small overhead of the method relative to standard umbrella sampling, we suggest its routine application in the cases where umbrella potential simulations are appropriate. PMID:27135391

  4. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  5. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  6. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Hai-Shui; Zeng, Qiang

    2016-09-01

    The polymorph control of calcium carbonate by the vapor diffusion method is still a challenging issue because the resultant crystal polymorphs and morphologies highly depend on the experimental setup. In this communication, we demonstrated that the concentration gradients accompanied by the vapor diffusion method (ammonia concentration, pH and the ratio of CO32- to Ca2+ are changed with the solution depth and with time) are probably the main reasons to significantly affect the formation of crystal polymorphs. Raman, SEM and XRD data showed that calcite and vaterite crystals were preferred to nucleate and grow in the upper or the lower areas of aqueous solution respectively. The above results can be explained by the gradient effect.

  7. Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations

    NASA Astrophysics Data System (ADS)

    Vikas, V.; Wang, Z. J.; Fox, R. O.

    2013-09-01

    Population balance equations with advection and diffusion terms can be solved using quadrature-based moment methods. Recently, high-order realizable finite-volume schemes with appropriate realizability criteria have been derived for the advection term. However, hitherto no work has been reported with respect to realizability problems for the diffusion term. The current work focuses on developing high-order realizable finite-volume schemes for diffusion. The pitfalls of existing finite-volume schemes for the diffusion term based on the reconstruction of moments are discussed, and it is shown that realizability can be guaranteed only with the 2nd-order scheme and that the realizability criterion for the 2nd-order scheme is the same as the stability criterion. However, realizability of moments cannot be guaranteed when higher-order moment-based reconstruction schemes are used. To overcome this problem, realizable high-order finite-volume schemes based on the reconstruction of weights and abscissas are proposed and suitable realizability criteria are derived. The realizable schemes can achieve higher than 2nd-order accuracy for problems with smoothly varying abscissas. In the worst-case scenario of highly nonlinear abscissas, the realizable schemes are 2nd-order accurate but have lower error magnitudes compared to existing schemes. The results obtained using the realizable high-order schemes are shown to be consistent with those obtained using the 2nd-order moment-based reconstruction scheme.

  8. Comparison of diffuse sky irradiance calculation methods and effect on surface reflectance retrieval from an automated radiometric calibration test site

    NASA Astrophysics Data System (ADS)

    Leisso, Nathan; Czapla-Myers, Jeffrey

    2011-10-01

    The Remote Sensing Group (RSG) at the University of Arizona is currently refining an automated system for the absolute radiometric calibration of earth-observing sensors. The Radiometric Calibration Test Site (RadCaTS) relies on semi-permanent instrumentation at the Railroad Valley (RRV) test site to collect data from which surface reflectance and an atmospheric characterization is determined. Multispectral surface reflectance is determined from calibrated ground viewing radiometers and assimilated to determine the hyperspectral reflectance used in radiative transfer calculations. The reflectance retrieval algorithm relies on an accurate determination of the diffuse sky irradiance for the time of interest. Currently, diffuse sky irradiance is modeled using the atmospheric characterization as input into MODTRAN5. This work investigates the accuracy of the diffuse sky modeling by comparing modeled results to measurements made at the test site. Diffuse sky irradiance from several alternative methods are also presented. Surface reflectance is computed and compared to in-situ measurements taken with a portable spectoradiometer.

  9. FRACTIONAL PEARSON DIFFUSIONS

    PubMed Central

    Leonenko, Nikolai N.; Meerschaert, Mark M.

    2013-01-01

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377

  10. Diffusion Kurtosis Imaging of Substantia Nigra Is a Sensitive Method for Early Diagnosis and Disease Evaluation in Parkinson's Disease

    PubMed Central

    Zhang, Guohua; Zhang, Yuhu; Zhang, Chengguo; Wang, Yukai; Ma, Guixian; Nie, Kun; Xie, Haiqun; Liu, Jianping; Wang, Lijuan

    2015-01-01

    Background. To diagnose Parkinson disease (PD) in an early stage and accurately evaluate severity, it is important to develop a sensitive method for detecting structural changes in the substantia nigra (SN). Method. Seventy-two untreated patients with early PD and 72 healthy controls underwent diffusion tensor and diffusion kurtosis imaging. Regions of interest were drawn in the rostral, middle, and caudal SN by two blinded and independent raters. Mean kurtosis (MK) and fractional anisotropy in the SN were compared between the groups. Receiver operating characteristic (ROC) and Spearman correlation analyses were used to compare the diagnostic accuracy and correlate imaging findings with Hoehn-Yahr (H-Y) staging and part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III). Result. MK in the SN was increased significantly in PD patients compared with healthy controls. The area under the ROC curve was 0.976 for MK in the SN (sensitivity, 0.944; specificity, 0.917). MK in the SN had a positive correlation with H-Y staging and UPDRS-III scores. Conclusion. Diffusion kurtosis imaging is a sensitive method for PD diagnosis and severity evaluation. MK in the SN is a potential biomarker for imaging studies of early PD that can be widely used in clinic. PMID:26770867

  11. Autonomous basin climbing method with sampling of multiple transition pathways: application to anisotropic diffusion of point defects in hcp Zr

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Yip, Sidney; Yildiz, Bilge

    2014-09-01

    This paper presents an extension of the autonomous basin climbing (ABC) method, an atomistic activation-relaxation technique for sampling transition-state pathways. The extended algorithm (ABC-E) allows the sampling of multiple transition pathways from a given minimum, with the additional feature of identifying the pathways in the order of increasing activation barriers, thereby prioritizing them according to their importance in the kinetics. Combined with on-the-fly kinetic Monte Carlo calculations, the method is applied to simulate the anisotropic diffusion of point defects in hcp Zr. Multiple migration mechanisms are identified for both the interstitials and vacancies, and benchmarked against results from other methods in the literature. The self-interstitial atom (SIA) diffusion kinetics shows a maximum anisotropy at intermediate temperatures (400~700 K), a non-monotonic behavior that we explain to originate from the stabilities and migration mechanisms associated with different SIA sites. The accuracy of the ABC-E calculations is validated, in part, by the existing results in the literature for point defect diffusion in hcp Zr, and by benchmarking against analytical results on a hypothetical rough-energy landscape. Lastly, sampling prioritization and computational efficiency are demonstrated through a direct comparison between the ABC-E and the activation relaxation technique.

  12. Intrauterine device for laser light diffusion and method of using the same

    DOEpatents

    Tadir, Yona; Berns, Michael W.; Svaasand, Lars O.; Tromberg, Bruce J.

    1995-01-01

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls.

  13. Intrauterine device for laser light diffusion and method of using the same

    DOEpatents

    Tadir, Y.; Berns, M.W.; Svaasand, L.O.; Tromberg, B.J.

    1995-12-26

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls. 5 figs.

  14. Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings

    SciTech Connect

    Jin, Shi; Xiu, Dongbin; Zhu, Xueyu

    2015-05-15

    In this paper we develop a set of stochastic numerical schemes for hyperbolic and transport equations with diffusive scalings and subject to random inputs. The schemes are asymptotic preserving (AP), in the sense that they preserve the diffusive limits of the equations in discrete setting, without requiring excessive refinement of the discretization. Our stochastic AP schemes are extensions of the well-developed deterministic AP schemes. To handle the random inputs, we employ generalized polynomial chaos (gPC) expansion and combine it with stochastic Galerkin procedure. We apply the gPC Galerkin scheme to a set of representative hyperbolic and transport equations and establish the AP property in the stochastic setting. We then provide several numerical examples to illustrate the accuracy and effectiveness of the stochastic AP schemes.

  15. Determination of the Solute Diffusion Coefficient by the Droplet Migration Method

    SciTech Connect

    Shan Liu; Jing Teng; Jeongyun Choi

    2007-07-01

    Further analysis of droplet migration in a temperature gradient field indicates that different terms can be used to evaluate the solute diffusion coefficient in liquid (D{sub L}) and that there exists a characteristic curve that can describe the motion of all the droplets for a given composition and temperature gradient. Critical experiments are subsequently conducted in succinonitrile (SCN)-salol and SCN-camphor transparent alloys in order to observe dynamic migration processes of a number of droplets. The derived diffusion coefficients from different terms are the same within experimental error. For SCN-salol alloys, D{sub L} = (0.69 {+-} 0.05) x 10{sup -3} mm{sup 2}/s, and for SCN-camphor alloys, D{sub L} = (0.24 {+-} 0.02) x 10{sup -3} mm{sup 2}/s.

  16. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    EPA Science Inventory

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  17. EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    EPA Science Inventory

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. uch characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. eneralization of characteristic...

  18. Real-time electro-diffusion method to discriminate carbon nanomaterials.

    PubMed

    Bhattacharyya, Tamoghna; Chatterjee, Arumoy; Chatterjee, Budhaditya; Raja, Sufi O; Dasgupta, Anjan Kr

    2015-12-01

    We report both the experimental and theoretical insights of differential electro-diffusion behavior of carbon nanomaterials (e.g. single wall, multiwall carbon nanotubes, and graphene). We thus discriminate one from the other in a soft gel system. The differential mobility of such material depends on their intrinsic properties, both extend and rate of migration bearing the discriminatory signature. The mobility analysis is made by a real time monitoring of the respective bands. PMID:26395102

  19. Lattice Boltzmann method for diffusion-limited partial dissolution of fluids.

    PubMed

    Aursjø, Olav; Pride, Steven R

    2015-07-01

    A lattice Boltzmann model for two partially miscible fluids is developed. By partially miscible we mean that, although there is a definite interfacial region separating the two fluids with a surface tension force acting at all points of the transition region, each fluid can nonetheless accept molecules from the other fluid up to a set solubility limit. We allow each fluid to diffuse into the other with the solubility and diffusivity in each fluid being input parameters. The approach is to define two regions within the fluid: one interfacial region having finite width, across which most of the concentration change occurs, and in which a surface tension force and color separation step are allowed for and one miscible fluid region where the concentration of the binary fluids follows an advection-diffusion equation and the mixture as a whole obeys the Navier-Stokes incompressible flow equations. Numerical examples are presented in which the algorithm produces results that are quantitatively compared to exact analytical results as well as qualitatively examined for their reasonableness. The model has the ability to simulate how bubbles of one fluid flow through another while dissolving their contents as well as to simulate a range of practical invasion problems such as injecting supercritical CO(2) into a porous material saturated with water for sequestration purposes. PMID:26274306

  20. Measurements of the thermal diffusivity tensor of polymer-carbon fiber composites by photothermal methods

    SciTech Connect

    Salazar, A.; Sanchez-Lavega, A.

    1998-03-01

    The thermal diffusivity tensor of a polymer-carbon fiber composite with unidirectionally distributed fibers has been measured using a modulated photothermal mirage device. The thermal diffusivity along the fibers is k{sub {parallel}} = 6.0 {+-} 0.5 mm{sup 2}{center_dot}s{sup {minus}1}, that perpendicular to the fibers is k{sub {perpendicular}} = 0.35 {+-} 0.05 mm{sup 2}{center_dot}s{sup {minus}1}, and that perpendicular to the sample surface is k{sub z} = 0.40 {+-} 0.15 mm{sup 2}{center_dot}s{sup {minus}1}. These results have been confirmed by independent measurements on the sample by other laboratories using three other different photothermal techniques. A previous claim on anomalous results found on this sample (k{sub {parallel}} < k{sub {perpendicular}} and high thermal diffusivities) can be explained by the inappropriate use of the frequency range. The authors have also found that there is not perfect thermal contact between the fibers and the matrix, which can be characterized by the thermal contact resistance of R{sub th} = (9 {+-} 2) {times} 10{sup {minus}6} m{sup 2}{center_dot}K{center_dot}W{sup {minus}1}.

  1. Investigation of a diffuse optical measurements-assisted quantitative photoacoustic tomographic method in reflection geometry.

    PubMed

    Xu, Chen; Kumavor, Patrick D; Aguirre, Andres; Zhu, Quing

    2012-06-01

    Photoacoustic tomography provides the distribution of absorbed optical energy density, which is the product of optical absorption coefficient and optical fluence distribution. We report the experimental investigation of a novel fitting procedure that quantitatively determines the optical absorption coefficient of chromophores. The experimental setup consisted of a hybrid system of a 64-channel photoacoustic imaging system with a frequency-domain diffused optical measurement system. The fitting procedure included a complete photoacoustic forward model and an analytical solution of a target chromophore using the diffusion approximation. The fitting procedure combines the information from the photoacoustic image and the background information from the diffuse optical measurements to minimize the photoacoustic measurements and forward model data and recover the target absorption coefficient quantitatively. 1-cm-cube phantom absorbers of high and low contrasts were imaged at depths of up to 3.0 cm. The fitted absorption coefficient results were at least 80% of their true values. The sensitivities of this fitting procedure to target location, target radius, and background optical properties were also investigated. We found that this fitting procedure was most sensitive to the accurate determination of the target radius and depth. Blood sample in a thin tube of radius 0.58 mm, simulating a blood vessel, was also studied. The photoacoustic images and fitted absorption coefficients are presented. These results demonstrate the clinical potential of this fitting procedure to quantitatively characterize small lesions in breast imaging. PMID:22734743

  2. Investigation of a diffuse optical measurements-assisted quantitative photoacoustic tomographic method in reflection geometry

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Kumavor, Patrick D.; Aguirre, Andres; Zhu, Quing

    2012-06-01

    Photoacoustic tomography provides the distribution of absorbed optical energy density, which is the product of optical absorption coefficient and optical fluence distribution. We report the experimental investigation of a novel fitting procedure that quantitatively determines the optical absorption coefficient of chromophores. The experimental setup consisted of a hybrid system of a 64-channel photoacoustic imaging system with a frequency-domain diffused optical measurement system. The fitting procedure included a complete photoacoustic forward model and an analytical solution of a target chromophore using the diffusion approximation. The fitting procedure combines the information from the photoacoustic image and the background information from the diffuse optical measurements to minimize the photoacoustic measurements and forward model data and recover the target absorption coefficient quantitatively. 1-cm-cube phantom absorbers of high and low contrasts were imaged at depths of up to 3.0 cm. The fitted absorption coefficient results were at least 80% of their true values. The sensitivities of this fitting procedure to target location, target radius, and background optical properties were also investigated. We found that this fitting procedure was most sensitive to the accurate determination of the target radius and depth. Blood sample in a thin tube of radius 0.58 mm, simulating a blood vessel, was also studied. The photoacoustic images and fitted absorption coefficients are presented. These results demonstrate the clinical potential of this fitting procedure to quantitatively characterize small lesions in breast imaging.

  3. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain

    PubMed Central

    2012-01-01

    Background Diffusion tensor imaging (DTI) is increasingly used in various diseases as a clinical tool for assessing the integrity of the brain’s white matter. Reduced fractional anisotropy (FA) and an increased apparent diffusion coefficient (ADC) are nonspecific findings in most pathological processes affecting the brain’s parenchyma. At present, there is no gold standard for validating diffusion measures, which are dependent on the scanning protocols, methods of the softwares and observers. Therefore, the normal variation and repeatability effects on commonly-derived measures should be carefully examined. Methods Thirty healthy volunteers (mean age 37.8 years, SD 11.4) underwent DTI of the brain with 3T MRI. Region-of-interest (ROI) -based measurements were calculated at eleven anatomical locations in the pyramidal tracts, corpus callosum and frontobasal area. Two ROI-based methods, the circular method (CM) and the freehand method (FM), were compared. Both methods were also compared by performing measurements on a DTI phantom. The intra- and inter-observer variability (coefficient of variation, or CV%) and repeatability (intra-class correlation coefficient, or ICC) were assessed for FA and ADC values obtained using both ROI methods. Results The mean FA values for all of the regions were 0.663 with the CM and 0.621 with the FM. For both methods, the FA was highest in the splenium of the corpus callosum. The mean ADC value was 0.727 ×10-3 mm2/s with the CM and 0.747 ×10-3 mm2/s with the FM, and both methods found the ADC to be lowest in the corona radiata. The CV percentages of the derived measures were < 13% with the CM and < 10% with the FM. In most of the regions, the ICCs were excellent or moderate for both methods. With the CM, the highest ICC for FA was in the posterior limb of the internal capsule (0.90), and with the FM, it was in the corona radiata (0.86). For ADC, the highest ICC was found in the genu of the corpus callosum (0.93) with the CM and in

  4. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP.

    PubMed

    Orlova, Darya Y; Bártová, Eva; Maltsev, Valeri P; Kozubek, Stanislav; Chernyshev, Andrei V

    2011-01-19

    Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains. PMID:21244847

  5. A Nonfitting Method Using a Spatial Sine Window Transform for Inhomogeneous Effective-Diffusion Measurements by FRAP

    PubMed Central

    Orlova, Darya Y.; Bártová, Eva; Maltsev, Valeri P.; Kozubek, Stanislav; Chernyshev, Andrei V.

    2011-01-01

    Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains. PMID:21244847

  6. A remark on the theory of measuring thermal diffusivity by the modified Angstrom's method. [in lunar samples

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.

    1981-01-01

    A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.

  7. Polyamide-thallium selenide composite materials via temperature and pH controlled adsorption-diffusion method

    NASA Astrophysics Data System (ADS)

    Ivanauskas, Remigijus; Samardokas, Linas; Mikolajunas, Marius; Virzonis, Darius; Baltrusaitis, Jonas

    2014-10-01

    Composite materials based on III-VI elements are promising in designing efficient photoelectronic devices, such as thin film organic-inorganic solar cells. In this work, TlSe composite materials were synthesized on a model polymer polyamide using temperature and pH controlled adsorption-diffusion method via (a) selenization followed by (b) the exposure to the group III metal (Tl) salt solution and their surface morphological, chemical and crystalline phase information was determined with particular focus on their corresponding structure-optical property relationship. XRD analysis yielded a complex crystalline phase distribution which correlated well with the optical and surface morphological properties measured. pH 11.3 and 80 °C yielded well defined, low structural disorder composite material surface. After annealing in N2 at 100 °C, polycrystalline PA-TlxSey composite materials yielded a single TlSe phase due to the enhanced diffusion and reaction of thallium ions into the polymer. The method described here can be used to synthesize variety of binary III-VI compounds diffused into the polymer at relatively low temperatures and low overall cost, thus providing for a flexible synthesis route for novel composite solar energy harvesting materials.

  8. Magnetic Resonance Spectroscopy – a non-invasive method in evaluating focal and diffuse central nervous system disease

    PubMed Central

    Scheau, C; Preda, EM; Popa, GA; Ghergus, AE; Capsa, RA; Lupescu, IG

    2012-01-01

    Magnetic Resonance Spectroscopy is a non-invasive method, which can be performed following a routine Magnetic Resonance investigation within the same examination, and can provide very useful molecular information related to the metabolism and function of the normal and pathological structures of the brain. Its role is increasing in the establishment of a clear diagnosis, in both focal and diffuse central nervous system diseases, and the tendency is to replace the histopathology test, in certain cases, with similar or sometimes better diagnostic accuracy. This paper summarizes the principle, method, and main clinical applications, standing as a guide to procedure performing and results interpretation. PMID:23346244

  9. Is a New Standard Needed for Diffusion Methods for In Vitro Susceptibility Testing of Fosfomycin against Pseudomonas aeruginosa?

    PubMed Central

    Díez-Aguilar, María; Martínez-García, Laura; Morosini, María Isabel

    2015-01-01

    We analyzed fosfomycin susceptibility results in Pseudomonas aeruginosa clinical isolates obtained by MIC gradient strips and disk diffusion methods using two different inocula, 108 and 106 CFU/ml, and compared them to the agar dilution reference method. Essential and categorical agreements were 93.6% and 95%, respectively, for the 106 CFU/ml alternative inoculum, and they were 67.6% and 78.2%, respectively, for the standard inoculum (108 CFU/ml). The use of the 106 CFU/ml inoculum improves the agreement values and inhibition zone readings. PMID:26643341

  10. A new method of boundary parameter estimation for a two-dimensional diffusion system under noisy observations

    NASA Technical Reports Server (NTRS)

    Sunahara, Y.; Kojima, F.

    1987-01-01

    The purpose of this paper is to establish a method for identifying unknown parameters involved in the boundary state of a class of diffusion systems under noisy observations. A mathematical model of the system dynamics is given by a two-dimensional diffusion equation. Noisy observations are made by sensors allocated on the system boundary. Starting with the mathematical model mentioned above, an online parameter estimation algorithm is proposed within the framework of the maximum likelihood estimation. Existence of the optimal solution and related necessary conditions are discussed. By solving a local variation of the cost functional with respect to the perturbation of parameters, the estimation mechanism is proposed in a form of recursive computations. Finally, the feasibility of the estimator proposed here is demonstrated through results of digital simulation experiments.

  11. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue

    PubMed Central

    Valdes, Claudia P.; Varma, Hari M.; Kristoffersen, Anna K.; Dragojevic, Tanja; Culver, Joseph P.; Durduran, Turgut

    2014-01-01

    We introduce a new, non-invasive, diffuse optical technique, speckle contrast optical spectroscopy (SCOS), for probing deep tissue blood flow using the statistical properties of laser speckle contrast and the photon diffusion model for a point source. The feasibility of the method is tested using liquid phantoms which demonstrate that SCOS is capable of measuring the dynamic properties of turbid media non-invasively. We further present an in vivo measurement in a human forearm muscle using SCOS in two modalities: one with the dependence of the speckle contrast on the source-detector separation and another on the exposure time. In doing so, we also introduce crucial corrections to the speckle contrast that account for the variance of the shot and sensor dark noises. PMID:25136500

  12. Sample water removal method in volatile organic compound analysis based on diffusion through poly(vinyl fluoride) film.

    PubMed

    Beghi, Sandra; Guillot, Jean-Michel

    2006-09-15

    The humidity caught during air sampling or sample storage causes various problems during volatile organic compound (VOC) analysis and gives unreliable results. In this study, water vapour diffusion capacities through poly(vinyl fluoride) Tedlar, fluoroethylene propylene Teflon and Flex foil film were compared. A new approach to humidity removal has been tested for moderately polluted atmospheres. This approach consists in using the water vapour diffusion property of Tedlar film to remove humidity from bag samples containing a mixture of ten VOCs at 500 ppbv each in a 70% relative humidity atmosphere. The sampling bags were placed in a chamber flushed by a dry air stream at less than 5% relative humidity. After a few hours in the chamber, the samples in the Tedlar bags were dry (relative humidity <5%) and did not show significant VOC loss. This sample water removal (SWR) method is especially interesting as a pretreatment before air sampling on water sensitive adsorbents. PMID:16828784

  13. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method.

    PubMed

    Bahşı, Ayşe Kurt; Yalçınbaş, Salih

    2016-01-01

    In this study, the Fibonacci collocation method based on the Fibonacci polynomials are presented to solve for the fractional diffusion equations with variable coefficients. The fractional derivatives are described in the Caputo sense. This method is derived by expanding the approximate solution with Fibonacci polynomials. Using this method of the fractional derivative this equation can be reduced to a set of linear algebraic equations. Also, an error estimation algorithm which is based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation algorithm. If the exact solution of the problem is not known, the absolute error function of the problems can be approximately computed by using the Fibonacci polynomial solution. By using this error estimation function, we can find improved solutions which are more efficient than direct numerical solutions. Numerical examples, figures, tables are comparisons have been presented to show efficiency and usable of proposed method. PMID:27610294

  14. Gas diffusion liquid storage bag and method of use for storing blood

    NASA Technical Reports Server (NTRS)

    Bank, H.; Cleland, E. L. (Inventor)

    1979-01-01

    The shelf life of stored whole blood may be doubled by adding a buffer which maintains a desired pH level. However, this buffer causes the generation of CO2 which, if not removed at a controlled rate, causes the pH value of the blood to decrease, which shortens the useful life of the blood. A blood storage bag is described which permits the CO2 to be diffused out at a controlled rate into the atmosphere, thereby maintaining the desired pH value and providing a bag strong enough to permit handling.

  15. Best practices: implementation of a glucose screening program based on diffusion of innovation theory methods.

    PubMed

    Nicol, Ginger E; Morrato, Elaine H; Johnson, Mark C; Campagna, Elizabeth; Yingling, Michael D; Pham, Victor; Newcomer, John W

    2011-01-01

    There is public health interest in the identification and treatment of modifiable cardiometabolic risk factors among patients treated with antipsychotic medications. However, best-practice screening recommendations endorsed by multiple medical organizations have not translated into real-world clinical practice. Quality improvement strategies may help to address the gap between policy and implementation. This column describes the successful implementation of a best-practice glucose screening program in a large network of community mental health centers that was based on Six Sigma and diffusion of innovation theory. PMID:21209293

  16. A simple method for the determination of ionic diffusion coefficients in flooded soils

    NASA Astrophysics Data System (ADS)

    Gardner, P. J.; Flynn, N.; Maltby, E.

    2001-02-01

    Soil cores from river marginal wetlands from the Torridge and Severn catchments in the UK were collected to study rates of soil denitrification at different sites and at two stations (levee and backplain depression) at the river margin. Half the cores were sterilized prior to flooding to destroy the denitrifying bacteria. After flooding and equilibration, monitoring the concentration of amended nitrate in the supernatant of the sterile cores over a period of 7 days provided a simple procedure for the estimation of the diffusion coefficient of the nitrate ion in the flooded soils. An expression was developed that permitted this diffusion coefficient to be extracted from the slope of a plot of supernatant concentration versus (time)1/2. The values obtained, at 15 °C, varied from 2·4 to 6·8 × 10-10m2s-1. Sterile cores are usually treated as controls in denitrification experiments; this work develops a procedure whereby they may yield useful soil process information.

  17. Determination of in situ gas diffusivity for the reliable estimation of soil fluxes through the gradient method

    NASA Astrophysics Data System (ADS)

    Perez Sanchez-Canete, Enrique; Scott, Russell L.; Barron-Gafford, Greg; van Haren, Joost

    2016-04-01

    Soil CO2 fluxes represent a major source of CO2 emissions, where small changes in their estimation provoke large changes in the quantification of the global carbon cycle. Recently, the gradient method that employs soil CO2 probes at multiple depths has been offered as a way to inexpensively and continuously measure soil CO2 flux. However, the use of the gradient method can yield inappropriate flux estimates due to the uncertainties mainly associated with the inappropriate determination of the soil diffusion coefficient. Therefore, in-situ methods to determine diffusion coefficient are necessary to obtain accurate CO2 fluxes. Here the data obtained during one year with two automatic soil CO2 chambers along with CO2 molar fraction data from 4 probes at 10 cm depth, were used to determine a model of soil diffusion coefficient (Ds), which was applied later to obtain the soil CO2 fluxes by the gradient method. Another Ds model was obtained by injection and sampling of SF6 during several campaigns with different soil water content levels. Both Ds models obtained in situ were compared with another 13 Ds models published. We addressed three questions: 1) Can we use a previously published model, or do we need to determine Ds in situ? 2) How accurate are the CO2 fluxes estimates obtained by the gradient method for different Ds models, compared with chamber-measured CO2 fluxes? 3) Can we take a limited number of chamber measurements to obtain a good Ds model, or we need longer calibration periods? Comparing the cumulative soil respiration for the different diffusion models, we found that the model with empirical calibration to the soil chambers had the best agreement with the chamber fluxes (<0.5% error). The SF6 model underestimated by chamber fluxes by 23% and the published models ranged from an underestimate of 78% to an overestimate of 14%. Most importantly, we found that a few days of measurements with a soil respiration chamber (with widely varying soil water content

  18. Multiparameter Screening on SlipChip Used for Nanoliter Protein Crystallization Combining Free Interface Diffusion and Microbatch Methods

    SciTech Connect

    Li, Liang; Du, Wenbin; Ismagilov, Rustem F.

    2010-08-04

    This paper describes two SlipChip-based approaches to protein crystallization: a SlipChip-based free interface diffusion (FID) method and a SlipChip-based composite method that simultaneously performs microbatch and FID crystallization methods in a single device. The FID SlipChip was designed to screen multiple reagents, each at multiple diffusion equilibration times, and was validated by screening conditions for crystallization of two proteins, enoyl-CoA hydratase from Mycobacterium tuberculosis and dihydrofolate reductase/thymidylate synthase from Babesia bovis, against 48 different reagents at five different equilibration times each, consuming 12 {micro}L of each protein for a total of 480 experiments using three SlipChips. The composite SlipChip was designed to screen multiple reagents, each at multiple mixing ratios and multiple equilibration times, and was validated by screening conditions for crystallization of two proteins, enoyl-CoA hydratase from Mycobacterium tuberculosis and dihydrofolate reductase/thymidylate synthase from Babesia bovis. To prevent cross-contamination while keeping the solution in the neck channels for FID stable, the plates of the SlipChip were etched with a pattern of nanowells. This nanopattern was used to increase the contact angle of aqueous solutions on the surface of the silanized glass. The composite SlipChip increased the number of successful crystallization conditions and identified more conditions for crystallization than separate FID and microbatch screenings. Crystallization experiments were scaled up in well plates using conditions identified during the SlipChip screenings, and X-ray diffraction data were obtained to yield the protein structure of dihydrofolate reductase/thymidylate synthase at 1.95 {angstrom} resolution. This free-interface diffusion approach provides a convenient and high-throughput method of setting up gradients in microfluidic devices and may find additional applications in cell-based assays.

  19. Comparison of laboratory methodologies for evaluating radiostrontium diffusion in soils: planar-source versus half-cell methods.

    PubMed

    Aldaba, D; García-Gutiérrez, M; Rigol, A; Vidal, M

    2010-11-01

    A planar-source method, initially designed to obtain diffusion coefficients in compacted clay, is adapted here to determine the apparent diffusion coefficient (D(a)) of radiostrontium in soils representative of the Spanish territory. Experiments were carried out by varying the moisture content (F(moist)), and bulk dry density (ρ(bulk)) of the soil samples, in order to study the influence of these soil packing parameters on D(a) values. The moisture in the soil samples was established as the percentage of occupancy of each soil's field capacity (OFC). For a similar OFC, D(a) values in the examined soils ranged by approximately one order of magnitude (e.g. from 6.2 × 10(-)(11) to 6.5 × 10(-)(12)m(2)s(-)(1), at 100% of OFC; from 3.0 × 10(-)(11) to 3.8 × 10(-)(12)m(2)s(-)(1), at 60% of OFC). For a given soil, D(a) values increased when water content was increased. F(moist), and tortuosity (τ) explained D(a) variability, with R(2) values usually over 0.9. However, no good simple or multiple regressions between the soil packing parameters and D(a) were obtained with the whole dataset of all soils, which indicated that soil sorption capacity affects the diffusion of reactive radionuclides in soils. The inclusion of calculated K(d) values in the multiple regressions improved the correlations in all cases. Finally, D(a) values were compared with those obtained by the application of a half-cell method. The values of D(a) obtained by the planar-source methods were systematically lower than the half-cell ones, with a good correlation between the D(a) derived from both methods (R(2)=0.98). PMID:20850167

  20. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE PAGESBeta

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  1. Thermal-Diffusivity and Heat-Capacity Measurements of Sandstone at High Temperatures Using Laser Flash and DSC Methods

    NASA Astrophysics Data System (ADS)

    Abdulagatov, I. M.; Abdulagatova, Z. Z.; Kallaev, S. N.; Bakmaev, A. G.; Ranjith, P. G.

    2015-04-01

    The well-known contact-free, laser-flash method was used for measurement of the thermal diffusivity of natural sandstone samples. The experimental procedure was conducted using the microflash apparatus (LFA 457). The measurements have been made over the temperature range from (302.9 to 774.3) K. The isobaric heat capacities of the same sample were measured over the temperature range from (308 to 763) K using DSC 204 F1. Uncertainties are 3 % and 1 % for and , respectively. Measured values of and together with density data were used to calculate the thermal conductivity of sandstone. Theoretically based correlations for the thermal diffusivity (damped harmonic oscillator, DHO) and heat capacity (Debye and Einstein theories) were adopted to accurately represent the measured data. Correlation equations for the thermal diffusivity and heat capacity have been developed using the well-known theoretical asymptotic behavior of and for various temperature ranges (low- and high-temperature limits). The microscopic nature of the effect of temperature on and behavior of sandstone is discussed. Detailed interpretation and testing of the measured property data for sandstone using various existing theoretical and empirical models, in order to check their accuracy, predictive capability, and applicability, are provided.

  2. Reliability of Disk Diffusion Test Results for the Antimicrobial Susceptibility Testing of Nosocomial Gram-positive Microorganisms: Is E-test Method Better?

    PubMed Central

    Khalili, Hossein; Soltani, Rasool; Negahban, Sorrosh; Abdollahi, Alireza; Gholami, Keirollah

    2012-01-01

    Disk diffusion test is the usual applicable method for assessing the antimicrobial susceptibility pattern in most institutions and hospitals. The aim of this study was to determine the reliability of resistant-reported results of disk diffusion test for 6 routinely used antibiotics against Gram-positive microorganisms of nosocomial origin, using E-test method. Over a 1-year period, clinical specimens (e.g. blood, tracheal secretions, wound secretions, urine, etc.) were obtained from hospitalized patients with defined nosocomial infection and were cultured. Isolated Gram-positive bacteria underwent disk diffusion test for cephalothin, oxacillin, clindamycin, ciprofloxacin, vancomycin, teicoplanin (only for Enterococci), and meropenem antibiotics. E-test method was performed for all isolates resistant or intermediately sensitive to the disks of any mentioned antibiotics. Data showed compatible results of disk diffusion test with the results of E-test method for cephalothin, oxacillin, ciprofloxacin, vancomycin, and teicoplanin. None of ciprofloxacin- and vancomycin-resistant isolates in disk diffusion test showed sensitivity in E-test method. Significant differences between the results of disk diffusion and E-test methods were observed for clindamycin and meropenem against S.aureus (p = 0.01 and 0.04, respectively) and Enterococcus spp (p = 0.03 and 0.02, respectively). In order to increase the reliability of antimicrobial susceptibility results, it is recommended to perform E-test for nosocomial Gram-positive microorganisms that show antibiotic resistance by disk diffusion test and it is more important for clindamycin and meropenem. PMID:24250479

  3. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    DOEpatents

    Alman, David E.; Wilson, Rick D.; Davis, Daniel L.

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  4. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    NASA Astrophysics Data System (ADS)

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-03-01

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  5. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets.

    PubMed

    Hsu, Po Jen; Lai, S K; Rapallo, Arnaldo

    2014-03-14

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  6. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    SciTech Connect

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-03-14

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  7. Development of a Pefloxacin Disk Diffusion Method for Detection of Fluoroquinolone-Resistant Salmonella enterica.

    PubMed

    Skov, Robert; Matuschek, Erika; Sjölund-Karlsson, Maria; Åhman, Jenny; Petersen, Andreas; Stegger, Marc; Torpdahl, Mia; Kahlmeter, Gunnar

    2015-11-01

    Fluoroquinolones (FQs) are among the drugs of choice for treatment of Salmonella infections. However, fluoroquinolone resistance is increasing in Salmonella due to chromosomal mutations in the quinolone resistance-determining regions (QRDRs) of the topoisomerase genes gyrA, gyrB, parC, and parE and/or plasmid-mediated quinolone resistance (PMQR) mechanisms including qnr variants, aac(6')-Ib-cr, qepA, and oqxAB. Some of these mutations cause only subtle increases in the MIC, i.e., MICs ranging from 0.12 to 0.25 mg/liter for ciprofloxacin (just above the wild-type MIC of ≤0.06 mg/liter). These isolates are difficult to detect with standard ciprofloxacin disk diffusion, and plasmid-mediated resistance, such as qnr, is often not detected by the nalidixic acid screen test. We evaluated 16 quinolone/fluoroquinolone disks for their ability to detect low-level-resistant Salmonella enterica isolates that are not serotype Typhi. A total of 153 Salmonella isolates characterized for the presence (n = 104) or absence (n = 49) of gyrA and/or parC topoisomerase mutations, qnrA, qnrB, qnrD, qnrS, aac(6')-Ib-cr, or qepA genes were investigated. All isolates were MIC tested by broth microdilution against ciprofloxacin, levofloxacin, and ofloxacin and by disk diffusion using EUCAST or CLSI methodology. MIC determination correctly categorized all isolates as either wild-type isolates (MIC of ≤0.06 mg/liter and absence of resistance genes) or non-wild-type isolates (MIC of >0.06 mg/liter and presence of a resistance gene). Disk diffusion using these antibiotics and nalidixic acid failed to detect some low-level-resistant isolates, whereas the 5-μg pefloxacin disk correctly identified all resistant isolates. However, pefloxacin will not detect isolates having aac(6')-Ib-cr as the only resistance determinant. The pefloxacin disk assay was approved and implemented by EUCAST (in 2014) and CLSI (in 2015). PMID:26292292

  8. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  9. A new method of measuring hydrogen diffusivity by hydrogen permeation technique . 1: Theoretical modeling

    SciTech Connect

    Zhang, T.Y.; Zheng, Y.P.

    1998-12-31

    A new model on hydrogen permeation is proposed, considering absorption and desorption processes on the sample surfaces. Analytical solution, satisfying the flux continuity rather than the concentration boundary conditions, is derived from the model. Drift velocity through surface and drift velocity in bulk are introduced and their ratio determines the validity of the time-lag model. When the ratio of drift velocity through surface over that in bulk approaches infinity, the proposed model is reduced to the time-lag one. The diffusivity and the drift velocity through surface can be evaluated by fitting the entire normalized permeation curve. The obtained results can predict the effects of temperature, sample thickness and energy barriers of absorption and desorption on the permeation process. The thickness effect occurred in using the time-lag model is well explained by the effects of absorption and desorption on the permeation process.

  10. Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping

    NASA Astrophysics Data System (ADS)

    Hosseini, Vahid Reza; Shivanian, Elyas; Chen, Wen

    2016-05-01

    The purpose of the current investigation is to determine numerical solution of time-fractional diffusion-wave equation with damping for Caputo's fractional derivative of order α (1 < α ≤ 2). A meshless local radial point interpolation (MLRPI) scheme based on Galerkin weak form is analyzed. The reason of choosing MLRPI approach is that it does not require any background integrations cells, instead integrations are implemented over local quadrature domains which are further simplified for reducing the complication of computation using regular and simple shape. The unconditional stability and convergence with order O (τ 6 - 2 α) are proved, where τ is time stepping. Also, several numerical experiments are illustrated to verify theoretical analysis.

  11. A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs

    PubMed Central

    Rosenbaum, Robert

    2016-01-01

    Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public. PMID:27148036

  12. A nonparametric method of multi-step ahead forecasting in diffusion processes

    NASA Astrophysics Data System (ADS)

    Yamamura, Mariko; Shoji, Isao

    2010-06-01

    This paper provides a nonparametric model of multi-step ahead forecasting in diffusion processes. The model is constructed from the local linear model with the Gaussian kernel. The paper provides simulation studies to evaluate its performance of multi-step ahead forecasting by comparing with the global linear model, showing the better forecasting performance of the nonparametric model than the global linear model. The paper also conducts empirical analysis for forecasting using intraday data of the Japanese stock price index and the time series of heart rates. The result shows the performance of forecasting does not differ much in the Japanese stock price index, but that the nonparametric model shows significantly better performance in the analysis of the heart rates.

  13. A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs.

    PubMed

    Rosenbaum, Robert

    2016-01-01

    Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public. PMID:27148036

  14. The experimental detection of spectral diffusion by the saturation transient method

    NASA Astrophysics Data System (ADS)

    Boscaino, R.; Gelardi, F. M.; Mantegna, R. N.

    The effect of spectral diffusion (SD) on the saturation properties of an inhomogeneous spin system has been experimentally investigated by examining the saturation transient regime of a sample of DPPH diluted in polystyrene ( c ˜ 2 × 10 18 cm -3) at T = 4.2 K. In agreement with the theoretical results obtained in our previous paper, two different regimes can be singled out in the experimental curves of the saturation transient response, at short and at long times, respectively. The agreement between theoretical and experimental results is quantitative as regards the dependence of the saturation transient curves on the microwave field strength. The comparison allows determination of the value of the characteristic time Td of the SD as 20 ± 5 μs.

  15. A simple method to evaluate the optimal size of nanoparticles for endocytosis based on kinetic diffusion of receptors

    NASA Astrophysics Data System (ADS)

    Li, Xinlei; Xing, Da

    2010-10-01

    We have presented an analytic thermodynamic model to elucidate the mechanism of receptor-mediated endocytosis of nanoparticles (NPs) and provided a simple method to evaluate the optimal size of NPs by minimizing the kinetic diffusion time of the free receptors around the bound region toward the contact surface with NPs. It is found that the average density of receptors and chemical energy release upon the binding of a ligand-receptor pair determine the optimal size of NPs if the bending modulus of membranes and the cross-sectional area of the receptor are constants. The optimal radius of NPs can be calculated based on our model.

  16. Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1999-01-01

    Test problems are used to examine the performance of several one-dimensional numerical schemes based on the space-time conservation and solution element (CE/SE) method. Investigated in this paper are the CE/SE schemes constructed previously for solving the linear unsteady advection-diffusion equation and the schemes derived here for solving the nonlinear viscous and inviscid Burgers equations. In comparison with the numerical solutions obtained using several traditional finite-difference schemes with similar accuracy, the CE/SE solutions display much lower numerical dissipation and dispersion errors.

  17. Determination of the helium diffusion coefficient in nuclear waste storage ceramics by a nuclear reaction analysis method

    NASA Astrophysics Data System (ADS)

    Gosset, Dominique; Trocellier, Patrick; Serruys, Yves

    2002-06-01

    Host matrices for actinide immobilisation will undergo the formation of large helium quantities due to alpha decay. Helium diffusion rate has to be known in order to predict the long-term behaviour of the material, and particularly, the influence of helium accumulation on mechanical properties. A nuclear reaction analysis method, namely the 3He(d, p) 4He reaction, has been used to analyse the evolution of 3He profiles after ion implantations at 1 and 3 MeV in two materials, monoclinic ZrO 2 (as a test material) and Ca 9Nd(PO 4) 5(SiO 4)F 1.5(OH) 0.5 britholite (envisaged for Am and Pu long-term storage). Two data processing methods are used: the classical excitation curve (proton yields versus deuteron energy) and second, the proton energy spectrum for a given deuteron energy. The characteristics of the 3He profiles (depth, width) obtained by both methods are compared to SRIM estimations. Their evolution during subsequent annealings allows an estimation of the helium diffusion rate in the britholite: D ( cm2/ s)=(2.5±1.5)×10 -4exp(-(1.07±0.03 eV)/ kT) in the temperature range 200-400 °C, in agreement with previous results on similar materials. Moreover, the shape of the proton energy spectra suggests channeling effects in britholite.

  18. Evaluation of a central-difference-like method for the solution of the convection-diffusion equation

    SciTech Connect

    Tzanos, C.P.

    1990-01-01

    For the numerical solution of the transport equation that describes the convection and diffusion of various physical quantities (e.g., momentum, heat, and material concentrations) first-order upwind schemes are widely used. For example, first order upwind differencing is used in codes like COMMIX and PHOENICS. These schemes are simple and always give oscillation-free and physically plausible solutions. However, due to false diffusion, at high Peclet numbers their accuracy on practical meshes is poor. In previous work, a central-difference-like method was presented that even with a coarse mesh produces oscillation-free solutions and of superior accuracy than the upwind scheme. For the evaluation of this method, previous work used the test problem of Smith and Hutton for Peclet numbers ranging from 10 to {infinity}. To further evaluate this method, in this work results are presented from its application to another benchmark problem of computational fluid dynamics. This problem is laminar isothermal flow in a square cavity driven by a sliding lid. 7 refs., 1 fig.

  19. A Diffuse Interface Method with Adaptive Mesh Refinement for Simulation of Incompressible Multi-Phase Flows with Moving Contact Lines

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Spelt, Peter D. M.; Ding, Hang

    2010-11-01

    Diffuse Interface (DI) methods are employed widely for the numerical simulation of two-phase flows, even with moving contact lines. In a DI method, the interface thickness should be as thin as possible to simulate spreading phenomena under realistic flow conditions, so a fine grid is required, beyond the reach of current methods that employ a uniform grid. Here we have integrated a DI method based on a uniform mesh, to a block-based adaptive mesh refinement method, so that only the regions near the interface are resolved by a fine mesh. The performance of the present method is tested by simulations including drop deformation in shear flow, Rayleigh-Taylor instability and drop spreading on a flat surface, et al. The results show that the present method can give accurate results with much smaller computational cost, compared to the original DI method based on a uniform mesh. Based on the present method, simulation of drop spreading is carried out with Cahn number of 0.001 and the contact line region is well resolved. The flow field near the contact line, the contact line speed as well as the apparent contact angle are investigated in detail and compared with previous analytical work.

  20. Science in the clouds: UAVs and cloud computing methods for spatial diffuse pollution risk assessment (Invited)

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.

    2010-12-01

    The processes related to diffuse pollution can be understood within a 'source -> mobilisation -> pathway -> impact' framework. Recently our ability to monitor the impact section of this framework has significantly increased. This has been achieved through the measurement of flow and water quality (e.g. Nitrogen and Phosphorus) on a continuous 10 minute basis. However, our ability to observe and understand the 'source', 'mobilisation' and 'pathway' sections has not progressed at the same rate. This lack of information of the source term is due to the larger spatial areas involved and the difficulty in performing repeat surveys. Within an agricultural catchment, there are two key, temporally dynamic factors that affect the diffuse pollution export [source-mobilisation-pathway]: 1. vegetation cover and 2. agricultural management. These factors influence the amount of bare soil, vulnerable to erosion (source) and the creation of flow pathways, for example, due to tractor wheelings (tram lines). Information on these factors could be acquired through the use of satellite remote sensing or light aircraft based aerial photography. However, to acquire images on a fine temporal scale (monthly) there are significant cost and practical barriers (e.g. cloud cover). A potential solution to the problem could be the use of small semi- autonomous helicopters (UAV) and is the approach that has been investigated in this research. The UAV helicopter that has been used in this research is a Microdrones MD4-200 and is capable of autonomously flying a pre-programmed route and acquiring images at set locations at heights of up to 120 metres. The use of the pre-programmed routes enables the acquisition of repeat images at the same locations. These images contain information on the vegetation cover that can be extracted with the use of standard image processing techniques. However, the images also contain a large amount of implicit information that may help to explain water quality trends

  1. A comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries

    NASA Astrophysics Data System (ADS)

    Tauriello, Gerardo; Koumoutsakos, Petros

    2015-02-01

    We present a comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries embedded using simple Cartesian meshes. The two methods have been widely employed to solve partial differential equations in complex and moving geometries for applications ranging from solid and fluid mechanics to biology and geophysics. Their popularity is largely due to their discretization on Cartesian meshes thus avoiding the need to create body-fitted grids. At the same time, there are questions regarding their accuracy and it appears that the use of each one is confined by disciplinary boundaries. Here, we compare penalization and phase field methods to handle problems with Neumann and Robin boundary conditions. We discuss extensions for Dirichlet boundary conditions and in turn compare with methods that have been explicitly designed to handle Dirichlet boundary conditions. The accuracy of all methods is analyzed using one and two dimensional benchmark problems such as the flow induced by an oscillating wall and by a cylinder performing rotary oscillations. This comparative study provides information to decide which methods to consider for a given application and their incorporation in broader computational frameworks. We demonstrate that phase field methods are more accurate than penalization methods on problems with Neumann boundary conditions and we present an error analysis explaining this result.

  2. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  3. A new, coupled transport-diffusion method for radiative transfer calculations

    SciTech Connect

    Wollaber, A. B.; Warsa, J. S.

    2013-07-01

    We derive and present a new frequency- and angle-integrated low-order system of equations designed to enhance the accuracy of a coupled, high-order (transport) solution of the thermal radiative transfer equations. In particular, our new low-order system is designed to use intensity-weighted opacities and anisotropic diffusion coefficients generated by a solution of the Implicit Monte Carlo (IMC) equations in order to predict the spatial dependence of the material temperature and radiation energies in the ensuing time cycle. The predicted temperature solution can then be exploited to generate appropriately time-centered opacities, specific heats, and Planck emission spectra for the upcoming IMC solution. Additionally, the relatively inexpensive solution of the low-order system can be iteratively solved to recommend an adaptive time step size before the IMC solution is computed. A test implementation has been implemented using existing software available from the Jayenne and Capsaicin projects at Los Alamos National Laboratory. We present initial results from a new driver code that has integrated these stochastic and deterministic software packages. (authors)

  4. An Efficient Method of Modeling Material Properties Using a Thermal Diffusion Analogy: An Example Based on Craniofacial Bone

    PubMed Central

    Davis, Julian L.; Dumont, Elizabeth R.; Strait, David S.; Grosse, Ian R.

    2011-01-01

    The ability to incorporate detailed geometry into finite element models has allowed researchers to investigate the influence of morphology on performance aspects of skeletal components. This advance has also allowed researchers to explore the effect of different material models, ranging from simple (e.g., isotropic) to complex (e.g., orthotropic), on the response of bone. However, bone's complicated geometry makes it difficult to incorporate complex material models into finite element models of bone. This difficulty is due to variation in the spatial orientation of material properties throughout bone. Our analysis addresses this problem by taking full advantage of a finite element program's ability to solve thermal-structural problems. Using a linear relationship between temperature and modulus, we seeded specific nodes of the finite element model with temperatures. We then used thermal diffusion to propagate the modulus throughout the finite element model. Finally, we solved for the mechanical response of the finite element model to the applied loads and constraints. We found that using the thermal diffusion analogy to control the modulus of bone throughout its structure provides a simple and effective method of spatially varying modulus. Results compare favorably against both experimental data and results from an FE model that incorporated a complex (orthotropic) material model. This method presented will allow researchers the ability to easily incorporate more material property data into their finite element models in an effort to improve the model's accuracy. PMID:21347288

  5. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method

    PubMed Central

    Rundle-Thiele, Dayle; Day, Bryan; Stringer, Brett; Fay, Michael; Martin, Jennifer; Jeffree, Rosalind L; Thomas, Paul; Bell, Christopher; Salvado, Olivier; Gal, Yaniv; Coulthard, Alan; Crozier, Stuart; Rose, Stephen

    2015-01-01

    Introduction Accurate knowledge of O6-methylguanine methyltransferase (MGMT) gene promoter subtype in patients with glioblastoma (GBM) is important for treatment. However, this test is not always available. Pre-operative diffusion MRI (dMRI) can be used to probe tumour biology using the apparent diffusion coefficient (ADC); however, its ability to act as a surrogate to predict MGMT status has shown mixed results. We investigated whether this was due to variations in the method used to analyse ADC. Methods We undertook a retrospective study of 32 patients with GBM who had MGMT status measured. Matching pre-operative MRI data were used to calculate the ADC within contrast enhancing regions of tumour. The relationship between ADC and MGMT was examined using two published ADC methods. Results A strong trend between a measure of ‘minimum ADC’ and methylation status was seen. An elevated minimum ADC was more likely in the methylated compared to the unmethylated MGMT group (U = 56, P = 0.0561). In contrast, utilising a two-mixture model histogram approach, a significant reduction in mean measure of the ‘low ADC’ component within the histogram was associated with an MGMT promoter methylation subtype (P < 0.0246). Conclusion This study shows that within the same patient cohort, the method selected to analyse ADC measures has a significant bearing on the use of that metric as a surrogate marker of MGMT status. Thus for dMRI data to be clinically useful, consistent methods of data analysis need to be established prior to establishing any relationship with genetic or epigenetic profiling. PMID:26229673

  6. A Monte Carlo Synthetic-Acceleration Method for Solving the Thermal Radiation Diffusion Equation

    SciTech Connect

    Evans, Thomas M; Mosher, Scott W; Slattery, Stuart

    2014-01-01

    We present a novel synthetic-acceleration based Monte Carlo method for solving the equilibrium thermal radiation diusion equation in three dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that not only can our Monte Carlo method be an eective solver for sparse matrix systems, but also that it performs competitively with deterministic methods including preconditioned Conjugate Gradient while producing numerically identical results. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  7. Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom

    NASA Astrophysics Data System (ADS)

    Gade, John; Palmqvist, Dorte; Plomgård, Peter; Greisen, Gorm

    2006-01-01

    The purpose of the study was to compare algorithms of four methods (plus two modifications) for spectrophotometric haemoglobin saturation measurements. Comparison was made in tissue phantoms basically consisting of a phosphate buffer, Intralipid and blood, allowing samples to be taken for reference measurements. Three experimental series were made. In experiment A (eight phantoms) we used the Knoefel method and measured specific extinction coefficients with a reflection spectrophotometer. In experiment B (six phantoms) the fully oxygenated phantoms were gradually deoxygenated with baker's yeast, and simultaneous measurements were made with our spectrophotometer and with a reference oxymeter (ABL-605) in 3 min intervals. For each spectrophotometric measurement haemoglobin saturation was calculated with all algorithms and modifications, and compared with reference. In experiment C (11 phantoms) we evaluated the ability of a modification of the Knoefel method to measure haemoglobin concentration in absolute quantities using extinction coefficients from experiment A. Results. Experiment A: with the Knoefel method extinction coefficients (±SD) for oxyhaemoglobin at 553.04 and 573.75 nm were 1.117 (±0.0396) ODmM-1 and 1.680 (± 0.0815) ODmM-1, respectively, and for deoxyhaemoglobin 1.205 (± 0.0514) ODmM-1 and 0.953 (±0.0487) ODmM-1, respectively. Experiment B: high correlation with the reference was found in all methods (r = 0.94-0.97). However, agreement varied from evidently wrong in method 3 and the original method 4 (e.g. saturation above 160%) to high agreement in method 2 as well as the modifications of methods 1 and 4, where oxygen dissociation curves were close to the reference method. Experiment C: with the modified Knoefel method the mean haemoglobin concentration difference from reference was 8.3% and the correlation was high (r = 0.91). We conclude that method 2 and the modifications of 1 and 4 were superior to the others, but depended on known values in

  8. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    SciTech Connect

    Koumetz, Serge D. Martin, Patrick; Murray, Hugues

    2014-09-14

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method, is proposed.

  9. The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods

    PubMed Central

    Dillon, Christopher R.; Payne, Allison; Christensen, Douglas A.; Roemer, Robert B.

    2016-01-01

    Purpose The use of correct tissue thermal diffusivity values is necessary for making accurate thermal modeling predictions during magnetic resonance-guided focused ultrasound (MRgFUS) treatment planning. This study evaluates the accuracy and precision of two non-invasive thermal diffusivity estimation methods, a Gaussian Temperature method published by Cheng and Plewes in 2002 and a Gaussian specific absorption rate (SAR) method published by Dillon et al in 2012. Materials and Methods Both methods utilize MRgFUS temperature data obtained during cooling following a short (<25s) heating pulse. The Gaussian SAR method can also use temperatures obtained during heating. Experiments were performed at low heating levels (ΔT~10°C) in ex vivo pork muscle and in vivo rabbit back muscle. The non-invasive MRgFUS thermal diffusivity estimates were compared with measurements from two standard invasive methods. Results Both non-invasive methods accurately estimate thermal diffusivity when using MR-temperature cooling data (overall ex vivo error<6%, in vivo<12%). Including heating data in the Gaussian SAR method further reduces errors (ex vivo error<2%, in vivo<3%). The significantly lower standard deviation values (p<0.03) of the Gaussian SAR method indicate that it has better precision than the Gaussian Temperature method. Conclusions With repeated sonications, either MR-based method could provide accurate thermal diffusivity values for MRgFUS therapies. Fitting to more data simultaneously likely makes the Gaussian SAR method less susceptible to noise, and using heating data helps it converge more consistently to the FUS fitting parameters and thermal diffusivity. These effects lead to the improved precision of the Gaussian SAR method. PMID:25198092

  10. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method

    SciTech Connect

    Rundle-Thiele, Dayle; Day, Bryan; Stringer, Brett; Fay, Michael; Martin, Jennifer; Jeffree, Rosalind L; Thomas, Paul; Bell, Christopher; Salvado, Olivier; Gal, Yaniv; Coulthard, Alan; Crozier, Stuart; Rose, Stephen

    2015-06-15

    Accurate knowledge of O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter subtype in patients with glioblastoma (GBM) is important for treatment. However, this test is not always available. Pre-operative diffusion MRI (dMRI) can be used to probe tumour biology using the apparent diffusion coefficient (ADC); however, its ability to act as a surrogate to predict MGMT status has shown mixed results. We investigated whether this was due to variations in the method used to analyse ADC. We undertook a retrospective study of 32 patients with GBM who had MGMT status measured. Matching pre-operative MRI data were used to calculate the ADC within contrast enhancing regions of tumour. The relationship between ADC and MGMT was examined using two published ADC methods. A strong trend between a measure of ‘minimum ADC’ and methylation status was seen. An elevated minimum ADC was more likely in the methylated compared to the unmethylated MGMT group (U = 56, P = 0.0561). In contrast, utilising a two-mixture model histogram approach, a significant reduction in mean measure of the ‘low ADC’ component within the histogram was associated with an MGMT promoter methylation subtype (P < 0.0246). This study shows that within the same patient cohort, the method selected to analyse ADC measures has a significant bearing on the use of that metric as a surrogate marker of MGMT status. Thus for dMRI data to be clinically useful, consistent methods of data analysis need to be established prior to establishing any relationship with genetic or epigenetic profiling.

  11. An efficient semi-analytical method for modeling strongly coupled diffusion and deformation processes in layered poroelastic media

    NASA Astrophysics Data System (ADS)

    Wang, R.; Kuempel, H.

    2003-12-01

    From poroelasticity theory we know that fluid diffusion will induce matrix deformation and vice versa. In practice, well known phenomena for such coupled processes are, for example, occurrence of seismo-tectonically induced groundwater fluctuations, land subsidence as a result of fluid extraction from subsurface reservoirs, production-induced surface strain near the vicinity of wells, reservoir- or injection-induced seismicity. Modeling of deformation and pore-pressure data that have been observed near the surface can help to image the dynamics and to assess the hydraulic properties of subsurface aquifers. We here present a semi-analytical Haskell propagator method to fully handle linear poroelastic problems in a multilayered half-space. Our method is a powerful tool for various reasons: (1) It is faster than traditional numerical schemes when respective discretization of the object region is chosen and solutions are sought for single locations only; (2) a problem is easily formulated, as only a set of five poroelastic parameters per layer plus the layers' thicknesses need to be specified; (3) the method is highly flexible, as forcing functions of point injection, single force (e.g., surface loading), double couple dislocation (earthquakes), etc. may be readily incorporated; (4) the so-called loss-of-precision problem of the original propagator algorithm has been fully overcome using the orthonormalization technique. The effectiveness of the new tool has been demonstrated by modeling pump-induced near-surface tilt data obtained at a test site near Sopron in western Hungary. The results show that the hydraulic diffusivity of the shallow subsurface aquifer can be assessed with an accuracy better than half an order of magnitude, if other elastic parameters and the geometry (depth and thickness) of the water-bearing formations are sufficiently known from, for example, bore-log records. Moreover, the present method can be applied to model induced seismicity based on the

  12. Comment on ''Walker diffusion method for calculation of transport properties of composite materials''

    SciTech Connect

    Kim, In Chan; Cule, Dinko; Torquato, Salvatore

    2000-04-01

    In a recent paper [C. DeW. Van Siclen, Phys. Rev. E 59, 2804 (1999)], a random-walk algorithm was proposed as the best method to calculate transport properties of composite materials. It was claimed that the method is applicable both to discrete and continuum systems. The limitations of the proposed algorithm are analyzed. We show that the algorithm does not capture the peculiarities of continuum systems (e.g., ''necks'' or ''choke points'') and we argue that it is the stochastic analog of the finite-difference method. (c) 2000 The American Physical Society.

  13. Experimental method development for estimating solid-phase diffusion coefficients and material/air partition coefficients of SVOCs

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Guo, Zhishi; Roache, Nancy F.

    2014-06-01

    The solid-phase diffusion coefficient (Dm) and material/air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to estimate parameters Dm and Kma. The SVOCs chosen for study were polychlorinated biphenyl (PCB) congeners, including PCB-52, PCB-66, PCB-101, PCB-110, and PCB-118. The test materials included polypropylene, high density polyethylene, low density polyethylene, polytetrafluoroethylene, polyether ether ketone, glass, stainless steel and concrete. Two 53-L environmental chambers were connected in series, with the relatively stable SVOCs source in the source chamber and the test materials, made as small “buttons”, in the test chamber. Prior to loading the test chamber with the test materials, the test chamber had been dosed with SVOCs for 12 days to “coat” the chamber walls. During the tests, the material buttons were removed from the test chamber at different exposure times to determine the amount of SVOC absorbed by the buttons. SVOC concentrations at the inlet and outlet of the test chamber were also monitored. The data were used to estimate the partition and diffusion coefficients by fitting a sink model to the experimental data. The parameters obtained were employed to predict the accumulation of SVOCs in the sink materials using an existing mass transfer model. The model prediction agreed reasonably well with the experimental data.

  14. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods

    NASA Astrophysics Data System (ADS)

    Nachabé, Rami; Evers, Daniel J.; Hendriks, Benno H. W.; Lucassen, Gerald W.; van der Voort, Marjolein; Rutgers, Emiel J.; Peeters, Marie-Jeanne Vrancken; van der Hage, Jos A.; Oldenburg, Hester S.; Wesseling, Jelle; Ruers, Theo J. M.

    2011-08-01

    We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue types, namely adipose, glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ from 52 patients were measured. A model deriving from the diffusion theory was applied to the measured spectra in order to extract clinically relevant parameters such as blood, water, lipid, and collagen volume fractions, β-carotene concentration, average vessels radius, reduced scattering amplitude, Mie slope, and Mie-to-total scattering fraction. Based on a classification and regression tree algorithm applied to the derived parameters, a sensitivity-specificity of 98%-99%, 84%-95%, 81%-98%, 91%-95%, and 83%-99% were obtained for discrimination of adipose, glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ, respectively; and a multiple classes overall diagnostic performance of 94%. Sensitivity-specificity values obtained for discriminating malignant from nonmalignant tissue were compared to existing reported studies by applying the different classification methods that were used in each of these studies. Furthermore, in these reported studies, either lipid or β-carotene was considered as adipose tissue precursors. We estimate both chromophore concentrations and demonstrate that lipid is a better discriminator for adipose tissue than β-carotene.

  15. Realization of highly crystallographic three-dimensional nanosheets by a stress-induced oriented-diffusion method

    SciTech Connect

    Gharooni, M.; Hosseini, M.; Mohajerzadeh, S. Taghinejad, M.; Taghinejad, H.; Abdi, Y.

    2014-07-28

    Morphologically controlled nanostructures have been increasingly important because of their strongly shape dependent physical and chemical properties. Formation of nanoscale silicon based structures that employ high levels of strain, intentional, and unintentional twins or grain boundaries can be dramatically different from the commonly conceived bulk processes. We report, realization of highly crystallographic 3D nanosheets with unique morphology and ultra-thin thickness by a stress-induced oriented-diffusion method, based on plasma processing of metal layer deposited on Si substrate and its post deep reactive ion etching. Annealing in plasma ambient creates rod-like metal alloy precursors which induce stress at its interface with Si substrate due to the mismatch of lattice constants. This stress opens facilitated gateways for orientated-diffusion of metal atoms in 〈110〉 directions and leads to formation of NSs (nanosheets) with [111] crystalline essence. Nanosheets are mainly triangular, hexagonal, or pseudo hexagonal in shape and their thicknesses are well controlled from several to tens of nanometers. The structural and morphological evolution of features were investigated in detail using transmission electron microscope, atomic force microscope, scanning electron microscope and possible mechanism is proposed to explain the formation of the thermodynamically unfavorable morphology of nanosheets. Significant photoemission capability of NSs was also demonstrated by photoluminescence spectroscopy.

  16. Deposition, structure and properties of polyamide-CdSe-CdS composite material using sorption-diffusion method

    NASA Astrophysics Data System (ADS)

    Žalenkienė, S.; Krylova, V.; Baltrusaitis, J.

    2015-01-01

    Polyamide (PA) incorporated CdSe-CdS films were deposited using sorption-diffusion method. A single precursor - K2SeS2O6 was used as both sulfur and selenium source. In aqueous solution, SeS2O62- diffused into the polymer where it reacted with Cd2+ ions to form cadmium chalcogenide particles. Crystallinity of the composite material was analyzed via XRD and both CdSe and CdS were detected within the material at all deposition conditions of temperature and SeS2O62- - chalcogenization - exposure time. A complex surface speciation was obtained using XPS analysis. Formation of the protonated amide species was observed in combination with the adsorbed SO42- on the surface of the polymer confirming that SeS2O62- and its decomposition products hydrolyzed to form cadmium chalcogenides and H2SO4. A significant red shift in UV-vis spectrum was observed with the increasing chalcogenization time of PA, whereas Cd2+ solution temperature had very little effect on the apparent thickness and the optical properties of the composite materials. SEM surface analysis revealed sub-micron particles deposited on top of the PA-CdSe-CdS composite materials in continuous overlapping films, showing a possible dual crystal growth mechanism.

  17. Anti-Bacterial effect of Aqueous Garlic Extract (AGE) determined by Disc Diffusion Method against Escherichia coli.

    PubMed

    Saha, S; Saha, S K; Hossain, M A; Paul, S K; Gomes, R R; Imtiaz, M; Islam, M M; Nahar, H; Begum, S A; Mirza, T T

    2016-01-01

    The study was performed to determine the antibacterial effect of aqueous extract of garlic (Allium sativum) against standard strain of Escherichia coli ATCC 25922. An interventional study was conducted in Department of Pharmacology and Therapeutics in collaboration with Department of Microbiology, Mymensingh Medical College, Mymensingh. Antibacterial effect of AGE was determined by disc diffusion method. Sensitivity of AGE determined in disc diffusion and the zone of inhibition (ZOI) was 4 mm, 10 mm and 20 mm at 25 μg/10 μl, 50 μg/10 μl and 100 μg/10 μl concentrations respectively. From the findings it is clearly determined the extract has definite antibacterial effect upon Escherichia coli. Further studies are required to detect and isolate the active ingredients present in the Garlic extract as well as detail steps of mechanism responsible for antibacterial effect. Then their effects against the studied organism should be studied in vivo separately and its toxicity profile should also be taken into account. PMID:26931244

  18. Comparison of passive diffusion bag samplers and submersible pump sampling methods for monitoring volatile organic compounds in ground water at Area 6, Naval Air Station, Whidbey Island, Washington

    USGS Publications Warehouse

    Huffman, Raegan L.

    2002-01-01

    Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.

  19. Numerical evaluation of subsoil diffusion of (15) N labelled denitrification products during employment of the (15) N gas flux method in the field

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Lewicka-Szczebak, Dominika; Ruoss, Nicolas

    2016-04-01

    Common methods for measuring soil denitrification in situ include monitoring the accumulation of 15N labelled N2 and N2O evolved from 15N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of 15N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of 15N labelled N2 and N2O - and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of subsoil diffusion after chamber closure for 1 hour is always significant with values up to >30 % of total production of 15N labelled N2 and N2O. Field experiments for measuring denitrification with the 15N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured 15N2 concentrations and simulated values.

  20. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  1. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  2. Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods.

    PubMed

    Mason, Harris E; Walsh, Stuart D C; DuFrane, Wyatt L; Carroll, Susan A

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining "effective linear activity coefficients" (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment. PMID:24869420

  3. Application of diffusive gradients in thin films and core centrifugation methods to determine inorganic mercury and monomethylmercury profiles in sediment porewater.

    PubMed

    Noh, Seam; Hong, Yong Seok; Han, Seunghee

    2016-02-01

    A diffusive gradient in thin films (DGT) is an in situ sampling technique for the quantitative analysis of contaminant concentrations that is based on the diffusion and adsorption of contaminants on to resin gels. In the present study, a DGT technique was applied to measure total mercury (Hg) and monomethylmercury (MMHg) concentrations in lake and coastal sediment porewaters and compare them with those from ex situ sediment centrifugation. To calculate the total Hg and MMHg concentrations in porewater using the DGT method, the diffusion coefficients of Hg species in a diffusive gel medium was first determined, and then total Hg and MMHg depth profiles were measured using the experimentally determined diffusion coefficients. Using the diffusion coefficients for artificial lake and estuarine waters containing inorganic salts, rather than those for lake and estuarine waters containing Suwannee River humic acid (∼5 mg C L(-1) ), the DGT method demonstrated similar Hg and MMHg profiles to those using the centrifugation method. Based on the need for fine vertical resolution and high metal concentrations to be collected, DGT is suggested to be a reliable method for determining Hg(II) and MMHg depth profiles in sediment porewater. PMID:26250361

  4. On the subtraction method for in-situ reflection and diffusion coefficient measurements.

    PubMed

    Robinson, Philip; Xiang, Ning

    2010-03-01

    The subtraction method is a technique critical to several important acoustic measurements. It involves subtracting a reference measurement including only direct sound from one with direct sound and a reflection, to isolate the reflection. The process is very sensitive to environmental conditions, such as changes in temperature, air movement, and microphone positioning. These variations cause small time differences between the reference and reflection measurements, which prevent complete subtraction of the direct sound; the residual direct sound then pollutes analysis of the isolated reflection. This work evaluates methods to compensate for differences to achieve minimal interference from the residual direct sound. PMID:20329814

  5. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  6. A method for polycrystalline silicon delineation applicable to a double-diffused MOS transistor

    NASA Technical Reports Server (NTRS)

    Halsor, J. L.; Lin, H. C.

    1974-01-01

    Method is simple and eliminates requirement for unreliable special etchants. Structure is graded in resistivity to prevent punch-through and has very narrow channel length to increase frequency response. Contacts are on top to permit planar integrated circuit structure. Polycrystalline shield will prevent creation of inversion layer in isolated region.

  7. A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels

    NASA Astrophysics Data System (ADS)

    Bouklas, Nikolaos; Landis, Chad M.; Huang, Rui

    2015-06-01

    Hydrogels are capable of coupled mass transport and large deformation in response to external stimuli. In this paper, a nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on a nonlinear continuum theory that is consistent with classical theory of linear poroelasticity. A mixed finite element method is implemented with implicit time integration. The incompressible or nearly incompressible behavior at the initial stage imposes a constraint to the finite element discretization in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for stability of the mixed method, similar to linear poroelasticity as well as incompressible elasticity and Stokes flow; failure to choose an appropriate discretization would result in locking and numerical oscillations in transient analysis. To demonstrate the numerical method, two problems of practical interests are considered: constrained swelling and flat-punch indentation of hydrogel layers. Constrained swelling may lead to instantaneous surface instability for a soft hydrogel in a good solvent, which can be regulated by assuming a stiff surface layer. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, in comparison with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson's ratio and loading rate are discussed. It is concluded that the present finite element method is robust and can be extended to study other transient phenomena in hydrogels.

  8. Growth and characterization of nanostructured aerosol produced by diffusion flame and spray pyrolysis methods

    NASA Astrophysics Data System (ADS)

    Kim, Soo Hyung

    The present research is aimed at developing methods to characterize and study the growth of nano-particles and nano-structured materials. The thesis is divided into two parts. One part deals with the development of the tandem differential mobility analyzer (TDMA), which is the principal method used in this study to characterize the size and electrical charge of particles formed in a high temperature flame. The second part of the thesis deals with the formation of nano-structured materials with zeolite-type structures. The particles are characterized to determine their size, porosity and surface area. It is well known that nano-sized aerosol particles from combustion sources are charged. Even though the basic charging mechanisms are reasonably well understood qualitatively, techniques for characterizing the charge and size distribution of aerosols from combustion sources are not well developed. In the present study, a method is developed to accurately measure the charge and size distribution of nano-sized combustion aerosols by means of a TDMA. From a series of TDMA measurements, the charge fraction of nano-sized soot particles from a flame is obtained as a function of equivalent mobility particle diameter ranging from 50 to 200nm. The method is then used to characterize the size and charge of combustion aerosols. The results are compared to theory, including the new theory developed in this study. To develop a new synthetic method of nano-structured aerosol particles, a thermal tubular reactor is employed. New spray-pyrolytic and aerosol-gel methods are developed to form nanoporous metal oxides, in which thermally stable and easily leached inorganic matrix is employed to extend the porosity of zeolite-typed materials. The characteristics of the nanoporous material, such as surface area and particle morphology are investigated as a function of relative humidity, temperature, and precursor fractions. The physical and chemical properties of materials synthesized are

  9. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation.

    PubMed

    Yoshida, Hiroaki; Kobayashi, Takayuki; Hayashi, Hidemitsu; Kinjo, Tomoyuki; Washizu, Hitoshi; Fukuzawa, Kenji

    2014-07-01

    A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which correctly realizes the internal boundary condition at the interface between two phases with different transport properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis, which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the analytical solutions of the problems numerically validates the proposed scheme. PMID:25122406

  10. Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method

    NASA Astrophysics Data System (ADS)

    Mirzaei Rafsanjani, H.; Rezaei Nasab, A.

    2012-05-01

    Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

  11. The agar diffusion scratch assay - A novel method to assess the bioactive and cytotoxic potential of new materials and compounds

    PubMed Central

    Pusnik, Mascha; Imeri, Minire; Deppierraz, Grégoire; Bruinink, Arie; Zinn, Manfred

    2016-01-01

    A profound in vitro evaluation not only of the cytotoxic but also of bioactive potential of a given compound or material is crucial for predicting potential effects in the in vivo situation. However, most of the current methods have weaknesses in either the quantitative or qualitative assessment of cytotoxicity and/or bioactivity of the test compound. Here we describe a novel assay combining the ISO 10993-5 agar diffusion test and the scratch also termed wound healing assay. In contrast to these original tests this assay is able to detect and distinguish between cytotoxic, cell migration modifying and cytotoxic plus cell migration modifying compounds, and this at higher sensitivity and in a quantitative way. PMID:26861591

  12. A practical method of determining water current velocities and diffusion coefficients in coastal waters by remote sensing techniques

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1971-01-01

    A simplified procedure is presented for determining water current velocities and diffusion coefficients. Dye drops which form dye patches in the receiving water are made from an aircraft. The changes in position and size of the patches are recorded from two flights over the area. The simplified data processing procedure requires only that the ground coordinates about the dye patches be determined at the time of each flight. With an automatic recording coordinatograph for measuring coordinates and a computer for processing the data, this technique provides a practical method of determining circulation patterns and mixing characteristics of large aquatic systems. This information is useful in assessing the environmental impact of waste water discharges and for industrial plant siting.

  13. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Jeon, Dong Hyup; Kim, Hansang

    2015-10-01

    The effect of the compression ratio on the dynamic behavior of liquid water transport in a gas diffusion layer (GDL) is studied both experimentally and numerically. We experimentally study the emergence and growth of liquid droplets in a channel at various compression ratios by adopting a direct visualization device. The results of the experiment show that water breakthrough occurs at the channel for a low compression ratio, whereas it is observed at the channel/rib interface for a high compression ratio. To determine the mechanism of water transport in the GDL, a multiphase lattice Boltzmann method (LBM) is developed for a simplified porous structure of the GDL. The observation of lattice Boltzmann (LB) simulation shows that the compression ratio significantly affects the water transport in the GDL. The results indicate that the lower compression ratio reduces the water saturation in the GDL. The simulation and experimental result are similar.

  14. Application of the space-time conservation element and solution element method to two-dimensional advection-diffusion problems

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1995-01-01

    The existing 2-D alpha-mu scheme and alpha-epsilon scheme based on the method of space-time conservation element and solution element, which were constructed for solving the linear 2-D unsteady advection-diffusion equation and unsteady advection equation, respectively, are tested. Also, the alpha-epsilon scheme is modified to become the V-E scheme for solving the nonlinear 2-D inviscid Burgers equation. Numerical solutions of six test problems are presented in comparison with their exact solutions or numerical solutions obtained by traditional finite-difference or finite-element methods. It is demonstrated that the 2-D alpha-mu, alpha-epsilon, and nu-epsilon schemes can be used to obtain numerical results which are more accurate than those based on some of the traditional methods but without using any artificial tuning in the computation. Similar to the previous 1-D test problems, the high accuracy and simplicity features of the space-time conservation element and solution element method have been revealed again in the present 2-D test results.

  15. Communication: Proton NMR dipolar-correlation effect as a method for investigating segmental diffusion in polymer melts.

    PubMed

    Lozovoi, A; Mattea, C; Herrmann, A; Rössler, E A; Stapf, S; Fatkullin, N

    2016-06-28

    A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time. PMID:27369489

  16. Communication: Proton NMR dipolar-correlation effect as a method for investigating segmental diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Lozovoi, A.; Mattea, C.; Herrmann, A.; Rössler, E. A.; Stapf, S.; Fatkullin, N.

    2016-06-01

    A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time.

  17. A non-invasive diffuse reflectance calibration-free method for absolute determination of exogenous biochemicals concentration in biological tissues

    NASA Astrophysics Data System (ADS)

    Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.

    2014-03-01

    The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.

  18. Synergy of β-Lactams with Vancomycin against Methicillin-Resistant Staphylococcus aureus: Correlation of Disk Diffusion and Checkerboard Methods.

    PubMed

    Sy, Cheng Len; Huang, Tsi-Shu; Chen, Chii Shiang; Chen, Yao-Shen; Tsai, Hung-Chin; Wann, Shue-Renn; Wu, Kuan-Sheng; Chen, Jui-Kuang; Lee, Susan Shin-Jung; Liu, Yung-Ching

    2016-03-01

    Modified disk diffusion (MDD) and checkerboard tests were employed to assess the synergy of combinations of vancomycin and β-lactam antibiotics for 59 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Mu50 (ATCC 700699). Bacterial inocula equivalent to 0.5 and 2.0 McFarland standard were inoculated on agar plates containing 0, 0.5, 1, and 2 μg/ml of vancomycin. Oxacillin-, cefazolin-, and cefoxitin-impregnated disks were applied to the surface, and the zones of inhibition were measured at 24 h. The CLSI-recommended checkerboard method was used as a reference to detect synergy. The MICs for vancomycin were determined using the Etest method, broth microdilution, and the Vitek 2 automated system. Synergy was observed with the checkerboard method in 51% to 60% of the isolates when vancomycin was combined with any β-lactam. The fractional inhibitory concentration indices were significantly lower in MRSA isolates with higher vancomycin MIC combinations (P < 0.05). The overall agreement between the MDD and checkerboard methods to detect synergy in MRSA isolates with bacterial inocula equivalent to McFarland standard 0.5 were 33.0% and 62.5% for oxacillin, 45.1% and 52.4% for cefazolin, and 43.1% and 52.4% for cefoxitin when combined with 0.5 and 2 μg/ml of vancomycin, respectively. Based on our study, the simple MDD method is not recommended as a replacement for the checkerboard method to detect synergy. However, it may serve as an initial screening method for the detection of potential synergy when it is not feasible to perform other labor-intensive synergy tests. PMID:26677253

  19. A Parallel Algorithm for the Two-Dimensional Time Fractional Diffusion Equation with Implicit Difference Method

    PubMed Central

    Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie

    2014-01-01

    It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(MxMyN2). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16–4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future. PMID:24744680

  20. A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method.

    PubMed

    Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie

    2014-01-01

    It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future. PMID:24744680

  1. Advanced computational methods for nodal diffusion, Monte Carlo, and S{sub N} problems. Progress report, January 1, 1992--March 31, 1993

    SciTech Connect

    Martin, W.R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  2. A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem

    NASA Astrophysics Data System (ADS)

    Tikhovskaya, S. V.; Zadorin, A. I.

    2015-10-01

    A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the singular perturbation parameter convergence. A modified Samarskii and central difference schemes on Shishkin mesh are considered. It is known that these schemes are almost second order accuracy uniformly with respect to the singular perturbation parameter. To decrease the required number of arithmetical operations for resolving the difference scheme, a two-grid method is proposed. To increase the accuracy of difference scheme, we investigate the possibility to apply Richardson extrapolation using known solutions of the difference scheme on both meshes. The comparison of modified Samarskii and central difference schemes is carried out. The results of some numerical experiments are discussed.

  3. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations

    NASA Astrophysics Data System (ADS)

    Polyanin, Andrei D.; Zhurov, Alexei I.

    2014-03-01

    We propose a new method for constructing exact solutions to nonlinear delay reaction-diffusion equations of the form ut=kuxx+F(u,w), where u=u(x,t),w=u(x,t-τ), and τ is the delay time. The method is based on searching for solutions in the form u=∑n=1Nξn(x)ηn(t), where the functions ξn(x) and ηn(t) are determined from additional functional constraints (which are difference or functional equations) and the original delay partial differential equation. All of the equations considered contain one or two arbitrary functions of a single argument. We describe a considerable number of new exact generalized separable solutions and a few more complex solutions representing a nonlinear superposition of generalized separable and traveling wave solutions. All solutions involve free parameters (in some cases, infinitely many parameters) and so can be suitable for solving certain problems and testing approximate analytical and numerical methods for nonlinear delay PDEs. The results are extended to a wide class of nonlinear partial differential-difference equations involving arbitrary linear differential operators of any order with respect to the independent variables x and t (in particular, this class includes the nonlinear delay Klein-Gordon equation) as well as to some partial functional differential equations with time-varying delay.

  4. A method to determine the ability of drugs to diffuse through the blood-brain barrier.

    PubMed Central

    Seelig, A; Gottschlich, R; Devant, R M

    1994-01-01

    A method has been devised for predicting the ability of drugs to cross the blood-brain barrier. The criteria depend on the amphiphilic properties of a drug as reflected in its surface activity. The assessment was made with various drugs that either penetrate or do not penetrate the blood-brain barrier. The surface activity of these drugs was quantified by their Gibbs adsorption isotherms in terms of three parameters: (i) the onset of surface activity, (ii) the critical micelle concentration, and (iii) the surface area requirement of the drug at the air/water interface. A calibration diagram is proposed in which the critical micelle concentration is plotted against the concentration required for the onset of surface activity. Three different regions are easily distinguished in this diagram: a region of very hydrophobic drugs which fail to enter the central nervous system because they remain adsorbed to the membrane, a central area of less hydrophobic drugs which can cross the blood-brain barrier, and a region of relatively hydrophilic drugs which do not cross the blood-brain barrier unless applied at high concentrations. This diagram can be used to predict reliably the central nervous system permeability of an unknown compound from a simple measurement of its Gibbs adsorption isotherm. PMID:8278409

  5. A Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex Cell Geometry

    PubMed Central

    Dreij, Kristian; Chaudhry, Qasim Ali; Jernström, Bengt; Morgenstern, Ralf; Hanke, Michael

    2011-01-01

    A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. bioactivation/biotransformation. Thirdly, cellular architecture varies greatly. Taken together, complexity at several levels has to be addressed to arrive at efficient in silico modelling based on physicochemical properties, metabolic preferences and cell characteristics. In order to understand the cellular behaviour of toxic foreign compounds we have developed a mathematical model that addresses these issues. In order to make the system numerically treatable, methods motivated by homogenization techniques have been applied. These tools reduce the complexity of mathematical models of cell dynamics considerably thus allowing to solve efficiently the partial differential equations in the model numerically on a personal computer. Compared to a compartment model with well-stirred compartments, our model affords a more realistic representation. Numerical results concerning metabolism and chemical solvolysis of a polycyclic aromatic hydrocarbon carcinogen show good agreement with results from measurements in V79 cell culture. The model can easily be extended and refined to include more reactants, and/or more complex reaction chains, enzyme distribution etc, and is therefore suitable for modelling cellular metabolism involving membrane partitioning also at higher levels of complexity. PMID:21912588

  6. Combining Land Use Information and Small Stream Sampling with PCR-Based Methods for Better Characterization of Diffuse Sources of Human Fecal Pollution

    EPA Science Inventory

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...

  7. Standardization of Operator-Dependent Variables Affecting Precision and Accuracy of the Disk Diffusion Method for Antibiotic Susceptibility Testing.

    PubMed

    Hombach, Michael; Maurer, Florian P; Pfiffner, Tamara; Böttger, Erik C; Furrer, Reinhard

    2015-12-01

    Parameters like zone reading, inoculum density, and plate streaking influence the precision and accuracy of disk diffusion antibiotic susceptibility testing (AST). While improved reading precision has been demonstrated using automated imaging systems, standardization of the inoculum and of plate streaking have not been systematically investigated yet. This study analyzed whether photometrically controlled inoculum preparation and/or automated inoculation could further improve the standardization of disk diffusion. Suspensions of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 of 0.5 McFarland standard were prepared by 10 operators using both visual comparison to turbidity standards and a Densichek photometer (bioMérieux), and the resulting CFU counts were determined. Furthermore, eight experienced operators each inoculated 10 Mueller-Hinton agar plates using a single 0.5 McFarland standard bacterial suspension of E. coli ATCC 25922 using regular cotton swabs, dry flocked swabs (Copan, Brescia, Italy), or an automated streaking device (BD-Kiestra, Drachten, Netherlands). The mean CFU counts obtained from 0.5 McFarland standard E. coli ATCC 25922 suspensions were significantly different for suspensions prepared by eye and by Densichek (P < 0.001). Preparation by eye resulted in counts that were closer to the CLSI/EUCAST target of 10(8) CFU/ml than those resulting from Densichek preparation. No significant differences in the standard deviations of the CFU counts were observed. The interoperator differences in standard deviations when dry flocked swabs were used decreased significantly compared to the differences when regular cotton swabs were used, whereas the mean of the standard deviations of all operators together was not significantly altered. In contrast, automated streaking significantly reduced both interoperator differences, i.e., the individual standard deviations, compared to the standard deviations for the manual method, and the mean of

  8. Comparing classification methods for diffuse reflectance spectra to improve tissue specific laser surgery

    PubMed Central

    2014-01-01

    Background In the field of oral and maxillofacial surgery, newly developed laser scalpels have multiple advantages over traditional metal scalpels. However, they lack haptic feedback. This is dangerous near e.g. nerve tissue, which has to be preserved during surgery. One solution to this problem is to train an algorithm that analyzes the reflected light spectra during surgery and can classify these spectra into different tissue types, in order to ultimately send a warning or temporarily switch off the laser when critical tissue is about to be ablated. Various machine learning algorithms are available for this task, but a detailed analysis is needed to assess the most appropriate algorithm. Methods In this study, a small data set is used to simulate many larger data sets according to a multivariate Gaussian distribution. Various machine learning algorithms are then trained and evaluated on these data sets. The algorithms’ performance is subsequently evaluated and compared by averaged confusion matrices and ultimately by boxplots of misclassification rates. The results are validated on the smaller, experimental data set. Results Most classifiers have a median misclassification rate below 0.25 in the simulated data. The most notable performance was observed for the Penalized Discriminant Analysis, with a misclassifiaction rate of 0.00 in the simulated data, and an average misclassification rate of 0.02 in a 10-fold cross validation on the original data. Conclusion The results suggest a Penalized Discriminant Analysis is the most promising approach, most probably because it considers the functional, correlated nature of the reflectance spectra. The results of this study improve the accuracy of real-time tissue discrimination and are an essential step towards improving the safety of oral laser surgery. PMID:25030085

  9. International Comparison on Thermal-Diffusivity Measurements for Iron and Isotropic Graphite Using the Laser Flash Method in CCT-WG9

    NASA Astrophysics Data System (ADS)

    Akoshima, M.; Hay, B.; Zhang, J.; Chapman, L.; Baba, T.

    2013-05-01

    The first international pilot study of thermal-diffusivity measurements using the laser flash (LF) method was organized by the working group 9 (WG9) of the Consultative Committee for Thermometry (CCT) of the Bureau International des Poids et Mesures (BIPM). Four National Metrology Institutes (NMIs) participated in this comparison. Thermal-diffusivity measurements on the Armco iron and the isotropic graphite IG-110 were carried out from room temperature to about 1200 K. The sample sets consist of five disk-shaped specimens of 10 mm in diameter and (1.0, 1.4, 2.0, 2.8, and 4.0) mm in thickness, each cut from the same block of material. These sample sets were specifically prepared for the comparison and sent to the participants. In the pilot comparison, the thermal diffusivity of each sample was estimated using the LF method with a specific extrapolating procedure. This procedure has the advantage of determining the inherent thermal diffusivity of the material. The extrapolated value in a plot of measured apparent thermal-diffusivity values versus the amplitude of the output signal corresponding to the temperature rise during each measurement is defined as the inherent thermal diffusivity. The overall results showed good agreement between independent laboratories, measurement equipment, and specimen thicknesses. The thermal diffusivities of the materials were determined using our measured results. A quantitative evaluation of the variability of the data obtained by the participants has been done, by evaluating the deviations from the reference value, the Z-value, and the En-number. Some data showed a large deviation from the reference value. It was concluded that these are caused by an insufficient time response of the measurement equipment and some difficulties with changing the pulsed heating energy. The effect of the thermal expansion on the thermal diffusivity was checked. It was found that the thermal-expansion effect was very small and negligible in this case.

  10. HPTLC Method for Estimation of Topiramate in Solubility Studies, Diffusion Studies, Plasma, Brain Homogenate and Pharmaceutical Formulation.

    PubMed

    Parmar, Vijaykumar K; Parikh, Rajesh H; Patel, Ravish J

    2016-08-01

    Topiramate, 2,3:4,5-bis-O-(1-methylethylidene)-β-d-fructopyranose, is an anticonvulsant drug indicated in the treatment and control of partial seizures and severe tonic-clonic (grand mal) seizures in adults and children. An economic and rapid high-performance thin-layer chromatographic (HPTLC) method was developed and was validated for the quantitative determination of topiramate in plasma, brain homogenate and pharmaceutical formulation. The simple extraction method was used for the isolation of topiramate from formulation, plasma and brain homogenate samples. HPTLC separation was achieved on an aluminum-backed layer of silica gel 60F254 plates using toluene : acetone (5.0 : 2.0, v/v) as mobile phase. Spots of developed plates were visualized by spraying of reagent [3.0% phenol in the mixture of ethanol : sulfuric acid (95 : 5, v/v)]. Quantitation was achieved by densitometric analysis at 340 nm over the concentration range of 1,000-5,000 ng/spot. The method was found to give compact spot for the drug (Rf: 0.61 ± 0.018). The regression analysis data for the calibration plots showed good relationship with a correlation coefficient of 0.9983. The minimum detectable amount was found to be 165 ng/spot, whereas the limit of quantitation was found to be 500 ng/spot. Statistical analysis of the data showed that the method is precise, accurate, reproducible and selective for the analysis of topiramate. The developed method was successfully employed for the estimation of topiramate in samples of equilibrium solubility study, diffusion study, microemulsion formulation and suspension formulation (developed in-house), rat plasma and rat brain homogenate samples. PMID:27406122

  11. Behavior of the Diamond Difference and Low-Order Nodal Numerical Transport Methods in the Thick Diffusion Limit for Slab Geometry

    SciTech Connect

    Gill DF

    2007-04-17

    The objective of this work is to investigate the thick diffusion limit of various spatial discretizations of the one-dimensional, steady-state, monoenergetic, discrete ordinates neutron transport equation. This work specifically addresses the two lowest order nodal methods, AHOT-N0 and AHOT-N1, as well as reconsiders the asymptotic limit of the Diamond Difference method. The asymptotic analyses of the AHOT-N0 and AHOT-N1 nodal methods show that AHOT-N0 does not possess the thick diffusion limit for cell edge or cell average fluxes except under very limiting conditions, which is to be expected considering the AHOT-N0 method limits to the Step method in the thick diffusion limit. The AHOT-N1 method, which uses a linear in-cell representation of the flux, was shown to possess the thick diffusion limit for both cell average and cell edge fluxes. The thick diffusion limit of the DD method, including the boundary conditions, was derived entirely in terms of cell average scalar fluxes. It was shown that, for vacuum boundaries, only when {sigma}{sub t}, h, and Q are constant and {sigma}{sub a} = 0 is the asymptotic limit of the DD method close to the finite-differenced diffusion equation in the system interior, and that the boundary conditions between the systems will only agree in the absence of an external source. For a homogeneous medium an effective diffusion coefficient was shown to be present, which was responsible for causing numeric diffusion in certain cases. A technique was presented to correct the numeric diffusion in the interior by altering certain problem parameters. Numerical errors introduced by the boundary conditions and material interfaces were also explored for a two-region problem using the Diamond Difference method. A discrete diffusion solution which exactly solves the one-dimensional diffusion equation in a homogeneous region with constant cross sections and a uniform external source was also developed and shown to be equal to the finite

  12. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Ghugre, Nilesh R.; Ramanan, Venkat; Morikawa, Lily; Stanisz, Greg; Dick, Alexander J.; Wright, Graham A.

    2013-08-01

    Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For this purpose, we performed whole-mount histology in heart samples (n = 9) collected from five swine at six weeks post-infarction and compared the extent of fibrosis in the infarcted areas delineated in these histological images with that obtained ex vivo by MRI using late gadolinium-enhancement (LGE) and diffusion-weighted imaging (DWI) methods. All MR images were obtained at a submillimetre resolution (i.e., voxel size of 0.6×0.6×1.2 mm3). Specifically, in the histology images, we differentiated moderate fibrosis (consisting of a mixture of viable and non-viable myocytes, known as border zone, BZ) from severe fibrosis (i.e., the dense scar). Correspondingly, tissue heterogeneities in the MR images were categorized by a Gaussian mixture model into healthy, BZ and scar. Our results showed that (a) both MRI methods were capable of qualitatively distinguishing sharp edges between dense scar and healthy tissue from regions of heterogeneous BZ; (b) the BZ and dense scar areas had intermediate-to-high increased values of signal intensity in the LGE images and of apparent diffusion coefficient in the DWI, respectively. In addition, as demonstrated by the Picrosirius Red and immunohistochemistry stains, the viable bundles in the BZ were clearly separated by thin collagen strands and had reduced expression of Cx43, whereas the core scar was composed of dense fibrosis. A quantitative analysis demonstrated that the comparison between BZ/scar extent in LGE and DWI to the corresponding areas identified in histology yielded very good correlations (i.e., for the scar identified by LGE, R2 was 0.96 compared to R2 = 0.93 for the

  13. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy.

    PubMed

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (AR) against the concentration were linear in the range 50-500 μg mL(-1), with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL(-1). The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively. PMID:21689973

  14. A comparison study of discrete-ordinates and flux-limited diffusion methods for modeling radiation transport

    NASA Astrophysics Data System (ADS)

    Myra, Eric S.; Hawkins, Wm. Daryl

    2013-03-01

    The Center for Radiative Shock Hydrodynamics (CRASH) is investigating methods of improving the predictive capability of numerical simulations for radiative shock waves that are produced in Omega laser experiments. The laser is used to shock, ionize, and accelerate a beryllium foil into a xenon-filled shock tube. These shock waves, when driven above a threshold velocity of about 60 km/s, become strongly radiative and convert much of the incident energy flux into radiation. Radiative shocks have properties that are significantly different from purely hydrodynamic shocks and, in modeling this phenomenon numerically, it is important to compute radiative effects accurately. In this article, we examine approaches to modeling radiation transport by comparing two methods: (i) a computationally efficient, multigroup, flux-limited-diffusion approximation, currently in use in the CRASH radiation-hydrodynamics code, with (ii) a more accurate discrete-ordinates treatment that is offered by the radiation-transport code PDT. We present a selection of results from a growing suite of code-to-code comparison tests, showing both results for idealized problems and for those that are representative of conditions found in the CRASH experiment.

  15. Analytic Coarse-Mesh Finite-Difference Method Generalized for Heterogeneous Multidimensional Two-Group Diffusion Calculations

    SciTech Connect

    Garcia-Herranz, Nuria; Cabellos, Oscar; Aragones, Jose M.; Ahnert, Carol

    2003-05-15

    In order to take into account in a more effective and accurate way the intranodal heterogeneities in coarse-mesh finite-difference (CMFD) methods, a new equivalent parameter generation methodology has been developed and tested. This methodology accounts for the dependence of the nodal homogeneized two-group cross sections and nodal coupling factors, with interface flux discontinuity (IFD) factors that account for heterogeneities on the flux-spectrum and burnup intranodal distributions as well as on neighbor effects.The methodology has been implemented in an analytic CMFD method, rigorously obtained for homogeneous nodes with transverse leakage and generalized now for heterogeneous nodes by including IFD heterogeneity factors. When intranodal mesh node heterogeneity vanishes, the heterogeneous solution tends to the analytic homogeneous nodal solution. On the other hand, when intranodal heterogeneity increases, a high accuracy is maintained since the linear and nonlinear feedbacks on equivalent parameters have been shown to be as a very effective way of accounting for heterogeneity effects in two-group multidimensional coarse-mesh diffusion calculations.

  16. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde ( p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (A R) against the concentration were linear in the range 50-500 μg mL -1, with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL -1. The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  17. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  18. A numerical theory of lattice gas and lattice Boltzmann methods in the computation of solutions to nonlinear advective-diffusive systems

    SciTech Connect

    Elton, A.B.H.

    1990-09-24

    A numerical theory for the massively parallel lattice gas and lattice Boltzmann methods for computing solutions to nonlinear advective-diffusive systems is introduced. The convergence theory is based on consistency and stability arguments that are supported by the discrete Chapman-Enskog expansion (for consistency) and conditions of monotonicity (in establishing stability). The theory is applied to four lattice methods: Two of the methods are for some two-dimensional nonlinear diffusion equations. One of the methods is for the one-dimensional lattice method for the one-dimensional viscous Burgers equation. And one of the methods is for a two-dimensional nonlinear advection-diffusion equation. Convergence is formally proven in the L{sub 1}-norm for the first three methods, revealing that they are second-order, conservative, conditionally monotone finite difference methods. Computational results which support the theory for lattice methods are presented. In addition, a domain decomposition strategy using mesh refinement techniques is presented for lattice gas and lattice Boltzmann methods. The strategy allows concentration of computational resources on regions of high activity. Computational evidence is reported for the strategy applied to the lattice gas method for the one-dimensional viscous Burgers equation. 72 refs., 19 figs., 28 tabs.

  19. Diffusion on spatial network

    NASA Astrophysics Data System (ADS)

    Hui, Zi; Tang, Xiaoyue; Li, Wei; Greneche, Jean-Marc; Wang, Qiuping A.

    2015-04-01

    In this work, we study the problem of diffusing a product (idea, opinion, disease etc.) among agents on spatial network. The network is constructed by random addition of nodes on the planar. The probability for a previous node to be connected to the new one is inversely proportional to their spatial distance to the power of α. The diffusion rate between two connected nodes is inversely proportional to their spatial distance to the power of β as well. Inspired from the Fick's first law, we introduce the diffusion coefficient to measure the diffusion ability of the spatial network. Using both theoretical analysis and Monte Carlo simulation, we get the fact that the diffusion coefficient always decreases with the increasing of parameter α and β, and the diffusion sub-coefficient follows the power-law of the spatial distance with exponent equals to -α-β+2. Since both short-range diffusion and long-range diffusion exist, we use anomalous diffusion method in diffusion process. We get the fact that the slope index δ in anomalous diffusion is always smaller that 1. The diffusion process in our model is sub-diffusion.

  20. Carrier diffusion length measured by optical method in GaN epilayers grown by MOCVD on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Yablonskii, G. P.; Gurskii, A. L.; Pavlovskii, V. N.; Lutsenko, E. V.; Zubialevich, V. Z.; Shulga, T. S.; Stognij, A. I.; Kalisch, H.; Szymakowski, A.; Jansen, R. H.; Alam, A.; Schineller, B.; Heuken, M.

    2005-02-01

    The carrier ambipolar diffusion length L of optically excited carriers in GaN epitaxial layers grown on sapphire substrate was estimated by an optical method using fitting of the experimental photoluminescence spectra recorded from the front and back sides of the samples by the theoretical equation describing light reflection, light absorption and carrier profile in the medium. The estimations were carried out in the range of excitation intensities from 5 W/cm 2 CW up to 1 MW/cm 2 (pulsed), using excitation at the wavelengths of 325, and 337.1 nm in order to vary the excited layer depth. It has been found that in the samples under study the value of L is about 120-130 nm and does not depend significantly on the excitation intensity up to 200 kW/cm 2. Further increase of excitation level leads to higher values of L about 150-170 nm, probably because of the electron-hole plasma expansion.