Science.gov

Sample records for agarose gel analysis

  1. Agarose gel electrophoresis.

    PubMed

    Smith, D R

    1993-01-01

    After digestion of DNA with a restriction enzyme (Chapter 50), it is usually necessary, for both preparative and analytical purposes, to separate and visualize the products. In most cases, where the products are between 200 and 20,000 bp long, this is achieved by agarose gel electrophoresis. Agarose is a linear polymer that is extracted from seaweed and sold as a white powder. The powder is melted in buffer and allowed to cool, whereby the agarose forms a gel by hydrogen bonding. The hardened matrix contains pores, the size of which depends on the concentration of agarose. The concentration of agarose is referred to as a percentage of agarose to volume of buffer (w/v), and agarose gels are normally in the range of 0.3 to 3%. Many different apparatus arrangements have been devised to run agarose gels; for example, they can be run horizontally or vertically, and the current can be conducted by wicks or the buffer solution. However, today, the "submarine" gel system is almost universally used. In this method, the agarose gel is formed on a supporting plate, and then the plate is submerged into a tank containing a suitable electrophoresis buffer. Wells are preformed in the agarose gel with the aid of a "comb" that is inserted into the cooling agarose before the agarose has gelled. Into these wells are loaded the sample to be analyzed, which has been mixed with a dense solution (a loading buffer) to ensure that the sample sinks into the wells.

  2. Modified gel preparation for distinct DNA fragment analysis in agarose gel electrophoresis.

    PubMed

    Lee, S V; Bahaman, A R

    2010-08-01

    Agarose gel electrophoresis is the standard method that is used to separate, identify, and purify DNA fragments. However, this method is time-consuming and capable of separating limited range of fragments. A new technique of gel preparation was developed to improve the DNA fragment analysis via electrophoresis.

  3. A new agarose gel model

    SciTech Connect

    Hasenfeld, A.; Pepke, E.; Lim, H.A.; Cantor, C.R.

    1993-12-31

    A new agarose gel model is introduced, which corresponds to what the authors believe agarose gels look like microscopically. While the scientific literature is filled with studies of the microscopic structure of agarose, the fact remains that there is no unambiguous and exact model of its underlying structure. Given this, the authors are left to construct their own model numerically.

  4. Laser interferometric analysis of glucose and sucrose diffusion in agarose gel.

    PubMed

    Wąsik, Sławomir; Arabski, Michał; Dworecki, Kazimierz; Janoska, Joanna; Semaniak, Jacek; Szary, Karol; Slęzak, Andrzej

    2014-01-01

    The paper presents the investigation results of glucose and sucrose diffusion in agarose gel studied with laser interferometry method and the results of fluorescence analysis of the macroscopic gel structure. The diffusion kinetics of these substances released from aqueous solutions of a molar concentration of 0.05 M into the agarose solutions of concentrations of 0.5% and 3% in two gravitational configurations of measuring system was analysed. In the first configuration the solute diffused according, whereas in the second one - opposite to the gravitational force. The diffusion was analysed in the time period between 120 and 2400 s with a time interval of Δt = 120 s. We observed that the convective instabilities were damped well by the agarose gel, which gives the possibility of the interferometric studies of the diffusive transport for other substances in different gravitational configurations of the system. The time characteristics of glucose and sucrose fluxes in both configurations of the system and the gravitational polarisation coefficient values were obtained. The substantial differences in fluxes of glucose and sucrose diffused according and opposite to the gravitational force were observed. Additionally, we observed the differences between the diffusive fluxes of these substances in both configurations in dependence on the gel solution concentration (which is associated with gel porosity dependent on its concentration) and the kind of diffused substance.

  5. Nondenaturing agarose gel electrophoresis of RNA.

    PubMed

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.

  6. Analysis of mucosal mucins separated by SDS-urea agarose polyacrylamide composite gel electrophoresis.

    PubMed

    Issa, Samah M A; Schulz, Benjamin L; Packer, Nicolle H; Karlsson, Niclas G

    2011-12-01

    Efficient separation of mucins (200 kDa-2 MDa) was demonstrated using gradient SDS agarose/polyacrylamide composite gel electrophoresis (SDS-AgPAGE). Inclusion of urea (SDS-UAgPAGE) in the gels casting were shown to have no effect on the migration of mucins in the gel and allowed casting of gel at room temperature. This simplified the procedure for multiple casting of agarose polyacrylamide gradients and increased reproducibility of these gels. Hence, the implementation of urea makes the technique applicable for high throughput isolation and screening of mucin oligosaccharides by LC-MS after releasing the oligosaccharides from isolated, blotted mucin subpopulations. It was also shown that the urea addition had no effect on other supporting applications such as western and lectin blotting. In addition, identification of the mucin protein after tryptic digestion and LC-MS was possible and no protein carbamylation due to the presence of urea in the gel was detected. LC-MS software developed for metabolomic analysis was used for O-linked oligosaccharide detection and differential display of various mucin samples. Using this method, heterogeneous glycosylation of mucins and mucin-type molecules isolated by SDS-AgPAGE and SDS-UAgPAGE was shown to consist of more than 80 different components in a single band, and in the extreme cases, up to 300-500 components (MUC5B/AC from saliva and sputum and). Metabolomic software was also used to show that the migration of mucin isoforms within the gel is due to heterogeneous size distribution of the oligosaccharides, with the slower migrating bands enriched in high-molecular-weight oligosaccharides.

  7. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan.

    PubMed

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K

    2011-10-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 μg (for polyacrylamide) to 2.5 μg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.

  8. Recycling of superfine resolution agarose gel.

    PubMed

    Seng, T-Y; Singh, R; Faridah, Q Z; Tan, S-G; Alwee, S S R S

    2013-07-08

    Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris-borate-ethylenediaminetetraacetic acid buffer, will further save time and cost. The 2.5% gel was prepared following the Agarose SFR(TM) manual by adding 2.5 g agarose powder into 100 mL 1X lithium borate buffer in a 250-mL flask with rapid stirring. Two midigels (105 x 83 mm, 17 wells) or 4 minigels (50 x 83 mm, 8 wells), 4 mm thickness can be prepared from 100 mL gel solution. A total of 1680 PCR products amplified using 140 SSR markers from oil palm DNA samples were tested in this study using SFR recycled gel. As average, the gel can be recycled 8 times with good resolution, but can be recycled up to 14 times before the resolutions get blurred.

  9. Analysis of supercoiled DNA by agarose gel electrophoresis using low-conducting sodium threonine medium.

    PubMed

    Ishido, Tomomi; Ishikawa, Mitsuru; Hirano, Ken

    2010-05-01

    We describe a new low-ionic-strength sodium threonine (STh) medium with the advantage of avoiding relative DNA band migration changes following electrophoresis of supercoiled DNA in agarose gel when substituted for the standard conductive medium of TBE (Tris-boric acid-ethylenediaminetetraacetic acid [EDTA]) or TAE (Tris-acetic acid-EDTA) or the low-ionic-strength sodium boric acid medium. Low-ionic-strength STh medium provided better resolution, less heat generation, and prevention of relative migration order changes among linear, covalently closed circular-, and open circular-formed DNA in the range of 2-10 kilobase pairs in 1% agarose gel electrophoresis.

  10. Two-dimensional agarose gel electrophoresis for analysis of DNA replication.

    PubMed

    Villwock, Sandra K; Aparicio, Oscar M

    2014-01-01

    The initiation, elongation, and termination of DNA replication are each associated with distinct, nonlinear DNA structures that can be resolved and identified by two-dimensional (2D) agarose gel electrophoresis. This method involves: isolation of genomic DNA while preserving fragile replication structures, digestion of the DNA with a restriction enzyme, separation of DNA by size and shape through two distinct stages of agarose gel electrophoresis, and Southern blotting to probe for the specific sequence(s) of interest. The method has been most commonly used to determine the activity level of putative replication origin-containing sequences, and has also been used to analyze replication timing, fork progression, fork pausing, fork stalling and collapse, termination, and recombinational repair.

  11. High resolution melt analysis (HRMA); a viable alternative to agarose gel electrophoresis for mouse genotyping.

    PubMed

    Thomsen, Nicole; Ali, Radiya G; Ahmed, Jehangir N; Arkell, Ruth M

    2012-01-01

    Most mouse genetics laboratories maintain mouse strains that require genotyping in order to identify the genetically modified animals. The plethora of mutagenesis strategies and publicly available mouse alleles means that any one laboratory may maintain alleles with random or targeted insertions of orthologous or unrelated sequences as well as random or targeted deletions and point mutants. Many experiments require that different strains be cross bred conferring the need to genotype progeny at more than one locus. In contrast to the range of new technologies for mouse mutagenesis, genotyping methods have remained relatively static with alleles typically discriminated by agarose gel electrophoresis of PCR products. This requires a large amount of researcher time. Additionally it is susceptible to contamination of future genotyping experiments because it requires that tubes containing PCR products be opened for analysis. Progress has been made with the genotyping of mouse point mutants because a range of new high-throughput techniques have been developed for the detection of Single Nucleotide Polymorphisms. Some of these techniques are suitable for genotyping point mutants but do not detect insertion or deletion alleles. Ideally, mouse genetics laboratories would use a single, high-throughput platform that enables closed-tube analysis to genotype the entire range of possible insertion and deletion alleles and point mutants. Here we show that High Resolution Melt Analysis meets these criteria, it is suitable for closed-tube genotyping of all allele types and current genotyping assays can be converted to this technology with little or no effort.

  12. Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis.

    PubMed

    Holt, Ian J; Kazak, Lawrence; Reyes, Aurelio; Wood, Stuart R

    2016-01-01

    Our understanding of the mechanisms of DNA replication in a broad range of organisms and viruses has benefited from the application of two-dimensional agarose gel electrophoresis (2D-AGE). The method resolves DNA molecules on the basis of size and shape and is technically straightforward. 2D-AGE sparked controversy in the field of mitochondria when it revealed replicating molecules with lengthy tracts of RNA, a phenomenon never before reported in nature. More recently, radioisotope labeling of the DNA in the mitochondria has been coupled with 2D-AGE. In its first application, this procedure helped to delineate the "bootlace mechanism of mitochondrial DNA replication," in which processed mitochondrial transcripts are hybridized to the lagging strand template at the replication fork as the leading DNA strand is synthesized. This chapter provides details of the method, how it has been applied to date and concludes with some potential future applications of the technique.

  13. Separation of long RNA by agarose-formaldehyde gel electrophoresis.

    PubMed

    Mansour, Farrah H; Pestov, Dimitri G

    2013-10-01

    We describe a method to facilitate electrophoretic separation of high-molecular-weight RNA species, such as ribosomal RNAs and their precursors, on agarose-formaldehyde gels. Two alternative "pK-matched" buffer systems were substituted for the traditionally used Mops-based conductive medium. The key advantages include shortened run times, a 5-fold reduction in formaldehyde concentration, a significantly improved resolution of long RNAs, and consistency in separation. The new procedure has a streamlined work flow that helps to minimize errors and is broadly applicable to agarose gel electrophoresis of RNA samples and their subsequent analysis by Northern blotting.

  14. Multiplex agarose gel electrophoresis system for variable number of tandem repeats genotyping: analysis example using Mycobacterium tuberculosis.

    PubMed

    Wada, Takayuki; Maeda, Shinji

    2013-04-01

    As one genotyping method for Mycobacterium tuberculosis, variable number of tandem repeats (VNTR) is a promising tool to trace the undefined transmission of tuberculosis, but it often requires large equipment such as a genetic analyzer for DNA fragment analysis or CE system to conduct systematic analyses. For convenient genotyping at low cost in laboratories, we designed a multiplex PCR system that is applicable to agarose gel electrophoresis using fluorescent PCR primers. For tuberculosis genotyping by VNTR, the copy quantities of minisatellite DNA must be determined in more than 12 loci. The system can halve laborious electrophoresis processes by presenting an image of two VNTR amplicons on a single lane. No expensive equipment is necessary for this method. Therefore, it is useful even in developing countries.

  15. Electric birefrigence imaging of DNA in agarose electrophoresis gels

    SciTech Connect

    Lanan, M.

    1992-01-01

    Electric birefringence imaging (EBI) provides sensitive, non-invasive detection of double-stranded DNA in agarose gels. Quasi-monochromatic, visible light is transmitted through an electrophoresis gel which is placed between plastic film polarizers. A slow-scan video camera equipped with a 12 bit A/D converter records the images. Under electrophoresis running conditions, hydrodynamically-induced gel distortion is shown to be the major source of birefringence for fragments smaller than 23 kbp. The birefringence generated approximates the DNA concentration gradient in the electric field direction. The stress-optic coefficient of 1% agarose gel is measured by mechanical compression and used to evaluate the magnitude of the induced stress on the gel during electrophoresis. Multi-linear regression analysis is used to quantitatively test the model for EBI signals. Birefringence attributed to localized electrokinetic gel distortion and to intrinsic DNA birefringence is studied by fitting ethidium bromide fluorescence profiles to EBI results. Fluorescence polarization imaging is used to assess the influence of localized gel distortion on nucleic acid orientation across a fragment band. It is shown that DNA aligns parallel, on average, with an applied electric field independent of its location within a band. Both EBI sensitivity and quantitation are improved through image processing techniques which separate the DNA Kerr effect and induced electrokinetic distortion contributions. Under standard electrophoresis conditions, detection limits of 8 ng DNA per well are obtained in hydroxyethylated agarose without signal averaging. Maintaining constant gel temperature is shown to improve the quality of the images. Stress patterns in agarose gels during DC and field-inversion gel electrophoresis (FIGE) of nucleic acid fragments of varying sizes are mapped using EBI. In addition, online EBI monitoring during FIGE of megabase pair DNA size standards is demonstrated.

  16. Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization.

    PubMed

    Zhang, Zepeng; Hu, Qian; Zhao, Yong

    2017-01-01

    In mammalian cells, in addition to double-stranded telomeric DNA at chromosome ends, extra telomere-homologous DNA is present that adopts different conformations, including single-stranded G- or C-rich DNA, extrachromosomal circular DNA (T-circle), and telomeric complex (T-complex) with an unidentified structure. The formation of such telomere-homologous DNA is closely related to telomeric DNA metabolism and chromosome end protection by telomeres. Conventional agarose gel electrophoresis is unable to separate DNA based on conformation. Here, we introduce the method of two-dimensional (2D) agarose electrophoresis in combination with in-gel native/denatured hybridization to determine different conformations formed by telomere-homologous DNA.

  17. Analysis of DNA structures from eukaryotic cells by two-dimensional native-native DNA agarose gel electrophoresis.

    PubMed

    Ivessa, Andreas S

    2013-01-01

    The neutral-neutral two-dimensional agarose gel technique is mainly used to determine the chromosomal positions where DNA replication starts, but it is also applied to visualize replication fork progression and breakage as well as intermediates in DNA recombination. Here we provide a step-by-step protocol to analyze the fairly underrepresented and fragile replication intermediates in yeast chromosomal DNA. The technique can also be adapted to analyze replication intermediates in chromosomal DNA of higher eukaryotic organisms.

  18. Visualization of UV-induced replication intermediates in E. coli using two-dimensional agarose-gel analysis.

    PubMed

    Jeiranian, H Arthur; Schalow, Brandy J; Courcelle, Justin

    2010-12-21

    Inaccurate replication in the presence of DNA damage is responsible for the majority of cellular rearrangements and mutagenesis observed in all cell types and is widely believed to be directly associated with the development of cancer in humans. DNA damage, such as that induced by UV irradiation, severely impairs the ability of replication to duplicate the genomic template accurately. A number of gene products have been identified that are required when replication encounters DNA lesions in the template. However, a remaining challenge has been to determine how these proteins process lesions during replication in vivo. Using Escherichia coli as a model system, we describe a procedure in which two-dimensional agarose-gel analysis can be used to identify the structural intermediates that arise on replicating plasmids in vivo following UV-induced DNA damage. This procedure has been used to demonstrate that replication forks blocked by UV-induced damage undergo a transient reversal that is stabilized by RecA and several gene products associated with the RecF pathway. The technique demonstrates that these replication intermediates are maintained until a time that correlates with the removal of the lesions by nucleotide excision repair and replication resumes.

  19. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation.

    PubMed

    Arimura, Shin-ichiro; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Abeyama, Kazuhiro; Tabata, Masashi; Shimoda, Toru; Ogomi, Daisuke; Matsusaki, Michiya; Kato, Shinya; Ito, Takashi; Sugihara, Kazumasa; Akashi, Mitsuru; Hashiguchi, Teruto; Maruyama, Ikuro

    2007-05-01

    We reported earlier that hydroxyapatite (HA) formed on/in agarose gels (HA/agarose) produced by alternate soaking process is a bone-filling material possessing osteoconductive and hemostatic effects. This process could allow us to make bone-like apatite that was formed on/in organic polymer hydrogel matrices. Here, we investigated the mechanism of hemostasis induced by HA/agarose and found that HA/agarose, but not agarose or HA powder, significantly shortened activated partial thromboplastin time (APTT). While HA/agarose did not show significant platelet aggregation, it markedly enhanced adenosine diphosphate (ADP)-induced platelet aggregation. Moreover, Western blot analysis revealed selective adsorption of vitronectin onto HA/agarose. We also observed marked differences between HA powder and HA/agarose in their XRD patterns. The crystallinity of HA powder was much higher compared to that of HA/agarose. Furthermore, 50-100 nm of tube-form aggregations was observed in HA powder on the other hand 100-200 nm of particles was observed in HA/agarose by SEM observation. Thus 100-200 nm of low crystallized particles on the surface structure of HA/agarose may play an important role in hemostasis. Our results demonstrated a crucial role of HA/agarose in the mechanism of hemostasis and suggested a potential role for HA/agarose as a bone-grafting material.

  20. Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis.

    PubMed

    Huang, Qing; Fu, Wei-Ling

    2005-01-01

    Ethidium bromide (EB) is a mutagen and toxin that is widely used in the laboratory for visualization of nucleic acids. Safer nucleic acid stains, such as SYBR Gold, SYBR Green, GoldView, GeneFinder, and GoldStar, have been developed. However, there has been no systematic comparative analysis of the staining efficiencies of these dyes. In the present study, SYBR Gold, SYBR Green I, GoldView and EB were compared. Although both SYBR Gold and SYBR Green alter electrophoretic mobility and thus DNA size estimates, they are cost-effective alternatives to EB. SYBR Gold was more sensitive than SYBR Green I at detecting short fragments, but 50-bp bands were clearly visible using either dye when visualized with a long integration time. SYBR Gold or SYBR Green I are sensitive and relatively safe alternatives to EB. In our laboratory, the SYBR Gold method is now used routinely by all members of our group with great consistency and success.

  1. Bleach gel: a simple agarose gel for analyzing RNA quality.

    PubMed

    Aranda, Patrick S; LaJoie, Dollie M; Jorcyk, Cheryl L

    2012-01-01

    RNA-based applications requiring high-quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the 'bleach gel' is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality.

  2. Agarose gel electrophoresis for the separation of DNA fragments.

    PubMed

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  3. A charge-coupled-device camera image analysis system for quantifying DNA distributions in agarose gels after pulsed-field gel electrophoresis

    SciTech Connect

    Dewey, W.C.; Thompson, L.L.; Trinh, M.L.; Latz, D.L. |; Ward, J.F.

    1994-10-01

    A charge-coupled-device camera system was coupled to a personal computer and, with uniformity in illumination and detection (within 4-8%) along each lane, was used for quantifying the distribution of DNA molecules that migrate from the PFGE well (plug) into the lane at distances varying from 1 to 50 mm (with 0.5 mm/pixel). By using a specially designed transmission filter for transmitting 470-725 nm fluorescence from ethidium bromide-stained DNA while eliminating most of the fluorescence (<400 nm) from the agarose gel, and by using neutral density filters to prevent saturation of the camera, the fluorescence intensity is linearly related to the amount of DNA varying from {approximately} 0.03 {mu}g in a 3-mm-diameter cylindrical plug 5 mm long (equal to background) to {approximately} 4 {mu}g (where ethidium bromide staining saturates). The percentage DNA released from the plug and distribution in the lane (with 1-2 mm resolution) obtained by quantifying DNA fluorescence were not significantly different from the same data obtained by analysis of radioactivity of the same DNA labeled with [{sup 3}H]dThd. However, scattering of fluorescence from one lane into an adjacent lane 3 mm away and as far as 10 mm from the plug into the lane presented a problem. This problem was overcome by using a form with slots to cover every other lane when the images were obtained and either (1) cutting the lane from the plug and moving it 15 mm away or (2) imaging the intact gel and applying a correction for {approximately} 7% of the fluorescence from the plug tailing out {approximately} 10 mm beyond the first 1 mm in the lane. In addition, the following were required: (1) carefully controlled staining and destaining procedures, and (2) a low background that is obtained as an average uniform background in each lane 5 mm beyond where DNA migration stops. 31 refs., 7 figs.

  4. Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality

    PubMed Central

    Aranda, Patrick S.; LaJoie, Dollie M.; Jorcyk, Cheryl L.

    2013-01-01

    RNA-based applications requiring high quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the ‘bleach gel’ is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality. PMID:22222980

  5. Effect of ultrasound on the separation of DNA fragments in agarose gel electrophoresis

    SciTech Connect

    Ma, Yinfa; Yeung, E.S. )

    1990-06-01

    Since its first use in 1966 interest in and the applications of electrophoresis of DNA fragments in agarose gel have grown rapidly. Nowadays, agarose gel electrophoresis has become a standard technique with high resolving power for the analysis of DNA structure, for example for the determination of the length of DNA fragments obtained by the action of restriction enzymes. The electrophoretic mobility ({mu}) of DNA fragments is influenced by various parameters-molecular weight, gel concentration, temperature, electric field, and DNA-agarose affinity. A comprehensive study of the influence of these main parameters has been reported. In this paper, the authors investigate a new effect on the electrophoretic mobility of DNA fragments in agarose gels, viz. the influence of ultrasound.

  6. Blinking suppression of single quantum dots in agarose gel

    SciTech Connect

    Ko, H. C.; Yuan, C. T.; Tang, Jau; Lin, S. H.

    2010-01-04

    Fluorescence blinking is commonly observed in single molecule/particle spectroscopy, but it is an undesirable feature in many applications. We demonstrated that single CdSe/ZnS quantum dots in agarose gel exhibited suppressed blinking behavior. In addition, the long-time exponential bending tail of the power-law blinking statistics was found to be influenced by agarose gel concentration. We suggest that electron transfer from the light state to the dark state might be blocked due to electrostatic surrounding of gel with inherent negatively charged fibers.

  7. High-resolution gel electrophoresis and sodium dodecyl sulphate-agarose gel electrophoresis on urine samples for qualitative analysis of proteinuria in dogs.

    PubMed

    Giori, Luca; Tricomi, Flavia Marcella; Zatelli, Andrea; Roura, Xavier; Paltrinieri, Saverio

    2011-07-01

    The aims of the current study were to assess whether sodium dodecyl sulphate-agarose gel electrophoresis (SDS-AGE) and high-resolution electrophoresis (HRE) can identify dogs with a urinary protein-to-creatinine ratio (UPC ratio) >0.2 and whether HRE can provide preliminary information about the type of proteinuria, using SDS-AGE as a reference method. HRE and SDS-AGE were conducted on 87 urine samples classified according to the International Renal Interest Society as non-proteinuric (NP; UPC ratio: <0.20; 32/87), borderline proteinuric (BP; UPC ratio: 0.21-0.50; 15/87), or proteinuric (P; UPC ratio: >0.51; 40/87). SDS-AGE and HRE were positive in 14 out of 32 and 3 out of 32 NP samples and in 52 out of 55 and 40 out of 55 samples with a UPC ratio >0.20, respectively. The concordance between HRE or SDS and UPC ratio was comparable (κ = 0.59; κ = 0.55). However, specificity (90%) and positive likelihood ratio (7.76) were higher for HRE than for SDS-AGE (56% and 2.16) while sensitivity was lower (73% vs. 94%). The analysis of HRE results revealed that a percentage of albumin >41.4% and an albumin/α(1)-globulin ratio (alb/α(1) ratio) >1.46 can identify samples classified by SDS-AGE as affected by glomerular proteinuria while a percentage of α(1)-globulin >40.8% and an alb/α(1) ratio <0.84 can identify samples classified by SDS-AGE as affected by tubular proteinuria. In conclusion, both SDS-AGE and HRE could misclassify samples with a UPC ratio higher or lower than 0.20. Therefore, UPC ratio must always be determined before conducting these tests. The percentage of albumin and α(1)-globulin or the alb/α(1) ratio determined by HRE can provide preliminary information about the origin of proteinuria.

  8. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Guarrotxena, Nekane; Braun, Gary

    2012-10-01

    The separation of surface-enhanced raman scattering (SERS)-active Ag-multi-nanoparticle (NP) assemblies by low melting point agarose gel electrophoresis was accomplished here by controlling surface charge using NP capping agents, and the pore size of agarose gel matrix. Detailed transmission electron microscopy analysis of excised gel fractions showed dimers and small clusters to have the greatest SERS activity and a mobility in between the monomers and large aggregates. This strategy enables one to: (1) stabilize small multispherical Ag clusters against further aggregation during purification; (2) fractionate and recover spherical assemblies by nuclearity; and (3) analyze SERS-enhancements for each fraction to optimize purification conditions.

  9. Enhanced detection of gold nanoparticles in agarose gel electrophoresis.

    PubMed

    Hasenoehrl, Carina; Alexander, Colleen M; Azzarelli, Nicholas N; Dabrowiak, James C

    2012-04-01

    Gel electrophoresis is a powerful tool in gold nanoparticle (AuNP) research. While the technique is sensitive to the size, charge, and shape of particles, its optimal performance requires a relatively large amount of AuNP in the loading wells for visible detection of bands. We here describe a novel and more sensitive method for detecting AuNPs in agarose gels that involves staining the gel with the common organic fluorophore fluorescein, to produce AuNP band intensities that are linear with nanoparticle concentration and almost an order of magnitude larger than those obtained without staining the gel.

  10. Nondenaturing electrophoresis of lipoproteins in agarose and polyacrylamide gradient gels

    SciTech Connect

    Shore, V.G.

    1989-12-19

    The plasma lipoproteins frequently are classified according to density and/or electrophoretic mobility. The lipoprotein classes differ characteristically also in particle size and apolipoprotein composition. Each class is heterogeneous in size and composition as well. Nondenaturing electrophoresis in agarose gels and polyacrylamide gradient gels are complementary analytical methods for classification of lipoproteins and determining distribution profiles of the major classes. In addition, gradient gel electrophoresis (GGE) has a high resolving capability for subfractionating each class according to particle size. Combination of gel electrophoresis with immunoblotting yields information on heterogeneity in apolipoprotein distribution. 14 refs., 6 figs., 3 tabs.

  11. Function, structure, and stability of enzymes confined in agarose gels.

    PubMed

    Kunkel, Jeffrey; Asuri, Prashanth

    2014-01-01

    Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, as the average spacing between macromolecules in the cell cytosol is much smaller than the size of the macromolecules themselves. In our study, we attempt to address this question using three structurally and functionally different model enzymes encapsulated in agarose gels of different porosities. Our studies reveal that under standard buffer conditions, the initial reaction rates of the agarose-encapsulated enzymes are lower than that of the solution phase enzymes. However, the encapsulated enzymes retain a higher percentage of their activity in the presence of denaturants. Moreover, the concentration of agarose used for encapsulation had a significant effect on the enzyme functional stability; enzymes encapsulated in higher percentages of agarose were more stable than the enzymes encapsulated in lower percentages of agarose. Similar results were observed through structural measurements of enzyme denaturation using an 8-anilinonaphthalene-1-sulfonic acid fluorescence assay. Our work demonstrates the utility of hydrogels to study protein behavior in highly confined environments similar to those present in vivo; furthermore, the enhanced stability of gel-encapsulated enzymes may find use in the delivery of therapeutic proteins, as well as the design of novel strategies for biohybrid medical devices.

  12. Quantification of DNA by Agarose Gel Electrophoresis and Analysis of the Topoisomers of Plasmid and M13 DNA Following Treatment with a Restriction Endonuclease or DNA Topoisomerase I

    ERIC Educational Resources Information Center

    Tweedie, John W.; Stowell, Kathryn M.

    2005-01-01

    A two-session laboratory exercise for advanced undergraduate students in biochemistry and molecular biology is described. The first session introduces students to DNA quantification by ultraviolet absorbance and agarose gel electrophoresis followed by ethidium bromide staining. The second session involves treatment of various topological forms of…

  13. Anomalous diffusion of poly(ethylene oxide) in agarose gels.

    PubMed

    Brenner, Tom; Matsukawa, Shingo

    2016-11-01

    We report on the effect of probe size and diffusion time of poly(ethylene) oxide in agarose gels. Time-dependence of the diffusion coefficient, reflecting anomalous diffusion, was observed for poly(ethylene) oxide chains with hydrodynamic radii exceeding about 20nm at an agarose concentration of 2%. The main conclusion is that the pore distribution includes pores that are only several nm across, in agreement with scattering reports in the literature. Interpretation of the diffusion coefficient dependence on the probe size based on a model of entangled rigid rods yielded a rod length of 72nm.

  14. Properties of cellulase immobilized on agarose gel with spacer

    SciTech Connect

    Chim-anage, P.; Kashiwagi, Y.; Magae, Y.; Ohta, T.; Sasaki, T.

    1986-12-01

    Cellulase produced by fungus Trichoderma viride was immobilized on agarose beads (Sepharose 4B) activated by cyanogen bromide and also on activated agarose beads that contained spacer arm (activated Ch-Sepharose 4B and Affi-Gel 15). The CMCase activity retained by immobilized cellulase on activated Sepharose containing the spacer tended to be higher than that immobilized without spacer, although the extent of protein immobilization was lower. Also, the higher substrate specificity for cellulase immobilized on beads with spacer was obtained for cellobiose, acid-swollen cellulose, or cellulose powder. The hydrolysis product from their substrates was mainly glucose. 10 references.

  15. Posing for a picture: vesicle immobilization in agarose gel

    PubMed Central

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-01-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs. PMID:27140695

  16. Posing for a picture: vesicle immobilization in agarose gel

    NASA Astrophysics Data System (ADS)

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-05-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs.

  17. Two-dimensional agarose gel electrophoresis of DNA topoisomers.

    PubMed

    Roca, Joaquim

    2009-01-01

    The electrophoretic velocity of a duplex DNA ring is mainly determined by its overall shape. Consequently, DNA topoisomers of opposite supercoiling handedness can have identical gel velocity, and topoisomers highly supercoiled cannot be separated beyond some point. These problems are overcome by two-dimensional agarose gel electrophoresis, which involves two successive electrophoresis steps in one gel slab. The first and second electrophoresis steps are conducted in orthogonal directions with different concentrations of DNA intercalating agents. These compounds alter the overall shape of the DNA and, thereby, change the relative mobility of individual DNA topoisomers.

  18. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  19. Solvent-impregnated agarose gel liquid phase microextraction of polycyclic aromatic hydrocarbons in water.

    PubMed

    Loh, Saw Hong; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2013-08-09

    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.

  20. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution.

    PubMed

    Stellwagen, Nancy C

    2009-06-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are primarily due to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 +/- 0.01) x 10(-4) cm2/V s in 40 mM Tris-acetate-EDTA buffer at 20 degrees C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration.

  1. Pore size of agarose gels by atomic force microscopy.

    PubMed

    Pernodet, N; Maaloum, M; Tinland, B

    1997-01-01

    The pore size of agarose gel in water at different concentrations was directly measured using atomic force microscopy (AFM). The experiment was specially designed to work under aqueous conditions and allows direct observation of the "unperturbed" gel without invasive treatment. The pore size a as a function of gel concentration C shows a power law dependence a approximately C-gamma, where gamma lies between the prediction of the Ogston model for a random array of straight chains, 0.5, and the value predicted by De Gennes for a network of flexible chains, 0.75. We confirm that gels present a wide pore size distribution and show that it narrows as the concentration increases.

  2. A polarized photobleaching study of DNA reorientation in agarose gels

    SciTech Connect

    Scalettar, B.A.; Klein, M.P. ); Selvin, P.R.; Hearst, J.E. Univ. of California, Berkeley ); Axelrod, D. )

    1990-05-22

    Polarized fluorescence recovery after photobleaching (pFRAP) has been used to study the internal dynamics of relatively long DNA molecules embedded in gels that range in concentration from 1% to 5% agarose. The data indicate that, even in very congested gels, rapid internal relaxation of DNA is largely unhindered; however, interactions with gel matrices apparently do perturb the larger amplitude, more slowly (microseconds to milliseconds) relaxing internal motions of large DNAs. The relationship between this work and recent studies which indicate that internal motions of DNA play an important role in the separation achieved with pulsed-field gel electrophoresis techniques is discussed. The polarized photobleaching technique is also analyzed in some detail. In particular, it is shown that reversible photobleaching phenomena are probably related to depletion of the ground state by intersystem crossing to the triplet state.

  3. Molecular stretching of long DNA in agarose gel using alternating current electric fields.

    PubMed Central

    Kaji, Noritada; Ueda, Masanori; Baba, Yoshinobu

    2002-01-01

    We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell. PMID:11751320

  4. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE).

    PubMed

    Oh-Ishi, Masamichi; Maeda, Tadakazu

    2007-04-15

    Agarose gel is the preferred electrophoretic medium currently used for separating high molecular mass (HMM) proteins (MW>100 kDa). Agarose gels are widely used for both SDS-agarose gel electrophoresis and agarose isoelectric focusing (IEF). A two-dimensional gel electrophoresis method employing agarose gels in the first dimension (agarose 2-DE) that is sufficiently good at separating up to 1.5mg of HMM proteins with molecular masses as large as 500 kDa has been used to separate proteins from various diseased tissues and cells. Although resolution of the agarose 2-DE pattern always depends on the tissue being analyzed, sample preparation procedures including (i) protein extraction with an SDS sample buffer; (ii) ultracentrifugation of a tissue homogenate; and (iii) 1% SDS in both stacking and separation gels of the second-dimension SDS-PAGE gel, are generally effective for HMM protein detection. In a comprehensive prostate cancer proteome study using agarose 2-DE, the HMM region of the gel was rich in proteins of particular gene/protein expression groups (39.1% of the HMM proteins but only 28.4% of the LMM ones were classified as transcription/translation-related proteins). Examples include transcription factors, DNA or RNA binding proteins, and ribosomal proteins. To understand oxidative stress-induced cellular damage at the protein level, a novel proteomic method, in which protein carbonyls were derivatized with biotin hydrazide followed by agarose 2-DE, was useful for detecting HMM protein carbonyls in tissues of both a diabetes model Ostuka Long-Evans Tokushima Fatty (OLETF) rat and a control Long-Evans Tokushima Otsuka (LETO) rat. In this paper, we review the use of agarose gels for separation of HMM proteins and disease proteomics of HMM proteins in general, with particular attention paid to our proteome analyzes based on the use of agarose 2-DE for protein separation followed by the use of mass spectrometry for protein identification.

  5. [Preparation, characterization and surface-enhanced Raman properties of agarose gel/gold nanoparticles hybrid].

    PubMed

    Ma, Xiao-yuan; Liu, Ying; Wang, Zhou-ping

    2014-08-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Naniocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Experimental data indicated a uniform distribution of gold nanoparticles adsorbed on agarose gel network And the excellent optical absorption properties were shown. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nano-composites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules Nile blue A. Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal.

  6. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability

    PubMed Central

    Suzawa, Yoshika; Kubo, Norihiko; Iwai, Soichi; Yura, Yoshiaki; Ohgushi, Hajime; Akashi, Mitsuru

    2015-01-01

    Hydroxyapatite (HA) or calcium carbonate (CaCO3) formed on an organic polymer of agarose gel is a biomaterial that can be used for bone tissue regeneration. However, in critical bone defects, the regeneration capability of these materials is limited. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming osteoblasts. In this study, we loaded MSCs on HA- or CaCO3-formed agarose gel and cultured them with dexamethasone, which triggers the osteogenic differentiation of MSCs. High alkaline phosphatase activity was detected on both the HA- and CaCO3-formed agarose gels; however, basal activity was only detected on bare agarose gel. Bone-specific osteocalcin content was detected on CaCO3-formed agarose gel on Day 14 of culture, and levels subsequently increased over time. Similar osteocalcin content was detected on HA-formed agarose on Day 21 and levels increased on Day 28. In contrast, only small amounts of osteocalcin were found on bare agarose gel. Consequently, osteogenic capability of MSCs was enhanced on CaCO3-formed agarose at an early stage, and both HA- and CaCO3-formed agarose gels well supported the capability at a later stage. Therefore, MSCs loaded on either HA- or CaCO3-formed agarose could potentially be employed for the repair of critical bone defects. PMID:26110392

  7. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability.

    PubMed

    Suzawa, Yoshika; Kubo, Norihiko; Iwai, Soichi; Yura, Yoshiaki; Ohgushi, Hajime; Akashi, Mitsuru

    2015-06-23

    Hydroxyapatite (HA) or calcium carbonate (CaCO3) formed on an organic polymer of agarose gel is a biomaterial that can be used for bone tissue regeneration. However, in critical bone defects, the regeneration capability of these materials is limited. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming osteoblasts. In this study, we loaded MSCs on HA- or CaCO3-formed agarose gel and cultured them with dexamethasone, which triggers the osteogenic differentiation of MSCs. High alkaline phosphatase activity was detected on both the HA- and CaCO3-formed agarose gels; however, basal activity was only detected on bare agarose gel. Bone-specific osteocalcin content was detected on CaCO3-formed agarose gel on Day 14 of culture, and levels subsequently increased over time. Similar osteocalcin content was detected on HA-formed agarose on Day 21 and levels increased on Day 28. In contrast, only small amounts of osteocalcin were found on bare agarose gel. Consequently, osteogenic capability of MSCs was enhanced on CaCO3-formed agarose at an early stage, and both HA- and CaCO3-formed agarose gels well supported the capability at a later stage. Therefore, MSCs loaded on either HA- or CaCO3-formed agarose could potentially be employed for the repair of critical bone defects.

  8. Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects.

    PubMed

    Maaloum, M; Pernodet, N; Tinland, B

    1998-07-01

    Agarose gels have been studied by atomic force microscopy (AFM). The experiments were especially designed to work in aqueous conditions, allowing direct observation of the "unperturbed" gel without invasive treatment. AFM images clearly show strong dependence of pore diameter and its distribution on ionic strength of the solvent. As the ionic strength increases, the distribution becomes broader and the position of its maximum shifts toward higher values. The evolution of the distribution curves indicates that gels become more homogeneous with decreasing Tris-borate-EDTA (TBE) buffer concentration. An empirical law of the mean pore diameter as a function of the ionic strength is established. In agreement with our previous work we found that, for a given ionic strength, the pore diameter increases when the agarose concentration decreases and that the wide pore diameter distribution narrows as the gel concentration increases.

  9. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  10. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.

    PubMed

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-01-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  11. An agarose-gel based method for transporting cell lines.

    PubMed

    Yang, Lingzhi; Li, Chufang; Chen, Ling; Li, Zhiyuan

    2009-12-16

    Cryopreserved cells stored in dry ice or liquid nitrogen is the classical method for transporting cells between research laboratories in different cities around the world in order to maintain cell viability. An alternative method is to ship the live cells in flasks filled with cell culture medium. Both methods have limitations of either a requirement on special shipping container or short times for the cells to survive on the shipping process. We have recently developed an agarose gel based method for directly transporting the live adherent cells in cell culture plates or dishes in ambient temperature. This convenient method simplifies the transportation of live cells in long distance that can maintain cells in good viability for several days.

  12. Cloning of DNA fragments: ligation reactions in agarose gel.

    PubMed

    Furtado, Agnelo

    2014-01-01

    Ligation reactions to ligate a desired DNA fragment into a vector can be challenging to beginners and especially if the amount of the insert is limiting. Although additives known as crowding agents, such as PEG 8000, added to the ligation mixes can increase the success one has with ligation reactions, in practice the amount of insert used in the ligation can determine the success or the failure of the ligation reaction. The method described here, which uses insert DNA in gel slice added directly into the ligation reaction, has two benefits: (a) using agarose as the crowding agent and (b) reducing steps of insert purification. The use of rapid ligation buffer and incubation of the ligation reaction at room temperature greatly increase the efficiency of the ligation reaction even for blunt-ended ligation.

  13. Pellet pestle homogenization of agarose gel slices at 45 degrees C for deoxyribonucleic acid extraction.

    PubMed

    Kurien, B T; Kaufman, K M; Harley, J B; Scofield, R H

    2001-09-15

    A simple method for extracting DNA from agarose gel slices is described. The extraction is rapid and does not involve harsh chemicals or sophisticated equipment. The method involves homogenization of the excised gel slice (in Tris-EDTA buffer), containing the DNA fragment of interest, at 45 degrees C in a microcentrifuge tube with a Kontes pellet pestle for 1 min. The "homogenate" is then centrifuged for 30 s and the supernatant is saved. The "homogenized" agarose is extracted one more time and the supernatant obtained is combined with the previous supernatant. The DNA extracted using this method lent itself to restriction enzyme analysis, ligation, transformation, and expression of functional protein in bacteria. This method was found to be applicable with 0.8, 1.0, and 2.0% agarose gels. DNA fragments varying from 23 to 0.4 kb were extracted using this procedure and a yield ranging from 40 to 90% was obtained. The yield was higher for fragments 2.0 kb and higher (70-90%). This range of efficiency was maintained when the starting material was kept between 10 and 300 ng. The heat step was found to be critical since homogenization at room temperature failed to yield any DNA. Extracting DNA with our method elicited an increased yield (up to twofold) compared with that extracted with a commercial kit. Also, the number of transformants obtained using the DNA extracted with our method was at least twice that obtained using the DNA extracted with the commercial kit.

  14. Response surface methodology-based optimisation of agarose gel electrophoresis for screening and electropherotyping of rotavirus.

    PubMed

    Mishra, Vikas; Nag, Vijaya Lakshmi; Tandon, Ritu; Awasthi, Shally

    2010-04-01

    Management of rotavirus diarrhoea cases and prevention of nosocomial infection require rapid diagnostic method at the patient care level. Diagnostic tests currently available are not routinely used due to economic or sensitivity/specificity constraints. Agarose-based sieving media and running conditions were modulated by using central composite design and response surface methodology for screening and electropherotyping of rotaviruses. The electrophoretic resolution of rotavirus genome was calculated from input parameters characterising the gel matrix structure and running conditions. Resolution of rotavirus genome was calculated by densitometric analysis of the gel. The parameters at critical values were able to resolve 11 segmented rotavirus genome. Better resolution and electropherotypic variation in 11 segmented double-stranded RNA genome of rotavirus was detected at 1.96% (w/v) agarose concentration, 0.073 mol l(-1) ionic strength of Tris base-boric acid-ethylenediamine tetraacetic acid buffer (1.4x) and 4.31 h of electrophoresis at 4.6 V cm(-1) electric field strength. Modified agarose gel electrophoresis can replace other methods as a simplified alternative for routine detection of rotavirus where it is not in practice.

  15. Regenerative behavior of biomineral/agarose composite gels as bone grafting materials in rat cranial defects.

    PubMed

    Suzawa, Yoshika; Funaki, Takafumi; Watanabe, Junji; Iwai, Soichi; Yura, Yoshiaki; Nakano, Takayoshi; Umakoshi, Yukichi; Akashi, Mitsuru

    2010-06-01

    The main objective of this study was to evaluate the biological behavior of Hydroxyapatite (HAp)/agarose and calcium carbonate (CaCO3)/agarose composite gels by an alternate soaking process used for the treatment of surgically produced bone defects in rat cranium. We designed the following four groups: (i) HAp (HAp/agarose composite gel), (ii) CaCO3 (CaCO3/agarose composite gel), (iii) Agarose (bare agarose gel), and (iv) Defect (no filling materials). We subdivided (i) (ii) (iii) into two application types as a (I) Homogenized Group (homogenized materials) and a (II) Disk Group (disk shaped materials). We assessed samples by radiological and histological analyses 0, 4, and 8 weeks after implantation. The results indicated that the composite gels showed higher radiopacity in microfocus-computed tomography (muCT) images and showed higher volume in quantitative analyses using Dual Energy X-ray Absorptiometry (DEXA) and Peripheral Quantitative Computed Tomography (pQCT) than the Agarose and Defect groups. The histological examination showed characteristic images due to each application form. Consequently, HAp and CaCO3/agarose composite gels can be expected to accelerate the speed of producing more new bone associated with osteogenesis. These novel biomaterials play an important role as an alternative biocompatible and biodegradable bone grafting filler material for autogenous bone.

  16. A new agarose matrix for single-strand conformation polymorphism (SSCP), heteroduplex (HTX), and gel shift analyses

    SciTech Connect

    Dumais, M.M.; White, H.W.; Rashid, M.R.

    1994-09-01

    Detection of mutation, by SSCP or heteroduplex analysis, is important in medical genetics and oncology. Analysis of DNA binding proteins is a powerful tool in molecular biology research. Traditionally, these methods are performed using nondenaturing gel electrophoresis on poly-acrylamide or polyacrylamide-type matrices. Here we report the development of a new agarose gel matrix that can be used for all three methods. SSCP analyses were performed using the prototype agarose gel matrix for wild-type, polymorphic, and mutant samples from c-Kras exon 12, p53 exons 8 and 9, and HOX2B. We performed SSCP analyses using both isotopic and nonisotopic methods. We also analyzed the samples by deliberate HTX formation and subsequent gel analysis. Using the prototype agarose matrix, we detected single and multiple DNA sequence variants in 150-350 bp fragments with an efficiency comparable to polyacrylamide gels run under similar conditions. For SSCP and HTX assays, we achieved optimal resolution in gels run in vertical formats. However, some HTX samples could be resolved in horizontal gel systems. In addition, based on our studies, we have developed a useful battery of controls and standards for quality control of SSCP and HTX assays. We analyzed several different DNA/protein complexes (SP1, AP2, and octamer binding protein) using the prototype agarose matrix. We obtained good resolution in both vertical and horizontal gel formats. The horizontal gel system is generally superior for this application, due to its ease of use and slightly better resolution. This new prototype gel matrix offers an alternative for researchers performing analyses that previously could only be done on polyacrylamide-type gel matrices. For some applications, this new matrix offers the ease of horizontal gel casting. For all applications, this matrix offers the safety of a nontoxic system and the reproducibility of a thermally gelling system.

  17. Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers.

    PubMed

    Sitaras, Chris; Naghavi, Mahsa; Herrington, Muriel B

    2011-01-15

    Curli are amyloid-like fibers on the surface of some strains of Escherichia coli and Salmonella enteritidis. We tested the use of horizontal sodium dodecyl sulfate (SDS)-agarose gel electrophoresis to detect, isolate, and quantitate curli. Cell extracts fractionated in SDS-agarose gels and stained with Coomassie blue exhibited a soluble fraction that entered the gel and an insoluble fraction that remained in the well. Much more insoluble material was observed with curli-proficient strains than with strains that do not make curli. Both highly purified curli and the insoluble material isolated from an SDS-agarose gel could be dissociated into monomers when treated with formic acid. For quantitation, we immobilized samples in SDS-agarose prior to electrophoresis. This avoids losses during the staining of the gel. Our methods provide a rapid and simple fractionation of curli using equipment that is readily available.

  18. Cytoplasmic polyhedrosis virus classification by electropherotype; validation by serological analyses and agarose gel electrophoresis.

    PubMed

    Mertens, P P; Crook, N E; Rubinstein, R; Pedley, S; Payne, C C

    1989-01-01

    Serological analyses of several different cytoplasmic polyhedrosis viruses (CPVs), including two type 1 CPVs from Bombyx mori, type 1 CPV from Dendrolimus spectabilis, type 12 CPV from Autographa gamma, type 2 CPV from Inachis io, type 5 CPV from Orgyia pseudotsugata and type 5 CPV from Heliothis armigera, demonstrated a close correlation between the antigenic properties of the polyhedrin or virus particle structural proteins and the genomic dsRNA electropherotypes. The dsRNAs of these viruses were analysed by electrophoresis in 3% and 10% polyacrylamide gels with a discontinuous Tris-HCl/Tris-glycine buffer system or by 1% agarose gel electrophoresis using a continuous Tris-acetate-EDTA buffer system. Electrophoretic analysis in agarose gels was found to be the most suitable for the classification of CPV isolates into electropherotypes, and the results obtained showed a close correlation with the observed antigenic relationships between different virus isolates. However, electrophoretic analysis in 10% polyacrylamide gels was most sensitive for the detection of intra-type variation and the presence of mixed virus isolates.

  19. Directionality of replication fork movement determined by two-dimensional native-native DNA agarose gel electrophoresis.

    PubMed

    Ivessa, Andreas S

    2013-01-01

    The analysis of replication intermediates by the neutral-neutral two-dimensional agarose gel technique allows determining the chromosomal positions where DNA replication initiates, whether replication forks pause or stall at specific sites, or whether two DNA molecules undergo DNA recombination events. This technique does not, however, immediately tell in which direction replication forks migrate through the DNA region under investigation. Here, we describe the procedure to determine the direction of replication fork progression by carrying out a restriction enzyme digest of DNA imbedded in agarose after the completion of the first dimension of a 2D gel.

  20. Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan.

    PubMed

    Cowman, Mary K; Chen, Cherry C; Pandya, Monika; Yuan, Han; Ramkishun, Dianne; LoBello, Jaclyn; Bhilocha, Shardul; Russell-Puleri, Sparkle; Skendaj, Eraldi; Mijovic, Jovan; Jing, Wei

    2011-10-01

    The molecular mass of the polysaccharide hyaluronan (HA) is an important determinant of its biological activity and physicochemical properties. One method currently used for the analysis of the molecular mass distribution of an HA sample is gel electrophoresis. In the current work, an improved agarose gel electrophoresis method for analysis of high molecular mass HA is presented and validated. HA mobility in 0.5% agarose minigels was found to be linearly related to the logarithm of molecular mass in the range from approximately 200 to 6000 kDa. A sample load of 2.5 μg for polydisperse HA samples was employed. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in the sample as well as calculation of weight-average and number-average values. The method was validated for a polydisperse HA sample with a weight-average molecular mass of approximately 2000 kDa. Excellent agreement was found between the weight-average molecular mass determined by electrophoresis and that determined by rheological measurement of the solution viscosity. The revised method was then used to show that heating solutions of HA at 100°C, followed by various cooling procedures, had no effect on the HA molecular mass distribution.

  1. Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions.

    PubMed

    Ream, Jennifer A; Lewis, L Kevin; Lewis, Karen A

    2016-10-15

    Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5-10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments.

  2. Comparison between agarose gel electrophoresis and capillary electrophoresis for variable numbers of tandem repeat typing of Mycobacterium tuberculosis.

    PubMed

    Yokoyama, Eiji; Kishida, Kazunori; Uchimura, Masako; Ichinohe, Sadato

    2006-06-01

    Variable numbers of tandem repeat (VNTR) typing of Mycobacterium tuberculosis was performed on 54 strains including 23 strains derived from 9 outbreaks. PCR amplicon sizes of 12 mycobacterial interspersed repetitive unit tandem repeat loci were measured using both agarose gel electrophoresis and capillary electrophoresis. Similarities using agarose gel electrophoresis of Euclidian distances among the 23 strains derived from the 9 outbreaks were significantly lower than that using capillary electrophoresis (Wilcoxon signed ranks test, P < 0.01). By clustering analysis using unweighted pair group method using arithmetic averages, all of the 23 strains derived from the 9 outbreaks were each clustered with more than 90% similarities based on the distance using capillary electrophoresis. In contrast, differential clusters with more than 90% similarity were observed with only 7 strains derived from 3 outbreaks when analyzed by agarose gel electrophoresis. These results indicated that measurement of PCR amplicon size of tandem repeat loci should be carried out using capillary electrophoresis and that agarose gel electrophoresis is not suitable for clustering analysis of M. tuberculosis VNTR typing.

  3. Single-molecule measurements of trapped and migrating circular DNA during electrophoresis in agarose gels.

    PubMed

    Cole, Kenneth D; Gaigalas, Adolfas; Akerman, Björn

    2006-11-01

    The effect of agarose gel concentration and field strength on the electrophoretic trapping of open (relaxed) circular DNA was investigated using microscopic measurements of individual molecules stained with a fluorescent dye. Three open circles with sizes of 52.5, 115, and 220 kbp were trapped by the electric field (6 V/cm) and found to be predominately fixed and stretched at a single point in the gel. The length of the stretched circles did not significantly change with agarose concentration of the gels (mass fractions of 0.0025, 0.01, and 0.02). The relaxation kinetics of the trapped circles was also measured in the gels. The relaxation of the large open circles was found to be a slow process, taking several seconds. The velocity and average length of the 52.5 kbp open circles and 48.5 kbp linear DNA were measured during electrophoresis in the agarose gels. The velocity increased when the agarose concentrations were lowered, but the average length of the open-circle DNA (during electrophoresis) did not significantly change with agarose gel concentrations. The circles move through the gels by cycles of stretching and relaxation during electrophoresis. Linear dichroism was also used to investigate the trapping and alignment of the 52.5 kbp open circles. The results in this study provide information that can be used to improve electrophoretic separations of circular DNA, an important form of genetic material and commonly used to clone DNA.

  4. Interpenetrating network formation in gellan--agarose gel composites.

    PubMed

    Amici, E; Clark, A H; Normand, V; Johnson, N B

    2000-01-01

    Thermal, mechanical, turbidity, and microscope evidence is provided which strongly suggests molecular interpenetrating network (IPN) formation by mixtures of the bacterial and seaweed polysaccharides gellan and agarose. There is no evidence for synergistic coupling of the networks, and simple phase separation (demixing) can definitely be ruled out. Some changes in the gellan gelling behavior are suggested, however, by the increased gellan effective concentrations implicit in cure curve data. The dependence of this effect on the agarose nominal concentration seems consistent with a previous model that focused on gelling parameters, and changes in these rather than real concentration effects. In large deformation mechanical tests, the influence of agarose added to gellan is to re-enforce the network (higher compression and shear moduli, higher stresses-to-break) without significantly changing the strain to break, or the gellan brittle failure mechanism.

  5. Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry

    NASA Astrophysics Data System (ADS)

    Mao, Bosi; Divoux, Thibaut; Snabre, Patrick

    2017-01-01

    Agarose gels are viscoelastic soft solids that display a porous microstructure filled with water at 90% w/w or more. Despite an extensive use in food industry and microbiology, little is known about the drying kinetics of such squishy solids, which suffers from a lack of time-resolved local measurements. Moreover, only scattered empirical observations are available on the role of the gel composition on the drying kinetics. Here we study by in-situ interferometry the drying of agarose gels of various compositions cast in Petri dishes. The gel thinning is associated with the displacement of interference fringes that are analyzed using an efficient spatiotemporal filtering method, which allows us to assess local thinning rates as low as 10 nm/s with high accuracy. The gel thinning rate measured at the center of the dish appears as a robust observable to quantify the role of additives on the gel drying kinetics and compare the drying speed of agarose gels loaded with various non-gelling saccharides of increasing molecular weights. Our work shows that saccharides systematically decrease the agarose gel thinning rate up to a factor two, and exemplifies interferometry as a powerful tool to quantify the impact of additives on the drying kinetics of polymer gels.

  6. Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry

    PubMed Central

    Mao, Bosi; Divoux, Thibaut; Snabre, Patrick

    2017-01-01

    Agarose gels are viscoelastic soft solids that display a porous microstructure filled with water at 90% w/w or more. Despite an extensive use in food industry and microbiology, little is known about the drying kinetics of such squishy solids, which suffers from a lack of time-resolved local measurements. Moreover, only scattered empirical observations are available on the role of the gel composition on the drying kinetics. Here we study by in-situ interferometry the drying of agarose gels of various compositions cast in Petri dishes. The gel thinning is associated with the displacement of interference fringes that are analyzed using an efficient spatiotemporal filtering method, which allows us to assess local thinning rates as low as 10 nm/s with high accuracy. The gel thinning rate measured at the center of the dish appears as a robust observable to quantify the role of additives on the gel drying kinetics and compare the drying speed of agarose gels loaded with various non-gelling saccharides of increasing molecular weights. Our work shows that saccharides systematically decrease the agarose gel thinning rate up to a factor two, and exemplifies interferometry as a powerful tool to quantify the impact of additives on the drying kinetics of polymer gels. PMID:28112236

  7. Two methods that facilitate autoradiography of small /sup 32/P-labeled DNA fragments following electrophoresis in agarose gels

    SciTech Connect

    Cockerill, P.N.

    1988-02-01

    Two methods which permit detection by autoradiography of small /sup 32/P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes.

  8. A small (58-nm) attached sphere perturbs the sieving of 40-80-kilobase DNA in 0.2-2.5% agarose gels: analysis of bacteriophage T7 capsid-DNA complexes by use of pulsed field electrophoresis.

    PubMed

    Serwer, P; Hayes, S J; Moreno, E T; Park, C Y

    1992-09-15

    Although the icosahedral bacteriophage T7 capsid has a diameter (58 nm) that is 234-fold smaller than the length of the linear, double-stranded T7 DNA, binding of a T7 capsid to T7 DNA is found here to have dramatic effects on the migration of the DNA during both pulsed field agarose gel electrophoresis (PFGE; the field inversion mode is used) and constant field agarose gel electrophoresis (CFGE). For these studies, capsid-DNA complexes were obtained by expelling DNA from mature bacteriophage T7; this procedure yields DNA with capsids bound at a variable position on the DNA. When subjected to CFGE at 2-6 V/cm in 0.20-2.5% agarose gels, capsid-DNA complexes arrest at the electrophoretic origin. Progressively lowering the electrical potential gradient to 0.5 V/cm results in migration; most complexes form a single band. The elevated electrical potential gradient (3 V/cm) induced arrest of capsid-DNA complexes is reversed when PFGE is used instead of CFGE. For some conditions of PFGE, the mobility of capsid-DNA complexes is a function of the position of the capsid on the DNA. During either CFGE (0.5 V/cm) or PFGE, capsid-DNA complexes increasingly separate from capsid-free DNA as the percentage of agarose increases. During these studies, capsid-DNA complexes are identified by electron microscopy of enzymatically-digested pieces of agarose gel; this is apparently the first successful electron microscopy of DNA from an agarose gel.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Assaying cooperativity of protein-DNA interactions using agarose gel electrophoresis.

    PubMed

    Williams, Tanya L; Levy, Daniel L

    2013-01-01

    DNA-binding proteins play essential roles in many cellular processes. Understanding on a molecular level how these proteins interact with their cognate sequences can provide important functional insights. Here, we describe a band shift assay in agarose gel to assess the mode of protein binding to a DNA molecule containing multiple protein-binding sites. The basis for the assay is that protein-DNA complexes display retarded gel electrophoresis mobility, due to their increased molecular weight relative to free DNA. The degree of retardation is higher with increasing numbers of bound protein molecules, thereby allowing resolution of complexes with differing protein-DNA stoichiometries. The DNA is radiolabeled to allow for visualization of both unbound DNA and all the different DNA-protein complexes. We present a quantitative analysis to determine whether protein binding to multiple sites within the same DNA molecule is independent or cooperative.

  10. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    PubMed

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  11. Agarose-dextran gels as synthetic analogs of glomerular basement membrane: water permeability.

    PubMed Central

    White, Jeffrey A; Deen, William M

    2002-01-01

    Novel agarose-dextran hydrogels were synthesized and their suitability as experimental models of glomerular basement membrane was examined by measuring their Darcy (hydraulic) permeabilities (kappa). Immobilization of large dextran molecules in agarose was achieved by electron beam irradiation. Composite gels were made with agarose volume fractions (phi(a)) of 0.04 or 0.08 and dextran volume fractions (phi(d)) ranging from 0 to 0.02 (fiber volume/gel volume), using either of two dextran molecular weights (500 or 2000). At either agarose concentration and for either size of dextran, kappa decreased markedly as the amount of dextran was increased. Statistically significant deviations from the value of kappa for pure agarose were obtained for remarkably small volume fractions of dextran: phi(d) > or = 0.0003 for phi(a) = 0.04 and phi(d) > or = 0.001 for phi(a) = 0.08. The Darcy permeabilities were much more sensitive to phi(d) than to phi(a), and were as much as 26 times smaller than those of pure agarose. Although phi(d) was an important variable, dextran molecular weight was not. The effects of dextran addition on kappa were described fairly well using simple structural idealizations. At high agarose concentrations, the dextran chains behaved as fine fibers interspersed among coarse agarose fibrils, whereas, at low concentrations, the dextran molecules began to resemble spherical obstacles embedded in agarose gels. The ability to achieve physiologically relevant Darcy permeabilities with these materials (as low as 1.6 nm2) makes them an attractive experimental model for glomerular basement membrane and possibly other extracellular matrices. PMID:11916864

  12. Influence of pinning effects on the electrochemical formation of silver patterns in agarose-containing sols and gels.

    PubMed

    Pasquale, M A; Saracco, G P; Marchiano, S L; Arvia, A J

    2005-11-03

    The formation of silver patterns via electrolysis from aqueous silver sulfate + x% w/v agarose sol and gel media, with and without supporting electrolyte, in a quasi-two-dimensional (2D) cylindrical cell at room temperature, is utilized as a reference system to investigate the complexity of pinning effects. From pattern morphology and electrochemical data, both delocalized and localized pinning in the bulk dominate the drift of the growth front, depending on the concentration of agarose in the heterogeneous media. Delocalized pinning results from mobile, small agarose aggregates at the growth front and from their accumulation by the front drift. For gels, localized pinning comes from their own percolated structure. A depinning/pinning transition is observed in going from sols to gels. The relative contribution of diffusion and advection in mass-transport-controlled silver electrodeposition depends on the plating bath composition. On the other hand, silver ion attachment to the cathode appears to be interfered with by some screening caused by weakly adsorbed, mobile agarose aggregates at the metal surface without slowing down the rate of the electron-transfer step at the cathode. Their relative contribution of a delocalized, localized pinning and screening effect to a great extent determines the morphology and transition in the growth mode of silver patterns in both media. The analysis of charge and current transients and the corresponding silver pattern morphologies for open and dense radial patterns is made. Results are qualitatively simulated with a novel, rather simple cellular automaton algorithm.

  13. An improved protocol for the preparation and restriction enzyme digestion of pulsed-field gel electrophoresis agarose plugs for the analysis of Legionella isolates.

    PubMed

    Chang, Bin; Amemura-Maekawa, Junko; Watanabe, Haruo

    2009-01-01

    Pulsed-field gel electrophoresis (PFGE), which determines the genomic relatedness of isolates, is currently used for the epidemiological investigation of infectious agents such as bacteria. In particular, this method has been used for the epidemiological investigation of Legionella outbreaks. However, it takes 4 days to complete a Legionella-PFGE analysis. Due to partial digestion and DNA damage, the reproducibility of the obtained fragment digestion patterns is poor for this pathogen. In this study, we report an improved protocol that takes only 2 days to complete and that allows clear discrimination of the restriction profile with higher reproducibility than that previously achieved.

  14. A simple, efficient, and economical method for recovering DNA from agarose gel.

    PubMed

    Fan, Chang-Fa; Mei, Xing-Guo

    2005-01-01

    A simple method of recovering DNA from agarose gel that is fast, inexpensive, and friendly both to operators and environment is described. Two rows of wells are made in an agarose gel, and a DNA sample is loaded into the well nearest to the negative pole for separation by electrophoresis. Recovery is accomplished by pipetting the DNA-containing TAE buffer from the well near the positive pole after target DNA fragments have migrated into the well. A recovery rate of up to 94 +/- 2.3% was observed with this method.

  15. Performance comparison of capillary and agarose gel electrophoresis for the identification and characterization of monoclonal immunoglobulins.

    PubMed

    McCudden, Christopher R; Mathews, Stephanie P; Hainsworth, Shirley A; Chapman, John F; Hammett-Stabler, Catherine A; Willis, Monte S; Grenache, David G

    2008-03-01

    The objective of this study was to compare gel- and capillary-based serum protein electrophoresis methods to identify and characterize monoclonal immunoglobulins (M proteins). Five reviewers interpreted 149 consecutively ordered serum specimens following agarose gel electrophoresis (AGE), capillary electrophoresis (CE), immunofixation electrophoresis (IFE), and subtraction immunotyping (IT). As a screening test for detecting M proteins, AGE and CE displayed similar sensitivity (91% and 92%, respectively). CE was less specific (74%) than AGE (81%). An analysis of interinterpreter agreement revealed that interpretations were more consistent using gel-based methods than capillary-based methods, with 80% of the gel interpretations being in complete (5/5) agreement compared with 67% of the capillary interpretations. After implementing the capillary-based methods, the number of tests per reportable result increased (from 1.58 to 1.73). CE is an analytically suitable alternative to AGE, but laboratories implementing it will need to continue IFE testing to characterize all M proteins detected by CE.

  16. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide.

    PubMed

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-12-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  17. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-09-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  18. Rapid recovery of DNA from agarose gel slices by coupling electroelution with monolithic SPE.

    PubMed

    Yu, Shengbing; Yang, Shuixian; Zhou, Ping; Zhou, Ke; Wang, Jing; Chen, Xiangdong

    2009-06-01

    An amino silica monolithic column prepared by in situ polymerization of tetraethoxysilane and N-(beta-aminoethyl)-gamma-aminopropyltriethoxysilane was firstly applied to recover DNA from agarose gel slices by coupling electroelution with monolithic SPE. DNA was electroeluted from the agarose gel slices onto the amino silica monolithic column. The DNA adsorbed on this monolithic column was then recovered using sodium phosphate solution at pH 10. The whole recovery procedure could be completed within 10 min because the use of amino silica monolithic column accelerated the DNA capture and facilitated the DNA release. Electroelution conditions, such as buffer pH, buffer concentration and applied voltage, were online optimized. The average yield for herring sperm DNA, pBR 322 DNA and lambda DNA recovered from 1.0% w/v agarose gel slices were 55+/-4, 50+/-6 and 42+/-7% (n=3), respectively. The polymerase chain reaction performance of pGM plasmid recovered from agarose gel slices demonstrated that the method could provide high-quality DNA for downstream processes. The combination of electroelution with monolithic SPE allows a rapid, simple and efficient DNA recovery method. This technique is especially useful for applications that need to purify small starting amounts of DNA.

  19. Measurement of DNA damage using agarose gel electrophoresis and electronic imaging

    SciTech Connect

    Sutherland, J.C.; Bergman, A.M.; Chen, Chun-Zhang; Monteleone, D.C.; Trunk, J.; Sutherland, B.M.

    1988-01-01

    Damage done to DNA by ultraviolet (uv) light, gamma rays and other carcinogens can be quantified using agarose gel electrophororesis. Agents that either produce strand breaks directly or that produce lesions that can be enzymatically or chemically converted to strand breaks can be studied. The method requires: (1) accurate measurement of the disribution of mass of DNA as a function of the distance of migration in the gel, (2) determination of the dispersion function of the electrophoresis system and (3) calculation of weighted averages of these functions by a computer. Less than 50 ng of DNA are required and the DNA need not be labeled with a radioactive tracer. Hence, the damage and repair of DNA in non-dividing cells and intact organisms---including humans---can be studied. Initial applications have focused on the quantitation of cyclobutyl pyrimidine dimers in the DNA of uv irradiated human skin. The sensitivity of lesion detection is increased by unidirectional pulsed field electrophoresis and other methods that separate longer DNA molecules. Replacing photographic detection of ethidium fluorescence by electronic imaging increases the accuracy of the measurement and the speed of data analysis. Quantitative electronic imaging of gel fluorescence offers advantages over photography in other areas of molecular biology, medicine and biotechnology. 26 refs., 5 figs.

  20. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  1. Acrylamide-agarose copolymers: improved resolution of high molecular mass proteins in two-dimensional gel electrophoresis.

    PubMed

    Roncada, Paola; Cretich, Marina; Fortin, Riccardo; Agosti, Susanna; De Franceschi, Lucia; Greppi, Gian Franco; Turrini, Francesco; Carta, Franco; Turri, Stefano; Levi, Marinella; Chiari, Marcella

    2005-06-01

    A method was developed in order to analyse high molecular mass proteins by two-dimensional (2-D) electrophoresis using a copolymer of acrylamide and allyl agarose instead of Bis cross-linked polyacrylamide (PA) gels in sodium dodecyl sulphate-electrophoresis. In this work, the matrix composition was optimised to improve the resolution of proteins larger than 200 kDa. The new gel type does not entrap large proteins and protein complexes at the application site. Mechanical properties were investigated through rheological measurements, which suggested the formation of a highly entangled elastomeric soft gel. A high 2-D resolution of proteins, extracted from membranes of red blood cells, was obtained in these gels. An example of tryptic digestion, peptide extraction and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry was reported. The results demonstrate that the new gel is fully compatible with mass spectrometry protein analysis.

  2. Local and average diffusion of nanosolutes in agarose gel: the effect of the gel/solution interface structure.

    PubMed

    Labille, Jérôme; Fatin-Rouge, Nicolas; Buffle, Jacques

    2007-02-13

    Fluorescence correlation spectroscopy (FCS) has been used to study the diffusion of nanometric solutes in agarose gel, at microscopic and macroscopic scales. Agarose gel was prepared and put in contact with aqueous solution. Several factors were studied: (i) the role of gel relaxation after its preparation, (ii) the specific structure of the interfacial zone and its role on the local diffusion coefficient of solutes, and (iii) the comparison between the local diffusion coefficient and the average diffusion coefficient in the gel. Fluorescent dyes and labeled biomolecules were used to cover a size range of solutes of 1.5 to 15 nm. Their transport through the interface from the solution toward the gel was modeled by the first Fick's law based on either average diffusion coefficients or the knowledge of local diffusion coefficients in the system. Experimental results have shown that, at the liquid/gel interface, a gel layer with a thickness of 120 microm is formed with characteristics significantly different from the bulk gel. In particular, in this layer, the porosity of agarose fiber network is significantly lower than in the bulk gel. The diffusion coefficient of solutes in this layer is consequently decreased for steric reasons. Modeling of solute transport shows that, in the bulk gel, macroscopic diffusion satisfactorily follows the classical Fick's diffusion laws. For the tested solutes, the local diffusion coefficients in the bulk gel, measured at microscopic scale by FCS, were equal, within experimental errors, to the average diffusion coefficients applicable at macroscopic scales (>or=mm). This confirms that anomalous diffusion applies only to solutes with sizes close to the gel pore size and at short time (

  3. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations.

    PubMed Central

    Pluen, A; Netti, P A; Jain, R K; Berk, D A

    1999-01-01

    The diffusion coefficients (D) of different types of macromolecules (proteins, dextrans, polymer beads, and DNA) were measured by fluorescence recovery after photobleaching (FRAP) both in solution and in 2% agarose gels to compare transport properties of these macromolecules. Diffusion measurements were conducted with concentrations low enough to avoid macromolecular interactions. For gel measurements, diffusion data were fitted according to different theories: polymer chains and spherical macromolecules were analyzed separately. As chain length increases, diffusion coefficients of DNA show a clear shift from a Rouse-like behavior (DG congruent with N0-0.5) to a reptational behavior (DG congruent with N0-2.0). The pore size, a, of a 2% agarose gel cast in a 0.1 M PBS solution was estimated. Diffusion coefficients of the proteins and the polymer beads were analyzed with the Ogston model and the effective medium model permitting the estimation of an agarose gel fiber radius and hydraulic permeability of the gels. Not only did flexible macromolecules exhibit greater mobility in the gel than did comparable-size rigid spherical particles, they also proved to be a more useful probe of available space between fibers. PMID:10388779

  4. Plasmid DNA topology assayed by two-dimensional agarose gel electrophoresis.

    PubMed

    Schvartzman, Jorge B; Martínez-Robles, María-Luisa; Hernández, Pablo; Krimer, Dora B

    2013-01-01

    Two-dimensional (2D) agarose gel electrophoresis is nowadays one of the best methods available to analyze DNA molecules with different masses and shapes. The possibility to use nicking enzymes and intercalating agents to change the twist of DNA during only one or in both runs, improves the capacity of 2D gels to discern molecules that apparently may look alike. Here we present protocols where 2D gels are used to understand the structure of DNA molecules and its dynamics in living cells. This knowledge is essential to comprehend how DNA topology affects and is affected by all the essential functions that DNA is involved in: replication, transcription, repair and recombination.

  5. Detection and mapping of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels.

    PubMed Central

    Roninson, I B

    1983-01-01

    A new molecular hybridization approach to the analysis of complex genomes has been developed. Tracer and driver DNAs were digested with the same restriction enzyme(s), and tracer DNA was labeled with 32P using T4 DNA polymerase. Tracer DNA was mixed with an excess amount of driver, and the mixture was electrophoresed in an agarose gel. Following electrophoresis, DNA was alkali-denatured in situ and allowed to reanneal in the gel, so that tracer DNA fragments could hybridize to the driver only when homologous driver DNA sequences were present at the same place in the gel, i.e. within a restriction fragment of the same size. After reannealing, unhybridized single-stranded DNA was digested in situ with S1 nuclease. The hybridized tracer DNA was detected by autoradiography. The general applicability of this technique was demonstrated in the following experiments. The common EcoRI restriction fragments were identified in the genomes of E. coli and four other species of bacteria. Two of these fragments are conserved in all Enterobacteriaceae. In other experiments, repeated EcoRI fragments of eukaryotic DNA were visualized as bands of various intensity after reassociation of a total genomic restriction digest in the gel. The situation of gene amplification was modeled by the addition of varying amounts of lambda phage DNA to eukaryotic DNA prior to restriction enzyme digestion. Restriction fragments of lambda DNA were detectable at a ratio of 15 copies per chicken genome and 30 copies per human genome. This approach was used to detect amplified DNA fragments in methotrexate (MTX)-resistant mouse cells and to identify commonly amplified fragments in two independently derived MTX-resistant lines. Images PMID:6310499

  6. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  7. DNA electrophoresis in agarose gels: A new mobility vs. DNA length dependence

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin

    2002-04-01

    Separations were performed on double stranded DNA (dsDNA) using electrophoresis. Electrophoresis is the steady transport of particles under the influence of an external electric field. Double stranded DNA fragments ranging in length from 200 base pairs (bp) to 194,000 bp (0.34 nm = 1 bp) were electrophoresed at agarose gel concentrations T = 0.4%--1.5%. The electric field was varied from 0.62 V/cm to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study the usefulness of a new interpolation equation, 1mL =1mL-( 1mL-1 ms)e-L/g , where mL,ms , and g are independent free fitting parameters. The long length mobility limit is interpreted as mL , the short length mobility limit is ms , and g is the crossover between the long length limit and the short length limit. This exponential relation fit very well (chi2 ≥ 0.999) when there are two smooth transitions observed in the "reptation plots" (plotting 3mL/m∘ vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945--1948). Fits deviate from the data when three different slopes were observed in the reptation plots. Reptation plots were used to determine a phase diagram for dsDNA migration regimes. The phase diagrams define different regions where mechanisms for molecular transport affect the migration of dsDNA in agarose gels during electrophoresis. The parameters from the equation have also been interpreted to provide a physical description of the structure of the agarose gel by calculating the pore sizes. The relations between the values for the pore sizes and the phase diagrams are interpreted to better understand the migration of the DNA through agarose gels.

  8. Isoelectric focusing in agarose gel for detection of oligoclonal bands in cerebrospinal and other biological fluids.

    PubMed

    Csako, Gyorgy

    2012-01-01

    Isoelectric focusing (IEF) coupled with immunodetection (immunofixation or immunoblotting) has become the leading technique for the detection and study of oligoclonal bands (OCBs) in cerebrospinal fluid (CSF) and also is increasingly used in other body fluids such as the tear and serum. Limited commercial availability of precast agarose IEF gels for research and a need for customization prompted reporting a detailed general protocol for the preparation and casting of agarose IEF gel along with sample, control, and isoelectric point marker preparation and carrying out the focusing itself for CSF OCBs. However, the method is readily adaptable to the use of other body fluid specimens and, possibly, research specimens such as culture fluids as well.

  9. Confirmation of soybean plastid rRNAs by formaldehyde denaturing agarose gel electrophoresis.

    PubMed

    Zhu, Y Q; Zheng, Y; Chen, H B; Huang, L Q

    2014-10-27

    Owing to their prokaryotic origin, plastid rRNAs are mainly 23s/16s/5s rRNAs. We present a novel plant RNA isolation method in this paper. Also, not only the eukaryotic 28s (26s, 25s)/18s rRNAs but the prokaryotic 26s/23s rRNAs as well were demonstrated in a single sample for the first time by formaldehyde denaturing agarose gel electrophoresis.

  10. Selective bacterial patterning using the submerged properties of microbeads on agarose gel.

    PubMed

    Park, Sung Jun; Bae, Hyeoni; Ko, Seong Young; Min, Jung-Joon; Park, Jong-Oh; Park, Sukho

    2013-10-01

    We proposed a new bacteria patterning method on the restricted region of microbeads, using the submerged property of polystyrene microbeads on various concentrations of agarose gel. Moreover, we fabricated a bacterial microrobot using attenuated Salmonella typhimurium through the new patterning methods. We controlled the submerged degree of polystyrene microbeads through the regulation of the hardness of the agarose gel. The polystyrene microbeads on agarose gel were transferred onto a poly-dimethylsiloxane (PDMS) surface for easy manipulation of the microbeads. Then, we treated the polystyrene microbeads on the PDMS surface with antibacterial adherent factors, such as O2 plasma and bovine serum albumin (BSA). The Salmonella typhimurium was attached to the entire surface of the untreated polystyrene microbeads, whereas Salmonella typhimurium were only attached to the restricted surface region of the treated polystyrene microbeads through the proposed patterning method. The bacteria-attached microbeads gain motility by the propulsion of the attached bacteria, and the selective-bacteria-attached microbeads showed enhanced motility. Compared with whole-bacteria-attached polystyrene microbeads (1.74 ± 1.62 μm/s), the selective bacteria-attached polystyrene microbeads, using O2 plasma and BSA, showed 9.18 ± 1.88 μm/s and 14.65 ± 8.66 μm/s faster moving velocities, respectively. Through the results, we expected that the proposed patterning methodology of microbeads could contribute to the development of biomedical bacterial microrobots.

  11. Capillary blotting of glycosaminoglycans on nitrocellulose membranes after agarose-gel electrophoresis separation.

    PubMed

    Volpi, Nicola; Maccari, Francesca

    2009-01-01

    A method for the blotting and immobilizing of several nonsulfated and sulfated complex polysaccharides on membranes made hydrophilic and positively charged by cationic detergent after their separation by conventional agarose gel electrophoresis is illustrated. This new approach to the study of glycosaminoglycans (GAGs) utilizes the capacity of agarose gel electrophoresis to separate single species of polysaccharides from mixtures and the membrane technology for further preparative and analytical uses.Nitrocellulose membranes are derivatized with the cationic detergent cetylpyridinium chloride and mixtures of GAGs are capillary blotted after their separation in agarose gel electrophoresis. Single purified species of variously sulfated polysaccharides are transferred on derivatized membranes with an efficiency of 100% and stained with alcian blue (irreversible staining) and toluidine blue (reversible staining). This enables a lower amount limit of detection of 0.1 microg. Nonsulfated polyanions, for example hyaluronic acid, may also be transferred to membranes with a limit of detection of approximately 0.1-0.5 microg after irreversible or reversible staining. The membranes may be stained with reversible staining and the same lanes are used for immunological detection or other applications.

  12. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-06-14

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.

  13. Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B.

    PubMed

    Kim, Jung Hyun; Yun, Eun Ju; Seo, Nari; Yu, Sora; Kim, Dong Hyun; Cho, Kyung Mun; An, Hyun Joo; Kim, Jae-Han; Choi, In-Geol; Kim, Kyoung Heon

    2017-02-01

    The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the sol-gel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the sol-gel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the sol-gel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40(T), was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50 °C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45 °C, which was above the sol-gel transition temperature of 1 % (w/v) agarose (∼35 °C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the sol-gel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.

  14. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    PubMed

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution.

  15. Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate

    PubMed Central

    Serwer, Philip; Wright, Elena T.

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979

  16. Agarose gel electrophoresis reveals structural fluidity of a phage T3 DNA packaging intermediate.

    PubMed

    Serwer, Philip; Wright, Elena T

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (i) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for the stabilization of structure and then (ii) determining effective radius by two-dimensional agarose gel electrophoresis (2D-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase the production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2D-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when the ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging.

  17. Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery.

    PubMed

    Sindhwani, Nikhil; Ivanchenko, Oleksandr; Lueshen, Eric; Prem, Komal; Linninger, Andreas A

    2011-03-01

    Convection-enhanced delivery (CED) is a promising technique to deliver large molecular weight drugs to the human brain for treatment of Parkinson's, Alzheimer's, or brain tumors. Researchers have used agarose gels to study mechanisms of agent transport in soft tissues like brain due to its similar mechanical and transport properties. However, inexpensive quantitative techniques to precisely measure achieved agent distribution in agarose gel phantoms during CED are missing. Such precise measurements of concentration distribution are needed to optimize drug delivery. An optical experimental method to accurately quantify agent concentration in agarose is presented. A novel geometry correction algorithm is used to determine real concentrations from observable light intensities captured by a digital camera. We demonstrate the technique in dye infusion experiments that provide cylindrical and spherical distributions when infusing with porous membrane and conventional single-port catheters, respectively. This optical method incorporates important parameters, such as optimum camera exposure, captured camera intensity calibration, and use of collimated light source for maximum precision. We compare experimental results with numerical solutions to the convection diffusion equation. The solutions of convection-diffusion equations in the cylindrical and spherical domains were found to match the experimental data obtained by geometry correction algorithm.

  18. Model creation of moving redox reaction boundary in agarose gel electrophoresis by traditional potassium permanganate method.

    PubMed

    Xie, Hai-Yang; Liu, Qian; Li, Jia-Hao; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-02-21

    A novel moving redox reaction boundary (MRRB) model was developed for studying electrophoretic behaviors of analytes involving redox reaction on the principle of moving reaction boundary (MRB). Traditional potassium permanganate method was used to create the boundary model in agarose gel electrophoresis because of the rapid reaction rate associated with MnO(4)(-) ions and Fe(2+) ions. MRB velocity equation was proposed to describe the general functional relationship between velocity of moving redox reaction boundary (V(MRRB)) and concentration of reactant, and can be extrapolated to similar MRB techniques. Parameters affecting the redox reaction boundary were investigated in detail. Under the selected conditions, good linear relationship between boundary movement distance and time were obtained. The potential application of MRRB in electromigration redox reaction titration was performed in two different concentration levels. The precision of the V(MRRB) was studied and the relative standard deviations were below 8.1%, illustrating the good repeatability achieved in this experiment. The proposed MRRB model enriches the MRB theory and also provides a feasible realization of manual control of redox reaction process in electrophoretic analysis.

  19. Agarose gels

    NASA Astrophysics Data System (ADS)

    2016-11-01

    Discovered in 17th-century Japan, agar is a jelly-like substance obtained by boiling algae, and it is widely used as a gelling agent for desserts in Japanese, Indian, Philippine and Vietnamese cuisine.

  20. Agarose gel shift assay reveals that calreticulin favors substrates with a quaternary structure in solution.

    PubMed

    Boelt, Sanne Grundvad; Houen, Gunnar; Højrup, Peter

    2015-07-15

    Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation, and prefractionation of protein interactions in solution independent of isoelectric point. We demonstrate that this assay is compatible with immunochemical methods and mass spectrometry. The assay was used to investigate interactions with several potential substrates for calreticulin, a chaperone that is involved in different biological aspects through interaction with other proteins. The current analytical assays used to investigate these interactions are mainly spectroscopic aggregation assays or solid phase assays that do not provide a direct visualization of the stable protein complex but rather provide an indirect measure of interactions. Therefore, no interaction studies between calreticulin and substrates in solution have been investigated previously. The results presented here indicate that calreticulin has a preference for substrates with a quaternary structure and primarily β-sheets in their secondary structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis.

  1. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis.

    PubMed

    Vetcher, Alexandre A; Srinivasan, Srimeenakshi; Vetcher, Ivan A; Abramov, Semen M; Kozlov, Mikhail; Baughman, Ray H; Levene, Stephen D

    2006-08-28

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  2. Stabilization of thin-layer agarose gels after isoelectric focusing with polyacrylamide enables reverse imidazole-zinc staining and facilitates two-dimensional gel electrophoresis.

    PubMed

    Hellman, Jukka

    2008-09-01

    Large-pore-size agarose gels provide excellent resolving capacity for high molecular weight biomolecules. Thin-layer agarose isoelectric focusing (IEF) gels on polyester support films are especially useful for the separation of large proteins based on their pI in native conformation, but the method has suffered from the lack of detection methods compatible with agarose gels in hydrated form. Recently, an acrylamide copolymerization method was reported to enable mass-spectrometry-compatible silver staining and in-gel digestion of proteins. In this study, the method was further applied by demonstrating successful reverse imidazole-zinc staining of thin-layer agarose IEF gels copolymerized with acrylamide. The sensitivity of the reverse staining method on the composite gel at its best equaled the sensitivity of the traditional dried agarose silver staining method. Owing to the increased durability and reversible detection, the reverse-stained first-dimension gel could be conveniently prepared for the second-dimension sodium dodecyl sulfate polyacrylamide gel electrophoresis by reduction and alkylation. In addition, the micropreparative generation of tryptic peptides of Coomassie brilliant blue R-250 stained proteins in the composite gel is demonstrated.

  3. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel.

    PubMed

    Zhang, Dongwei; Das, Diganta B; Rielly, Chris D

    2014-02-01

    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively.

  4. Quantitation of pyrimidine dimer contents of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels

    SciTech Connect

    Sutherland, B.M.; Shih, A.G.

    1983-02-15

    We have developed a method of quantitating the pyrimidine dimer content of nonradioactive DNAs. DNA samples are treated with the UV-endonuclease from Micrococcus luteus and then separated according to molecular weight by electrophoresis on alkaline agarose gels. From their migration relative to known molecular weight standards, their median molecular weight and thus the number of dimers per DNA molecule in each sample can be calculated. Results of action spectra for dimer formation in T7 bacteriophage measured by this method agree well with action spectra for T7 killing. In addition, the method gives dimer yields in good agreement with those obtained by others using alkaline sucrose gradient sedimentation.

  5. Plasmid DNA replication and topology as visualized by two-dimensional agarose gel electrophoresis.

    PubMed

    Schvartzman, J B; Martínez-Robles, M L; Hernández, P; Krimer, D B

    2010-01-01

    During the last 20 years, two-dimensional agarose gel electrophoresis combined with other techniques such as Polymerase Chain Reaction, helicase assay and electron microscopy, helped to characterize plasmid DNA replication and topology. Here we describe some of the most important findings that were made using this method including the characterization of uni-directional replication, replication origin interference, DNA breakage at the forks, replication fork blockage, replication knotting, replication fork reversal, the interplay of supercoiling and catenation and other changes in DNA topology that take place as replication progresses.

  6. Tailor-made cell patterning using a near-infrared-responsive composite gel composed of agarose and carbon nanotubes.

    PubMed

    Koga, Haruka; Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Nakazawa, Kohji

    2013-03-01

    Micropatterning is useful for regulating culture environments. We developed a highly efficient near-infrared-(NIR)-responsive gel and established a new technique that enables cell patterning by NIR irradiation. As a new culture substratum, we designed a tissue culture plate that was coated with a composite gel composed of agarose and carbon nanotubes (CNTs). A culture plate coated with agarose only showed no response to NIR irradiation. In contrast, NIR laser irradiation induced heat generation by CNTs; this permitted local solation of the CNT/agarose gel, and consequently, selective cell-adhesive regions were exposed on the tissue culture plate. The solation area was controlled by the NIR intensity, magnification of the object lens and CNT concentration in the gel. Furthermore, we formed circular patterns of HeLa cells and linear patterns of 3T3 cells on the same culture plate through selective and stepwise NIR irradiation of the CNT/agarose gel, and we also demonstrated that individual 3T3 cells migrated along a linear path formed on the CNT/agarose gel by NIR irradiation. These results indicate that our technique is useful for tailor-made cell patterning of stepwise and/or complex cell patterns, which has various biological applications such as stepwise co-culture and the study of cell migration.

  7. An agarose gel-based neurosphere culture system leads to enrichment of neuronal lineage cells in vitro.

    PubMed

    Park, Kyuhee; Nam, Yeonju; Choi, Yongmun

    2015-05-01

    Stem cell-based therapy holds great potential especially for neurological disorders. However, clinical applications await further understanding of many aspects of stem cell differentiation and development of technology enabling manipulation of stem cells into desired cell types in the central nervous system. Here, we developed a new method that leads to enrichment of neuronal lineage cells in neural stem cell cultures. The protocol involves cultivation of primary cells derived from the forebrains of rat E18 embryos above a layer of nonadhesive hard agarose gel in the form of neurospheres. In contrast to the neurospheres that were cultured above an anti-adhesive hydrogel layer, the primary cells that were cultured above a layer of agarose gel preferentially differentiated into β-III tubulin-positive neurons when allowed to undergo differentiation in vitro.In an effort to investigate the mechanism behind this observation, we found that the gene expression of a vertebrate neuronal determination gene (neurogenin1) was enhanced in the neurospheres that proliferated above a layer of agarose gel as compared with the control, and the gene expression level of neurogenin1 was quite well correlated with the rigidity of agarose gel. These results indicate that agarose gel can contribute, at least in part, to enrich neuronal progenitors and immature postmitotic neurons during neurosphere formation and may provide additional information to establish efficient protocols for the neural stem cell-based study.

  8. A New Organic Dye-Based Staining for The Detection of Plant DNA in Agarose Gels.

    PubMed

    Sönmezoğlu, Özlem Ateş; Özkay, Kerime

    2015-01-01

    Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies.

  9. Agarose gel-coated LPG based on two sensing mechanisms for relative humidity measurement.

    PubMed

    Miao, Yinping; Zhang, Kaikiang; Yuam, Yujie; Liu, Bo; Zhang, Hao; Liu, Yan; Yao, Jianquan

    2013-01-01

    A relative humidity (RH) sensor based on long-period grating (LPG) with different responses is proposed by utilizing agarose gel as the sensitive cladding film. The spectral characteristic is discussed as the ambient humidity level ranges from 25% to 95% RH. Since increment of RH will result in volume expansion and refractive index increment of the agarose gel, the LPG is sensitive to applied strain and ambient refractive index; both the resonance wavelength and coupling intensity present particular responses to RH within two different RH ranges (25%-65% RH and 65%-96% RH). The coupling intensity decreases within a lower RH range while it increases throughout a higher RH range. The resonance wavelength is sensitive to the higher RH levels, and the highest sensitivity reaches 114.7 pm/% RH, and shares the same RH turning point with coupling intensity response. From a practical perspective, the proposed RH sensor would find its potential applications in high humidity level, temperature-independent RH sensing and multiparameter sensing based on wavelength/power hybrid demodulation and even static RH alarm for automatic monitoring of a particular RH value owing to the nonmonotonic RH dependence of the transmission power within the whole tested RH range.

  10. Agarose-gel electrophoresis for the quality assurance and purity of heparin formulations.

    PubMed

    Volpi, Nicola; Buzzega, Dania

    2012-01-01

    The adulteration of raw heparin (Hep) with a synthetic oversulfated chondroitin sulfate (OSCS) not found in nature produced in 2007-2008 a global crisis giving rise to the development of additional, new and specific methods for its quality assurance and purity. In this study, a simple and sensitive agarose-gel electrophoresis method has been developed for the visualization of OSCS in Hep samples along with other natural glycosaminoglycans possibly present as "process-related impurities", in particular dermatan sulfate (DS) and chondroitin sulfate (CS). Agarose-gel electrophoresis under non-conventional conditions is able to separate OSCS from Hep with its two components, the slow-moving and fast-moving species, DS and CS by performing separation for 15 h (overnight) and under high voltage (100 mA, ∼200 V). Densitometric scanning enabled us to calculate a limit of detection of ∼0.5 μg OSCS with a linear behaviour from 0.1 to 5 μg, comparable to CS/DS. Contaminated samples from Hep manufacturers were analyzed and quantitative data were found comparable to previous studies. Due to its capacity to process many samples in a single run and to the equipment commonly available in laboratories, this analytical method would be suitable for the identification and quantification of contamination by other polysaccharides, in particular OSCS and DS, within Hep preparations and formulations.

  11. Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose gel electrophoresis

    SciTech Connect

    Theodorakis, C.W. ); D'Surney, S.J. . Dept. of Biology); Shugart, L.R. . Environmental Sciences Division)

    1994-07-01

    DNA, isolated from the blood cells of bluegill sunfish (Lepomis macrochirus) exposed in the lab to bedded sediment collected from a site contaminated with genotoxic compounds (i.e., PAHs, PCBs, and heavy metals), was examined for strand breakage by agarose gel electrophoresis. Before electrophoresis the blood cells were embedded in agarose plugs and incubated with proteinase. After electrophoresis under both neutral (pH 7) or alkaline (pH 12) conditions, the median molecular length (MML) of the DNA distributed in the gel was determined. These quantitative measures were used to estimate the difference in the number of double- and single-strand breaks between DNA preparations. Both types of strand breakage were found to be greater in fish exposed to sediment contaminated with genotoxic compounds as compared to nonexposed fish. A statistically significant correlation was demonstrated between the MML value obtained by the electrophoretic assay reported here and the F value (measure of DNA double-strandedness) obtained by the alkaline unwinding assay.

  12. Subpopulations of liver coated vesicles resolved by preparative agarose gel electrophoresis

    SciTech Connect

    Kedersha, N.L.; Hill, D.F.; Kronquist, K.E.; Rome, L.H.

    1986-01-01

    Rat liver clathrin coated vesicles (CVs) were separated into several distinct subpopulations using non-sieving concentrations of agarose, which allowed the separation of species differing primarily in surface charge. Using preparative agarose electrophoresis, the CVs were recovered and analyzed for differences in morphology, coat protein composition, and stripped vesicle protein composition. Coat proteins from difference populations appeared identical on SDS PAGE, and triskelions stripped from the different populations showed the same mobility on the agarose gel, suggesting that the mobility differences observed in intact CVs were due to differences in the surface charge of underlying vesicles rather than to variations in their clathrin coats. Stripped CVs exhibited considerable heterogeneity when analyzed by Western blotting: the fast-migrating population was enriched in the mannose 6-phosphate receptor, secretory acetyl-choline esterase, and an M/sub r/ 195,000 glycoprotein. The slow-migrating population of CVs was enriched in the asialoglycoprotein receptor, and it appeared to contain all detectable concanavalin A-binding polypeptides as well as the bulk of detectable WGA-binding proteins. When CVs were prepared from /sup 125/I-asialoorosomucoid-perfused rat liver, ligand was found in the slow-migrating CVs, suggesting that these were endocytic in origin. Morphological differences were also observed: the fast-migrating population was enriched in smaller CVs, whereas the slow-migrating population exhibited an enrichment in larger CVs. As liver consists largely of hepatocytes, these subpopulations appear to originate from the same cell type and probably represent CVs of different intracellular origin and destination.

  13. A stable double-stranded DNA-ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels.

    PubMed Central

    Glazer, A N; Peck, K; Mathies, R A

    1990-01-01

    The complex between double-stranded DNA and ethidium homodimer (5,5'-diazadecamethylene)bis(3,8-diamino-6-phenylphenanthridini um) cation, formed at a ratio of 1 homodimer per 4 or 5 base pairs, is stable in agarose gels under the usual conditions for electrophoresis. This unusual stability allows formation of the complex before electrophoresis and then separation and detection in the absence of background stain. Competition experiments between the preformed DNA-ethidium homodimer complex and a 50-fold molar excess of unlabeled DNA show that approximately one-third of the dye is retained within the original complex independent of the duration of the competition. However, dye-extraction experiments show that these are not covalent complexes. After electrophoretic separation, detection of bands containing 25 pg of DNA was readily achieved in 1-mm thick agarose gels with laser excitation at 488 nm and a scanning confocal fluorescence imaging system. The band intensity was linear with the amount of DNA applied from 0.2 to 1.0 ng per lane and with the number of kilobase pairs (kbp) per band within a lane. Analysis of an aliquot of a polymerase-chain-reaction mixture permitted ready detection of 80 pg of a 1.6-kbp amplified fragment. The use of the ethidium homodimer complex together with laser excitation for DNA detection on gels is at least two orders of magnitude more sensitive than conventional fluorescence-based procedures. The homodimer-DNA complex exemplifies a class of fluorescent probes where the intercalation of dye chromophores in DNA forms a stable, highly fluorescent ensemble. Images PMID:2339125

  14. A stable double-stranded DNA-ethidium homodimer complex: Application to picogram fluorescence detection of DNA in agarose gels

    SciTech Connect

    Glazer, A.N.; Mathies, R.A. Lawrence Berkeley Laboratory, CA ); Peck, K. )

    1990-05-01

    The complex between double-stranded DNA and ethidium homodimer (5,5{prime}-diazadecamethylene)bis(3,8-diamino-6-phenylphenanthridinium) cation, formed at a ratio of 1 homodimer per 4 or 5 base pairs, is stable in agarose gels under the usual conditions for electrophoresis. This unusual stability allows formation of the complex before electrophoresis and then separation and detection in the absence of background stain. Competition experiments between the performed DNA-ethidium homodimer complex and a 50-fold molar excess of unlabeled DNA show that approximately one-third of the dye is retained within the original complex independent of the duration of the competition. However, dye-extraction experiments show that these are not covalent complexes. After electrophoretic separation, detection of bands containing 25 pg of DNA was readily achieved in 1-mm thick agarose gels with laser excitation at 488 nm and a scanning confocal fluorescence imaging system. The band intensity was linear with the amount of DNA applied from 0.2 to 1.0 ng per lane and with the number of kilobase pairs (kbp) per band within a lane. Analysis of an aliquot of a polymerase-chain-reaction mixture permitted ready detection of 80 pg of a 1.6-kbp amplified fragment. The use of the ethidium homodimer complex together with laser excitation for DNA detection on gels is at least two orders of magnitude more sensitive than conventional fluorescence-based procedures. The homodimer-DNA complex exemplifies a class of fluorescent probes where the intercalation of dye chromophores in DNA forms a stable, highly fluorescent ensemble.

  15. Visualization of DNA in agarose gels as migrating colored bands: Applications to laboratory techniques

    SciTech Connect

    Adkins, S.; Burmeister, M.

    1994-09-01

    We have developed a method to visualize DNA without the use of ethidium bromide and UV radiation. Anionic dyes (colored anion) have long been used in the detection of pharmaceutical amines via ion pairing, here we show that cationic dyes may be used to detect DNA. In gel electrophoresis in which DNA is traveling toward the positive electrode and a cationic dye is traveling toward the negative electrode, we expect ion pairing of the DNA and the dye as they meet in the gel. The dye should bind to the anionic DNA. If the DNA is not completely neutralized by the dye, it should continue to migrate. Ethidium bromide, which is believed to stain DNA primarily by intercalation between bases, exhibits the fluorescence through its cation and also may bind to DNA, to some extent, through ionic pairing. We observed that DNA forms colored bands during electrophoresis in standard agarose gels when a cationic dye is present in the gel and running buffer. DNA in amounts equal to or greater than 80 ng is seen as a discrete migrating colored band in ambient room lighting. Colored bands may be transferred to nitrocellulose by vacuum transfer in room temperature gel dryer, Xeroxed, fixed with NaOH and dye removed with dilute detergent. Also, isolation of DNA bands from preparative gels may be accomplished without the typical use of ethidium bromide and UV radiation which are known to alter DNA and pose hazards to laboratory personnel. We are presently investigating the general utility of using dyes to visualize DNA for various laboratory techniques.

  16. Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model.

    PubMed

    Lake, Spencer P; Barocas, Victor H

    2011-07-01

    The mechanical role of non-fibrillar matrix and the nature of its interaction with the collagen network in soft tissues remain poorly understood, in part because of the lack of a simple experimental model system to quantify these interactions. This study's objective was to examine mechanical and structural properties of collagen-agarose co-gels, utilized as a simplified model system, to understand better the relationships between the collagen network and non-fibrillar matrix. We hypothesized that the presence of agarose would have a pronounced effect on microstructural reorganization and mechanical behavior. Samples fabricated from gel solutions containing 1.0 mg/mL collagen and 0, 0.125, or 0.25% w/v agarose were evaluated via scanning electron microscopy, incremental tensile stress-relaxation tests, and polarized light imaging. While the incorporation of agarose did not dramatically alter collagen network morphology, agarose led to concentration-dependent changes in mechanical and structural properties. Specifically, resistance of co-gels to volume change corresponded with differences in fiber reorientation and elastic/viscoelastic mechanics. Results demonstrate strong relationships between tissue properties and offer insight into behavior of tissues of varying Poisson's ratio and fiber kinematics. Results also suggest that non-fibrillar material may have significant effects on properties of artificial and native tissues even in tension, which is generally assumed to be collagen dominated.

  17. Analyzing modifiers of protein aggregation in C. elegans by native agarose gel electrophoresis.

    PubMed

    Holmberg, Mats; Nollen, Ellen A A

    2013-01-01

    The accumulation of specific aggregation-prone proteins during aging is thought to be involved in several diseases, most notably Alzheimer's and Parkinson's disease as well as polyglutamine expansion disorders such as Huntington's disease. Caenorhabditis elegans disease models with transgenic expression of fluorescently tagged aggregation-prone proteins have been used to screen for genetic modifiers of aggregation. To establish the role of modifying factors in the generation of aggregation intermediates, a method has been developed using native agarose gel electrophoresis (NAGE) that enables parallel screening of aggregation patterns of fluorescently labeled aggregation-prone proteins. Together with microscopy-based genetic screens this method can be used to identify modifiers of protein aggregation and characterize their molecular function. Although described here for analyzing aggregates in C. elegans, NAGE can be adjusted for use in other model organisms as well as for cultured cells.

  18. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    PubMed

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  19. Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response.

    PubMed

    Varoni, Elena; Tschon, Matilde; Palazzo, Barbara; Nitti, Paola; Martini, Lucia; Rimondini, Lia

    2012-01-01

    Maxillofacial, orthopedic, oral, and plastic surgery require materials for tissue augmentation, guided regeneration, and tissue engineering approaches. In this study, the aim was to develop and characterize a new extrudable hydrogel, based on agarose gel (AG; 1.5% wt) and to evaluate the local effects after subcutaneous implantation in comparison with collagen and hyaluronic acid. AG chemical-physical properties were ascertained through Fourier transform infrared (FT-IR) spectroscopy and rheological analysis. In vivo subcutaneous implants were performed, and histological and histomorphometric evaluations were done at 1, 4, 12, and 16 weeks. FT-IR confirmed that spectroscopic properties were the same for the baseline agarose and rheological characterization established that AG is a weak hydrogel. Subcutaneous AG implants induced new vessels and fibrous tissue formation rich in neutrophils; the capsule thickness around AG increased until the 12th week but remained thinner than those around hyaluronic acid and collagen. At 16 weeks, the thickness of the capsule significantly decreased around all materials. This study confirmed that 1.5% wt AG possesses some of the most important features of the ideal biocompatible material: safety, effectiveness, costless, and easily obtained with specific chemical and geometrical characters; the AG can represent a finely controllable and biodegradable polymeric system for cells and drug delivery applications.

  20. Isoelectric focusing of human von Willebrand factor in urea-agarose gels

    SciTech Connect

    Fulcher, C.A.; Ruggeri, Z.M.; Zimmerman, T.S.

    1983-02-01

    An analytical technique has been developed for the isoelectric focusing (IEF) of plasma von Willebrand factor (vWF) in agarose gels containing urea. Under these conditions, vWF freely enters the gel and focuses without artifact. The focused vWF is visualized by staining fixed gels with /sup 125/I-labeled affinity-purified heterologous antibody. Utilizing a pH gradient of 5.0-6.5, normal vWF in plasma or purified preparations focuses into at least three bands with apparent isoelectric points (pI) between pH 5.7 and 5.9. A reproducible difference in the IEF pattern of vWF has been established between normal plasmas and those of individuals with variant von Willebrand's disease (vWd) type IIA and type IIB. In type IIA, vWF has a distinctly lower pI than normal. This difference may be related to the presence of smaller vWF multimers in IIA plasma because forms of vWF of corresponding size contained in normal cryoprecipitate supernatant have a similar pI. Type IIB von Willebrand factor has a pI intermediate between normal and IIA. Neuraminidase treatment of plasma samples before IEF results in an increase in pI in normal, type IIA, and type IIB vWF. The data suggest that none of the 16 type IIA and 9 IIB plasmas studied here contain significantly decreased amounts of sialic acid.

  1. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    SciTech Connect

    Pagratis, N.; Revel, H.R. )

    1990-07-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription.

  2. Electrophoresis of /sup 35/S-labeled proteoglycans of polyacrylamide-agarose composite gels and their visualization by fluorography

    SciTech Connect

    Carney, S.L.; Bayliss, M.T.; Collier, J.M.; Muir, H.

    1986-01-01

    Techniques for the electrophoresis of /sup 35/S-labeled proteoglycans on polyacrylamide-agarose gel slabs and subsequent fixation, impregnation, and fluorography of such electrophoretograms have been developed. The procedure permits the examination of newly synthesized proteoglycan subspecies using a rapid technique, previously unavailable for these labeled molecules.

  3. Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum.

    PubMed

    Karim, Asima; Hall, Andrew C

    2017-05-01

    Changes to chondrocyte volume/morphology may have deleterious effects on extracellular matrix (ECM) metabolism potentially leading to cartilage deterioration and osteoarthritis (OA). The factors controlling chondrocyte properties are poorly understood, however, pericellular matrix (PCM) weakening may be involved. We have studied the density, volume, morphology, and clustering of cultured bovine articular chondrocytes within stiff (2% w/v) and soft (0.2% w/v) three-dimensional agarose gels. Gels with encapsulated chondrocytes were cultured in Dulbecco's Modified Eagle's Medium (DMEM; fetal calf serum (FCS) 1-10%;380 mOsm) for up to 7 days. Chondrocytes were fluorescently labeled after 1, 3, and 7 days with 5-chloromethylfluorescein-diacetate (CMFDA) and propidium iodide (PI) or 1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-dihydroxyanthracene-9,10-dione (DRAQ5) to identify cytoplasmic space or DNA and imaged by confocal laser scanning microscopy (CLSM). Chondrocyte density, volume, morphology, and clustering were quantified using Volocity™ software. In stiff gels after 7 d with 10% FCS, chondrocyte density remained unaffected and morphology was relatively normal with occasional cytoplasmic processes. However, in soft gels by day 1, chondrocyte volume increased (P = 0.0058) and by day 7, density increased (P = 0.0080), along with the percentage of chondrocytes of abnormal morphology (P < 0.0001) and enhanced clustering (P < 0.05), compared to stiff gels. FCS exacerbated changes to density (P < 0.01), abnormal morphology (P < 0.001) and clustering (P < 0.01) compared to lower concentrations at the same gel strength. Reduced gel stiffness and/or increased FCS concentrations promoted chondrocyte proliferation and clustering, increased cell volume, and stimulated abnormal morphology, producing similar changes to those occurring in OA. The increased penetration of factors in FCS into soft gels may be important in the development of

  4. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products.

    PubMed

    Jimenez, Maria S; Luque-Alled, Jose M; Gomez, Teresa; Castillo, Juan R

    2016-05-01

    Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes-AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes-AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA-ICP-MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs-protein binding (what is not possible using SDS-PAGE).

  5. A shortcut organic dye-based staining method for the detection of DNA both in agarose and polyacrylamide gel electrophoresis.

    PubMed

    Cong, Weitao; Chen, Mao; Zhu, Zhongxin; Liu, Zhiguo; Nan, Jia; Ye, Weijian; Ni, Maowei; Zhao, Ting; Jin, Litai

    2013-02-21

    In this study, we describe a brief, sensitive and safe organic dye-based staining method for the visualization of DNA both in agarose and polyacrylamide gels by using Victoria Pure Blue BO (VPBBO). Down to 0.8-1.6 ng of λ DNA/HindIII markers in agarose gels and 0.4-0.8 ng of pUC18 DNA/Mspl markers in polyacrylamide gels can be successfully detected within 15 and 10 min by the new developed technique, respectively. Moreover, the mechanism of the VPBBO staining was investigated and further confirmed by electrospray ionization mass spectrometry (ESI-MS) and molecular docking. The results indicated that the interaction between VPBBO and DNA is mainly due to groove binding.

  6. Rapid extraction and structural characterization of biomolecules in agarose gels by laser desorption Fourier transform mass spectrometry

    SciTech Connect

    Dunphy, J.C.; Busch, K.L. ); Hettich, R.L.; Buchanan, M.V. )

    1993-05-15

    A method originally developed for the extraction of biomolecules from agarose gel slices has been utilized as a rapid means of isolating biological compounds from gels for subsequent structural characterization by matrix-assisted laser desorption-ionization Fourier transform mass spectrometry (MALDI/FTMS). This [open quotes]freeze-squeeze[close quotes] extraction method involves pressure extrusion of fluid from frozen gel slices and provides near 50% recovery of analyte in less than 5 min. Experiments were directed at examining the recovery efficiency of the extraction method using [sup 14]C-labeled adenosine monophosphate and investigating the effect of high buffer concentrations on the laser desorption mass spectra. When coupled with this extraction technique, MALDI/FTMS can be used to detect and identify biomolecules at the low picomole level in agarose gel slices. The accurate mass measurements and MS/MS capabilities of the FTMS were exploited to provide detailed structural information at the isomeric level for oligonucleotides electrophoresed into agarose gels. 41 refs., 5 figs., 1 tab.

  7. A method for direct application of human plasmin on a dithiothreitol-containing agarose stacking gel system.

    PubMed

    Choi, Nack-Shick; Chung, Dong-Min; Yoon, Kab-Seog; Maeng, Pil Jae; Kim, Seung-Ho

    2005-11-30

    A new simplified procedure for identifying human plasmin was developed using a DTT copolymerized agarose stacking gel (ASG) system. Agarose (1 %) was used for the stacking gel because DTT inhibits the polymerization of acrylamide. Human plasmin showed the lowest activity at pH 9.0. There was a similar catalytically active pattern observed under acidic conditions (pH 3.0) to that observed under alkaline conditions (pH 10.0 or 11.0). Using the ASG system, the primary structure of the heavy chain could be established at pH 3.0. This protein was found to consist of three fragments, 45 kDa, 23 kDa, and 13 kDa. These results showed that the heavy chain has a similar structure to the autolysed plasmin (Wu et al., 1987b) but there is a different start amino acid sequence of the N-termini.

  8. Measurement of Ferric Ion Diffusion Coefficient in Fricke-Infused Agarose Gel From MR Image Intensity Changes

    DTIC Science & Technology

    2007-11-02

    Coefficient in Fricke-Infused Agarose Gel From MR Image Intensity Changes Contract Number Grant Number Program Element Number Author( s ) Project Number Task...Number Work Unit Number Performing Organization Name( s ) and Address(es) Institutes of Biomedical Engineering and Radiological Sciences National...Yang Ming University Pei-Tou Taipei, Taiwan, R.O.C. Performing Organization Report Number Sponsoring/Monitoring Agency Name( s ) and Address(es) US

  9. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.

    PubMed

    Suriano, R; Griffini, G; Chiari, M; Levi, M; Turri, S

    2014-02-01

    Two-dimensional (2-D) gel electrophoresis currently represents one of the most standard techniques for protein separation. In addition to the most commonly employed polyacrylamide crosslinked hydrogels, acrylamide-agarose copolymers have been proposed as promising systems for separation matrices in 2-D electrophoresis, because of the good resolution of both high and low molecular mass proteins made possible by careful control and optimization of the hydrogel pore structure. As a matter of fact, a thorough understanding of the nature of the hydrogel pore structure as well as of the parameters by which it is influenced is crucial for the design of hydrogel systems with optimal sieving properties. In this work, a series of acrylamide-based hydrogels covalently crosslinked with different concentrations of allyl agarose (0.2-1%) is prepared and characterized by creep-recovery measurements, dynamic rheology and tensile tests, in the attempt to gain a clearer understanding of structure-property relationships in crosslinked polyacrylamide-based hydrogels. The rheological and mechanical properties of crosslinked acrylamide-agarose hydrogels are found to be greatly affected by crosslinker concentration. Dynamic rheological tests show that hydrogels with a percentage of allyl agarose between 0.2% and 0.6% have a low density of elastically effective crosslinks, explaining the good separation of high molecular mass proteins in 2-D gel electrophoresis. Over the same range of crosslinker concentration, creep-recovery measurements reveal the presence of non-permanent crosslinks in the hydrogel network that justifies the good resolution of low molecular mass proteins as well. In tensile tests, the hydrogel crosslinked with 0.4% of allyl agarose exhibits the best results in terms of mechanical strength and toughness. Our results show how the control of the viscoelastic and the mechanical properties of these materials allow the design of mechanically stable hydrogels with improved

  10. Photothermal Microneedle Etching: Improved Three-Dimensional Microfabrication Method for Agarose Gel for Topographical Control of Cultured Cell Communities

    NASA Astrophysics Data System (ADS)

    Moriguchi, Hiroyuki; Yasuda, Kenji

    2006-08-01

    We have developed a new three-dimensional (3D) microfabrication method for agarose gel, photothermal microneedle etching (PTMNE), by means of an improved photothermal spot heating using a focused 1064 nm laser beam for melting a portion of the agarose layer at the tip of the microneedle, where a photoabsorbent chromium layer is coated to be heated. The advantage of this method is that it allows the 3D control of the melting topography within the thick agarose layer with a 2 μm resolution, whereas conventional photothermal etching can enable only two-dimensional (2D) control on the surface of the chip. By this method, we can form the spheroid clusters of particular cells from isolated single cells without any physical contact with other cells in other chambers, which is important for measuring the community effect of the cell group from isolated single cells. When we set single cancer cells in microchambers of 100 μm in diameter, formed in a 50-μm-thick agarose layer, we observed that they grew, divided, and formed spheroid clusters of cells in each microchamber. The result indicates the potential of this method to be a fundamental technique in the research of multicellular spherical clusters of cells for checking the community effect of cells in 3D structures, such as the permeabilities of chemicals and substrates into the cluster, which is complementary to conventional 2D dish cultivation and can contribute to the cell-based screening of drugs.

  11. Plasma protein electrophoresis in birds: comparison of a semiautomated agarose gel system with an automated capillary system.

    PubMed

    Roman, Yannick; Bomsel-Demontoy, Marie-Claude; Levrier, Julie; Chaste-Duvernoy, Daniel; Saint Jalme, Michel

    2013-06-01

    Plasma agarose gel electrophoresis (AGE) is recognized as a very reliable diagnostic tool in avian medicine. Within the last 10 years, new electrophoresis techniques such as capillary zone electrophoresis (CZE) have emerged in human laboratory medicine but have never been investigated in birds. To investigate the use of CZE in birds and to compare it with AGE, plasma samples from 30 roosters (Gallus gallus), 20 black kites (Milvus migrans), and 10 racing pigeons (Columba livia) were analyzed by both AGE and CZE. For the 3 species studied, values determined by AGE and CZE were well correlated for albumin and beta and gamma fractions whereas other values differed significantly. Values for alpha-3 fraction in the rooster, alpha-1 fraction in the black kite, and alpha fractions in the pigeon obtained by AGE were very well correlated with the prealbumin fraction values obtained by CZE. Repeatability and reproducibility appeared higher with CZE than with AGE. Although the interpretation of CZE electrophoresis patterns seems to produce results similar to those obtained with AGE, some proteins present in the alpha fraction measured with AGE migrated to the prealbumin fraction found with CZE. Although CZE requires the use of specific reference intervals and a much higher sample volume, this method has many advantages when compared with AGE, including better repeatability and reproducibility and higher analysis output.

  12. Comparison between a second generation automated multicapillary electrophoresis system with an automated agarose gel electrophoresis system for the detection of M-components.

    PubMed

    Larsson, Anders; Hansson, Lars-Olof

    2008-01-01

    During the last decade, capillary electrophoresis (CE) has emerged as an interesting alternative to traditional analysis of serum, plasma and urine proteins by agarose gel electrophoresis. Initially there was a considerable difference in resolution between the two methods but the quality of CE has improved significantly. We thus wanted to evaluate a second generation of automated multicapillary instruments (Capillarys, Sebia, Paris, France) and the high resolution (HR) buffer for serum or plasma protein analysis with an automated agarose gel electrophoresis system for the detection of M-components. The comparison between the two systems was performed with patients samples with and without M-components. The comparison included 76 serum samples with M-components > 1 g/L. There was a total agreement between the two methods for detection of these M-components. When studying samples containing oligoclonal bands/small M-components, there were differences between the two systems. The capillary electrophoresis system detected a slightly higher number of samples with oligoclonal bands but the two systems found oligoclonal bands in different samples. When looking at resolution, the agarose gel electrophoresis system yielded a slightly better resolution in the alpha and beta regions, but it required an experienced interpreter to be able to benefit from the increased resolution. The capillary electrophoresis has shorter turn-around times and bar-code reader that allows positive sample identification. The Capillarys in combination with HR buffer gives better resolution of the alpha and beta regions than the same instrument with the beta1-beta2+ buffer or the Paragon CZE2000 (Beckman) which was the first generation of capillary electrophoresis systems.

  13. Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose.

    PubMed

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Ujihara, Hiromi; Koike, Tohru

    2009-08-01

    We describe a novel technique of phosphate-affinity SDS-PAGE using Phos-tag to analyze large phosphoproteins with molecular masses of more than 200 kDa. The protein phosphoisotypes were clearly separated as up-shifted migration bands in a 3% w/v polyacrylamide gel containing 20 microM Phos-tag and 0.5% w/v agarose. In subsequent immunoblotting, the procedure permitted the determination of the phosphoisotypes of high-molecular-mass proteins, such as mTOR (289 kDa), ATM kinase (350 kDa), and 53BP1 (213 kDa).

  14. Agarose gel purification of PCR products for denaturing gradient gel electrophoresis results in GC-clamp deletion.

    PubMed

    Sun, Guowei; Xiao, Jinzhou; Lu, Man; Wang, Hongming; Chen, Xiaobing; Yu, Yongxin; Pan, Yingjie; Wang, Yongjie

    2015-01-01

    The 16S ribosomal RNA (rRNA) gene of marine archaeal samples was amplified using a nested PCR approach, and the V3 region of 16S rRNA gene of crab gut microbiota (CGM) was amplified using the V3 universal primer pair with a guanine and cytosine (GC)-clamp. Unpurified PCR products (UPPs), products purified from reaction solution (PPFSs), and products purified from gel (PPFGs) of above two DNA samples were used for denaturing gradient gel electrophoresis (DGGE) analysis, respectively. In contrast to almost identical band patterns shared by both the UPP and PPFS, the PPFGs were barely observed on the DGGE gel for both the marine archaea and CGM samples. Both PPFS and PPFG of CGM V3 regions were subjected to cloning. A small amount of positive clones was obtained for PPFS, but no positive clones were observed for PPFG. The melt curve and direct sequencing analysis of PPFS and PPFG of E. coli V3 region indicated that the Tm value of PPFG (82.35 ± 0.19 °C) was less than that of PPFS (83.81 ± 0.11 °C), and the number of shorter GC-clamps was significant higher in PPFG than in PPFS. The ultraviolet exposure experiment indicated that the ultraviolet was not responsible for the deletion of the GC-clamps. We conclude that the gel purification method is not suitable for DGGE PCR products or even other GC-rich DNA samples.

  15. A crystallization technique for obtaining large protein crystals with increased mechanical stability using agarose gel combined with a stirring technique

    NASA Astrophysics Data System (ADS)

    Maruyama, Mihoko; Hayashi, Yuki; Yoshikawa, Hiroshi Y.; Okada, Shino; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Takano, Kazufumi; Murakami, Satoshi; Yoshimura, Masashi; Mori, Yusuke

    2016-10-01

    We developed a protein crystallization technique using a 0.0-2.0 w/v% agarose gel solution combined with a stirring technique for the purpose of controlling the crystal number in the gelled solutions. To confirm the stirring effect in the gelled solution, we investigated the nucleation probability and growth rate of the crystals produced using this method. The stirring operation by a rotary shaker affected the behavior of protein molecules in the gelled solution, and both a significant decrease in the nucleation rate and an enhancement of the crystal growth rate were achieved by the method. As a result, we concluded that the proposed technique, the stirring technique in a gel solution, was effective for generating protein crystals of sufficient and increased mechanical stability.

  16. Serum protein electrophoresis by using high-resolution agarose gel in clinically healthy and Aspergillus species-infected falcons.

    PubMed

    Kummrow, Maya; Silvanose, Christudas; Di Somma, Antonio; Bailey, Thomas A; Vorbrüggen, Susanne

    2012-12-01

    Serum protein electrophoresis has gained importance in avian medicine during the past decade. Interpretation of electrophoretic patterns should be based on species-specific reference intervals and the electrophoresis gel system. In this study, serum protein electrophoresis by using high-resolution agarose gels was performed on blood samples collected from 105 falcons, including peregrine falcons (Falco peregrinus), gyrfalcons (Falco rusticolus), saker falcons (Falco cherrug), red-naped shaheens (Falco pelegrinoides babylonicus), and hybrid falcons, that were submitted to the Dubai Falcon Hospital (Dubai, United Arab Emirates) between 2003 and 2006. Reference values were established in clinically healthy birds and compared with values from falcons infected with Aspergillus species (n = 32). Falcons with confirmed aspergillosis showed significantly lower prealbumin values, which is a novel finding. Prealbumin has been documented in many avian species, but further investigation is required to illuminate the diagnostic significance of this negative acute-phase protein.

  17. Characterization of a heterogeneous chicken plasma protein, HEF, by analytical isotachophoresis in agarose gel.

    PubMed

    Nicolaisen, E M

    1985-02-22

    Chicken plasma contains proteins that associate with immunoglobulin. One of these proteins enhances the titre of haemagglutinating alloantibodies, and it was therefore named HEF, haemagglutination enhancing factor. A purified HEF preparation mixed with ampholytes splits into four bands in analytical agarose isotachophoresis. One of the HEF bands can be separated from two others with beta-alanine as discrete spacer. The separated HEF populations differ in molecular size and in their ability to enhance agglutination.

  18. A new approach for calibration of laser ablation inductively coupled plasma mass spectrometry using thin layers of spiked agarose gels as references.

    PubMed

    Stärk, H-J; Wennrich, Rainer

    2011-02-01

    Calibration of analytical methods using laser ablation for sample introduction is often problematic. The availability of matrix-adapted standard materials is a crucial factor in the analysis of biological samples in particular. In this work a method for preparation of thin-film references for LA-ICP-MS is presented which is inexpensive, relatively simple and generally practicable. Aqueous solutions of agarose spiked with defined amounts of the analytes were cast on a carrier and then dried. When the thin-film references were characterized the average thickness of the films was 0.03 mm in the centre of the film and the relative standard deviation was 8%. Nebulization ICP-MS analysis after acid digestion of the agarose film was used to investigate the effectiveness of the spiking procedure. Recovery of the spiked elements was frequently in the range 90-110% (for rare earth elements 97-102%). Laser ablation ICP-MS analysis was used to investigate the distribution of the spiked elements in the film. When the laser was scanned across the gel the measured intensities were not constant, but had a peak-shaped profile with a flat top. Use of this flat-top region for analytical purposes, after its characterization by laser ablation ICP-MS, is proposed. Analysis of cell cultures was carried out by direct laser ablation-ICP-MS with the calibration method described. The results were in accordance with values previously achieved by nebulization ICP-MS.

  19. An enzyme-entrapped agarose gel for visualization of ischemia-induced L-glutamate fluxes in hippocampal slices in a flow system.

    PubMed

    Tanaka, Kazuhisa; Shoji, Atushi; Sugawara, Masao

    2015-01-01

    An agarose gel slip containing L-glutamate oxidase (GluOx), horseradish peroxidase (HRP) and a dye DA-64 is proposed as a tool for visualizing ischemia-induced L-glutamate release in hippocampal slices in a flow system. The agarose slip with a detection limit of 6.0 ± 0.8 μmol L(-1) for L-glutamate enabled us to visualize L-glutamate fluxes in a flow system. The leak of a dye from the agarose gel was negligible and a diffusion blur due to spreading of Bindshedler's Green (BG) within the gel was suppressed. Monitoring the time-dependent change of ischemia-induced L-glutamate fluxes at neuronal regions CA1, DG and CA3 of hippocampal slices is demonstrated.

  20. A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.

    PubMed

    Cao, Hui-Ling; Sun, Li-Hua; Li, Jian; Tang, Lin; Lu, Hui-Meng; Guo, Yun-Zhu; He, Jin; Liu, Yong-Ming; Xie, Xu-Zhuo; Shen, He-Fang; Zhang, Chen-Yan; Guo, Wei-Hong; Huang, Lin-Jun; Shang, Peng; He, Jian-Hua; Yin, Da-Chuan

    2013-10-01

    High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and the Rmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals.

  1. Incorporation of fluorescent enzyme substrates in agarose gel for in situ zymography.

    PubMed

    Yi, C F; Gosiewska, A; Burtis, D; Geesin, J

    2001-04-01

    The currently available methods for the detection of proteases in tissue sections are characterized by limited substrate specificity and low sensitivity and are also cumbersome. We have developed a novel in situ zymography method that uses a synthetic substrate conjugated to a fluorescent tag for detection of proteases in tissue sections. In the presence of active enzyme, the fluorescent tag is cleaved off from the substrate peptide chain resulting in an approximately 100-fold increase in the fluorescent signal. In order to minimize the diffusion of the fluorescent tag, the substrate is incorporated into 1% agarose prior to overlaying onto the tissue section. This method retains the morphological details of the tissue section, is highly sensitive and specific for the designated peptide sequence, and provides information regarding the functional status of the enzyme. Thus, this method could be used for detection and monitoring of enzymatic activity in tissue sections for a variety of applications.

  2. DNA electrophoresis in agarose gels: Effects of electric field and gel concentration on the exponential dependence of reciprocal mobility on DNA length

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin; van Winkle, David; Randolph, Rill

    2002-03-01

    Electrophoresis was performed on double stranded DNA fragments ranging in length from 200 bp to 48502 bp at agarose gel concentrations T = 0.5% - 1.5% and electric fields E = 0.71 V/cm to 5 V/cm. A wide range of electric fields and gel concentrations were used to find what range of conditions work with the new interpolation equation, 1/μ(L) = 1/μl - (1/μl - 1/μ_s)e^-L/γ. The equation fit extremely well (\\chi^2 >= 0.999) to data with E = 2.5 V/cm to 5 V/cm and for lower fields (E < 2.5 V/cm) at low gel concentrations (T = 0.5% and 0.7%). This exponential relation seemed to hold when there is a smooth transition from the Ogston sieving regime to the reptation regime when looking at the “reptation plots” (plotting 3μL/μo vs. L) (Rousseau, J., Drouin, G., and Slater, G. W., Phys Rev Lett. 1997, 79, 1945-1948). For separations of single-stranded DNA in polyacrylamide, similar reptation plots have a region with a negative slope between the Ogston sieving regime and the reptation regime which has been interpreted as the signature of entropic trapping. When separating double-stranded DNA in agarose it was observed that fits deviate from the data when three different slopes are observed in the reptation plots. Failure of the simple exponential relationship between reciprocal mobility and DNA length appears to be the consequence of entropic trapping.

  3. DNA electrophoresis in agarose gels: effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length.

    PubMed

    Rill, Randolph L; Beheshti, Afshin; Van Winkle, David H

    2002-08-01

    Electrophoretic mobilities of DNA molecules ranging in length from 200 to 48 502 base pairs (bp) were measured in agarose gels with concentrations T = 0.5% to 1.3% at electric fields from E = 0.71 to 5.0 V/cm. This broad data set determines a range of conditions over which the new interpolation equation nu(L) = (beta+alpha(1+exp(-L/gamma))(-1) can be used to relate mobility to length with high accuracy. Mobility data were fit with chi(2) > 0.999 for all gel concentrations and fields ranging from 2.5 to 5 V/cm, and for lower fields at low gel concentrations. Analyses using so-called reptation plots (Rousseau, J., Drouin, G., Slater, G. W., Phys. Rev. Lett. 1997, 79, 1945-1948) indicate that this simple exponential relation is obeyed well when there is a smooth transition from the Ogston sieving regime to the reptation regime with increasing DNA length. Deviations from this equation occur when DNA migration is hindered, apparently by entropic-trapping, which is favored at low fields and high gel concentrations in the ranges examined.

  4. The migration behaviour of DNA replicative intermediates containing an internal bubble analyzed by two-dimensional agarose gel electrophoresis.

    PubMed Central

    Schvartzman, J B; Martínez-Robles, M L; Hernández, P

    1993-01-01

    Initiation of DNA replication in higher eukaryotes is still a matter of controversy. Some evidence suggests it occurs at specific sites. Data obtained using two-dimensional (2D) agarose gel electrophoresis, however, led to the notion that it may occur at random in broad zones. This hypothesis is primarily based on the observation that several contiguous DNA fragments generate a mixture of the so-called 'bubble' and 'simple Y' patterns in Neutral/neutral 2D gels. The interpretation that this mixture of hybridisation patterns is indicative for random initiation of DNA synthesis relies on the assumption that replicative intermediates (RIs) containing an internal bubble where initiation occurred at different relative positions, generate comigrating signals. The latter, however, is still to be proven. We investigated this problem by analysing together, in the same 2D gel, populations of pBR322 RIs that were digested with different restriction endonucleases that cut the monomer only once at different locations. DNA synthesis begins at a specific site in pBR322 and progresses in a uni-directional manner. Thus, the main difference between these sets of RIs was the relative position of the origin. The results obtained clearly showed that populations of RIs containing an internal bubble where initiation occurred at different relative positions do not generate signals that co-migrate all-the-way in 2D gels. Despite this observation, however, our results support the notion that random initiation is indeed responsible for the peculiar 'bubble' signal observed in the case of several metazoan eukaryotes. Images PMID:8265365

  5. Topological complexity of different populations of pBR322 as visualized by two-dimensional agarose gel electrophoresis.

    PubMed Central

    Martín-Parras, L; Lucas, I; Martínez-Robles, M L; Hernández, P; Krimer, D B; Hyrien, O; Schvartzman, J B

    1998-01-01

    Neutral/neutral two-dimensional (2D) agarose gelelectrophoresis was used to investigate populations of the different topological conformations that pBR322 can adopt in vivo in bacterial cells as well as in Xenopus egg extracts. To help in interpretation and identification of all the different signals, undigested as well as DNA samples pretreated with DNase I, topoisomerase I and topoisomerase II were analyzed. The second dimension of the 2D gel system was run with or without ethidium bromide to account for any possible changes in the migration behavior of DNA molecules caused by intercalation of this planar agent. Finally, DNA samples were isolated from a recA-strain of Escherichia coli , as well as after direct labeling of the replication intermediates in extracts of Xenopus laevis eggs. Altogether, the results obtained demonstrated that 2D gels can be readily used to identify most of the complex topological populations that circular molecules can adopt in vivo in both bacteria and eukaryotic cells. PMID:9649629

  6. Beverage-Agarose Gel Electrophoresis: An Inquiry-Based Laboratory Exercise with Virtual Adaptation

    ERIC Educational Resources Information Center

    Cunningham, Steven C.; McNear, Brad; Pearlman, Rebecca S.; Kern, Scott E.

    2006-01-01

    A wide range of literature and experience has shown that teaching methods that promote active learning, such as inquiry-based approaches, are more effective than those that rely on passive learning. Gel electrophoresis, one of the most common laboratory techniques in molecular biology, has a wide range of applications in the life sciences. As…

  7. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    PubMed

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track.

  8. Electroelution of nucleic acids from polyacrylamide gels: a custom-made, agarose-based electroeluter.

    PubMed

    Fadouloglou, Vasiliki E

    2013-06-01

    Polyacrylamide electrophoresis is routinely used for small-scale preparative and analytical separations. The incomparably high-resolution separations achieved by this technique, however, have not been widely exploited to the large-scale preparative isolation of biological molecules from contaminants, mainly because of difficulties in the recovery of the desired molecule from the gel matrix. Electroelution is an effective procedure applied for this purpose. However, commercially available, high-cost electroeluters are required for achieving high recovery yields. Here, we describe a custom-made electroeluter that combines low-cost, high-recovery yields, short times of electroelution, and convenience in the manipulation of sensitive samples.

  9. Lambda light chain myeloma with co-migrating paraprotein at beta region on agarose gel electrophoresis: a case report.

    PubMed

    Siti Sarah, M; Nor Aini, U; Nurismah, M I; Hafiza, A; Khalidah, M; Mokhtar, A B; Das, S

    2014-01-01

    Paraproteinemia is one of the diagnostic features of multiple myeloma. A commonly used method is the detection of paraprotein by agarose gel electrophoresis (AGE) followed by by immunofixation electrophoresis (IFE) to confirm monoclonality. Due to their smaller size, immunoglobulin A (IgA) and light chain only paraproteins may appear at the beta or even alpha 2 protein fractions. Here, we discuss a case report of a 47-year-old man who presented with pathological fracture of third thoracic (T3) vertebra. Serum protein electrophoresis (SPE) was initially reported as no paraprotein detected. However, a bone biopsy was reported to show plasma cell proliferation with light chain restriction. A repeat sample for protein electrophoresis together with IFE revealed lambda light chain paraprotein co-migrating at the beta region. The beta band plus paraprotein was quantitated as 4.3 g/L (7.0%), which was within normal limits of the beta protein fraction. Hence, it has to be remembered that if the SPE is negative, it does not necessarily mean that the paraprotein is absent in cases which are highly suspicious.

  10. Characterisation of rat and human tissue alkaline phosphatase isoforms by high-performance liquid chromatography and agarose gel electrophoresis.

    PubMed

    Dziedziejko, Violetta; Safranow, Krzysztof; Slowik-Zylka, Dorota; Machoy-Mokrzynska, Anna; Millo, Barbara; Machoy, Zygmunt; Chlubek, Dariusz

    2009-03-01

    Alkaline phosphatase (ALP) exists as several isoenzymes and many isoforms present in tissues and serum. The objective of this study was to separate tissue ALP forms in rats and humans and characterise their properties. The materials for the investigation were intestinal, bone, and liver tissue of rats and commercially available human preparations of tissue ALP. Two methods of separation were used: high-performance liquid chromatography (HPLC) and agarose gel electrophoresis. Using HPLC in the rat tissues, two ALP isoforms in the intestine, one in the bone, and three in the liver were identified. In humans three intestinal, two bone, and one liver isoform were resolved. Electrophoresis showed two ALP activity bands in rat intestine, one wide band in the bone, and three bands in the liver. ALP of human tissues was visualised as a single wide band, with a different mobility observed for each organ. In both species the presence of a form with properties characteristic of the bone isoform of the tissue-nonspecific isoenzyme was observed in the intestine. HPLC offers a higher resolution than electrophoresis with respect to tissue ALP fractions in rats and in humans, but electrophoresis visualises high-molecular-mass insoluble enzyme forms.

  11. Comparison of three methods of DNA extraction in endocervical specimens for Chlamydia trachomatis infection by spectrophotometry, agarose gel, and PCR.

    PubMed

    Jenab, Anahita; Roghanian, Rasoul; Golbang, Naser; Golbang, Pouran; Chamani-Tabriz, Leili

    2010-06-01

    Chlamydia trachomatis is the major cause of sexually transmitted disease in the world. The aim of this study was to determine the best method of DNA extraction for detecting C. trachomatis by polymerase chain reaction (PCR) in sexually active women (n = 80) attending Shahid Beheshti Hospital in Isfahan, Iran. Endocervical swabs were collected from 80 women, 22 of whom were asymptomatic and 58 symptomatic. Three different DNA extraction methods were used in this study (phenol-chlorophorm, proteinase K, and boiling). DNA yield was evaluated by spectrophotometry, agarose gel, and PCR. The internal control was assayed by beta-globin primers (PCO4, GH20). The DNA cryptic plasmid was selected as the target for C. trachomatis and samples were examined by PCR using specific KL1 and KL2 primers. It was shown that DNA extraction by boiling was the most sensitive with the highest yield of DNA. Of the 80 samples, 17 (21.25%) showed positivity for C. trachomatis by PCR. The highest rate of C. trachomatis infection was found in the group aged between 35 and 45 years old and those who used withdrawal or an intrauterine device as methods of contraception. It was demonstrated that DNA extraction by boiling was the least expensive and a very rapid method that gave the highest DNA yield. The infection rate in the sexually active women, including symptomatic and asymptomatic, was 21.25%, with a presumably high prevalence compared with other studies done in this field.

  12. Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels.

    PubMed

    Nims, Robert J; Cigan, Alexander D; Albro, Michael B; Hung, Clark T; Ateshian, Gerard A

    2014-06-27

    Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]-[agarose gel] system, total synthesis rate (matrix accumulation rate+matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3's influences on pyridinoline content and mechanical properties were also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al. (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and the highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to the previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs.

  13. A robust new strategy for high-molecular-weight proteome research: a 2-hydroxyethyl agarose/polyacrylamide gel enhanced separation and ZnO-PMMA nanobeads assisted identification.

    PubMed

    Shen, Wenwen; Shen, Chengpin; Xiong, Huanming; Lu, Haojie; Yang, Pengyuan

    2010-09-15

    A new mass spectrometry based analysis strategy has been established here for high-molecular-weight (HMW) proteome research. First, a 2-hydroxyethyl agarose/polyacrylamide (HEAG/PAM) electrophoresis gel was designed for the first time to realize an easy-handling separation method with high spatial resolution for HMW proteins, good reproducibility and mass spectrometry-compatible silver staining. Second, ZnO-polymethyl methacrylate (ZnO-PMMA) nanobeads were applied here for enriching and desalting the peptides from the HMW proteins. Third, the peptides were analyzed by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) with the presence of the ZnO-PMMA nanobeads, and their MS signals were enhanced markedly. The success rate of identification for HMW proteins was significantly increased due to high enriching efficiency and salt tolerance capability as well as signal enhancing capability of the ZnO-PMMA nanobeads. We believe that this analysis strategy will inspire and accelerate the HMW proteome studies.

  14. Biomimetic materials processing: Implementation of molecular imprinting and study of biomineralization through the development of an agarose gel assay

    NASA Astrophysics Data System (ADS)

    Boggavarapu, Sajiv

    agarose gel matrix for studying inhibition and growth as influenced by various organic molecule functionalities. The gel mineralization assay is a novel approach in which quantitative and qualitative data could be generated in a high throughput fashion to determine organic molecule mediation of calcium based crystal growth. Such methods provide an approach for eventually providing control in development of synthetic biocomposites with customized materials properties.

  15. Native agarose gel electrophoresis and electroelution: A fast and cost-effective method to separate the small and large hepatitis B capsids.

    PubMed

    Yoon, Kam Yee; Tan, Wen Siang; Tey, Beng Ti; Lee, Khai Wooi; Ho, Kok Lian

    2013-01-01

    Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self-assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost-effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE-EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE-EE method are monodisperse with polydispersity values of ∼15% and ∼13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE-EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ∼84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.

  16. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels.

    PubMed

    Chandel, Arvind K Singh; Kumar, Chinta Uday; Jewrajka, Suresh K

    2016-02-10

    We synthesized agarose-polycaprolactone (Agr-PCL) bicomponent and Agr-polyethylene glycol-PCL (Agr-PEG-PCL) tricomponent amphiphilic co-network (APCN) gels by the sequential nucleophilic substitution reaction between amine-functionalized Agr and activated halide terminated PCL or PCL-b-PEG-b-PCL copolymer for the sustained and localized delivery of hydrophilic and hydrophobic drugs. The biodegradability of the APCNs was confirmed using lipase and by hydrolytic degradation. These APCN gels displayed good cytocompatibility and blood compatibility. Importantly, these APCN gels exhibited remarkably high drug loading capacity coupled with sustained and triggered release of both hydrophilic and hydrophobic drugs. PEG in the APCNs lowered the degree of phase separation and enhanced the mechanical property of the APCN gels. The drug loading capacity and the release kinetics were also strongly influenced by the presence of PEG, the nature of release medium, and the nature of the drug. Particularly, PEG in the APCN gels significantly enhanced the 5-fluorouracil loading capacity and lowered its release rate and burst release. Release kinetics of highly water-soluble gemcitabine hydrochloride and hydrophobic prednisolone acetate depended on the extent of water swelling of the APCN gels. Cytocompatibility/blood compatibility and pH and enzyme-triggered degradation together with sustained release of drugs show great promise for the use of these APCN gels in localized drug delivery and tissue engineering applications.

  17. Cat and dog primordial follicles enclosed in ovarian cortex sustain viability after in vitro culture on agarose gel in a protein-free medium.

    PubMed

    Fujihara, M; Comizzoli, P; Wildt, D E; Songsasen, N

    2012-12-01

    Our objective was to examine the influences of differing media, protein supplementation and the microenvironment on cat vs dog primordial follicle viability in vitro. Ovarian cortical slices were cultured for 3, 9 or 15 days in α-minimum essential medium (α-MEM) or MEM supplemented with 10% fetal bovine serum (FBS), 10% knock-out serum replacement (KSR) or 0.1% polyvinyl alcohol (protein free). In a separate study, cat and dog ovarian tissues were cultured in protein-free α-MEM and MEM, respectively, in cell culture inserts, on 1.5% agarose gel or in 24-well cell culture plates (control). Follicle viability was assessed in both studies using calcein AM/ethidium homodimer and histological evaluation with haematoxylin/eosin staining. No cat follicle sustained viability beyond 9 days of in vitro culture in α-MEM compared to 37.5% of those incubated for 15 days in MEM in protein-free condition (p < 0.05). In contrast, α-MEM was superior (p < 0.05) to MEM in maintaining dog follicle viability (32.7% vs 8.1%) in protein-free condition at 15 days. Serum was detrimental (p < 0.05) to follicle survival in both species. Knock-out serum replacement supplementation and a protein-free condition supported cat follicle viability, whereas the latter was superior (p < 0.05) to the former for sustaining dog follicle survival. Likewise, dog follicle viability was enhanced (p < 0.05) by the agarose gel compared to the cell culture insert and control groups after 3 and 9 days of culture. For the cat, the agarose gel better (p < 0.05) supported follicle viability compared to the control, but was equivalent to the cell culture insert. Therefore, sustaining primordial follicle survival from intracortical ovarian slices requires a different in vitro microenvironment for the cat vs the dog. A key factor to enhancing survival of these early stage follicles in culture appears to be the use of agarose gel, which enhances follicle viability, perhaps by promoting gas exchange.

  18. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  19. Application of urea-agarose gel electrophoresis to select non-redundant 16S rRNAs for taxonomic studies: palladium(II) removal bacteria.

    PubMed

    Assunção, Ana; Costa, Maria Clara; Carlier, Jorge Dias

    2016-03-01

    The 16S ribosomal RNA (rRNA) gene has been the most commonly used sequence to characterize bacterial communities. The classical approach to obtain gene sequences to study bacterial diversity implies cloning amplicons, selecting clones, and Sanger sequencing cloned fragments. A more recent approach is direct sequencing of millions of genes using massive parallel technologies, allowing a large-scale biodiversity analysis of many samples simultaneously. However, currently, this technique is still expensive when applied to few samples; therefore, the classical approach is still used. Recently, we found a community able to remove 50 mg/L Pd(II). In this work, aiming to identify the bacteria potentially involved in Pd(II) removal, the separation of urea/heat-denatured DNA fragments by urea-agarose gel electrophoresis was applied for the first time to select 16S rRNA-cloned amplicons for taxonomic studies. The major raise in the percentage of bacteria belonging to genus Clostridium sensu stricto from undetected to 21 and 41 %, respectively, for cultures without, with 5 and 50 mg/L Pd(II) accompanying Pd(II) removal point to this taxa as a potential key agent for the bio-recovery of this metal. Despite sulfate-reducing bacteria were not detected, the hypothesis of Pd(II) removal by activity of these bacteria cannot be ruled out because a slight decrease of sulfate concentration of the medium was verified and the formation of PbS precipitates seems to occur. This work also contributes with knowledge about suitable partial 16S rRNA gene regions for taxonomic studies and shows that unidirectional sequencing is enough when Sanger sequencing cloned 16S rRNA genes for taxonomic studies to genus level.

  20. High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and the effect of agarose and temperature

    SciTech Connect

    Mathew, M.K.; Smith, C.L.; Cantor, C.R. )

    1988-12-27

    Pulsed-field gel electrophoresis (PGF) subjects DNA alternately to two electrical fields to resolve DNA ranging from 10,000 base pairs (10 kb) to 10,000 kb in size. The separations are quite sensitive to a variety of experimental variables. This makes it critical to have a wide range of reliable size standards. A technique is described for preparing mixtures of bacteriophage DNA oligomers that span a size range from monomer to more than 30-mer. The relationship between size and mobility of oligomers of different bacteriophage DNA monomers is generally self-consistent. Thus, these samples can serve as primary length standards for DNAs ranging from 10 kb to more than 1,500 kb. They have been used to estimate the size of the chromosomal DNAs from various Saccharomyces cerevisiae strains and to test the effect of gel concentration and temperature on PFG. DNA resolution during PFG is slightly improved in agarose gels with small pore sizes, in contrast to continuous electrophoresis where the opposite is observed. PFG mobility is surprisingly sensitive to changes in the running temperature.

  1. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  2. On-bead expression of recombinant proteins in an agarose gel matrix coated on a glass slide.

    PubMed

    Lee, Kyung-Ho; Lee, Ka-Young; Byun, Ju-Young; Kim, Byung-Gee; Kim, Dong-Myung

    2012-05-07

    A system for expression and in situ display of recombinant proteins on a microbead surface is described. Biotinylated PCR products were immobilized on microbead surfaces, which were then embedded in a gel matrix and supplied with translation machinery and substrates. Upon the incubation of the gel matrix, target proteins encoded on the bead-immobilized DNA were expressed and captured on the same bead, thus allowing bead-mediated linkage of DNA and encoded proteins. The new method combines the simplicity and convenience of solid-phase separation of genetic information with the benefits of cell-free protein synthesis, such as instant translation of genetic information, unrestricted substrate accessibility and flexible assay configuration design.

  3. Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound.

    PubMed

    Tomita, Y; Matsuura, T; Kodama, T

    2015-01-01

    Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s

  4. Effect of natural and semisynthetic pseudoguianolides on the stability of NF-κB:DNA complex studied by agarose gel electrophoresis.

    PubMed

    Villagomez, Rodrigo; Hatti-Kaul, Rajni; Sterner, Olov; Almanza, Giovanna; Linares-Pastén, Javier A

    2015-01-01

    The nuclear factor κB (NF-κB) is a promising target for drug discovery. NF-κB is a heterodimeric complex of RelA and p50 subunits that interact with the DNA, regulating the expression of several genes; its dysregulation can trigger diverse diseases including inflammation, immunodeficiency, and cancer. There is some experimental evidence, based on whole cells studies, that natural sesquiterpene lactones (Sls) can inhibit the interaction of NF-κB with DNA, by alkylating the RelA subunit via a Michael addition. In the present work, 28 natural and semisynthetic pseudoguianolides were screened as potential inhibitors of NF-κB in a biochemical assay that was designed using pure NF-κB heterodimer, pseudoguianolides and a ~1000 bp palindromic DNA fragment harboring two NF-κB recognition sequences. By comparing the relative amount of free DNA fragment to the NF-κB - DNA complex, in a routine agarose gel electrophoresis, the destabilizing effect of a compound on the complex is estimated. The results of the assay and the following structure-activity relationship study, allowed the identification of several relevant structural features in the pseudoguaianolide skeleton, which are necessary to enhance the dissociating capacity of NF-κB-DNA complex. The most active compounds are substituted at C-3 (α-carbonyl), in addition to having the α-methylene-γ-lactone moiety which is essential for the alkylation of RelA.

  5. Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters through magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Collura, Giorgio; Gallo, Salvatore; Nici, Stefania; Tranchina, Luigi; Abbate, Boris Federico; Marineo, Sandra; Caracappa, Santo; d'Errico, Francesco

    2017-04-01

    This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.

  6. Pulse Field Gel Electrophoresis

    PubMed Central

    Sharma-Kuinkel, Batu K.; Rude, Thomas H.; Fowler, Vance G.

    2015-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  7. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  8. Estimating the DNA strand breakage using a fuzzy inference system and agarose gel electrophoresis, a case study with toothed carp Aphanius sophiae exposed to cypermethrin.

    PubMed

    Poorbagher, Hadi; Moghaddam, Maryam Nasrollahpour; Eagderi, Soheil; Farahmand, Hamid

    2016-07-01

    The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies.

  9. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose

    SciTech Connect

    Armstrong, G.D.; Peppler, M.S.

    1987-05-01

    We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin or other contaminants in the labeled PT preparations. All five of the subunits of the toxin appeared to be labeled by the procedure. The labeling method will facilitate further investigations into the nature of the interaction and activity of PT in host tissues.

  10. Analysis of gel heterogeneities on a local level

    NASA Astrophysics Data System (ADS)

    Boyne, Philip; Lechenault, Frederic; Daniels, Karen

    2008-10-01

    We study the heterogeneity of gels near the sol-gel transition through measurements of the spatial variations in gel strength. The correlated motion of fluorescent polystyrene microspheres suspended in gels is measured via two-point microrheology. Analysis of this correlated motion provides a local measure of gel heterogeneity. Additionally, we divide the images into micron-wide squares and determine how rheological properties spatially vary as a function of gel concentration. Our results imply that weaker gels exhibit more heterogeneity than stronger gels.

  11. Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness.

    PubMed

    Su, Yixue; Chu, Bin; Gao, Yuan; Wu, Chaoxi; Zhang, Lingmin; Chen, Peng; Wang, Xiaoying; Tang, Shunqing

    2013-02-15

    In order to improve bioactivity of agarose, we modified agarose by carboxylation and grafting dopamine. Under alkaline condition, carboxylated agarose was prepared using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation system by oxidizing C(6) hydroxyl on D-galactose ring into carboxyl group, and the maximum value of the degree of carboxylation reached 30%. With the increase of the amount of oxidant, the molecular weight of the carboxylated agarose decreased to 4 kDa by gel permeation chromatography (GPC) measure. Carboxylated agarose reacted with dopamine through EDC condensation reaction to obtain agarose grafting dopamine (Ag-g-DA), and the grafting rate of dopamine was determined to be 9.3% by UV spectroscopy at 280 nm. The structures of these modified agaroses were determined by FT-IR and (13)C NMR. Both carboxylated agarose and Ag-g-DA showed no cytotoxicity and promoted cell-adhesiveness.

  12. Microscale mechanisms of agarose-induced disruption of collagen remodeling.

    PubMed

    Ulrich, Theresa A; Lee, Tae Geol; Shon, Hyun Kyong; Moon, Dae Won; Kumar, Sanjay

    2011-08-01

    Cells are strongly influenced by the local structure and mechanics of the extracellular matrix (ECM). We recently showed that adding agarose to soft collagen ECMs can mechanically stiffen these hydrogels by two orders of magnitude while limiting 3D cell motility, which we speculated might derive from agarose-mediated inhibition of collagen fiber deformation and remodeling. Here, we directly address this hypothesis by investigating the effects of agarose on cell-collagen interactions at the microscale. Addition of agarose progressively restricts cell spreading, reduces stress fiber and focal adhesion assembly, and inhibits macroscopic gel compaction. While time-of-flight secondary ion mass spectrometry and scanning electron microscopy fail to reveal agarose-induced alterations in collagen ligand presentation, the latter modality shows that agarose strongly impairs cell-directed assembly of large collagen bundles. Agarose-mediated inhibition of cell spreading and cytoarchitecture can be rescued by β-agarase digestion or by covalently crosslinking the matrix with glutaraldehyde. Based on these results, we argue that cell spreading and motility on collagen requires local matrix stiffening, which can be achieved via cell-mediated fiber remodeling or by chemically crosslinking the fibers. These findings provide new mechanistic insights into the regulatory function of agarose and bear general implications for cell adhesion and motility in fibrous ECMs.

  13. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation.

    PubMed

    Zamora-Mora, Vanessa; Velasco, Diego; Hernández, Rebeca; Mijangos, Carmen; Kumacheva, Eugenia

    2014-10-13

    The preparation of composite biopolymer hydrogels offers the capability to produce biocompatible and biodegradable materials with cooperative properties. In this paper, two natural polymers, namely, chitosan and agarose were employed to prepare composite hydrogels with dual pH and temperature properties. The elastic modulus of the composite hydrogels increased with agarose concentration reaching the value of 1 kPa for the chitosan/agarose gel with a 2% (w/v) concentration of agarose. In addition, composite gels exhibited a higher stability in acidic aqueous solutions, in comparison with agarose gels. The drug release properties of the composite hydrogels were tested by loading a model anticancer drug, 5-Fluorouracil, in the hydrogel interior. At pH=7.4, the cumulative release of 5-FU was ∼ 50% within 96 h and decreased to ∼ 33% at pH = 5.2, which was attributed to the different solubility of 5-FU as a function of pH. The preparation of composite microgels with controllable dimensions in the range from 42 to 18 μm and with narrow size distribution (polidispersity not exceeding 1.5%) was achieved by the microfluidic emulsification of an aqueous mixture of chitosan and agarose and subsequent gelation of the precursor droplets by cooling.

  14. Chemotaxis: Under Agarose Assay.

    PubMed

    Brazill, Derrick

    2016-01-01

    The unicellular eukaryote Dictyostelium discoideum represents a superb model for examining chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folate. Under starved conditions, they lose their sensitivity to pterins, and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including its conservation of mammalian signaling pathways, its ease of growth, and its genetic tractability. In this chapter, we describe the use of the under agarose chemotaxis assay to identify proteins involved in controlling motility and directional sensing in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect the conserved pathways involved in eukaryotic chemotaxis.

  15. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.

    PubMed

    Lira, Rafael B; Dimova, Rumiana; Riske, Karin A

    2014-10-07

    Giant unilamellar vesicles (GUVs) are presumably the current most popular biomimetic membrane model. Preparation of GUVs in physiological conditions using the classical electroformation method is challenging. To circumvent these difficulties, a new method was recently reported, by which GUVs spontaneously swell from hybrid films of agarose and lipids. However, agarose is left encapsulated in the vesicles in different amounts. In this work, we thoroughly characterize the mechanical properties of these agarose-GUVs in response to electric pulses, which induce vesicle deformation and can lead to membrane poration. We show that the relaxation dynamics of deformed vesicles, both in the presence and absence of poration, is significantly slowed down for agarose-GUVs when compared to agarose-free GUVs. In the presence of poration, agarose polymers prevent complete pore closure and lead to high membrane permeability. A fraction of the vesicles were found to encapsulate agarose in the form of a gel-like meshwork. These vesicles rupture and open up after electroporation and the meshwork is expelled through a macropore. When the agarose-GUVs are heated above the melting temperature of agarose for 2 h before use, vesicle response is (partially) recovered due to substantial release of encapsulated agarose during temperature treatment. Our findings reveal potential artifactual behavior of agarose-GUVs in processes involving morphological changes in the membrane as well as poration.

  16. Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis.

    PubMed

    Lee, Der-Yen; Chang, Geen-Dong

    2015-01-01

    Diffusion blotting method can couple immunoblotting analysis with another biochemical technique in a single polyacrylamide gel, however, with lower transfer efficiency as compared to the conventional electroblotting method. Thus, with diffusion blotting, protein blots can be obtained from an SDS polyacrylamide gel for zymography assay, from a native polyacrylamide gel for electrophoretic mobility shift assay (EMSA) or from a 2-D polyacrylamide gel for large-scale screening and identification of a protein marker. Thereafter, a particular signal in zymography, electrophoretic mobility shift assay, and 2-dimensional gel can be confirmed or identified by simultaneous immunoblotting analysis with a corresponding antiserum. These advantages make diffusion blotting desirable when partial loss of transfer efficiency can be tolerated or be compensated by a more sensitive immunodetection reaction using enhanced chemiluminescence detection.

  17. Analysis of DAPI and SYBR Green I as Alternatives to Ethidium Bromide for Nucleic Acid Staining in Agarose Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Bourzac, Kevin M.; Lavine, Lori J.; Rice, Margaret S.

    2003-11-01

    DNA electrophoresis and staining is a common procedure in biochemistry laboratories, but the use of ethidium bromide (EB) for DNA detection is worrisome as EB is a mutagen and probable carcinogen. Five alternative stains were evaluated for DNA detection, safety, cost, and ease of use: BlueView, methylene blue, Carolina Blu, DAPI (4',6-diamidino-2-phenylindole dihydrochloride:hydrate), and SYBR Green I. BlueView, Carolina Blu, and methylene blue are not sensitive enough to detect the microgram amounts of DNA used in many procedures. However, DAPI and SYBR Green I are good staining alternatives to ethidium bromide in that they have similar sensitivity and are both easy to use. SYBR Green I is more expensive than EB or DAPI; however, the limited safety data suggest that SYBR Green I is the safest stain.

  18. Pulsed-field gel electrophoresis of bacterial chromosomes.

    PubMed

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  19. Removal of digoxin from plasma using monoclonal anti-digoxin antibodies immobilized on agarose

    SciTech Connect

    Brizgys, M.; Pincus, S.; Rollins, D.E.

    1986-05-01

    Monoclonal anti-digoxin antibodies (dig-Ab) have been covalently coupled to agarose supports to evaluate them as part of an extracorporeal device for removal of digoxin from the circulation. The agarose supports studied were Sepharose CL-6B, agarose-polyacrolein microsphere (APAM) beads, Bio Gel A-5m and Affi-gel 15 (Bio-Rad). Antibody concentrations between 2 and 4 mg/g gel were coupled to the agarose beads which were then placed in glass columns. Bovine ..cap alpha..-globulin coupled to the agarose supports was used as a control. Binding capacity and affinity of the immobilized antibody were determined by perfusing the dig-Ab agarose beads with a plasma solution containing /sup 3/H-digoxin and various concentrations of digoxin. The binding capacity of the immobilized dig-Ab was 30% of the theoretical value for Sepharose, Bio Gel and Affigel, and 10% of the theoretical value for dig-Ab coupled to APAM beads. The affinity of the immobilized dig-Ab was 10-100 fold less than non-immobilized Ab (3.4 x 10/sup 8/M/sup -1/. The APAM beads showed a significant decrease in binding of digoxin as the flow rate was increased from 0.5 to 5.0 ml/min. These data demonstrate that dig-Ab coupled to agarose and incorporated into a column can be used to remove digoxin from plasma in vitro.

  20. Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose-chitosan.

    PubMed

    Gómez-Mascaraque, Laura G; Méndez, José Alberto; Fernández-Gutiérrez, Mar; Vázquez, Blanca; San Román, Julio

    2014-02-01

    Hydrogel networks that combine suitable physical and biomechanical characteristics for tissue engineering scaffolds are in demand. The aim of this work was the development of hydrogel networks based on agarose and chitosan using oxidized dextrins as low cytotoxicity crosslinking agents, paying special attention to the study of the influence of the polysaccharide composition and oxidation degree of the dextrins in the final characteristics of the network. The results show that the formation of an interpenetrating or a semi-interpenetrating polymer network was mainly dependent on a minimum agarose content and degree of oxidation of dextrin. Spectroscopic, thermal and swelling analysis revealed good compatibility with an absence of phase separation of polysaccharides at agarose:chitosan proportions of 50:50 and 25:75. The analysis of atomic force microscopy images showed the formation of a fibrillar microstructure whose distribution within the crosslinked chitosan depended mainly on the crosslinker. All materials exhibited the viscoelastic behaviour typical of gels, with a constant storage modulus independent of frequency for all compositions. The stiffness was strongly influenced by the degree of oxidation of the crosslinker. Cellular response to the hydrogels was studied with cells of different strains, and cell adhesion and proliferation was correlated with the homogeneity of the samples and their elastic properties. Some hydrogel formulations seemed to be candidates for tissue engineering applications such as wound healing or soft tissue regeneration.

  1. Large deformation analysis of gellan gels

    NASA Astrophysics Data System (ADS)

    Kawai, Shinnosuke; Nitta, Yoko; Nishinari, Katsuyoshi

    2007-08-01

    Gellan gel, a typical polysaccharide gel, is ruptured with different deformation behaviors from gelatin gel or rubber. It exhibits both strain hardening and softening; hardening is observed for moderate strain and softening occurs for larger strain. From the analyses of stress-strain curves of gellan gels, we propose forms of strain energy function. The fit with the proposed equation was excellent, while the existing models fail because they consider only one of hardening or softening effect. Furthermore, these equations are shown to be capable of extracting the hardening and softening effects separately from the observed stress-strain curves. By using these fitting equations, the concentration dependences of hardening and softening are investigated. It is shown that the degrees of hardening and softening both increase with increasing gellan concentration.

  2. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  3. Agarose coated spherical micro resonator for humidity measurements.

    PubMed

    Mallik, Arun Kumar; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Farrell, Gerald; Semenova, Yuliya

    2016-09-19

    A new type of fiber optic relative humidity (RH) sensor based on an agarose coated silica microsphere resonator is proposed and experimentally demonstrated. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a tapered fiber with ~3.3 µm waist diameter. A change in the relative humidity of the surrounding the resonator air induces changes in the refractive index (RI) and thickness of the Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, which can be related to the RH value after a suitable calibration. Studies of the repeatability, long-term stability, measurement accuracy and temperature dependence of the proposed sensor are carried out. The RH sensitivity of the proposed sensor depends on the concentration of the agarose gel which determines the initial thickness of the deposited coating layer. Studies of the micro- resonators with coating layers fabricated from gels with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an increase in the initial thickness of the coating material results in an increase in sensitivity but also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The proposed sensor offers the advantages of a very compact form factor, low hysteresis, good repeatability, and low cross sensitivity to temperature.

  4. Dosimetry of {sup 60}Co and {sup 192}Ir gamma-irradiated agarose gels by proton relaxation time measurement and NMR imaging, in a 0-100 Gy dose range

    SciTech Connect

    Chalansonnet, A.; Briguet, A.; Bonnat, J.L.

    1997-05-01

    Localized irradiation of the skin and subcutaneous tissues with large single doses of gamma rays can induce immediate effects characterized by erythema, desquamation, and necrosis. Correlations between the evolution of the lesions and dosimetry studies have to be established by biophysical methods. NMR studies of the effects of an irradiated Fricke solution might be a means of controlling the delivered irradiation doses. After exposition to ionizing radiations, ferrous ions are transformed into ferric ions. Both are paramagnetic ions, and proton spin-lattice relaxation is accelerated depending on the oxidation reaction. In this study, solution of ammonium ferrous sulfate in an acid environment was incorporated into a gelling substance made with agarose, so that T{sub 1} weighted image contrast could be used to detect ferric ion formation. Experiments with {sup 192}Ir and {sup 90}Co gamma rays with doses in the 0 to 100 Gy range were conducted with Fe{sup 2+} concentrations of 0.5, 1, 1.5, and 2 mM in a gelling substance containing 4% agarose. A relationship was established between the amount of Fe{sup 3+} created and the spin-lattice proton relaxation rate, which led to a straightforward dose-effect relation. The use of such high doses allowed us to reproduce realistic conditions of accidental overexposure. A linear relationship was obtained between the doses absorbed and the NMR parameters measured (T{sub 1} and relative image intensity). 17 refs., 3 figs., 1 tab.

  5. Electrophoretic gel image analysis software for the molecular biology laboratory.

    PubMed

    Redman, T; Jacobs, T

    1991-06-01

    We present GelReader 1.0, a microcomputer program designed to make precision, digital analysis of one-dimensional electrophoretic gels accessible to the molecular biology laboratory of modest means. Images of electrophoretic gels are digitized via a desktop flatbed scanner from instant photographs, autoradiograms or chromogenically stained blotting media. GelReader is then invoked to locate lanes and bands and generate a report of molecular weights of unknowns, based on specified sets of standards. Frequently used standards can be stored in the program. Lanes and bands can be added or removed, based upon users' subjective preferences. A unique lane histogram feature facilitates precise manual addition of bands missed by the software. Image enhancement features include palette manipulation, histogram equalization, shadowing and magnification. The user interface strikes a balance between program autonomy and user intervention, in recognition of the variability in electrophoretic gel quality and users' analytical needs.

  6. Elasto-hydrodynamic network analysis of colloidal gels

    NASA Astrophysics Data System (ADS)

    Swan, James; Varga, Zsigmond

    Colloidal gels formed at low particle volume fractions result from a competition between two rate processes: aggregation of colloids and compaction of pre-gel aggregates. Recent work has shown that the former process is highly sensitive to the nature of the hydrodynamic interactions between suspended colloids. This same sensitivity to hydrodynamic flows within the gel leads to pronounced differences in the spectrum of relaxation times and response to deformation of the gel. This talk explores those differences and their consequences through computational simulations and the framework of elasto-hydrodynamic network analysis. We demonstrate a significant impact of hydrodynamic interactions between gelled colloids on macroscopic gel dynamics and rheology as well as the effect of hydrodynamic screening in gelled materials.

  7. Rapid, simple method of preparing rotaviral double-stranded ribonucleic acid for analysis by polyacrylamide gel electrophoresis.

    PubMed Central

    Theil, K W; McCloskey, C M; Saif, L J; Redman, D R; Bohl, E H; Hancock, D D; Kohler, E M; Moorhead, P D

    1981-01-01

    A procedure for extracting rotaviral double-stranded ribonucleic acid (RNA) directly from fecal and intestinal specimens collected from calves and pigs is described. This procedure provides a rapid, simple, reproducible method of obtaining rotaviral double-stranded RNA preparations suitable for electrophoretic analysis in polyacrylamide-agarose composite gels. The rotaviral genome electrophoretic migration pattern produced by double-stranded RNA extracted directly from a specimen by this procedure was qualitatively identical to the electrophoretic migration pattern obtained with double-stranded RNA extracted from purified rotavirus derived from the same specimen. Direct extraction of specimens containing porcine rotavirus-like virus by this procedure gave preparations that had electrophoretic migration patterns similar, but not identical, to the characteristic electrophoretic migration pattern of the rotaviral genome. Sufficient rotaviral double-stranded RNA could be extracted from 6 ml of fecal or intestinal specimen by this procedure to permit 15 or more electrophoretic assays. Images PMID:6270190

  8. Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics.

    PubMed

    da Silva, Marcelo A; Arêas, Elizabeth P G

    2005-09-15

    In this work, the gelation kinetics and fractal character of lysozyme gel matrices developed in tetramethylurea (TMU)-water media were investigated. Gelation times were determined from the temporal crossover point between the storage, G', and loss, G'', moduli, as a function of the binary solvent composition and of protein concentration. The inverse dependence of the upper limit of the linear viscoelastic region (gamma0) on protein concentration indicate that the lysozyme gels belong to the "strong link" kind, a gel category where interparticle links are stronger than intraparticle ones. Lysozyme gel fractal dimensions (Df) were determined from the analysis of rheological data according to a scaling theory by Shih et al. [Phys. Rev. A 42 (1990) 4772-4779] and were found to be compatible with a diffusion-limited cluster-aggregation kinetics (DLCA) for lysozyme gels formed at the TMU mass fraction in the binary organic-aqueous solvent, wTMU=0.9, and with a reaction-limited cluster aggregation kinetics (RLCA) for wTMU in the 0.6< or =wTMU< or =0.8 range.

  9. Fabrication of Self-Healable and Patternable Polypyrrole/Agarose Hybrid Hydrogels for Smart Bioelectrodes.

    PubMed

    Park, Nokyoung; Chae, Seung Chul; Kim, Il Tae; Hur, Jaehyun

    2016-02-01

    We present a new class of electrically conductive, mechanically moldable, and thermally self-healable hybrid hydrogels. The hybrid gels consist of polypyrrole and agarose as the conductive component and self-healable matrix, respectively. By using the appropriate oxidizing agent under conditions of mild temperature, the polymerization of pyrrole occurred along the three-dimensional network of the agarose hydrogel matrix. In contrast to most commercially available hydrogels, the physical crosslinking of agarose gel allows for reversible gelation in the case of our hybrid gel, which could be manipulated by temperature variation, which controls the electrical on/off behavior of the hybrid gel electrode. Exploiting this property, we fabricated a hybrid conductive hydrogel electrode which also self-heals thermally. The novel composite material we report here will be useful for many technological and biological applications, especially in reactive biomimetic functions and devices, artificial muscles, smart membranes, smart full organic batteries, and artificial chemical synapses.

  10. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.

    PubMed

    Zignego, Donald L; Jutila, Aaron A; Gelbke, Martin K; Gannon, Daniel M; June, Ronald K

    2014-06-27

    Cartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25-200kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction. The first objective of this study was to analyze the spatial variability of applied mechanical deformations in physiologically stiff agarose on cellular and sub-cellular length scales. Fluorescent microspheres were embedded in physiologically stiff agarose hydrogels. Microsphere positions were measured via confocal microscopy and used to calculate displacement and strain fields as a function of spatial position. The second objective was to assess the feasibility of encapsulating primary human chondrocytes in physiologically stiff agarose. The third objective was to determine if primary human chondrocytes could deform in high-stiffness agarose gels. Primary human chondrocyte viability was assessed using live-dead imaging following 24 and 72h in tissue culture. Chondrocyte shape was measured before and after application of 10% compression. These data indicate that (1) displacement and strain precision are ~1% and 6.5% respectively, (2) high-stiffness agarose gels can maintain primary human chondrocyte viability of >95%, and (3) compression of chondrocytes in 4.5% agarose can induce shape changes indicative of cellular compression. Overall, these results demonstrate the feasibility of using high-concentration agarose for applying in vitro compression to chondrocytes as a model for understanding how chondrocytes respond to in vivo loading.

  11. A simple and effective SuperBuffer for DNA agarose electrophoresis.

    PubMed

    Zhang, Jun-He; Wang, Fang; Wang, Tian-Yun

    2011-11-01

    In the paper, we describe a unique effective electrophoresis buffer for DNA agarose electrophoresis, called SuperBuffer. Using this buffer, electrophoresis could be performed within 10 min at voltages as high as 25V/cm. In addition, DNA fragments of different lengths could be isolated clearly even at lower agarose gel concentrations and the DNA recovery efficiency was higher than that of the TAE/TBE running buffers. The SuperBuffer still retained its electrophoretic effect even after several uses.

  12. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction.

    PubMed

    Jutila, Aaron A; Zignego, Donald L; Schell, William J; June, Ronald K

    2015-05-01

    In articular cartilage, chondrocytes reside within a gel-like pericellular matrix (PCM). This matrix provides a mechanical link through which joint loads are transmitted to chondrocytes. The stiffness of the PCM decreases in the most common degenerative joint disease, osteoarthritis. To develop a system for modeling the stiffness of both the healthy and osteoarthritic PCM, we determined the concentration-stiffness relationships for agarose. We extended these results to encapsulate chondrocytes in agarose of physiological stiffness. Finally, we assessed the relevance of stiffness for chondrocyte mechanotransduction by examining the biological response to mechanical loading for cells encapsulated in low- and high-stiffness gels. We achieved agarose equilibrium stiffness values as large as 51.3 kPa. At 4.0% agarose, we found equilibrium moduli of 34.3 ± 1.65 kPa, and at 4.5% agarose, we found equilibrium moduli of 35.7 ± 0.95 kPa. Cyclical tests found complex moduli of ~100-300 kPa. Viability was >96% for all studies. We observed distinct metabolomic responses in >500 functional small molecules describing changes in cell physiology, between primary human chondrocytes encapsulated in 2.0 and 4.5% agarose indicating that the gel stiffness affects cellular mechanotransduction. These data demonstrate both the feasibility of modeling the chondrocyte pericellular matrix stiffness and the importance of the physiological pericellular stiffness for understanding chondrocyte mechanotransduction.

  13. A new preclinical 3-dimensional agarose colony formation assay.

    PubMed

    Kajiwara, Yoshinori; Panchabhai, Sonali; Levin, Victor A

    2008-08-01

    The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines. Colonies were grown in a two-tiered agarose that had 0.7% agarose on the bottom and 0.3% agarose on top. We then studied the effects of DFMO, carboplatin, and SAHA over a 3-log dose range and over multiple days of drug exposure. Using GelCount we approximated the area under the curve (AUC) of colony volumes as the sum of colony volumes (microm2xOD) in each plate to calculate IC50 values. Adenocarcinoma colonies were recognized by GelCount scanning at 3-4 days, while it took 6-7 days to detect glioma colonies. The growth rate of MiaPaCa and SW480 cells was rapid, with 100 colonies counted in 5-6 days; glioma cells grew more slowly, with 100 colonies counted in 9-10 days. Reliable log dose versus AUC curves were observed for all drugs studied. In conclusion, the GelCount method that we describe is more quantitative than traditional colony assays and allows precise study of drug effects with respect to both dose and time of exposure using fewer culture plates.

  14. Fabrication of superporous agarose beads for protein adsorption: effect of CaCO3 granules content.

    PubMed

    Du, Kai-Feng; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2010-09-10

    Agarose gels were fabricated by water-in-oil emulsification with the addition of CaCO(3) granules at 8-16 wt%. Thus agarose beads of different superporosities were produced after dissolving the solid porogen. The superporous agarose (SA) and homogeneous agarose gels were double cross-linked and modified with diethylaminoethyl chloride to produce anion exchangers. We have proposed to use a superporous replica (porous titania microspheres) to examine the superporous structure and pore size distribution of the soft gel. The replica was prepared with the agarose gel entrapping CaCO(3) granules by a sol-gel-templating method. It was found that the superpores created by CaCO(3) granules were uniformly distributed and ranged from 0.95 microm to 1.33 microm. The physical properties of the gels were significantly affected by the porogen content. Importantly, by increasing the solid porogen to 12 wt%, the bed permeability and effective porosity increased about 48% and 33%, respectively. Further increase in the porogen to 16 wt% led to a decrease of the mechanical strength. With increasing superpores in the beads, the dynamic adsorption capacity of the packed columns increased obviously at 305-916 cm/h. Besides, the column efficiency changed less with increasing flow velocity up to 1200 cm/h. It was concluded that the use of 12 wt% CaCO(3) granules in agarose solution was beneficial for the fabrication of the SA gel with good mechanical stability and promising performance for protein chromatography.

  15. A microfluidic device for on-chip agarose microbead generation with ultralow reagent consumption.

    PubMed

    Desbois, Linda; Padirac, Adrien; Kaneda, Shohei; Genot, Anthony J; Rondelez, Yannick; Hober, Didier; Collard, Dominique; Fujii, Teruo

    2012-01-01

    Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the "push-pull" method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications.

  16. Reovirus-specific polypeptides: analysis using discontinuous gel electrophoresis.

    PubMed Central

    Cross, R K; Fields, B N

    1976-01-01

    The electrophoretic analysis of reovirus-specific polypeptides in infected cells using a discontinuous gel system has allowed the resolution of additional viral-specific polypeptides, including one large-sized gamma3 and two (or possibly three) medium-sized (mu3, mu4, mu5(?)) species. The proteins designated mu0, sigma1, and sigma2 based on electrophoretic mobility in gel systems containing phosphate-urea correspond to mu4, sigma2, and sigma1, respectively, when analyzed in systems containing Tris-glycine. It is likely that protein modifications (phosphorylation and glycosylation) are responsible for at least some of these differences. Images PMID:950684

  17. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    PubMed

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering.

  18. Synthesis of agarose-graft-poly[3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] zwitterionic graft copolymers via ATRP and their thermally-induced aggregation behavior in aqueous media.

    PubMed

    Tian, Miao; Wang, Jinmei; Zhang, Ershuai; Li, Junjie; Duan, Cuimi; Yao, Fanglian

    2013-06-25

    A novel polysaccharide-based zwitterionic copolymer, agarose-graft-poly[3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] (agarose-g-PDMAPS) with UCST, depending both on hydrogen bonding and electrostatic interaction, was synthesized by ATRP, and its aggregation behavior in aqueous media was investigated in detail. Proton nuclear magnetic resonance spectroscopy, Fourier transform-infrared spectroscopy, and gel-permeation chromatography were performed to characterize the copolymer. Thermosensitive behaviors of the copolymers in water, NaCl, and urea solution were tracked by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis. It was found that the copolymers existed as "core-shell" spheres at an elevated temperature, as a result of the self-assembly of the agarose backbones located in the "core" driven by hydrogen-bonding interactions. When the copolymer solution was cooled below UCST, the core-shell spheres began to aggregate because of the electrostatic interactions and collapse of PDMAPS side chains in the "shell" layer. UCST of the copolymer could be tuned in a wide range, depending on the chain lengths of PDMAPS. This is the first example to investigate the thermosensitivity, combining ionic interactions of the zwitterionic side chains with hydrogen bondings from the biocompatible agarose backbones. The synthetic strategy presented here can be employed in the preparation of other novel biomaterials from a variety of polysaccharides.

  19. Pulsed field gel electrophoresis on frozen tumour tissue sections.

    PubMed Central

    Boultwood, J.; Kaklamanis, L.; Gatter, K. C.; Wainscoat, J. S.

    1992-01-01

    The application of pulsed field gel electrophoresis (PFGE) to the molecular genetic analysis of solid tumours has been restricted by the requirement for whole single cells as a DNA source. A simple technique which allows for the direct analysis of histologically characterised solid tumour material by pulsed field gel electrophoresis was developed. Single frozen tissue sections obtained from colonic carcinoma specimens were embedded without further manipulation in molten, low melting temperature agarose. The tumour DNA contained within the agarose plug was subjected to restriction enzyme digestion and PFGE. Sufficient high molecular weight DNA is yielded by this method to obtain a hybridisation signal with a single copy probe. Histological examination of adjacent tissue sections may also be carried out, permitting correlation between molecular analysis and tumour histology. Images PMID:1401187

  20. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors.

    PubMed

    Tomizawa, M; Latli, B; Casida, J E

    1996-10-01

    Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.

  1. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  2. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  3. Analysis of rRNA gene methylation in Arabidopsis thaliana by CHEF-Conventional 2D gel electrophoresis

    PubMed Central

    Mohannath, Gireesha; Pikaard, Craig S.

    2017-01-01

    Summary Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb to 9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes and sub-chromosomal DNA fragments, etc. Here we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~ 4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  4. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes.

  5. Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications

    PubMed Central

    Priya, Murali Vishnu; Kumar, Rajendran Arun; Sivashanmugam, Amirthalingam; Nair, Shantikumar Vasudevan; Jayakumar, Rangasamy

    2015-01-01

    Injectable hydrogels are gaining popularity as tissue engineering constructs because of their ease of handling and minimal invasive delivery. Making hydrogels from natural polymers helps to overcome biocompatibility issues. Here, we have developed an Amorphous Chitin (ACh)-Agarose (Agr) composite hydrogel using a simpletechnique. Rheological studies, such as viscoelastic behavior (elastic modulus, viscous modulus, yield stress, and consistency), inversion test, and injectability test, were carried out for different ACh-Agr concentrations. The composite gel, having a concentration of 1.5% ACh and 0.25% Agr, showed good elastic modulus (17.3 kPa), yield stress (3.8 kPa), no flow under gravity, injectability, and temperature stability within the physiological range. Based on these studies, the optimum concentration for injectability was found to be 1.5% ACh and 0.25% Agr. This optimized concentration was used for further studies and characterized using FT-IR and SEM. FT-IR studies confirmed the presence of ACh and Agr in the composite gel. SEM results showed that the lyophilized composite gel had good porosity and mesh like networks. The cytocompatibility of the composite gel was studied using human mesenchymal stem cells (hMSCs). The composite gels showed good cell viability.These results indicated that this injectable composite gel can be used for biomedical applications. PMID:26308065

  6. Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin

    DTIC Science & Technology

    1989-07-01

    SIl Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin A thesis submitted in partial fulfillment of the...16 Wheat Germ Lectin Electrophoresis to Quantitate Alkaline Phosphatase Isoenzymes ................ 16 Alkaline Phosphatase Isoenzyme...vs Polyacrylamide Gel Electrophoresis ......................... 40 Clinical Correlation Using Wheat Germ Lectin 45 Placental Alkaline Phosphatase

  7. Application of SYPRO Ruby- and Flamingo-stained polyacrylamide gels to Western blot analysis.

    PubMed

    Hagiwara, Makoto; Kobayashi, Ken-Ichi; Tadokoro, Tadahiro; Yamamoto, Yuji

    2010-02-15

    Western blots are widely used for analysis of the expression levels of specific proteins. Blotting is conducted after sodium dodecyl sulfate or native polyacrylamide gel electrophoresis without staining the gel. However, when it is necessary to analyze the gel, duplicate polyacrylamide gels (one of which is stained) usually must be prepared, leading to the consumption of precious sample. Thus, we have developed a convenient and efficient Western blot method using a stained gel. This simple modification should be beneficial for the analysis of samples that are limited in quantity and/or samples for which the stained gel serves as the loading control.

  8. Application of SYPRO Ruby- and Flamingo-stained polyacrylamide gels to Western blot analysis.

    PubMed

    Hagiwara, Makoto; Kobayashi, Ken-Ichi; Tadokoro, Tadahiro; Yamamoto, Yuji

    2009-06-15

    Western blot analysis has been a useful method for analysis of expression levels of specific proteins and is conducted after sodium dodecyl sulfate (SDS) or native polyacrylamide gel electrophoresis without staining the gel. However, when it is necessary to analyze the gel, duplicate polyacrylamide gels usually must be prepared, one of which is stained, leading to the consumption of precious sample. Thus, we developed a convenient and efficient Western blotting method using a stained gel. This simple modification should be beneficial for analyzing samples that are limited in quantity and/or samples for which the stained gel serves as the loading control.

  9. Analysis of chicken bile by gel precipitation reactions using a lectin in the place of antibody.

    PubMed

    Cotter, P F

    2000-09-01

    A lectin obtained from black turtle beans (BTB) was precipitated with IgA in chicken bile samples in various forms of agarose gel systems. Ouchterlony-type double-diffusion (ODD) precipitation patterns between the lectin, bile IgA, and heavy chain-specific antibody contained spurs of the type suggestive of partial immunologic identity. The immunoelectrophoresis precipitation patterns between the same three reactants were mirror images and fused on the cathodic side of the immunoelectrophoresis origin. In addition to use in ODD-type gels, BTB could also be incorporated into agarose gels suitable for Mancini (radial immunodiffusion) or Laurell-type rocket electrophoresis. Bile samples obtained from Cornell lines OS and C, broiler breeder males, and University of California-Davis congenic lines were investigated using BTB- and antibody-based methods. The results of this study indicated that IgA was the most frequently detected isotype in bile, occurring in 139 of 156 (89%) samples. Most bile samples (128/156; 82%) also contained IgG, whereas fewer (19/156; 12%) contained IgM. Cornell lines appeared to differ from broiler breeders, having a higher frequency of IgM-positive samples. Of the total bile samples studied, 11% (17/156) of samples from broiler breeders and the Cornell lines appeared to be devoid of IgA; the bile of one broiler breeder was found to be devoid of all three isotypes. Instances were found in which bile samples shown to be negative for IgA by antibody-ODD were shown to be positive by BTB-ODD. Thus BTB appears to be a suitable adjunct to antibody for the study of IgA.

  10. An alternative easy method for antibody purification and analysis of protein-protein interaction using GST fusion proteins immobilized onto glutathione-agarose.

    PubMed

    Zalazar, L; Alonso, C A I; De Castro, R E; Cesari, A

    2014-01-01

    Immobilization of small proteins designed to perform protein-protein assays can be a difficult task. Often, the modification of reactive residues necessary for the interaction between the immobilized protein and the matrix compromises the interaction between the protein and its target. In these cases, glutathione-S-transferase (GST) is a valuable tag providing a long arm that makes the bait protein accessible to the mobile flow phase of the chromatography. In the present report, we used a GST fusion version of the 8-kDa protein serine protease inhibitor Kazal-type 3 (SPINK3) as the bait to purify anti-SPINK3 antibodies from a rabbit crude serum. The protocol for immobilization of GST-SPINK3 to glutathione-agarose beads was modified from previously reported protocols by using an alternative bifunctional cross-linker (dithiobis(succinimidyl propionate)) in a very simple procedure and by using simple buffers under physiological conditions. We concluded that the immobilized protein remained bound to the column after elution with low pH, allowing the reuse of the column for alternative uses, such as screening for other protein-protein interactions using SPINK3 as the bait.

  11. Ionic liquid-impregnated agarose film two-phase micro-electrodriven membrane extraction (IL-AF-μ-EME) for the analysis of antidepressants in water samples.

    PubMed

    Mohamad Hanapi, Nor Suhaila; Sanagi, Mohd Marsin; Ismail, Abd Khamim; Wan Ibrahim, Wan Aini; Saim, Nor'ashikin; Wan Ibrahim, Wan Nazihah

    2017-03-01

    The aim of this study was to investigate and apply supported ionic liquid membrane (SILM) in two-phase micro-electrodriven membrane extraction combined with high performance liquid chromatography-ultraviolet detection (HPLC-UV) for pre-concentration and determination of three selected antidepressant drugs in water samples. A thin agarose film impregnated with 1-hexyl-3-methylimidazolium hexafluorophosphate, [C6MIM] [PF6], was prepared and used as supported ionic liquid membrane between aqueous sample solution and acceptor phase for extraction of imipramine, amitriptyline and chlorpromazine. Under the optimized extraction conditions, the method provided good linearity in the range of 1.0-1000μgL(-1), good coefficients of determination (r(2)=0.9974-0.9992) and low limits of detection (0.1-0.4μgL(-1)). The method showed high enrichment factors in the range of 110-150 and high relative recoveries in the range of 88.2-111.4% and 90.9-107.0%, for river water and tap water samples, respectively with RSDs of ≤7.6 (n=3). This method was successfully applied to the determination of the drugs in river and tap water samples. It is envisaged that the SILM improved the perm-selectivity by providing a pathway for targeted analytes which resulted in rapid extraction with high degree of selectivity and high enrichment factor.

  12. Challenges of glycoprotein analysis by microchip capillary gel electrophoresis.

    PubMed

    Engel, Nicole; Weiss, Victor U; Wenz, Christian; Rüfer, Andreas; Kratzmeier, Martin; Glück, Susanne; Marchetti-Deschmann, Martina; Allmaier, Günter

    2015-08-01

    Glycosylations severely influence a protein's biological and physicochemical properties. Five exemplary proteins with varying glycan moieties were chosen to establish molecular weight (MW) determination (sizing), quantitation, and sensitivity of detection for microchip capillary gel electrophoresis (MCGE). Although sizing showed increasing deviations from literature values (SDS-PAGE or MALDI-MS) with a concomitant higher degree of analyte glycosylation, the reproducibility of MW determination and accuracy of quantitation with high sensitivity and reliability were demonstrated. Additionally, speed of analysis together with the low level of analyte consumption render MCGE attractive as an alternative to conventional SDS-PAGE.

  13. Pulsed-field gel electrophoresis analysis of multicellular DNA double-strand break damage and repair.

    PubMed

    Joshi, Nina; Grant, Stephen G

    2014-01-01

    This assay quantifies the extent of double-strand break (DSB) DNA damage in cell populations embedded in agarose and analyzed for migratory DNA using pulsed-field gel electrophoresis with ethidium bromide staining. The assay can measure preexisting damage as well as induction of DSB by chemical (e.g., bleomycin), physical (e.g., X-irradiation), or biological (e.g., restriction enzymes) agents. By incubating the cells under physiological conditions prior to processing, the cells can be allowed to repair DSB, primarily via the process of nonhomologous end joining. The amount of repair, corresponding to the repair capacity of the treated cells, is then quantified by determining the ratio of the fractions of activity released in the lanes in comparison to the total amount of DNA fragmentation following determination of an optimal exposure for maximum initial fragmentation. Repair kinetics can also be analyzed through a time-course regimen.

  14. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform).

  15. Agarose-based microfluidic device for point-of-care concentration and detection of pathogen.

    PubMed

    Li, Yiwei; Yan, Xinghua; Feng, Xiaojun; Wang, Jie; Du, Wei; Wang, Yachao; Chen, Peng; Xiong, Liang; Liu, Bi-Feng

    2014-11-04

    Preconcentration of pathogens from patient samples represents a great challenge in point-of-care (POC) diagnostics. Here, a low-cost, rapid, and portable agarose-based microfluidic device was developed to concentrate biological fluid from micro- to picoliter volume. The microfluidic concentrator consisted of a glass slide simply covered by an agarose layer with a binary tree-shaped microchannel, in which pathogens could be concentrated at the end of the microchannel due to the capillary effect and the strong water permeability of the agarose gel. The fluorescent Escherichia coli strain OP50 was used to demonstrate the capacity of the agarose-based device. Results showed that 90% recovery efficiency could be achieved with a million-fold volume reduction from 400 μL to 400 pL. For concentration of 1 × 10(3) cells mL(-1) bacteria, approximately ten million-fold enrichment in cell density was realized with volume reduction from 100 μL to 1.6 pL. Urine and blood plasma samples were further tested to validate the developed method. In conjugation with fluorescence immunoassay, we successfully applied the method to the concentration and detection of infectious Staphylococcus aureus in clinics. The agarose-based microfluidic concentrator provided an efficient approach for POC detection of pathogens.

  16. Analysis of variations in band positions for normalization in across-gel denaturing gradient gel electrophoresis.

    PubMed

    Matsushita, Yuko; Yamamura, Kohji; Morimoto, Sho; Bao, Zhihua; Kurose, Daisuke; Sato, Ikuo; Yoshida, Shigenobu; Tsushima, Seiya

    2015-05-01

    Variation in band position between gels is a well-known problem in denaturing gradient gel electrophoresis (DGGE). However, few reports have evaluated the degree of variation in detail. In this study, we investigated the variation in band positions of DNA samples extracted from soil, normalized using reference positions within marker lanes for DGGE in three organismal (bacterial, fungal, and nematode) conditions. For sample lanes, marker DNA (as a control) and sample DNA were used. The test for normality of distribution showed that the position data of a large percentage of bands were normally distributed but not for certain bands. For the normally-distributed data, their variations [standard deviation of marker bands (SDM) and standard deviation of sample bands (SDS), respectively] were assessed. For all organismal conditions, the degree of within-gel variation were similar between SDMs and SDSs, while between-gel variations in SDSs were larger than those in SDMs. Due to the large effect of between-gel variations, the total variations in SDSs were more varied between sample bands, and the mean variations of all sample bands were higher than those in the markers. We found that the total variation in the fungal and nematode SDSs decreased when the intervals between marker bands were narrowed, suggesting that band interval is important for reducing total variation in normalized band positions. For the non-normally distributed data, the distribution was examined in detail. This study provided detailed information on the variation of band positions, which could help to optimize markers for reducing band position variation, and could aid in the accurate identification of bands in across-gel DGGE analyses.

  17. Ultrahigh-throughput approach for analyzing single-cell genomic damage with an agarose-based microfluidic comet array.

    PubMed

    Li, Yiwei; Feng, Xiaojun; Du, Wei; Li, Ying; Liu, Bi-Feng

    2013-04-16

    Genomic DNA damage was generally identified with a "comet assay" but limited by low throughput and poor reproducibility. Here we demonstrated an ultrahigh-throughput approach with a microfluidic chip to simultaneously interrogate DNA damage conditions of up to 10,000 individual cells (approximately 100-fold in throughput over the conventional method) with better reproducibility. For experiment, agarose was chosen as the chip fabrication material, which would further act as an electrophoretic sieving matrix for DNA fragments separation. Cancer cells (HeLa or HepG2) were lined up in parallel microchannels by capillary effect to form a dense array of single cells. After treatment with different doses of hydrogen peroxide, individual cells were then lysed for subsequent single-cell gel electrophoresis in the direction vertical to microchannel and fluorescence detection. Through morphological analysis and fluorescent measurement of comet-shaped DNA, the damage conditions of individual cells could be quantified. DNA repair capacity was further evaluated to validate the reliability of this method. It indicated that the agarose-based microfluidic comet array electrophoresis was simple, highly reproducible, and of high throughput, providing a new method for highly efficient single-cell genomic analysis.

  18. Electrode films of porous agarose: The effects of physical structure on electron transport processes. [Impregnated with Nafion; immobilized electroactive species

    SciTech Connect

    Moran, K.D.

    1988-02-01

    Potential use of chemically modified electrodes in electrocatalysis has stimulated interest in creation and characterization of electrode films for reagent immobilization. We have created two highly porous electrocatalyst support matrices, with high rates of electron transport. Both are based on immobilization of reagents in agarose gel. In one case, Nafion was impregnated into agarose gel films. Diffusion of methyl viologen in Nafionagarose matrices are higher than in Nafion. In Nafion, the diffusion coefficient decreases with increasing methyl viologen concentration, while in Nafionagarose, the opposite dependence is observed. The faster rate of electron transport in Nafionagarose films is related to the heterogeneous structure and the coupling of the diffusion pathways. In the second application of agarose gels as an electrode coating material, agarose hydroxyl groups were activated in 1,1'carbonyldiimidazole and subsequently reacted with amine derivatives of electroactive mediators. Electron transport between the electroactive sites in the gel is very rapid (on the order of 10/sup -7/ cm/sup 2/s. Interpreting the data in light of the Dahms-Ruff description of electron transport shows that the rate of electron transport through both ferrocene and viologen derivatized gels is limited by the rate of electron self-exchange of the species. 22 figs., 15 tabs

  19. Adsorption of human serum proteins onto TREN-agarose: purification of human IgG by negative chromatography.

    PubMed

    Bresolin, Igor Tadeu Lazzarotto; Borsoi-Ribeiro, Mariana; Caro, Juliana Rodrigues; dos Santos, Francine Petit; de Castro, Marina Polesi; Bueno, Sonia Maria Alves

    2009-01-01

    Tris(2-aminoethyl)amine (TREN) - a chelating agent used in IMAC - immobilized onto agarose gel was evaluated for the purification of IgG from human serum by negative chromatography. A one-step purification process allowed the recovery of 73.3% of the loaded IgG in the nonretained fractions with purity of 90-95% (based on total protein concentration and nephelometric analysis of albumin, transferrin, and immunoglobulins A, G, and M). The binding capacity was relatively high (66.63 mg of human serum protein/mL). These results suggest that this negative chromatography is a potential technique for purification of IgG from human serum.

  20. The latest advancements in proteomic two-dimensional gel electrophoresis analysis applied to biological samples.

    PubMed

    Santucci, Laura; Bruschi, Maurizio; Ghiggeri, Gian Marco; Candiano, Giovanni

    2015-01-01

    Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.

  1. Functional modification of agarose: a facile synthesis of a fluorescent agarose-tryptophan based hydrogel.

    PubMed

    Kondaveeti, Stalin; Prasad, Kamalesh; Siddhanta, A K

    2013-08-14

    Microwave assisted facile synthesis of a fluorescent agarose-l-tryptophan hydrogel material employing carbodiimide chemistry (dicyclohexylcarbodiimide/4-dimethylaminopyridine; DCC/DMAP) has been described. The product formed fluorescent hydrogel at 1-1.5% (w/v), exhibiting fluorescence emission in water (λmax 350 nm; 1x10(-4)M), which was significantly higher (ca. 65%) than that of tryptophan at the same concentration. Subsequently, the agarose ester was cross linked with the natural cross linker genipin to yield a blue hydrogel (G-Ag-TrpEst), confirming thereby the insertion of tryptophan moiety on to agarose backbone. Both the ester and cross linked hydrogels demonstrated gelling characteristics similar to agarose and were stable across a wide range of pH media (pHs 1.2, 7.0 and 12.5) under ambient conditions. These tryptophan containing fluorescent hydrogel materials may find applications in biomedical and pharmaceutical industries as potential radical scavengers and sensors.

  2. Scanning electron microscopy analysis of sol-gel derived biocompatible glass

    NASA Astrophysics Data System (ADS)

    Holmes-Smith, A. S.; Hungerford, G.; Uttamlal, M.; Amaro, M.; Martins, P.; McBrearty, L.; Love, G.; Ferreira, M. I. C.

    2008-08-01

    Bioactive silica gels/polymer systems have been produced using a sol-gel route and their bio-compatibility has been investigated by immersing them in simulated body fluid (SBF). The porous monoliths have been characterised by SEM and EDX analysis where images obtained show pores on the surface of 10-200 μm. The silica gels are not homogeneous and distinct regions of silicon and calcium are observed. The growth of an apatite layer on the surface of the gels was evident after steeping in SBF.

  3. Effect of gel structure of matrix orientation in pulsed alternating electric fields

    SciTech Connect

    Stellwagen, N.C.; Stellwagen, J.

    1993-12-31

    Four polymeric gels with different structures, LE agarose, HEEO agarose, beta-carrageenan, and polyacrylamide, were studied by transient electric birefringence to determine the importance of various structural features on the orientation of the gels in pulsed alternating electric fields. The birefrigence relaxation times observed for agarose gels in low voltage electric fields suggest that long fibers and/or domains, ranging up to tens of microns in size, are oriented by the electric field. The sign of the birefringence reverses when the direction of the electric field is reversed, suggesting that the oriented domains change their direction of orientation from parallel to perpendicular (or vice versa) when the polarity of the electric field is reversed. These anamalous orientation effects are observed with both types of agarose gels, but not with beta-carrageenan or polyacrylamide gels, suggesting that the alternating D,L galactose residues in the agarose backbone are responsible for the anomalies.

  4. Crosslinking of agarose bioplastic using citric acid.

    PubMed

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls.

  5. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  6. Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis.

    PubMed

    Pisani, Francesca; Livermore, Thomas; Rose, Giuseppina; Chubb, Jonathan Robert; Gaspari, Marco; Saiardi, Adolfo

    2014-01-01

    The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP₆ or Phytic acid) and its derivative inositol pyrophosphates, IP₇ and IP₈. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP₉ in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP₅) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP₈ was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba

  7. Comparison of oligonucleotide migration in a bicontinuous cubic phase of monoolein and water and in a fibrous agarose hydrogel.

    PubMed

    Sanandaji, Nima; Carlsson, Nils; Voinova, Marina; Akerman, Björn

    2006-08-01

    Porous hydrogels such as agarose are commonly used to analyze DNA and water-soluble proteins by electrophoresis. More recently lyotropic liquid crystals, such as the diamond cubic phase formed by the lipid monoolein and water, has become a new type of well-defined porous structure of interest for both hydrophilic and amphiphilic analytes. Here we compare these two types of matrixes by investigating the nature of retardation they confer to an oligonucleotide that migrates in their respective aqueous phases. The retardation for a 25-mer oligonucleotide was found to be about 35-fold stronger in the cubic phase than in an agarose hydrogel modified to have the same average pore size. According to modelling, the strong retardation is primarily due to the fact that hydrodynamic interaction with the continuous monoolein membrane is a stronger source of friction than the steric interactions (collisions) with discrete gel fibres. A secondary effect is that the regular liquid crystal has a narrower pore-size distribution than the random network of the agarose gel. In agreement with experiments, these two effects together predict that the retardation in the cubic phase is a 30-fold stronger than in an agarose gel with the same average pore radius.

  8. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics.

    PubMed

    Zhang, Huifa; Jenkins, Gareth; Zou, Yuan; Zhu, Zhi; Yang, Chaoyong James

    2012-04-17

    A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5'-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis.

  9. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.

    PubMed

    Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S

    2013-11-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells.

  10. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering

    PubMed Central

    Rennerfeldt, DA; Renth, AN; Talata, Z; Gehrke, SH; Detamore, MS

    2013-01-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. PMID:23932504

  11. Two-dimensional finite element analysis of a polymer gel drug delivery system

    SciTech Connect

    Segalman, D.J.; Witkowski, W.R.

    1993-12-31

    Hydrogels are being investigated as drug delivery mechanisms. Gels can be impregnated with a drug and then stimulated through various means to release it. Having the capability to numerically predict the dynamic behavior of these release process would benefit the design and control of the such a process. In the paper, a finite element analysis is used to simulate the dynamic behavior of an eroding polyelectrolyte gel. The gel is impregnated in a collapsed state. It is then subjected to a higher pH environment causing it to swell. When it has swollen to a specified extent, the gel erodes, thereby releasing the drug agent. Such gels are currently being investigated in drug delivery schemes to the colon.

  12. GC analysis of black gel pen ink stored under different conditions.

    PubMed

    Li, Biao; Xie, Peng; Guo, Ying-min; Fei, Qing

    2014-03-01

    In many criminal and civil cases in China, the most commonly questioned documents are those written with gel pen ink. An important task for forensic document examiners is to identify whether two or more ink entries in one or more documents were written with the same ink type. The identification of the age of gel ink entries made poses an important and difficult problem for forensic document examiners. In this paper, the volatile components of gel ink were determined and the gel ink was classified by gas chromatography with a flame ionization detector. Calibration curves were created to express the relationship between the content of volatile gel ink components and the age of gel ink entries stored under natural and UV-induced aging conditions. The correspondence between the natural and UV-induced aging conditions was also established. The experimental results showed that GC was useful in the analysis of black gel ink and applicable for determining the relative age of gel ink entries under certain conditions.

  13. [Optimization of gel radial diffusion method for serum immunoglobulin analysis].

    PubMed

    Gerasimov, I G; Zorkova, E V

    2002-07-01

    Serum IgA, IgM, and IgG were measured by radial immunodiffusion in gel; immunoglobulin concentrations correlated with the diameter of their diffusion. A theoretically-based equation was derived; use of this equation will help estimate serum Ig content without plotting a calibration curve by the square diameter of the immunodiffusion ring of undiluted reference serum in a wide range of concentrations (0.3-3 mg/ml for IgA and IgM and 2-18 mg/ml for IgG). This modification of measuring serum immunoglobulins by radial immunodiffusion in gel is as accurate as other methods, but is reagent- and time-saving.

  14. Agarose hydrogels embedded with pH-responsive diblock copolymer micelles for triggered release of substances.

    PubMed

    Jin, Naixiong; Morin, Emily A; Henn, Daniel M; Cao, Yu; Woodcock, Jeremiah W; Tang, Shuangcheng; He, Wei; Zhao, Bin

    2013-08-12

    Hybrid agarose hydrogels embedded with pH-responsive diblock copolymers micelles were developed to achieve functional hydrogels capable of stimulus-triggered drug release. Specifically, a well-defined poly(ethylene oxide) (PEO)-based diblock copolymer, PEO-b-poly(2-(N,N-diisopropylamino)ethyl methacrylate) (PEO(113)-b-PDPAEMA(31), where the subscripts represent the degrees of polymerization of two blocks), was synthesized by atom transfer radical polymerization. PDPAEMA is a pH-responsive polymer with a pKa value of 6.3. The PEO(113)-b-PDPAEMA(31) micelles were formed by a solvent-switching method, and their pH-dependent dissociation behavior was investigated by dynamic light scattering and fluorescence spectroscopy. Both studies indicated that the micelles were completely disassembled at pH = 6.40. The biocompatibility of PEO(113)-b-PDPAEMA(31) micelles was demonstrated by in vitro primary cortical neural culture. Hybrid agarose hydrogels were made by cooling 1.0 wt % agarose solutions that contained various amounts of PEO(113)-b-PDPAEMA(31) micelles at either 2 or 4 °C. Rheological measurements showed that the mechanical properties of gels were not significantly adversely affected by the incorporation of diblock copolymer micelles with a concentration as high as 5.0 mg/g. Using Nile Red as a model hydrophobic drug, its incorporation into the core of diblock copolymer micelles was demonstrated. Characterized by fluorescent spectroscopy, the release of Nile Red from the hybrid hydrogel was shown to be controllable by pH due to the responsiveness of the block copolymer micelles. Based on the prominent use of agarose gels as scaffolds for cell transplantation for neural repair, the hybrid hydrogels embedded with stimuli-responsive block copolymer micelles could allow the controlled delivery of hydrophobic neuroprotective agents to improve survival of transplanted cells in tune with signals from the surrounding pathological environment.

  15. Using Linear Agarose Channels to Study Drosophila Larval Crawling Behavior.

    PubMed

    Sun, Xiao; Heckscher, Ellie S

    2016-11-26

    Drosophila larval crawling is emerging as a powerful model to study neural control of sensorimotor behavior. However, larval crawling behavior on flat open surfaces is complex, including: pausing, turning, and meandering. This complexity in the repertoire of movement hinders detailed analysis of the events occurring during a single crawl stride cycle. To overcome this obstacle, linear agarose channels were made that constrain larval behavior to straight, sustained, rhythmic crawling. In principle, because agarose channels and the Drosophila larval body are both optically clear, the movement of larval structures labeled by genetically-encoded fluorescent probes can be monitored in intact, freely-moving larvae. In the past, larvae were placed in linear channels and crawling at the level of whole organism, segment, and muscle were analyzed(1). In the future, larvae crawling in channels can be used for calcium imaging to monitor neuronal activity. Moreover, these methods can be used with larvae of any genotype and with any researcher-designed channel. Thus the protocol presented below is widely applicable for studies using the Drosophila larva as a model to understand motor control.

  16. Principles and examples of gel-based approaches for phosphoprotein analysis.

    PubMed

    Steinberger, Birgit; Mayrhofer, Corina

    2015-01-01

    Methods for analyzing the phosphorylation status of proteins are essential to investigate in detail key cellular processes, including signal transduction and cell metabolism. The transience of this post-translational modification and the generally low abundance of phosphoproteins require specific enrichment and/or detection steps prior to analysis. Here, we describe three gel-based approaches for the analysis of differentially expressed phosphoproteins. These approaches comprise (1) the sequential fluorescence staining of two-dimensional (2-D) gels using Pro-Q(®) Diamond and SYPRO(®) Ruby dyes to visualize and quantify phosphoproteins in total cellular lysates as well as (2) affinity enrichment of phosphoproteins in conjunction with sequential fluorescence staining of the 2-D gels and (3) affinity enrichment of proteins prior to pre-electrophoretic fluorescence labeling and 2-D gel electrophoresis.

  17. Statistical analysis of image data provided by two-dimensional gel electrophoresis for discovery proteomics.

    PubMed

    Crossett, Ben; Edwards, Alistair V G; White, Melanie Y; Cordwell, Stuart J

    2008-01-01

    Standardized methods for the solubilization of proteins prior to proteomics analyses incorporating two-dimensional gel electrophoresis (2-DE) are essential for providing reproducible data that can be subjected to rigorous statistical interrogation for comparative studies investigating disease-genesis. In this chapter, we discuss the imaging and image analysis of proteins separated by 2-DE, in the context of determining protein abundance alterations related to a change in biochemical or biophysical conditions. We then describe the principles behind 2-DE gel statistical analysis, including subtraction of background noise, spot detection, gel matching, spot quantitation for data comparison, and statistical requirements to create meaningful gel data sets. We also emphasize the need to develop reproducible and robust protocols for protein sample preparation and 2-DE itself.

  18. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    SciTech Connect

    Russell, D.L.; Consigli, R.A.

    1986-10-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure.

  19. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    PubMed

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  20. The importance of gel properties for mucoadhesion measurements: a multivariate data analysis approach.

    PubMed

    Hägerström, Helene; Bergström, Christel A S; Edsman, Katarina

    2004-02-01

    In this study we used tensile strength measurements and a recently developed interpretation procedure to evaluate the mucoadhesive properties of a large set of gel preparations with diverse rheological properties. Multivariate data analysis in the form of principal component analysis (PCA) and partial least square projection to latent structures (PLS) was applied to extract useful information from the rather large quantities of data obtained. PCA showed that the selected series of gels was heterogeneous. Some groupings could be detected but none of the gels was identified as an outlier. By using PLS we investigated the relations between the rheological properties of a gel and the parameters defining the cohesiveness, as measured with the texture analyser used for the mucoadhesion measurements. The rheological properties proved to be important for the results of both the mucoadhesion and the cohesiveness measurements. Furthermore, by using PLS two different measurement configurations were evaluated and it was concluded that the combination of a relatively small volume of gel and two pieces of mucosa seems to be more appropriate than a large volume of gel in combination with one piece of mucosa.

  1. Multi-walled carbon nanotube-impregnated agarose film microextraction of polycyclic aromatic hydrocarbons in green tea beverage.

    PubMed

    Loh, Saw Hong; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2013-03-15

    A new microextraction procedure termed multi-walled carbon nanotube-impregnated agarose film microextraction (MWCNT-AFME) has been developed. The method utilized multi-walled carbon nanotubes (MWCNTs) immobilized in agarose film to serve as adsorbent in solid phase microextraction (SPME). The film was prepared by mixing the MWCNTs in agarose solution and drying the mixture in oven. Extraction of selected polycyclic aromatic hydrocarbons was performed by inserting a needle through circular MWCNT-impregnated agarose films (5 mm diameter) and the assembly was dipped into an agitated sample solution prior to micro high performance liquid chromatography-ultraviolet analysis. Back extraction was then performed using ultrasonication of the films in 100 μL of solvent. The film was discarded after single use, thus avoiding any analyte carry-over effect. Due to the mesoporous nature of the agarose film, the MWCNTs were immobilized easily within the film and thus allowing for close contact between adsorbent and analytes. Under the optimized extraction conditions, the technique achieved trace LODs in the range of 0.1 to 50 ng L(-1) for the targeted analytes, namely fluoranthene, phenanthrene and benzo[a]pyrene. The method was successfully applied to the analysis of spiked green tea beverage samples with good relative recoveries in the range of 91.1 to 107.2%. The results supported the feasibility of agarose to serve as adsorbent holder in SPME which then minimizes the consumption of chemicals and disposal cost of organic wastes.

  2. Tris-acetate polyacrylamide gradient gel electrophoresis for the analysis of protein oligomerization.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Sánchez-Tena, Susana; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-02-01

    Here we report a new approach for studying protein oligomerization in cells using a single electrophoresis gel. We combined the use of a crosslinking reagent for sample preparation, such as glutaraldehyde, with the analysis of oligomers by Tris-acetate polyacrylamide gel electrophoresis. The use of a 3-15% Tris-acetate polyacrylamide gradient gel allows for the simultaneous analysis of proteins of masses ranging from 10 to 500 kDa. We showed the usefulness of this method for analyzing endogenous p53 oligomerization with high resolution and sensitivity in human cells. Oligomerization analysis was dependent on the crosslinker concentration used. We also showed that this method could be used to study the regulation of oligomerization. In all experiments, Tris-acetate polyacrylamide gel electrophoresis proved to be a robust, manageable, and cost- and time-efficient method that provided excellent results using a single gel. This approach can be easily extrapolated to the study of other oligomers. All of these features make this method a highly useful tool for the analysis of protein oligomerization.

  3. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro.

    PubMed

    Yin, Na; Stilwell, Matthew D; Santos, Thiago M A; Wang, Huaping; Weibel, Douglas B

    2015-01-01

    Bacterial cellulose (BC) is a biocompatible hydrogel with a three-dimensional (3-D) structure formed by a dense network of cellulose nanofibers. A limitation of using BC for applications in tissue engineering is that the pore size of the material (∼0.02-10μm) is smaller than the dimensions of mammalian cells and prevents cells from penetrating into the material and growing into 3-D structures that mimic tissues. This paper describes a new route to porous bacterial cellulose (pBC) scaffolds by cultivating Acetobacter xylinum in the presence of agarose microparticles deposited on the surface of a growing BC pellicle. Monodisperse agarose microparticles with a diameter of 300-500μm were created using a microfluidic technique, layered on growing BC pellicles and incorporated into the polymer as A. xylinum cells moved upward through the growing pellicle. Removing the agarose microparticles by autoclaving produced BC gels containing a continuous, interconnected network of pores with diameters ranging from 300 to 500μm. Human P1 chondrocytes seeded on the scaffolds, replicated, invaded the 3-D porous network and distributed evenly throughout the substrate. Chondrocytes grown on pBC substrates displayed a higher viability compared to growth on the surface of unmodified BC substrates. The approach described in this paper introduces a new method for creating pBC substrates with user-defined control over the physical dimensions of the pore network, and demonstrates the application of these materials for tissue engineering.

  4. Surfactant free fractions of metallic and semiconducting single-walled carbon nanotubes via optimised gel chromatography

    SciTech Connect

    Lukaszczuk, Pawel; Ruemmeli, Mark H.; Knupfer, Martin; Kalenczuk, Ryszard J.; Borowiak-Palen, Ewa

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The application of gel permeation chromatography technique in a field of SWCNT separation. Black-Right-Pointing-Pointer Non-commercial agarose gel used as a column filling. Black-Right-Pointing-Pointer Purification route is presented, quality and quantity estimation is shown. Black-Right-Pointing-Pointer Process is ready for high-scale separation of SWCNTs. -- Abstract: We report the procedure of sorting/purification of carbon nanotubes by electronic type using chromatographic column with sodium dodecylsulfate (SDS) and sodium deoxycholate (DOC) solutions as the eluents. The non-commercial agarose gel in different concentrations has been tested in the process. It was found that in optimal gel concentration the fractionation resulted in {approx}96.2% yield of semiconducting species. Importantly, to get surfactant-free fractions the post-separation purification procedure has been carried out. The UV-vis-NIR and Raman spectroscopy have been utilised for the samples analysis. High resolution transmission microscopy and thermogravimetric analysis allowed to study the sample morphology and purity, respectively.

  5. Detection of connexins in liver cells using sodiumdodecylsulfate polyacrylamide gel electrophoresis and immunoblot analysis

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the set-up of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodiumdodecylsulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  6. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

    PubMed

    DeKosky, Brandon J; Dormer, Nathan H; Ingavle, Ganesh C; Roatch, Christopher H; Lomakin, Joseph; Detamore, Michael S; Gehrke, Stevin H

    2010-12-01

    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.

  7. Agarose-Based Substrate Modification Technique for Chemical and Physical Guiding of Neurons In Vitro.

    PubMed

    Krumpholz, Katharina; Rogal, Julia; El Hasni, Akram; Schnakenberg, Uwe; Bräunig, Peter; Bui-Göbbels, Katrin

    2015-08-26

    A new low cost and highly reproducible technique is presented that provides patterned cell culture substrates. These allow for selective positioning of cells and a chemically and mechanically directed guiding of their extensions. The patterned substrates consist of structured agarose hydrogels molded from reusable silicon micro templates. These templates consist of pins arranged equidistantly in squares, connected by bars, which mold corresponding wells and channels in the nonadhesive agarose hydrogel. Subsequent slice production with a standard vibratome, comprising the described template pattern, completes substrate production. Invertebrate neurons of locusts and pond snails are used for this application as they offer the advantage over vertebrate cells as being very large and suitable for cultivation in low cell density. Their neurons adhere to and grow only on the adhesive areas not covered by the agarose. Agarose slices of 50 μm thickness placed on glass, polystyrene, or MEA surfaces position and immobilize the neurons in the wells, and the channels guide their neurite outgrowth toward neighboring wells. In addition to the application with invertebrate neurons, the technique may also provide the potential for the application of a wide range of cell types. Long-term objective is the achievement of isolated low-density neuronal networks on MEAs or different culture substrates for various network analysis applications.

  8. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies.

    PubMed

    Vardar, E; Vert, Michel; Coudane, Jean; Hasirci, V; Hasirci, N

    2012-01-01

    Hydrogels are frequently considered for medical applications due to the ease of preparation in different forms and high water content that makes them comparable to natural tissues. However, these general properties are not sufficient to make any hydrogel suitable for cell attachment and growth which are necessary for their use in tissue regeneration. Besides, the high water content makes the hydrogels mechanically weak. The formation of semi-interpenetrating networks (semi-IPNs) can be used in attempts to enhance physical, mechanical and thermal properties. In this study, semi-IPNs of agarose were prepared with chitosan and alginate, two polyelectrolytes that are positively and negatively charged under physiological conditions, respectively. Zeta potential was used to confirm the formation of charged hydrogels. All hydrogels had ultimate compression strengths in the range of 91-210 Pa where the value for pure agarose was about 103 Pa. Chitosan increased the compressive strength about two folds whereas the alginate had opposite effects. The amount of strongly bound water present in the hydrogels were estimated from TGA and DSC analysis and the highest value was found for alginate-agarose hydrogels as about 15%. The attachment and the migration of L929 fibroblasts were monitored in vitro using the MTS assay and confocal microscopy. The highest cell proliferation and penetration were observed for positively charged chitosan-agarose semi-IPN hydrogels.

  9. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.

    PubMed

    Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko

    2015-12-01

    Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration.

  10. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.

    PubMed

    Kolanthai, Elayaraja; Abinaya Sindu, P; Thanigai Arul, K; Sarath Chandra, V; Manikandan, E; Narayana Kalkura, S

    2017-01-01

    The powder composites are predominantly used for filling of voids in bone and as drug delivery carrier to prevent the infection or inflammatory reaction in the damaged tissues. The objective of this work was to study the synthesis of agarose encapsulation on carbonated hydroxyapatite powder and their biological and drug delivery properties. Mesoporous, nanosized carbonated hydroxyapatite/agarose (CHAp/agarose) powder composites were prepared by solvothermal method and subsequently calcined to study the physico-chemical changes, if it subjected to thermal exposure. The phase of the as-synthesized powder was CHAp/agarose whereas the calcinated samples were non-stoichiometric HAp. The CHAp/agarose nanorods were of length 10-80nm and width 40-190nm for the samples synthesized at temperatures 120°C (ST120) and 150°C (ST150). The calcination process produced spheres (10-50nm) and rods with reduced size (40-120nm length and 20-30nm width). Composites were partially dissolved in SBF solution followed by exhibited better bioactivity than non-stoichiometric HAp confirmed by gravimetric method. Hemo and biocompatibility remained unaffected by presence of agarose or carbonate in the HAp. Specific surface area of the composites was high and exhibited an enhanced amoxicillin and 5-fluorouracil release than the calcined samples. The composites demonstrated a strong antimicrobial activity against E. coli, S. aureus and S. epidermidis. The ST120 showed prolonged drug (AMX and 5-Fcil) release and antimicrobial efficacy than ST150 and calcined samples. This technique would be simple and rapid for composites preparation, to produce high quality crystalline, resorbable, mesoporous and bioactive nanocomposite (CHAp/agarose) powders. This work provides new insight into the role of agarose coated on bioceramics by solvothermal technique and suggests that CHAp/agarose composites powders are promising materials for filling of void in bone and drug delivery applications.

  11. A composite agarose-polyacrylamide matrix as two-dimensional hard support for solid-phase protein assays.

    PubMed

    Krajewski, Wladyslaw A

    2016-03-15

    The solid-phase protein assays using blotting membranes as hard support do not allow achieving the low background and sensitivity of protein staining in clear gels. The membrane opacity complicates imaging of results on standard lab documentation systems. We describe a low-cost transparent matrix that can be used as an alternative to polymeric membranes for solid-phase assays. Protein samples are spotted onto a dry film of composite agarose-polyacrylamide matrix covering standard glass microscopic slides. After rehydration in protein-fixing solution, matrix with protein samples can be detached from glass support and stained as conventional protein polyacrylamide gels.

  12. Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose.

    PubMed

    Guzik, Urszula; Hupert-Kocurek, Katarzyna; Krysiak, Marta; Wojcieszyńska, Danuta

    2014-01-01

    Microbial intradiol dioxygenases have been shown to have a great potential for bioremediation; however, their structure is sensitive to various environmental and chemical agents. Immobilization techniques allow for the improvement of enzyme properties. This is the first report on use of glyoxyl agarose and calcium alginate as matrixes for the immobilization of protocatechuate 3,4-dioxygenase. Multipoint attachment of the enzyme to the carrier caused maintenance of its initial activity during the 21 days. Immobilization of dioxygenase in calcium alginate or on glyoxyl agarose resulted in decrease in the optimum temperature by 5 °C and 10 °C, respectively. Entrapment of the enzyme in alginate gel shifted its optimum pH towards high-alkaline pH while immobilization of the enzyme on glyoxyl agarose did not influence pH profile of the enzyme. Protocatechuate 3,4-dioygenase immobilized in calcium alginate showed increased activity towards 2,5-dihydroxybenzoate, caffeic acid, 2,3-dihydroxybenzoate, and 3,5-dihydroxybenzoate. Slightly lower activity of the enzyme was observed after its immobilization on glyoxyl agarose. Entrapment of the enzyme in alginate gel protected it against chelators and aliphatic alcohols while its immobilization on glyoxyl agarose enhanced enzyme resistance to inactivation by metal ions.

  13. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  14. [The development of an image analysis system of medical electrophoresis and DNA gel].

    PubMed

    Zhu, S; Gao, Y

    1998-07-01

    This thesis introduced a kind of computerized image analysis system of medical electrophoresis and DNA gel, which have a high performance/price ratio. Moreover, it gives a detailed presentation of how to eliminate the background obstruction by the conjunction of hardware and software.

  15. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces.

    PubMed

    Jaiswal, Swarna; McHale, Patrick; Duffy, Brendan

    2012-06-01

    The colonisation of clinical and industrial surfaces with microorganisms, including antibiotic-resistant strains, has promoted increased research into the development of effective antibacterial and antifouling coatings. This study describes the preparation of metal nitrate (Ag, Cu, Zn) doped methyltriethoxysilane (MTEOS) coatings and the rapid assessment of their antibacterial activity using polyproylene microtitre plates. Microtitre plate wells were coated with different volumes of liquid sol-gel and cured under various conditions. Curing parameters were analysed by thermogravimetric analysis (TGA) and visual examination. The optimum curing conditions were determined to be 50-70°C using a volume of 200 μl. The coated wells were challenged with Gram-positive and Gram-negative bacterial cultures, including biofilm-forming and antibiotic-resistant strains. The antibacterial activities of the metal doped sol-gel, at equivalent concentrations, were found to have the following order: silver>zinc>copper. The order is due to several factors, including the increased presence of silver nanoparticles at the sol-gel coating surface, as determined by X-ray photoelectron spectroscopy, leading to higher elution rates as measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The use of microtitre plates enabled a variety of sol-gel coatings to be screened for their antibacterial activity against a wide range of bacteria in a relatively short time. The broad-spectrum antibacterial activity of the silver doped sol-gel showed its potential for use as a coating for biomaterials.

  16. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  17. Thermoreversible gelation in aqueous binary solvents of chemically modified agarose.

    PubMed

    Dahmani, Mohammed; Ramzi, Mohamed; Rochas, Cyrille; Guenet, Jean-Michel

    2003-01-15

    The thermoreversible gelation of chemically modified agarose has been studied in aqueous binary solvents (dimethyl sulfoxide and a series of formamide) by differential calorimetry, mechanical testing, and small-angle neutron scattering. The temperature-composition phase diagrams have been established. It is concluded that gelation is promoted by the formation of ternary complexes modified agarose/water/cosolvent, wherein the cosolvent mediates the interaction between chains through the formation of electrostatic interactions.

  18. Analysis of photoaffinity-labeled aryl hydrocarbon receptor heterogeneity by two-dimensional gel electrophoresis

    SciTech Connect

    Perdew, G.H.; Hollenback, C.E. )

    1990-07-03

    The level of charge heterogeneity in the aryl hydrocarbon receptor (AhR) was examined by high-resolution denaturing two-dimensional (2D) gel electrophoresis. Hepa 1c1c7 cell cytosolic fraction was photoaffinity-labeled with 2-azido-3-({sup 125}I)-iodo-7,8-dibromodibenzo-p-dioxin and applied to isoelectric focusing (IEF) tube gels. After optimization of focusing conditions a broad peak of radioactivity was detected in the apparent pI range of 5.2-5.7. IEF tube gels were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by visualization of the radiolabeled AhR by autoradiography; three distinct isoforms were detected. The same 2D electrophoretic isoform pattern was obtained when the AhR from Hepa 1c1c7 was photoaffinity-labeled in cell culture. BP{sup r}Cl cells, a mutant line derived from Hepa 1c1c7 cells, contain an AhR that is unable to bind to DNA. Photoaffinity-labeled BP{sup r}Cl cytosolic fractions were subjected to 2D gel electrophoretic analysis resulting in essentially the same molecular weight and isoform pattern as seen in Hepa 1c1c7 cytosol. This result would suggest that if a mutation is present in the BP{sup r}Cl AhR it has not caused a significant change in its IEF pattern, although a small shift in the pI values was observed. Two-dimensional gel electrophoresis of photoaffinity-labeled cytosolic fractions from HeLa cells, the rat liver tumor cell line McA-RH777, and buffalo rat thymus revealed three isoforms, essentially the same isoform pattern as in Hepa 1c1c7 cells. This would indicate that despite the considerable molecular weight polymorphism between species the level of charge heterogeneity is high conserved.

  19. Oriented Attachment of Recombinant Proteins to Agarose-Coated Magnetic Nanoparticles by Means of a β-Trefoil Lectin Domain.

    PubMed

    Acebrón, Iván; Ruiz-Estrada, Amalia G; Luengo, Yurena; Morales, María Del Puerto; Guisán, José Manuel; Mancheño, José Miguel

    2016-11-16

    Design of generic methods aimed at the oriented attachment of proteins at the interfacial environment of magnetic nanoparticles currently represents an active field of research. With this in mind, we have prepared and characterized agarose-coated maghemite nanoparticles to set up a platform for the attachment of recombinant proteins fused to the β-trefoil lectin domain LSL150, a small protein that combines fusion tag properties with agarose-binding capacity. Analysis of the agarose-coated nanoparticles by dynamic light scattering, Fourier transform infrared spectroscopy, and thermogravimetric studies shows that decoupling particle formation from agarose coating provides better results in terms of coating efficiency and particle size distribution. LSL150 interacts with these agarose-coated nanoparticles exclusively through the recognition of the sugars of the polymer, forming highly stable complexes, which in turn can be dissociated ad hoc with the competing sugar lactose. Characterization of the complexes formed with the fusion proteins LSL-EGFP (LSL-tagged enhanced green fluorescent protein from Aquorea victoria) and LSL-BTL2 (LSL-tagged lipase from Geobacillus thermocatenolatus) provided evidence supporting a topologically oriented binding of these molecules to the interface of the agarose-coated nanoparticles. This is consistent with the marked polarity of the β-trefoil structure where the sugar-binding sites and the N- and C-terminus ends are at opposed sides. In summary, LSL150 displays topological and functional features expected from a generic molecular adaptor for the oriented attachment of proteins at the interface of agarose-coated nanoparticles.

  20. A method for horizontal polyacrylamide slab gel electrophoresis.

    PubMed

    Bellomy, G R; Record, M T

    1989-01-01

    We present a simplified method of preparation of polyacrylamide gels which is totally analogous to the procedure now widely used to pour and run horizontal agarose gels. The acrylamide is poured into an open air gel mold consisting of a glass plate with a masking tape border and a comb. It is subsequently run in a submarine horizontal electrophoresis apparatus. The electrophoretic mobility and resolution of DNA fragments obtained in such gels are identical to results obtained with gels poured and run in the vertical configuration. Numerous advantages of horizontal polyacrylamide gel electrophoresis are discussed.

  1. Two-dimensional gel proteomic analysis of Dermatophagoides farinae feces.

    PubMed

    Erban, Tomas; Hubert, Jan

    2015-01-01

    Dermatophagoides farinae fecal allergens are a major source of immunogens in home environments; however, as the source of mite fecal allergen is considered spent growth medium extract that can only mimic the pure fecal extract. In this study, we prepared and using proteomic methods analyzed a D. farinae fecal extract for the first time. The preparation approach used D. farinae feces that were produced within 8 weeks of initiating cultivation in minimized growth media. The feces were collected via adhesion to the tissue culture flask surfaces after removing the SGM and mites. This study contains in-depth proteomic mapping of the allergenic isoforms from the D. farinae fecal extract. Despite extensive analysis, MALDI TOF/TOF spectrometry showed that only six proteins/allergens, Der f1, Der f2, Der f3, Der f6, Der f15 and ferritin, originated from D. farinae. No other analyzed proteins were exactly assigned to Dermatophagoides or to similar invertebrate species by sequence similarity. The remaining proteins were assigned mostly to yeasts or cereals (originally dietary proteins); however, many of the proteins were not successfully identified in the current NCBInr. The numerous dietary proteins identified in the feces suggest that these proteins remained highly stable after passing through the gut. Isoforms of the allergens Der f1, Der f3 and Der f15 were identified in more MWs indicating the presence of zymogens and active-enzyme forms. The identified fecal allergens accumulate in the environment during the life of the mite and represent quantitatively greater amounts of mite immunogens than those that were missed in the 2D-E. The results contribute to our understanding of D. farinae digestive physiology with regard to the enzymes/proteins present in the feces.

  2. Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems.

    PubMed

    Sudarsan, Arjun P; Wang, Jian; Ugaz, Victor M

    2005-08-15

    We demonstrate the use of thermoplastic elastomer gels as advanced substrates for construction of complex microfluidic networks suitable for use in miniaturized chemical analysis systems. These gels are synthesized by combining inexpensive polystyrene-(polyethylene/polybutylene)-polystyrene triblock copolymers with a hydrocarbon extender oil for which the ethylene/butylene midblocks are selectively miscible. The insoluble styrene end blocks phase separate into localized nanodomains, resulting in the formation of an optically transparent, viscoelastic, and biocompatible gel network that is melt-processable at temperatures in the vicinity of 100 degrees C. This unique combination of properties allows microfluidic channels to be fabricated in a matter of minutes by simply making impressions of the negative relief structures on heated master molds. Melt processability allows multiple impressions to be made against different masters to construct complex geometries incorporating multi-height features within the same microchannel. Intricate interconnected multilayered structures are also easily fabricated owing to the ability to bond and seal multiple layers by briefly heating the material at the bond interface. Thermal and mechanical properties are tunable over a wide range through proper selection of gel composition.

  3. Coupling sequencing by hybridization (SBH) with gel sequencing for an inexpensive analysis of genes and genomes

    SciTech Connect

    Drmanac, S.; Labat, I.; Hauser, B.; Drmanac, R.

    1996-11-01

    The speed and cost of DNA sequencing are bottlenecks in the analysis of genes end genomes. Sequencing by hybridization (SBH) is a versatile method with several applications which can accelerated DNA screening, mapping and sequencing. Requirements, achievements and problems in the development of the SBH format 1 (DNA samples arrayed) are presented and schemes for its synergetic coupling with gel sequencing techniques are discussed. It appears that by one hybridization machine with 24 boxes and four ABI gel sequencers 100- 300 Mb of DNA sequence can be determined per year. Various genetic studies based on computer assisted analysis of large collections of partial or complete DNA sequences (`sequenetics`) may be achieved in this century.

  4. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study.

    PubMed

    Zheng, Li; Hu, Xuefeng; Huang, Yuanjie; Xu, Guojie; Yang, Jinsong; Li, Li

    2015-01-29

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo 'bioreactors' for the screening of favorable cell vehicles for tumor engineering in vitro.

  5. Proteome profile of zebrafish caudal fin based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MALDI MS/MS analysis.

    PubMed

    Singh, Sachin K; Lakshmi, Mula G Meena; Saxena, Sandeep; Swamy, Cherukuvada V Brahmendra; Idris, Mohammed M

    2011-01-01

    Zebrafish (Danio rerio) is the widely used vertebrate model animal for understanding the complexity of development and disease process. Zebrafish has been also extensively used in understanding the mechanism of regeneration for its extensive capability of regenerating fins and other tissues. We have analyzed the proteome profile of zebrafish caudal fin in its native state based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MS/MS analyses. A total of 417 proteins were identified as zebrafish fin tissue specific, which includes 397 proteins identified based on one-dimensional gel electrophoresis LCMS/MS analysis and 101 proteins identified based on two-dimensional gel electrophoresis MALDI MS/MS. The proteins mapped to the zebrafish fin tissue were shown to be involved in various biological activities related to development, apoptosis, signaling and metabolic process. Focal adhesion, regulation of actin cytoskeleton, cancer-related pathways, mitogen-activated protein kinase signaling, antigen processing and presentation, and proteasome are some of the important pathways associated with the identified proteome data set of the zebrafish fin.

  6. Functionalized Agarose Self-Healing Ionogels Suitable for Supercapacitors.

    PubMed

    Trivedi, Tushar J; Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung; Kumar, Arvind

    2015-10-12

    Agarose has been functionalized (acetylated/carbanilated) in an ionic liquid (IL) medium of 1-butyl-3-methylimidazolium acetate at ambient conditions. The acetylated agarose showed a highly hydrophobic nature, whereas the carbanilated agarose could be dissolved in water as well as in the IL medium. Thermoreversible ionogels were obtained by cooling the IL sols of carbanilated agarose at room temperature. The ionogel prepared from a protic-aprotic mixed-IL system (1-butyl-3-methylimidazolium chloride and N-(2-hydroxyethyl)ammonium formate) demonstrated a superior self-healing property, as confirmed from rheological measurements. The superior self-healing property of such an ionogel has been attributed to the unique inter-intra hydrogen-bonding network of functional groups inserted in the agarose. The ionogel was tested as a flexible solid electrolyte for an activated-carbon-based supercapacitor cell. The measured specific capacitance was found to be comparable with that of a liquid electrolyte system at room temperature and was maintained for up to 1000 charge-discharge cycles. Such novel functionalized-biopolymer self-healing ionogels with flexibility and good conductivity are desirable for energy-storage devices and electronic skins with superior lifespans and robustness.

  7. A meta-analysis of platelet gel for prevention of sternal wound infections following cardiac surgery

    PubMed Central

    Kirmani, Bilal H.; Jones, Siôn G.; Datta, Subir; McLaughlin, Edward K.; Hoschtitzky, Andreas J.

    2017-01-01

    Deep sternal wound infection and bleeding are devastating complications following cardiac surgery, which may be reduced by topical application of autologous platelet gel. Systematic review identified seven comparative studies involving 4,692 patients. Meta-analysis showed significant reductions in all sternal wound infections (odds ratio 3.48 [1.08–11.23], p=0.04) and mediastinitis (odds ratio 2.69 [1.20–6.06], p=0.02) but not bleeding. No adverse events relating to the use of topical platelet-rich plasma were reported. The use of autologous platelet gel in cardiac surgery appears to provide significant reductions in serious sternal wound infections, and its use is unlikely to be associated with significant risk. PMID:27177403

  8. Nearly Finished Genomes Produced Using Gel Microdroplet Culturing (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Fitzsimmons, Michael [LANL

    2016-07-12

    Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  9. Monolithic cryogels made of agarose-chitosan composite and loaded with agarose beads for purification of immunoglobulin G.

    PubMed

    Sun, Sijuan; Tang, Yuhai; Fu, Qiang; Liu, Xuan; Guo, Li'an; Zhao, Yanding; Chang, Chun

    2012-05-01

    In order to obtain a novel absorbent with high adsorption capacity for the purification of immunoglobulin G (IgG), continuous supermacroporous agarose beads embedded agarose-chitosan composite monolithic cryogels (agarose-chitosan cryogels) were prepared by cryo-copolymerization of agarose-chitosan blend solutions with glutaraldehyde as the crosslinker in the presence of agarose beads. After coupling 2-mercaptopyridine onto divinylsulfone-activated matrix, the obtained cryogels were used for the purification of IgG. The microstructure morphologies of the cryogels were analyzed by scanning electron microscopy. The results showed that the obtained cryogels possess interconnected pores of 10-100 μm size. The specific surface area was 350 m(2)/g with maximum adsorption capacity of IgG 71.4 mg/g. The cryogels showed workable stability, and can be reused at least 15 times without significant loss in adsorption capacity. IgG purity after one-step purification from human plasma was monitored by electrophoresis and the average recovery was estimated to be 90%.

  10. Development of a bi-functional silica monolith for electro-osmotic pumping and DNA clean-up/extraction using gel-supported reagents in a microfluidic device.

    PubMed

    Oakley, Jennifer A; Shaw, Kirsty J; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-06-07

    A silica monolith used to support both electro-osmotic pumping (EOP) and the extraction/elution of DNA coupled with gel-supported reagents is described. The benefits of the combined EOP extraction/elution system were illustrated by combining DNA extraction and gene amplification using the polymerase chain reaction (PCR) process. All the reagents necessary for both processes were supported within pre-loaded gels that allow the reagents to be stored at 4 degrees C for up to four weeks in the microfluidic device. When carrying out an analysis the crude sample only needed to be hydrodynamically introduced into the device which was connected to an external computer controlled power supply via platinum wire electrodes. DNA was extracted with 65% efficiency after loading lysed cells onto a silica monolith. Ethanol contained within an agarose gel matrix was then used to wash unwanted debris away from the sample by EOP (100 V cm(-1) for 5 min). The retained DNA was subsequently eluted from the monolith by water contained in a second agarose gel, again by EOP using an electric field of 100 V cm(-1) for 5 min, and transferred into the PCR reagent containing gel. The eluted DNA in solution was successfully amplified by PCR, confirming that the concept of a complete self-contained microfluidic device could be realised for DNA sample clean up and amplification, using a simple pumping and on-chip reagent storage methodology.

  11. Fractional Order Analysis of Sephadex Gel Structures: NMR Measurements Reflecting Anomalous Diffusion.

    PubMed

    Magin, Richard L; Akpa, Belinda S; Neuberger, Thomas; Webb, Andrew G

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-(bD)(α)], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4,000 s-mm(-2)). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  12. Tris-acetate polyacrylamide gradient gels for the simultaneous electrophoretic analysis of proteins of very high and low molecular mass.

    PubMed

    Cubillos-Rojas, Monica; Amair-Pinedo, Fabiola; Tato, Irantzu; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2012-01-01

    Polyacrylamide gel electrophoresis (PAGE) is one of the most powerful tools used for protein analysis. We describe the use of Tris-acetate buffer and 3-15% polyacrylamide gradient gels to simultaneously separate proteins in the mass range of 10-500 kDa. We show that this system is highly sensitive, it has good resolution and high reproducibility, and that it can be used for general applications of PAGE such as Coomassie Brilliant Blue staining and immunoblotting. Moreover, we describe how to generate mini Tris-acetate polyacrylamide gels to use them in miniprotein electrophoresis systems. These economical gels are easy to generate and to manipulate and allow a rapid analysis of proteins. All these features make the Tris-acetate-PAGE system a very helpful tool for protein analysis.

  13. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis.

    PubMed

    Temmerman, R; Scheirlinck, I; Huys, G; Swings, J

    2003-01-01

    In order to obtain functional and safe probiotic products for human consumption, fast and reliable quality control of these products is crucial. Currently, analysis of most probiotics is still based on culture-dependent methods involving the use of specific isolation media and identification of a limited number of isolates, which makes this approach relatively insensitive, laborious, and time-consuming. In this study, a collection of 10 probiotic products, including four dairy products, one fruit drink, and five freeze-dried products, were subjected to microbial analysis by using a culture-independent approach, and the results were compared with the results of a conventional culture-dependent analysis. The culture-independent approach involved extraction of total bacterial DNA directly from the product, PCR amplification of the V3 region of the 16S ribosomal DNA, and separation of the amplicons on a denaturing gradient gel. Digital capturing and processing of denaturing gradient gel electrophoresis (DGGE) band patterns allowed direct identification of the amplicons at the species level. This whole culture-independent approach can be performed in less than 30 h. Compared with culture-dependent analysis, the DGGE approach was found to have a much higher sensitivity for detection of microbial strains in probiotic products in a fast, reliable, and reproducible manner. Unfortunately, as reported in previous studies in which the culture-dependent approach was used, a rather high percentage of probiotic products suffered from incorrect labeling and yielded low bacterial counts, which may decrease their probiotic potential.

  14. Quaternary ammonium substituted agarose as surface coating for capillary electrophoresis.

    PubMed

    Ullsten, Sara; Söderberg, Lennart; Folestad, Staffan; Markides, Karin E

    2004-05-01

    A novel positively charged polymer of quaternary ammonium substituted agarose (Q-agarose) has been synthesized and explored for use as a coating in capillary electrophoresis. The fast and simple coating procedure is based on a multi-site electrostatic interaction between the polycationic agarose polymer and the negatively charged fused-silica surface. By simply flushing fused-silica capillaries with hot polymer solution a positively charged, hydrophilic deactivation layer is achieved. The polymer surface provides an intermediate electroosmotic flow of reversed direction, over a range of pH 2-11, compared to unmodified fused-silica. The coating procedure was highly reproducible with an RSD of 4%, evaluated as the electroosmotic flow mobility for 30 capillaries prepared at 10 different occasions. The application of Q-agarose coated capillaries in separation science was investigated using a set of basic drugs and model proteins and peptides. Due to the intermediate electroosmotic flow generated, the resolution of basic drugs could be increased, compared to using bare fused-silica capillaries. Moreover, the coating enabled separation of proteins and peptides with efficiencies up to 300.000 plates m(-1).

  15. Interfacing solid-state nanopores with gel media to slow DNA translocations.

    PubMed

    Waugh, Matthew; Carlsen, Autumn; Sean, David; Slater, Gary W; Briggs, Kyle; Kwok, Harold; Tabard-Cossa, Vincent

    2015-08-01

    We demonstrate the ability to slow DNA translocations through solid-state nanopores by interfacing the trans side of the membrane with gel media. In this work, we focus on two reptation regimes: when the DNA molecule is flexible on the length scale of a gel pore, and when the DNA behaves as persistent segments in tight gel pores. The first regime is investigated using agarose gels, which produce a very wide distribution of translocation times for 5 kbp dsDNA fragments, spanning over three orders of magnitude. The second regime is attained with polyacrylamide gels, which can maintain a tight spread and produce a shift in the distribution of the translocation times by an order of magnitude for 100 bp dsDNA fragments, if intermolecular crowding on the trans side is avoided. While previous approaches have proven successful at slowing DNA passage, they have generally been detrimental to the S/N, capture rate, or experimental simplicity. These results establish that by controlling the regime of DNA movement exiting a nanopore interfaced with a gel medium, it is possible to address the issue of rapid biomolecule translocations through nanopores-presently one of the largest hurdles facing nanopore-based analysis-without affecting the signal quality or capture efficiency.

  16. Manufacturing of agarose-based chromatographic adsorbents--effect of ionic strength and cooling conditions on particle structure and mechanical strength.

    PubMed

    Ioannidis, Nicolas; Bowen, James; Pacek, Andrzej; Zhang, Zhibing

    2012-02-01

    The effect of ionic strength of agarose solution and quenching temperature of the emulsion on the structure and mechanical strength of agarose-based chromatographic adsorbents was investigated. Solutions of agarose containing different amounts of NaCl were emulsified at elevated temperature in mineral oil using a high-shear mixer. The hot emulsion was quenched at different temperatures leading to the gelation of agarose and formation of soft particles. Analysis of Atomic Force Microscopy (AFM) images of particle surfaces shows that pore size of particles increases with ionic strength and/or high quenching temperature. Additionally it has been found that the compressive strength of particles measured by micromanipulation also increases with ionic strength of the emulsion and/or high quenching temperature but these two parameters have no significant effect on the resulting particle size and particle size distribution. Results from both characterization methods were compared with Sepharose 4B, a commercial agarose-based adsorbent. This is the first report examining the effect of ionic strength and cooling conditions on the microstructure of micron-sized agarose beads for bioseparation.

  17. Gel electrophoretic methods for the analysis of biosimilar pharmaceuticals using the example of recombinant erythropoietin.

    PubMed

    Reichel, Christian; Thevis, Mario

    2013-03-01

    Due to their versatility and cost-effectiveness, gel electrophoretic methods provide an important set of tools for the analysis of therapeutic proteins. As an increasing number of biosimilar pharmaceuticals are entering the market, techniques are required that allow reliable demonstration of comparability of these products with the reference products. Isoelectric focusing, SDS-PAGE, native PAGE and 2D electrophoresis (2D-PAGE) have been frequently applied for this purpose. Supplementary techniques are fluorophore-assisted carbohydrate electrophoresis and sarcosyl-PAGE. Of additional importance is the comparison of recombinant with endogenously synthesized glycoproteins. Reagent array analysis combined with SDS-PAGE and western blotting proved especially useful for this purpose. As an example for the application of these methods, the analysis of recombinant originator erythropoietins and some of their biosimilar counterparts is described.

  18. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production.

    PubMed

    Kim, Hee Taek; Lee, Saeyoung; Kim, Kyoung Heon; Choi, In-Geol

    2012-03-01

    A sugar platform equipped with acetic acid, multiple agarases and neoagarobiose hydrolase (NABH) converted recalcitrant agar polysaccharide into monosugars, which was evaluated by simultaneous saccharification and fermentation (SSF). The sugar platform was divided into chemical liquefaction and enzymatic saccharification. The chemical liquefaction was carried out in mild conditions (using a dilute acetic acid at 80°C for 1-6h) to avoid the production of fermentation inhibitors and hence the highest degree of liquefaction of 95.6% (w/w) was obtained. We mimicked the natural agarolytic pathway using three microbial agarases (Aga16B, Aga50D and DagA) and NABH, and the enzyme system converted 79.1% of agarose to monosugars. The chemical liquefaction and SSF of 30 g/l agarose resulted in 4.4 g/l ethanol concentration and 49.3% of the theoretical ethanol yield to d-galactose. This is the first report on the complete enzymatic conversion of agarose into its monosugars and the SSF of agarose into ethanol.

  19. Theoretical analysis of the kinetics of DNA hybridization with gel-immobilized oligonucleotides.

    PubMed Central

    Livshits, M A; Mirzabekov, A D

    1996-01-01

    A new method of DNA sequencing by hybridization using a microchip containing a set of immobilized oligonucleotides is being developed. A theoretical analysis is presented of the kinetics of DNA hybridization with deoxynucleotide molecules chemically tethered in a polyacrylamide gel layer. The analysis has shown that long-term evolution of the spatial distribution and of the amount of DNA bound in a hybridization cell is governed by "retarded diffusion," i.e., diffusion of the DNA interrupted by repeated association and dissociation with immobile oligonucleotide molecules. Retarded diffusion determines the characteristic time of establishing a final equilibrium state in a cell, i.e., the state with the maximum quantity and a uniform distribution of bound DNA. In the case of cells with the most stable, perfect duplexes, the characteristic time of retarded diffusion (which is proportional to the equilibrium binding constant and to the concentration of binding sites) can be longer than the duration of the real hybridization procedure. This conclusion is indirectly confirmed by the observation of nonuniform fluorescence of labeled DNA in perfect-match hybridization cells (brighter at the edges). For optimal discrimination of perfect duplexes from duplexes with mismatches the hybridization process should be brought to equilibrium under low-temperature nonsaturation conditions for all cells. The kinetic differences between perfect and nonperfect duplexes in the gel allow further improvement in the discrimination through additional washing at low temperature after hybridization. Images FIGURE 1 PMID:8913616

  20. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, J.S.; Giometti, C.S.; Tollaksen, S.L.

    1989-04-25

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower and of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  1. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  2. In vivo measurement of flavour release from mixed phase gels.

    PubMed

    Taylor, A J; Besnard, S; Puaud, M; Linforth, R S

    2001-05-01

    Flavour release was investigated from pure gelatin, pure agarose and mixed gelatin-agarose gels, all containing 25% sucrose and flavoured with p-cymene, ethyl butyrate, pyrazine and ethanol. Gels were characterised by optical microscopy, and rheological techniques to determine phase separation, elastic modulus and melting temperature. Volatile release was measured by monitoring the four volatiles in the expired air from one individual eating the gels, using Atmospheric Pressure Chemical Ionisation-Mass Spectrometry. The release pattern of p-cymene was not affected by gel type. The release of ethanol, ethyl butyrate and pyrazine was affected to different extents by the matrix suggesting that both the properties of the volatile and the matrix determine volatile release in vivo.

  3. Two-Dimensional Gel Electrophoresis Image Analysis via Dedicated Software Packages.

    PubMed

    Maurer, Martin H

    2016-01-01

    Analyzing two-dimensional gel electrophoretic images is supported by a number of freely and commercially available software. Although the respective program is highly specific, all the programs follow certain standardized algorithms. General steps are: (1) detecting and separating individual spots, (2) subtracting background, (3) creating a reference gel and (4) matching the spots to the reference gel, (5) modifying the reference gel, (6) normalizing the gel measurements for comparison, (7) calibrating for isoelectric point and molecular weight markers, and moreover, (8) constructing a database containing the measurement results and (9) comparing data by statistical and bioinformatic methods.

  4. Analysis of lipoprotein profiles of healthy cats by gel-permeation high-performance liquid chromatography

    PubMed Central

    MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu

    2016-01-01

    Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431

  5. Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis.

    PubMed

    He, Mei; Herr, Amy E

    2009-10-01

    We introduce an automated immunoblotting method that reports protein electrophoretic mobility and identity in a single streamlined microfluidic assay. Native polyacrylamide gel electrophoresis (PAGE) was integrated with subsequent in situ immunoblotting. Integration of three PA gel elements into a glass microfluidic chip achieved multiple functions, including (1) rapid protein separation via on-chip PAGE, (2) directed electrophoretic transfer of resolved protein peaks to an in-line blotting membrane, and (3) high-efficiency identification of the transferred proteins using antibody-functionalized blotting membranes. In-chip blotting membranes were photopatterned with biotinylated antibody using streptavidin polyacrylamide (PA) thus yielding postseparation sample analysis. No pressure driven flow or fluid valving was required, as the assay was operated by electrokinetically programmed control. A model sample of fluorescently labeled BSA (negative control), alpha-actinin, and prostate specific antigen (PSA) was selected to develop and characterize the assay. A 5 min assay time was required without operator intervention. Optimization of the blotting membrane (geometry, operation, and composition) yielded a detection limit of approximately 0.05 pg (alpha-actinin peak). An important additional blotting fabrication strategy was developed and characterized to allow vanishingly small antibody consumption (approximately 1 microg), as well as end-user customization of the blotting membrane after device fabrication and storage. This first report of rapid on-chip protein PAGE integrated with in situ immunoblotting forms the basis for a sensitive, automated approach applicable to numerous forms of immunoblotting.

  6. Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp.

    PubMed

    Al-Obaidi, Jameel R; Saidi, Noor Baity; Usuldin, Siti Rokhiyah Ahmad; Hussin, Siti Nahdatul Isnaini Said; Yusoff, Noornabeela Md; Idris, Abu Seman

    2016-04-01

    Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp.

  7. Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite.

    PubMed

    Loparic, Marko; Wirz, Dieter; Daniels, A U; Raiteri, Roberto; Vanlandingham, Mark R; Guex, Geraldine; Martin, Ivan; Aebi, Ueli; Stolz, Martin

    2010-06-02

    As documented previously, articular cartilage exhibits a scale-dependent dynamic stiffness when probed by indentation-type atomic force microscopy (IT-AFM). In this study, a micrometer-size spherical tip revealed an unimodal stiffness distribution (which we refer to as microstiffness), whereas probing articular cartilage with a nanometer-size pyramidal tip resulted in a bimodal nanostiffness distribution. We concluded that indentation of the cartilage's soft proteoglycan (PG) gel gave rise to the lower nanostiffness peak, whereas deformation of its collagen fibrils yielded the higher nanostiffness peak. To test our hypothesis, we produced a gel-microfiber composite consisting of a chondroitin sulfate-containing agarose gel and a fibrillar poly(ethylene glycol)-terephthalate/poly(butylene)-terephthalate block copolymer. In striking analogy to articular cartilage, the microstiffness distribution of the synthetic composite was unimodal, whereas its nanostiffness exhibited a bimodal distribution. Also, similar to the case with cartilage, addition of the negatively charged chondroitin sulfate rendered the gel-microfiber composite's water content responsive to salt. When the ionic strength of the surrounding buffer solution increased from 0.15 to 2 M NaCl, the cartilage's microstiffness increased by 21%, whereas that of the synthetic biomaterial went up by 31%. When the nanostiffness was measured after the ionic strength was raised by the same amount, the cartilage's lower peak increased by 28%, whereas that of the synthetic biomaterial went up by 34%. Of interest, the higher peak values remained unchanged for both materials. Taken together, these results demonstrate that the nanoscale lower peak is a measure of the soft PG gel, and the nanoscale higher peak measures collagen fibril stiffness. In contrast, the micrometer-scale measurements fail to resolve separate stiffness values for the PG and collagen fibril moieties. Therefore, we propose to use nanostiffness as a

  8. Use of pulsed-field gel electrophoresis to measure DNA damage and repair

    SciTech Connect

    Scicchitano, D.A. New York Univ., New York )

    1991-03-11

    A method is described here for the analysis of single-strand break formation and repair in genomic DNA. The procedure involves exposing cells to a DNA-damaging agent, allowing time for recovery, and embedding the cells in agarose. After lysis and digestion with a protease, the DNA, which remains in the agarose plug, is denatured with glyoxal and separated by pulsed-field gel electrophoresis. The DNA in the gel is then transferred to a support membrane and quantitated with a radioanalytic imaging system to determine the average size of the DNA at each time point of recovery. The results indicate that the repair of methyl-induced breaks in total genomic DNA is approximately 80% complete in 48 hr in CHO B11 and ARL 14 cells exposed to dimethyl sulfate. These results are in agreement with those obtained by using other techniques like alkaline sucrose sedimentation. The method developed and described here has several advantages over existing techniques for repair measurements: It can be used to monitor genotoxic agents that nick DNA, to study the removal of breaks from genomic DNA, and to test for repair of damage in specific domains of chromatin that would be too large to examine by conventional electrophoresis.

  9. Interaction of electromagnetic fields with chondrocytes in gel culture. Final report, February-August 1989

    SciTech Connect

    Grodzinsky, A.J.; Gluzband, Y.A.; Buschmann, M.D.

    1990-02-01

    The research accomplished during this project period focused on control experiments designed to establish whether cartilage cells from normal cartilage will continue to synthesize and accumulate normal extracellular matrix in agarose gel culture. This information is essential to properly design experiments to qualify changes in chondrocyte biosynthesis due to applied electromagnetic fields. The results suggest that both normal chondrocytes and swarm rat chondrosarcoma cells in agarose culture can continue to synthesize matrix macromolecules at a rate similar to or slightly higher than that in normal cartilage; also, that chondrocytes in agarose can successfully mediate assembly and accumulation of normal, mechanically functional extracellular matrix.

  10. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CM-Asp-agarose by positive and negative chromatography.

    PubMed

    Mourão, Cecília Alves; Carmignotto, Gabriela Pannunzio; Bueno, Sonia Maria Alves

    2016-04-01

    This study evaluated the feasibility of using immobilized metal-ion affinity chromatography (IMAC) for separation of human Fab fragments using four different transition metal ions copper, nickel, zinc, and cobalt chelated to CM-Asp (carboxymethylaspartate) immobilized on the agarose gel. The Fab and Fc fragments (from human IgG digested with papain) interacted differently with the chelates studied, depending on the adsorption buffer system. The interaction between chelate and Fc fragment is predominantly based on the coordination bonds using adsorption buffer containing NaCl. Negative chromatography was performed on Cu(II)-CM-Asp-agarose obtaining 2.9mg of Fab per mL of adsorbent in nonretained fractions (Fc fragment-free without uncleaved IgG). The adsorption of Fab fragments is governed by electrostatic forces in the absence of NaCl in the adsorption buffer. High selectivity was achieved on Co(II)-CM-Asp-agarose and 5.7mg of Fab per mL of adsorbent was obtained in eluted fractions without Fc fragments, although having uncleaved IgG. The results showed that chromatography on transition metal ions chetated to CM-Asp-agarose is a promising approach to separation of Fab fragments from papain-digested human IgG solution.

  11. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities.

    PubMed

    Yun, Eun Ju; Lee, Saeyoung; Kim, Ji Hye; Kim, Bo Bae; Kim, Hee Taek; Lee, Sun Hee; Pelton, Jeffrey G; Kang, Nam Joo; Choi, In-Geol; Kim, Kyoung Heon

    2013-04-01

    3,6-Anhydro-L-galactose (L-AHG) constitutes 50% of agarose, which is the main component of red macroalgae. No information is currently available on the mass production, metabolic fate, or physiological effects of L-AHG. Here, agarose was converted to L-AHG in the following three steps: pre-hydrolysis of agarose into agaro-oligosaccharides by using acetic acid, hydrolysis of the agaro-oligosaccharides into neoagarobiose by an exo-agarase, and hydrolysis of neoagarobiose into L-AHG and galactose by a neoagarobiose hydrolase. After these three steps, L-AHG was purified by adsorption and gel permeation chromatographies. The final product obtained was 95.6% pure L-AHG at a final yield of 4.0% based on the initial agarose. In a cell proliferation assay, L-AHG at a concentration of 100 or 200 μg/ mL did not exhibit any significant cytotoxicity. In a skin whitening assay, 100 μg/ mL of L-AHG showed significantly lower melanin production compared to arbutin. L-AHG at 100 and 200 μg/ mL showed strong anti-inflammatory activity, indicating the significant suppression of nitrite production. This is the first report on the production of high-purity L-AHG and its physiological activities.

  12. Agarose and methylcellulose hydrogel blends for nerve regeneration applications

    NASA Astrophysics Data System (ADS)

    Martin, Benton C.; Minner, Eric J.; Wiseman, Sherri L.; Klank, Rebecca L.; Gilbert, Ryan J.

    2008-06-01

    Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 °C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 °C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 °C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.

  13. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics.

    PubMed

    Jain, Aadhar; Yang, Allen H J; Erickson, David

    2012-05-01

    In this Letter, we demonstrate a biocompatible microscale optical device fabricated from agarose hydrogel that allows for encapsulation of cells inside an optical waveguide. This allows for better interaction between the light in the waveguide and biology, since it can interact with the direct optical mode rather than the evanescent field. We characterize the optical properties of the waveguide and further incorporate a microfluidic channel over the optical structure, thus developing an integrated optofluidic system fabricated entirely from agarose gel.

  14. Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms.

    PubMed

    Kinoshita, Keita; Iwase, Masaki; Yamada, Masumi; Yajima, Yuya; Seki, Minoru

    2016-11-01

    Vascular tissues fabricated in vitro are useful tools for studying blood vessel-related cellular physiologies and for constructing relatively large 3D tissues. An efficient strategy for fabricating vascular tissue models with multilayered, branched, and thick structures through the in situ hydrogel formation in fluidic channels is proposed. First, an aqueous solution of RGD-alginate containing smooth muscle cells (SMCs) is introduced into channel structures made of agarose hydrogel, forming a cell-embedding Ca-alginate hydrogel layer with a thickness of several hundred micrometers on the channel surface because of the Ca(2+) ions diffused from the agarose hydrogel matrix. Next, endothelial cells (ECs) are introduced and cultured for up to seven days to form hierarchically organized, multilayered vascular tissues. The factors affecting the thickness of the Ca-alginate hydrogel layer, and prepared several types of microchannels with different morphologies are examined. The fabricated vascular tissue models are easily recovered from the channel by simply detaching the agarose hydrogel plates. In addition, the effect of O2 tension (20 or 80%) on the viability and elastin production of SMCs during the perfusion culture is evaluated. This technique would pave a new way for vascular tissue engineering because it enables the facile production of morphologically in vivo vascular tissue-like structures that can be employed for various biomedical applications.

  15. An extra peptide within the catalytic module of a β-agarase affects the agarose degradation pattern.

    PubMed

    Han, Wen-Jun; Gu, Jing-Yan; Liu, Hui-Hui; Li, Fu-Chuan; Wu, Zhi-Hong; Li, Yue-Zhong

    2013-03-29

    Agarase hydrolyzes agarose into a series of oligosaccharides with repeating disaccharide units. The glycoside hydrolase (GH) module of agarase is known to be responsible for its catalytic activity. However, variations in the composition of the GH module and its effects on enzymatic functions have been minimally elucidated. The agaG4 gene, cloned from the genome of the agarolytic Flammeovirga strain MY04, encodes a 503-amino acid protein, AgaG4. Compared with elucidated agarases, AgaG4 contains an extra peptide (Asn(246)-Gly(302)) within its GH module. Heterologously expressed AgaG4 (recombinant AgaG4; rAgaG4) was determined to be an endo-type β-agarase. The protein degraded agarose into neoagarotetraose and neoagarohexaose at a final molar ratio of 1.5:1. Neoagarooctaose was the smallest substrate for rAgaG4, whereas neoagarotetraose was the minimal degradation product. Removing the extra fragment from the GH module led to the inability of the mutant (rAgaG4-T57) to degrade neoagarooctaose, and the final degradation products of agarose by the truncated protein were neoagarotetraose, neoagarohexaose, and neoagarooctaose at a final molar ratio of 2.7:2.8:1. The optimal temperature for agarose degradation also decreased to 40 °C for this mutant. Bioinformatic analysis suggested that tyrosine 276 within the extra fragment was a candidate active site residue for the enzymatic activity. Site-swapping experiments of Tyr(276) to 19 various other amino acids demonstrated that the characteristics of this residue were crucial for the AgaG4 degradation of agarose and the cleavage pattern of substrate.

  16. BANANA GEL.

    PubMed

    McGuire, G; Falk, K G

    1922-03-20

    The conditions for the formation of gels from banana extracts were studied. Gels were obtained with extracts more alkaline than pH 7.0 with very small quantities of calcium, strontium, and barium salts, the gel formation with these salts decreasing in the indicated order. In solutions more acid than pH 6.0, no gels were obtained with these salts. Magnesium, lithium, and sodium salts did not cause gel formation either in acid or alkaline solutions. Pancreatine gave a gel on incubation with banana extract at pH 5.0. The gel-forming property of banana extracts was destroyed on boiling.

  17. Proteomic profiling of the mesenteric lymph after hemorrhagic shock: Differential gel electrophoresis and mass spectrometry analysis

    PubMed Central

    2011-01-01

    Experiments show that upon traumatic injury the composition of mesenteric lymph changes such that it initiates an immune response that can ultimately result in multiple organ dysfunction syndrome (MODS). To identify candidate protein mediators of this process we carried out a quantitative proteomic study on mesenteric lymph from a well characterized rat shock model. We analyzed three animals using analytical 2D differential gel electrophoresis. Intra-animal variation for the majority of protein spots was minor. Functional clustering of proteins revealed changes arising from several global classes that give novel insight into fundamental mechanisms of MODS. Mass spectrometry based proteomic analysis of proteins in mesenteric lymph can effectively be used to identify candidate mediators and loss of protective agents in shock models. PMID:21906351

  18. Two-dimensional fluorescence difference gel electrophoresis analysis of Listeria monocytogenes submitted to a redox shock.

    PubMed

    Ignatova, Maria; Guével, Blandine; Com, Emmanuelle; Haddad, Nabila; Rossero, Albert; Bogard, Philippe; Prévost, Hervé; Guillou, Sandrine

    2013-02-21

    The influence of redox alteration on the growth and proteomic pattern of Listeria monocytogenes was investigated. A redox shock was induced in cultures by addition of 3mM ferricyanide (FeCN) and 6mM dithiothreitol (DTT) to increase or to decrease respectively the redox potential naturally occurring at the beginning of growth. In both conditions, the reducing and oxidizing redox shock had a strong influence, decreasing the maximum growth rate by half compared to a control culture. The proteomic analysis of L. monocytogenes performed by two-dimensional difference gel electrophoresis (2D-DIGE) exhibited twenty-three proteins differentially expressed (P<0.05), among these, many were oxidoreductases, and proteins involved in cellular metabolism (glycolysis, protein synthesis), detoxification (kat) or adhesion (Lmo1634).

  19. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel

    SciTech Connect

    Morandeau, Antoine E.; White, Claire E.

    2015-04-21

    Calcium–silicate–hydrate (C–S–H) gel is the main binder component in hydrated ordinary Portland cement (OPC) paste, and is known to play a crucial role in the carbonation of cementitious materials, especially for more sustainable alternatives containing supplementary cementitious materials. However, the exact atomic structural changes that occur during carbonation of C–S–H gel remain unknown. Here, we investigate the local atomic structural changes that occur during carbonation of a synthetic calcium–silicate–hydrate gel exposed to pure CO₂ vapour, using in situ X-ray total scattering measurements and subsequent pair distribution function (PDF) analysis. By analysing both the reciprocal and real-space scattering data as the C–S–H carbonation reaction progresses, all phases present during the reaction (crystalline and non-crystalline) have been identified and quantified, with the results revealing the emergence of several polymorphs of crystalline calcium carbonate (vaterite and calcite) in addition to the decalcified C–S–H gel. Furthermore, the results point toward residual calcium being present in the amorphous decalcified gel, potentially in the form of an amorphous calcium carbonate phase. As a result of the quantification process, the reaction kinetics for the evolution of the individual phases have been obtained, revealing new information on the rate of growth/dissolution for each phase associated with C–S–H gel carbonation. Moreover, the investigation reveals that the use of real space diffraction data in the form of PDFs enables more accurate determination of the phases that develop during complex reaction processes such as C–S–H gel carbonation in comparison to the conventional reciprocal space Rietveld analysis approach.

  20. Efficacy of transdermal magnesium ascorbyl phosphate delivery after ultrasound treatment with microbubbles in gel-type surrounding medium in mice.

    PubMed

    Liao, Ai-Ho; Lu, Ying-Jui; Hung, Chi-Ray; Yang, Meng-Yu

    2016-04-01

    Liquid microemulsions appropriate for topical application were obtained by increasing their viscosity through the addition of thickening agents. The present study first assessed the usefulness of ultrasound (US) plus US contrast agent, microbubbles (MBs), in agarose gel for enhancing transdermal drug delivery. The effect of US plus MBs in agarose gel on the penetration of the skin by magnesium ascorbyl phosphate (MAP) was explored both in vitro and in vivo. In the in vitro experiments, the stability of MBs was investigated by examining the penetration of MAP by the model drug, Evans blue, in two media: an agarose phantom and pig skin. The penetration depth in the agarose phantom and pig skin increased by 40% and 195%, respectively, when treated with US plus MBs in 0.1% agarose solution combined with MAP (UMB1), and by 48% and 206%, respectively, when treated with US plus MBs in 0.15% agarose solution and MAP (UMB2). The skin-whitening effects in C57BL/6J mice in the UMB1 and UMB2 groups over a 4-week experimental period were significantly increased by 63% and 70%, respectively, in the fourth week. The findings of this study suggest that the survival of MBs with US is affected by the viscosity of the surrounding medium, and that in mice, treatment with US plus MBs in a suitable agarose gel can increase skin permeability and enhance transdermal MAP delivery.

  1. A Novel Method of Estimating Dose Responses for Polymer Gels Using Texture Analysis of Scanning Electron Microscopy Images

    PubMed Central

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were −7.60%, 5.80%, 2.53%, and −0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection. PMID:23843998

  2. In-gel NHS-propionate derivatization for histone post-translational modifications analysis in Arabidopsis thaliana.

    PubMed

    Chen, Jiajia; Gao, Jun; Peng, Maolin; Wang, Yi; Yu, Yanyan; Yang, Pengyuan; Jin, Hong

    2015-07-30

    Post-translational modifications (PTMs) on histone are highly correlated with genetic and epigenetic regulation of gene expression from chromatin. Mass spectrometry (MS) has developed to be an optimal tool for the identification and quantification of histone PTMs. Derivatization of histones with chemicals such as propionic anhydride, N-hydroxysuccinimide ester (NHS-propionate) has been widely used in histone PTMs analysis in bottom-up MS strategy, which requires high purity for histone samples. However, biological samples are not always prepared with high purity, containing detergents or other interferences in most cases. As an alternative approach, an adaptation of in gel derivatization method, termed In-gel NHS, is utilized for a broader application in histone PTMs analysis and it is shown to be a more time-saving preparation method. The proposed method was optimized for a better derivatization efficiency and displayed high reproducibility, indicating quantification of histone PTMs based on In-gel NHS was achievable. Without any traditional fussy histone purification procedures, we succeeded to quantitatively profile the histone PTMs from Arabidopsis with selective knock down of CLF (clf-29) and the original parental (col) with In-gel NHS method in a rapid way, which indicated the high specificity of CLF on H3K27me3 in Arabidopsis. In-gel NHS quantification results also suggest distinctive histone modification patterns in plants, which is invaluable foundation for future studies on histone modifications in plants.

  3. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    PubMed

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2) value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.

  4. Electromyography analysis of natural mastication behavior using varying mouthful quantities of two types of gels.

    PubMed

    Kohyama, Kaoru; Gao, Zhihong; Ishihara, Sayaka; Funami, Takahiro; Nishinari, Katsuyoshi

    2016-07-01

    The objectives of this study were to examine the effects of mouthful quantities and mechanical properties of gels on natural mastication behaviors using electromyography (EMG). Two types of hydrocolloid gels (A and K) with similar fracture loads but different moduli and fracture strains were served to eleven normal women in 3-, 6-, 12-, and 24-g masses in a randomized order. EMG activities from both masseter muscles were recorded during natural mastication. Because of the similar fracture loads, the numbers of chews, total muscle activities, and entire oral processing times were similar for similar masses of both gel types. Prior to the first swallow, the more elastic K gel with a higher fracture strain required higher muscle activities than the brittle A gel, which had higher modulus. Majority of subjects had preferred sides of chewing, but all subjects with or without preferred sides used both masseters during the consumption of gels. Similar effects of masses and types of gels were observed in EMG activities of both sides of masseters. Contributions of the dominant side of chewing were diminished with increasing masses of gels, and the mass dependency on ratio of the dominant side was more pronounced with K gel. More repetitions of smaller masses required greater muscle activities and longer periods for the consumption of 24-g gel portions. Reduction in the masses with an increased number of repetitions necessitated slower eating and more mastication to consume the gel portions. These observations suggest that chewing using both sides is more effective and unconsciously reduces mastication times during the consumption of gels.

  5. Genotoxicity effect, antioxidant and biomechanical correlation: experimental study of agarose-chitosan bone graft substitute in New Zealand white rabbit model.

    PubMed

    Jebahi, Samira; Ben Saleh, Ghada; Saoudi, Mongi; Besaleh, Salma; Oudadesse, Hassane; Mhadbi, Moufida; Rebai, Tarek; Keskes, Hassib; El Feki, Abdelfattah

    2014-08-01

    Bone loss associated with skeletal trauma or metabolic diseases often requires bone grafting. In such situations, a biomaterial is necessary for migrated cells to produce new tissue. In this study, agarose-chitosan was implanted in the femoral condyle of New Zealand White rabbits that were divided into three groups: Group I was used as control; Groups II and III were used as implanted tissue with agarose-chitosan and presenting empty defects, respectively. This study evaluated the agarose-chitosan biocompatibility by determining the in vivo genotoxicity, oxidative stress balance that correlated with the hardness mechanical property. Moreover, the histopathological and quantitative elements analyzed by using inductively coupled plasma optical emission spectrometry were determined. After 30 days of implantation, the in vivo analysis of genotoxicity showed that agarose-chitosan did not induce chromosome aberration or micronucleus damage. A significant decrease in thiobarbituric and acid-reactive substance was observed after agarose-chitosan implantation in the bone tissue. Superoxide dismutase, catalase and glutathione peroxidase were significantly enhanced in agarose-chitosan-treated group compared with that of control group. A negative correlation coefficient of the mechanical property with malonyldialdehyde level was detected (R = -0.998). The histological study exhibited a significantly increased angiogenesis and newly formed tissue. No presence of inflammatory process, necrotic or fibrous tissue was detected. Major and trace elements such as Ca, P, Zn, Mg and Fe were increased significantly in the newly formed bone. These findings show that agarose-chitosan biomaterial implantation might be effective for treating trauma and bone regeneration.

  6. GelBandFitter--a computer program for analysis of closely spaced electrophoretic and immunoblotted bands.

    PubMed

    Mitov, Mihail I; Greaser, Marion L; Campbell, Kenneth S

    2009-03-01

    GelBandFitter is a computer program that uses non-linear regression techniques to fit mathematical functions to densitometry profiles of protein gels. This allows for improved quantification of gels with partially overlapping and potentially asymmetric protein bands. The program can also be used to analyze immunoblots with closely spaced bands. GelBandFitter was developed in Matlab and the source code and/or a Windows executable file can be downloaded at no cost to academic users from http://www.gelbandfitter.org.

  7. A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes.

    PubMed

    Ladig, Roman; Sommer, Maik S; Hahn, Alexander; Leisegang, Matthias S; Papasotiriou, Dimitrios G; Ibrahim, Mohamed; Elkehal, Rajae; Karas, Michael; Zickermann, Volker; Gutensohn, Michael; Brandt, Ulrich; Klösgen, Ralf Bernd; Schleiff, Enrico

    2011-07-01

    Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN-) and high resolution clear native (hrCN-) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine- and deoxycholate-based native (HDN-) PAGE. We compared the capacity of HDN-, BN- and hrCN-PAGE to resolve the well-studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN-PAGE. The analysis of isolated chloroplast envelope complexes by HDN-PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN-PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons.

  8. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

    PubMed Central

    Churchward, Matthew A; Butt, R Hussain; Lang, John C; Hsu, Kimberly K; Coorssen, Jens R

    2005-01-01

    Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide) and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine), showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis. PMID:15941475

  9. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  10. Sol-gel microextraction phases for sample preconcentration in chromatographic analysis.

    PubMed

    Segro, Scott S; Tran, Minh Phuong; Kesani, Sheshanka; Alhendal, Abdullah; Turner, Erica B

    2010-10-01

    Sol-gel technology provides a simple and reliable method for solid-phase microextraction (SPME) fiber preparation through in situ creation of surface-bonded organic-inorganic hybrid coatings characterized by enhanced thermal stability and solvent-resistance properties that are important for the coupling of SPME with GC and HPLC, respectively. The sol-gel coating technology has led to the development of an extensive array of sol-gel sorbent coatings for SPME. In this article, sol-gel microextraction coatings are reviewed, with particular attention on their synthesis, characterization, and applications in conjunction with GC and HPLC analyses. In addition, the development of sol-gel-coated stir bars, their inherent advantages, and applications are discussed. Next, the development and applications of sol-gel capillary microextraction (CME) in hyphenation with GC and HPLC is extensively reviewed. The newly emerging germania- and titania-based sol-gel microextraction phases look promising, especially in terms of pH and hot solvent stability. Finally, sol-gel monolithic beds for CME are reviewed. Such monolithic beds are in a position to greatly improve the extracting capabilities and enhanced sensitivity in CME.

  11. Analysis of strains of Campylobacter fetus by pulsed-field gel electrophoresis.

    PubMed Central

    Fujita, M; Fujimoto, S; Morooka, T; Amako, K

    1995-01-01

    Campylobacter fetus chromosomal DNA from 21 strains was analyzed by pulsed-field gel electrophoresis. The fingerprint patterns generated with SmaI and SalI were distinctive. Using the profiles obtained by pulsed-field gel electrophoresis, we established the phylogenetic dendrogram of C. fetus to identify the genetic relationship of the strains. PMID:7650215

  12. Texture analysis in gel electrophoresis images using an integrative kernel-based approach

    PubMed Central

    Fernandez-Lozano, Carlos; Seoane, Jose A.; Gestal, Marcos; Gaunt, Tom R.; Dorado, Julian; Pazos, Alejandro; Campbell, Colin

    2016-01-01

    Texture information could be used in proteomics to improve the quality of the image analysis of proteins separated on a gel. In order to evaluate the best technique to identify relevant textures, we use several different kernel-based machine learning techniques to classify proteins in 2-DE images into spot and noise. We evaluate the classification accuracy of each of these techniques with proteins extracted from ten 2-DE images of different types of tissues and different experimental conditions. We found that the best classification model was FSMKL, a data integration method using multiple kernel learning, which achieved AUROC values above 95% while using a reduced number of features. This technique allows us to increment the interpretability of the complex combinations of textures and to weight the importance of each particular feature in the final model. In particular the Inverse Difference Moment exhibited the highest discriminating power. A higher value can be associated with an homogeneous structure as this feature describes the homogeneity; the larger the value, the more symmetric. The final model is performed by the combination of different groups of textural features. Here we demonstrated the feasibility of combining different groups of textures in 2-DE image analysis for spot detection. PMID:26758643

  13. The limitations of pulsed-field gel electrophoresis for analysis of Yersinia enterocolitica isolates.

    PubMed

    Gilpin, B J; Robson, B; Lin, S; Hudson, J A; Weaver, L; Dufour, M; Strydom, H

    2014-09-01

    This study describes the analysis of 432 isolates of Yersinia enterocolitica by pulsed-field gel electrophoresis (PFGE). PFGE had a high level of discrimination with biotype 1A isolates (Simpson's Diversity Index 0.997), but with the clinically important biotypes 2, 3 and 4, the discriminatory ability of PFGE was so low as to severely limit its usefulness (DI <0.6). For biotypes 2, 3 and 4, 79% or more of isolates of each biotype were of just three different PFGE profiles. Because of this, four known outbreaks of yersiniosis would not have been identified by PFGE analysis. However, a previously unrecognized potential outbreak of yersiniosis caused by biotype 4 isolates was identified on the basis of a rare PFGE genotype with spatial and temporal clustering. We conclude that PFGE has a very limited application to the genotyping of Y. enterocolitica biotypes 2, 3 and 4, and inferences based on finding indistinguishable PFGE profiles among cases or between cases and sources need to be substantiated using alternative typing tools, or strong epidemiological evidence.

  14. Location of Biomarkers and Reagents within Agarose Beads of a Programmable Bio-nano-chip

    PubMed Central

    Jokerst, Jesse V.; Chou, Jie; Camp, James P.; Wong, Jorge; Lennart, Alexis; Pollard, Amanda A.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; Zhou, Yanjie; Ali, Mehnaaz F.

    2012-01-01

    The slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose “nanonets” that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein-capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead-bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered. PMID:21290601

  15. Fluctuation Analysis of Liquid/Liquid and Gel/Liquid Interfaces

    DTIC Science & Technology

    1989-03-17

    gel/water interface were determined by using cyclic voltammetry and zero current potentiometric methods in a four-electrode system. It has been...interface is due to the difference of the diffusion coefficients in the gel-nitrobenzene as opposed to pure nitrobenzene. In the present study an...and the real part of the diffusional impedance is calculated ; its absolute values can be obtained by multiplying the numbers in the Table by 12 e

  16. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.

  17. Unambiguous typing of canine adenovirus isolates by deoxyribonucleic acid restriction-endonuclease analysis.

    PubMed Central

    Assaf, R; Marsolais, G; Yelle, J; Hamelin, C

    1983-01-01

    Viral deoxyribonucleic acid extracted from a limited number of cells infected with canine adenovirus type 1 or type 2 was cleaved with several restriction endonucleases. Agarose gel electrophoresis of the limit digests showed stable differences between the canine adenovirus type 1 and type 2 cleavage patterns. Rapid and accurate typing of large numbers of clinical isolates may thus be done by deoxyribonucleic acid restriction-endonuclease analysis. Images Fig. 1. Fig. 2. PMID:6321002

  18. Determination of the Mutagenicity Potential of Supermint Herbal Medicine by Single Cell Gel Electrophoresis in Rat Hepatocytes

    PubMed Central

    Kalantari, Heibatullah; Rezaei, Mohsen; Mahdavinia, Masoud; Kalantar, Mojtaba; Amanpour, Zivar; varnaseri, golnaz

    2012-01-01

    Purpose: The increasing use of herbal drugs and their easy availability have necessitated the use of mutagenicity test to analyze their toxicity and safety. The aim of this study was to evaluate the genotoxicity of Supermint herbal medicine in DNA breakage of rat hepatocytes in comparison with sodium dichromate by single cell gel electrophoresis technique or comet assay. Methods: Hepatocytes were prepared from male wistar rats and were counted and kept in a bioreactor for 30 minutes. Then cells were exposed to the Supermint herbal medicine at doses of 125, 250 and 500 µl/ml. Buffer 4 (incubation buffer) and sodium dichromate were used as negative and positive control for one hour respectively. Then cell suspension with low melting point agarose were put on precoated slides and covered with agarose gel. Then lysing, electrophoresis, neutralization and staining were carried out. Finally the slides were analyzed with fluorescence microscope. The parameter under this analysis was the type of migration which was determined according to Kobayashi pattern. Results: With increased dose of Supermint herbal medicine the DNA damage was slightly increased (P<0001). Conlusion: In overall compared to the positive control significant differences is observed which convinced that the crude extract of Supermint in vitro did not have mutagenic effect. Conlusion: In overall compared to the positive control significant differences is observed which convinced that the crude extract of Supermint in vitro did not have mutagenic effect. PMID:24312800

  19. A one-dimensional analysis of sol-gel film-coating drying: Pore evolution, network shrinkage and stress development

    SciTech Connect

    Chen, K.S.; Schunk, P.R.

    1998-02-01

    Highly porous sol-gel films have potential applications as electrical and thermal insulators, catalyst supports, sensors, and membranes for gas separations. Pore dimensions in these sol-gel films are usually small e.g., on the order of tens of nanometers or less. Their successful fabrications, however, greatly depend on the fundamental understanding of mechanisms that underlie the phenomena of pore evolution, network shrinkage, and stress development since the final microstructure of a solid gel film is strongly affected by composition of its starting sol and its processing conditions. This report documents a simplified one-dimensional analysis of drying a solidifying sol-gel thin film coating supported by an impermeable solid substrate. Portions of this work were presented at the 1994 Annual Joint Meeting of the New Mexico Section of the American Ceramic Society and Materials Research Society in Albuquerque. The authors considered the solid/liquid two phase coexistent regime during the drying solidifying process in which solvent is removed continuously via evaporation, the solid phase grows significantly in mechanical strength, and pore space shrinks appreciably. From overall and differential mass balances and a force balance at equilibrium, coupled with empirical correlations of solid phase modulus and permeability to strain or deformation, the authors followed the evolution of pore space, solid phase elastic stress, and liquid phase hydrodynamic pressure; they also determined their respective values at equilibrium. By assuming microscopic pore shape models, they estimated and compared the predicted mean pore radii. Their simplified one-dimensional analysis shows that the final mean pore radius is controlled by four parameters: pore-liquid surface tension, solid phase modulus, mean pore radius, and porosity at the initial stress-free state. The one-dimensional model can be employed to guide process design and optimization in sol-gel film fabrications.

  20. Multicapillary gel electrophoresis based analysis of genetic variants in the WFS1 gene.

    PubMed

    Elek, Zsuzsanna; Dénes, Réka; Prokop, Susanne; Somogyi, Anikó; Yowanto, Handy; Luo, Jane; Souquet, Manfred; Guttman, András; Rónai, Zsolt

    2016-09-01

    The WFS1 gene is one of the thoroughly investigated targets in diabetes research, variants of the gene were suggested to be the genetic components of the common forms (type 1 and type 2) of diabetes. Our project focused on the analysis of polymorphisms (rs4689388, rs148797429, rs4273545) localized in the WFS1 promoter region. Although submarine gel electrophoresis based approaches were also employed in the genetic tests, it was demonstrated that multicapillary electrophoresis offers a state of the art approach for reliable high-throughput SNP and VNTR analysis. Association studies were carried out in a case-control setup. Luciferase reporter assay was employed to test the effect of the investigated loci on the activity of gene expression in vitro. Significant association could be demonstrated between all three polymorphisms and type 2 diabetes in both allele- and genotype-wise settings even using Bonferroni correction. It is notable; however, that the three loci were in strong linkage disequilibrium, thus the observed associations cannot be considered as separate effects. Molecular analyses showed that the rs4273545 GT SNP played a role in the regulation of transcription in vitro. However, this effect took place only in the presence of the region including the rs148797429 site, although this latter locus did not have its own impact on the regulation of gene expression. The paper provides genotyping protocols readily applicable in any multiplex SNP and VNTR analyses, moreover confirms and extends previous results about the role of WFS1 polymorphisms in the genetic risk of diabetes mellitus.

  1. Staining with highly sensitive Coomassie brilliant blue SeePico™ Stain after Flamingo™ fluorescent gel stain is useful for cancer proteomic analysis by means of two-dimensional gel electrophoresis.

    PubMed

    Kuramitsu, Yasuhiro; Hayashi, Eiko; Okada, Futoshi; Zhang, Xiulian; Tanaka, Toshiyuki; Ueyama, Yoshiya; Nakamura, Kazuyuki

    2010-10-01

    Highly sensitive Coomassie brilliant blue SeePico™ Stain was applied for proteomic analysis using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). After staining with Flamingo™ Fluorescent Gel Stain, the images of the protein spots were analyzed, and 424 protein spots were detected. After washing with Milli-Q water three times, the gels were re-stained with SeePico™ Stain and the images of the protein spots were analyzed; 272 spots were detected. To assess whether SeePico™ Stain alters MS analysis, a spot was picked up and was analyzed by LC-MS/MS. The MS analysis showed good protein identification. These results show a possible role for SeePico™ Stain in cancer proteomics using 2-DE and MS.

  2. On-line detection of proteins in gel electrophoresis by ultraviolet absorption and by native fluorescence utilizing a charge-coupled device imaging system

    SciTech Connect

    Koutny, L.B.; Yeung, E.S. )

    1993-01-15

    Slab-gel electrophoresis is the most common technique for the separation of high molecular weight biomolecules such a proteins. Acrylamide gels, as described by Laemmli, are generally the matrix of choice for the separation of SDS-denatured proteins via electrophoresis. Agarose gels, similar to those used for nucleic acids, are also useful for the separation of proteins but have not been widely applied. Agarose gels are advantageous for many reasons including simplicity of gel casting, easy sample recovery, and the fact that it is nontoxic to both the experimenter and the proteins. In the past, agarose was not used because of its poor resolving power at molecular weights below 40,000. New agarose gel systems are available that will resolve proteins ranging from 20,000 to 200,000 with or without SDS denaturing. In this study, agarose gel was chosen for its optical qualities and ability to be cast in an open system that can be imaged as the experiment is running. 17 refs., 7 figs.

  3. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  4. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  5. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  6. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments.

    PubMed

    Ersson, Clara; Möller, Lennart

    2011-11-01

    The single cell gel electrophoresis (comet assay) is a popular method for measuring DNA migration as an estimate of DNA damage. No standardised comet assay protocol exists, which make comparisons between studies complicated. In a previous inter-laboratory validation study of the comet assay, we identified important parameters in the protocol that might affect DNA migration. The aim of this study was to assess how different comet assay protocols affect DNA migration. The results in this study suggest that (i) there is a significant linear dose-response relationship between the agarose gel's density and DNA migration and that damaged cells are more sensitive to the agarose gel's density; (ii) incubation with formamidopyrimidine DNA glycosylase for 10 min is inadequate, whereas 30 min is sufficient; (iii) the typically used 20 min of alkaline treatment might be to short when analysing samples that contain particular alkali-labile sites (ALS) and (iv) the duration of electrophoresis as well as the strength of the electric field applied affects the DNA migration. By using protocol-specific calibration curves, it is possible to reduce the variation in DNA migration caused by differences in comet assay protocols. This does, however, not completely remove the impact of the durations of alkaline treatment and electrophoresis when analysing cells containing ALS that are relatively resistant to high alkaline treatment.

  7. Optimal imaging and analysis of human vaginal coating by drug delivery gels

    PubMed Central

    Henderson, Marcus H; Couchman, Grace M; Walmer, David K; Peters, Jennifer J; Owen, Derek H; Brown, Matthew A; Lavine, Michael L; Katz, David F

    2007-01-01

    Objective We used a new optical imaging technique to compare human intravaginal coating distributions of Conceptrol® and Advantage™. These gels are surrogates for future microbicidal gels, differing in molecular structures and biophysical properties. Methods For each protocol, a 3-mL gel bolus was inserted to the posterior fornix while the woman was in the supine position. She then either: (1) remained supine (10 min); or (2) sat up (1 min), stood up (1 min), sat down (1 min), and returned to supine for a net elapsed time of 10 min. The imaging device is sized/shaped like a phallus, and measurements while the device was inserted provide data that simulate peri-intromission coating. Results Coating by Advantage™ was more extensive and uniform than coating by Conceptrol®, with smaller bare spots of uncoated epithelium. Change in posture tended to increase extent and uniformity of coating, details differing between gels. Conclusions Results are consistent with predictions of mechanistic coating theory, using gel rheological data as inputs. PMID:17241845

  8. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors.

    PubMed

    Moon, Won Gyun; Kim, Gil-Pyo; Lee, Minzae; Song, Hyeon Don; Yi, Jongheop

    2015-02-18

    Despite the significant advances in solid polymer electrolytes used for supercapacitors, intractable problems including poor ionic conductivity and low electrochemical performance limit the practical applications. Herein, we report a facile approach to synthesize a NaCl-agarose gel electrolyte for use in flexible supercapacitors. The as-prepared agarose hydrogel consists of a three-dimensional chemically interconnected agarose backbone and oriented interparticular submicropores filled with water. The interconnected agarose matrix acts as a framework that provides mechanical stability to the gel electrolyte and hierarchical porous networks for optimized ion transport. The developed pores with the water filler provide an efficient ionic pathway to the storage sites of electrode. With these properties, the gel electrolyte enables the supercapacitor to have a high specific capacitance of 286.9 F g(-1) and a high rate capability that is 80% of specific capacitance obtained in the case of a liquid electrolyte at 100 mV s(-1). In addition, attributed to the simple procedure and its components, the gel electrolyte is highly scalable, cost-effective, safe, and nontoxic. Thus, the developed gel electrolyte has the potential for use in various energy storage and delivery systems.

  9. Growth in Agarose of Human Cells Infected with Cytomegalovirus

    PubMed Central

    Lang, David J.; Montagnier, Luc; Latarjet, Raymond

    1974-01-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation. Images PMID:4367907

  10. Composites of Quasi-Colloidal Layered Double Hydroxide Nanoparticles and Agarose Hydrogels for Chromate Removal

    PubMed Central

    Gwak, Gyeong-Hyeon; Kim, Min-Kyu; Oh, Jae-Min

    2016-01-01

    Composite hydrogels were prepared that consisted of quasi-colloidal layered double hydroxide (LDH) nanoparticles and agarose via the electrophoretic method, starting from three different agarose concentrations of 0.5, 1, and 2 wt/v%. The composite hydrogel was identified to have a uniform distribution of LDH nanoparticles in agarose matrix. Microscopic studies revealed that the composite hydrogel had a homogeneous quasi-colloidal state of LDHs, while the simple mixture of LDH powder and agarose hydrogels did not. It was determined that agarose concentration of the starting hydrogel did not significantly influence the amount of LDH that developed in the composite. The chromate scavenging efficiency of the composite hydrogel and corresponding agarose or mixture hydrogel was evaluated with respect to time, and chromate concentration. In general, the composite hydrogels exhibited much higher chromate removal efficacy compared with agarose or mixture hydrogels. Through estimating chromate adsorption by LDH moiety in the composite or mixture hydrogel, it was suggested that the agarose component facilitated the stability and dispersibility of the quasi-colloidal state of LDH nanoparticles in the composite resulting in high adsorption efficacy. From Freundlich isotherm adsorption fitting, composites were determined to possess beneficial cooperative adsorption behavior with a high adsorption coefficient. PMID:28344282

  11. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    PubMed

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  12. Bioactive Agarose Carbon-Nanotube Composites are Capable of Manipulating Brain–Implant Interface

    PubMed Central

    Lewitus, Dan Y.; Smith, Karen L.; Landers, John; Neimark, Alexander V.; Kohn, Joachim

    2014-01-01

    Composite electrodes made of the polysaccharide agarose and carbon nanotube fibers (A-CNE) have shown potential to be applied as tissue-compatible, micro-electronic devices. In the present work, A-CNEs were functionalized using neuro-relevant proteins (laminin and alpha-melanocyte stimulating hormone) and implanted in brain tissue for 1 week (acute response) and 4 weeks (chronic response). Qualitative and quantitative analysis of neuronal and immunological responses revealed significant changes in immunological response to implanted materials depending on the type of biomolecule used. The potential to manipulate tissue response through the use of an anti-inflammatory protein, alpha-melanocyte stimulating hormone, was shown in the reduction of astroglia presence near the implant site during the glial scar formation. These results suggest that A-CNEs, which are soft, flexible, and easily made bioactive, have the ability to modify brain tissue response through surface modification as a function of the biomolecule used. PMID:25382868

  13. At-line coupling of magnetic-nanoparticle-based extraction with gel isoelectric focusing for protein analysis.

    PubMed

    Dou, Peng; Liu, Zhen

    2011-04-01

    Sample preparation is a crucial step for protein analysis. Functionalized magnetic nanoparticle (MNP)-based extraction has been developed to be a useful sample preparation technique for proteomic analysis. In this paper, we present a strategy for at-line coupling of MNP-based extraction (MNE) with gel isoelectric focusing (IEF). The key to the at-line combination is to use an anolyte or a catholyte as the desorbing agent. Thus, functionalized MNPs can be facilely at-line coupled with gel IEF, provided that the extraction/desorption process is pH-controlled. MNPs extracted with target proteins are added to the sample well, which can function as a natural adapter. Once a focusing electric field has been applied across the gel, proton ions migrating from the anolyte or hydroxide ions migrating from the catholyte can act as a desorbing agent, releasing the proteins from the MNE probes. The released proteins are consequently focused into distinct bands where the local pH equals their pI values. The at-line combination was well demonstrated with three types of functionalized nanoparticles: (1) phenylboronic acid functionalized MNPs for extracting glycoproteins through boronate affinity; (2) carboxyl-functionalized MNPs for extracting positively charged proteins through a weak cation exchange mechanism; and (3) amino-functionalized MNPs for extracting negatively charged proteins through a weak anion exchange mechanism. The at-line combination exhibited several significant advantages, including selectivity, sensitivity, and speed.

  14. Interaction of surfactants with poly(acryloyl- L-proline methyl ester) gel and its statistical moment analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaru; Safranj, Agneza; Omichi, Hideki; Miyajima, Masaharu; Katakai, Ryoichi

    1995-08-01

    The swelling behavior of acryloyl- L-proline methyl ester (A-ProOMe) gel with a reversible and stepwise volume change was studied in aqueous solutions containing sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate (LDS). The transition temperature was evaluated from both the midpoint of the slope under the swelling vs temperature curve (VPTT) and the statistical moment analysis using an area under the curve (ISTT). With the addition of surfactants, the VPTT and ISTT increased and, as a result, it was found that no changes in transition temperature are influenced by the difference between the counterions of the two surfactants. A plot of VPTT and ISTT gave a straight line with a reasonable correlation, suggesting that the transition temperature of the gel, which is affected by surfactant concentration, can be evaluated from ISTT.

  15. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  16. Assessing variability in gel-based proteomic analysis of Nitrosomonas europaea.

    PubMed

    Burton, Emily O; Hickey, William J

    2011-01-01

    Proteomics offers a unique look at the way protein expression changes in response to stimuli, and "gel-based" methods that utilize two-dimensional gel electrophoresis (2-DE) are key technologies in such studies. However, the many steps involved can be technically complex, and the resulting data are subject to variability from both technical and biological sources. Designing 2-DE proteomic studies can be challenging, as a set of standard methods or experimental designs has not been established. This being the case, it is especially important to identify and control sources of variability. Statistically significant results can be obtained if the experimental design includes a sufficient number of replicate 2-DE gels, and if the replicate gels are similar enough to be analyzed in the same experiment. While three or four replicates are often sufficient for compensation of variability, the pilot study illustrated in this chapter showed that statistically significant expression differences could be detected for 90% of the spots matched if six replicate experiments were done.

  17. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    SciTech Connect

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  18. Peptide fractionation by SDS-free polyacrylamide gel electrophoresis for proteomic analysis via DF-PAGE.

    PubMed

    Ramos, Yassel; Besada, Vladimir; Castellanos-Serra, Lila

    2012-01-01

    Here we present a procedure for peptide fractionation by SDS-free polyacrylamide gel electrophoresis, based on discontinuous buffer systems. In the absence of SDS, peptide migration depends both on their molecular mass and on their net charge at the electrophoresis pH. By selecting the separation pH, peptide mobility is modulated. In the original discontinuous buffer system (Tris/glycine), peptides that migrate to the anode have pI values below 6.8 and distribute along the lane in a pI decreasing order, while at acidic pH, as that afforded by histidine/MOPS buffer system, peptides with pI below 5.5 are fractionated. Separation at acid pH is particularly useful for recovering phosphopeptides as well as other highly negatively charged peptides, as those containing sialic or sulfate substituents. Both separation conditions in Tris/glycine and in histidine/MOPS are applicable to proteomic studies, by dual-fractionation polyacrylamide gel electrophoresis (DF-PAGE). First, complex protein samples are separated via SDS-PAGE, and after in-gel proteolysis, peptides are loaded on a second SDS-free gel, where they are separated as described here.

  19. Effect of papain-based gel on type I collagen - spectroscopy applied for microstructural analysis

    PubMed Central

    Júnior, Zenildo Santos Silva; Botta, Sergio Brossi; Ana, Patricia Aparecida; França, Cristiane Miranda; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Deana, Alessandro; Bussadori, Sandra Kalil

    2015-01-01

    Considering the improvement of biomaterials that facilitate atraumatic restorative techniques in dentistry, a papain-based gel can be used in the chemomechanical removal of decayed dental tissue. However, there is no information regarding the influence of this gel on the structure of sound collagen. The aim of the present study was to investigate the adsorption of a papain-based gel (PapacarieTM) to collagen and determine collagen integrity after treatment. A pilot study was first performed with 10 samples of type I collagen membrane obtained from bovine Achilles deep tendon to compare the influence of hydration (Milli-Q water) on infrared bands of collagen. In a further experiment, 10 samples of type I collagen membrane were used to evaluate the effects of PapacarieTM on the collagen microstructure. All analyses were performed using the attenuated total reflectance technique of Fourier transform infrared (ATR-FTIR). The results demonstrated that the application of PapacarieTM does not lead to the degradation of collagen and this product can be safely used in minimally invasive dentistry. As the integrity of sound collagen is preserved after the application of the papain-based gel, this product is indicated for the selective removal of infected dentin, leaving the affected dentin intact and capable of re-mineralization. PMID:26101184

  20. Analysis of soybean embryonic axis proteins by two-dimensional gel electrophoresis and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissecte...

  1. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.

  2. Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis

    SciTech Connect

    Karger, Barry L.; Kotler, Lev; Foret, Frantisek; Minarik, Marek; Kleparnik, Karel

    2003-12-09

    A modular multiple lane or capillary electrophoresis (chromatography) system that permits automated parallel separation and comprehensive collection of all fractions from samples in all lanes or columns, with the option of further on-line automated sample fraction analysis, is disclosed. Preferably, fractions are collected in a multi-well fraction collection unit, or plate (40). The multi-well collection plate (40) is preferably made of a solvent permeable gel, most preferably a hydrophilic, polymeric gel such as agarose or cross-linked polyacrylamide.

  3. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE)

    PubMed Central

    Jha, Pooja; Wang, Xu; Auwerx, Johan

    2016-01-01

    Mitochondria are cellular organelles that produce energy in the form of ATP through a process termed oxidative phosphorylation (OXPHOS), which occurs via the protein complexes of the electron transport chain (ETC). In recent years it has become unequivocally clear that mitochondrial complexes of the ETC are not static entities in the inner mitochondrial membrane. These complexes are dynamic and in mammals they aggregate in different stoichiometric combinations to form supercomplexes (SCs) or respirasomes. It has been proposed that the net respiration is more efficient via SCs than via isolated complexes. However, it still needs to be determined whether the activity of a particular SC is associated with a disease etiology. Here we describe a simplified method to visualize and assess in-gel activity of SCs and the individual complexes with a good resolution on blue native polyacrylamide gel electrophoresis (BN-PAGE). PMID:26928661

  4. A Block-matching based technique for the analysis of 2D gel images.

    PubMed

    Freire, Ana; Seoane, José A; Rodríguez, Alvaro; Ruiz-Romero, Cristina; López-Campos, Guillermo; Dorado, Julián

    2010-01-01

    Research at protein level is a useful practice in personalized medicine. More specifically, 2D gel images obtained after electrophoresis process can lead to an accurate diagnosis. Several computational approaches try to help the clinicians to establish the correspondence between pairs of proteins of multiple 2D gel images. Most of them perform the alignment of a patient image referred to a reference image. In this work, an approach based on block-matching techniques is developed. Its main characteristic is that it does not need to perform the whole alignment between two images considering each protein separately. A comparison with other published methods is presented. It can be concluded that this method works over broad range of proteomic images, although they have a high level of difficulty.

  5. [Orthogonal test analysis of compressive strength of porous hydroxylapatite prepared by gel-casting process].

    PubMed

    Han, Yanjun; Li, Musen; Lü, Yupeng; Song, Yunjing; Chen, Y; Low, H

    2004-10-01

    Porous hydroxylapatite (HA) has excellent osseous inductive ability. It has been prepared by gel-casting process, which is feasible and can make complex ceramic material. According to the result of orthogonal test based on the compressive strength, the order and the level of the factors, including monomer HA, initiator MBAM, catalyst APS and water, were dealt with. The effects of drying and sintering technique on the properties of porous hydroxylapatite were also researched. The results showed that the order of every factor in the gel-casting process is as follows, AM-APS, MBAM, H2O. Based on the determined level of each factor, the suitable slurry constituents and drying and sintering technologies were selected, and the porous hydroxylapatite with compressive strength of 6-7 MPa was produced.

  6. Analytical Chemistry with Silica Sol-Gels: Traditional Routes to New Materials for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Walcarius, Alain; Collinson, Maryanne M.

    2009-07-01

    The versatility of sol-gel chemistry enables us to generate a wide range of silica and organosilica materials with controlled structure, composition, morphology and porosity. These materials’ hosting and recognition properties, as well as their wide-open structures containing many easily accessible active sites, make them particularly attractive for analytical purposes. In this review, we summarize the importance of silica sol-gels in analytical chemistry by providing examples from the separation sciences, optical and electrochemical sensors, molecular imprinting, and biosensors. Recent work suggests that manipulating the structure and composition of these materials at different scales (from molecular to macromolecular states and/or from micro- to meso- and/or macroporous levels) promises to generate chemical and biochemical sensing devices with improved selectivity and sensitivity.

  7. Time Controlled Protein Release from Layer-by-Layer Assembled Multilayer Functionalized Agarose Hydrogels

    PubMed Central

    Mehrotra, Sumit; Lynam, Daniel; Maloney, Ryan; Pawelec, Kendell M.; Tuszynski, Mark H.; Lee, Ilsoon

    2009-01-01

    Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain-derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH-responsive H-bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer-by-layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month-long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process. PMID:20200599

  8. Validation study for using lab-on-chip technology for Coxiella burnetii multi-locus-VNTR-analysis (MLVA) typing: application for studying genotypic diversity of strains from domestic ruminants in France.

    PubMed

    Prigent, Myriam; Rousset, Elodie; Yang, Elise; Thiéry, Richard; Sidi-Boumedine, Karim

    2015-01-01

    Coxiella burnetii, the etiologic bacterium of Q fever zoonosis, is still difficult to control. Ruminants are often carriers and involved in human epidemics. MLVA is a promising genotyping method for molecular epidemiology. Different techniques are used to resolve the MLVA band profiles such as electrophoresis on agarose gels, capillary electrophoresis or using the microfluidic Lab-on-Chip system. In this study, system based on microfluidics electrophoresis with Lab-on-Chip technology was assessed and applied on DNA field samples to investigate the genotypic diversity of C. burnetii strains circulating in France. The Lab-on-Chip technology was first compared to agarose gel electrophoresis. Subsequently, the set-up Lab-on-Chip technology was applied on 97 samples collected from ruminants in France using the 17 markers previously described. A discordance rate of 27% was observed between Lab-on-Chip and agarose gel electrophoresis. These discrepancies were checked and resolved by sequencing. The cluster analysis revealed classification based on host species and/or geographic origin criteria. Moreover, the circulation of different genotypic strains within the same farm was also observed. In this study, MLVA with Lab-on-Chip technology was shown to be more accurate, reproducible, user friendly and safer than gel electrophoresis. It also provides an extended data set from French ruminant C. burnetii circulating strains useful for epidemiological investigations. Finally, it raises some questions regarding the standardization and harmonization of C. burnetii MLVA genotyping.

  9. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    ERIC Educational Resources Information Center

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels.…

  10. Disintegration kinetics of food gels during gastric digestion and its role on gastric emptying: an in vitro analysis.

    PubMed

    Guo, Qing; Ye, Aiqian; Lad, Mita; Ferrua, Maria; Dalgleish, Douglas; Singh, Harjinder

    2015-03-01

    The understanding of the disintegration and gastric emptying of foods in the stomach is important for designing functional foods. In this study, a dynamic stomach model (human gastric simulator, HGS) was employed to investigate the disintegration and subsequent emptying of two differently structured whey protein emulsion gels (soft and hard gels).The gels were mechanically ground into fragments to reproduce the particle size distribution of an in vivo gel bolus. The simulated gel bolus was prepared by mixing gel fragments and artificial saliva, and exposed to 5 hours of simulated gastric digestion in the presence and absence of pepsin. Results showed that regardless of pepsin, the soft gel always disintegrated faster than the hard gel. The presence of pepsin significantly accelerated the disintegration of both gels. In particular, it enhanced abrasion of the soft gel into fine particles (<0.425 mm) after 180 min of processing. The emptying of the gels was influenced by the combined effects of the original particle size of the gel boluses and their disintegration kinetics in the HGS. In the presence or absence of pepsin, the larger particles of the soft gel emptied slower than the hard one during the first 120 min of process. However, in the presence of pepsin, the soft gel emptied faster than the hard one after 120 min because of a higher level of disintegration. These findings highlight the role of food structure, bolus properties and biochemical effects on the disintegration and gastric emptying patterns of gels during gastric digestion.

  11. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration

    PubMed Central

    Khanarian, Nora T.; Haney, Nora M.; Burga, Rachel A.; Lu, Helen H.

    2013-01-01

    Regeneration of the osteochondral interface is critical for integrative and functional cartilage repair. This study focuses on the design and optimization of a hydrogel-ceramic composite scaffold of agarose and hydroxyapatite (HA) for calcified cartilage formation. The first study objective was to compare the effects of HA on non-hypertrophic and hypertrophic chondrocytes cultured in the composite scaffold. Specifically, cell growth, biosynthesis, hypertrophy, and scaffold mechanical properties were evaluated. Next, the ceramic phase of the scaffold was optimized in terms of particle size (200 nm vs. 25 µm) and dose (0–6 w/v%). It was observed that while deep zone chondrocyte (DZC) biosynthesis and hypertrophy remained unaffected, hypertrophic chondrocytes measured higher matrix deposition and mineralization potential with the addition of HA. Most importantly, higher matrix content translated into significant increases in both compressive and shear mechanical properties. While cell hypertrophy was independent of ceramic size, matrix deposition was higher only with the addition of micron-sized ceramic particles. In addition, the highest matrix content, mechanical properties and mineralization potential were found in scaffolds with 3% micro-HA, which approximates both the mineral aggregate size and content of the native interface. These results demonstrate that the biomimetic hydrogel-ceramic composite is optimal for calcified cartilage formation and is a promising design strategy for osteochondral interface regeneration. PMID:22531222

  12. Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography-mass spectrometric analysis after in gel chymotryptic digestion.

    PubMed

    Tsuge, Kouichiro; Seto, Yasuo

    2006-06-21

    To verify the exposure to nerve gas, a method for detecting human butyrylcholinesterase (BuChE)-nerve gas adduct was developed using LC-electrospray mass spectrometry (ESI-MS). Purified human serum BuChE was incubated with sarin, soman or VX, and the adduct was purified by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and digested in gel by treatment with chymotrypsin. The resulting peptide mixture was subjected to LC-ESI-MS. From the chymotryptic digest of untreated human BuChE, one peak corresponding to the peptide fragment containing the active center serine residue was detected on the extracted ion chromatogram at m/z 948.5, and the sequence was ascertained to be "GESAGAASVSL" by MS/MS analysis. From the chymotryptic digest of the human BuChE-sarin adduct, a singly charged peptide peak was detected on the extracted ion chromatogram at m/z 1,069.5, and the sequence was ascertained to be "GEXAGAASVSL" by MS/MS analysis (X denotes isopropylmethylphosphonylated serine). The difference in molecular weight (120.0 Da) between the active center peptide fragments corresponding to the untreated BuChE and BuChE-sarin adduct was assumed to be derived from the addition of an isopropyl methylphosphonyl moiety to the serine residue. The formation of human BuChE adducts with soman, VX and an aged soman adduct was confirmed by detecting the respective active center peptide fragments using LC-ESI-MS. To apply the established method to an actual biological sample, human serum was incubated with VX, and the adduct was purified by procainamide affinity chromatography followed by SDS-PAGE. After chymotryptic in gel digestion, the ethylphosphonylated active center peptide fragment could be detected, and the structure of the residue was ascertained by LC-ESI-MS analysis.

  13. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue nonbinding phosphatase activities.

    PubMed

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2001-04-01

    Phosphatases extracted from a human brain were resolved into two main groups, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue binding phosphatases were further separated into four different phosphatase activities, designated P1-P4, and described previously. In the present study we describe the affi-gel blue-nonbinding phosphatases which were separated into seven different phosphatase activities, designated P5-P11 by poly-(L-lysine)-agarose and aminohexyl Sepharose 4B chromatographies. These seven phosphatase activities were active toward nonprotein phosphoester. P7-P11 and to some extent P5 could also dephosphorylate a phosphoprotein. They displayed different enzyme kinetics. On the basis of activity peak, the apparent molecular mass as estimated by Sephadex G-200 column chromatography for P5 was 49 kDa; P6, 32 kDa; P7, 150 kDa; P8, 250 kDa; P9, 165 kDa; P10, 90 kDa and P11, 165 kDa. Immunoblot analysis indicated that P8-P11 may belong to PP2B family, whereas P7 may associate with PP2A. The phosphatases P7-P11 were found to be effective in the dephosphorylation of Alzheimer's disease abnormally hyperphosphorylated tau. The resulting dephosphorylated tau regained its activity in promoting the microtubule assembly, suggesting that P7-P11 might regulate the phosphorylation of tau protein in the brain.

  14. Semi-quantitative digital analysis of polymerase chain reaction-electrophoresis gel: Potential applications in low-income veterinary laboratories

    PubMed Central

    Antiabong, John F.; Ngoepe, Mafora G.; Abechi, Adakole S.

    2016-01-01

    Aim: The interpretation of conventional polymerase chain reaction (PCR) assay results is often limited to either positive or negative (non-detectable). The more robust quantitative PCR (qPCR) method is mostly reserved for quantitation studies and not a readily accessible technology in laboratories across developing nations. The aim of this study was to evaluate a semi-quantitative method for conventional PCR amplicons using digital image analysis of electrophoretic gel. The potential applications are also discussed. Materials and Methods: This study describes standard conditions for the digital image analysis of PCR amplicons using the freely available ImageJ software and confirmed using the qPCR assay. Results and Conclusion: Comparison of ImageJ analysis of PCR-electrophoresis gel and qPCR methods showed similar trends in the Fusobacterium necrophorum DNA concentration associated with healthy and periodontal disease infected wallabies (p≤0.03). Based on these empirical data, this study adds descriptive attributes (“more” or “less”) to the interpretation of conventional PCR results. The potential applications in low-income veterinary laboratories are suggested, and guidelines for the adoption of the method are also highlighted. PMID:27733792

  15. TWO-DIMENSIONAL GEL ELECTROPHORESIS ANALYSIS OF BROWN ALGAL PROTEIN EXTRACTS(1).

    PubMed

    Contreras, Loretto; Ritter, Andrés; Dennett, Geraldine; Boehmwald, Freddy; Guitton, Nathalie; Pineau, Charles; Moenne, Alejandra; Potin, Philippe; Correa, Juan A

    2008-10-01

    High-quality protein extracts are required for proteomic studies, a field that is poorly developed for marine macroalgae. A reliable phenol extraction protocol using Scytosiphon gracilis Kogame and Ectocarpus siliculosus (Dillwyn) Lyngb. (Phaeophyceae) as algal models resulted in high-quality protein extracts. The performance of the new protocol was tested against four methods available for vascular plants and a seaweed. The protocol, which includes an initial step to remove salts from the algal tissues, allowed the use of highly resolving two-dimensional gel electrophoresis (2-DE) protein analyses, providing the opportunity to unravel potentially novel physiological processes unique to this group of marine organisms.

  16. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    PubMed

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications.

  17. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    SciTech Connect

    Sciancalepore, Corrado; Bondioli, Federica; Manfredini, Tiziano; Gualtieri, Alessandro

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  18. Nested PCR-denaturing gradient gel electrophoresis analysis of human skin microbial diversity with age.

    PubMed

    Li, Wei; Han, Lei; Yu, Pengbo; Ma, Chaofeng; Wu, Xiaokang; Xu, Jiru

    2014-01-01

    To determine whether the composition and structure of skin microbiota differ with age, cutaneous bacteria were isolated from the axillary fossa of 37 healthy human adults in two age groups (old people and young adults). Bacterial genomic DNA was extracted and characterized by nested PCR-denaturing gradient gel electrophoresis (PCR-DGGE) with primers specifically targeting V3 region of the 16S rRNA gene. The excised gel bands were sequenced to identify bacterial categories. The total bacteria, Staphylococcus spp., Staphylococcus epidermidis and Corynebacterium spp. were further enumerated by quantitative PCR. There were no significant differences in the species diversity profiles between age groups. The similarity index was lower across age groups than that it was intra-group. This indicates that the composition of skin flora is more similar to others of the same age than across age groups. While Staphylococcus spp. and Corynebacterium spp. were the dominant bacteria in both groups, sequencing and quantitative PCR revealed that skin bacterial composition differed by age. The copy number of total bacteria and Corynebacterium spp. were significantly lower in younger subjects, whereas there were no statistical differences in the quantity of Staphylococcus spp. and Staphylococcus epidermidis. These results suggest that the skin flora undergo both quantitative and qualitative changes related to aging.

  19. Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis.

    PubMed

    Shang, Ying; Zhu, Pengyu; Xu, Wentao; Guo, Tianxiao; Tian, Wenying; Luo, Yunbo; Huang, Kunlun

    2013-12-15

    In this study, a novel single universal primer multiplex ligation-dependent probe amplification (SUP-MLPA) technique that uses only one universal primer to perform multiplex polymerase chain reaction (PCR) was developed. Two reversely complementary common sequences were designed on the 5' or 3' end of the ligation probes (LPs), which allowed the ligation products to be amplified through only a single universal primer (SUP). SUP-MLPA products were analyzed on sequencing gel electrophoresis with extraordinary resolution. This method avoided the high expenses associated with capillary electrophoresis, which was the commonly used detection instrument. In comparison with conventional multiplex PCR, which suffers from low sensitivity, nonspecificity, and amplification disparity, SUP-MLPA had higher specificity and sensitivity and a low detection limit of 0.1 ng for detecting single crop species when screening the presence of genetically modified crops. We also studied the effect of different lengths of stuffer sequences on the probes for the first time. Through comparing the results of quantitative PCR, the LPs with different stuffer sequences did not affect the ligation efficiency, which further increased the multiplicity of this assay. The improved SUP-MLPA and sequencing gel electrophoresis method will be useful for food and animal feed identification, bacterial detection, and verification of genetic modification status of crops.

  20. Dynamics of DNA molecules under gel electrophoresis

    SciTech Connect

    Kotaka, Tadao, Adachi, Shiro; Shikata, Toshiyuki

    1993-12-31

    Electrophoretic mobilities {mu} of double stranded linear DNAs were examined in agarose gels subjected to a biased sinusoidal field (BSF) that utilizes a sinusoidal field of strength E{sub s} and frequency f superposed on a steady bias field of strength E{sub b}. Under BSF with E{sub s} {much_gt} E{sub b}. DNA fragments with the size M > 20 kbp exhibited peculiar behavior which the authors called a pin down phenomenon in that the {mu} shows a minimum {mu}{sub p} at a particular f{sub p} (pin down frequency) specific to M, C{sub gel} and the field strengths. The dynamics of DNA molecules under such pin-down conditions were examined by direct observation via fluorescence microscopy as well as dynamic electric birefringence.

  1. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.

    PubMed

    Tripathi, Anuj; Kathuria, Neeraj; Kumar, Ashok

    2009-09-01

    The focus of this work was to design a macroporous scaffold with controlled porosity in isotropic and anisotropic manner for tissue-engineering applications. Agarose-gelatin scaffolds were synthesized by cryogelation method, in which agarose was used to improve the mechanical characteristics and gelatin-provided amiable property of elasticity, cell adhesion, and cell proliferation in the scaffold. Agarose-gelatin (8%) cryogels synthesized in two different solvent systems (i.e., water and 0.1% acetic acid) at subzero temperature (-12 degrees C) showed well-interconnected porous structure. The agarose-gelatin cryogel synthesized in water solvent system (WSS) showed gradient porosity with an average pore diameter of a monolith (four sections from bottom to top; height 5 mm and diameter 13 mm each) ranging from 76 to 187 microm. The monolith of agarose-gelatin synthesized in 0.1% acetic acid solvent system (0.1% ASS) did not show any remarkable difference in average pore diameter of a monolith to their whole column length as revealed by scanning electron microscopy (SEM). These cryogels swelled up to approximately 90% of their capacity within 1 min. The aggregate tensile modulus showed good elasticity of the cryogels, in which agarose-gelatin synthesized in WSS showed higher tensile modulus, that is, 380.23 +/- 63.97 kPa in comparison with agarose-gelatin synthesized in 0.1% ASS, i.e., 278.08 +/- 94.08 kPa. The unconfined fatigue observation with varying strain (10-40%) and varying frequencies (2 and 5 Hz) showed no deformation of cryogels. The fibroblast (Cos-7) cell line seeded on the scaffold displayed good cell attachment in both types of cryogels and MTT assay showed good cell compatibility and favorable conditions for cell proliferation. These results indicate that agarose-gelatin cryogels can be a promising material of choice for tissue-engineering applications.

  2. Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.

    PubMed

    Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang

    2014-09-01

    A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused.

  3. Protein/RNA coextraction and small two-dimensional polyacrylamide gel electrophoresis for proteomic/gene expression analysis of renal cancer biopsies.

    PubMed

    Barbero, Giovanna; Carta, Franco; Giribaldi, Giuliana; Mandili, Giorgia; Crobu, Salvatore; Ceruti, Carlo; Fontana, Dario; Destefanis, Paolo; Turrini, Francesco

    2006-02-01

    A small amount of bioptic tissue ( approximately 5-10mg of fresh tissue) usually does not contain enough material to extract protein and RNA separately, to obtain preparative two-dimensional polyacrylamide gel electrophoresis (2-DE), and to identify a large number of separated proteins by MS. We tested a method, on small renal cancer specimens, for the coextraction of protein and RNA coupled with 2-DE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) or quadrupole time-of-flight (Q-TOF) analysis. We coextracted 0.28+/-0.05mg of proteins and 2.5+/-0.33microg of RNA for each 10mg of renal carcinoma tissue. Small and large 2-DE gels were compared: they showed a similar number of spots, and it was possible to match each other; using small format gels, one-fifth of the protein amount was required to identify, by Q-TOF analysis, the same number of proteins identifiable in large-format gel using MALDI-TOF analysis. Quality of RNA coextracted with the proteins was tested by real-time PCR on a set of housekeeping genes. They were quantified with high amplification efficiency and specificity. In conclusion, using 5 to 10mg of fresh tissue, it was possible to perform comprehensive parallel proteomic and genomic analysis by high-resolution, small-format 2-DE gels, allowing approximately 300 proteins identification and 1000 genes expression analysis.

  4. Molecular analysis of chromosomal rearrangements using pulsed field gel electrophoresis and somatic cell hybrids

    SciTech Connect

    Davis, L.M. )

    1991-01-01

    Many human genetic diseases, including some cancers, are characterized by consistent chromosome abnormalities, such as deletions and translocations. Analyses of these mutations often prove crucial to the eventual cloning and characterization of the gene(s) responsible for the disease. Two methods for analyzing these chromosome abnormalities have been developed in recent years: somatic cell hybridization and pulsed field gel electrophoresis (PFGE). Somatic cell hybridization is a technique for segregating an aberrant chromosome from its normal homologue in a cell derived from an unrelated species, which is usually a rodent. Demonstrations of these analytic techniques are presented, using as an example chromosomal abnormalities involving human chromosome band 11p13, the locus for the Wilms' tumor, aniridia, genitourinary abnormality, and mental retardation (WAGR) syndrome.

  5. Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics.

    PubMed

    Karp, Natasha A; Griffin, Julian L; Lilley, Kathryn S

    2005-01-01

    Two-dimensional difference gel electrophoresis (DIGE) is a tool for measuring changes in protein expression between samples involving pre-electrophoretic labeling ith cyanine dyes. In multi-gel experiments, univariate statistical tests have been used to identify differential expression between sample types by looking for significant changes in spot volume. Multivariate statistical tests, which look for correlated changes between sample types, provide an alternate approach for identifying spots with differential expression. Partial least squares-discriminant analysis (PLS-DA), a multivariate statistical approach, was combined with an iterative threshold process to identify which protein spots had the greatest contribution to the model, and compared to univariate test for three datasets. This included one dataset where no biological difference was expected. The novel multivariate approach, detailed here, represents a method to complement the univariate approach in identification of differentially expressed protein spots. This new approach has the advantages of reduced risk of false-positives and the identification of spots that are significantly altered in terms of correlated expression rather than absolute expression values.

  6. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    -electrophoresis experiments have recently been applied. To demonstrate its practical application, the model is applied to (pH charge regulating) carboxylated polystyrene nanospheres in low-density passivated agarose gels (weak steric effects). This furnishes a new theoretical interpretation of literature data for which a finite diffuse-layer-thickness, pH-charge regulation, high charge, and relaxation effects dominate over the steric influences.

  7. Single nucleus versus single-cell gel electrophoresis: kinetics of DNA track formation.

    PubMed

    Afanasieva, Katerina; Chopei, Marianna; Sivolob, Andrei

    2015-04-01

    Single-cell gel electrophoresis, or the comet assay, is usually performed with nucleoids prepared after a lysis of either whole cells (more often) or isolated cell nuclei (rarely). Electrophoretic properties of the second type of nucleoids have never been investigated carefully. We measured the kinetics of the DNA exit from nuclei-derived nucleoids in comparison with cell-derived nucleoids. The results show that general organization of the nuclei-derived nucleoids is not changed very much in comparison with nucleoids commonly obtained from whole cells. At the same time, in contrast to the cell-derived nucleoids, for which the exit is stepwise and cooperative, the DNA exit from the nuclei-derived nucleoids can be described by a simple monomolecular kinetics. This difference is probably due to agarose penetration into nuclei (but not into cells) before polymerization of the agarose gel. We suggest that single-nucleus gel electrophoresis may be a way for the comet assay standardization.

  8. Fabricating neuromast-inspired gel structures for membrane-based hair cell sensing

    NASA Astrophysics Data System (ADS)

    Tamaddoni, Nima J.; Stephens, Christopher P.; Sarles, S. A.

    2012-04-01

    Recent research has shown that a new class of mechanical sensor, assembled from biomolecules and which features an artificial cell membrane as the sensing element, can be used to mimic basic hair cell mechanotransduction in vertebrates. The work presented in this paper is motivated by the need to increase sensor performance and stability by refining the methods used to fabricate and connect lipid-encapsulated hydrogels. Inspired by superficial neuromasts found on fish, three hydrogel materials are compared for their ability to be readily shaped into neuromast-inspired geometries and enable lipid bilayer formation using self-assembly at an oil/water interface. Agarose, polyethylene glycol (PEG, 6kg/mole), and hydroxyethyl methacrylate (HEMA) gel materials are compared. The results of this initial study determined that UV-curable gel materials such as PEG and HEMA enable more accurate shaping of the gel-needed for developing a sensor that uses a gel material both for mechanical support and membrane formation-compared to agarose. However, the lower hydrophobicity of agarose and PEG materials provide a more fluid, water-like environment for membrane formation-unlike HEMA. In working toward a neuromast-inspired design, a final experiment demonstrates that a bilayer can also be formed directly between two lipid-covered PEG surfaces. These initial results suggest that candidate gel materials with a low hydrophobicity, high fluidity, and a low modulus can be used to provide membrane support.

  9. Comparative Analysis of Denaturing Gradient Gel Electrophoresis and Temporal Temperature Gradient Gel Electrophoresis Profiles as a Tool for the Differentiation of Candida Species

    PubMed Central

    Mohammadi, Parisa; Hamidkhani, Aida; Asgarani, Ezat

    2015-01-01

    Background: Candida species are usually opportunistic organisms that cause acute to chronic infections when conditions in the host are favorable. Accurate identification of Candida species is an essential pre-requisite for improved therapeutic strategy. Identification of Candida species by conventional methods is time-consuming with low sensitivity, yet molecular approaches have provided an alternative way for early diagnosis of invasive candidiasis. Denaturing gradient gel electrophoresis (DGGE) and temporal temperature gradient gel electrophoresis (TTGE) are polymerase chain reaction (PCR)-based approaches that are used for studying the community structure of microorganisms. By using these methods, simultaneous identification of multiple yeast species will be possible and reliable results will be obtained quickly. Objectives: In this study, DGGE and TTGE methods were set up and evaluated for the detection of different Candida species, and their results were compared. Materials and Methods: Five different Candida species were cultured on potato dextrose agar medium for 24 hours. Next, total DNA was extracted by the phenol-chloroform method. Two sets of primers, ITS3-GC/ITS4 and NL1-GC/LS2 were applied to amplify the desired regions. The amplified fragments were then used to analyze DGGE and TTGE profiles. Results: The results showed that NL1-GC/LS2 primer set could yield species-specific amplicons, which were well distinguished and allowed better species discrimination than that generated by the ITS3-GC/ITS4 primer set, in both DGGE and TTGE profiles. All five Candida species were discriminated by DGGE and TTGE using the NL1-GC/LS2 primer set. Conclusions: Comparison of DGGE and TTGE profiles obtained from NL1-GC/LS2 amplicons exhibited the same patterns. Although both DGGE and TTGE techniques are capable of detecting Candida species, TTGE is recommended because of easier performance and lower costs. PMID:26568801

  10. Computational Analysis of Silica gel-Water Adsorption Refrigeration Cycle with Mass Recovery

    NASA Astrophysics Data System (ADS)

    Akahira, Akira; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The study aims at clarifying the performance of silica gel-water adsorption refrigeration cycle with mass recovery process.Two kinds of heat exchanger were examined and the performances were compared with each other. One type of heat exchanger was a spiral tube and it was immersed in a low temperature thermostatic bath. The other was coil-shaped double tube heat exchanger using two tubes. The emulsion was circulated to make ice continuously. These systems were operated under various cooling conditions (flow rates of the emulsion and brine temperatures). The effects of the tube materials (fluororesin and non-fluororesin) and thickness were also examined. Slurry ice was formed continuously without adhesion of ice to the cooling wall under certain conditions. Using the fluororesin tube prevented ice from the adhesion and it enlarged the range of the cooling conditions under which slurry ice was formed continuously. Furthermore, by making thickness of the tube thinner and increasing the heat transfer coefficient on the outside of the tube, ice was made continuously without lowering the rate of ice formation at a higher brine temperature.

  11. Two-dimensional difference gel electrophoresis (DiGE) analysis of plasmas from dengue fever patients.

    PubMed

    Albuquerque, Lidiane M; Trugilho, Monique R O; Chapeaurouge, Alex; Jurgilas, Patrícia B; Bozza, Patrícia T; Bozza, Fernando A; Perales, Jonas; Neves-Ferreira, Ana G C

    2009-12-01

    Dengue fever is the world's most important arthropod-born viral disease affecting humans. To contribute to a better understanding of its pathogenesis, this study aims to identify proteins differentially expressed in plasmas from severe dengue fever patients relative to healthy donors. The use of 2-D Fluorescence Difference Gel Electrophoresis to analyze plasmas depleted of six high-abundance proteins (albumin, IgG, antitrypsin, IgA, transferrin and haptoglobin) allowed for the detection of 73 differentially expressed protein spots (n = 13, p < 0.01), of which 37 could be identified by mass spectrometry. These 37 spots comprised a total of 14 proteins, as follows: 7 had increased expression in plasmas from dengue fever patients (C1 inhibitor, alpha1-antichymotrypsin, vitamin D-binding protein, fibrinogen gamma-chain, alpha1-acid glycoprotein, apolipoprotein J and complement component C3c), while 7 others had decreased expression in the same samples (alpha-2 macroglobulin, prothrombin, histidine-rich glycoprotein, apolipoproteins A-IV and A-I, transthyretin and complement component C3b). The possible involvement of these proteins in the inflammatory process triggered by dengue virus infection and in the repair mechanisms of vascular damage occurring in this pathology is discussed in this study.

  12. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    PubMed Central

    Oh, MyeongWon; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress. PMID:25368623

  13. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.

    PubMed

    Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.

  14. Selective modification of polylactide by introducing acrylate groups: IR spectroscopy, gel permeation chromatography, and differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Shashkova, V. T.; Matveeva, I. A.; Glagolev, N. N.; Zarkhina, T. S.; Timashev, P. S.; Bagratashvili, V. N.; Solov'eva, A. B.

    2016-10-01

    One-stage modification of polylactide has been performed to obtain the acrylate derivatives of the polymer capable of further polymerization and preparation of cross-linked polymer materials suitable for creating implants. The reaction mechanism was determined by IR spectroscopy, gel permeation chromatography, and differential thermal analysis. It was shown for the first time that the reaction path changes depending on the ratio of components so that the desired product polylactide acrylate forms with a ~90% yield only in the presence of large (approximately tenfold) excesses of the isocyanate and acrylate components; at the equimolar ratio of components generally used in urethane formation, a mixture of the desired product (~30%), oligourethane diacrylates, and unchanged polylactide forms.

  15. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  16. Detection and analysis of protein-protein interactions of organellar and prokaryotic proteomes by blue native and colorless native gel electrophoresis.

    PubMed

    Krause, Frank; Seelert, Holger

    2008-11-01

    Native gels enable the analysis of protein complexes on a proteome-wide scale in a single experiment. The protocols described in this unit are based on separation of protein complexes by blue native polyacrylamide electrophoresis (BN-PAGE), the most versatile native gel system, and the closely related milder colorless native PAGE (CN-PAGE). Both BN-PAGE and CN-PAGE are described on analytical to preparative scales. In addition, methods for subsequent analysis of protein complexes are given, including electroelution from native gels as well as denaturing and native two-dimensional PAGE. Finally, the removal of Coomassie dye from electroeluted proteins is detailed along with a discussion of fundamental considerations for the solubilization of membrane protein complexes from various biological samples, which are exemplified for mitochondria, chloroplasts (thylakoids), and cyanobacteria.

  17. Gel mesh as ``brake'' to slow down DNA translocation through solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Tang, Zhipeng; Liang, Zexi; Lu, Bo; Li, Ji; Hu, Rui; Zhao, Qing; Yu, Dapeng

    2015-07-01

    Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results.Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f

  18. Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI).

    PubMed

    Peirce, Sara; Tacias-Pascacio, Veymar G; Russo, Maria Elena; Marzocchella, Antonio; Virgen-Ortíz, José J; Fernandez-Lafuente, Roberto

    2016-06-08

    Lipase B from Candida antarctica (CALB) was immobilized on octyl agarose (OC) and physically modified with polyethyleneimine (PEI) in order to confer a strong ion exchange character to the enzyme and thus enable the immobilization of other enzymes on its surface. The enzyme activity was fully maintained during the coating and the thermal stability was marginally improved. The enzyme release from the support by incubation in the non-ionic detergent Triton X-100 was more difficult after the PEI-coating, suggesting that some intermolecular physical crosslinking had occurred, making this desorption more difficult. Thermal stability was marginally improved, but the stability of the OCCALB-PEI was significantly better than that of OCCALB during inactivation in mixtures of aqueous buffer and organic cosolvents. SDS-PAGE analysis of the inactivated biocatalyst showed the OCCALB released some enzyme to the medium during inactivation, and this was partially prevented by coating with PEI. This effect was obtained without preventing the possibility of reuse of the support by incubation in 2% ionic detergents. That way, this modified CALB not only has a strong anion exchange nature, while maintaining the activity, but it also shows improved stability under diverse reaction conditions without affecting the reversibility of the immobilization.

  19. Identification of inositol 1,4,5-trisphosphate-binding proteins by heparin-agarose affinity purification and LTQ ORBITRAP MS in Oryza sativa.

    PubMed

    Nie, Yanli; Huang, Feifei; Dong, Shujun; Li, Lin; Gao, Ping; Zhao, Heping; Wang, Yingdian; Han, Shengcheng

    2014-10-01

    Inositol 1,4,5-trisphosohate (IP3 ) and its receptors play a pivotal role in calcium signal transduction in mammals. However, no homologs of mammalian IP3 receptors have been found in plants. In this study, we isolated the microsomal fractions from rice cells in suspension culture and further obtained putative IP3 -binding proteins by heparin-agarose affinity purification. The IP3 -binding activities of these protein fractions were determined by [(3) H] IP3 -binding assay. SDS-PAGE and MS analysis were then performed to characterize these proteins. We have identified 297 proteins from the eluates of heparin-agarose column chromatography, which will provide insight into the IP3 signaling pathways in plants. All MS data have been deposited in the ProteomeXchange with identifier PXD000763 (http://proteomecentral.proteomexchange.org/dataset/PXD000763).

  20. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins

    SciTech Connect

    Prem Das, O.; Henderson, E.J.

    1986-11-01

    Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum.

  1. Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs.

    PubMed

    Griebel, A J; Khoshgoftar, M; Novak, T; van Donkelaar, C C; Neu, C P

    2014-06-27

    Biomechanical factors play an important role in the growth, regulation, and maintenance of engineered biomaterials and tissues. While physical factors (e.g. applied mechanical strain) can accelerate regeneration, and knowledge of tissue properties often guide the design of custom materials with tailored functionality, the distribution of mechanical quantities (e.g. strain) throughout native and repair tissues is largely unknown. Here, we directly quantify distributions of strain using noninvasive magnetic resonance imaging (MRI) throughout layered agarose constructs, a model system for articular cartilage regeneration. Bulk mechanical testing, giving both instantaneous and equilibrium moduli, was incapable of differentiating between the layered constructs with defined amounts of 2% and 4% agarose. In contrast, MRI revealed complex distributions of strain, with strain transfer to softer (2%) agarose regions, resulting in amplified magnitudes. Comparative studies using finite element simulations and mixture (biphasic) theory confirmed strain distributions in the layered agarose. The results indicate that strain transfer to soft regions is possible in vivo as the biomaterial and tissue changes during regeneration and maturity. It is also possible to modulate locally the strain field that is applied to construct-embedded cells (e.g. chondrocytes) using stratified agarose constructs.

  2. Investigation of the repair of single-strand breaks in human DNA using alkaline gel electrophoresis

    SciTech Connect

    Kovacs, E.; Langemann, H. )

    1990-11-01

    Unstimulated lymphocytes from eight healthy persons were exposed to 10-, 30-, and 100-Gy doses of 60Co gamma radiation. The repair of damaged DNA was measured by (1) alkaline gel electrophoresis (extracted DNA loaded on 0.25% agarose gel, run at 1 V/cm for 39-44 h) at 0, 1, and 2 h after exposure and (2) incorporation of (3H)thymidine into unstimulated lymphocytes in the presence of 2 mM hydroxyurea 1 and 2 h after exposure. Both methods--alkaline gel electrophoresis and thymidine incorporation--showed that repair was completed within 2 h.

  3. Automated Gel Size Selection to Improve the Quality of Next-generation Sequencing Libraries Prepared from Environmental Water Samples.

    PubMed

    Uyaguari-Diaz, Miguel I; Slobodan, Jared R; Nesbitt, Matthew J; Croxen, Matthew A; Isaac-Renton, Judith; Prystajecky, Natalie A; Tang, Patrick

    2015-04-17

    Next-generation sequencing of environmental samples can be challenging because of the variable DNA quantity and quality in these samples. High quality DNA libraries are needed for optimal results from next-generation sequencing. Environmental samples such as water may have low quality and quantities of DNA as well as contaminants that co-precipitate with DNA. The mechanical and enzymatic processes involved in extraction and library preparation may further damage the DNA. Gel size selection enables purification and recovery of DNA fragments of a defined size for sequencing applications. Nevertheless, this task is one of the most time-consuming steps in the DNA library preparation workflow. The protocol described here enables complete automation of agarose gel loading, electrophoretic analysis, and recovery of targeted DNA fragments. In this study, we describe a high-throughput approach to prepare high quality DNA libraries from freshwater samples that can be applied also to other environmental samples. We used an indirect approach to concentrate bacterial cells from environmental freshwater samples; DNA was extracted using a commercially available DNA extraction kit, and DNA libraries were prepared using a commercial transposon-based protocol. DNA fragments of 500 to 800 bp were gel size selected using Ranger Technology, an automated electrophoresis workstation. Sequencing of the size-selected DNA libraries demonstrated significant improvements to read length and quality of the sequencing reads.

  4. Beading instability in soft cylindrical gels with capillary energy: Weakly non-linear analysis and numerical simulations

    NASA Astrophysics Data System (ADS)

    Taffetani, M.; Ciarletta, P.

    2015-08-01

    Soft cylindrical gels can develop a long-wavelength peristaltic pattern driven by a competition between surface tension and bulk elastic energy. In contrast to the Rayleigh-Plateau instability for viscous fluids, the macroscopic shape in soft solids evolves toward a stable beading, which strongly differs from the buckling arising in compressed elastic cylinders. This work proposes a novel theoretical and numerical approach for studying the onset and the non-linear development of the elasto-capillary beading in soft cylinders, made of neo-Hookean hyperelastic material with capillary energy at the free surface, subjected to axial stretch. Both a theoretical study, deriving the linear and the weakly non-linear stability analyses for the problem, and numerical simulations, investigating the fully non-linear evolution of the beaded morphology, are performed. The theoretical results prove that an axial elongation can not only favour the onset of beading, but also determine the nature of the elastic bifurcation. The fully non-linear phase diagrams of the beading are also derived from finite element numerical simulations, showing two peculiar morphological transitions when varying either the axial stretch or the material properties of the gel. Since the bifurcation is found to be subcritical for very slender cylinders, an imperfection sensitivity analysis is finally performed. In this case, it is shown that a surface sinusoidal imperfection can resonate with the corresponding marginally stable solution, thus selecting the emerging beading wavelength. In conclusion, the results of this study provide novel guidelines for controlling the beaded morphology in different experimental conditions, with important applications in micro-fabrication techniques, such as electrospun fibres.

  5. Preparation of DNA and protein micro arrays on glass slides coated with an agarose film

    PubMed Central

    Afanassiev, Victor; Hanemann, Vera; Wölfl, Stefan

    2000-01-01

    A thin layered agarose film on microscope slides provides a versatile support for the preparation of arrayed molecular libraries. An activation step leading to the formation of aldehyde groups in the agarose creates reactive sites that allow covalent immobilization of molecules containing amino groups. Arrays of oligonucleotides and PCR products were prepared by tip printing. After hybridization with complementary fluorescence labeled nucleic acid probes strong fluorescence signals of sequence-specific binding to the immobilized probes were detected. The intensity of the fluorescence signals was proportional to the relative amount of immobilized oligonucleotides and to the concentration of the fluorescence labeled probe. We also used the agarose film-coated slides for the preparation of protein arrays. In combination with specific fluorescence labeled antibodies these protein arrays can be used for fluorescence linked immune assays. With this approach different protein tests can be performed in parallel in a single reaction with minimal amounts of the binding reagents. PMID:10871389

  6. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples.

  7. Quantitative determination of glycine in aqueous solution using glutamate dehydrogenase-immobilized glyoxal agarose beads.

    PubMed

    Keskin, Semra Yilmazer; Keskin, Can Serkan

    2014-01-01

    In this study, an enzymatic procedure for the determination of glycine (Gly) was developed by using a column containing immobilized glutamate dehydrogenase (GDH) on glyoxal agarose beads. Ammonia is produced from the enzymatic reactions between Gly and GDH with NAD(+) in phosphate buffer medium. The indophenol blue method was used for ammonia detection based on the spectrophotometric measurements of blue-colored product absorbing at 640 nm. The calibration graph is linear in the range of 0.1-10 mM of Gly concentrations. The effect of pH, temperature, and time interval was studied to find column stability, and also the interference effects of other amino acids was investigated. The interaction between GDH and glyoxal agarose beads was analyzed by Fourier transform infrared (FTIR) spectroscopy. The morphology of the immobilized and non-immobilized agarose beads were characterized by atomic force microscopy (AFM).

  8. Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds.

    PubMed

    Lynam, Daniel A; Shahriari, Dena; Wolf, Kayla J; Angart, Phillip A; Koffler, Jacob; Tuszynski, Mark H; Chan, Christina; Walton, Patrick; Sakamoto, Jeffrey

    2015-05-01

    Agarose nerve guidance scaffolds (NGS) seeded with cells expressing brain derived neurotrophic factor (BDNF) have demonstrated robust nerve regeneration in the rat central nervous system. The purpose of this work was to explore whether agarose NGS coated with hydrogen-bonded layer-by-layer (HLbL) could provide an acellular method of delivering prolonged and consistent dosages of active BDNF. Our results show that HLbL-coated agarose NGS could release BDNF over 10days in consistent dosages averaging 80.5±12.5(SD)ng/mL. Moreover, the BDNF released from HLbL was confirmed active by in vitro cell proliferation assays. To our knowledge, this is the first report demonstrating that HLbL assembled onto a hydrogel can provide consistent, prolonged release of active BDNF in clinically relevant dosages.

  9. Genetic diversity analysis of faba bean (Vicia faba L.) germplasms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hou, W W; Zhang, X J; Shi, J B; Liu, Y J

    2015-10-30

    To investigate genetic diversity and relationships of 101 faba bean (Vicia faba L.), landraces and varieties from different provinces of China and abroad were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A total of 2625 unambiguous and stable bands from 101 germplasms were detected, and 36 different bands were classified according to the electrophoretic mobility patterns of the proteins as determined by the SDS-PAGE analysis, of which 16 were polymorphic. Besides the common bands, the protein bands of 92, 75, 62, 40, 34, 17, and 13 kDa presented the highest frequencies of 92.08, 90.10, 99.01, 95.05, 95.05, 98.02, and 95.05%, respectively. The other 29 polymorphic protein bands showed higher polymorphism with 16.09 polymorphic bands in average. The genetic similarity of the 101 genotypes tested varied from 0.6111 to 0.9722, with an average of 0.7122. Cluster analysis divided the 101 genotypes into six major clusters, which was consistent with the systematic classification of faba bean done in previous studies. The overall results indicated that SDS-PAGE was a useful tool for genetic diversity analysis and laid a solid foundation for future faba bean breeding.

  10. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis.

    PubMed

    Sekiguchi, Hiroyuki; Watanabe, Masataka; Nakahara, Tadaatsu; Xu, Baohua; Uchiyama, Hiroo

    2002-10-01

    Bacterial community structure along the Changjiang River (which is more than 2,500 km long) was studied by using denaturing gradient gel electrophoresis (DGGE) and clone library analysis of PCR-amplified 16S ribosomal DNA (rDNA) with universal bacterial primer sets. DGGE profiles and principal-component analysis (PCA) demonstrated that the bacterial community gradually changed from upstream to downstream in both 1998 and 1999. Bacterial diversity, as determined by the Shannon index (H'), gradually decreased from upstream to downstream. The PCA plots revealed that the differences in the bacterial communities among riverine stations were not appreciable compared with the differences in two adjacent lakes, Lake Dongting and Lake Poyang. The relative stability of the bacterial communities at the riverine stations was probably due to the buffering action of the large amount of water flowing down the river. Clone library analysis of 16S rDNA revealed that the dominant bacterial groups changed from beta-proteobacteria and the Cytophaga-Flexibacter-Bacteroides group upstream to high-G+C-content gram-positive bacteria downstream and also that the bacterial community structure differed among the stations in the river and the lakes. The results obtained in this study should provide a reference for future changes caused by construction of the Three Gorges Dam.

  11. Cystic fibrosis (CF) mutation detection and frequencies in central New York state using single strand conformation (SSC) and heteroduplex analysis (HA) gel analysis

    SciTech Connect

    Shrimpton, A.E.; Lamberson, C.M.; Hicks, K.E.; Swender, P.T.

    1994-09-01

    Over 100 cystic fibrosis (CF) bearing chromosomes from patients living in central New York state have been screened in order to identify their CF mutations. Ethnic background information and parental samples were also collected when available. Polymerase chain reaction (PCR) amplified products from exons 3, 4, 5, 7, 9, 10, 11, 12, 13, 14B, 15, 17B, 19, 20, 21 and intro 19 have been screened for over 50 known CF mutations by restriction enzyme digest, heteroduplex analysis (HA) and/or single stand conformation (SSC) gel analysis. The exon 9 PCR product was difficult to analyze by HA or SSC gel analysis. Restriction enzyme site generating PCR primers were used to identify the R117H, 711+1,G>T, G542X, 1717-1,G>A, 1898-1,G>A and N1303K CF mutations. Haplotyping at CFTR-linked (xv-2c/Taq I, km19/Pst, I, MP6d.9/Msp I and J3.11/Pst I) and CFTR intragenic markers (intron 6 GATT{sub n}, 1540 A/G, 1898+152,T/A) was performed to aid in CF mutation identification.

  12. Passivated gel electrophoresis of charged nanospheres by light-scattering video tracking.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-08-15

    Gel electrophoresis (gel-EP) has been used for decades to separate charged biopolymers, such as DNA, RNA, and proteins, yet propagation of other charged colloidal objects, such as nanoparticles, during gel-EP has been studied comparatively little. Simply introducing anionic nanoparticles, such as sulfate-stabilized polystyrene nanospheres, in standard large-pore agarose gels commonly used for biomolecules does not automatically ensure propagation or size-separation because attractive interactions can exist between the gel and the nanoparticles. Whereas altering the surfaces of the nanoparticles is a possible solution, here, by contrast, we show that treating a common type I-A low-electroendoosmosis agarose gel with a passivation agent, such as poly-(ethyleneglycol), enables charged nanoparticles to propagate through large-pore passivated gels in a highly reproducible manner. Moreover, by taking advantage of the significant optical scattering from the nanoparticles, which is not easily measurable for biopolymers, relative to scattering from the gel, we perform real-time, light-scattering, video-tracking gel-EP. Continuous optical measurements of the propagation of bands of uniformly sized nanospheres in passivated gels provides the propagation distance, L, and velocity, v, as a function of time for different sphere radii, electric field strengths, gel concentrations, and passivation agent concentrations. The steady-state particle velocities vary linearly with applied electric field strength, E, for small E, but these velocities become non-linear for larger E, suggesting that strongly driven nanoparticles can become elastically trapped in the smaller pores of the gel, which act like blind holes, in a manner that thermal fluctuations cannot overcome. Based on this assumption, we introduce a simple model that fits the measured v(E) in both linear and non-linear regimes over a relevant range of applied voltages.

  13. On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis.

    PubMed

    Kim, Dae-Kwang; Kang, Seong Ho

    2005-01-28

    We evaluated a novel strategy for high-sensitivity DNA fragment analysis in a conventional glass double-T microfluidic chip. The microchip allows for a DNA on-channel concentration based on base stacking (BS) with a microchip capillary gel electrophoretic (MCGE) separation step in a poly(vinylpyrrolidone) (PVP) sieving matrix. Depending if low conductivity caused a neutralization reaction between the hydroxide ions and the run buffer component Tris+, the stacking of DNA fragments were processed in the microchip. Compared to a conventional MCGE separation with a normal electrokinetic injection, the peak heights of 50-2650-base pair (bp) DNA fragments on the MCGE-BS separation were increased 3.9-8.0-fold. When we applied the MCGE-BS method to the analysis of a clinical sample of bovine theileria after PCR reaction, the peak height intensity of the amplified 816-bp DNA fragment from the 18S rRNA of T. buffeli was enhanced 7.0-fold compared to that of the normal injection method.

  14. Computer programs for analysis of nucleic acid hybridization, thermal denaturation, and gel electrophoresis data.

    PubMed Central

    Murphy, R F; Pearson, W R; Bonner, J

    1979-01-01

    Computer programs for the analysis of data from techniques frequently used in nucleic acids research are described. In addition to calculating non-linear, least-squares solutions to equations describing these systems, the programs allow for data editing, normalization, plotting and storage, and are flexible and simple to use. Typical applications of the programs are described. PMID:493129

  15. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    ERIC Educational Resources Information Center

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  16. Analysis of Molecular Epidemiology of Chilean Salmonella enterica Serotype Enteritidis Isolates by Pulsed-Field Gel Electrophoresis and Bacteriophage Typing

    PubMed Central

    Fernandez, Jorge; Fica, Alberto; Ebensperger, German; Calfullan, Hector; Prat, Soledad; Fernandez, Alda; Alexandre, Marcela; Heitmann, Ingrid

    2003-01-01

    Human Salmonella enterica serotype Enteritidis infections emerged in Chile in 1994. S. enterica serotype Enteritidis phage type 1 isolates predominated in the north, and phage type 4 isolates predominated in the central and southern regions. A study was planned to characterize this epidemic using the best discriminatory typing technique. Research involved 441 S. enterica serotype Enteritidis isolates, including clinical preepidemic samples (n = 74; 1975 to 1993) and epidemic (n = 199), food (n = 72), poultry (n = 57), and some Latin American (n = 39) isolates. The best method was selected based on a sample of preepidemic isolates, analyzing the discriminatory power (DP) obtained by phage typing and randomly amplified polymorphic DNA and pulsed-field gel electophoresis (PFGE) analysis. The highest DP was associated with BlnI PFGE-bacteriophage typing analysis (0.993). A total of 38 BlnI patterns (B patterns) were identified before the epidemic period, 19 since 1994, and only 4 in both periods. Two major clusters were identified by phylogenetic analysis, and the predominant B patterns clustered in the same branch. Combined analysis revealed that specific B pattern-phage type combinations (subtypes) disappeared before 1994, that different genotypes associated with S. enterica serotype Enteritidis phage type 4 had been observed since 1988, and that strain diversity increased before the expansion of S. enterica serotype Enteritidis in 1994. Predominant subtype B3-phage type 4 was associated with the central and southern regions, and subtype B38-phage type 1 was associated with the north (P < 0.0001). Food and poultry isolates matched the predominant S. enterica serotype Enteritidis subtypes, but isolates identified in neighboring countries (Peru and Bolivia) did not match S. enterica serotype Enteritidis subtypes identified in the north of Chile. The results of this work demonstrate that genetic diversity, replacement, and expansion of specific S. enterica serotype

  17. Western Blot Analysis of the Exotoxins Components from Bacillus anthracis Separated by Isoelectric Focusing Gel Electrophoresis

    DTIC Science & Technology

    2004-07-01

    Biochemical and Biophysical Research Communications 317 (2004) 294–300 BBRC www.elsevier.com/locate/ybbrcWestern blot analysis...pag iden- tified five different point mutations from 26 different S.F. Little / Biochemical and Biophysical Research Communications 317 (2004) 294...identified as Iowa, it has subsequently been identified as Texas. 296 S.F. Little / Biochemical and Biophysical Research Communications 317 (2004)

  18. Microfluidic device having an immobilized pH gradient and PAGE gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Singh, Anup K.; Wang, Ying-Chih

    2012-12-11

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  19. Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-05-20

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  20. Efficacy, Safety, and Dermal Tolerability of Dapsone Gel, 7.5% in Patients with Moderate Acne Vulgaris: A Pooled Analysis of Two Phase 3 Trials

    PubMed Central

    Kircik, Leon; McMichael, Amy; Cook-Bolden, Fran E.; Tyring, Stephen K.; Berk, David R.; Chang-Lin, Joan-En; Lin, Vince; Kaoukhov, Alexandre

    2016-01-01

    Objective: Assess efficacy and safety of once-daily topical dapsone gel, 7.5% compared with vehicle for treating acne vulgaris (acne). Design: A pooled analysis of data from two identically designed, randomized, double-blind, vehicle-controlled, multicenter, 12-week clinical trials. Setting: Study sites in the United States and Canada. Participants: overall, 4,340 patients were randomized 1:1 to dapsone and vehicle. Criteria included age 12 years or older with acne diagnosis, 20 to 50 facial inflammatory lesions (papules and pustules), 30 to 100 facial noninflammatory lesions (open and closed comedones), and acne grade of 3 (moderate) on the Global Acne Assessment Score scale. Measurements: Efficacy assessments included the Global Acne Assessment Score success rate (proportion of patients with Global Acne Assessment Score of 0 [none] or 1 [minimal]) and percentage change from baseline in inflammatory and noninflammatory lesions at Week 12. Results: Global Acne Assessment Score success rates were 29.8 percent and 21.1 percent for patients who received dapsone gel, 7.5% and vehicle, respectively (p<0.001). Patients receiving dapsone gel, 7.5% had greater percentage change in lesion counts than patients receiving vehicle (inflammatory lesions: -54.6% vs. -48.1%; p<0.001; -45.1 %; noninflammatory lesions: -39.4%; p<0.001). Most adverse events were mild to moderate in severity. Mean dermal tolerability scores for stinging/burning, dryness, scaling, and erythema were similarly low with dapsone gel, 7.5% and vehicle. Conclusion: Dapsone gel, 7.5%, with a 50-percent greater dapsone concentration than twice-daily dapsone gel, 5% formulation, is applied topically once daily for acne, is effective, safe, and well-tolerated over 12 weeks, and has local tolerability similar to that of vehicle. www.clinicaltrials.gov identifiers: NCT01974141 and NCT01974323 PMID:27847545

  1. Design and Analysis of Hammerhead Ribozyme Activity Against an Artificial Gene Target

    PubMed Central

    Carter, James; Nawtaisong, Pruksa; Balaraman, Velmurugan; Fraser, Malcolm J.

    2014-01-01

    In vitro cleavage assays are routinely conducted to properly assess the catalytic activity of hammerhead ribozymes (HHR) against target RNA molecules like the dengue virus RNA genomes. These experiments are performed for initial assessment of HHR catalysis in a cell-free system and have been simplified by the substitution of agarose gel electrophoresis for SDS-PAGE. Substituting mobility assays enables the analysis of ribozymes in a more rapid fashion without radioisotopes. Here we describe the in vitro transcription of an HHR and corresponding target from T7-promoted plasmids into RNA molecules leading to the analysis of HHR activity against the RNA target by in vitro cleavage assays. PMID:24318886

  2. Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy.

    PubMed

    Nweke, Mauryn C; Turmaine, Mark; McCartney, R Graham; Bracewell, Daniel G

    2017-03-01

    The drying of chromatography resins prior to scanning electron microscopy is critical to image resolution and hence understanding of the bead structure at sub-micron level. Achieving suitable drying conditions is especially important with agarose-based chromatography resins, as over-drying may cause artefact formation, bead damage and alterations to ultrastructural properties; and under-drying does not provide sufficient resolution for visualization under SEM. This paper compares and contrasts the effects of two drying techniques, critical point drying and freeze drying, on the morphology of two agarose based resins (MabSelect™/dw ≈85 µm and Capto™ Adhere/dw ≈75 µm) and provides a complete method for both. The results show that critical point drying provides better drying and subsequently clearer ultrastructural visualization of both resins under SEM. Under this protocol both the polymer fibers (thickness ≈20 nm) and the pore sizes (diameter ≈100 nm) are clearly visible. Freeze drying is shown to cause bead damage to both resins, but to different extents. MabSelect resin encounters extensive bead fragmentation, whilst Capto Adhere resin undergoes partial bead disintegration, corresponding with the greater extent of agarose crosslinking and strength of this resin. While freeze drying appears to be the less favorable option for ultrastructural visualization of chromatography resin, it should be noted that the extent of fracturing caused by the freeze drying process may provide some insight into the mechanical properties of agarose-based chromatography media.

  3. Can You Solve the Crime? Using Agarose Electrophoresis To Identify an Unknown Colored Protein.

    ERIC Educational Resources Information Center

    Wiltfong, Cynthia L.; Chester, Emily; Albertin, Faith; Smith, Julia; Hall, Judith C.; Arth, Emily C.; Martin, Stephanie

    2003-01-01

    Describes a lab that introduces agarose electrophoresis techniques and basic information on proteins to middle school and high school students. Insists that, built around a scenario in which students must solve a crime, the lab has real-world applications that should spark student interest. (KHR)

  4. Modification of agarose: 6-aminoagarose mediated syntheses of fluorogenic pyridine carboxylic acid amides.

    PubMed

    Kondaveeti, Stalin; Mehta, Gaurav K; Siddhanta, A K

    2014-06-15

    A facile 6-aminoagarose (AA) mediated synthesis of new fluorogenic amides of agarose with nicotinic (AA-NA) and picolinic acids (AA-PA) employing carbodiimide chemistry have been described. 6-Amino agarose (AA) was synthesized in a facile Mitsunobu-inspired microwave mediated method involving the reaction of agarose with phthalimide in presence of diisopropyl azodicarboxylate and triphenylphosphene (DIAD/TPP) followed by hydrazinolysis. All compounds were characterized by GPC, UV spectrophotometry, fluorescence spectroscopy, FT-IR, (1)H and (13)C NMR spectra. The fluorescence emissions (λmax 430 and 412 nm) of 1 × 10(-3)M solutions of AA-NA and AA-PA in water were significantly higher (ca. 82% and ca. 90%) than those of the molar equivalents (0.2mg) of NA and PA present in the 1 × 10(-3)M solutions of the amides, respectively. These fluorogenic pyridine carboxylic acid amides of agarose may find applications as sensors in biomedical and pharmaceutical industries.

  5. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on Nomega-homocysteinyl-aminohexyl-Agarose.

    PubMed

    Perła, Joanna; Undas, Anetta; Twardowski, Tomasz; Jakubowski, Hieronim

    2004-08-05

    Modification with homocysteine (Hcy)-thiolactone leads to the formation of N-Hcy-Lys-protein. Although N-Hcy-Lys-proteins are immunogenic, pure antibodies have not yet been obtained. Here we describe synthesis and application of Nomega-homocysteinyl-aminohexyl-Agarose for affinity purification of anti-N-Hcy-Lys-protein antibodies. Nomega-homocysteinyl-aminohexyl-Agarose was prepared by N-homocysteinylation of omega-aminohexyl-Agarose with Hcy-thiolactone. Immune serum was obtained from rabbits inoculated with N-Hcy-Lys-keyhole limpet hemocyanine and IgG fraction prepared by chromatography on protein A-Agarose. Anti-N-Hcy-Lys-protein IgG was adsorbed on Nomega-homocysteinyl-aminohexyl-Agarose column at pH 8.6 and eluted with a pH 2.3 buffer. Enzyme-linked immunosorbent assays demonstrate that the antibody recognizes specifically N-homocysteinylated variants of hemoglobin, albumin, transferrin, and antitrypsin.

  6. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE)

    PubMed Central

    2010-01-01

    Background Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated

  7. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes.

    PubMed

    Jin, Xiang; Wang, Limin; He, Liping; Feng, Weiqiang; Wang, Xuchu

    2016-02-01

    Proteomic analysis of upland cotton was performed to profile the global detectable proteomes of ovules and fibers using two-dimensional electrophoresis (2DE). A total of 1,203 independent protein spots were collected from representative 2DE gels, which were digested with trypsin and identified by matrix-assisted laser desorption and ionization-time-offlight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry. The mass spectrometry or tandem mass spectrometry (MS or MS/MS) data were then searched against a local database constructed from Gossypium hirsutum genome sequences, resulting in successful identification of 975 protein spots (411 for ovules and 564 for fibers). Functional annotation analysis of the 975 identified proteins revealed that ovule-specific proteins were mainly enriched in functions related to fatty acid elongation, sulfur amino acid metabolism and post-replication repair, while fiber-specific proteins were enriched in functions related to root hair elongation, galactose metabolism and D-xylose metabolic processes. Further annotation analysis of the most abundant protein spots showed that 28.96% of the total proteins in the ovule were mainly located in the Golgi apparatus, endoplasmic reticulum, mitochondrion and ribosome, whereas in fibers, 27.02% of the total proteins were located in the cytoskeleton, nuclear envelope and cell wall. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of the ovule-specific protein spots P61, P93 and P198 and fiber-specific protein spots 230, 477 and 511 were performed to validate the proteomics data. Protein-protein interaction network analyses revealed very different network cluster patterns between ovules and fibers. This work provides the largest protein identification dataset of 2DE-detectable proteins in cotton ovules and fibers and indicates potentially important roles of tissue-specific proteins, thus providing insights into the cotton ovule and fiber proteomes on a global scale.

  8. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    PubMed

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip.

  9. Analysis of cell wall extracts of Candida albicans by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques.

    PubMed Central

    Ponton, J; Jones, J M

    1986-01-01

    Cell walls of intact yeast- and mycelial-phase Candida albicans B311 were extracted with different compounds: dithiothreitol, dithiothreitol with protease, dithiothreitol with lyticase, and dithiothreitol with protease followed by beta-glucuronidase with chitinase. Extracts were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques. Dithiothreitol extracts contained the most satisfactory array of components for study. Analysis of these extracts demonstrated that the outer cell wall layers of Candida blastoconidia and germ tubes contained a complex array of polysaccharides, glycoproteins, and proteins. The proteins contributed to a latticework stabilized by covalent bonds that was important in determining the porosity of the outer cell wall layers. When equivalent weights were analyzed, mycelial-phase extract contained a more varied array of proteins than did yeast-phase extract. Only a portion of proteins in mycelial-phase extract elicited antibody responses in hyperimmunized rabbits or infected humans. A polysaccharide-rich, high-molecular-weight component (migrating at a position that would correspond to proteins having molecular weights of 235,000 to 250,000) and a protein component (molecular weight, 19,000) were readily demonstrable in the mycelial-phase extract but could not be identified in the yeast-phase extract. Images PMID:3527986

  10. Differences between fertilized and unfertilized chicken egg white proteins revealed by 2-dimensional gel electrophoresis-based proteomic analysis.

    PubMed

    Qiu, Ning; Liu, Wen; Ma, Meihu; Zhao, Lei; Li, Yuqi

    2013-03-01

    The egg white protein alterations during the early phase of chicken embryonic development were recently reported by our laboratory. Nevertheless, the original albumen differences between fresh unfertilized and fertilized chicken eggs have not been investigated. By using 2-dimensional gel electrophoresis (2-DE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS) method, 1 ovalbumin protein spot as well as 6 ovalbumin-related protein Y spots were identified showing more than 10-fold differences (P < 0.01) in abundance between fresh unfertilized and fertilized chicken egg whites. Six of these protein spots represented higher intensity in fertilized eggs through 2-DE analysis. It was thus concluded that ovalbumin protein family, especially ovalbumin-related protein Y, may play an important role in embryonic development, which still needs to be validated. This finding will provide insight into embryogenesis to improve our understanding of the functions of ovalbumin family proteins in regulating or supporting embryonic development.

  11. Analysis of HLA-DR from alveolar macrophages and blood monocytes by two-dimensional gel electrophoresis

    SciTech Connect

    Ferro, T.J.; Monos, D.S.; Spear, B.T.; Rossman, M.D.; Zmijewski, C.M.; Kamoun, M.; Daniele, R.P.

    1986-03-01

    Human blood monocytes (BM) are more effective than alveolar macrophages (AM) in promoting lymphocyte proliferation to antigen. To further understand these differences, the HLA-DR molecules synthesized by these two cell types were compared. AM were prepared by adherence of cells obtained by bronchoscopic lavage; BM were prepared by adherence of blood mononuclear cells from the same normal volunteer. Cells were cultured for 7 hours with /sup 3/H-leucine and HLA-DR was immunoprecipitated with the murine monoclonal antibody L243. Immunoprecipitates were analyzed by two-dimensional gel electrophoresis. In three experiments, protein synthetic rate was greater and more HLA-DR was immunoprecipitated per cell in BM than in AM. Isoelectric focusing showed identical charge variation for BM and AM. However, molecular weight analysis of AM HLA-DR revealed multiple bands of slightly different molecular weight for each beta-chain peptide, whereas only a single band occurred with BM HLA-DR. Neuraminidase treatment reduced the charge heterogeneity but did not affect the molecular weight differences. These findings may relate to the differential ability of AM and BM to promote lymphocyte proliferation to antigen.

  12. Structural analysis of fluorine-containing bioactive glass nanoparticles synthesized by sol-gel route assisted by ultrasound energy.

    PubMed

    C Lins, Carolina E; R Oliveira, Agda A; Gonzalez, Ismael; A A Macedo, Waldemar; M Pereira, Marivalda

    2017-02-02

    In the last decades, studies about the specific effects of bioactive glass on remineralization of dentin were the focus of attention, due to their excellent regenerative properties in mineralized tissues. The incorporation of Fluorine in bioactive glass nanoparticles may result in the formation of fluorapatite (FAP), which is chemically more stable than hydroxyapatite or carbonated hydroxyapatite, and therefore is of interest for dental applications. The aim of this study was to synthesize and characterize a new system of Fluorine-containing bioactive glass nanoparticles (BGNPF). A sol-gel route assisted by ultrasound was used for the synthesis of BGNPF. The particles obtained were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS). SEM micrographs showed that the particles are quite uniform spherical nanostructures, occurring agglomeration or partial sinterization of the particulate system after heat treatment. XRD and XPS analysis results suggest the formation of fluorapatite crystals embedded within the matrix of the bioactive glass nanoparticles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  13. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    PubMed

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions.

  14. Enhancement of in vitro and in vivo function of agarose-encapsulated porcine islets by changes in the islet microenvironment.

    PubMed

    Holdcraft, Robert W; Gazda, Lawrence S; Circle, Lisa; Adkins, Hollie; Harbeck, Steven G; Meyer, Eric D; Bautista, Melissa A; Martis, Prithy C; Laramore, Melissa A; Vinerean, Horatiu V; Hall, Richard D; Smith, Barry H

    2014-01-01

    The transplantation of porcine islets of Langerhans to treat type 1 diabetes may provide a solution to the demand for insulin-producing cells. Porcine islets encapsulated in agarose-agarose macrobeads have been shown to function in nonimmunosuppressed xenogeneic models of both streptozotocin-induced and autoimmune type 1 diabetes. One advantage of agarose encapsulation is the ability to culture macrobeads for extended periods, permitting microbiological and functional assessment. Herein we describe optimization of the agarose matrix that results in improved islet function. Porcine islets (500 IEQs) from retired breeding sows were encapsulated in 1.5% SeaKem Gold (SG), 0.8% SG, or 0.8% Litex (Li) agarose, followed by an outer capsule of 5% SG agarose. Insulin production by the encapsulated islets exhibited an agarose-specific effect with 20% (0.8% SG) to 50% (0.8% Li) higher initial insulin production relative to 1.5% SG macrobeads. Insulin production was further increased by 40-50% from week 2 to week 12 in both agarose types at the 0.8% concentration, whereas islets encapsulated in 1.5% SG agarose increased insulin production by approximately 20%. Correspondingly, fewer macrobeads were required to restore normoglycemia in streptozotocin-induced diabetic female CD(SD) rats that received 0.8% Li (15 macrobeads) or 0.8% SG (17 macrobeads) as compared to 1.5% SG (19 macrobeads). Islet cell proliferation was also observed during the first 2 months postencapsulation, peaking at 4 weeks, where approximately 50% of islets contained proliferative cells, including β-cells, regardless of agarose type. These results illustrate the importance of optimizing the microenvironment of encapsulated islets to improve islet performance and advance the potential of islet xenotransplantation for the treatment of type 1 diabetes.

  15. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.

    PubMed

    Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric

    2012-01-01

    Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond

  16. Insulin biosynthesis: studies of Islet polyribosomes (nascent peptides-sucrose gradient analysis-gel filtration).

    PubMed

    Permutt, M A; Kipnis, D M

    1972-02-01

    A method is described for separation of polyribosomes from as few as 25 isolated Islets of Langerhans, representing about 250 mug of pancreatic tissue. Islets are labeled with [(3)H]leucine and polysomes are isolated with liver polyribosomes, which serve as carrier and inhibitor of ribonuclease activity. Islets incubated at 37 degrees C for 45 min in 15.5 mM glucose, then pulsed with [(3)H]leucine, incorporated about 2-3 times more label into nascent peptides on islet polysomes than islets incubated in 2.8 mM glucose. Sucrose gradient analysis of the labeled polysomes indicated that raising the glucose concentration preferentially stimulated synthesis of peptides on trisomes and larger polyribosomes. Islets incubated with [(3)H]leucine for 15 min incorporated two-thirds of the label into proteins on membrane-bound polysomes. At least 85% of the proinsulin synthesis during this time occurs on membrane-bound polysomes.

  17. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.

  18. A templated agarose scaffold for axon guidance in the central and peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Gros, Thomas Richard

    This thesis examined the hypothesis that axonal guidance could be improved in the central and peripheral nervous systems using a highly linearized templated agarose scaffold. In the present study we examined whether a templated agarose scaffold improved axon retention across a large central nervous system (CNS) lesion and how cellular and axonal orientation was affected within the scaffold channels. The "physical" guidance from the scaffold was applied to an existing CNS "chemical" guidance strategy, shown to promote axons beyond the lesion site, to enhance the number of crossing axons in larger, disorganized, lesions. Specifically, there was the greatest number of long-tract sensory axons reaching the distal aspect of the lesion when the templated agarose scaffold was combined with a neurotrophic source of NT-3 beyond the lesion site and a conditioning lesion, to enhance chemical axon guidance and the intrinsic growth state of axons, respectively. When comparing the scaffold implant to a cell suspension grafts, we found a higher retention of long-tract ascending (sensory) axons and descending (motor) axons crossing large lesions (2mm). The enhanced axon retention may be attributed to the finding that cellular orientation within the scaffold channels is highly linear, thus promoting a less tortuous environment for axon orientation and bridging. Although an enhanced number of axons were able to cross the lesion, the axons did not repenetrate the host tissue due to a reactive cell layer, present only in scaffold the implant groups. Additionally, a peripheral nerve conduit, with the agarose scaffold as the core, displayed biocompatiablility and supported axon growth and vasculature beyond the clinically applicable distance of 4mm. Thus, the templated agarose scaffold enhances axon retention and guidance within CNS injury sites and has potential applications to the PNS.

  19. Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application.

    PubMed

    Lam, P-L; Gambari, R; Kok, S H-L; Lam, K-H; Tang, J C-O; Bian, Z-X; Lee, K K-H; Chui, C-H

    2015-02-01

    Aspergillus niger (A. niger) is a common species of Aspergillus molds. Cutaneous aspergillosis usually occurs in skin sites near intravenous injection and approximately 6% of cutaneous aspergillosis cases which do not involve burn or HIV-infected patients are caused by A. niger. Biomaterials and biopharmaceuticals produced from microparticle-based drug delivery systems have received much attention as microencapsulated drugs offer an improvement in therapeutic efficacy due to better human absorption. The frequently used crosslinker, glutaraldehyde, in gelatin-based microencapsulation systems is considered harmful to human beings. In order to tackle the potential risks, agarose has become an alternative polymer to be used with gelatin as wall matrix materials of microcapsules. In the present study, we report the eco-friendly use of an agarose/gelatin-based microencapsulation system to enhance the antifungal activity of gallic acid and reduce its potential cytotoxic effects towards human skin keratinocytes. We used optimal parameter combinations, such as an agarose/gelatin ratio of 1:1, a polymer/oil ratio of 1:60, a surfactant volume of 1% w/w and a stirring speed of 900 rpm. The minimum inhibitory concentration of microencapsulated gallic acid (62.5 µg/ml) was significantly improved when compared with that of the original drug (>750 µg/ml). The anti-A. niger activity of gallic acid -containing microcapsules was much stronger than that of the original drug. Following 48 h of treatment, skin cell survival was approximately 90% with agarose/gelatin microcapsules containing gallic acid, whereas cell viability was only 25-35% with free gallic acid. Our results demonstrate that agarose/gelatin-based microcapsules containing gallic acid may prove to be helpful in the treatment of A. niger-induced skin infections near intravenous injection sites.

  20. Towards a proteomic analysis of atopic dermatitis: a two-dimensional-polyacrylamide gel electrophoresis/mass spectrometric analysis of cultured patient-derived fibroblasts.

    PubMed

    Park, Yong-Doo; Kim, So-Yeon; Jang, Hee-Sun; Seo, Eun-Young; Namkung, Jung-Hyun; Park, Hyung-Seok; Cho, Sang Yun; Paik, Young-Ki; Yang, Jun-Mo

    2004-11-01

    Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease typically characterized by a distribution of eczematous skin lesions with lichenification, pruritic excoriations, and dry skin with wide varieties of pathophysiologic aspects. Recently, AD was divided into extrinsic and intrinsic forms according to the presence or absence of an allergy. We investigated alterations in protein expression in primary cultured AD cells from the patient biopsy samples by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight. In the primary cultured fibroblasts, we obtained 31 candidate proteins from the two-dimensional gel image analysis in which 18 proteins were up-regulated, eight proteins were down-regulated and five proteins were post-translationally modified. From these 2-DE results, we found several candidate genes matched proteomic expression patterns by semiquantitative reverse transcription PCR. Since the exact mechanism of atopic alterations in fibroblasts remains unknown, our results may provide new clues to aid in understanding AD.

  1. Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry.

    PubMed

    Han, Feifei; Yang, Yuhan; Ouyang, Jin; Na, Na

    2015-02-07

    The in situ and direct extraction, desorption and ionization of in-gel intact proteins after electrophoresis has been achieved by carbon nanotubes (CNTs)-modified paper spray mass spectrometry at ambient conditions. Characteristics of CNTs (including larger surface area, smaller pore diameter and enhanced conductivity) were endowed to the porous filter paper substrate by uniformly dispersing the CNTs on the filter paper. Upon applying electric potential to the CNTs-modified paper, the in-gel proteins were extracted from the gel and subsequently migrated to the tip of the filter paper by electrophoresis-like behavior for paper spray ionization, which was monitored by extracted ion chronograms. The characterizations of modified filter papers and CNTs nanoparticles further confirmed the role of CNTs in in-gel protein extraction, protein migration as well as spray ionization at the paper tip. Under optimized conditions, a mixture of cytochrome c, lysozyme and myoglobin was successfully separated by native electrophoresis and subsequently analysed by the present method, showing a limit of detection of 10 ng per gel band. The present strategy offers a new pathway for the direct detection of in-gel intact proteins at ambient conditions without any pre-treatment (e.g. digestion, chemical extraction and desalting), which exhibits potential applications in top-down proteomics.

  2. Agarose Gel Electrophoresis System in the Classroom: Detection of DNA Strand Breaks through the Alteration of Plasmid Topology

    ERIC Educational Resources Information Center

    De Mattos, J. C. P.; Dantas, F. J. S.; Caldeira-de-Araujo, A.; Moraes, M. O.

    2004-01-01

    Good quality scientific teaching depends on the ability of researchers to translate laboratory experiments into high school and undergraduate classes, bridging the advanced and basic science with common knowledge. A fast-growing field in biomedical sciences is oxidative stress, which has been associated to several diseases, including cancer and…

  3. Analysis of cells isolated from bone cultured on collagen gels and polystyrene culture dishes

    SciTech Connect

    Fletcher, K.

    1981-01-01

    Bone is a complex tissue which contains three types of differentiated cells viz., osteoblasts, osteoclasts and osteocytes. In mature bone, these cells are identified both by their location within the tissue and their morphological characteristics. In fetal tissue, one also finds many progenitor cells, fibroblasts and some cartilage cells. Each of these cell types has distinct functions which are reflected in their morphology, metabolic properties and response to hormones. Studies were also undertaken to evaluate the class of problems associated with electron microprobe analysis of the extracellular fluid space in bone. It was determined that differences in elemental composition in a small volume between cells and mineral cannot be quantitatively corrected for fluorescence, atomic number or absorption effects of the mineral. A study of the use of free-flow dialysis in the study of metal binding to protein demonstrates the anomalous behavior of mercury in this experimental approach and emphasizes the importance of a thorough examination of the control situation before protein to metal binding is examined.

  4. Evaluation of an effective sample prefractionation method for the proteome analysis of breast cancer tissue using narrow range two-dimensional gel electrophoresis.

    PubMed

    Lee, KiBeom

    2008-06-01

    One method of improving the protein profiling of complex mammalian proteomes is the use of prefractionation followed by application of narrow pH range two dimensional (2-D) gels. The success of this strategy relies on sample solubilization; poor solubilization has been associated with missing protein fractions and diffuse, streaked, and/or trailing protein spots. In this study, I sought to optimize the solubilization of prefractionated human cancer cell samples using isoelectric focusing (IEF) rehydration buffers containing a variety of commercially available reducing agents, detergents, chaotropes, and carrier ampholytes. The solubilized proteins were resolved on 2-D gels and compared. Among five tested IEF rehydration buffers, those containing 3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS) and dithiothreitol (DTT) provided superior resolution, while that containing Nonidet P-40 (NP-40) did not significantly affect protein resolution, and the tributyl phosphine (TBP)-containing buffer yielded consistently poor results. In addition, I found that buffers containing typically high urea and ampholyte levels generated sharper 2-D gels. Using these optimized conditions, I was able to apply 2-D gel analysis successfully to fractionated proteins from human breast cancer tissue MCF-7, across a pH range of 4-6.7.

  5. Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose.

    PubMed

    Guerrero, Cecilia; Vera, Carlos; Serna, Nestor; Illanes, Andrés

    2017-02-07

    Aspergillus oryzae β-galactosidase was immobilized in monofunctional glyoxyl-agarose and heterofunctional supports (amino-glyoxyl, carboxy-glyoxyl and chelate-glyoxyl agarose), for obtaining highly active and stable catalysts for lactulose synthesis. Specific activities of the amino-glyoxyl agarose, carboxy-glyoxyl agarose and chelate-glyoxyl agarose derivatives were 3676, 430 and 454IU/g biocatalyst with half-life values at 50°C of 247, 100 and 100h respectively. Specific activities of 3490, 2559 and 1060IU/g were obtained for fine, standard and macro agarose respectively. High immobilization yield (39.4%) and specific activity of 7700IU/g was obtained with amino-glyoxyl-agarose as support. The highest yields of lactulose synthesis were obtained with monofunctional glyoxyl-agarose. Selectivity of lactulose synthesis was influenced by the support functionalization: glyoxyl-agarose and amino-glyoxyl-agarose derivatives retained the selectivity of the free enzyme, while selectivity with the carboxy-glyoxyl-agarose and chelate-glyoxyl-agarose derivatives was reduced, favoring the synthesis of transgalactosylated oligosaccharides over lactulose.

  6. Pulsed-field gel electrophoresis analysis of more than one clinical isolate of Campylobacter spp. from each of 49 patients in New Zealand.

    PubMed

    Gilpin, Brent; Robson, Beth; Lin, Susan; Scholes, Paula; On, Stephen

    2012-02-01

    Pulsed-field gel electrophoresis (PFGE) analysis demonstrated that while 76% of patients had only one genotype of campylobacter, 10% carried two different but related genotypes (Dice coefficients > 0.78), and 14% carried at least two unrelated genotypes (Dice coefficients < 0.65). This supports the clustering of Campylobacter isolates with similar PFGE patterns, highlights the need to analyze multiple isolates from both sources and patients, and confirms that caution should be exercised before epidemiological links between patients or sources are dismissed.

  7. A facile one-pot synthesis of a fluorescent agarose-O-naphthylacetyl adduct with slow release properties.

    PubMed

    Kondaveeti, Stalin; Chejara, Dharmesh R; Siddhanta, A K

    2013-10-15

    A microwave assisted facile synthesis of a fluorescent 6-O-naphthylacetyl agarose (NA-agarose) employing carbodiimide chemistry (dicyclohexylcarbodiimide/4-dimethylaminopyridine) has been described. NA-agarose was characterized by TGA, GPC, UV spectrophotometry, fluorescence spectroscopy, FT-IR, (1)H and (13)C NMR spectra, exhibiting that in NA-agarose the naphthylacetyl group was attached to the backbone of the agarose polymer. The hydrolysis of NA-agarose in heterogeneous aqueous phase showed that the 1-naphthyl acetic acid (NAA), a plant growth regulator, got released in a controlled manner, the release rate being dependent on the hydrophilicity of the polymer adduct as well as on pH and temperature. The fluorescence emission (λmax 332 nm) of NA-agarose (1×10(-3) M) in ethylene glycol was significantly higher (ca. 82%) than that of the molar equivalent of NAA content in the product i.e. 0.08 mg in 1×10(-3) M solution. The resulting polymer would be of potential utility as a sustained release plant growth regulator and sensory applications.

  8. Mullins effect behaviour under compression in micelle-templated silica and micelle-templated silica/agarose systems.

    PubMed

    Puértolas, J A; Vadillo, J L; Sánchez-Salcedo, S; Nieto, A; Gómez-Barrena, E; Vallet-Regí, M

    2012-02-01

    The mechanical properties of bioceramic conformed pieces based on micelle-templated silica (MTS) such as SBA15, MCM41 and MCM48 as well as MTS/agarose systems have been evaluated under static and cyclic compressive tests. The MTS pieces exhibited a brittle behaviour. Agarose, a biocompatible and biodegradable hydrogel, has been used to shape ceramic-agarose pieces following a low temperature shaping method. Agarose conferred toughness, ductility and a rubbery consistency up to a 60% strain in ceramic MTS/agarose systems leading to a maximum strength of 10-50 MPa, without losing their initial cylindrical structure. This combination of ceramic and organic matrix contributes to avoiding the inherent brittleness of the bioceramic and enhances the compression resistance of hydrogel. The presence of mechanical hysteresis, permanent deformation after the first cycle and recovery of the master monotonous curve of MTS/agarose systems indicate a Mullins-like effect similar to that found in carbon-filled rubber systems. We report this type of mechanical behaviour, the Mullins effect, for the first time in MTS bioceramics and MTS bioceramic/agarose systems.

  9. Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Warnken, Kent W; Zhang, Hao; Davison, William

    2004-10-15

    A simple method for the analysis of polyacrylamide diffusive gradients in thin film (DGT) gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), employing a novel use of (115)In internal standardization, has been developed. This method allows the determination of Co, Ni, Cu, Zn, Cd, and Pb concentrations (at the DGT filter face) or fluxes in sediments at a spatial resolution of 100 microm. Single-layered gels, using an optimized laser defocus of 4000 microm at 400 mJ power, showed high precision (generally approximately 10%) and a linear response during solution deployment. Of the elements Sc, In, Ba, La, Ce, and Tb, Ba most closely tracked variations in laser energy and showed the highest analytical precision but could not be used as an internal standard due to its elevated presence in natural sediments. Therefore, internal standardization, necessary to normalize data collected on different days, was carried out using (115)In contained within a second layer of backing gel and dried along with the analyte layer as a dual-gel disk. This multilayered gel standard required a laser defocus setting of 1000 microm and a laser power of approximately 800 mJ. Analytical precision for a 64-spot ablation grid at 100-microm spacing was approximately 10%. Verification of this method was carried out on DGT sediment probes deployed in Priest Pot (English Lake District). Results obtained by conventional slicing techniques and aqueous elution agreed with laser ablation results when the different sampling areas were considered. The elution results varied by a factor of <2, whereas the laser ablation technique showed a variability of approximately 4, indicating localized elevated concentrations of Co. This higher resolution LA-ICPMS method could ultimately lead to an improved understanding of the geochemical processes responsible for metal uptake and release in sediments.

  10. Use of polyacrylamide gel moving boundary electrophoresis to enable low-power protein analysis in a compact microdevice.

    PubMed

    Duncombe, Todd A; Herr, Amy E

    2012-10-16

    In designing a protein electrophoresis platform composed of a single-inlet, single-outlet microchannel powered solely by voltage control (no pumps, values, injectors), we adapted the original protein electrophoresis format-moving boundary electrophoresis (MBE)-to a high-performance, compact microfluidic format. Key to the microfluidic adaptation is minimization of injection dispersion during sample injection. To reduce injection dispersion, we utilize a photopatterned free-solution-polyacrylamide gel (PAG) stacking interface at the head of the MBE microchannel. The nanoporous PAG molecular sieve physically induces a mobility shift that acts to enrich and sharpen protein fronts as proteins enter the microchannel. Various PAG configurations are characterized, with injection dispersion reduced by up to 85%. When employed for analysis of a model protein sample, microfluidic PAG MBE baseline-resolved species in 5 s and in a separation distance of less than 1 mm. PAG MBE thus demonstrates electrophoretic assays with minimal interfacing and sample handling, while maintaining separation performance. Owing to the short separation lengths needed in PAG MBE, we reduced the separation channel length to demonstrate an electrophoretic immunoassay powered with an off-the-shelf 9 V battery. The electrophoretic immunoassay consumed less than 3 μW of power and was completed in 30 s. To our knowledge, this is the lowest voltage and lowest power electrophoretic protein separation reported. Looking forward, we see the low-power PAG MBE as a basis for highly multiplexed protein separations (mobility shift screening assays) as well as for portable low-power diagnostic assays.

  11. High Resolution Melting Analysis Is a More Sensitive and Effective Alternative to Gel-Based Platforms in Analysis of SSR – An Example in Citrus

    PubMed Central

    Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao

    2012-01-01

    High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR

  12. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR--an example in citrus.

    PubMed

    Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao

    2012-01-01

    High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR

  13. A kinetic analysis of strand breaks on large DNA induced by cigarette smoke extract

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Takata, Tatsuya; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2010-06-01

    We report a kinetic analysis of strand breakages on large DNA molecules induced by cigarette smoke extract (CSE), an extract of soluble cigarette smoke components. Previously, this DNA damage was analyzed by agarose gel electrophoresis, whereas we used fluorescence to kinetically analyze damage to individual DNA molecules. CSE caused a marked change in length of DNA molecules. The rate of CSE-induced double-strand breakage on large random-coiled DNA molecules was determined using a simple theoretical model, allowing the facile estimation of the rate of double-strand breaks on large DNA molecules.

  14. Analysis of assembly of secreted mucins.

    PubMed

    Johansson, Malin E V; Hansson, Gunnar C

    2012-01-01

    Studies of assembly and secretion of gel-forming mucins are complex. The pulse-chase methods for mucins described here include metabolic radiolabeling and labeling in animals with azido-GalNAc. The labeled mucins are analyzed by composite agarose-polyacrylamide gel electrophoresis and autoradiography or by mucus-preserving tissue fixation and Click-iT(®) chemistry.

  15. Product-selective blot: a technique for measuring enzyme activities in large numbers of samples and in native electrophoresis gels

    SciTech Connect

    Thompson, G.A.; Davies, H.M.; McDonald, N.

    1985-08-01

    A method termed product-selective blotting has been developed for screening large numbers of samples for enzyme activity. The technique is particularly well suited to detection of enzymes in native electrophoresis gels. The principle of the method was demonstrated by blotting samples from glutaminase or glutamate synthase reactions into an agarose gel embedded with ion-exchange resin under conditions favoring binding of product (glutamate) over substrates and other substances in the reaction mixture. After washes to remove these unbound substances, the product was measured using either fluorometric staining or radiometric techniques. Glutaminase activity in native electrophoresis gels was visualized by a related procedure in which substrates and products from reactions run in the electrophoresis gel were blotted directly into a resin-containing image gel. Considering the selective-binding materials available for use in the image gel, along with the possible detection systems, this method has potentially broad application.

  16. Rheological characterization of hydroxypropylcellulose gels.

    PubMed

    Ramachandran, S; Chen, S; Etzler, F

    1999-02-01

    The present paper describes the rheological properties of hydroxypropylcellulose (HPC) gels formulated in propylene glycol (PG), water, ethanol, and mixtures of these components. The effects of molecular weight, polymer concentration, and solvent composition on the apparent viscosity and flow characteristics have been studied by continuous shear rheometry. The HPC gels are shear thinning and do not exhibit significant yield or hysteresis in their rheograms. The apparent viscosity increases with increasing molecular weight and concentration of the polymer, as expected. Although not so pronounced at lower concentrations (< or = 1.5%), HPC gels tend to become increasingly non-Newtonian with increasing molecular weight at higher polymer concentrations (3%). A mathematical model has been proposed for the prediction of viscosities of HPC gels. There exists a high degree of dependence on molecular interactions between various solvent molecules in the prediction of mixture viscosities in ternary systems. The effects of solvent composition on the viscoelastic behavior of these gels have also been examined by dynamic mechanical analysis. The HPC gels are highly viscoelastic and exhibit greater degrees of elasticity with increased PG content in ternary solvent mixtures with water and ethanol. The study also suggests that dynamic mechanical analysis could prove to be a useful tool in the determination of zero-shear viscosities, viscosities that are representative of most realistic situations.

  17. Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics.

    PubMed

    Geng, Tao; Mathies, Richard A

    2015-01-01

    The presence of PCR inhibitors in forensic and other biological samples reduces the amplification efficiency, sometimes resulting in complete PCR failure. Here we demonstrate a high-performance digital agarose droplet microfluidics technique for single-cell and single-molecule forensic short tandem repeat (STR) typing of samples contaminated with high concentrations of PCR inhibitors. In our multifaceted strategy, the mitigation of inhibitory effects is achieved by the efficient removal of inhibitors from the porous agarose microgel droplets carrying the DNA template through washing and by the significant dilution of targets and remaining inhibitors to the stochastic limit within the ultralow nL volume droplet reactors. Compared to conventional tube-based bulk PCR, our technique shows enhanced (20 ×, 10 ×, and 16 ×) tolerance of urea, tannic acid, and humic acid, respectively, in STR typing of GM09948 human lymphoid cells. STR profiling of single cells is not affected by small soluble molecules like urea and tannic acid because of their effective elimination from the agarose droplets; however, higher molecular weight humic acid still partially inhibits single-cell PCR when the concentration is higher than 200 ng/μL. Nevertheless, the full STR profile of 9948 male genomic DNA contaminated with 500 ng/μL humic acid was generated by pooling and amplifying beads carrying single-molecule 9948 DNA PCR products in a single secondary reaction. This superior performance suggests that our digital agarose droplet microfluidics technology is a promising approach for analyzing low-abundance DNA targets in the presence of inhibitors.

  18. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    PubMed

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  19. Application of multiplex PCR, pulsed-field gel electrophoresis (PFGE), and BOX-PCR for molecular analysis of enterococci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...

  20. One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan.

    PubMed

    Oza, Mihir D; Prasad, Kamalesh; Siddhanta, A K

    2012-08-01

    New fluorescent polysaccharides were synthesized by grafting the nucleobase adenine on to the backbones of agarose and κ-carrageenan, which were characterized by FT-IR, (13)C NMR, TGA, XRD, UV, and fluorescence properties. The synthesis involved a rapid water based potassium persulfate (KPS) initiated method under microwave irradiation. The emission spectra of adenine grafted agarose and κ-carrageenan were recorded in aqueous (5×10(-5) M) solution, exhibiting λ(em,max) 347 nm by excitation at 261 nm, affording ca. 30% and 40% enhanced emission intensities, respectively compared to that of pure adenine solution in the same concentration. Similar emission intensity was recorded in the pure adenine solution at its molar equivalent concentrations present in the 5×10(-5) M solution of the agarose and carrageenan grafted products, that is, 3.28×10(-5) M and 4.5×10(-5) M respectively. These fluorescent adenine grafted products may have potential utility in various sensor applications.

  1. A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate.

    PubMed

    Vashist, Sandeep Kumar; Schneider, E Marion; Luong, John H T

    2015-07-09

    A rapid sandwich immunoassay (IA) with enhanced signal response for human fetuin A (HFA) was developed by modifying the surface of a KOH-treated polystyrene microtiter plate (MTP) with agarose and 3-aminopropyltriethoxysilane (APTES). The agarose-APTES complex binds covalently to the hydroxyl moiety of the MTP plate to serve as a binding platform for bioconjugation of EDC-activated anti-HFA antibody (Ab) via carbodiimide coupling. The one-step kinetics-based sandwich enzyme-linked immunosorbent assay (ELISA) enabled the detection of HFA in 30 min with a limit of detection (LOD) and a linear range of 0.02 ng mL(-1) and 1-243 ng mL(-1), respectively. It detected HFA spiked in diluted human whole blood and serum, and HFA in ethylenediaminetetraacetic acid (EDTA)-plasma of patients with high precision similar to that of conventional ELISA. The anti-HFA Ab-bound agarose-functionalized MTPs retained their functional activity after 6 weeks of storage in 0.1 M PBS, pH 7.4 at 4 °C.

  2. Xenotransplantation of islets enclosed in agarose microcapsule carrying soluble complement receptor 1.

    PubMed

    Luan, Nguyen Minh; Iwata, Hiroo

    2012-11-01

    Strong immunological reactions remain a major barrier to treating diabetic patients using xenogeneic islets. In a previous study, we developed a method for enclosing islets with agarose microbeads carrying soluble complement receptor 1 (sCR1-Mics), a potent complement inhibitor in both classical and alternative complement activation pathways. This is the follow-up in vivo study to evaluate the protective effect of these sCR1-Mics using a xenotransplantation model (rats to mice). ACI/NSIc rat islets enclosed in sCR1-Mics were transplanted into the intraperitoneal cavity of diabetic C57BL/6 mice without immunosuppression therapy. Transplantation of islets in plain agarose microbeads (Mics) was used as a reference. While islets enclosed in plain Mics were rapidly destroyed (graft survival in recipients of 1000 islets: 11.6±3.8 days), transplantation of islets in sCR1-Mics significantly prolonged graft survival (34.1±3.2 days). Moreover, intraperitoneal glucose tolerance tests revealed that islets in sCR1-Mics normalized blood glucose levels in a similar manner as islets in pancreas of normal mice. In conclusion, sCR1 immobilized onto agarose microbeads exerted some protective effect in xenogeneic islets resulting in prolonged graft survival.

  3. Agarose-assisted micro-contact printing for high-quality biomolecular micro-patterns.

    PubMed

    Jang, Min Jee; Nam, Yoonkey

    2015-05-01

    Micro-contact printing has been developed to print biomolecules, such as cell adhesive molecules, proteins, or DNAs, on a substrate, which can serve as experimental platforms for investigating biological issues and engineering biosensors. Despite the popularity of this method, it has been technically challenging to use a conventional stamp made of a hydrophobic polydimethoxysilane (PDMS) elastomer that often requires surface treatments to facilitate the inking and stamping of biomolecules. In this work, we proposed a new surface modification method for a PDMS stamp using agarose hydrogel and demonstrated the applications to the design of micro-patterned substrates with biomolecules. By using a simple bench-top dip-coating method with a commercial syringe pump to steadily pull out the stamp from boiled agarose solution, we coated an agarose layer on the stamp. It consequentially enhanced the transferability of ink molecules to the target substrate and the uniformity of printed patterns compared to the traditional methods for treating stamp surface such as surfactant coating and temporary oxidation with air plasma. In addition, this microstamping method was also used to produce patterns of proteins with the preservation of bioactivity, which could guide neuronal growth. Thus, we demonstrated the applicability to the interface designs of biochips and biosensors.

  4. Homogeneous tosylation of agarose as an approach toward novel functional polysaccharide materials.

    PubMed

    Gericke, Martin; Heinze, Thomas

    2015-01-01

    The homogeneous tosylation of agarose was studied with respect to the effects of reaction parameters, such as reaction medium, time, and molar ratio, on the reaction course, the degree of substitution (DS) with tosyl/chloro deoxy groups, and the molecular structure. Tosyl agaroses (TOSA) with DS tosyl ≤ 1 .81 could be obtained in completely homogeneous reactions by using N,N-dimethylacetamide (DMA)/LiCl or 1,3-dimethyl-2-imidazolidinone (DMI) as solvents. The products were characterized by FT-IR and NMR spectroscopy and it was demonstrated that two types of substitution pattern can be achieved: (i) non-preferential substitution at position 6 of the 1 → 3-linked β-d-galactose unit (G-6) and position 2 of the 1 → 4-linked 3,6-anyhdro-α-L-galactose unit (LA-2) and (ii) regioselective tosylation at G-6, depending on whether the reaction is performed with or without LiCl. Finally, the nucleophilic displacement reaction of TOSA was studied using azide and ethylenediamine as representative nucleophiles. Novel deoxy-agarose derivatives were obtained that showed an interesting solubility behavior and will be used for creating functional polysaccharide materials.

  5. A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue.

    PubMed

    Hu, Jingxiao; Zhu, Youjia; Tong, Hua; Shen, Xinyu; Chen, Li; Ran, Jiabing

    2016-01-01

    Agarose/hydroxyapatite (agar/HA) nanocomposites for load-bearing bone substitutes were successfully fabricated via a novel in situ precipitation method. Observation via SEM and TEM revealed that the spherical inorganic nanoparticles of approximately 50 nm were well dispersed in the organic matrix, and the crystallographic area combined closely with the amorphous area. The uniform dispersion of HA nanoparticles had prominent effect on improving the mechanical properties of the agar/HA nanocomposites (the highest elastic modulus: 1104.42 MPa; the highest compressive strength: 400.039 MPa), which proved to be potential load-bearing bone substitutes. The thermal stability of agarose and nanocomposites was also studied. The MG63 osteoblast-like cells on the composite disks displayed fusiform and polygonal morphology in the presence of HA, suggesting that the cell maturation was promoted. The results of cell proliferation and cell differentiation indicated that the cells cultured on the agar/HA composite disks significantly increased the alkaline phosphatase activity and calcium deposition. The structural role of agarose in the composite system was investigated to better understand the effect of biopolymer on structure and properties of the composites. The optimal properties were the result of a comprehensive synergy of the components.

  6. Chondroitin sulfate-derivatized agarose beads: a new system for studying cation binding to glycosaminoglycans

    SciTech Connect

    Hunter, G.K.

    1987-09-01

    Chondroitin sulfate (CS) has been covalently attached to aminoethyl-agarose beads in a carbodiimide-catalyzed reaction. In this process, an amide bond is formed between carboxylate groups on the glycosaminoglycan (GAG) and the primary amine groups of the beads. Under optimal conditions, up to 160 micrograms of CS is attached per milligram of beads. CS-agarose beads have been used to study Ca binding to GAGs. The beads are mixed with a solution containing CaCl/sub 2/ and /sup 45/Ca and allowed to sediment under unit gravity. An aliquot of supernatant is then removed and /sup 45/Ca activity is determined to quantitate remaining (free) Ca. Using this system, it was shown that CS binds approximately 0.7 Ca/disaccharide unit at saturation. Under the conditions used, the apparent association constant (KA) is approximately 14 mM. In principle, this derivatization protocol may be used to attach any proteoglycan or GAG (except keratan sulfate) to an insoluble support. CS-agarose beads provide a rapid, simple, and relatively artifact-free system for studying cation-GAG interactions.

  7. Aqueous phase catalytic conversion of agarose to 5-hydroxymethylfurfural by metal chlorides

    SciTech Connect

    Yan, Lishi; Laskar, Dhrubojyoti D.; Lee, Suh-Jane; Yang, Bin

    2013-12-14

    Abstract: 5-HMF is a key intermediate for producing chemicals and fuels that can substitute for today’s petroleum-derived feedstocks. A series of metal chlorides, including NaCl, CaCl2, MgCl2, ZnCl2, CuCl2, FeCl3, and CrCl3, were comparatively investigated to catalyze agarose degradation for production of 5-HMF at temperature 180 oC, 200 oC, and 220 oC for 30 min, with catalyst concentration of 0.5% (w/w), 1% (w/w) and 5% (w/w), and substrate concentration of 2% (w/w). Our results revealed that alkali metal chlorides and alkali earth metal chlorides such as NaCl, CaCl2 and MgCl2 gave better 5-HMF yield compared with transition metal chlorides including ZnCl2, CrCl3, CuCl2 and FeCl3. 1% (w/w) MgCl2 was the more favorable catalyst for 5-HMF production from agarose, and resulted in 40.7% 5-HMF yield but no levulinic acid or lactic acid at 200 oC, 35 min. The reaction pathways of agarose degradation catalyzed by MgCl2 were also discussed.

  8. Influence of drying conditions of zirconium molybdate gel on performance of (99m)Tc gel generator.

    PubMed

    Davarpanah, M R; Attar Nosrati, S; Fazlali, M; Kazemi Boudani, M; Khoshhosn, H; Ghannadi Maragheh, M

    2009-10-01

    (99m)Tc can be produced from (99)Mo/(99m)Tc gel generators. These gels are part of the generator and the (99)Mo/(99m)Tc gel generator performance is directly related with gel structure. In this work a series of zirconium molybdate gels have been synthesized and dried under different conditions and characterized using thermal analysis (TGA, DTA), SEM, XRD and porosity measurements. It is found that the water content of the gel determines the structure porosity which allows the diffusion of the (99m)TcO(4)(-) ions inside the gel and was directly connected with performance of the (99)Mo/(99m)Tc gel generators. Drying conditions of the gel is as an important factor that influence water content and physical-chemical properties of this gel and must be carefully studied to optimize the properties of the gel generators.

  9. Sequence Dependent Electrophoretic Separations of DNA in Pluronic F127 Gels

    NASA Astrophysics Data System (ADS)

    You, Seungyong; van Winkle, David H.

    2010-03-01

    Two-dimensional (2-D) electrophoresis has successfully been used to visualize the separation of DNA fragments of the same length. We electrophorese a double-stranded DNA ladder in an Agarose gel for the first dimension and in gels of Pluronic F127 for the second dimension at room temperature. The 1000 bp band that travels together as a single band in an Agarose gel is split into two bands in Pluronic gels. The slower band follows the exponential decay trend that the other ladder constituents do. After sequencing the DNA fragments, the faster band has an apparently random sequence, while the slower band and the others have two A-tracts in each 250 bp segment. The A-tracts consist of a series of at least five adenine bases pairing with thymine bases. This result leads to the conclusion that the migration of the DNA molecules bent with A-tracts is more retarded in Pluronic gels than the wild-type of DNA molecules.

  10. Densitometric HPTLC method for qualitative, quantitative analysis and stability study of Coenzyme Q10 in pharmaceutical formulations utilizing normal and reversed-phase silica gel plates.

    PubMed

    Abdel-Kader, Maged Saad; Alam, Prawez; Alqasoumi, Saleh Ibrahim

    2016-03-01

    Two simple, precise and stability-indicating densitometric HPTLC method were developed and validated for qualitative and quantitative analysis of Coenzyme Q10 in pharmaceutical formulations using normal-phase (Method I) and reversed phase (Method II) silica gel TLC plates. Both methods were developed and validated with 10×20 cm glass-backed plates coated with 0.2 mm layers of either silica gel 60 F254 (E-Merck, Germany) using hexane-ethyl acetate (8.5:1.5 v/v) as developing system (Method I) or RP-18 silica gel 60 F254 (E-Merck, Germany) using methanol-acetone (4:6 v/v) as mobile phase (Method II). Both analyses were scanned with a densitometer at 282 nm. Linearity was found in the ranges 50-800 ng/spot (r(2)=0.9989) and 50-800 ng/spot (r(2)=0.9987) for Method I and Method II respectively. Stability of Coenzyme Q10 was explored by the two methods using acid, base, hydrogen peroxide, temperature and different solvents. Due to the efficiency of the method in separating Coenzyme Q10 from other ingredients including its degradation products, it can be applied for quality control, standardization of different pharmaceutical formulations and stability study.

  11. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis Reveals N-terminal Truncation of the Hsc70 Protein in Cotton Fibers In Vivo

    PubMed Central

    Tao, Chengcheng; Jin, Xiang; Zhu, Liping; Li, Hongbin

    2016-01-01

    On two-dimensional electrophoresis gels, six protein spots from cotton ovules and fibers were identified as heat shock cognate 70 kD protein (Hsc70). Three spots corresponded to an experimental molecular weight (MW) of 70 kD (spots 1, 2 and 3), and the remaining three spots corresponded to an experimental MW slightly greater than 45 kD (spots 4, 5 and 6). Protein spots 1, 2 and 3 were abundant on gels of 0-day (the day of anthesis) wild-type (WT) ovules, 0-day fuzzless-lintless mutant ovules and 10-day WT ovules but absent from gels of 10-day WT fibers. Three individual transcripts encoding these six protein spots were obtained by using rapid amplification of cDNA ends (RACE). Edman degradation and western blotting confirmed that the three 45 kD Hsc70 protein spots had the same N-terminal, which started from the T271 amino acid in the intact Hsc70 protein. Furthermore, quadrupole time-of-flight mass spectrometry analysis identified a methylation modification on the arginine at position 475 for protein spots 4 and 5. Our data demonstrate that site-specific in vivo N-terminal truncation of the Hsc70 protein was particularly prevalent in cotton fibers, indicating that post-translational regulation might play an important role in cotton fiber development. PMID:27833127

  12. Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells.

    PubMed

    Tanaka, Nobuyuki; Yamashita, Tadahiro; Sato, Asako; Vogel, Viola; Tanaka, Yo

    2017-01-01

    The geometrical confinement of small cell colonies gives differential cues to cells sitting at the periphery versus the core. To utilize this effect, for example to create spatially graded differentiation patterns of human mesenchymal stem cells (hMSCs) in vitro or to investigate underpinning mechanisms, the confinement needs to be robust for extended time periods. To create highly repeatable micro-fabricated structures for cellular patterning and high-throughput data mining, we employed here a simple casting method to fabricate more than 800 adhesive patches confined by agarose micro-walls. In addition, a machine learning based image processing software was developed (open code) to detect the differentiation patterns of the population of hMSCs automatically. Utilizing the agarose walls, the circular patterns of hMSCs were successfully maintained throughout 15 days of cell culture. After staining lipid droplets and alkaline phosphatase as the markers of adipogenic and osteogenic differentiation, respectively, the mega-pixels of RGB color images of hMSCs were processed by the software on a laptop PC within several minutes. The image analysis successfully showed that hMSCs sitting on the more central versus peripheral sections of the adhesive circles showed adipogenic versus osteogenic differentiation as reported previously, indicating the compatibility of patterned agarose walls to conventional microcontact printing. In addition, we found a considerable fraction of undifferentiated cells which are preferentially located at the peripheral part of the adhesive circles, even in differentiation-inducing culture media. In this study, we thus successfully demonstrated a simple framework for analyzing the patterned differentiation of hMSCs in confined microenvironments, which has a range of applications in biology, including stem cell biology.

  13. Multiplex real-time PCR and high-resolution melting analysis for detection of white spot syndrome virus, yellow-head virus, and Penaeus monodon densovirus in penaeid shrimp.

    PubMed

    Panichareon, Benjaporn; Khawsak, Paisarn; Deesukon, Warin; Sukhumsirichart, Wasana

    2011-12-01

    A multiplex real-time PCR and high-resolution melting (HRM) analysis was developed to detect simultaneously three of the major viruses of penaeid shrimp including white spot syndrome virus (WSSV), yellow-head virus (YHV), and Penaeus monodon densovirus (PmDNV). Plasmids containing DNA/cDNA fragments of WSSV and YHV, and genomic DNAs of PmDNV and normal shrimp were used to test sensitivity of the procedure. Without the need of any probe, the products were identified by HRM analysis after real-time PCR amplification using three sets of viral specific primers. The results showed DNA melting curves that were specific for individual virus. No positive result was detected with nucleic acids from shrimp, Penaeus monodon nucleopolyhedrovirus (PemoNPV), Penaeus stylirostris densovirus (PstDNV), or Taura syndrome virus (TSV). The detection limit for PmDNV, YHV and WSSV DNAs were 40fg, 50fg, and 500fg, respectively, which was 10 times more sensitive than multiplex real-time PCR analyzed by agarose gel electrophoresis. In viral nucleic acid mixtures, HRM analysis clearly identified each virus in dual and triple infection. To test the capability to use this method in field, forty-one of field samples were examined by HRM analysis in comparison with agarose gel electrophoresis. For HRM analysis, 11 (26.83%), 9 (21.95%), and 4 (9.76%) were infected with WSSV, PmDNV, and YHV, respectively. Agarose gel electrophoresis detected lesser number of PmDNV infection which may due to the limit of sensitivity. No multiple infection was found in these samples. This method provides a rapid, sensitive, specific, and simultaneous detection of three major viruses making it as a useful tool for diagnosis and epidemiological studies of these viruses in shrimp and carriers.

  14. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  15. Microfluidic dielectrophoretic sorter using gel vertical electrodes

    PubMed Central

    Luo, Jason; Nelson, Edward L.; Li, G. P.; Bachman, Mark

    2014-01-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device. PMID:24926390

  16. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  17. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  18. Kinetic analysis of beer primary fermentation using yeast cells immobilized by ceramic support adsorption and alginate gel entrapment.

    PubMed

    Zhang, Yongming; Kennedy, John F; Knill, Charles J; Panesar, Parmjit S

    2006-01-01

    Yeast cells were immobilized by absorption onto porous ceramic support and evaluated for continuous beer primary fermentation using a bioreactor in comparison to yeast cells immobilized by entrapment in calcium alginate gel. The effects of temperature and flow rate as a function of reaction/fermentation time on fermentation rate were investigated. The fermentation reaction (in terms of loss of total soluble solids in the beer wort as a function of time) was first-order with half-lifes in the range of approximately 9-11 hours at approximately 10-12 degrees C at beer wort linear flow rates of approximately 0.8-1.6 cm/minute for ceramic support, compared with approximately 16 hours for Ca-alginate gel, the former support matrix being more efficient and demonstrating greater potential for future commercial application.

  19. Gel mesh as "brake" to slow down DNA translocation through solid-state nanopores.

    PubMed

    Tang, Zhipeng; Liang, Zexi; Lu, Bo; Li, Ji; Hu, Rui; Zhao, Qing; Yu, Dapeng

    2015-08-21

    Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results.

  20. Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles.

    PubMed

    In, Eunji; Naguib, Hani; Haider, Masoom

    2014-10-01

    Medical imaging is an effective technique used to detect and prevent disease in cancer research. To optimize medical imaging, a calibration medium or phantom with tissue-mimicking properties is required. Although the feasibility of various polymer gel materials has previously been studied, the stability of the gels' properties has not been investigated. In this study, we fabricated carrageenan-based polymer gel to examine the stability of its properties such as density, conductivity, permittivity, elastic modulus, and [Formula: see text] and [Formula: see text] relaxation times over six weeks. We fabricated eight samples with different carrageenan and agar concentrations and found that the density, elastic modulus, and compressive strength fluctuated with no specific pattern. The elastic modulus in sample 4 with 3 wt. % carrageenan and 1.5 wt. % agar fluctuated from 0.51 to 0.64 MPa in five weeks. The [Formula: see text] and [Formula: see text] relaxation times also varied by 23% to 29%. We believe that the fluctuation of these properties is related to the change in water content of the sample due to cycles of water expulsion and absorption in their containers. The fluctuation of the properties should be minimized to achieve accurate calibration over the shelf life of the phantom and to serve as the standard for quality assurance. Furthermore, a full liver phantom with spherical lesion particles was fabricated to demonstrate the potential for phantom production.

  1. Variable number of tandem repeats and pulsed-field gel electrophoresis cluster analysis of enterohemorrhagic Escherichia coli serovar O157 strains.

    PubMed

    Yokoyama, Eiji; Uchimura, Masako

    2007-11-01

    Ninety-five enterohemorrhagic Escherichia coli serovar O157 strains, including 30 strains isolated from 13 intrafamily outbreaks and 14 strains isolated from 3 mass outbreaks, were studied by pulsed-field gel electrophoresis (PFGE) and variable number of tandem repeats (VNTR) typing, and the resulting data were subjected to cluster analysis. Cluster analysis of the VNTR typing data revealed that 57 (60.0%) of 95 strains, including all epidemiologically linked strains, formed clusters with at least 95% similarity. Cluster analysis of the PFGE patterns revealed that 67 (70.5%) of 95 strains, including all but 1 of the epidemiologically linked strains, formed clusters with 90% similarity. The number of epidemiologically unlinked strains forming clusters was significantly less by VNTR cluster analysis than by PFGE cluster analysis. The congruence value between PFGE and VNTR cluster analysis was low and did not show an obvious correlation. With two-step cluster analysis, the number of clustered epidemiologically unlinked strains by PFGE cluster analysis that were divided by subsequent VNTR cluster analysis was significantly higher than the number by VNTR cluster analysis that were divided by subsequent PFGE cluster analysis. These results indicate that VNTR cluster analysis is more efficient than PFGE cluster analysis as an epidemiological tool to trace the transmission of enterohemorrhagic E. coli O157.

  2. Molecular characterization of MT3 antigens by two-dimensional gel electrophoresis, NH2-terminal amino acid sequence analysis, and southern blot analysis.

    PubMed Central

    Sorrentino, R; Lillie, J; Strominger, J L

    1985-01-01

    The monoclonal antibody 109d6, which recognizes major histocompatibility antigen MT3-like serologic determinants, has been used to characterize the molecules bearing this determinant in HLA-DR4 and -DR7 homozygous cell lines by two-dimensional gel and sequencing analyses. By these two criteria, these molecules are identical to each other. Southern blot analysis of genomic DNA from HLA-DR1 through -DR7 homozygous cell lines with DR beta-chain gene probes reveals a striking similarity in the pattern of hybridizing fragments between DR4 and DR7 haplotypes and among DR3, DR5, and DRw6 haplotypes reminiscent of the MT3/MT2 allodeterminant distribution. The sharing of the MT2 determinant between DR3, DR5, and DRw6 haplotypes and of the MT3 determinant between DR4 and DR7 haplotypes is part of a broader "homology," which may be a consequence of more recent separation of the haplotypes sharing the MT2 determinant on the one hand and the haplotypes sharing the MT3 determinant on the other hand. Images PMID:2582424

  3. Aroma release and retronasal perception during and after consumption of flavored whey protein gels with different textures. 1. in vivo release analysis.

    PubMed

    Mestres, Montserrat; Moran, Noelia; Jordan, Alfons; Buettner, Andrea

    2005-01-26

    The influence of gel texture on retronasal aroma release during mastication was followed by means of real-time proton-transfer reaction mass spectrometry and compared to sensory perception of overall aroma intensity. A clear correlation was found between individual-specific consumption patterns and the respective physicochemical release patterns in vivo. A modified data analysis approach was used to monitor the aroma changes during the mastication process. It was found that the temporal resolution of the release profile played an important role in adequate description of the release processes. On the basis of this observation, a hypothesis is presented for the observed differences in intensity rating.

  4. Agarose cell block technique as a complementary method in the diagnosis of fungal osteomyelitis in a dog

    PubMed Central

    Zanoni, D.S.; Grandi, F.; Cagnini, D.Q.; Bosco, S.M.G.; Rocha, N.S.

    2012-01-01

    A 7-year-old Labrador Retriever female dog presenting left forelimb lameness for one day was admitted to the Veterinary Hospital (UNESP-Botucatu) for clinical evaluation. Several tests, including blood and image analysis, microbiological culture and cytology of lytic areas of affected bone were made in order to establish a diagnosis. Serum biochemical profile revealed increased levels of liver enzymes, plasma globulin, creatine kinase (CK) and calcium. Hemogram revealed anemia and leukocytosis; left humerus image analysis revealed an osteolytic lesion and cytology revealed a suppurative periostitis. Differential diagnosis was a nonspecific infectious inflammatory process or osteosarcoma. Since it was not possible to achieve a definitive diagnosis and there was a highly suspicious for an infectious agent, an agarose cell block of the bone marrow fine-needle aspiration was made. The cytological examination of cell block presented similar findings as described previously. However, additional stains including periodic acid-Schiff (PAS) were positive for fungal hyphae, which rendered a diagnosis of fungal osteomyelitis due to Aspergillus spp. This case report illustrates an uncommon cause of osteomyelitis for breed that was diagnosed by an underused method in veterinary medicine. PMID:26623286

  5. Determination of pesticides in fatty matrices using gel permeation clean-up followed by GC-MS/MS and LC-MS/MS analysis: A comparison of low- and high-pressure gel permeation columns.

    PubMed

    David, Frank; Devos, Christophe; Dumont, Emmie; Yang, Zhen; Sandra, Pat; Huertas-Pérez, José Fernando

    2017-04-01

    Two low-pressure columns (Bio-Beads SX-3) and three high-pressure GPC columns were compared for clean-up of a wide range of pesticides in fatty matrices of vegetable or animal origin. The GPC fractions were analyzed by GC-MS/MS and LC-MS/MS without additional clean-up. The performance of the GPC clean-up on the five column types was compared in terms of solvent consumption, lipid removal, pesticide recovery and repeatability. It was found that for fatty matrices, mainly consisting of high molecular weight triglycerides i.e. most vegetable oils and animal fats, good fractionation is obtained for the majority of the pesticides. On the other hand, for fats and oils containing relatively high amounts of low molecular weight triglycerides, i.e. butter fat and palm kernel oil, none of the columns provided sufficient clean-up and cause interferences and system contamination, especially in the case of GC-MS/MS analysis. For the latter case, best results in terms of lipid removal and pesticide recovery were obtained on a set (2×300mmlength) of narrow bore (7.5mm ID) columns packed with 5µm PL Gel material. Column loadability is, however, much lower on that set of columns compared the other evaluated GPC columns, impairing overall method sensitivity.

  6. A least-squares error minimization approach in the determination of ferric ion diffusion coefficient of Fricke-infused dosimeter gels

    SciTech Connect

    Tseng, Y.J.; Huang, S.-C.; Chu, W.C.

    2005-04-01

    A least-squares error minimization approach was adopted to assess ferric ion diffusion coefficient of Fricke-agarose gels. Ferric ion diffusion process was modeled as a Gaussian-shaped degradation kernel operating on an initial concentration distribution. Diffusion coefficient was iteratively determined by minimizing the error function defined as the difference between the theoretically calculated and the experimentally measured dose distributions. A rapid MR image-based differential gel dosimetry technique that time resolves the evolution of the ferric ion diffusion process minimizes smearing of the dose distribution. Our results showed that for a Fricke-agarose gel contained 1 mM ammonium ferrous sulfate, 1% agarose, 1 mM sodium chloride, and 50 mM sulfuric acid, its ferric ion diffusion coefficient is (1.59{+-}0.28)x10{sup -2} cm{sup 2} h{sup -1} at room temperature. This value falls within the 1.00-2.00x10{sup -2} cm{sup 2} h{sup -1} range previously reported under varying gelling ingredients and concentrations. This method allows a quick, nondestructive evaluation of the ferric ion diffusion coefficient that can be used in conjunction with the in situ gel dosimetry experiment to provide a practical diffusion characterization of the dosimeter gel.

  7. Quantitative detection and differentiation of free-living amoeba species using SYBR green-based real-time PCR melting curve analysis.

    PubMed

    Behets, Jonas; Declerck, Priscilla; Delaedt, Yasmine; Verelst, Lieve; Ollevier, Frans

    2006-12-01

    Real-time polymerase chain reaction melting curve analysis (MCA) allows differentiation of several free-living amoebae species. Distinctive characteristics were found for Naegleria fowleri, N. lovaniensis, N. australiensis, N. gruberi, Hartmanella vermiformis, and Willaertia magna. Species specificity of the amplicons was confirmed using agarose gel electrophoresis and sequence-based approaches. Amplification efficiency ranged from 91% to 98%, indicating the quantitative potential of the assay. This MCA approach can be used for quantitative detection of free-living amoebae after cultivation but also as a culture-independent detection method.

  8. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening.

    PubMed

    Cuttitta, Christina M; Ericson, Daniel L; Scalia, Alexander; Roessler, Christian G; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S

    2015-01-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s(-1)) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  9. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  10. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    DOE PAGES

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; ...

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from themore » inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  11. Rheological characterization of human fibrin and fibrin-agarose oral mucosa substitutes generated by tissue engineering.

    PubMed

    Rodríguez, I A; López-López, M T; Oliveira, A C X; Sánchez-Quevedo, M C; Campos, A; Alaminos, M; Durán, J D G

    2012-08-01

    In regenerative medicine, the generation of biocompatible substitutes of tissues by in vitro tissue engineering must fulfil certain requirements. In the case of human oral mucosa, the rheological properties of tissues deserve special attention because of their influence in the acoustics and biomechanics of voice production. This work is devoted to the rheological characterization of substitutes of the connective tissue of the human oral mucosa. Two substitutes, composed of fibrin and fibrin-agarose, were prepared in cell culture for periods in the range 1-21 days. The time evolution of the rheological properties of both substitutes was studied by two different experimental procedures: steady-state and oscillatory measurements. The former allows the plastic behaviour of the substitutes to be characterized by estimating their yield stress; the latter is employed to quantify their viscoelastic responses by obtaining the elastic (G') and viscous (G'') moduli. The results demonstrate that both substitutes are characterized by a predominant elastic response, in which G' (order 100 Pa) is roughly one order of magnitude larger than G'' (order 10 Pa). But the most relevant insight is the stability, throughout the 21 days of culture time, of the rheological quantities in the case of fibrin-agarose, whereas the fibrin substitute shows a significant hardening. This result provides evidence that the addition to fibrin of a small amount of agarose allows the rheological stability of the oral mucosa substitute to be maintained. This feature, together with its viscoelastic similitude with native tissues, makes this biomaterial appropriate for potential use as a scaffold in regenerative therapies of human oral mucosa.

  12. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  13. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  14. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  15. Gel-based versus gel-free proteomics: a review.

    PubMed

    Baggerman, Geert; Vierstraete, Evy; De Loof, Arnold; Schoofs, Liliane

    2005-12-01

    With the sequencing of the genome of over 150 organisms, the field of biology has been revolutionised. Instead of studying one gene or protein at the time, it is now possible to study the effect of physiological or pathological changes on the expression of all genes or proteins in the organism. Proteomics aims at the simultaneous analysis of all proteins expressed by a cell, tissue or organism in a specific physiological condition. Because proteins are the effector molecules in all organisms, it is evident that changes in the physiological condition of an organism will be reflected by changes in protein expression and/or processing. Since the formulation of the concept of proteomics in the mid 90's proteomics has relied heavily on 2 dimensional gel electrophoresis (2DGE) for the separation and visualization of proteins. 2DGE, however, has a number of inherent drawbacks. 2DGE is costly, fairly insensitive to low copy proteins and cannot be used for the entire proteome. Therefore, over the years, several gel-free proteomics techniques have been developed to either fill the gaps left by 2DGE or to entirely abolish the gel based techniques. This review summarizes the most important gel-free and gel-based proteomics techniques and compares their advantages and drawbacks.

  16. The Role of Bimatoprost Eyelash Gel in Chemotherapy-induced Madarosis: An Analysis of Efficacy and Safety

    PubMed Central

    Morris, Carrie L; Stinnett, SS; Woodward, JA

    2011-01-01

    Objectives: Breast cancer patients suffer from madarosis (loss of eyelashes) due to chemotherapy side effects. An effective treatment or prevention for alopecia or madarosis induced by chemotherapy is not available. Potential drug side effects of bimatoprost solution include increased eyelash length, darkness, and number. A formulation of bimatoprost which maximizes eyelash enhancement and minimizes intraocular and systemic side effects has not been reported. Materials and Methods: An Institutional Review Board (IRB) and Investigational New Drug (IND) approved, randomized, single-blinded, prospective, internally controlled trial compared bimatoprost eyelash gel in relation to eyelash enhancement of madarosis patients. Forty eyelids of 20 chemotherapy-treated breast cancer patients were randomized to treatment or control (fellow eyelid). Both patient and surgeon (blindly) evaluated bimatoprost gel's effectiveness in improving eyelash appearance at baseline and at monthly intervals. Results: The median follow-up time was 3 months (range 1-4). There was a significant difference between treated and fellow eyelash length during month 2 [1.00 mm (P=0.004)] and month 3 [1.00 mm, P=0.02)], in eyelash pigment [month 1 (2.5, P=0.04); month 2 (2, P=0.0009); month 3 (3, P=0.06)] and thickness [month 2 (2, P=0.002); month 3 (3, P=0.01)]. There was an improvement in the patient satisfaction scale from baseline 16 (median, range 7-21) to 26 (median, range 17-33, P=0.002) at last follow-up. Conclusions: Bimatoprost eyelash gel appears promising for chemotherapy-induced madarosis. Patients may find the effects restorative and cosmetically enhancing. PMID:22223967

  17. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  18. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis.

    PubMed

    Bendich, A J

    1996-02-02

    The size and structure of mitochondrial DNA (mtDNA) molecules was investigated by conventional and pulsed-field gel electrophoresis (PFGE) and by analyzing moving pictures during electrophoresis of individual fluorescently labelled mtDNA molecules. Little or no mtDNA that migrated into the gel was found in circular form for fungi (Schizosaccharomyces pombe, Saccharomyces cerevisiae and Neurospora crassa) or plants (Brassica hirta, tobacco, voodoo lily and maize). Most mtDNA migrated as a smear of linear DNA sizes from about 50 to 100 or 250 kilobases (kb), depending on the species, irrespective of the size of the mitochondrial genome over a range of 0.06 to 570 kb. S. cerevisiae, B. hirta and tobacco also yielded a linear mtDNA fraction containing molecules > 1000 kb in size. About half the mtDNA remained in the well of the gel after PFGE. Moving pictures revealed that this well-bound (wb) mtDNA contained molecules larger than the genome size in linear form for all species (except N. crassa) and in multi-fibered, comet-like forms for most of the wb mtDNA of N. crassa and Sc. pombe. A minor amount of the wb mtDNA with visually interpretable structure was circular: circle sizes were both larger and smaller than the 80-kb genome of S. cerevisiae, larger than the 19-kb genome of Sc. pombe and smaller than the 208-kb and 570-kb genomes of B. hirta and maize, respectively. About 25 to 75% of the wb mtDNA from cultured tobacco cells was found in circles smaller than its genome size. Partial digestion of Sc. pombe mtDNA with restriction endonucleases that cleave once per genome revealed gel bands at about 38 kb and 19 kb with a smear of sizes between the bands and below the 19-kb band, suggesting a head-to-tail genomic concatemer as the most prominent form in extracted mtDNA. A pattern of bands with smears was also found for complete digests (with multiply cleaving enzymes) of mtDNA from Sc. pombe, S. cerevisiae and N. crassa, but bands without smears were found for

  19. Rapid high-resolution electrophoresis of multimeric von Willebrand Factor using a thermopiloted gel apparatus.

    PubMed

    Smejkal, Gary B; Shainoff, John R; Kottke-Marchant, Kandice M

    2003-02-01

    Rapid and highly reproducible nonreducing agarose gel electrophoresis (NRAGE) of von Willebrand Factor (vWF) multimers was performed using a thermostated minigel apparatus that monitors and precisely controls internal gel temperature. The substitution of lithium dodecyl sulfate (LiDS) for sodium dodecyl sulfate (SDS) allowed electrophoresis to be performed below the 16 degrees C Krafft point of SDS and facilitated NRAGE of vWF over the entire range of 0-35 degrees C. Internal gel temperature was regulated by a thermocouple probe inserted directly into the gel during electrophoresis which interfaced with a thermopilot that continually measures and adjusts temperature to within +/- 0.5 degrees C. At 10 degrees C operative temperature, NRAGE at 1.5% agarose concentration was completed in 20 min at 250 V. Electrophoresis could be performed in only 10 min at 500 V, but at such high voltages, localized temperature fluctuations as much as 6 degrees C resulted in perturbation of banding patterns in those vicinities. In the optimized method, both high molecular weight multimers and proteolytic fragments of vWF were separable suggesting clinical applicability of this system for the diagnosis of von Willebrand Disease and thrombotic thrombocytopenic purpura.

  20. Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE).

    PubMed Central

    Cilley, C D; Williamson, J R

    1997-01-01

    The antitermination protein N from bacteriophage lambda (Nlambda) interacts with the nut site in its own mRNA, as well as host factors, to facilitate formation of a termination-resistant transcription complex. The conserved, amino-terminal arginine-rich domain of Nlambda protein is known to interact with a small RNA hairpin (boxB) derived from the nut site RNA. We have examined the binding of Nlambda protein, peptides derived from the amino terminus of Nlambda, and the related phage P22 N protein to lambda boxB RNAs. To facilitate the study of complexes that are not amenable to gel retardation assays, a new polyacrylamide affinity coelectrophoresis technique (PACE) was developed. Using the PACE assay, we have demonstrated that a 19-amino acid peptide from the amino terminus of Nlambda protein binds lambda boxB RNA with a Kd,app of 5.2 nM. PACE was also used to study the binding affinity of a number of Nlambda peptide and lambda boxB RNA mutants. The PACE technique is complementary to the traditional gel retardation assay for direct measurement of binding interactions, and will be useful for any procedure that requires a pool of RNAs to be resolved based on their relative affinities for proteins or peptides. PMID:8990399

  1. Mutation analysis of fragile X syndrome by Southern blot, radioactive PCR, silver-stained polyacrylamide gel and DIG DNA

    SciTech Connect

    Lee, Sook-Hwan; Kim, Un-Kyung; Chung-Woong, M.S.

    1994-09-01

    Fragile X syndrome is the most common inherited form of mental retardation. In fragile X syndrome, the underlying mutation is caused by an expansion of the CTG triplet in the 5{prime} untranslated region of the FMR-1 gene located at Xq27.3 and diagnosed by methylation of the associated CpG island. This disorder becomes clinically manifested when the mutation is caused by an expansion of (CGG)n reaching a threshold of about 600bp (200 repeats). The number of inserted repeats increases through the generation. We have analyzed fragile X syndrome by 4 different methods: Southern blot, radioactive PCR, polyacrylamide gel and DIG DNA labeling/detection techniques. Southern blot and DIG DNA labeling/detection by double DNA digestion with EcoRI and EagI reveals both the presence of the mutation and the methylation status. Radioactive PCR and silver-stained polyacrylamide gel is a rapid and sensitive technique to define the unaffected carriers and NTMs, but it is difficult to amplify such a highly GC-rich sequence. Further testing in other fragile X patients is currently in progress.

  2. Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles

    PubMed Central

    In, Eunji; Naguib, Hani; Haider, Masoom

    2014-01-01

    Abstract. Medical imaging is an effective technique used to detect and prevent disease in cancer research. To optimize medical imaging, a calibration medium or phantom with tissue-mimicking properties is required. Although the feasibility of various polymer gel materials has previously been studied, the stability of the gels’ properties has not been investigated. In this study, we fabricated carrageenan-based polymer gel to examine the stability of its properties such as density, conductivity, permittivity, elastic modulus, and T1 and T2 relaxation times over six weeks. We fabricated eight samples with different carrageenan and agar concentrations and found that the density, elastic modulus, and compressive strength fluctuated with no specific pattern. The elastic modulus in sample 4 with 3 wt. % carrageenan and 1.5 wt. % agar fluctuated from 0.51 to 0.64 MPa in five weeks. The T1 and T2 relaxation times also varied by 23% to 29%. We believe that the fluctuation of these properties is related to the change in water content of the sample due to cycles of water expulsion and absorption in their containers. The fluctuation of the properties should be minimized to achieve accurate calibration over the shelf life of the phantom and to serve as the standard for quality assurance. Furthermore, a full liver phantom with spherical lesion particles was fabricated to demonstrate the potential for phantom production. PMID:26158073

  3. Structural and thermo-rheological analysis of solutions and gels of a β-lactoglobulin fraction isolated from bovine whey.

    PubMed

    Estévez, Natalia; Fuciños, Pablo; Bargiela, Verónica; Pastrana, Lorenzo; Tovar, Clara Asunción; Luisa Rúa, M

    2016-05-01

    A β-Lactoglobulin fraction (r-βLg) was isolated from milk whey hydrolysates produced with cardosins from Cynara cardunculus. The impact of the technological process on the r-βLg structure and how in turn this determined its heat-induced gelation was investigated. Results were analysed taking pure β-Lg (p-βLg) as control sample. The process induced changes in the r-βLg native conformation causing exposure of hydrophobic groups, lower thermal stability and also, shorter thermal treatments needed to give rise to non-native and aggregated species. At pH 3.2, r-βLg and p-βLg solutions exhibited two gelation steps, with the advantage that r-βLg protein may form stable gels at lower temperature than p-βLg. At pH 7.2, a specific thermo-viscoelastic stability to 73 °C was found, which corresponded to the gel point in both protein solutions. The difference was that while for p-βLg solution in sol state δ<45° (solid-like), however for r-βLg solution δ>45° (fluid-like).

  4. Differential single nucleotide polymorphism-based analysis of an outbreak caused by Salmonella enterica serovar Manhattan reveals epidemiological details missed by standard pulsed-field gel electrophoresis.

    PubMed

    Scaltriti, Erika; Sassera, Davide; Comandatore, Francesco; Morganti, Marina; Mandalari, Carmen; Gaiarsa, Stefano; Bandi, Claudio; Zehender, Gianguglielmo; Bolzoni, Luca; Casadei, Gabriele; Pongolini, Stefano

    2015-04-01

    We retrospectively analyzed a rare Salmonella enterica serovar Manhattan outbreak that occurred in Italy in 2009 to evaluate the potential of new genomic tools based on differential single nucleotide polymorphism (SNP) analysis in comparison with the gold standard genotyping method, pulsed-field gel electrophoresis. A total of 39 isolates were analyzed from patients (n=15) and food, feed, animal, and environmental sources (n=24), resulting in five different pulsed-field gel electrophoresis (PFGE) profiles. Isolates epidemiologically related to the outbreak clustered within the same pulsotype, SXB_BS.0003, without any further differentiation. Thirty-three isolates were considered for genomic analysis based on different sets of SNPs, core, synonymous, nonsynonymous, as well as SNPs in different codon positions, by Bayesian and maximum likelihood algorithms. Trees generated from core and nonsynonymous SNPs, as well as SNPs at the second and first plus second codon positions detailed four distinct groups of isolates within the outbreak pulsotype, discriminating outbreak-related isolates of human and food origins. Conversely, the trees derived from synonymous and third-codon-position SNPs clustered food and human isolates together, indicating that all outbreak-related isolates constituted a single clone, which was in line with the epidemiological evidence. Further experiments are in place to extend this approach within our regional enteropathogen surveillance system.

  5. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model.

    PubMed

    Scionti, Giuseppe; Moral, Monica; Toledano, Manuel; Osorio, Raquel; Durán, Juan D G; Alaminos, Miguel; Campos, Antonio; López-López, Modesto T

    2014-08-01

    The effect of hydration on the biomechanical properties of fibrin and fibrin-agarose (FA) tissue-like hydrogels is reported. Native hydrogels with approximately 99.5% of water content and hydrogels with water content reduced until 90% and 80% by means of plastic compression (nanostructuration) were generated. The biomechanical properties of the hydrogels were investigated by tensile, compressive, and shear tests. Experimental results indicate that nanostructuration enhances the biomechanical properties of the hydrogels. This improvement is due to the partial draining of the water that fills the porous network of fibers that the plastic compression generates, which produces a denser material, as confirmed by scanning electron microscopy. Results also indicate that the characteristic compressive and shear parameters increase with agarose concentration, very likely due to the high water holding capacity of agarose, which reduces the compressibility and gives consistency to the hydrogels. However, results of tensile tests indicate a weakening of the hydrogels as agarose concentration increases, which evidences the anisotropic nature of these biomaterials. Interestingly, we found that by adjusting the water and agarose contents it is possible to tune the biomechanical properties of FA hydrogels for a broad range, within which the properties of many native tissues fall.

  6. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.