Science.gov

Sample records for agarose gel matrix

  1. Recycling of superfine resolution agarose gel.

    PubMed

    Seng, T-Y; Singh, R; Faridah, Q Z; Tan, S-G; Alwee, S S R S

    2013-01-01

    Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris-borate-ethylenediaminetetraacetic acid buffer, will further save time and cost. The 2.5% gel was prepared following the Agarose SFR(TM) manual by adding 2.5 g agarose powder into 100 mL 1X lithium borate buffer in a 250-mL flask with rapid stirring. Two midigels (105 x 83 mm, 17 wells) or 4 minigels (50 x 83 mm, 8 wells), 4 mm thickness can be prepared from 100 mL gel solution. A total of 1680 PCR products amplified using 140 SSR markers from oil palm DNA samples were tested in this study using SFR recycled gel. As average, the gel can be recycled 8 times with good resolution, but can be recycled up to 14 times before the resolutions get blurred. PMID:23546970

  2. Synthesis Rates and Binding Kinetics of Matrix Products in Engineered Cartilage Constructs Using Chondrocyte-Seeded Agarose Gels

    PubMed Central

    Nims, Robert J.; Cigan, Alexander D.; Albro, Michael B.; Hung, Clark T.; Ateshian, Gerard A.

    2013-01-01

    Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]-[agarose gel] system, total synthesis rate (matrix accumulation rate + matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3’s influence on pyridinoline content and mechanical properties was also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al., (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs. PMID:24284199

  3. Orientation of DNA in agarose gels.

    PubMed Central

    Borejdo, J

    1989-01-01

    An orientation of the lambda DNA during the electrophoresis in agarose gels was measured by a microscopic linear dichroism technique. The method involved staining the DNA with the dye ethidium bromide and measuring under the microscope the polarization properties of the fluorescence field around the electrophoretic band containing the nucleic acid. It was first established that the fluorescence properties of the ethidium bromide-DNA complex were the same in agarose gel and in a solution. Then the linear dichroism method was used to measure the dichroism of the absorption dipole of EB dye bound to lambda DNA. In a typical experiment the orientation of two-tenth of a picogram (2 x 10(-13)g) of DNA was measured. When the electric field was turned on, the dichroism developed rapidly and assumed a steady state value which increased with the strength of the field and with the size of DNA. A linear dichroism equation related the measured dichroism of fluorescence to the mean orientation of the absorption dipole of ethidium bromide and to an extent to which the orientation of this dipole deviated from the mean. The observed development of dichroism in the presence of an electric field was interpreted as an alignment of DNA along the direction of the field. The increase in the steady state value of dichroism with the rise in the strength of the field and with the increase of the size of DNA was interpreted as a better alignment of DNA along the direction of the field and as a smaller deviation from its mean orientation. Images FIGURE 8 PMID:2527571

  4. Transverse agarose pore gradient gel electrophoresis of DNA.

    PubMed

    Fawcett, J S; Wheeler, D; Chrambach, A

    1992-06-01

    Transverse agarose pore gradient gels were prepared on GelBond in the concentration range of nominally 0.2-1.5% SeaKem GTG agarose, using density stabilization by glycerol and incorporation of a dye to define the gel concentration at each point on the pore gradient gel. The distribution of the dye was evaluated by photography, video-acquisition and digitization of the gradient mixture and by densitometry of the gel. The gel was applied to the electrophoresis of a 1-kb standard ladder of DNA fragments, using standard submarine apparatus. The method extends to agarose gel electrophoresis the benefits of semi-automated analysis of 'Ferguson curves' described in application to polyacrylamide gel by Wheeler et al. (J. Biochem. Biophys. Methods 24, 171-180). PMID:1640052

  5. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.

    PubMed

    Day, I N; Humphries, S E

    1994-11-01

    Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis. PMID:7864363

  6. Blinking suppression of single quantum dots in agarose gel

    SciTech Connect

    Ko, H. C.; Yuan, C. T.; Tang, Jau; Lin, S. H.

    2010-01-04

    Fluorescence blinking is commonly observed in single molecule/particle spectroscopy, but it is an undesirable feature in many applications. We demonstrated that single CdSe/ZnS quantum dots in agarose gel exhibited suppressed blinking behavior. In addition, the long-time exponential bending tail of the power-law blinking statistics was found to be influenced by agarose gel concentration. We suggest that electron transfer from the light state to the dark state might be blocked due to electrostatic surrounding of gel with inherent negatively charged fibers.

  7. Effect of sugars and polyols on water in agarose gels.

    PubMed

    Nishinari, K; Watase, M; Williams, P A; Phillips, G O

    1991-01-01

    Effects of ribose, glucose, sucrose, ethylene glycol, glycerin, propylene glycol, and sorbitol on water in concentrated agarose gels were studied by differential scanning calorimetry at low temperatures. Changes in the phase transition temperatures of 40% agarose gels, induced by the addition of these chemical reagents, are discussed, together with rheological and thermal data for the same systems at ambient and higher temperatures. Both sugars and polyols are believed to reduce the amount of freezable water and to promote plasticization and molecular mobility of agarose chains in gels, thus shifting the glass transition temperatures to lower temperatures. However, the effects of decreasing freezable water, and the direct effect on the junction zones, produced by sugars seem to be different from the effects produced by polyols. PMID:1746332

  8. Posing for a picture: vesicle immobilization in agarose gel

    PubMed Central

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-01-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs. PMID:27140695

  9. Posing for a picture: vesicle immobilization in agarose gel.

    PubMed

    Lira, Rafael B; Steinkühler, Jan; Knorr, Roland L; Dimova, Rumiana; Riske, Karin A

    2016-01-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs. PMID:27140695

  10. Posing for a picture: vesicle immobilization in agarose gel

    NASA Astrophysics Data System (ADS)

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-05-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs.

  11. Electrophoresis and orientation of F-actin in agarose gels.

    PubMed Central

    Borejdo, J; Ortega, H

    1989-01-01

    F-Actin was electrophoresed on agarose gels. In the presence of 2 mM MgCl2 and above pH 8.5 F-actin entered 1% agarose; when the electric field was 2.1 V/cm and the pH was 8.8, F-actin migrated through a gel as a single band at a rate of 2.5 mm/h. Labeling of actin with fluorophores did not affect its rate of migration, but an increase in ionic strength slowed it down. After the electrophoresis actin was able to bind phalloidin and heavy meromyosin (HMM) and it activated Mg2+-dependent ATPase activity of HMM. The mobility of F-actin increased with the rise in pH. Acto-S-1 complex was also able to migrate in agarose at basic pH, but at a lower rate than F-actin alone. The orientation of fluorescein labeled F-actin and of fluorescein labeled S-1 which formed rigor bonds with F-actin was measured during the electrophoresis by the fluorescence detected linear dichroism method. The former showed little orientation, probably because the dye was mobile on the surface of actin, but we were able to measure the orientation of the absorption dipole of the dye bound to S-1 which was attached to F-actin, and found that it assumed an orientation largely parallel to the direction of the electric field. These results show that actin can migrate in agarose gels in the F form and that it is oriented during the electrophoresis. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:2528384

  12. Separations of Short DNA in Agarose Gels: What Model Applies?

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin

    2000-03-01

    Gel Electrophoresis is used ubiquitously for separating proteins and DNA fragments from mixtures into individual components. Molecules separate because their mobilities, μ = v / E, depend on their effective charge and effective friction imposed by the gel. Models describing the dependence of μ on molecular parameters are inadequate. For example, the reptation theory as applied in other studies suggests μ proportional to (1/L). We asked whether the relationship (1/μ) proportional to AL + B, where A and B are independent parameters, would better describe electrophoretic separations of DNA fragments over a wide range of fragment lengths. A series of DNA ladders were electrophoresed in Seakem and in Metaphor agarose and mobilities studied as a function of their DNA length. In the Metaphor agarose a range of 10 bp to 1500 bp DNA fragments were observed. While in the Seakem agarose the study was done with DNA fragments ranging from 100 bp to 10 kbp. Results of the fits for μ vs. L indicate the dependence is more complex than these simple models suggest. Supported by NSF BES 9521381 and NSF Research Training Grant Fellowship 130362022.

  13. The trajectories of spheres during agarose gel electrophoresis.

    PubMed

    Griess, G A; Harris, R A; Serwer, P

    1993-01-01

    To develop a physical description of the gel-induced retardation of spheres during gel electrophoresis, the microscopic motion of single electrically charged latex spheres is statistically quantified here, by digital image analysis. To obtain adequate resolution in space, comparatively large spheres, 240 nm in radius, are used. The following observations are made during electrophoresis in a 0.2% agarose gel at 22 degrees C: (a) When a comparatively high field (3.0 V cm-1) is used, inelastic collisions result in field-induced trapping of spheres; no elastic collisions are observed. (b) Reduction of the field from 3.0 to 0.0 V cm-1 results in reverse migration of previously trapped spheres. (c) In the absence of trapping, the electrical field does not cause an alteration in the tortuosity of motion (i.e. motion in a field-perpendicular direction). (d) When results are obtained for a constant time between images (0.2 s), gel-dependent deviations from a true random walk are not observed in the absence of trapping. (e) When results are obtained as a function of time between images, significant gel-dependent deviation from a random walk is observed. In the absence of trapping, the data presented here indicate that retardation is derived primarily from dissipative processes that are concentrated near gel fibers. However, steric effects have not yet been distinguished from hydrodynamic effects. PMID:8199223

  14. Cloning of DNA fragments: ligation reactions in agarose gel.

    PubMed

    Furtado, Agnelo

    2014-01-01

    Ligation reactions to ligate a desired DNA fragment into a vector can be challenging to beginners and especially if the amount of the insert is limiting. Although additives known as crowding agents, such as PEG 8000, added to the ligation mixes can increase the success one has with ligation reactions, in practice the amount of insert used in the ligation can determine the success or the failure of the ligation reaction. The method described here, which uses insert DNA in gel slice added directly into the ligation reaction, has two benefits: (a) using agarose as the crowding agent and (b) reducing steps of insert purification. The use of rapid ligation buffer and incubation of the ligation reaction at room temperature greatly increase the efficiency of the ligation reaction even for blunt-ended ligation. PMID:24243199

  15. Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions.

    PubMed

    Ream, Jennifer A; Lewis, L Kevin; Lewis, Karen A

    2016-10-15

    Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5-10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments. PMID:27495142

  16. Two methods that facilitate autoradiography of small /sup 32/P-labeled DNA fragments following electrophoresis in agarose gels

    SciTech Connect

    Cockerill, P.N.

    1988-02-01

    Two methods which permit detection by autoradiography of small /sup 32/P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes.

  17. Solvent-impregnated agarose gel liquid phase microextraction of polycyclic aromatic hydrocarbons in water.

    PubMed

    Loh, Saw Hong; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2013-08-01

    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept. PMID:23809804

  18. Molecular stretching of long DNA in agarose gel using alternating current electric fields.

    PubMed Central

    Kaji, Noritada; Ueda, Masanori; Baba, Yoshinobu

    2002-01-01

    We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell. PMID:11751320

  19. Morphology and mechanical properties of bicontinuous gels of agarose and gelatin and the effect of added lipid phase.

    PubMed

    Shrinivas, Preeti; Kasapis, Stefan; Tongdang, Taewee

    2009-08-01

    This study examines the structural properties of binary and tertiary mixtures made of the cold-setting biopolymers agarose and gelatin and a lipid phase with solid or liquid-like viscoelasticity. The working protocol included the techniques of small-deformation dynamic oscillation on shear, modulated differential scanning calorimetry and scanning electron microscopy, and theoretical modeling that adapted ideas of relating the morphology to the elastic modulus of synthetic polyblends and block polymers. The experimental setting was designed to encourage extensive phase separation in the binary gel of agarose and gelatin whose mechanical properties were rationalized on the basis of a bicontinuous blending law. The presence of two continuous phases allowed the slower-gelling component (gelatin) to exhibit favorable relative affinity for the solvent with increasing concentrations of the protein in the system. This is an unexpected outcome that contradicts the central finding of a single value of the p factor observed in the distribution of solvent between the continuous matrix and discontinuous inclusions of deswelled binary gels reported earlier in the literature. The incorporation of a lipid phase of effectively zero elastic modulus or in excess of 10(8) Pa in the composite aqueous gel weakens or reinforces the matrix accordingly. The elastic moduli and morphology of the tertiary blend were related to changing the relative phase volumes of components using analytical expressions of isotropically dispersed soft or rigid filler particles in a polymeric matrix. PMID:19397252

  20. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products.

    PubMed

    Jimenez, Maria S; Luque-Alled, Jose M; Gomez, Teresa; Castillo, Juan R

    2016-05-01

    Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes-AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes-AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA-ICP-MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs-protein binding (what is not possible using SDS-PAGE). PMID:26864499

  1. High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Jin, Hehua; Miyata, Yasumitsu; Kataura, Hiromichi

    2008-11-01

    We have developed a novel separation method of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) using agarose gel electrophoresis. When the SWCNTs were isolated with sodium dodecyl sulfate (SDS) and embedded in agarose gel, only the metallic SWCNTs separated from the starting gel by an electric field. After 20 min, almost all SWCNTs applied to gel electrophoresis were separated into two fractions, containing ˜95% semiconducting and ˜70% metallic nanotubes. The difference in the response to the electric field between metallic and semiconducting SWCNTs can be explained by the higher affinity of semiconducting SWCNTs to agarose than to SDS.

  2. Pulsatile dynamic stiffness of cartilage-like materials and use of agarose gels to validate mechanical methods and models.

    PubMed

    Scandiucci de Freitas, P; Wirz, D; Stolz, M; Göpfert, B; Friederich, N-F; Daniels, A U

    2006-08-01

    Stiffness is a fundamental indicator of the functional state of articular cartilage. Reported test modes include compressive incremental strain to determine the equilibrium modulus, and sinusoidal strain to determine the dynamic modulus and stress/strain loss angle. Here, initial development is described for a method recognizing that gait is pulsatile. Agarose gels have been used by others for validation or comparison of mechanical test methods and models for cartilage and proteoglycan aggregate. Accordingly, gels ranging from 0.5 to 20% agarose were prepared. Pulsatile stiffness in both indentation and unconfined compression were closely reproducible. Stiffness as a function of agarose concentration rose exponentially, as found using other methods. Indentation stiffness was higher than for unconfined compression and ranged from approximately 2.0 kPa for 0.5% gel to approximately 3,800 kPa for 20% gel. Pulsatile dynamic stiffness appears to be a useful method, although further development is needed. Agarose gel stiffness values obtained by other methods were reviewed for comparison. Unfortunately, reported values for a given agarose concentration ranged widely (e.g. fourfold) even when test methods were similar. Causes appear to include differences in molecular weight and gel preparation time-temperature regimens. Also, agarose is hygroscopic, leading to unintended variations in gel composition. Agarose gels are problematic materials for validation or comparison of cartilage mechanical test methods and models. PMID:16470817

  3. DNA electrophoresis in agarose gels: A new mobility vs. DNA length dependence

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin

    2002-04-01

    Separations were performed on double stranded DNA (dsDNA) using electrophoresis. Electrophoresis is the steady transport of particles under the influence of an external electric field. Double stranded DNA fragments ranging in length from 200 base pairs (bp) to 194,000 bp (0.34 nm = 1 bp) were electrophoresed at agarose gel concentrations T = 0.4%--1.5%. The electric field was varied from 0.62 V/cm to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study the usefulness of a new interpolation equation, 1mL =1mL-( 1mL-1 ms)e-L/g , where mL,ms , and g are independent free fitting parameters. The long length mobility limit is interpreted as mL , the short length mobility limit is ms , and g is the crossover between the long length limit and the short length limit. This exponential relation fit very well (chi2 ≥ 0.999) when there are two smooth transitions observed in the "reptation plots" (plotting 3mL/m∘ vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945--1948). Fits deviate from the data when three different slopes were observed in the reptation plots. Reptation plots were used to determine a phase diagram for dsDNA migration regimes. The phase diagrams define different regions where mechanisms for molecular transport affect the migration of dsDNA in agarose gels during electrophoresis. The parameters from the equation have also been interpreted to provide a physical description of the structure of the agarose gel by calculating the pore sizes. The relations between the values for the pore sizes and the phase diagrams are interpreted to better understand the migration of the DNA through agarose gels.

  4. Interactive forces between sodium dodecyl sulfate-suspended single-walled carbon nanotubes and agarose gels.

    PubMed

    Clar, Justin G; Silvera Batista, Carlos A; Youn, Sejin; Bonzongo, Jean-Claude J; Ziegler, Kirk J

    2013-11-27

    Selective adsorption onto agarose gels has become a powerful method to separate single-walled carbon nanotubes (SWCNTs). A better understanding of the nature of the interactive forces and specific sites responsible for adsorption should lead to significant improvements in the selectivity and yield of these separations. A combination of nonequilibrium and equilibrium studies are conducted to explore the potential role that van der Waals, ionic, hydrophobic, π-π, and ion-dipole interactions have on the selective adsorption between agarose and SWCNTs suspended with sodium dodecyl sulfate (SDS). The results demonstrate that any modification to the agarose gel surface and, consequently, the permanent dipole moments of agarose drastically reduces the retention of SWCNTs. Because these permanent dipoles are critical to retention and the fact that SDS-SWCNTs function as macro-ions, it is proposed that ion-dipole forces are the primary interaction responsible for adsorption. The selectivity of adsorption may be attributed to variations in polarizability between nanotube types, which create differences in both the structure and mobility of surfactant. These differences affect the enthalpy and entropy of adsorption, and both play an integral part in the selectivity of adsorption. The overall adsorption process shows a complex behavior that is not well represented by the Langmuir model; therefore, calorimetric data should be used to extract thermodynamic information. PMID:24164680

  5. Agarose gel tailored calcium carbonate nanoparticles-synthesis and biocompatibility evaluation.

    PubMed

    Biradar, Santoshkumar; Goornavar, Virupaxi; Periyakaruppan, Adaikkappan; Koehne, Jessica; Hall, Joseph C; Ramesh, Vani

    2014-06-01

    In this study, a novel approach to tailor the calcium carbonate nanoparticles was exploited based on agarose gel as polymer medium. The size of nanoparticles formed was governed by ionic diffusion and affected by weight percent of agarose and reaction temperature. The size, shape, purity, composition and allotropy of the synthesized nanoparticles were analyzed by different characterization techniques. Purity of nanoparticles as small as 37 nm demonstrates their suitability for broad range of industrial applications. The exposure of rat lung epithelial cells to these nanoparticles even at a higher concentration (50 microg/ml) did not induce considerable oxidative stress or cell death authenticating their fidelity to potential applications in the field of biotechnology and medicine. Through the simple and economic method of synthesis adopted in this study, separation of nanoparticles from the gel was easy, and process parameters could be optimized to control the particle size. PMID:24738380

  6. Agarose and Polyacrylamide Gel Electrophoresis Methods for Molecular Mass Analysis of 5–500 kDa Hyaluronan

    PubMed Central

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.

    2011-01-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248

  7. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Vetcher, Alexandre A.; Srinivasan, Srimeenakshi; Vetcher, Ivan A.; Abramov, Semen M.; Kozlov, Mikhail; Baughman, Ray H.; Levene, Stephen D.

    2006-08-01

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  8. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel.

    PubMed

    Zhang, Dongwei; Das, Diganta B; Rielly, Chris D

    2014-02-01

    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively. PMID:24399616

  9. Quantitation of pyrimidine dimer contents of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels

    SciTech Connect

    Sutherland, B.M.; Shih, A.G.

    1983-02-15

    We have developed a method of quantitating the pyrimidine dimer content of nonradioactive DNAs. DNA samples are treated with the UV-endonuclease from Micrococcus luteus and then separated according to molecular weight by electrophoresis on alkaline agarose gels. From their migration relative to known molecular weight standards, their median molecular weight and thus the number of dimers per DNA molecule in each sample can be calculated. Results of action spectra for dimer formation in T7 bacteriophage measured by this method agree well with action spectra for T7 killing. In addition, the method gives dimer yields in good agreement with those obtained by others using alkaline sucrose gradient sedimentation.

  10. A New Organic Dye-Based Staining for The Detection of Plant DNA in Agarose Gels.

    PubMed

    Sönmezoğlu, Özlem Ateş; Özkay, Kerime

    2015-01-01

    Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies. PMID:26158569

  11. Image-guided Convection-enhanced Delivery into Agarose Gel Models of the Brain

    PubMed Central

    Sillay, Karl A.; McClatchy, S. Gray; Shepherd, Brandon A.; Venable, Garrett T.; Fuehrer, Tyler S.

    2014-01-01

    Convection-enhanced delivery (CED) has been proposed as a treatment option for a wide range of neurological diseases. Neuroinfusion catheter CED allows for positive pressure bulk flow to deliver greater quantities of therapeutics to an intracranial target than traditional drug delivery methods. The clinical utility of real time MRI guided CED (rCED) lies in the ability to accurately target, monitor therapy, and identify complications. With training, rCED is efficient and complications may be minimized. The agarose gel model of the brain provides an accessible tool for CED testing, research, and training. Simulated brain rCED allows practice of the mock surgery while also providing visual feedback of the infusion. Analysis of infusion allows for calculation of the distribution fraction (Vd/Vi) allowing the trainee to verify the similarity of the model as compared to human brain tissue. This article describes our agarose gel brain phantom and outlines important metrics during a CED infusion and analysis protocols while addressing common pitfalls faced during CED infusion for the treatment of neurological disease. PMID:24894268

  12. Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose gel electrophoresis

    SciTech Connect

    Theodorakis, C.W. ); D'Surney, S.J. . Dept. of Biology); Shugart, L.R. . Environmental Sciences Division)

    1994-07-01

    DNA, isolated from the blood cells of bluegill sunfish (Lepomis macrochirus) exposed in the lab to bedded sediment collected from a site contaminated with genotoxic compounds (i.e., PAHs, PCBs, and heavy metals), was examined for strand breakage by agarose gel electrophoresis. Before electrophoresis the blood cells were embedded in agarose plugs and incubated with proteinase. After electrophoresis under both neutral (pH 7) or alkaline (pH 12) conditions, the median molecular length (MML) of the DNA distributed in the gel was determined. These quantitative measures were used to estimate the difference in the number of double- and single-strand breaks between DNA preparations. Both types of strand breakage were found to be greater in fish exposed to sediment contaminated with genotoxic compounds as compared to nonexposed fish. A statistically significant correlation was demonstrated between the MML value obtained by the electrophoretic assay reported here and the F value (measure of DNA double-strandedness) obtained by the alkaline unwinding assay.

  13. Growth and surface-enhanced Raman scattering of Ag nanoparticle assembly in agarose gel

    NASA Astrophysics Data System (ADS)

    Keating, M.; Chen, Y.; Larmour, I. A.; Faulds, K.; Graham, D.

    2012-08-01

    Agarose gel loaded with silver nanoparticles has attracted a lot of attention recently due to its excellent molecular trapping capabilities and strong surface-enhanced Raman scattering (SERS). Despite its potential, the influence of the growth condition on the gel structure and resultant SERS intensity and reproducibility is not clear. In this work, we examine the effect of silver nitrate feed solution concentration, the precursor to neutral silver nanoparticles, on the resultant nanoparticle morphology, gel homogeneity, SERS signal intensity and reproducibility. SERS of trans-1,2-bis-(4-pyridyl) ethylene, a non-resonant molecule, was conducted. A substantial rise in SERS signal strength with increasing feed concentration was observed, accompanied by a modest increase in average particle size as disclosed by TEM analysis. At higher concentrations, gels possessed larger particles from broader size distributions which had a higher tendency to aggregate. This created a higher density of SERS ‘hotspots’, regions of intense electromagnetic field crucial for maximal enhancement of the Raman signal, but also led to increased spot-to-spot signal variation due to a marked change in nanoparticle morphology and gel homogeneity. Beyond an optimal feed concentration, no further increase in overall signal strength was evident, correlating with no appreciable rise in the number of larger particles.

  14. Detection of sequence variation in parasite ribosomal DNA by electrophoresis in agarose gels supplemented with a DNA-intercalating agent.

    PubMed

    Zhu, X Q; Chilton, N B; Gasser, R B

    1998-05-01

    This study evaluated the use of a commercially available DNA intercalating agent (Resolver Gold) in agarose gels for the direct detection of sequence variation in ribosomal DNA (rDNA). This agent binds preferentially to AT sequence motifs in DNA. Regions of nuclear rDNA, known to provide genetic markers for the identification of species of parasitic ascarid nematodes (order Ascaridida), were amplified by polymerase chain reaction (PCR) and subjected to electrophoresis in standard agarose gels versus gels supplemented with Resolver Gold. Individual taxa examined could not be distinguished reliably based on the size of their amplicons in standard agarose gels, whereas they could be readily delineated based on mobility using Resolver Gold-supplemented gels. The latter was achieved because of differences (approximately 0.1-8.2%) in the AT content of the fragments among different taxa, which were associated with significant interspecific differences (approximately 11-39%) in the rDNA sequences employed. There was a tendency for fragments with higher AT content to migrate slower in supplemented agarose gels compared with those of lower AT content. The results indicate the usefulness of this electrophoretic approach to rapidly screen for sequence variability within or among PCR-amplified rDNA fragments of similar sizes but differing AT contents. Although evaluated on rDNA of parasites, the approach has potential to be applied to a range of genes of different groups of infectious organisms. PMID:9629896

  15. Subpopulations of liver coated vesicles resolved by preparative agarose gel electrophoresis

    SciTech Connect

    Kedersha, N.L.; Hill, D.F.; Kronquist, K.E.; Rome, L.H.

    1986-01-01

    Rat liver clathrin coated vesicles (CVs) were separated into several distinct subpopulations using non-sieving concentrations of agarose, which allowed the separation of species differing primarily in surface charge. Using preparative agarose electrophoresis, the CVs were recovered and analyzed for differences in morphology, coat protein composition, and stripped vesicle protein composition. Coat proteins from difference populations appeared identical on SDS PAGE, and triskelions stripped from the different populations showed the same mobility on the agarose gel, suggesting that the mobility differences observed in intact CVs were due to differences in the surface charge of underlying vesicles rather than to variations in their clathrin coats. Stripped CVs exhibited considerable heterogeneity when analyzed by Western blotting: the fast-migrating population was enriched in the mannose 6-phosphate receptor, secretory acetyl-choline esterase, and an M/sub r/ 195,000 glycoprotein. The slow-migrating population of CVs was enriched in the asialoglycoprotein receptor, and it appeared to contain all detectable concanavalin A-binding polypeptides as well as the bulk of detectable WGA-binding proteins. When CVs were prepared from /sup 125/I-asialoorosomucoid-perfused rat liver, ligand was found in the slow-migrating CVs, suggesting that these were endocytic in origin. Morphological differences were also observed: the fast-migrating population was enriched in smaller CVs, whereas the slow-migrating population exhibited an enrichment in larger CVs. As liver consists largely of hepatocytes, these subpopulations appear to originate from the same cell type and probably represent CVs of different intracellular origin and destination.

  16. [Agarose gel isoelectric focusing: application to the study of abnormalities of immunoglobulin clonality in CSF and serum].

    PubMed

    Lebrun-Fourcy, C; Rondot, J; Revol, C; Renversez, J C

    1996-01-01

    Since it is quite difficult to commonly use isoelectric focusing (IEF) of proteins in polyacrylamide gel for biological diagnosis, we have developed a method based on IEF in agarose gel, to split proteins from sera and cerebrospinal fluid (CSF). A prefocalisation at low voltage (250 V) is made on a custom thin gel of agarose (0.5 mm) containing some carrier ampholytes (pH 5-9). After deposition of biological samples, the gel is run at 500 V, thereafter at 1200 V. After focusing, the gel is fixed before being coloured by a simplified silver staining technique. In order to demonstrate the good resolution of the immunoglobulines (Ig) in the pH gradient, a transfer on a nitrocellulose membrane followed by an immunofixation was carried out from unstained gels after IEF. This separation on agarose gel shows several advantages, ie its speed (3H total), its lack of toxicity, its sensibility and its reproductibility. It is specially well suited for the diagnosis of diseases characterised by oligoclonal or monoclonal Ig, particularly those found in the CSF during neurologic diseases like multiple sclerosis. Several examples of focused sera and CSF are reviewed in the paper. PMID:8952725

  17. Screening for amyloid aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis.

    PubMed

    Halfmann, Randal; Lindquist, Susan

    2008-01-01

    Amyloid aggregation is associated with numerous protein misfolding pathologies and underlies the infectious properties of prions, which are conformationally self-templating proteins that are thought to have beneficial roles in lower organisms. Amyloids have been notoriously difficult to study due to their insolubility and structural heterogeneity. However, resolution of amyloid polymers based on size and detergent insolubility has been made possible by Semi-Denaturing Detergent-Agarose Gel Electrophoresis (SDD-AGE). This technique is finding widespread use for the detection and characterization of amyloid conformational variants. Here, we demonstrate an adaptation of this technique that facilitates its use in large-scale applications, such as screens for novel prions and other amyloidogenic proteins. The new SDD-AGE method uses capillary transfer for greater reliability and ease of use, and allows any sized gel to be accomodated. Thus, a large number of samples, prepared from cells or purified proteins, can be processed simultaneously for the presence of SDS-insoluble conformers of tagged proteins. PMID:19066511

  18. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  19. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-01-01

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins. PMID:27341489

  20. Apatite formed on/in agarose gel as a bone-grafting material in the treatment of periodontal infrabony defect.

    PubMed

    Tabata, Masashi; Shimoda, Toru; Sugihara, Kazumasa; Ogomi, Daisuke; Ohgushi, Hajime; Akashi, Mitsuru

    2005-11-01

    The present study was designed to evaluate the effects of a hydroxyapatite/agarose (HA/agarose) composite gel formed by a novel alternate soaking process for the treatment of periodontal infrabony defects in three dogs. After creating two-wall infrabony periodontal defects on the medial aspect of the maxillary and mandibular second and forth premolars, the defects were implanted with temporary dental filling material (stopping) to induce inflammatory periodontal disease. Two months later, the mucoperiosteal flaps were raised, and after debridement, the infrabony defects were filled with one of the following three materials: (a) HA/agarose, (b) Bone ject (True-Bone Ceramic-collagen combined bone graft material, Koken, Japan), or (c) no material implantation (negative control). The animals were then randomly scheduled for sacrifice at 1, 2, and 6 months, and samples were taken for histological examination. In the HA/agarose gels, the 2-month postoperative cavities exhibited regeneration to new attachments with the apposition of a new cementum and well-oriented fibers. The neocementum was narrow and acellular, and the new bone apposition was limited. Six months postoperatively, newly formed bone was predominantly observed. The neocementum was wider and cellular. In the negative control, the 2-month postoperative cavities exhibited no regeneration of the cementum, nor any formation of periodontal pockets. The six-month postoperative cavities were nearly the same as the 2-month cavities. The Bone ject, 2-month postoperative cavities exhibited no regeneration of the periodontal tissue, nor any formation of periodontal pockets. Six months postoperatively, inflammatory granulation tissue was observed around the particles. The present study suggests that HA/agarose gels may play an important role in the regeneration of lost periodontal tissue. PMID:16034996

  1. Study of kinetic desorption rate constant in fish muscle and agarose gel model using solid phase microextraction coupled with liquid chromatography with tandem mass spectrometry.

    PubMed

    Togunde, Oluranti Paul; Oakes, Ken; Servos, Mark; Pawliszyn, Janusz

    2012-09-12

    This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01-0.07 ng mL(-1) and 0.07-0.34 ng g(-1), respectively, while the limit quantification was 0.10-0.20 ng mL(-1) in gel samples and 0.40-0.97 ng g(-1) in fish sample. The reproducibility of the method was good (5-15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces

  2. Biomechanical Conditioning Enhanced Matrix Synthesis in Nucleus Pulposus Cells Cultured in Agarose Constructs with TGFβ

    PubMed Central

    Tilwani, Reshma K.; Bader, Dan L.; Chowdhury, Tina T.

    2012-01-01

    Biomechanical signals play an important role in normal disc metabolism and pathology. For instance, nucleus pulposus (NP) cells will regulate metabolic activities and maintain a balance between the anabolic and catabolic cascades. The former involves factors such as transforming growth factor-β (TGFβ) and mechanical stimuli, both of which are known to regulate matrix production through autocrine and paracrine mechanisms. The present study examined the combined effect of TGFβ and mechanical loading on anabolic activities in NP cells cultured in agarose constructs. Stimulation with TGFβ and dynamic compression reduced nitrite release and increased matrix synthesis and gene expression of aggrecan and collagen type II. The findings from this work has the potential for developing regenerative treatment strategies which could either slow down or stop the degenerative process and/or promote healing mechanisms in the intervertebral disc. PMID:24956513

  3. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.

    PubMed

    Suriano, R; Griffini, G; Chiari, M; Levi, M; Turri, S

    2014-02-01

    Two-dimensional (2-D) gel electrophoresis currently represents one of the most standard techniques for protein separation. In addition to the most commonly employed polyacrylamide crosslinked hydrogels, acrylamide-agarose copolymers have been proposed as promising systems for separation matrices in 2-D electrophoresis, because of the good resolution of both high and low molecular mass proteins made possible by careful control and optimization of the hydrogel pore structure. As a matter of fact, a thorough understanding of the nature of the hydrogel pore structure as well as of the parameters by which it is influenced is crucial for the design of hydrogel systems with optimal sieving properties. In this work, a series of acrylamide-based hydrogels covalently crosslinked with different concentrations of allyl agarose (0.2-1%) is prepared and characterized by creep-recovery measurements, dynamic rheology and tensile tests, in the attempt to gain a clearer understanding of structure-property relationships in crosslinked polyacrylamide-based hydrogels. The rheological and mechanical properties of crosslinked acrylamide-agarose hydrogels are found to be greatly affected by crosslinker concentration. Dynamic rheological tests show that hydrogels with a percentage of allyl agarose between 0.2% and 0.6% have a low density of elastically effective crosslinks, explaining the good separation of high molecular mass proteins in 2-D gel electrophoresis. Over the same range of crosslinker concentration, creep-recovery measurements reveal the presence of non-permanent crosslinks in the hydrogel network that justifies the good resolution of low molecular mass proteins as well. In tensile tests, the hydrogel crosslinked with 0.4% of allyl agarose exhibits the best results in terms of mechanical strength and toughness. Our results show how the control of the viscoelastic and the mechanical properties of these materials allow the design of mechanically stable hydrogels with improved

  4. Biomimetic materials processing: Implementation of molecular imprinting and study of biomineralization through the development of an agarose gel assay

    NASA Astrophysics Data System (ADS)

    Boggavarapu, Sajiv

    agarose gel matrix for studying inhibition and growth as influenced by various organic molecule functionalities. The gel mineralization assay is a novel approach in which quantitative and qualitative data could be generated in a high throughput fashion to determine organic molecule mediation of calcium based crystal growth. Such methods provide an approach for eventually providing control in development of synthetic biocomposites with customized materials properties.

  5. Serum protein electrophoresis by using high-resolution agarose gel in clinically healthy and Aspergillus species-infected falcons.

    PubMed

    Kummrow, Maya; Silvanose, Christudas; Di Somma, Antonio; Bailey, Thomas A; Vorbrüggen, Susanne

    2012-12-01

    Serum protein electrophoresis has gained importance in avian medicine during the past decade. Interpretation of electrophoretic patterns should be based on species-specific reference intervals and the electrophoresis gel system. In this study, serum protein electrophoresis by using high-resolution agarose gels was performed on blood samples collected from 105 falcons, including peregrine falcons (Falco peregrinus), gyrfalcons (Falco rusticolus), saker falcons (Falco cherrug), red-naped shaheens (Falco pelegrinoides babylonicus), and hybrid falcons, that were submitted to the Dubai Falcon Hospital (Dubai, United Arab Emirates) between 2003 and 2006. Reference values were established in clinically healthy birds and compared with values from falcons infected with Aspergillus species (n = 32). Falcons with confirmed aspergillosis showed significantly lower prealbumin values, which is a novel finding. Prealbumin has been documented in many avian species, but further investigation is required to illuminate the diagnostic significance of this negative acute-phase protein. PMID:23409432

  6. A thin-layer multistrip agarose gel electrophoresis apparatus for Ferguson plot analysis at the sub-microgram load level.

    PubMed

    Orbàn, L; Sullivan, J V; Chrambach, A

    1989-07-01

    A method for the simultaneous horizontal agarose gel electrophoresis on thin-layer strips of different gel concentrations was developed for the purpose of generating Ferguson plots at the sub-microgram load level. Seven independent gel strips on a common GelBond support were formed by filling channels created by a comb-shaped spacer (polycarbonate) in a vertical multistrip cassette. Electrophoresis on a horizontal Peltier-cooled surface employed commercial apparatus (E-C Apparatus Corp.) with a modified cover which is airtight and holds anodic and cathodic voltage measurement probes for each strip. The application of the apparatus to Ferguson plot analysis in a single experiment was exemplified on the RNA-containing turnip crinkle virus (TCV) at a load of 50 ng/gel strip, using an optimized silver staining method (a modification of a procedure of FMC Corp. BioProducts) for detection. Within the range of 3.5 to 12.5 V/cm, the plot was found to be independent of field strength. Mobility is also independent of the concentration of detergent (CHAPS) up to 10 mM. PMID:2809063

  7. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-01

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria. PMID:22582868

  8. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.

    PubMed

    Shah, Rhythm R; Dombrowsky, Alexander R; Paulson, Abigail L; Johnson, Margaret P; Nikles, David E; Brazel, Christopher S

    2016-11-01

    Magnetic iron oxide nanoparticles (MNPs) have been developed for magnetic fluid hyperthermia (MFH) cancer therapy, where cancer cells are treated through the heat generated by application of a high frequency magnetic field. This heat has also been proposed as a mechanism to trigger release of chemotherapy agents. In each of these cases, MNPs with optimal heating performance can be used to maximize therapeutic effect while minimizing the required dosage of MNPs. In this study, the heating efficiencies (or specific absorption rate, SAR) of two types of MNPs were evaluated experimentally and then predicted from their magnetic properties. MNPs were also incorporated in the core of poly(ethylene glycol-b-caprolactone) micelles, co-localized with rhodamine B fluorescent dye attached to polycaprolactone to monitor local, nanoscale temperatures during magnetic heating. Despite a relatively high SAR produced by these MNPs, no significant temperature rise beyond that observed in the bulk solution was measured by fluorescence in the core of the magnetic micelles. MNPs were also incorporated into a macro-scale agarose gel system that mimicked a tumor targeted by MNPs and surrounded by healthy tissues. The agarose-based tumor models showed that targeted MNPs can reach hyperthermia temperatures inside a tumor with a sufficient MNP concentration, while causing minimal temperature rise in the healthy tissue surrounding the tumor. PMID:27523991

  9. Quantification of DNA by Agarose Gel Electrophoresis and Analysis of the Topoisomers of Plasmid and M13 DNA Following Treatment with a Restriction Endonuclease or DNA Topoisomerase I

    ERIC Educational Resources Information Center

    Tweedie, John W.; Stowell, Kathryn M.

    2005-01-01

    A two-session laboratory exercise for advanced undergraduate students in biochemistry and molecular biology is described. The first session introduces students to DNA quantification by ultraviolet absorbance and agarose gel electrophoresis followed by ethidium bromide staining. The second session involves treatment of various topological forms of…

  10. DNA electrophoresis in agarose gels: Effects of electric field and gel concentration on the exponential dependence of reciprocal mobility on DNA length

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin; van Winkle, David; Randolph, Rill

    2002-03-01

    Electrophoresis was performed on double stranded DNA fragments ranging in length from 200 bp to 48502 bp at agarose gel concentrations T = 0.5% - 1.5% and electric fields E = 0.71 V/cm to 5 V/cm. A wide range of electric fields and gel concentrations were used to find what range of conditions work with the new interpolation equation, 1/μ(L) = 1/μl - (1/μl - 1/μ_s)e^-L/γ. The equation fit extremely well (\\chi^2 >= 0.999) to data with E = 2.5 V/cm to 5 V/cm and for lower fields (E < 2.5 V/cm) at low gel concentrations (T = 0.5% and 0.7%). This exponential relation seemed to hold when there is a smooth transition from the Ogston sieving regime to the reptation regime when looking at the “reptation plots” (plotting 3μL/μo vs. L) (Rousseau, J., Drouin, G., and Slater, G. W., Phys Rev Lett. 1997, 79, 1945-1948). For separations of single-stranded DNA in polyacrylamide, similar reptation plots have a region with a negative slope between the Ogston sieving regime and the reptation regime which has been interpreted as the signature of entropic trapping. When separating double-stranded DNA in agarose it was observed that fits deviate from the data when three different slopes are observed in the reptation plots. Failure of the simple exponential relationship between reciprocal mobility and DNA length appears to be the consequence of entropic trapping.

  11. Beverage-Agarose Gel Electrophoresis: An Inquiry-Based Laboratory Exercise with Virtual Adaptation

    ERIC Educational Resources Information Center

    Cunningham, Steven C.; McNear, Brad; Pearlman, Rebecca S.; Kern, Scott E.

    2006-01-01

    A wide range of literature and experience has shown that teaching methods that promote active learning, such as inquiry-based approaches, are more effective than those that rely on passive learning. Gel electrophoresis, one of the most common laboratory techniques in molecular biology, has a wide range of applications in the life sciences. As…

  12. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    PubMed

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. PMID:26700572

  13. Immunoassay principle based on exchange reactions: investigations on agarose gel and silanized quartz.

    PubMed

    Weber, A; Ogendal, L H

    1992-01-01

    Preliminary studies of a new immunoassay principle based on exchange reactions is reported. Exchange of 125I-labelled insulin with unlabelled insulin from immobilized monoclonal antibodies was investigated. From antibody immobilized on a gel substrate the tagged insulin was exchanged according to a first-order process. With antibody immobilized on a quartz substrate by two different methods, the kinetics was changed dramatically, probably because of the non-specific interaction between the ligand and the surface. The recorded adsorption isotherms could not be described by the Langmuir adsorption equation, and a model allowing for non-specific adsorption of the ligand was developed. This model gave a satisfactory fit to the experimental data, allowing computation of adsorption parameters. It is concluded that even the best method used to immobilize receptors on quartz is not adequate for an exchange assay to be made. However, this coating method may lead to more sensitive receptor-based assays of more conventional type. PMID:1379052

  14. Effect of gel structure of matrix orientation in pulsed alternating electric fields

    SciTech Connect

    Stellwagen, N.C.; Stellwagen, J.

    1993-12-31

    Four polymeric gels with different structures, LE agarose, HEEO agarose, beta-carrageenan, and polyacrylamide, were studied by transient electric birefringence to determine the importance of various structural features on the orientation of the gels in pulsed alternating electric fields. The birefrigence relaxation times observed for agarose gels in low voltage electric fields suggest that long fibers and/or domains, ranging up to tens of microns in size, are oriented by the electric field. The sign of the birefringence reverses when the direction of the electric field is reversed, suggesting that the oriented domains change their direction of orientation from parallel to perpendicular (or vice versa) when the polarity of the electric field is reversed. These anamalous orientation effects are observed with both types of agarose gels, but not with beta-carrageenan or polyacrylamide gels, suggesting that the alternating D,L galactose residues in the agarose backbone are responsible for the anomalies.

  15. A charge-coupled-device camera image analysis system for quantifying DNA distributions in agarose gels after pulsed-field gel electrophoresis

    SciTech Connect

    Dewey, W.C.; Thompson, L.L.; Trinh, M.L.; Latz, D.L. |; Ward, J.F.

    1994-10-01

    A charge-coupled-device camera system was coupled to a personal computer and, with uniformity in illumination and detection (within 4-8%) along each lane, was used for quantifying the distribution of DNA molecules that migrate from the PFGE well (plug) into the lane at distances varying from 1 to 50 mm (with 0.5 mm/pixel). By using a specially designed transmission filter for transmitting 470-725 nm fluorescence from ethidium bromide-stained DNA while eliminating most of the fluorescence (<400 nm) from the agarose gel, and by using neutral density filters to prevent saturation of the camera, the fluorescence intensity is linearly related to the amount of DNA varying from {approximately} 0.03 {mu}g in a 3-mm-diameter cylindrical plug 5 mm long (equal to background) to {approximately} 4 {mu}g (where ethidium bromide staining saturates). The percentage DNA released from the plug and distribution in the lane (with 1-2 mm resolution) obtained by quantifying DNA fluorescence were not significantly different from the same data obtained by analysis of radioactivity of the same DNA labeled with [{sup 3}H]dThd. However, scattering of fluorescence from one lane into an adjacent lane 3 mm away and as far as 10 mm from the plug into the lane presented a problem. This problem was overcome by using a form with slots to cover every other lane when the images were obtained and either (1) cutting the lane from the plug and moving it 15 mm away or (2) imaging the intact gel and applying a correction for {approximately} 7% of the fluorescence from the plug tailing out {approximately} 10 mm beyond the first 1 mm in the lane. In addition, the following were required: (1) carefully controlled staining and destaining procedures, and (2) a low background that is obtained as an average uniform background in each lane 5 mm beyond where DNA migration stops. 31 refs., 7 figs.

  16. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels.

    PubMed

    Chandel, Arvind K Singh; Kumar, Chinta Uday; Jewrajka, Suresh K

    2016-02-10

    We synthesized agarose-polycaprolactone (Agr-PCL) bicomponent and Agr-polyethylene glycol-PCL (Agr-PEG-PCL) tricomponent amphiphilic co-network (APCN) gels by the sequential nucleophilic substitution reaction between amine-functionalized Agr and activated halide terminated PCL or PCL-b-PEG-b-PCL copolymer for the sustained and localized delivery of hydrophilic and hydrophobic drugs. The biodegradability of the APCNs was confirmed using lipase and by hydrolytic degradation. These APCN gels displayed good cytocompatibility and blood compatibility. Importantly, these APCN gels exhibited remarkably high drug loading capacity coupled with sustained and triggered release of both hydrophilic and hydrophobic drugs. PEG in the APCNs lowered the degree of phase separation and enhanced the mechanical property of the APCN gels. The drug loading capacity and the release kinetics were also strongly influenced by the presence of PEG, the nature of release medium, and the nature of the drug. Particularly, PEG in the APCN gels significantly enhanced the 5-fluorouracil loading capacity and lowered its release rate and burst release. Release kinetics of highly water-soluble gemcitabine hydrochloride and hydrophobic prednisolone acetate depended on the extent of water swelling of the APCN gels. Cytocompatibility/blood compatibility and pH and enzyme-triggered degradation together with sustained release of drugs show great promise for the use of these APCN gels in localized drug delivery and tissue engineering applications. PMID:26760672

  17. Development of a chamber system for rapid, high yield and cost-effective purification of deoxyribonucleic acid fragments from agarose gel

    PubMed Central

    Eslami, Gilda; Salehi, Rasoul

    2014-01-01

    Background: There are several methods commonly practicing for deoxyribonucleic acid (DNA) purification from agarose gel. In most laboratories, especially in developing countries, present methods for recovering of DNA fragments from the gel are mostly involved organic solvents. However, manual purification using organic solvents are toxic, labor intensive, time consuming and prone to contamination owing to several handling steps. The above mentioned burdens as well as cost and long time to import them, especially in developing countries, prompted us to design and develop a chamber system for rapid, non-toxic, cost-effective and user friendly device for polymerase chain reaction (PCR) products purification from agarose gel. Materials and Methods: The device was made from plexiglass plates. After amplification of two fragments of 250 and 850 bp, PCR products were electrophoresed. Subsequently, the desired bands were excised and purified with three method: HiPer Mini chamber, phenol extraction method and spin column procedure. To assess the suitability of the purified DNAs, restriction digestion was applied. Results: Results showed that the yield of recovered DNA in our method was above 95%, whereas the yields obtained with conventional phenol extraction and spin column methods were around 60%. Conclusion: In conclusion, the current method for DNA elution is quick, inexpensive and robust and it does not require the use of toxic organic solvents. In addition, the purified DNA was well has suited for further manipulations such as restriction digestion, ligation, cloning, sequencing and hybridization. PMID:24761386

  18. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  19. Identification of putative genes involved in the development of Tuber borchii fruit body by mRNA differential display in agarose gel.

    PubMed

    Zeppa, Sabrina; Guidi, Chiara; Zambonelli, Alessandra; Potenza, Lucia; Vallorani, Luciana; Pierleoni, Raffaella; Sacconi, Cinzia; Stocchi, Vilberto

    2002-12-01

    In order to analyse gene expression during fruit body development of the ectomychorrizal fungus Tuber borchii Vittad., a modified differential display procedure was set up. The procedure used is easier and faster than the traditional one and generates reproducible cDNA banding patterns that can be resolved on a standard ethidium bromide-agarose gel. From 16 cDNA fingerprints, 25 amplicons with apparent differential expression were identified and cloned without a previous reamplification. Fifteen clones showed significant similarity to known proteins that are involved in dikaryosis and fruiting, cell division, transport across membranes, mitochondrial division, intermediary metabolism, biosynthesis of isoprenoid compounds and putative RNA/DNA binding. Northern blot analyses confirmed that seven cDNAs were indeed differentially expressed during fruit body development. The characterisation of these cDNAs represents a starting point in understanding the molecular mechanisms of cellular differentiation leading to the development of the T. borchii fruit body. PMID:12491010

  20. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  1. Characterizing matrix remodeling in collagen gels using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Levitz, David; Hinds, Monica T.; Hanson, Stephen R.; Jacques, Steven L.

    2010-02-01

    Optical coherence tomography (OCT) has shown promise at non-destructively characterizing engineered tissues such as collagen gels. However, as the collagen gels develop, the OCT images lose contrast of structures as the gels develop, making visual assessment difficult. Our group proposed quantitatively characterizing these gels by fitting the optical properties from the OCT signals. In this paper, we imaged collagen gels seeded with smooth muscle cells (SMCs) over a 5-day period and used the data to measure their optical properties. Our results showed that over time, the reflectivity of the samples increased 10-fold, corresponding to a decrease in anisotropy factor g, without much change in the scattering coefficient μs. Overall, the optical properties appeared to be dominated by scattering from the collagen matrix, not the cells. However, SMCs remodeled the collagen matrix, and this collagen remodeling by the cells is what causes the observed changes in optical properties. Moreover, the data showed that the optical properties were sensitive to the activity of matrix metalloproteinases (MMPs), enzymes that break down local collagen fibrils into smaller fragments. Blocking MMPs in the SMC gels greatly impeded both the remodeling process and change in optical properties at day 5. Treating day 1 acellular gels with MMP-8 for 3 hr managed to partially reproduce the remodeling observed in SMC gels at day 5. Altogether, we conclude that matrix remodeling in general, and MMPs specifically, greatly affect the local optical properties of the sample, and OCT is a unique tool that can assess MMP activity in collagen gels both non-destructively and label free.

  2. Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound.

    PubMed

    Tomita, Y; Matsuura, T; Kodama, T

    2015-01-01

    Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s

  3. Application of urea-agarose gel electrophoresis to select non-redundant 16S rRNAs for taxonomic studies: palladium(II) removal bacteria.

    PubMed

    Assunção, Ana; Costa, Maria Clara; Carlier, Jorge Dias

    2016-03-01

    The 16S ribosomal RNA (rRNA) gene has been the most commonly used sequence to characterize bacterial communities. The classical approach to obtain gene sequences to study bacterial diversity implies cloning amplicons, selecting clones, and Sanger sequencing cloned fragments. A more recent approach is direct sequencing of millions of genes using massive parallel technologies, allowing a large-scale biodiversity analysis of many samples simultaneously. However, currently, this technique is still expensive when applied to few samples; therefore, the classical approach is still used. Recently, we found a community able to remove 50 mg/L Pd(II). In this work, aiming to identify the bacteria potentially involved in Pd(II) removal, the separation of urea/heat-denatured DNA fragments by urea-agarose gel electrophoresis was applied for the first time to select 16S rRNA-cloned amplicons for taxonomic studies. The major raise in the percentage of bacteria belonging to genus Clostridium sensu stricto from undetected to 21 and 41 %, respectively, for cultures without, with 5 and 50 mg/L Pd(II) accompanying Pd(II) removal point to this taxa as a potential key agent for the bio-recovery of this metal. Despite sulfate-reducing bacteria were not detected, the hypothesis of Pd(II) removal by activity of these bacteria cannot be ruled out because a slight decrease of sulfate concentration of the medium was verified and the formation of PbS precipitates seems to occur. This work also contributes with knowledge about suitable partial 16S rRNA gene regions for taxonomic studies and shows that unidirectional sequencing is enough when Sanger sequencing cloned 16S rRNA genes for taxonomic studies to genus level. PMID:26590590

  4. Effect of gel matrix confinement on the solvent dynamics in supramolecular gels.

    PubMed

    Kowalczuk, Joanna; Rachocki, Adam; Bielejewski, Michał; Tritt-Goc, Jadwiga

    2016-06-15

    Supramolecular gels formed by the sugar gelator of methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside (1) with 1,3-propanediol (PG) and 1-butanol (BU) were prepared with different gelator concentrations. The solvent dynamics within gels, characterized by the diffusion coefficient (D) and the spin-lattice relaxation time (T1), was the subject of NMR diffusometry and relaxometry studies. The diffusion was studied as a function of diffusion time and gelator concentrations. The relaxation time was measured as a function of Larmor frequency. The decrease of the diffusion coefficient was observed as a function of diffusion time for both gels and for all studied gelator concentrations. It is indicative of the confinement effect due to the geometrical restrictions of the gel matrix. The relaxation data for PG solvent confined in 1/PG gel revealed the low frequency dispersion (in kHz region) which is a fingerprint of a specific interaction experienced by PG solvents in the presence of the rigid structure of gelator 1 aggregates. The relaxation model, well known from the interpretation of liquid confined in nanopores as reorientations mediated by translational displacements (RMTD), was successfully applied to analyze the data of studied solvents confined in matrices of supramolecular gels. The microstructures of gel matrices were imaged by Polarized Microscopy. PMID:27003500

  5. Fabrication and evaluation of low-cost agarose-zinc nanoporous composite matrix: influence of adsorbent density and size distribution on the performance of expanded beds.

    PubMed

    Asghari, Fateme; Jahanshahi, Mohsen

    2012-09-28

    Expanded bed adsorption (EBA), a promising and practical separation technique for adsorption of nanobioproduct/bioproduct, has been widely studied in the past two decades. The development of adsorbent with the special design for expanded bed process is a challenging course. To reduce the costs of adsorbent preparation, fine zinc powder was used as the inexpensive densifier. A series of matrices named Ag-Zn were prepared by water-in-oil emulsification method. The structure and morphology of the prepared matrix were studied by the optical microscope (OM) and scanning electron microscopy (SEM). The physical properties as a function of zinc powder ratio to agarose slurry were measured. The prepared matrices had regular spherical shape, and followed logarithmic normal size distribution with the range of 75-330 μm, mean diameter of 140.54-191.11 μm, wet density of 1.33-2.01 g/ml, water content of 0.45-0.75, porosity of 0.86-0.97 and pore size of about 40-90 nm. The bed expansion factor at the range of 2-3 was examined. The obtained results indicated that the expansion factor was decreased with increasing of matrix density. In addition, it was found that matrices with large particle size were suitable for high operation flow rate. The hydrodynamic properties were determined in expanded bed by the residence time distribution method (RTD). The effects of flow velocity, expansion factor and density of matrix on the hydrodynamic properties were also investigated. Moreover, the influence of particle size distribution on the performance of expanded bed has been studied. Therefore, three different particle size fractions (65-140, 215-280 and 65-280 μm) were assessed. The results indicated that dispersion in liquid-solid expanded beds increased with increasing flow rate and expansion factor; and matrix with a wide particle size distribution leaded to a reduced axial dispersion compared to matrices with a narrow size distribution. The axial dispersion coefficient also enhanced

  6. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2014-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  7. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2015-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  8. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  9. Studies of matrix vesicle-induced mineralization in a gelatin gel

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  10. Thermally reversible gels in electrophoresis. I - Matrix characterization

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Snyder, Robert S.

    1988-01-01

    Two series of thermally reversible hydrogen-bonded gels have been characterized: (5 pct) PVA-(4 pct) PEG and (5 pct) PVA-(0.04 pct) borate gels. They both have extremely low melting points (16-17 C) and could be of potential interest for recovery of proteins after preparative electrophoresis. The PVA-borate gels can be exploited in the pH range 7-11 by progressively increasing the borate content in the pH interval 8 to 7 and concomitantly decreasing the borate levels in the pH zone 8 to 11. It is hypothesized that the low melting point of these gels is due to the fact that they are sparingly and sparsely hydrogen bonded along the PVA chain: on the average, 1 OH group out of 3 or 4 OH groups in the PVA polymer should be engaged in H-bond formation.

  11. In situ selective determination of methylmercury in river water by diffusive gradient in thin films technique (DGT) using baker's yeast (Saccharomyces cerevisiae) immobilized in agarose gel as binding phase.

    PubMed

    Tafurt-Cardona, Makenly; Eismann, Carlos Eduardo; Suárez, Carlos Alfredo; Menegário, Amauri Antonio; Luko, Karen Silva; Sargentini Junior, Ézio

    2015-08-01

    Saccharomyces cerevisiae immobilized in agarose gel as binding phase and polyacrylamide as diffusive layer in the diffusive gradient in thin films technique (DGT) was used for selective determination of methylmercury (MeHg). Deployment tests showed good linearity in mass uptake up to 48 h (3276 ng). When coupling the DGT technique with Cold Vapor Atomic Fluorescence Spectrometry, the method has a limit of detection of 0.44 ng L(-1) (pre concentration factor of 11 for 48 h deployment). Diffusion coefficient of 7.03 ± 0.77 × 10(-6) cm(2) s(-1) at 23 °C in polyacrylamide gel (pH = 5.5 and ionic strength = 0.05 mol L(-1) NaCl) was obtained. Influence of ionic strength (from 0.0005 mol L(-1) to 0.1 mol L(-1) NaCl) and pH (from 3.5 to 8.5) on MeHg uptake were evaluated. For these range, recoveries of 84-105% and 84-98% were obtained for ionic strength and pH respectively. Potential interference due to presence of Cu, Fe, Mn, Zn was also assessed showing good recoveries (70-87%). The selectivity of the proposed approach was tested by deployments in solutions containing MeHg and Hg(II). Results obtained showed recoveries of 102-115 % for MeHg, while the uptake of Hg(II) was insignificant. The proposed approach was successfully employed for in situ measurements in the Negro River (Manaus-AM, Brazil). PMID:26320783

  12. Estimating the DNA strand breakage using a fuzzy inference system and agarose gel electrophoresis, a case study with toothed carp Aphanius sophiae exposed to cypermethrin.

    PubMed

    Poorbagher, Hadi; Moghaddam, Maryam Nasrollahpour; Eagderi, Soheil; Farahmand, Hamid

    2016-07-01

    The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies. PMID:27000282

  13. Use of pulsed-field agarose gel electrophoresis to size genomes of Campylobacter species and to construct a SalI map of Campylobacter jejuni UA580.

    PubMed

    Chang, N; Taylor, D E

    1990-09-01

    To determine the physical length of the chromosome of Campylobacter jejuni, the genome was subjected to digestion by a series of restriction endonucleases to produce a small number of large restriction fragments. These fragments were then separated by pulsed-field gel electrophoresis with the contour-clamped homogeneous electric field system. The DNA of C. jejuni, with its low G+C content, was found to have no restriction sites for enzymes NotI and SfiI, which cut a high-G+C regions. Most of the restriction enzymes that were used resulted in DNA fragments that were either too numerous or too small for genome size determination, with the exception of the enzymes SalI (5' ... G decreases TCGAG ... 3'), SmaI (5' .... CCC decreases GGG .... 3'), and KpnI (5' ... GGTAC decreases C .... 3'). With SalI, six restriction fragments with average values of 48.5, 80, 110, 220, 280, and 980 kilobases (kb) were obtained when calibrated with both a lambda DNA ladder and yeast Saccharomyces cerevisiae chromosome markers. The sum of these fragments yielded an average genome size of 1.718 megabases (Mb). With SmaI, nine restriction fragments with average values ranging from 39 to 371 kb, which yielded an average genome size of 1.726 Mb were obtained. With KpnI, 11 restriction fragments with sizes ranging from 35 to 387.5 kb, which yielded an average genome size of 1.717 Mb were obtained. A SalI restriction map was derived by partial digestion of the C. jejuni DNA. The genome sizes of C. laridis, C. coli, and C. fetus were also determined with the contour-clamped homogeneous electric field system by SalI, SmaI, and KpnI digestion. Average genome sizes were found to be 1.714 Mb for C. coli, 1.267 Mb for C. fetus subsp. fetus, and 1.451 Mb for C. laridis. PMID:2168376

  14. Chemotaxis: Under Agarose Assay.

    PubMed

    Brazill, Derrick

    2016-01-01

    The unicellular eukaryote Dictyostelium discoideum represents a superb model for examining chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folate. Under starved conditions, they lose their sensitivity to pterins, and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including its conservation of mammalian signaling pathways, its ease of growth, and its genetic tractability. In this chapter, we describe the use of the under agarose chemotaxis assay to identify proteins involved in controlling motility and directional sensing in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect the conserved pathways involved in eukaryotic chemotaxis. PMID:26498795

  15. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    NASA Astrophysics Data System (ADS)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  16. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    PubMed

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH < 2.5) dramatically limited their application to proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area. PMID:18163198

  17. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    ERIC Educational Resources Information Center

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels.…

  18. Optical properties of metallophthalocyanines in solution and in a sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Acosta, Agnes; Sarkisov, Sergey S.; Wilkosz, Aaron; Leyderman, Alexander; Venkateswarlu, Putcha

    1997-10-01

    The sol-gel method is convenient for preparing amorphous transparent oxides with a wide range of optical properties including laser action, optical gain, phosphorescence, SHG and other non-linear effects. The sol-gel method was used to produce sol-gel samples using metallophthalocyanines. From metallophthalocyanines we used Cu (II) phthalocyanine (beta) - form, Ni (II) phthalocyaninetetrasulfonic acid, tetrasodium salt, Cu (II) 3,10,17,24-tetra-tert-butyl-1,8,15,22-tetrakis (dimethylamino)-29H, 31H-phthalocyanine, Zn 1,4,8,11,15,18,22,25-octabutoxy- 29H,31H-phthalocyanine Ni (II) 5,9,14,18,23,27,32,36-octabutoxy- 2,3-napthalocyanine and Cu (II) 5,9,14,18,23,27,32,36-octabutoxy-2,3-napthalocyanine. In our paper we report and discuss the results obtained from the measurements of the index of refraction using the prism coupling technique, absorption spectra and non-linear transmission measurements using picosecond laser pulses. The absorption spectras of Cu, Zn and Ni phthalocyanines in solution and sol-gel matrix showed decomposition. We found optical limiting after 0.2 J/cm2 in Ni (II) phthalocyaninetetrasulfonic acid, tetrasodium salt solution; glass samples showed no optical limiting. The mean of the index of refraction measured for all the (beta) -Cu phthalocyanine samples was 1.42. No birefringency was found.

  19. Removal of digoxin from plasma using monoclonal anti-digoxin antibodies immobilized on agarose

    SciTech Connect

    Brizgys, M.; Pincus, S.; Rollins, D.E.

    1986-05-01

    Monoclonal anti-digoxin antibodies (dig-Ab) have been covalently coupled to agarose supports to evaluate them as part of an extracorporeal device for removal of digoxin from the circulation. The agarose supports studied were Sepharose CL-6B, agarose-polyacrolein microsphere (APAM) beads, Bio Gel A-5m and Affi-gel 15 (Bio-Rad). Antibody concentrations between 2 and 4 mg/g gel were coupled to the agarose beads which were then placed in glass columns. Bovine ..cap alpha..-globulin coupled to the agarose supports was used as a control. Binding capacity and affinity of the immobilized antibody were determined by perfusing the dig-Ab agarose beads with a plasma solution containing /sup 3/H-digoxin and various concentrations of digoxin. The binding capacity of the immobilized dig-Ab was 30% of the theoretical value for Sepharose, Bio Gel and Affigel, and 10% of the theoretical value for dig-Ab coupled to APAM beads. The affinity of the immobilized dig-Ab was 10-100 fold less than non-immobilized Ab (3.4 x 10/sup 8/M/sup -1/. The APAM beads showed a significant decrease in binding of digoxin as the flow rate was increased from 0.5 to 5.0 ml/min. These data demonstrate that dig-Ab coupled to agarose and incorporated into a column can be used to remove digoxin from plasma in vitro.

  20. Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane.

    PubMed

    Chen, Xiaohong; Hu, Yibai; Wilson, George S

    2002-12-01

    A procedure is described that provides co-immobilization of enzyme and bovine serum albumin (BSA) within an alumina sol-gel matrix and a polyphenol layer permselective for endogenous electroactive species. BSA has first been employed for the immobilization of glucose oxidase (GOx) on a Pt electrode in a sol-gel to produce a uniform, thin and compact film with enhanced enzyme activity. Electropolymerization of phenol was then employed to form an anti-interference and protective polyphenol film within the enzyme layer. In addition, a stability-reinforcing membrane derived from (3-aminopropyl)-trimethoxysilane was constructed by electrochemically-assisted crosslinking. This hybrid film outside the enzyme layer contributed both to the improved stability and to permselectivity. The resulting glucose sensor was characterized by a short response time (<10 s), high sensitivity (10.4 nA/mM mm(2)), low interference from endogenous electroactive species, and a working lifetime of at least 60 days. PMID:12392950

  1. A new device for measuring the viscoelastic properties of hydrated matrix gels.

    PubMed

    Parsons, Jeffrey W; Coger, Robin N

    2002-04-01

    Determinations of the viscoelastic properties of extracellular matrices (ECMs) are becoming increasingly important for accurate predictive modeling of biological systems. Since the interactions of the cells with the ECM and surrounding fluid (e.g., blood, media) each affect cell behavior; it is advantageous to evaluate the ECM's material properties in the presence of the hydrating fluid. Conventional rheometry methods evaluate the bulk material properties of gel materials while displacing the hydrating liquid film. Such systems are therefore nonideal for testing materials such as ECMs, whose properties change with dehydration. The new patent pending, piezoelectrically actuated linear rheometer is designed to eliminate this problem. It uses a single cantilever to apply an oscillating load to the gel and to sense the gel's deflection. Composed of two thin film piezopolymer layers, the cantilever uses one layer as the actuator, and the second piezopolymer layer to measure the lateral movement of its attached probe. The viscoelastic nature of the ECM adds stiffness and damping to the system, resulting in the attenuation and phase shift of the sensor's output voltage. From these parameters, the ECM's shear storage and loss moduli are then determined. Initial tests on the BioMatrix I and type I collagen ECMs reveal that the first prototype of the piezoelectrically actuated linear rheometer is capable of accurately determining the trend and order of magnitude of an ECM's viscoelastic properties. In this paper, details of the rheometer's design and operating principles are described. PMID:12002123

  2. Structural transition in the humic matrix of soil gels and the electrical resistivity of soils

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Shoba, S. A.

    2015-11-01

    The structural organization of the organic matrix of humic substances in soils has been analyzed, and the conclusion has been drawn that the existence of humic matrix is determined by contacts between the hydrophilic sites of humic particles in dry soils and between their hydrophobic sites in wet soils. It follows from the advanced supposition that the wetting-drying process should cause a structural transition (reorganization of the humic matrix), which should affect the properties of soils. To verify this supposition, the effect of soil moisture on the electrical resistivity of soil-water extracts, suspensions, and pastes has been studied. It follows from the studies performed that soil electrolytes are fixed in dry soils during drying and are gradually released into solution. However, beginning from a specific soil water content, the release of electrolytes occurs almost immediately after their contact with water. The obtained data suggest that an energy barrier should be overcome for the release of electrolytes from the soils with water content below the specific limit. There is no energy barrier for the soils with water content higher than this limit. The existence of structural transition in the humic matrix of soil gels well explains these results. The effect of energetic impacts on the structural transition has been studied. It has been shown that the study of structural transition should avoid operations that increase the number and amplitude of energy fluctuations in the systems.

  3. The endogenous fluorescence of fibroblast in collagen gels as indicator of stiffness of the extracellular matrix

    NASA Astrophysics Data System (ADS)

    Padilla-Martinez, J. P.; Ortega-Martinez, A.; Franco, W.

    2016-03-01

    The stiffness or rigidity of the extracellular matrix (ECM) regulates cell response. Established mechanical tests to measure stiffness, such as indentation and tensile tests, are invasive and destructive to the sample. Endogenous or native molecules to cells and ECM components, like tryptophan and cross-links of collagen, display fluorescence upon irradiation with ultraviolet light. Most likely, the concentration of these endogenous fluorophores changes as the stiffness of the ECM changes. In this work we investigate the endogenous fluorescence of collagen gels containing fibroblasts as a non-invasive non-destructive method to measure stiffness of the ECM. Human fibroblast cells were cultured in three-dimensional gels of type I collagen (50,000 cells/ml). This construct is a simple model of tissue contraction. During contraction, changes in the excitation-emission matrix (a fluorescence map in the 240-520/290-530 nm range) of constructs were measured with a spectrofluoremeter, and changes in stiffness were measured with a standard indentation test over 16 days. Results show that a progressive increase in fluorescence of the 290/340 nm excitation-emission pair correlates with a progressive increase in stiffness (r=0.9, α=0.5). The fluorescence of this excitation-emission pair is ascribed to tryptophan and variations in the fluorescence of this pair correlate with cellular proliferation. In this tissue model, the endogenous functional fluorescence of proliferating fibroblast cells is a biomechanical marker of stiffness of the ECM.

  4. Electronic spectra of cationic forms of meso-tetrapropylporphin in a nanoporous silicate gel matrix

    NASA Astrophysics Data System (ADS)

    Arabei, S. M.; Novik, D. V.; Pavich, T. A.; Solov'ev, K. N.

    2006-07-01

    We have studied the fluorescence and fluorescence excitation spectra at 300 K, 77 K, and 4.2 K for silicate gel matrices colored with meso-tetrapropylporphin by impregnation of the matrix with a solution of the pigment. Comparison of the data obtained with the absorption spectra in acidified solutions and analysis of the low-temperature fine-structure vibronic spectra, and also taking into account data obtained earlier for octaethylporphin in a xerogel showed formation of two cationic forms of meso-tetrapropylporphin in the gel matrix: the short-wavelength form has a dicationic structure, while the long-wavelength form has a monocationic structure. We have traced out the correlations of the vibrational structure in the spectra of the dicationic form with data for the porphin dication, and we have drawn a number of conclusions concerning the normal vibrational modes that are active in the vibronic fluorescence and absorption spectra of the studied cationic forms. Using the AM1 semiempirical quantum chemical method, we optimized the geometry of the mesotetrapropylporphin dication: the most stable of the possible conformers is the dication structure with saddleshaped macrocycle nonplanarity.

  5. An improved mechanically durable electrophoresis gel matrix that is fully compatible with fluorescence-based protein detection technologies.

    PubMed

    Schulenberg, Birte; Arnold, Brad; Patton, Wayne F

    2003-07-01

    Unfortunately, conventional large-format polyacrylamide gels are mechanically fragile, often tearing during the subsequent manipulations required for visualization of the proteins. This problem is compounded when large-format two-dimensional gels are subjected to multiple staining procedures in order to detect different classes of proteins, such as total protein, phosphoproteins, and glycoproteins. A mechanically durable liquid polyacrylamide-based matrix has been developed that, upon polymerization, facilitates the handling of one-dimensional and two-dimensional gels. The matrix, referred to as Rhinohide liquid acrylamide, is stable as a refrigerated solution for up to one year, and forms a polymer-reinforced polyacrylamide gel suitable for electrophoresis, upon addition of catalysts. The matrix is superior to previously reported durable gel matrices in that it does not cause distortion of high-molecular-weight bands and does not suffer from other spot morphology artifacts, such as doubling of protein spots in the molecular weight dimension. The matrix is particularly valuable for the analysis of proteins applying multiple applications of fluorescent dyes, as required with serial staining of proteins for phosphorylation, glycosylation, and total protein expression, using Pro-Q Diamond phosphoprotein stain, Pro-Q Emerald glycoprotein stain and SYPRO Ruby protein gel stain, respectively. PMID:12872220

  6. Optical investigation of diffusion of levofloxacin mesylate in agarose hydrogel

    NASA Astrophysics Data System (ADS)

    Tan, Shuaixia; Dai, Hongjun; Wu, Juejie; Zhao, Ning; Zhang, Xiaoli; Xu, Jian

    2009-09-01

    Real-time electronic speckle pattern interferometry method has been applied to study the diffusion behavior of levofloxacin mesylate (MSALVFX) in agarose hydrogel. The results show that the diffusivity of solute decreases with the increase of concentration of agarose and adapts to Kohlrausch's law. Furthermore, Amsden's model, based on the retardance effect associated with polymer chain flexibility, was employed to simulate the diffusion behavior. The consistent results suggest that the retardance effect dominates the diffusion process of MSALFVX in hydrogel; moreover, polymer chain flexibility greatly affects drug transport within the polymer matrix.

  7. Encapsulation of fluorescence vegetable extracts within a templated sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Lacatusu, Ioana; Badea, Nicoleta; Nita, Rodica; Murariu, Alina; Miculescu, Florin; Iosub, Ion; Meghea, Aurelia

    2010-04-01

    The sol-gel encapsulation of labile substances with specific properties and recognition functions within robust polymer matrices remains a challenging task, despite the considerable research that has been focused on this field. Numerous studies have been reported in the field of sol-gel processes regarding different physical and chemical packing of sensitive biomolecules encapsulated in silica matrix. In this paper the classical sol-gel synthesis has been used under mild conditions in order to minimize denaturizing effects on encapsulated active vegetable extracts from flavones class. The silica templated matrix was obtained by using two types of surfactants with different alkyl chain (didodecyldimethyl-ammonium bromide and trioctadecylmetilammonium bromide) as structure-directing agents for the silicon oxide framework. An organic precursor of silicic acid (triethoxymethylsilane) has been used and it was processed by competitive hydrolysis and polycondensation reactions under controlled directions assured by the presence of oriented template. Silica materials thus obtained are used for encapsulation of two flavonoid samples containing as active principles two sources: rutin and a vegetable extract from Begonia plant. The synthesis of encapsulated nanocompounds has been achieved taking into consideration the specific interaction between the colloidal gel precursors and molecular structures of selected biomolecules. The main objective was to improve the encapsulation conditions for specific biomolecules, searching for the highest stability and functionality without loosing the quality of the flavonoid properties, particularly optical properties like fluorescence. The structural properties of the encapsulated samples have been studied by FT-IR and UV-VIS spectroscopy, thermal analysis and SEM/EDX analysis. The fluorescence experiments showed that, in the case of all four encapsulated samples, the fluorescence spectra manifest a significant increase in intensity

  8. Preparation of Compact Agarose Cell Blocks from the Residues of Liquid-Based Cytology Samples

    PubMed Central

    Choi, Suk Jin; Choi, Yeon Il; Kim, Lucia; Park, In Suh; Han, Jee Young; Kim, Joon Mee; Chu, Young Chae

    2014-01-01

    Background Inevitable loss of diagnostic material should be minimized during cell block preparation. We introduce a modified agarose cell block technique that enables the synthesis of compact cell blocks by using the entirety of a cell pellet without the loss of diagnostic material during cell block preparations. The feasibility of this technique is illustrated by high-throughput immunocytochemistry using high-density cell block microarray (CMA). Methods The cell pellets of Sure- Path residues were pre-embedded in ultra-low gelling temperature agarose gel and re-embedded in standard agarose gel. They were fixed, processed, and embedded in paraffin using the same method as tissue sample processing. The resulting agarose cell blocks were trimmed and represented on a CMA for high-throughput analysis using immunocytochemical staining. Results The SurePath residues were effectively and entirely incorporated into compact agarose cell buttons and embedded in paraffin. Sections of the agarose cell blocks revealed cellularities that correlated well with corresponding SurePath smears and had immunocytochemical features that were sufficient for diagnosis of difficult cases. Conclusions This agarose-based compact cell block technique enables preparation of high-quality cell blocks by using up the residual SurePath samples without loss of diagnostic material during cell block preparation. PMID:25366070

  9. Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery

    PubMed Central

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B.; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs. PMID:25793885

  10. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  11. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings

    NASA Technical Reports Server (NTRS)

    Myers, P. N.; Mitchell, C. A.

    1998-01-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation.

  12. Photoconductivity and stabilization of dopamine embedded in sol-gel TiO2 matrix

    NASA Astrophysics Data System (ADS)

    Prado-Prone, Gina; Valverde-Aguilar, Guadalupe; García-Macedo, Jorge; Vergara-Aragón, P.

    2012-09-01

    This work reports the synthesis of amorphous TiO2 matrix by sol-gel method at atmospheric conditions. DA was encapsulated in a TiO2 matrix to reduce its chemical instability. To TiO2/DA sample was added the 15C5 to diminish the oxidation process. The stabilization process was followed by absorption spectra, colour change and infrared spectroscopy. Oxidation processes of the DA were identified by the presence of DA-quinone and DA-chrome. The TiO2/DA complex retarded the oxidation process for 30 days, while the TiO2/DA/15C5 complex this period was extended for 47 days. Photoconductivity studies were performed on both kinds of samples to analyze their charge transports. The experimental data were fitted with straight lines at darkness and under illumination at 320 nm, 400 nm, and 515 nm. This indicates an ohmic behavior. Transport parameters were calculated. The conductive effect is stronger under darkness than under illumination at 320 nm because the oxidation process in the darkness is less intense than under illumination.

  13. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings.

    PubMed

    Myers, P N; Mitchell, C A

    1998-11-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation. PMID:11542673

  14. Two-dimensional differential adherence of neuroblasts in laser micromachined CAD/CAM agarose channels

    NASA Astrophysics Data System (ADS)

    Doraiswamy, A.; Patz, T.; Narayan, R. J.; Dinescu, M.; Modi, R.; Auyeung, R. C. Y.; Chrisey, D. B.

    2006-04-01

    Laser micromachining of hydrophobic gels into CAD/CAM patterns was used to develop differentially adherent surfaces and induce the attachment of B35 rat neuroblasts that would later form engineered nerve bundles. Narrow channels, 60-400 μm wide, were micromachined in a 2% agarose gel using an ArF laser, and subsequently filled with an extracellular matrix gel. Upon the addition of 1 ml of a 2 × 104 cells/ml neuroblast suspension, the cells selectively adhered to the ECM-lined channels in a non-confluent manner and we monitored their growth at various time points. The adherent neuroblasts were fluorescently imaged with a propidium iodide live/dead assay, which revealed that the cells were alive within the channels. After 72 h growth, the neuroblasts grew, proliferated, and differentiated into nerve bundles. The fully grown 1 cm long nerve bundle organoids maintained an aspect ratio on the order of 100. The results presented in this paper provide the foundation for laser micromachining technique to develop bioactive substrates for development of three-dimensional tissues. Laser micromachining offers rapid prototyping of substrates, excellent resolution, control of pattern depth and dimensions, and ease of fabrication.

  15. Enhancement in dose sensitivity of polymer gel dosimeters composed of radiation-crosslinked gel matrix and less toxic monomers

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Yamashita, S.; Taguchi, M.

    2015-01-01

    Polymer gel dosimeters based on radiation-crosslinked hydroxypropyl cellulose gel were prepared, which comprised 2-hydroxyethyl methacrylate (HEMA) and polyethylene glycol #400 dimethacrylate (9G) as less toxic monomers and tetrakis (hydroxymethyl) phosphonium chloride (THPC) as an antioxidant. The dosimeters exposed to 60Co γ-rays became cloudy at only 1 Gy. The irradiated dosimeters were optically analyzed by using a UV- vis spectrophotometer to evaluate dose response. Absorbance of the dosimeters linearly increased in the dose range from 0 to 10 Gy, in which dose sensitivity increased with increasing 9G concentration. The dose sensitivity of the dosimeters with 2 wt% HEMA and 3 wt% 9G was also enhanced by increment in THPC.

  16. The effect of an autologous cellular gel-matrix integrated implant system on wound healing

    PubMed Central

    2010-01-01

    Background This manuscript reports the production and preclinical studies to examine the tolerance and efficacy of an autologous cellular gel-matrix integrated implant system (IIS) aimed to treat full-thickness skin lesions. Methods The best concentration of fibrinogen and thrombin was experimentally determined by employing 28 formula ratios of thrombin and fibrinogen and checking clot formation and apparent stability. IIS was formed by integrating skin cells by means of the in situ gelification of fibrin into a porous crosslinked scaffold composed of chitosan, gelatin and hyaluronic acid. The in vitro cell proliferation within the IIS was examined by the MTT assay and PCNA expression. An experimental rabbit model consisting of six circular lesions was utilized to test each of the components of the IIS. Then, the IIS was utilized in an animal model to cover a 35% body surface full thickness lesion. Results The preclinical assays in rabbits demonstrated that the IIS was well tolerated and also that IIS-treated rabbit with lesions of 35% of their body surface, exhibited a better survival rate (p = 0,06). Conclusion IIS should be further studied as a new wound dressing which shows promising properties, being the most remarkable its good biological tolerance and cell growth promotion properties. PMID:20565787

  17. A microfluidic device for on-chip agarose microbead generation with ultralow reagent consumption

    PubMed Central

    Desbois, Linda; Padirac, Adrien; Kaneda, Shohei; Genot, Anthony J.; Rondelez, Yannick; Hober, Didier; Collard, Dominique; Fujii, Teruo

    2012-01-01

    Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the “push-pull” method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications. PMID:24106525

  18. A microfluidic device for on-chip agarose microbead generation with ultralow reagent consumption.

    PubMed

    Desbois, Linda; Padirac, Adrien; Kaneda, Shohei; Genot, Anthony J; Rondelez, Yannick; Hober, Didier; Collard, Dominique; Fujii, Teruo

    2012-01-01

    Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the "push-pull" method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications. PMID:24106525

  19. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments.

    PubMed

    Batorsky, Anna; Liao, Jiehong; Lund, Amanda W; Plopper, George E; Stegemann, Jan P

    2005-11-20

    Reliable control over the process of cell differentiation is a major challenge in moving stem cell-based therapies forward. The composition of the extracellular matrix (ECM) is known to play an important role in modulating differentiation. We have developed a system to encapsulate adult human mesenchymal stem cells (hMSC) within spherical three-dimensional (3D) microenvironments consisting of a defined mixture of collagen Type I and agarose polymers. These protein-based beads were produced by emulsification of liquid hMSC-matrix suspensions in a silicone fluid phase and subsequent gelation to form hydrogel beads, which were collected by centrifugation and placed in culture. Bead size and size distribution could be varied by changing the encapsulation parameters (impeller speed and blade separation), and beads in the range of 30-150 microns in diameter were reliably produced. Collagen concentrations up to 40% (wt/wt) could be incorporated into the bead matrix. Visible light and fluorescence microscopy confirmed that the collagen matrix was uniformly distributed throughout the beads. Cell viability post-encapsulation was in the range of 75-90% for all bead formulations (similar to control slab gels) and remained at this level for 8 days in culture. Fluorescent staining of the actin cytoskeleton revealed that hMSC spreading increased with increasing collagen concentration. This system of producing 3D microenvironments of defined matrix composition therefore offers a way to control cell-matrix interactions and thereby guide hMSC differentiation. The bead format allows the use of small amounts of matrix proteins, and such beads can potentially be used as a cell delivery vehicle in tissue repair applications. PMID:16080186

  20. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    PubMed

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  1. Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.

    PubMed

    Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang

    2014-09-01

    A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused. PMID:24997975

  2. Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications

    PubMed Central

    Priya, Murali Vishnu; Kumar, Rajendran Arun; Sivashanmugam, Amirthalingam; Nair, Shantikumar Vasudevan; Jayakumar, Rangasamy

    2015-01-01

    Injectable hydrogels are gaining popularity as tissue engineering constructs because of their ease of handling and minimal invasive delivery. Making hydrogels from natural polymers helps to overcome biocompatibility issues. Here, we have developed an Amorphous Chitin (ACh)-Agarose (Agr) composite hydrogel using a simpletechnique. Rheological studies, such as viscoelastic behavior (elastic modulus, viscous modulus, yield stress, and consistency), inversion test, and injectability test, were carried out for different ACh-Agr concentrations. The composite gel, having a concentration of 1.5% ACh and 0.25% Agr, showed good elastic modulus (17.3 kPa), yield stress (3.8 kPa), no flow under gravity, injectability, and temperature stability within the physiological range. Based on these studies, the optimum concentration for injectability was found to be 1.5% ACh and 0.25% Agr. This optimized concentration was used for further studies and characterized using FT-IR and SEM. FT-IR studies confirmed the presence of ACh and Agr in the composite gel. SEM results showed that the lyophilized composite gel had good porosity and mesh like networks. The cytocompatibility of the composite gel was studied using human mesenchymal stem cells (hMSCs). The composite gels showed good cell viability.These results indicated that this injectable composite gel can be used for biomedical applications. PMID:26308065

  3. Decolorization applicability of sol–gel matrix immobilized manganese peroxidase produced from an indigenous white rot fungal strain Ganoderma lucidum

    PubMed Central

    2013-01-01

    Background An eco-friendly treatment of industrial effluents is a major environmental concern of the modern world in the face of stringent environmental legislations. By keeping in mind the extensive industrial applications of ligninolytic enzymes, this study was performed to purify, and immobilize the manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum. The present study was also focused on investigating the capability of immobilized MnP for decolorization of dye containing textile effluents. Results A large magnitude of an indigenous MnP (882±13.3 U/mL) was obtained from white rot fungal strain G. lucidum in solid state bio-processing of wheat straw under optimized fermentation conditions (moisture, 50%; substrate, 5 g; pH, 5.5; temperature, 30°C; carbon source, 2% fructose; nitrogen source, 0.02% yeast extract; C: N ratio, 25:1; fungal spore suspension, 5 mL and fermentation time period, 4 days). After ammonium sulfate fractionation and Sephadex-G-100 gel filtration chromatography, MnP was 4.7-fold purified with specific activity of 892.9 U/mg. G. lucidum MnP was monomeric protein as evident by single band corresponding to 48 kDa on native and denaturing SDS-PAGE. The purified MnP (2 mg/mL) was immobilized using a sol–gel matrix of tetramethoxysilane (TMOS) and proplytrimethoxysilane (PTMS). The oxidation of MnSO4 for up to 10 uninterrupted cycles demonstrated the stability and reusability of the immobilized MnP. Shelf life profile revealed that enzyme may be stored for up to 60 days at 25°C without losing much of its activity. To explore the industrial applicability of MnP produced by G. lucidum, the immobilized MnP was tested against different textile effluents. After 4 h reaction time, the industrial effluents were decolorized to different extents (with a maximum of 99.2%). The maximally decolorized effluent was analyzed for formaldehyde and nitroamines and results showed that the toxicity parameters were below the

  4. Real-time monitoring of amyloid growth in a rigid gel matrix.

    PubMed

    Dalpadado, Roshan C; Maat, Hendrik; Carver, John A; Hall, Damien

    2016-10-15

    We demonstrate the real-time monitoring of the growth of amyloid-protein aggregates in a semi-rigid gel environment constructed from a 5% w/v gelatin solution. The kinetics of amyloid fibril growth from reduced and carboxy-methylated κ-casein occurring in the gel medium was contrasted against that obtained in a regular solution assay. Aggregation kinetics were recorded using Thioflavin T fluorescence. Transmission electron microscopy was used to confirm the aggregates' existence and morphology. The current demonstration of controlled amyloid growth in a gel environment represents the first step towards development of an experimental model for investigating the role of spatial and medium factors in the kinetics of aggregation-based proteopathies. PMID:27477869

  5. Sol-gel synthesis of nanocomposite materials based on lithium niobate nanocrystals dispersed in a silica glass matrix

    NASA Astrophysics Data System (ADS)

    Marenna, Elisa; Aruta, Carmela; Fanelli, Esther; Barra, Mario; Pernice, Pasquale; Aronne, Antonio

    2009-05-01

    With the final goal to obtain thin films containing stoichiometric lithium niobate nanocrystals embedded in an amorphous silica matrix, the synthesis strategy used to set a new inexpensive sol-gel route to prepare nanocomposite materials in the Li 2O-Nb 2O 5-SiO 2 system is reported. In this route, LiNO 3, NbCl 5 and Si(OC 2H 5) 4 were used as starting materials. The gels were annealed at different temperatures and nanocrystals of several phases were formed. Futhermore, by controlling the gel compositions and the synthesis parameters, it was possible to obtain LiNbO 3 as only crystallizing phase. LiNbO 3-SiO 2 nanocomposite thin films on Si-SiO 2 and Al 2O 3 substrates were grown. The LiNbO 3 average size, increasing with the annealing temperature, was 27 nm for a film of composition 10Li 2O-10Nb 2O 5-80SiO 2 heated 2 h at 800 °C. Electrical investigation revealed that the nanocrystals size strongly affects the film conductivity and the occurrence of hysteretic current-voltage curves.

  6. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose

    SciTech Connect

    Armstrong, G.D.; Peppler, M.S.

    1987-05-01

    We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin or other contaminants in the labeled PT preparations. All five of the subunits of the toxin appeared to be labeled by the procedure. The labeling method will facilitate further investigations into the nature of the interaction and activity of PT in host tissues.

  7. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose.

    PubMed Central

    Armstrong, G D; Peppler, M S

    1987-01-01

    We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin or other contaminants in the labeled PT preparations. All five of the subunits of the toxin appeared to be labeled by the procedure. The labeling method will facilitate further investigations into the nature of the interaction and activity of PT in host tissues. Images PMID:2437034

  8. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-11-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm-1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost.

  9. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    PubMed Central

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm−1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  10. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries.

    PubMed

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm(-1)), high Li(+) ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  11. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin

    NASA Astrophysics Data System (ADS)

    Gong, Sheng-Dong; Huang, Yun; Cao, Hai-Jun; Lin, Yuan-Hua; Li, Yang; Tang, Shui-Hua; Wang, Ming-Shan; Li, Xing

    2016-03-01

    In order to explore one truly green and environment-friendly gel polymer electrolyte (GPE), the natural biopolymer of lignin is firstly all over the world used as matrix to prepare GPE. The electrolyte membrane based on lignin can be easily fabricated just with lignin, liquid electrolyte and distilled water. Through comprehensive investigation of obtained GPE, it is found that the liquid electrolyte uptake reaches up to 230 wt.%; before 100 °C, GPE does not lose any weight and is thermal stable; at room temperature the ion conductivity is 3.73 mS cm-1; the amazing property of lithium ion transference number is high up to 0.85; GPE expresses complete electrochemical stability before 7.5 V and favorable compatibility with lithium anode; the outstanding cell performance of C-rate and cycle capacity. All these remarkably excellent performances endow lignin with application potential in GPE used in lithium ion batteries (LIBs) with higher performances.

  12. Establishment and characterization of intraperitoneal xenograft models by co-injection of human tumor cells and extracellular matrix gel

    PubMed Central

    YAO, YUQIN; ZHOU, YONGJUN; SU, XIAOLAN; DAI, LEI; YU, LIN; DENG, HONGXIN; GOU, LANTU; YANG, JINLIANG

    2015-01-01

    Establishing a feasible intraperitoneal (i.p.) xenograft model in nude mice is a good strategy to evaluate the antitumor effect of drugs in vivo. However, the manipulation of human cancer cells in establishing a stable peritoneal carcinomatosis model in nude mice is problematic. In the present study, the ovarian and colorectal peritoneal tumor models were successfully established in nude mice by co-injection of human tumor cells and extracellular matrix gel. In ovarian tumor models, the mean number tumor nodes was significantly higher in the experimental group (intraperitoneal tumor cell co-injection with ECM gel) compared with the PBS control group on the 30th day (21.0±3.0 vs. 3.6±2.5; P<0.05). The same results were observed in the colorectal peritoneal tumor models on the 28th day. The colorectal peritoneal tumor model was further used to evaluate the chemotherapy effect of irinotecan (CPT-11). The mean weight of peritoneal tumor nodes in CPT-11 treatment group was significantly less than that of the control group (0.81±0.16 vs. 2.18±0.21 g; P<0.05). The results confirmed the value of these i.p. xenograft models in nude mice as efficient and feasible tools for preclinical evaluation. PMID:26788149

  13. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  14. Chemical tailoring of hybrid sol-gel thick coatings as hosting matrix for functional patterned microstructures.

    PubMed

    Falcaro, Paolo; Costacurta, Stefano; Malfatti, Luca; Buso, Dario; Patelli, Alessandro; Schiavuta, Piero; Piccinini, Massimo; Grenci, Gianluca; Marmiroli, Benedetta; Amenitsch, Heinz; Innocenzi, Plinio

    2011-02-01

    A phenyl-based hybrid organic - inorganic coating has been synthesized and processed by hard X-ray lithography. The overall lithography process is performed in a two-step process only (X-rays exposure and chemical etching). The patterns present high aspect ratio, sharp edges, and high homogeneity. The coating has been doped with a variety of polycyclic aromatic hydrocarbon functional molecules, such as anthracene, pentacene, and fullerene. For the first time, hard X-rays have been combined with thick hybrid functional coatings, using the sol-gel thick film directly as resist. A new technique based on a new material combined with hard X-rays is now available to fabricate optical devices. The effect due to the high-energy photon exposure has been investigated using FT-IR and Raman spectroscopy, laser scanner, optical profilometer, and confocal and electron microscope. High-quality thick hybrid fullerene-doped microstructures have been fabricated. PMID:21218788

  15. Mullins effect behaviour under compression in micelle-templated silica and micelle-templated silica/agarose systems.

    PubMed

    Puértolas, J A; Vadillo, J L; Sánchez-Salcedo, S; Nieto, A; Gómez-Barrena, E; Vallet-Regí, M

    2012-02-01

    The mechanical properties of bioceramic conformed pieces based on micelle-templated silica (MTS) such as SBA15, MCM41 and MCM48 as well as MTS/agarose systems have been evaluated under static and cyclic compressive tests. The MTS pieces exhibited a brittle behaviour. Agarose, a biocompatible and biodegradable hydrogel, has been used to shape ceramic-agarose pieces following a low temperature shaping method. Agarose conferred toughness, ductility and a rubbery consistency up to a 60% strain in ceramic MTS/agarose systems leading to a maximum strength of 10-50 MPa, without losing their initial cylindrical structure. This combination of ceramic and organic matrix contributes to avoiding the inherent brittleness of the bioceramic and enhances the compression resistance of hydrogel. The presence of mechanical hysteresis, permanent deformation after the first cycle and recovery of the master monotonous curve of MTS/agarose systems indicate a Mullins-like effect similar to that found in carbon-filled rubber systems. We report this type of mechanical behaviour, the Mullins effect, for the first time in MTS bioceramics and MTS bioceramic/agarose systems. PMID:22076528

  16. Crosslinking of agarose bioplastic using citric acid.

    PubMed

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls. PMID:27474543

  17. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.

    PubMed

    Shi, Zhuqun; Huang, Junchao; Liu, Chuanjun; Ding, Beibei; Kuga, Shigenori; Cai, Jie; Zhang, Lina

    2015-10-21

    With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability. Polymerization of the monomer gave P(MMA/BMA)/NCG, P(MMA/BA)/NCG nanocomposites with a volume fraction of NCG ranging from 15% to 78%. SEM, TEM, and XRD analyses show that the NCG are finely distributed and preserved well in the nanocomposites after polymerization. DMA analysis demonstrates a significant improvement in tensile storage modulus E' above the glass transition temperature; for instance, at 95 °C, E' is increased by over 4 orders of magnitude from 0.03 MPa of the P(MMA/BMA) up to 350 MPa of nanocomposites containing 15% v/v NCG. This reinforcement effect can be explained by the percolation model. The nanocomposites also show remarkable improvement in solvent resistance (swelling ratio of 1.3-2.2 in chloroform, acetone, and toluene), thermal stability (do not melt or decompose up to 300 °C), and low coefficients of thermal expansion (in-plane CTE of 15 ppm·K(-1)). These nanocomposites will have great promising applications in flexible display, packing, biomedical implants, and many others. PMID:26397710

  18. Interaction of electromagnetic fields with chondrocytes in gel culture

    NASA Astrophysics Data System (ADS)

    Grodzinsky, Alan J.; Buschmann, Michael D.; Gluzband, Yehezkiel A.

    1992-01-01

    The specific objectives of this research period were: (1) to quantify the effect of applied electric fields on chondrocyte metabolism, using a range of stimulation frequencies and amplitudes; (2) to compare the chondrocyte biosynthetic response to applied fields at early times in agarose gel culture before an extracellular matrix has accumulated and at later times after significant deposition of matrix around and between the cells; and (3) to begin to interpret the biosynthetic response to applied fields in terms of models of physical mechanisms. The results of these studies suggest that electric fields applied to chondrocytes in agarose can modulate the synthesis of proteoglycans and protein constituents. Biosynthesis may be inhibited or stimulated depending on the amplitude of the applied current density. In addition, the presence of extracellular matrix may enhance the ability of normal chondrocytes and cells in intact cartilage to respond to electric fields, although the presence of matrix was not required for the stimulatory response to be observed with Swarm rat chondrosarcoma cells.

  19. Online Matrix Removal Platform for Coupling Gel-Based Separations to Whole Protein Electrospray Ionization Mass Spectrometry

    PubMed Central

    Kim, Ki Hun; Compton, Philip D.; Tran, John C.; Kelleher, Neil L.

    2015-01-01

    A fractionation method called gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) has been used to dramatically increase the number of proteins identified in top-down proteomic workflows; however, the technique involves the use of sodium dodecyl sulfate (SDS), a surfactant that interferes with electrospray ionization. Therefore, an efficient removal of SDS is absolutely required prior to mass analysis. Traditionally, methanol/chloroform precipitation and spin columns have been used, but they lack reproducibility and are difficult to automate. Therefore, we developed an in-line matrix removal platform to enable the direct analysis of samples containing SDS and salts. Only small molecules like SDS permeate a porous membrane and are removed in a manner similar to cross-flow filtration. With this device, near-complete removal of SDS is accomplished within 5 min and proteins are subsequently mobilized into a mass spectrometer. The new platform was optimized for the analysis of GELFrEE fractions enriched for histones extracted from human HeLa cells. All four core histones and their proteoforms were detected in a single spectrum by high-resolution mass spectrometry. The new method versus protein precipitation/resuspension showed 2- to 10-fold improved signal intensities, offering a clear path forward to improve proteome coverage and the efficiency of top-down proteomics. PMID:25836738

  20. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering

    PubMed Central

    Rennerfeldt, DA; Renth, AN; Talata, Z; Gehrke, SH; Detamore, MS

    2013-01-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. PMID:23932504

  1. Fixed charges in the gel matrix of sensor chips and dissociation in diffusion gradients influence the detection of fast protein-protein interactions.

    PubMed

    Glaser, Ralf W; Schönherr, Roland; Heinemann, Stefan H

    2014-02-01

    In molecular interaction studies based on surface plasmon resonance (SPR) measurements, the ligand is often immobilized in a thin carboxydextran gel matrix. Here we investigated the influence of the charged gel on the results of such SPR measurements. At physiological ionic strength, analytes with a net charge of more than about 5 are considerably enriched or depleted due to the Donnan potential under commonly applied experimental conditions. Below physiological ionic strength, enrichment was found to be even stronger than predicted by Donnan theory. The influence of the gel matrix on the apparent binding is prevented in competition experiments, in which SPR measurements are only used to discriminate between free and complexed analyte while the interaction between analyte and ligand is studied in solution. However, if the analyte-ligand interaction is very fast, thermodynamic equilibrium is disturbed near the interface where free analyte binds to the immobilized ligand due to mass transport limitation. Consequently, the soluble analyte-ligand complex dissociates, which results in an overestimation of free analyte. In experiments of calmodulin binding to fragments of the KCNH1 ion channel protein this mass-transport-induced dissociation led to a systematic underestimation of the affinity. We conclude that the insufficient discrimination between the true analyte-ligand binding and the complex interactions of the analyte with the gel phase may result in systematic errors. The theoretical framework for recognizing and avoiding such errors is provided. PMID:24342363

  2. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  3. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    NASA Astrophysics Data System (ADS)

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels. When forced through a maze of holes, the molecule unravels, forming a long chain, slithering through the field of pores in a process colloquially coined "reputation." As a result, the smaller molecules travel farther through the gel when compared to molecules of larger molecular weight. This highly effective "molecular sieve" provides consistent data and allows scientists to compare similar sequences of DNA base pairs in a routine fashion.2 When performed at the high school level, gel electrophoresis provides students the opportunity to learn about a contemporary lab technique of great scientific relevance. Doing real science certainly excites students and motivates them to learn more.

  4. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    PubMed

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-01

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression. PMID:25984597

  5. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering

    PubMed Central

    Lewitus, Dan Y.; Landers, John; Branch, Jonathan; Smith, Karen L.; Callegari, Gerardo

    2011-01-01

    We report a novel approach for producing carbon nanotube fibers (CNF) composed with the polysaccharide agarose. Current attempts to make CNF’s require the use of a polymer or precipitating agent in the coagulating bath that may have negative effects in biomedical applications. We show that by taking advantage of the gelation properties of agarose one can substitute the bath with distilled water or ethanol and hence reduce the complexity associated with alternating the bath components or the use of organic solvents. We also demonstrate that these CNF can be chemically functionalized to express biological moieties through available free hydroxyl groups in agarose. We corroborate that agarose CNF are not only conductive and nontoxic, but their functionalization can facilitate cell attachment and response both in vitro and in vivo. Our findings suggest that agarose/CNT hybrid materials are excellent candidates for applications involving neural tissue engineering and biointerfacing with the nervous system. PMID:21887125

  6. Preparation of uniform-sized agarose beads by microporous membrane emulsification technique.

    PubMed

    Zhou, Qing-Zhu; Wang, Lian-Yan; Ma, Guang-Hui; Su, Zhi-Guo

    2007-07-01

    Uniform-sized agarose beads were prepared by membrane emulsification technique in this study. Agarose was dissolved in boiling water (containing 0.9% sodium chloride) and used as water phase. A mixture of liquid paraffin and petroleum ether containing 4 wt% of hexaglycerin penta ester (PO-500) emulsifier was used as oil phase. At 55 degrees C, the water phase permeated through uniform pores of microporous membrane into the oil phase by a pressure of nitrogen gas to form uniform W/O emulsion. Then the emulsion was cooled down to room temperature under gentle agitation to form gel beads. The effect of oil phase, emulsifier, especially temperature on the uniformity of the beads were investigated and interpreted from interfacial tension between water phase and oil phase. Under optimized condition, the coefficient variation (C.V.) showing the size distribution of the beads was under 15%. This was the first report to prepare uniform agarose beads by membrane emulsification, and to investigate the effect of temperature on the size distribution of the droplets and beads. The beads with different size can be prepared by using membranes with different pore size, and the result showed that there was a linear relationship between the average diameter of beads and pore size of the membranes; beads with diameter from 15 to 60 microm were able to obtain in this study. PMID:17362974

  7. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro.

    PubMed

    Yin, Na; Stilwell, Matthew D; Santos, Thiago M A; Wang, Huaping; Weibel, Douglas B

    2015-01-01

    Bacterial cellulose (BC) is a biocompatible hydrogel with a three-dimensional (3-D) structure formed by a dense network of cellulose nanofibers. A limitation of using BC for applications in tissue engineering is that the pore size of the material (∼0.02-10μm) is smaller than the dimensions of mammalian cells and prevents cells from penetrating into the material and growing into 3-D structures that mimic tissues. This paper describes a new route to porous bacterial cellulose (pBC) scaffolds by cultivating Acetobacter xylinum in the presence of agarose microparticles deposited on the surface of a growing BC pellicle. Monodisperse agarose microparticles with a diameter of 300-500μm were created using a microfluidic technique, layered on growing BC pellicles and incorporated into the polymer as A. xylinum cells moved upward through the growing pellicle. Removing the agarose microparticles by autoclaving produced BC gels containing a continuous, interconnected network of pores with diameters ranging from 300 to 500μm. Human P1 chondrocytes seeded on the scaffolds, replicated, invaded the 3-D porous network and distributed evenly throughout the substrate. Chondrocytes grown on pBC substrates displayed a higher viability compared to growth on the surface of unmodified BC substrates. The approach described in this paper introduces a new method for creating pBC substrates with user-defined control over the physical dimensions of the pore network, and demonstrates the application of these materials for tissue engineering. PMID:25449918

  8. Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose-chitosan.

    PubMed

    Gómez-Mascaraque, Laura G; Méndez, José Alberto; Fernández-Gutiérrez, Mar; Vázquez, Blanca; San Román, Julio

    2014-02-01

    Hydrogel networks that combine suitable physical and biomechanical characteristics for tissue engineering scaffolds are in demand. The aim of this work was the development of hydrogel networks based on agarose and chitosan using oxidized dextrins as low cytotoxicity crosslinking agents, paying special attention to the study of the influence of the polysaccharide composition and oxidation degree of the dextrins in the final characteristics of the network. The results show that the formation of an interpenetrating or a semi-interpenetrating polymer network was mainly dependent on a minimum agarose content and degree of oxidation of dextrin. Spectroscopic, thermal and swelling analysis revealed good compatibility with an absence of phase separation of polysaccharides at agarose:chitosan proportions of 50:50 and 25:75. The analysis of atomic force microscopy images showed the formation of a fibrillar microstructure whose distribution within the crosslinked chitosan depended mainly on the crosslinker. All materials exhibited the viscoelastic behaviour typical of gels, with a constant storage modulus independent of frequency for all compositions. The stiffness was strongly influenced by the degree of oxidation of the crosslinker. Cellular response to the hydrogels was studied with cells of different strains, and cell adhesion and proliferation was correlated with the homogeneity of the samples and their elastic properties. Some hydrogel formulations seemed to be candidates for tissue engineering applications such as wound healing or soft tissue regeneration. PMID:24121253

  9. Guar-based monolithic matrix systems: effect of ionizable and non-ionizable substances and excipients on gel dynamics and release kinetics.

    PubMed

    Dürig, Thomas; Fassihi, Reza

    2002-04-23

    The effect of ionic and non-ionic excipients and additives as modulators of swelling and erosion kinetics and verapamil HCl release from guar-based matrix tablets was investigated. Tablet dissolution, erosion and water uptake studies were carried out using a modified USP 23 Apparatus 2 method. The kinetics of gel strength and texture development were studied by textural analysis. Near linear drug release over 24 h was obtained from formulations containing water soluble, ionizable sodium chloride and glycine. The contribution of Fickian release to overall drug release was lowest for these formulations and was correlated with greater gel strength and lower water uptake in the early time period. For soluble sugars (lactose and sucrose) the Fickian contribution to overall drug release was large and associated with pronounced curvilinear profiles. Water uptake was greatest for these additives (450% in 6 h). The lowest water uptake and negligible matrix erosion was observed for microcrystalline cellulose. Release from this formulation was predominantly Fickian. It was found that the physico-chemical nature of added excipients significantly influences the release kinetics from guar-based formulations. Ionic, water soluble materials (sodium chloride, glycine) reduce initial hydration of the matrix and thus have the ability to limit the initial rapid diffusion of drug and to sustain near linear release over 24 h. PMID:11943386

  10. Influence of gelling agents on the dosimetric performance of the Turnbull Blue gel dosimeter

    NASA Astrophysics Data System (ADS)

    Šolc, Jaroslav; Sochor, Vladimír; Spěváček, Václav

    2010-11-01

    Gelling agents such as agarose, phytagel, and several types of gelatin were used for preparation of Turnbull Blue radiochromic gel dosimeter. Their influence on gel dose response and background value was assessed. It was found that all gelatins cause significant increase of background in a short period of time after gel preparation therefore gelatin is not a suitable gelling agent for this dosimeter. Phytagel and agarose gels exhibit low and stable background and higher dose sensitivity than gelatin gels; however, the disadvantage is increased scattered light intensity in the gel in comparison to gelatin gels. A simple measurement was done demonstrating that the scattered light intensity significantly increases in phytagel and agarose gel in comparison to gelatin gels.

  11. Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures.

    PubMed

    Simon, Karen A; Warren, Nicholas J; Mosadegh, Bobak; Mohammady, Marym R; Whitesides, George M; Armes, Steven P

    2015-12-14

    It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20-37 °C, which can be rapidly converted into a free-flowing dispersion of spheres on cooling to 5 °C. Functionalization of the worms with disulfide groups was found to be essential for ensuring sufficient mechanical stability of these hydrogels to enable long-term cell culture. These disulfide groups are conveniently introduced via statistical copolymerization of a disulfide-based dimethacrylate under conditions that favor intramolecular cyclization and subsequent thiol/disulfide exchange leads to the formation of reversible covalent bonds between adjacent worms within the gel. This new approach enables cells to be embedded within micrometer-thick slabs of gel with good viability, permits cell culture for at least 12 days, and facilitates recovery of viable cells from the gel simply by incubating the culture in buffer at 4 °C (thus, avoiding the enzymatic degradation required for cell harvesting when using commercial protein-based gels, such as Matrigel). PMID:26509930

  12. Estradiol receptor of calf uterus: interactions with heparin-agarose and purification.

    PubMed Central

    Molinari, A M; Medici, N; Moncharmont, B; Puca, G A

    1977-01-01

    Heparin attached covalently to agarose beads binds the "native" form of the estradiol receptor with very high affinity. Chondroitin sulfate does not bind to the receptor. When the receptor is complexed with hormone, the affinity is at least 10 times higher. Only the "native" and not the "nuclear" or the "derived" (i.e., after activation by a calcium-dependent enzyme) forms of the estradiol receptor interact with heparin. The "native" estradiol-receptor complex is purified to homogeneity after chromatography on columns of heparin-agarose, Sephadex G-200, and DEAE-cellulose, followed by two more Sephadex G-200 columns. The purified molecule is a single polypeptide of molecular weight 69,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The sedimentation coefficient on sucrose gradients is 4.3 S, the Stokes radius from gel filtration is 36.5 A, and the isoelectric point is 6.4. The purified [3H]estradiol-receptor complex exchanges the radioactive hormone with estradiol or other estrogenic steroids, but not with testosterone, 5alpha-dihydrotestosterone, or progesterone. Images PMID:270721

  13. Augmenting Protein Release from Layer- by-Layer Functionalized Agarose Hydrogels

    PubMed Central

    Lynam, Daniel; Peterson, Chelsea; Maloney, Ryan; Shahriari, Dena; Garrison, Alexa; Saleh, Sara; Mehrotra, Sumit; Chan, Christina; Sakamoto, Jeff

    2014-01-01

    Recent work demonstrated the efficacy of combining layer-by-layer assembly with hydrogels to provide the controlled delivery of proteins for use in nerve repair scaffolds. In this work, we augmented the protein dose response by controlling and increasing the hydrogel internal surface area. Sucrose was added to agarose during gelation to homogenize the nanopore morphology, resulting in increased surface area per unit volume of hydrogel. The surface area of a range of compositions (1.5 to 5.0 wt% agarose and 0, 50 and 65 wt% sucrose) was measured. Gels were supercritically dried to preserve porosity enabling detailed pore morphology measurements using nitrogen adsorption and high resolution scanning electron microscopy. The resulting surface area, normalized by superficial gel volume, ranged between 6 and 56m2/ccgel. Using the layer-by-layer process to load lysozyme, a neurotrophic factor analog, a relationship was observed between surface area and cumulative dose response ranging from 176 to 2556 μg/mL, which is in the range of clinical relevance for the delivery of growth factors. In this work, we demonstrated that the ability to control porosity is key in tuning drug delivery dose response from layer-by-layer modified hydrogels. PMID:24528743

  14. Drop spreading and resorbtion on gel surfaces

    NASA Astrophysics Data System (ADS)

    Banaha, Mehdi; Daerr, Adrian; Limat, Laurent

    2008-03-01

    We have studied the dynamics of liquid drops on agar gels, using a visualisation method which captures the evolution of the free surface. A first remarquable observation is that drops of water deposited on the surface do not spread, although the gel consists of up to 99.7% water and as low as 0.3% agarose. Instead, the drop slowly de-wets and resorbs into the gel which swells locally. If the deposited drop contains surfactants, the dynamics is very different. A sharp circular swelling front develops and progressively invades the whole surface. We study the propagation of this front as a function of surfactant and agarose concentration, and compare its typical properties to similar fronts appearing during mass swarming events of bacterial colonies under the same conditions. The observations reveal the complex nature of gel surface physico-chemistry and its aging, and may be related to recent friction measurements at gel interfaces.

  15. Tailor-made agarose-based reactive beads for hemoperfusion and plasma perfusion.

    PubMed

    Sideman, S; Lotan, N; Tabak, A; Manor, D; Mor, L; Taitelman, U; Brook, J; Tzipiniuk, A

    1984-01-01

    Composite beads of approximately 1 mm diameter, made of crosslinked agarose and containing Fuller's Earth or zirconium oxide powders, were prepared and used in extracorporeal systems for blood detoxification. The former was used for the removal of Paraquat, while the latter was used to remove inorganic phosphate from hyperphosphatemic animals with or without acute renal failure. The high surface area of the powder, combined with the low resistance to diffusion in the crosslinked agarose matrix, are highly advantageous. The crosslinking provides high mechanical strength, heat stability, prolonged shelf life, good blood flow characteristics, and prevents the release of fine particles into the blood. Crosslinked agarose beads of 1 mm diameter, containing chemically-bound heparin were also prepared, and used as a model for direct contact removal of LDL-cholesterol from the blood of familial hypercholesterolemic patients by hemoperfusion. The high capacity of these beads (over 5 mg LDL/mL beads) indicates that this clinical modality can replace the highly expensive plasmapheresis procedure presently used. PMID:6524925

  16. Spectrofluorimetric assessment of chlorzoxazone and ibuprofen in pharmaceutical formulations by using Eu-tetracycline HCl optical sensor doped in sol-gel matrix.

    PubMed

    Attia, M S; Ramsis, M N; Khalil, L H; Hashem, S G

    2012-03-01

    A novel, simple, sensitive and selective spectrofluorimetric method was developed for the determination of trace amounts of chlorzoxazone and Ibuprofen in pharmaceutical tablets using optical sensor Eu-Tetracycline HCl doped in sol-gel matrix. The chlorzoxazone or Ibuprofen can remarkably enhance the luminescence intensity of Eu-Tetracycline HCl complex doped in a sol-gel matrix in dimethylformamide (DMF) at pH 9.7 and 6.3, respectively, λ(ex) = 400 nm. The enhancing of luminescence intensity peak of Eu-Tetracycline HCl complex at 617 nm is proportional to the concentration of chlorzoxazone or Ibuprofen a result that suggested profitable application as a simple optical sensor for chlorzoxazone or Ibuprofen assessment. The dynamic ranges found for the determination of chlorzoxazone and Ibuprofen concentration are 5 × 10(-9)-1 × 10(-4) and 1 × 10(-8)-7 × 10(-5) mol L(-1), and the limit of detection (LOD) and quantitation limit of detection (LOQ) are 3.1 × 10(-10), 9.6 × 10(-10) and 5.6 × 10(-10), 1.7 × 10(-9) mol L(-1), respectively. PMID:22068956

  17. Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability.

    PubMed

    Duan, Pengfei; Yanai, Nobuhiro; Nagatomi, Hisanori; Kimizuka, Nobuo

    2015-02-11

    Efficient triplet-triplet annihilation (TTA)-based photon upconversion (UC) is achieved in supramolecular organogel matrixes. Intense UC emission was observed from donor (sensitizer)-acceptor (emitter) pairs in organogels even under air-saturated condition, which solved a major problem: deactivation of excited triplet states and TTA-UC by molecular oxygen. These unique TTA-UC molecular systems were formed by spontaneous accumulation of donor and acceptor molecules in the gel nanofibers which are stabilized by developed hydrogen bond networks. These molecules preorganized in nanofibers showed efficient transfer and migration of triplet energy, as revealed by a series of spectroscopic, microscopic, and rheological characterizations. Surprisingly, the donor and acceptor molecules incorporated in nanofibers are significantly protected from the quenching action of dissolved molecular oxygen, indicating very low solubility of oxygen to nanofibers. In addition, efficient TTA-UC is achieved even under excitation power lower than the solar irradiance. These observations clearly unveil the adaptive feature of host gel nanofiber networks that allows efficient and cooperative inclusion of donor-acceptor molecules while maintaining their structural integrity. As evidence, thermally induced reversible assembly/disassembly of supramolecular gel networks lead to reversible modulation of the UC emission intensity. Moreover, the air-stable TTA-UC in supramolecular gel nanofibers was generally observed for a wide combination of donor-acceptor pairs which enabled near IR-to-yellow, red-to-cyan, green-to-blue, and blue-to-UV wavelength conversions. These findings provide a new perspective of air-stable TTA-UC molecular systems; spontaneous and adaptive accumulation of donor and acceptor molecules in oxygen-blocking, self-assembled nanomatrixes. The oxygen-barrier property of l-glutamate-derived organogel nanofibers has been unveiled for the first time, which could find many

  18. Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium.

    PubMed

    Jabaji, Ziyad; Sears, Connie M; Brinkley, Garrett J; Lei, Nan Ye; Joshi, Vaidehi S; Wang, Jiafang; Lewis, Michael; Stelzner, Matthias; Martín, Martín G; Dunn, James C Y

    2013-12-01

    Methods for the in vitro culture of primary small intestinal epithelium have improved greatly in recent years. A critical barrier for the translation of this methodology to the patient's bedside is the ability to grow intestinal stem cells using a well-defined extracellular matrix. Current methods rely on the use of Matrigel(™), a proprietary basement membrane-enriched extracellular matrix gel produced in mice that is not approved for clinical use. We demonstrate for the first time the capacity to support the long-term in vitro growth of murine intestinal epithelium in monoculture, using type I collagen. We further demonstrate successful in vivo engraftment of enteroids co-cultured with intestinal subepithelial myofibroblasts in collagen gel. Small intestinal crypts were isolated from 6 to 10 week old transgenic enhanced green fluorescent protein (eGFP+) mice and suspended within either Matrigel or collagen gel; cultures were supported using previously reported media and growth factors. After 1 week, cultures were either lysed for DNA or RNA extraction or were implanted subcutaneously in syngeneic host mice. Quantitative real-time polymerase chain reaction (qPCR) was performed to determine expansion of the transgenic eGFP-DNA and to determine the mRNA gene expression profile. Immunohistochemistry was performed on in vitro cultures and recovered in vivo explants. Small intestinal crypts reliably expanded to form enteroids in either Matrigel or collagen in both mono- and co-cultures as confirmed by microscopy and eGFP-DNA qPCR quantification. Collagen-based cultures yielded a distinct morphology with smooth enteroids and epithelial monolayer growth at the gel surface; both enteroid and monolayer cells demonstrated reactivity to Cdx2, E-cadherin, CD10, Periodic Acid-Schiff, and lysozyme. Collagen-based enteroids were successfully subcultured in vitro, whereas pure monolayer epithelial sheets did not survive passaging. Reverse transcriptase-polymerase chain reaction

  19. Inkjet printable luminescent Eu3+-TiO2 doped in sol gel matrix for paper tagging.

    PubMed

    Attia, M S; Elsaadany, Soad A; Ahmed, Kawther A; El-Molla, Mohamed M; Abdel-Mottaleb, M S A

    2015-01-01

    Europium (III) with different concentrations (0.2, 0.4 and 0.8 %)-TiO(2) doped silica composite systems were sensitized by sol-gel method. Different spectroscopic and microscopic tools characterized the composites. The Europium ion incorporated into the liquid silica-titania solution acts as red light emission center in the luminescent materials. This luminescent nano composite pigment has great potential of application in preparing luminescent ink. Inkjet printer loaded with the prepared ink to show its potential usage as tagging material performed the printing test on a white paper. PMID:25591996

  20. Functionalized Agarose Self-Healing Ionogels Suitable for Supercapacitors.

    PubMed

    Trivedi, Tushar J; Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung; Kumar, Arvind

    2015-10-12

    Agarose has been functionalized (acetylated/carbanilated) in an ionic liquid (IL) medium of 1-butyl-3-methylimidazolium acetate at ambient conditions. The acetylated agarose showed a highly hydrophobic nature, whereas the carbanilated agarose could be dissolved in water as well as in the IL medium. Thermoreversible ionogels were obtained by cooling the IL sols of carbanilated agarose at room temperature. The ionogel prepared from a protic-aprotic mixed-IL system (1-butyl-3-methylimidazolium chloride and N-(2-hydroxyethyl)ammonium formate) demonstrated a superior self-healing property, as confirmed from rheological measurements. The superior self-healing property of such an ionogel has been attributed to the unique inter-intra hydrogen-bonding network of functional groups inserted in the agarose. The ionogel was tested as a flexible solid electrolyte for an activated-carbon-based supercapacitor cell. The measured specific capacitance was found to be comparable with that of a liquid electrolyte system at room temperature and was maintained for up to 1000 charge-discharge cycles. Such novel functionalized-biopolymer self-healing ionogels with flexibility and good conductivity are desirable for energy-storage devices and electronic skins with superior lifespans and robustness. PMID:26280813

  1. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  2. Magnetic Hyperthermia in ferrofluid-gel composites

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Wadehra, Anshu; Dixit, Ambesh; Regmi, Rajesh; Vaishnava, Prem; Lawes, Gavin; Naik, Ratna

    2012-02-01

    Magnetic hyperthermia is the generation of heat by an external magnetic field using superparamagnetic nanoparticles. However, there are still questions concerning magnetic hyperthermia in tissue; in particular the confinement of the nanoparticles at mesoscopic scales. We used Agarose and Alginate gels as models for human tissue and embedded magnetic nanoparticles in them. We report the synthesis and characterization of dextran coated iron oxide (Fe3O4) nanoparticles. Characterization of these nanoparticles was done using X-ray diffraction, transmission electron microscopy, magnetometry, and hyperthermia measurements. Temperature dependent susceptibility measurements reveal a sharp anomaly in the ferrofluid sample at the freezing temperature. This is conspicuously absent in the ferrofluid-gel composites. Heat generation studies on these superparamagnetic gel-composites revealed a larger heat production in the ferrofluids(˜4W/g) as compared to the gels(˜1W/g), which we attribute to a reduction in Brownian relaxation for the nanoparticles embedded in Agarose and Alginate.

  3. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading. PMID:18373071

  4. Inhibition of vimentin or B1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo

    SciTech Connect

    Zhang, Xueping; Fournier, Marcia V; Ware, Joy L; Bissell, Mina J; Yacoub, Adly; Zehner, Zendra E

    2008-06-12

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin, or {alpha}6 and {beta}1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of {alpha}6 and {beta}1 integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and {beta}1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499-508].

  5. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  6. Luminescent sensing of dissolved oxygen based on Ru(II) complex embedded in sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Bi, Yubing; Tao, Wei; Hu, Yanli; Mao, Yimei; Zhao, Hui

    2015-11-01

    In biological cells and tissues environment, real-time monitoring and controlling dissolved oxygen (DO) provides critical information for studying cellular metabolism process, health status and pathological features. This paper developed an optical DO sensor based on fluorescence quenching principle, prepared tris(4,7-diphenyl-1,10- phenanthroline)ruthenium(II) dichloride complex sol-gel sensing film, and studied its sensing performance. The principle of this sensor is that dissolved oxygen has quenching effect towards the fluorescence emitted by ruthenium complex. So the fluorescence intensity is reduced due to the existence of DO. The measurement limit of DO was 10- 100%, the response time was 20s, and the resolution was 0.02. Compared to traditional dissolved oxygen electrode probe, this luminescent fiber had many advantages, such as smaller size, shorter response time and higher stability.

  7. Porous ceramic/agarose composite adsorbents for fast protein liquid chromatography.

    PubMed

    Xia, Haifeng; Jin, Xionghua; Wu, Puqiang; Zheng, Zhiyong

    2012-02-01

    Porous ceramic/agarose composite adsorbents were designed and prepared with silica ceramic beads and 4% agarose gel, and then functionalized with a special ligand carboxymethyl. A novel method was introduced to fabricating of the porous silica ceramic beads. The morphology of SEM shows a spherical shape and a porous structure of the ceramic beads. Nitrogen adsorption-desorption analysis gives an average pore size of 287.5 Å, a BET surface area of 29.33 m²/g and a porosity of 41.8%, respectively. Additionally, X-ray diffraction pattern indicates that the amorphous silica has been transformed into two crystal phases of quartz and cristobalite, leading to a porous and rigid skeleton and ensuring the application of the composite beads at high flow velocities. Lysozyme of hen egg-white with the activity of 12,700 U/mg was purified by the composite ion-exchanger in one step and the recovery and purification factor reaches 95.2% and 7.9, respectively. PMID:22226554

  8. Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules.

    PubMed

    Sakai, Shinji; Hashimoto, Ichiro; Kawakami, Koei

    2008-01-01

    We developed agarose microcapsules with a single hollow core templated by alginate microparticles using a jet-technique. We extruded an agarose aqueous solution containing suspended alginate microparticles into a coflowing stream of liquid paraffin and controlled the diameter of the agarose microparticles by changing the flow rate of the liquid paraffin. Subsequent degradation of the inner alginate microparticles using alginate lyase resulted in the hollow-core structure. We successfully obtained agarose microcapsules with 20-50 microm of agarose gel layer thickness and hollow cores ranging in diameter from ca. 50 to 450 microm. Using alginate microparticles of ca. 150 microm in diameter and enclosing feline kidney cells, we were able to create cell-enclosing agarose microcapsules with a hollow core of ca. 150 microm in diameter. The cells in these microcapsules grew much faster than those in alginate microparticles. In addition, we enclosed mouse embryonic stem cells in agarose microcapsules. The embryonic stem cells began to self-aggregate in the core just after encapsulation, and subsequently grew and formed embryoid body-like spherical tissues in the hollow core of the microcapsules. These results show that our novel microcapsule production technique and the resultant microcapsules have potential for tissue engineering, cell therapy and biopharmaceutical applications. PMID:17705234

  9. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components.

    PubMed

    Rhoades, Elizabeth R; Geisel, Rachel E; Butcher, Barbara A; McDonough, Sean; Russell, David G

    2005-05-01

    The chronic inflammatory response to Mycobacterium generates complex granulomatous lesions that balance containment with destruction of infected tissues. To study the contributing factors from host and pathogen, we developed a model wherein defined mycobacterial components and leukocytes are delivered in a gel, eliciting a localized response that can be retrieved and analysed. We validated the model by comparing responses to the cell wall lipids from Mycobacterium bovis bacillus Calmette-Guerin (BCG) to reported activities in other models. BCG lipid-coated beads and bone marrow-derived macrophages (input macrophages) were injected intraperitoneally into BALB/c mice. Input macrophages and recruited peritoneal exudate cells took up fluorescently tagged BCG lipids, and matrix-associated macrophages and neutrophils produced tumor necrosis factor, interleukin-1alpha, and interleukin-6. Leukocyte numbers and cytokine levels were greater in BCG lipid-bearing matrices than matrices containing non-coated or phosphatidylglycerol-coated beads. Leukocytes arrived in successive waves of neutrophils, macrophages and eosinophils, followed by NK and T cells (CD4(+), CD8(+), or gammadelta) at 7 days and B cells within 12 days. BCG lipids also predisposed matrices for adherence and vascularization, enhancing cellular recruitment. We submit that the matrix model presents pertinent features of the murine granulomatous response that will prove to be an adaptable method for study of this complex response. PMID:15850754

  10. 3 V omni-directionally stretchable one-body supercapacitors based on a single ion-gel matrix and carbon nanotubes.

    PubMed

    Kim, Wonbin; Kim, Woong

    2016-06-01

    Stretchable supercapacitors often have laminated structures consisting of electrode, electrolyte, and supporting layers. Since the layers are likely to be composed of different materials, delamination is a major cause of failure upon stretching. In this study, we demonstrate delamination-free stretchable supercapacitors where all the component layers are prepared with a single matrix, which is composed of a polymer, poly(vinylidene fluoride-hexafluoropropylene) and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Since the ionic liquid in the composite plays a role as both an electrolyte and a plasticizer, this composite can be used as an electrolyte and a supporting layer in the stretchable supercapacitor. The electrode layer can be fabricated by incorporating carbon nanotubes in the common matrix. Then, all the layers can be seamlessly fused into one body by dissolving the surface of the composite with acetone, which evaporates after the integration, leaving no borders between the layers. This one-body stretchable supercapacitor not only has high durability against repetitive stretches but also is stretchable in all directions. This feature clearly distinguishes them from conventional stretchable supercapacitors fabricated using buckled structures, which are stretchable only in one or two directions. Moreover, this supercapacitor has high cell voltage (∼3 V) owing to the ionic liquid-based gel electrolytes. Our demonstration of isotropically stretchable high-durability supercapacitors may have a great implication in the development of stretchable energy storage devices for real applications. PMID:27103266

  11. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-11-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  12. 3 V omni-directionally stretchable one-body supercapacitors based on a single ion–gel matrix and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kim, Wonbin; Kim, Woong

    2016-06-01

    Stretchable supercapacitors often have laminated structures consisting of electrode, electrolyte, and supporting layers. Since the layers are likely to be composed of different materials, delamination is a major cause of failure upon stretching. In this study, we demonstrate delamination-free stretchable supercapacitors where all the component layers are prepared with a single matrix, which is composed of a polymer, poly(vinylidene fluoride-hexafluoropropylene) and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Since the ionic liquid in the composite plays a role as both an electrolyte and a plasticizer, this composite can be used as an electrolyte and a supporting layer in the stretchable supercapacitor. The electrode layer can be fabricated by incorporating carbon nanotubes in the common matrix. Then, all the layers can be seamlessly fused into one body by dissolving the surface of the composite with acetone, which evaporates after the integration, leaving no borders between the layers. This one-body stretchable supercapacitor not only has high durability against repetitive stretches but also is stretchable in all directions. This feature clearly distinguishes them from conventional stretchable supercapacitors fabricated using buckled structures, which are stretchable only in one or two directions. Moreover, this supercapacitor has high cell voltage (∼3 V) owing to the ionic liquid-based gel electrolytes. Our demonstration of isotropically stretchable high-durability supercapacitors may have a great implication in the development of stretchable energy storage devices for real applications.

  13. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    PubMed

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  14. Electron Beam Sterilization of the Plates with Agaroze Gel Used for Electrophoresis

    NASA Astrophysics Data System (ADS)

    Ighigeanu, Daniel I.; Martin, Diana I.; Stan, Dana E.; Matei, Constantin I.; Manaila, Elena M.; Craciun, Gabriela D.; Iacob, Nicusor I.; Oproiu, Constantin V.; Ighigeanu, Adelina I.

    2007-04-01

    Electron beam (EB) sterilization applied to the plastic plates with agarose gel used for electrophoresis is presented. The effects of EB irradiation upon the agarose gel and on the process of the proteic fraction separation have been investigated. The investigation were focused on the concentration changes of the six proteic fractions, albumin, alpha 1, alpha 2, beta 1, beta 2 and gamma, versus the dose irradiation as compared with the unirradiated sample.

  15. In-house Manual Construction of High-Density and High-Quality Tissue Microarrays by Using Homemade Recipient Agarose-Paraffin Blocks

    PubMed Central

    Kim, Kyu Ho; Choi, Yeon Il; Kim, Lucia; Park, In Suh; Han, Jee Young; Kim, Joon Mee; Chu, Young Chae

    2013-01-01

    Background Self-made tissue punches can be effectively used to punch holes in blank recipient paraffin blocks and extract tissue cores from the donor paraffin blocks for the low-cost construction of tissue microarrays (TMAs). However, variable degrees of section distortion and loss of the tissue cores can occurs during cutting of the TMAs, posing technical problems for in-house manual construction of high-density TMAs. We aimed to update the method for in-house manual TMA construction to improve the quality of high-density TMAs. Methods Blocks of agarose gel were subjected to the standard tissue processing and embedding procedure to prepare recipient agarose-paraffin blocks. The self-made tissue punches and recipient agarose-paraffin blocks were used to construct TMAs, which were completely melted and re-embedded in paraffin to make finished TMA blocks. Results The donor tissue cores were completely integrated into the surrounding paraffin of the recipient blocks. This method enabled us to construct high-density TMAs with significantly less section distortion or loss of tissue cores during microtomy. Conclusions Simple and inexpensive construction of high-density and high-quality TMAs can be warranted by using paraffinized agarose gels as recipient blocks. PMID:23837016

  16. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  17. A dual-ion imprinted polymer embedded in sol-gel matrix for the ultra trace simultaneous analysis of cadmium and copper.

    PubMed

    Bali Prasad, Bhim; Jauhari, Darshika; Verma, Archana

    2014-03-01

    In simultaneous determination of group of elements, there are inter-metallic interactions which result in a non-linear relationship between the peak current and ionic concentration for each of the element, at bare (unmodified) electrode. To resolve this problem, we have resorted, for the first time, to develop a modified pencil graphite electrode using a typical ion imprinted polymer network (dual-ion imprinted polymer embedded in sol-gel matrix (inorganic-organic hybrid nano-material)) for the simultaneous analysis of a binary mixture of Cd(II) and Cu(II) ions, without any complication of inter-metallic interactions and competitive bindings, in real samples. The adequate resolution of differential pulse anodic stripping voltammetry peaks by 725 mV (cf, 615 mV with unmodified electrode), without any cross-reactivity and the stringent detection limits as low as, 0.050 and 0.034 ng mL(-1) (S/N=3) for Cd(II) and Cu(II) ions, respectively by the proposed sensor can be considered useful for the primitive diagnosis of several chronic diseases in clinical settings. PMID:24468388

  18. Agarose and methylcellulose hydrogel blends for nerve regeneration applications

    NASA Astrophysics Data System (ADS)

    Martin, Benton C.; Minner, Eric J.; Wiseman, Sherri L.; Klank, Rebecca L.; Gilbert, Ryan J.

    2008-06-01

    Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 °C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 °C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 °C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.

  19. A self-assembling matrix-forming gel can be easily and safely applied to prevent delayed bleeding after endoscopic resections

    PubMed Central

    Pioche, Mathieu; Camus, Marine; Rivory, Jérôme; Leblanc, Sarah; Lienhart, Isabelle; Barret, Maximilien; Chaussade, Stanislas; Saurin, Jean-Christophe; Prat, Frederic; Ponchon, Thierry

    2016-01-01

    Background: Endoscopic resections have low morbidity and mortality. Delayed bleeding has been reported in approximately 1 – 15 % of cases, increasing with antiplatelet/anticoagulant therapy or portal hypertension. A self-assembling peptide (SAP) forming a gel could protect the mucosal defect during early healing. This retrospective trial aimed to assess the safety and efficacy of SAP in preventing delayed bleeding after endoscopic resections. Methods: Consecutive patients with endoscopic resections were enrolled in two tertiary referral centers. Patients with a high risk of bleeding (antiplatelet agents, anticoagulation drugs with heparin bridge therapy, and cirrhosis with portal hypertension) were also included. The SAP gel was applied immediately after resection to cover the whole ulcer bed. Results: In total, 56 patients were included with 65 lesions (esophagus [n = 8], stomach [n = 22], duodenum [n = 10], ampullary [n = 3], colon [n = 7], and rectum [n = 15]) in two centers. Among those 65 lesions, 29 were resected in high risk situations (9 uninterrupted aspirin therapy, 6 heparin bridge therapies, 5 cirrhosis and portal hypertension, 1 both cirrhosis and heparin bridge, 3 both cirrhosis and uninterrupted aspirin, 3 large duodenal lesions > 2 cm, and 2 early introduction of clopidogrel at day 1). The resection technique was endoscopic submucosal dissection (ESD) in 40 cases, en bloc endoscopic mucosal resection (EMR) in 16, piecemeal EMR in 6, and ampullectomy in 3. The mean lesion size was 37.9 mm (SD: 2.2 mm) with a mean area of 6.3 cm2 (SD: 3.5 cm2). No difficulty was noted during application. Four delayed overt bleedings occurred (6.2 %) (3 hematochezia, 1 hematemesis) requiring endoscopic hemostasis. The mean hemoglobin drop off was 0.6 g/dL (– 0.6 to 3.1 g/dL). No adverse events occurred. Conclusion: The use of this novel extracellular matrix scaffold may help to reduce post-endoscopic resection

  20. Silver nanoparticles doped agarose disk: highly sensitive surface-enhanced Raman scattering substrate for in situ analysis of ink dyes.

    PubMed

    Raza, Ali; Saha, Basudeb

    2013-12-10

    Raman spectroscopy is a preferred analytical tool for forensic trace analysis due to its non-invasive nature. This technique has been utilized in examination of organic colorants present in fibers and ink, but high fluorescent nature of these compounds is a problem. In the present study, silver-doped agarose gel disk, having property of quenching fluorescence and enhancing Raman signals, is found to be effective as surface-enhanced Raman scattering (SERS) substrates for analysis of rhodamine 6G (Rh 6G) and crystal violet (CV) dyes. As-prepared and well characterized by UV, TEM-EDAX and XRD techniques, the investigated silver-doped agarose gel disk proves to have minimal invasive as confirmed by the ATR-FTIR method and effective for in situ SERS analysis of blue and red ballpoint ink. The disk is stable upon storage and hence can be re-used and re-examined. The present method offers new possibilities in trace forensic analysis with minimal destruction. PMID:24314497

  1. Binding of glycosaminoglycans to cyano-activated agarose membranes: kinetic and diffusional effects on yield and homogeneity.

    PubMed

    Mattern, Kristin J; Deen, William M

    2007-11-01

    Methods were developed for binding a glycosaminoglycan (GAG, a 50 kDa chondroitin sulfate) to thin agarose membranes using 1-cyano-4-(dimethylamino)pyridinium tetrafluoroborate (CDAP) as the activating agent. Process conditions were optimized to achieve high yields and spatially uniform concentrations of bound ligand. Yields were varied mainly by manipulating the duration and temperature of the aqueous washes prior to coupling, which affected the concentration of active sites available for subsequent GAG binding. The rate constants for degradation of the active cyanate esters in 0.1M bicarbonate solutions were 0.24+/-0.02 h(-1) at 4 degrees C and 0.08+/-0.03 h(-1) at 0 degrees C. Steric limitations in the 3% agarose gels severely restricted binding, with only about 0.1% of active sites being accessible to GAG molecules. The GAG binding occurred primarily in the outer 50-70 microm of the membranes, so that coupling was homogeneous only for thin gels. A model of GAG diffusion and reaction in the coupling step was developed to explain the observed effects of parameters such as the GAG concentration in solution and the membrane thickness. An analysis of the key time scales in the synthesis provides design principles that should be useful also for other cyanylating agents, other ligands, and for beads as well as membranes. PMID:17610855

  2. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  3. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities.

    PubMed

    Yun, Eun Ju; Lee, Saeyoung; Kim, Ji Hye; Kim, Bo Bae; Kim, Hee Taek; Lee, Sun Hee; Pelton, Jeffrey G; Kang, Nam Joo; Choi, In-Geol; Kim, Kyoung Heon

    2013-04-01

    3,6-Anhydro-L-galactose (L-AHG) constitutes 50% of agarose, which is the main component of red macroalgae. No information is currently available on the mass production, metabolic fate, or physiological effects of L-AHG. Here, agarose was converted to L-AHG in the following three steps: pre-hydrolysis of agarose into agaro-oligosaccharides by using acetic acid, hydrolysis of the agaro-oligosaccharides into neoagarobiose by an exo-agarase, and hydrolysis of neoagarobiose into L-AHG and galactose by a neoagarobiose hydrolase. After these three steps, L-AHG was purified by adsorption and gel permeation chromatographies. The final product obtained was 95.6% pure L-AHG at a final yield of 4.0% based on the initial agarose. In a cell proliferation assay, L-AHG at a concentration of 100 or 200 μg/ mL did not exhibit any significant cytotoxicity. In a skin whitening assay, 100 μg/ mL of L-AHG showed significantly lower melanin production compared to arbutin. L-AHG at 100 and 200 μg/ mL showed strong anti-inflammatory activity, indicating the significant suppression of nitrite production. This is the first report on the production of high-purity L-AHG and its physiological activities. PMID:22678025

  4. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CM-Asp-agarose by positive and negative chromatography.

    PubMed

    Mourão, Cecília Alves; Carmignotto, Gabriela Pannunzio; Bueno, Sonia Maria Alves

    2016-04-01

    This study evaluated the feasibility of using immobilized metal-ion affinity chromatography (IMAC) for separation of human Fab fragments using four different transition metal ions copper, nickel, zinc, and cobalt chelated to CM-Asp (carboxymethylaspartate) immobilized on the agarose gel. The Fab and Fc fragments (from human IgG digested with papain) interacted differently with the chelates studied, depending on the adsorption buffer system. The interaction between chelate and Fc fragment is predominantly based on the coordination bonds using adsorption buffer containing NaCl. Negative chromatography was performed on Cu(II)-CM-Asp-agarose obtaining 2.9mg of Fab per mL of adsorbent in nonretained fractions (Fc fragment-free without uncleaved IgG). The adsorption of Fab fragments is governed by electrostatic forces in the absence of NaCl in the adsorption buffer. High selectivity was achieved on Co(II)-CM-Asp-agarose and 5.7mg of Fab per mL of adsorbent was obtained in eluted fractions without Fc fragments, although having uncleaved IgG. The results showed that chromatography on transition metal ions chetated to CM-Asp-agarose is a promising approach to separation of Fab fragments from papain-digested human IgG solution. PMID:26974869

  5. Sol-gel combustion synthesis, particle shape analysis and magnetic properties of hematite (α-Fe2O3) nanoparticles embedded in an amorphous silica matrix

    NASA Astrophysics Data System (ADS)

    Kopanja, Lazar; Milosevic, Irena; Panjan, Matjaz; Damnjanovic, Vesna; Tadic, Marin

    2016-01-01

    We report the synthesis and magnetic properties of hematite/amorphous silica nanostructures. Raman spectroscopy showed the formation of a hematite phase. A transmission electron microscopy (TEM) revealed spherically shaped hematite nanoparticles, well-dispersed in an amorphous silica matrix. In order to quantitatively describe morphological properties of nanoparticles, we use the circularity of shapes as a measure of how circular a shape is. Diameters of about 5 nm and a narrow size distribution of nanoparticles are observed. The obtained hematite nanoparticles exhibit superparamagnetic properties at room temperature (SPION). The sample does not display the Morin transition. The FC hysteresis loop at 5 K has shown an exchange bias effect. These results have been compared to those previously reported for α-Fe2O3/SiO2 nanosystems in the literature. These comparisons reveal that the sol-gel combustion method yields hematite nanoparticles with a higher magnetization and magnetic moment. These data indicate the existence of an additional factor that contributes to magnetization. We suggest that the increased magnetization is due to an increased number of the surface spins caused by the breaking of large numbers of exchange bonds between surface atoms (disordered structure). This leads to an increase in the magnetic moment per a hematite nanoparticle and an exchange bias effect. We have concluded that the combustion-related part of this synthesis method enhances surface effects, i.e. it promotes the breaking of bonds and surface disordered layers, which results in these magnetic properties. Such interesting structural and magnetic properties of hematite might be important in future practical applications and fundamental research.

  6. High-throughput tracking of single yeast cells in a microfluidic imaging matrix

    PubMed Central

    Falconnet, D.; Niemistö, A.; Taylor, R.J.; Ricicova, M.; Galitski, T.; Shmulevich, I.; Hansen, C. L.

    2011-01-01

    Summary Time-lapse live cell imaging is a powerful tool for studying signaling network dynamics and complexity and is uniquely suited to single cell studies of response dynamics, noise, and heritable differences. Although conventional imaging formats have the temporal and spatial resolution needed for such studies, they do not provide the simultaneous advantages of cell tracking, experimental throughput, and precise chemical control. This is particularly problematic for systems-level studies using non-adherent model organisms such as yeast, where the motion of cells complicates tracking and where large-scale analysis under a variety of genetic and chemical perturbations is desired. We present here a high-throughput microfluidic imaging system capable of tracking single cells over multiple generations in 128 simultaneous experiments with programmable and precise chemical control. High-resolution imaging and robust cell tracking is achieved through immobilization of yeast cells using a combination of mechanical clamping and polymerization in an agarose gel. The channel and valve architecture of our device allows for the formation of a matrix of 128 integrated agarose gel pads, each allowing for an independent imaging experiment with fully programmable medium exchange via diffusion. We demonstrate our system in the combinatorial and quantitative analysis of the yeast pheromone signaling response across 8 genotypes and 16 conditions, and show that lineage-dependent effects contribute to observed variability at stimulation conditions near the critical threshold for cellular decision making. PMID:21088765

  7. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel

    PubMed Central

    Chen, Meiwan; Yang, Zhiwen; Wu, Hongmei; Pan, Xin; Xie, Xiaobao; Wu, Chuanbin

    2011-01-01

    Purpose The purpose of the present study was to elucidate the antimicrobial activity and mechanism of silver nanoparticles incorporated into thermosensitive gel (S-T-Gel) on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Patients and methods This study investigated the growth, permeability, and morphology of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa cells in order to observe the action of S-T-Gel on the membrane structure of these three bacteria. The cell morphology of normal and treated bacteria cells was assessed by transmission electron microscopy (TEM), and the effects of S-T-Gel on genome DNA of bacterial cells were evaluated by agarose gel electrophoresis. Results S-T-Gel showed promising activity against Staphylococcus aureus and moderate activity against Escherichia coli and Pseudomonas aeruginosa. The observation with TEM suggested that S-T-Gel may destroy the structure of bacterial cell membranes in order to enter the bacterial cell. S-T-Gel then condensed DNA and combined and coagulated with the cytoplasm of the damaged bacteria, resulting in the leakage of the cytoplasmic component and the eventual death of these three bacteria. In addition, the analysis of agarose gel electrophoresis demonstrated that S-T-Gel could increase the decomposability of genome DNA. Conclusion These results about promising antimicrobial activity and mechanism of S-T-Gel may be useful for further research and development in in-vivo studies. PMID:22131833

  8. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  9. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  10. Sequence-specific nucleic acid mobility using a reversible block copolymer gel matrix and DNA amphiphiles (lipid-DNA) in capillary and microfluidic electrophoretic separations.

    PubMed

    Wagler, Patrick; Minero, Gabriel Antonio S; Tangen, Uwe; de Vries, Jan Willem; Prusty, Deepak; Kwak, Minseok; Herrmann, Andreas; McCaskill, John S

    2015-10-01

    Reversible noncovalent but sequence-dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite-modified oligonucleotides has enabled sequence-specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self-assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid-DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence-dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information-processing systems. PMID:26095642

  11. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures.

    PubMed

    Lamer, S; Jungblut, P R

    2001-03-10

    In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration. PMID:11270870

  12. Efficacy of transdermal magnesium ascorbyl phosphate delivery after ultrasound treatment with microbubbles in gel-type surrounding medium in mice.

    PubMed

    Liao, Ai-Ho; Lu, Ying-Jui; Hung, Chi-Ray; Yang, Meng-Yu

    2016-04-01

    Liquid microemulsions appropriate for topical application were obtained by increasing their viscosity through the addition of thickening agents. The present study first assessed the usefulness of ultrasound (US) plus US contrast agent, microbubbles (MBs), in agarose gel for enhancing transdermal drug delivery. The effect of US plus MBs in agarose gel on the penetration of the skin by magnesium ascorbyl phosphate (MAP) was explored both in vitro and in vivo. In the in vitro experiments, the stability of MBs was investigated by examining the penetration of MAP by the model drug, Evans blue, in two media: an agarose phantom and pig skin. The penetration depth in the agarose phantom and pig skin increased by 40% and 195%, respectively, when treated with US plus MBs in 0.1% agarose solution combined with MAP (UMB1), and by 48% and 206%, respectively, when treated with US plus MBs in 0.15% agarose solution and MAP (UMB2). The skin-whitening effects in C57BL/6J mice in the UMB1 and UMB2 groups over a 4-week experimental period were significantly increased by 63% and 70%, respectively, in the fourth week. The findings of this study suggest that the survival of MBs with US is affected by the viscosity of the surrounding medium, and that in mice, treatment with US plus MBs in a suitable agarose gel can increase skin permeability and enhance transdermal MAP delivery. PMID:26838887

  13. Sequential differentiation of mesenchymal stem cells in an agarose scaffold promotes a physis-like zonal alignment of chondrocytes.

    PubMed

    Schmitt, Jacqueline Frida; See, Kwee Hua; Hua, See Kwee; Yang, Zheng; Zheng, Yang; Hui, James Hoi Po; Po, James Hui Hoi; Lee, Eng Hin; Hin, Lee Eng

    2012-11-01

    Chondrocytes of the epiphyseal growth plate (physis) differentiate and mature in defined linear zones. The current study examines the differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs) into zonal physeal cartilage. hBMSCs were embedded in an agarose scaffold with only the surface of the scaffold in direct contact with the culture medium. The cells were differentiated using a two-step system involving the sequential addition of TGFβ followed by BMP2. The resultant samples displayed a heterogenic population of physis-like collagen type 2 positive cells including proliferating chondrocytes and mature chondrocytes showing hypertrophy, expression of early bone markers and matrix mineralization. Histological analysis revealed a physis-like linear zonal alignment of chondrocytes in varying stages of differentiation. The less mature chondrocytes were seen at the base of the construct while hypertrophic chondrocytes and matrix mineralization was observed closer to the surface of the construct. The described differentiation protocol using hBMSCs in an agarose scaffold can be used to study the factors and conditions that influence the differentiation, proliferation, maturation, and zonal alignment of physeal chondrocytes. PMID:22517299

  14. Beyond Agar: Gel Substrates with Improved Optical Clarity and Drug Efficiency and Reduced Autofluorescence for Microbial Growth Experiments

    PubMed Central

    Jaeger, Philipp A.; McElfresh, Cameron; Wong, Lily R.

    2015-01-01

    Agar, a seaweed extract, has been the standard support matrix for microbial experiments for over a century. Recent developments in high-throughput genetic screens have created a need to reevaluate the suitability of agar for use as colony support, as modern robotic printing systems now routinely spot thousands of colonies within the area of a single microtiter plate. Identifying optimal biophysical, biochemical, and biological properties of the gel support matrix in these extreme experimental conditions is instrumental to achieving the best possible reproducibility and sensitivity. Here we systematically evaluate a range of gelling agents by using the yeast Saccharomyces cerevisiae as a model microbe. We find that carrageenan and Phytagel have superior optical clarity and reduced autofluorescence, crucial for high-resolution imaging and fluorescent reporter screens. Nutrient choice and use of refined Noble agar or pure agarose reduce the effective dose of numerous selective drugs by >50%, potentially enabling large cost savings in genetic screens. Using thousands of mutant yeast strains to compare colony growth between substrates, we found no evidence of significant growth or nutrient biases between gel substrates, indicating that researchers could freely pick and choose the optimal gel for their respective application and experimental condition. PMID:26070672

  15. Identification of cisplatin-binding proteins using agarose conjugates of platinum compounds.

    PubMed

    Karasawa, Takatoshi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S

    2013-01-01

    Cisplatin is widely used as an antineoplastic drug, but its ototoxic and nephrotoxic side-effects, as well as the inherent or acquired resistance of some cancers to cisplatin, remain significant clinical problems. Cisplatin's selectivity in killing rapidly proliferating cancer cells is largely dependent on covalent binding to DNA via cisplatin's chloride sites that had been aquated. We hypothesized that cisplatin's toxicity in slowly proliferating or terminally differentiated cells is primarily due to drug-protein interactions, instead of drug-DNA binding. To identify proteins that bind to cisplatin, we synthesized two different platinum-agarose conjugates, one with two amino groups and another with two chlorides attached to platinum that are available for protein binding, and conducted pull-down assays using cochlear and kidney cells. Mass spectrometric analysis on protein bands after gel electrophoresis and Coomassie blue staining identified several proteins, including myosin IIA, glucose-regulated protein 94 (GRP94), heat shock protein 90 (HSP90), calreticulin, valosin containing protein (VCP), and ribosomal protein L5, as cisplatin-binding proteins. Future studies on the interaction of these proteins with cisplatin will elucidate whether these drug-protein interactions are involved in ototoxicity and nephrotoxicity, or contribute to tumor sensitivity or resistance to cisplatin treatment. PMID:23755301

  16. Identification of Cisplatin-Binding Proteins Using Agarose Conjugates of Platinum Compounds

    PubMed Central

    Karasawa, Takatoshi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.

    2013-01-01

    Cisplatin is widely used as an antineoplastic drug, but its ototoxic and nephrotoxic side-effects, as well as the inherent or acquired resistance of some cancers to cisplatin, remain significant clinical problems. Cisplatin's selectivity in killing rapidly proliferating cancer cells is largely dependent on covalent binding to DNA via cisplatin's chloride sites that had been aquated. We hypothesized that cisplatin's toxicity in slowly proliferating or terminally differentiated cells is primarily due to drug-protein interactions, instead of drug-DNA binding. To identify proteins that bind to cisplatin, we synthesized two different platinum-agarose conjugates, one with two amino groups and another with two chlorides attached to platinum that are available for protein binding, and conducted pull-down assays using cochlear and kidney cells. Mass spectrometric analysis on protein bands after gel electrophoresis and Coomassie blue staining identified several proteins, including myosin IIA, glucose-regulated protein 94 (GRP94), heat shock protein 90 (HSP90), calreticulin, valosin containing protein (VCP), and ribosomal protein L5, as cisplatin-binding proteins. Future studies on the interaction of these proteins with cisplatin will elucidate whether these drug-protein interactions are involved in ototoxicity and nephrotoxicity, or contribute to tumor sensitivity or resistance to cisplatin treatment. PMID:23755301

  17. DNA electrophoresis in tri-block copolymer gels--experiments and Brownian dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wei, Ling; van Winkle, David H.

    2015-03-01

    The mobility of double-stranded DNA ladders in Pluronics®P105, P123 and F127, was measured by two-dimensional gel electrophoresis. Pluronics®are triblock copolymers which form gel-like phases of micelles arranged with cubic order at room temperature. A 10 base pair and a 25 base pair DNA ladder were used as samples in gel electrophoresis. The monotonically decreasing mobility with increasing length observed in the agarose separations is not observed in separations in Pluronics®. Rather, a complicated dependence of mobility on DNA length is observed, where mobility vs. length increases for short DNA molecules then decreases for longer molecules. There is also a variation of mobility with length correlated to the micelle diameter. Brownian dynamics simulations of a discrete wormlike chain model were performed to simulate short DNA molecules migrating in free solution and in a face-centered cubic matrix. By incorporating hydrodynamic interactions, the trend of simulated length-dependent mobility qualitatively agrees with experimental measurements.

  18. Quantitative profiling of O-glycans by electrospray ionization- and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry after in-gel derivatization with isotope-coded 1-phenyl-3-methyl-5-pyrazolone.

    PubMed

    Sić, Siniša; Maier, Norbert M; Rizzi, Andreas M

    2016-09-01

    The potential and benefits of isotope-coded labeling in the context of MS-based glycan profiling are evaluated focusing on the analysis of O-glycans. For this purpose, a derivatization strategy using d0/d5-1-phenyl-3-methyl-5-pyrazolone (PMP) is employed, allowing O-glycan release and derivatization to be achieved in one single step. The paper demonstrates that this release and derivatization reaction can be carried out also in-gel with only marginal loss in sensitivity compared to in-solution derivatization. Such an effective in-gel reaction allows one to extend this release/labeling method also to glycoprotein/glycoform samples pre-separated by gel-electrophoresis without the need of extracting the proteins/digested peptides from the gel. With highly O-glycosylated proteins (e.g. mucins) LODs in the range of 0.4 μg glycoprotein (100 fmol) loaded onto the electrophoresis gel can be attained, with minor glycosylated proteins (like IgAs, FVII, FIX) the LODs were in the range of 80-100 μg (250 pmol-1.5 nmol) glycoprotein loaded onto the gel. As second aspect, the potential of isotope coded labeling as internal standardization strategy for the reliable determination of quantitative glycan profiles via MALDI-MS is investigated. Towards this goal, a number of established and emerging MALDI matrices were tested for PMP-glycan quantitation, and their performance is compared with that of ESI-based measurements. The crystalline matrix 2,6-dihydroxyacetophenone (DHAP) and the ionic liquid matrix N,N-diisopropyl-ethyl-ammonium 2,4,6-trihydroxyacetophenone (DIEA-THAP) showed potential for MALDI-based quantitation of PMP-labeled O-glycans. We also provide a comprehensive overview on the performance of MS-based glycan quantitation approaches by comparing sensitivity, LOD, accuracy and repeatability data obtained with RP-HPLC-ESI-MS, stand-alone nano-ESI-MS with a spray-nozzle chip, and MALDI-MS. Finally, the suitability of the isotope-coded PMP labeling strategy for O

  19. Comparison of electrical conductivities of various brain phantom gels: Developing a ‘Brain Gel Model’

    PubMed Central

    Kandadai, Madhuvanthi A.; Raymond, Jason L.; Shaw, George J.

    2012-01-01

    The use of conducting gels to mimic brain and other tissues is of increasing interest in the development of new medical devices. Currently, there are few such models that can be utilized at physiologic temperatures. In this work, the conductivities of agar, agarose and gelatin gels were manipulated by varying NaCl concentration from 0–1 mg/ml. The AC conductivity was measured at room and physiological temperatures (37°C) in the 100–500 Hz frequency range. Conductivity (σ) was nearly independent of frequency but increased linearly with NaCl concentration and was higher at physiological temperatures in these gels. A formula for predicting conductivity as a function of NaCl concentration was derived for each gel type. The overall goal is to develop a ‘brain gel model’, for studying low frequency electrical properties of the brain and other tissues at physiological temperatures. PMID:23139442

  20. Comparison of electrical conductivities of various brain phantom gels: Developing a 'Brain Gel Model'

    PubMed

    Kandadai, Madhuvanthi A; Raymond, Jason L; Shaw, George J

    2012-12-01

    The use of conducting gels to mimic brain and other tissues is of increasing interest in the development of new medical devices. Currently, there are few such models that can be utilized at physiologic temperatures. In this work, the conductivities of agar, agarose and gelatin gels were manipulated by varying NaCl concentration from 0-1 mg/ml. The AC conductivity was measured at room and physiological temperatures (37°C) in the 100-500 Hz frequency range. Conductivity (σ) was nearly independent of frequency but increased linearly with NaCl concentration and was higher at physiological temperatures in these gels. A formula for predicting conductivity as a function of NaCl concentration was derived for each gel type. The overall goal is to develop a 'brain gel model', for studying low frequency electrical properties of the brain and other tissues at physiological temperatures. PMID:23139442

  1. Study of the high-coercivity material based on ɛ-Fe2O3 nanoparticles in the silica gel matrix

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Yakushkin, S. S.; Dubrovskii, A. A.; Bukhtiyarova, G. A.; Shaikhutdinov, K. A.; Martyanov, O. N.

    2016-04-01

    We report the results of investigations of ɛ-Fe2O3 magnetic nanoparticles obtained by incipient wetness impregnation of silica gel. It was established that the obtained samples with an iron content of 12‒16% mass % containing ɛ-Fe2O3 nanoparticles with an average size of 10 nm on the silica gel surface exhibit a room-temperature coercivity of about 10 kOe. Along with fabrication simplicity, this fact makes the prepared samples promising for application as a magnetically hard material.

  2. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  3. Characterization of agarose as an encapsulation medium for particulate specimens for transmission electron microscopy.

    PubMed

    Wood, J I; Klomparens, K L

    1993-07-01

    Agarose, agar, and gelatin were initially compared as encapsulation media for 3 structurally diverse particulate specimens: bacteria, yeast, and mitochondria. Agarose proved superior to both gelatin and agar for ease of handling and overall image quality (minimum background). All sample types exhibited high quality fixation and structural detail with no heat damage from the agarose medium. Based on this finding, we further characterized agarose encapsulation as affected by post-fixation, en bloc staining and resin type. Osmium tetroxide post-fixation, followed by en bloc uranyl acetate staining, could be performed without an increase in the electron density of the encapsulation medium. Agarose proved successful as an encapsulation medium regardless of the resin type or preparation protocol, thus providing flexibility in experimental design and excellent results over a range of variables. PMID:8358076

  4. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  5. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  6. Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate.

    PubMed

    Ingavle, Ganesh C; Dormer, Nathan H; Gehrke, Stevin H; Detamore, Michael S

    2012-01-01

    We recently introduced agarose-poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels to cartilage tissue engineering that were able to encapsulate viable cells and provide a significant improvement in mechanical performance relative to its two constituent hydrogels. The goal of the current study was to develop a novel synthesis protocol to incorporate methacrylated chondroitin sulfate (MCS) into the IPN design hypothesized to improve cell viability and biosynthesis. The IPN was formed by encapsulating porcine chondrocytes in agarose, soaking the construct in a solution of 1:10 MCS:PEGDA, which was then photopolymerized to form a copolymer network as the second network. The IPN with incorporated CS (CS-IPN) (~0.5 wt%) resulted in a 4- to 5-fold increase in the compressive elastic modulus relative to either the PEGDA or agarose gels. After 6 weeks of in vitro culture, more than 50% of the encapsulated chondrocytes remained viable within the CS-modified IPN, in contrast to 35% viability observed in the unmodified. At week 6, the CS-IPN had significantly higher normalized GAG contents (347 ± 34 μg/μg) than unmodified IPNs (158 ± 27 μg/μg, P < 0.05). Overall, the approach of incorporating biopolymers such as CS from native tissue may provide favorable micro-environment and beneficial signals to cells to enhance their overall performance in IPNs. PMID:22116661

  7. Global proteomic analysis of plasma from mice infected with Plasmodium berghei ANKA using two dimensional gel electrophoresis and matrix assisted laser desorption ionization-time of flight mass spectrometry

    PubMed Central

    2011-01-01

    Background A global proteomic strategy was used to identify proteins, which are differentially expressed in the murine model of severe malaria in the hope of facilitating future development of novel diagnostic, disease monitoring and treatment strategies. Methods Mice (4-week-old CD1 male mice) were infected with Plasmodium berghei ANKA strain, and infection allowed to establish until a parasitaemia of 30% was attained. Total plasma and albumin depleted plasma samples from infected and control (non-infected) mice were separated by two-dimensional gel electrophoresis (2-DE). After staining, the gels were imaged and differential protein expression patterns were interrogated using image analysis software. Spots of interest were then digested using trypsin and the proteins identified using matrix-assisted laser desorption and ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and peptide mass fingerprinting software. Results Master gels of control and infected mice, and the corresponding albumin depleted fractions exhibited distinctly different 2D patterns comparing control and infected plasma, respectively. A wide range of proteins demonstrated altered expression including; acute inflammatory proteins, transporters, binding proteins, protease inhibitors, enzymes, cytokines, hormones, and channel/receptor-derived proteins. Conclusions Malaria-infection in mice results in a wide perturbation of the host serum proteome involving a range of proteins and functions. Of particular interest is the increased secretion of anti-inflammatory and anti apoptotic proteins. PMID:21791037

  8. Achondrogenesis type IB (Fraccaro): study of collagen in the tissue and in chondrocytes cultured in agarose.

    PubMed

    Freisinger, P; Stanescu, V; Jacob, B; Cohen-Solal, L; Maroteaux, P; Bonaventure, J

    1994-02-15

    A lethal chondrodysplasia characterized by extreme micromelia was diagnosed by ultrasound examination in two sibs whose nonconsanguineous parents were healthy. Radiographic and histopathologic data indicated that the two foetuses (18 and 21 weeks old) had achondrogenesis type IB (Fraccaro). Quantitation of total collagen extractable from dried cartilage samples demonstrated a 50% decrease when compared to an age-related control. This decrease was essentially related to type II collagen. Nevertheless, the alpha chains and the CB peptides of type II collagen had a normal electrophoretic mobility. A significant amount of collagen type I was also detected. The electrophoretic pattern of collagens type IX and XI did not differ significantly from control sample. The extracellular matrix elaborated by patient chondrocytes cultured in agarose for 10-12 days, contained less collagen type II than normal cells. Labelling with 14C-proline of cultured cells showed the presence of procollagen and type II collagen chains with a normal electrophoretic mobility, but an alpha 2(I) chain was detectable in the patient material, indicating the presence of collagen type I which supported the tissue findings. The significance of the type II collagen reduction in the patient's cartilage is unclear but it is unlikely to be the primary defect in achondrogenesis type I. PMID:8160740

  9. Encapsulation of Polymer Colloids in a Sol-Gel Matrix. Direct-Writing of Coassembling Organic-Inorganic Hybrid Photonic Crystals.

    PubMed

    Mikosch, Annabel; Kuehne, Alexander J C

    2016-03-22

    The spontaneous self-assembly of polymer colloids into ordered arrangements provides a facile strategy for the creation of photonic crystals. However, these structures often suffer from defects and insufficient cohesion, which result in flaking and delamination from the substrate. A coassembly process has been developed for convective assembly, resulting in large-area encapsulated colloidal crystals. However, to generate patterns or discrete deposits in designated places, convective assembly is not suitable. Here we experimentally develop conditions for direct-writing of coassembling monodisperse dye-doped polystyrene particles with a sol-gel precursor to form solid encapsulated photonic crystals. In a simple procedure the colloids are formulated in a sol-gel precursor solution, drop-cast on a flat substrate, and dried. We here establish the optimal parameters to form reproducible highly ordered photonic crystals with good optical performance. The obtained photonic crystals interact with light in the visible spectrum with a narrow optical stop-gap. PMID:26931201

  10. Preparation and characterization of agarose-nickel nanoporous composite particles customized for liquid expanded bed adsorption.

    PubMed

    Asghari, F; Jahanshahi, M; Ghoreyshi, A A

    2012-06-15

    Agarose-nickel nanoporous composite matrices with a series of densities, named Ag-Ni, were prepared herein for expanded bed adsorption of nanobioproduct/bioproduct by a water-in-oil emulsification method. The optical microscope (OM), scanning electronic microscope (SEM) and particle size analyzer (PSA) were utilized in order to characterize the structure and morphology of the agarose-nickel composite. The results indicated that the matrices prepared had a spherical appearance, appropriate wet density of 1.73-2.56 g/ml, water content of 32.2-58.5% and porosity of 79.4-96.37% and pore size of about 100-150 nm. All the Ag-Ni beads follow logarithmic normal size distribution with the range of 60-230 μm and average diameter of 133.68-148.4 μm. One of the useful properties of the Ag-Ni particles is the high wet density up to 2.56 g/ml, which shows a potential for the operation in an expanded bed at high flow rate. The impact of nickel powder addition on the physical and hydrodynamic properties was also investigated. In addition, the fluidization behavior of the Ag-Ni particles under various conditions was characterized by the measurement of bed expansion and axial dispersion coefficients for the liquid phase when operated in a standard fluidized bed contactor. It was observed that the expansion factors were decreased with the increasing matrix density under the same velocity. The bed expansion and fluid velocity were correlated with Richardson-Zaki equation for all particles prepared and the correlation parameters (the terminal settling velocity U(t) and expansion index n) were investigated. Using measurements of residence time distributions, hydrodynamic properties in the expanded beds were investigated and were compared with reported matrices in other literatures. In addition, the impact of the flow velocity, bed expansion degree and density of adsorbent on hydrodynamic properties in the expanded beds were investigated. The results indicated that the expansion factor

  11. Amphiphilic agarose-based adsorbents for chromatography. Comparative study of adsorption capacities and desorption efficiencies.

    PubMed

    Oscarsson, S; Angulo-Tatis, D; Chaga, G; Porath, J

    1995-01-01

    A number of hydrophobic derivatives attached to cross-linked agarose were studied as protein adsorbents. Differences in the adsorption and desorption behaviour were determined as functions of type and concentration of selected salts. Whereas octyl- and phenyl-Sepharose adsorb serum albumin preferentially, pyridyl-S-agarose shows a much stronger preferential affinity for IgG in the presence of high concentrations of lyotropic salts, such as sulphates. In contrast to pyridyl-S-agarose, a large portion of proteins remained fixed to octyl- and phenyl-Sepharose after extensive washing with 1 M NaOH. PMID:7881534

  12. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  13. Non-monotonic mobility vs. length dependence observed in electrophoretic separation of 25 bp DNA ladder in Pluronic gels.

    NASA Astrophysics Data System (ADS)

    You, Seungyong; van Winkle, David

    2009-03-01

    We electrophoresed a double-stranded DNA ladder first in an agarose gel, then in gels of Pluronic F-127 at room temperature. The DNA ladder consisted of 19 discrete fragments ranging in length from 25 to 450 bp at 25 bp increments plus 500 bp. The DNA fragments were first separated in agarose gel and stacked normally with 25 bp having the highest mobility. A single lane of the separated DNA ladder in the agarose gel was inserted at the edge of a Pluronic gel slab. The DNA was electrophoresed from the agarose into the Pluronic gels perpendicular to the original separation axis. Mobilities of DNA fragments increased from 25 bp to 175 bp and then decreased from 175 bp to 500 bp. The 25 bp and 500 bp bands of the ladder had approximately the same mobility in several different Pluronic gel concentrations. Both were slower than most bands in between. The highest mobility fragments with length of 175 bp have 59.5 nm contour length which is about 3.5 times the diameter of a micelle (17 nm). This result suggests a crossover from chromatographic separation to electrophoretic separation for these short DNAs. This research is supported by the state of Florida (Martech) and Research Corporation.

  14. Correlation between ferrous ammonium sulfate concentration, sensitivity and stability of Fricke gel dosimeters exposed to clinical X-ray beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Brai, Maria; Gagliardo, Cesare; Gallo, Salvatore; Longo, Anna; Tranchina, Luigi; Abbate, Boris; Collura, Giorgio; Gallias, Kostantinos; Caputo, Vittorio; Lo Casto, Antonio; Midiri, Massimo; D'Errico, Francesco

    2014-09-01

    This work describes the characterization of various Fricke-Agarose-Xylenol gels (FXG) dosimeters using NMR relaxometry and MRI analysis. Using X-rays from a clinical linear accelerator (LINAC), the gels were irradiated in the dose range from 0 Gy to 20 Gy. The photon sensitivity of the FXGs was measured in terms of NMR relaxation rates; its dependence on radiation dose was determined as a function of ferrous ammonium sulfate contents (from 0.5 mM to 5 mM). Furthermore, the stability of the NMR signal was monitored over several days after irradiation. These measurements were aided by Magnetic Resonance Imaging (MRI) scans which allowed three-dimensional (3D) dose mapping. In order to maximize the MRI response, a systematic study was performed to optimize acquisition sequences and parameters. In particular, we analyzed the dependence of MRI signal on the repetition time (TR) and on the inversion time (TI) using inversion recovery sequences. The results are reported and discussed from the point of view of the dosimeter use in clinical radiotherapy. This work highlights that the optimization of additive content inside gel matrix is fundamental for optimizing photon sensitivity of these detectors.

  15. Effects of agarose mold compliance and surface roughness on self-assembled meniscus-shaped constructs

    PubMed Central

    Gunja, Najmuddin J.; Huey, Dan J.; James, Regis A.; Athanasiou, Kyriacos A.

    2009-01-01

    The meniscus is a fibrocartilaginous tissue that is critically important to the loading patterns within the knee joint. If the meniscus structure is compromised, there is little chance of healing due to limited vascularity in the inner portions of the tissue. Several tissue engineering techniques to mimic the complex geometry of the meniscus have been employed. Of these, a self-assembly, scaffoldless approach employing agarose molds avoids drawbacks associated with scaffold use while still allowing formation of robust tissue. In this experiment two factors were examined, agarose percentage and mold surface roughness, in an effort to consistently obtain constructs with adequate geometric properties. Co-cultures of ACs and MCs (50:50 ratio) were cultured in smooth or rough molds composed of 1% or 2% agarose for 4 wks. Morphological results showed that constructs formed in 1% agarose molds, particularly smooth molds, were able to maintain their shape over the 4 wk culture period. Significant increases were observed for the collagen II to collagen I ratio, total collagen, GAG, and tensile and compressive properties in smooth wells. Cell number per construct was higher in the rough wells. Overall, it was observed that the topology of an agarose surface may be able to affect the phenotypic properties of cells that are on that surface, with smooth surfaces supporting a more chondrocytic phenotype. In addition, wells made from 1% agarose were able to prevent construct buckling potentially due to their higher compliance. PMID:19658151

  16. The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies.

    PubMed

    Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani

    2016-02-01

    In recent studies, we microencapsulated pancreatic β-cells using sodium alginate (SA) and poly-L-ornithine (PLO) and the bile acid, ursodeoxycholic acid (UDCA), and tested the morphology and cell viability post-microencapsulation. Cell viability was low probably due to limited strength of the microcapsules. This study aimed to assess a β-cell delivery system which consists of UDCA-based microcapsules incorporated with water-soluble gel matrix. The polyelectrolytes, water-soluble gel (WSG), polystyrenic sulphate (PSS), PLO and polyallylamine (PAA) at ratios 4:1:1:2.5 with or without 4% UDCA, were incorporated into our microcapsules, and cell viability, metabolic profile, cell functionality, insulin production, levels of inflammation, microcapsule morphology, cellular distribution, UDCA partitioning, biocompatibility, thermal and chemical stabilities and the microencapsulation efficiency were examined. The incorporation of UDCA with PSS, PAA and WSG enhanced cell viability per microcapsule (p < 0.05), cellular metabolic profile (p < 0.01) and insulin production (p < 0.01); reduced the inflammatory release TNF-α (p < 0.01), INF-gamma (p < 0.01) and interleukin-6 (IL-6) (p < 0.01); and ceased the production of IL-1β. UDCA, PSS, PAA and WSG addition did not change the microencapsulation efficiency and resulted in biocompatible microcapsules. Our designed microcapsules showed good morphology and desirable insulin production, cell functionality and reduced inflammatory profile suggesting potential applications in diabetes. PMID:26671765

  17. Stable photoluminescence of zinc oxide quantum dots in silica nanoparticles matrix prepared by the combined sol{endash}gel and spray drying method

    SciTech Connect

    Mikrajuddin; Iskandar, F.; Okuyama, K.; Shi, F. G.

    2001-06-01

    A sol{endash}gel method was employed to produce a zinc oxide (ZnO) colloid consisting of ZnO nanocrystalline particles with an average diameter of {similar_to}3 nm, and subsequently mixed with a silica (SiO{sub 2}) colloid. The mixture was finally spray dried to form a powder nanocomposite. It was found that the green photoluminescence (PL) exhibited by the composite was very stable: the intensity, position, and shape do not change even after being aged over 30 days. Thus, the ZnO/SiO{sub 2} nanocomposite has a much improved PL stability over ZnO colloids, which is often found to undergo a significant redshift even after aging over a few days. Our results are expected to have significant technological implications. {copyright} 2001 American Institute of Physics.

  18. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). PMID:27251892

  19. Polyelectrolyte gels

    SciTech Connect

    Segalman, D.J.; Witkowski, W.R.

    1995-06-01

    Polyelectrolyte (PE) gels are swollen polymer/solvent networks that undergo a reversible volume collapse/expansion through various types of stimulation. Applications that could exploit this large deformation and solvent expulsion/absorption characteristics include robotic {open_quotes}fingers{close_quotes} and drug delivery systems. The goals of the research were to first explore the feasibility of using the PE gels as {open_quotes}smart materials{close_quotes} - materials whose response can be controlled by an external stimulus through a feedback mechanism. Then develop a predictive capability to simulate the dynamic behavior of these gels. This involved experimentally characterizing the response of well-characterized gels to an applied electric field and other stimuli to develop an understanding of the underlying mechanisms which cause the volume collapse. Lastly, the numerical analysis tool was used to simulate various potential engineering devices based on PE gels. This report discusses the pursuit of those goals through experimental and computational means.

  20. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses. PMID:20005247

  1. Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles dispersed in a SiO{sub 2} matrix synthesized by sol-gel processing

    SciTech Connect

    Pozo Lopez, G.; Condo, A.M.; Urreta, S.E.; Silvetti, S.P.; Aguirre, M. del C.

    2012-12-15

    (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4})x/(SiO{sub 2})(100 - x) (x = 5, 20 and 50 wt.%) nanocomposites are synthesized by a sol-gel method using tetraethylorthosilicate (TEOS) and metallic nitrates as precursors, and by further annealing the powders for 1 h at 1273 K. X-ray diffraction (XRD), transmission electron microscopy (TEM), room temperature vibrating sample magnetometry (VSM) and SQUID measurements are employed for structural, morphological and magnetic sample characterization. For all the concentrations analyzed, the powder nanocomposites actually consist of spinel NiZn ferrite nanoparticles, dispersed in an amorphous silica matrix. TEM studies reveal different particle size distributions and particle morphologies for the three ferrite contents. The 20 wt.%-NiZn ferrite samples consist of nearly spherical nanoparticles, of about 8 nm, mainly superparamagnetic, well-dispersed in the amorphous silica matrix, while the 5 wt.%-NiZn ferrite samples exhibit a bimodal particle size distribution (5 and 30 nm) of single-domain nanoparticles embedded in the silica. In the 50 wt.%-NiZn ferrite samples, two particle families are observed: small round superparamagnetic nanoparticles of about 8 nm embedded in the amorphous silica matrix and large, non-spherical, ferrimagnetic ones, forming agglomerates outside the matrix. In all the synthesized samples, thickness fringes are observed inside some of the ferrite nanoparticles in dark field images. This contrast is explained using the theory of electron diffraction in a weak beam dark field (WBDF) condition and considering spherical ferrite nanoparticles. A large range of tailored magnetic properties varying the fraction, dispersion and mean size of the ferrimagnetic NiZn ferrite particles is obtained. Room temperature saturation magnetization values are found in the range 3.0-30.4 Am{sup 2}/kg for the different concentration samples. Coercivity values, between 1.9 and 7.6 mT, are more than 50% higher than those measured

  2. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  3. Identification and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis

    PubMed Central

    Hu, Shan; Qiu, Ning; Liu, Yaping; Zhao, Hongyan; Gao, Dan; Song, Rui; Ma, Meihu

    2016-01-01

    A proteomic study of egg white proteins from 2 major poultry species, namely quail (Coturnix coturnix) and duck (Anas platyrhynchos), was performed with comparison to those of chicken (Gallus gallus) through 2-dimensional polyacrylamide gel electrophoresis (2-DE) analysis. By using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), 29 protein spots representing 10 different kinds of proteins as well as 17 protein spots designating 9 proteins were successfully identified in quail and duck egg white, respectively. This report suggested a closer relationship between quail and chicken egg white proteome patterns, whereas the duck egg white protein distribution on the 2-DE map was more distinct. In duck egg white, some well-known major proteins, such as ovomucoid, clusterin, extracellular fatty acid-binding protein precursor (ex-FABP), and prostaglandin D2 synthase (PG D2 synthase), were not detected, while two major protein spots identified as “deleted in malignant brain tumors 1” protein (DMBT1) and vitellogenin-2 were found specific to duck in the corresponding range on the 2-DE gel map. These interspecies diversities may be associated with the egg white protein functions in cell defense or regulating/supporting the embryonic development to adapt to the inhabiting environment or reproduction demand during long-term evolution. The findings of this work will give insight into the advantages involved in the application on egg white proteins from various egg sources, which may present novel beneficial properties in the food industry or related to human health. PMID:26957635

  4. Identification and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis.

    PubMed

    Hu, S; Qiu, N; Liu, Y; Zhao, H; Gao, D; Song, R; Ma, M

    2016-05-01

    A proteomic study of egg white proteins from 2 major poultry species, namely quail (Coturnix coturnix) and duck (Anas platyrhynchos), was performed with comparison to those of chicken (Gallus gallus) through 2-dimensional polyacrylamide gel electrophoresis (2-DE) analysis. By using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), 29 protein spots representing 10 different kinds of proteins as well as 17 protein spots designating 9 proteins were successfully identified in quail and duck egg white, respectively. This report suggested a closer relationship between quail and chicken egg white proteome patterns, whereas the duck egg white protein distribution on the 2-DE map was more distinct. In duck egg white, some well-known major proteins, such as ovomucoid, clusterin, extracellular fatty acid-binding protein precursor (ex-FABP), and prostaglandin D2 synthase (PG D2 synthase), were not detected, while two major protein spots identified as "deleted in malignant brain tumors 1" protein (DMBT1) and vitellogenin-2 were found specific to duck in the corresponding range on the 2-DE gel map. These interspecies diversities may be associated with the egg white protein functions in cell defense or regulating/supporting the embryonic development to adapt to the inhabiting environment or reproduction demand during long-term evolution. The findings of this work will give insight into the advantages involved in the application on egg white proteins from various egg sources, which may present novel beneficial properties in the food industry or related to human health. PMID:26957635

  5. Characterisation of intact recombinant human erythropoietins applied in doping by means of planar gel electrophoretic techniques and matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometry.

    PubMed

    Stübiger, Gerald; Marchetti, Martina; Nagano, Marietta; Reichel, Christian; Gmeiner, Günter; Allmaier, Günter

    2005-01-01

    Our experiments show that it is possible to detect different types of recombinant human erythropoietins (rhEPOs), EPO-alpha, EPO-beta and novel erythropoesis stimulating protein (NESP), based on exact molecular weight (MW) determination by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) applying a high-resolution time-of-flight (TOF) mass analyser in the linear mode. Detection limits for the highly purified, intact glycoproteins were achievable in the low fmol range (25-50 fmol) using a sample preparation method applying a hydrophobic sample support (DropStop) as MALDI target surface. These results are very promising for the development of highly sensitive detection methods for a direct identification of rhEPO after enrichment from human body fluids. During our investigation we were able to differentiate EPO-alpha, EPO-beta and NESP based on distinct molecular substructures at the protein level by specific enzymatic reactions. MW determination of the intact molecules by high resolving one-dimensional sodium dodecyl sulfate /polyacrylamide gel electrophoresis (1D SDS-PAGE) and isoform separation by planar isoelectric focusing (IEF) was compared with MALDI-MS data. Migration differences between the rhEPOs were observed from gel electrophoresis, whereby MWs of 38 kDa in the case of EPO-alpha/beta and 49 kDa for NESP could be estimated. In contrast, an exact MW determination by MALDI-MS based on internal calibration revealed average MWs of 29.8 +/- 0.3 kDa for EPO-alpha/beta and 36.8 +/- 0.4 kDa for NESP. IEF separation of the intact rhEPOs revealed the presence of four to eight distinct isoforms in EPO-alpha and EPO-beta, while four isoforms, which appeared in the more acidic area of the gels, were detected by immunostaining in NESP. A direct detection of the different N- or O-glycoform pattern from rhEPOs using MALDI-MS was possible by de-sialylation of the glycan structures and after de-N-glycosylation of the intact molecules. Thereby, the

  6. Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate as precursor

    PubMed Central

    2011-01-01

    Effects of calcination temperatures varying from 400 to 1000°C on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in the sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate (THEOS) as water-soluble silica precursor have been investigated. Studies carried out using XRD, FT-IR, TEM, STA (TG-DTG-DTA) and VSM techniques. Results indicated that magnetic properties of samples such as superparamagnetism and ferromagnetism showed great dependence on the variation of the crystallinity and particle size caused by the calcination temperature. The crystallization, saturation magnetization Ms and remenant magnetization Mr increased as the calcination temperature increased. But the variation of coercivity Hc was not in accordance with that of Ms and Mr, indicating that Hc is not determined only by the crystallinity and size of CoFe2O4 nanoparticles. TEM images showed spherical nanoparticles dispersed in the silica network with sizes of 10-30 nm. Results showed that the well-established silica network provided nucleation locations for CoFe2O4 nanoparticles to confinement the coarsening and aggregation of nanoparticles. THEOS as silica matrix network provides an ideal nucleation environment to disperse CoFe2O4 nanoparticles and thus to confine them to aggregate and coarsen. By using THEOS as water-soluble silica precursor over the currently used TEOS and TMOS, the organic solvents are not needed owing to the complete solubility of THEOS in water. Synthesized nanocomposites with adjustable particle sizes and controllable magnetic properties make the applicability of Co-ferrite even more versatile. PMID:21486494

  7. Analysis of steric partition behavior of molecules in membranes using statistical physics. Application to gel chromatography and electrophoresis.

    PubMed Central

    Schnitzer, J E

    1988-01-01

    The principles of statistical physics are used to formulate general expressions for the steric partition behavior of molecules in both random and ordered membrane structures that may be applied to any shape of the solute and/or the volume-excluding element of the membrane. These expressions fully define partitioning in terms of the volume excluded to point molecules and to finite-sized molecules. The mean effective exclusion volume for a molecule is calculated as a function of a global interaction energy, which varies with position, conformation, and orientation of the molecule. It allows consideration of electrostatic and other nonsteric factors. To test the model, specific partition functions are derived for several simple geometries describing the membrane and solute. Frequently, the derived expressions agree with past analyses; however, a new expression describing partitioning within an random network of fibers is derived. It agrees with past results only in the limit of low exclusion volumes. With greater volume exclusions, past results greatly overestimate the partition function. It is applied to gel electrophoresis and chromatography and survives testing with available experimental data. Unlike past analyses, it predicts nonlinear Ferguson plots for agarose gel electrophoresis. In addition, an analytical expression predicting the minimum radius of a sphere excluded from a random fiber matrix is derived, tested, and found to agree with experimental data. PMID:3148335

  8. Fabricating neuromast-inspired gel structures for membrane-based hair cell sensing

    NASA Astrophysics Data System (ADS)

    Tamaddoni, Nima J.; Stephens, Christopher P.; Sarles, S. A.

    2012-04-01

    Recent research has shown that a new class of mechanical sensor, assembled from biomolecules and which features an artificial cell membrane as the sensing element, can be used to mimic basic hair cell mechanotransduction in vertebrates. The work presented in this paper is motivated by the need to increase sensor performance and stability by refining the methods used to fabricate and connect lipid-encapsulated hydrogels. Inspired by superficial neuromasts found on fish, three hydrogel materials are compared for their ability to be readily shaped into neuromast-inspired geometries and enable lipid bilayer formation using self-assembly at an oil/water interface. Agarose, polyethylene glycol (PEG, 6kg/mole), and hydroxyethyl methacrylate (HEMA) gel materials are compared. The results of this initial study determined that UV-curable gel materials such as PEG and HEMA enable more accurate shaping of the gel-needed for developing a sensor that uses a gel material both for mechanical support and membrane formation-compared to agarose. However, the lower hydrophobicity of agarose and PEG materials provide a more fluid, water-like environment for membrane formation-unlike HEMA. In working toward a neuromast-inspired design, a final experiment demonstrates that a bilayer can also be formed directly between two lipid-covered PEG surfaces. These initial results suggest that candidate gel materials with a low hydrophobicity, high fluidity, and a low modulus can be used to provide membrane support.

  9. Effects of calcium salts of acidic monomers on mineral induction of phosphoprotein immobilized to agarose beads.

    PubMed

    Ito, Shuichi; Iijima, Masahiro; Motai, Fumiko; Mizoguchi, Itaru; Saito, Takashi

    2012-10-01

    The aim of this study is to evaluate the mineralizing potential of acidic monomers and their calcium salts for mineralization, using an in vitro mineral induction model. Phosvitin (PV) was used as a model phosphoprotein in this study. PV was immobilized on agarose beads with divinyl sulfone. Five aliquots of agarose-immobilized PV, acidic monomers, and their calcium salts were incubated in mineralizing solution at various concentrations. The PV beads and acidic monomers were incubated at 37°C. Samples were taken at several time points during the incubation. Then, the agarose beads were analyzed for bound calcium by atomic absorption spectrometry. The mineral formed on the agarose beads was identified as an apatite by microarea X-ray diffraction. Additionally, the specimens were observed using scanning electron microscopy (SEM). Mineral induction time decreased with increasing solution saturation. 4-METCa salt [calcium salt of 4-methacryloxyethyl trimellitate (CMET)] significantly reduced the mineral induction time. Using these data, the interfacial tension for mineral induction of PV and CMET was determined to be 90.1 and 92.7 ergs/cm(2), respectively. The mineral induced in each specimen after incubation for 24 h was identified by its X-ray diffraction pattern as apatite. SEM observation showed that lath-shaped crystals were formed on the surfaces of the CMET. We conclude that CMET could play a role in dentin remineralization. PMID:22623052

  10. Agarose-Based Substrate Modification Technique for Chemical and Physical Guiding of Neurons In Vitro.

    PubMed

    Krumpholz, Katharina; Rogal, Julia; El Hasni, Akram; Schnakenberg, Uwe; Bräunig, Peter; Bui-Göbbels, Katrin

    2015-08-26

    A new low cost and highly reproducible technique is presented that provides patterned cell culture substrates. These allow for selective positioning of cells and a chemically and mechanically directed guiding of their extensions. The patterned substrates consist of structured agarose hydrogels molded from reusable silicon micro templates. These templates consist of pins arranged equidistantly in squares, connected by bars, which mold corresponding wells and channels in the nonadhesive agarose hydrogel. Subsequent slice production with a standard vibratome, comprising the described template pattern, completes substrate production. Invertebrate neurons of locusts and pond snails are used for this application as they offer the advantage over vertebrate cells as being very large and suitable for cultivation in low cell density. Their neurons adhere to and grow only on the adhesive areas not covered by the agarose. Agarose slices of 50 μm thickness placed on glass, polystyrene, or MEA surfaces position and immobilize the neurons in the wells, and the channels guide their neurite outgrowth toward neighboring wells. In addition to the application with invertebrate neurons, the technique may also provide the potential for the application of a wide range of cell types. Long-term objective is the achievement of isolated low-density neuronal networks on MEAs or different culture substrates for various network analysis applications. PMID:26237337

  11. Gel electrophoretic restriction fragment length polymorphism analysis of DNA derived from individual nematodes, using the PhastSystem.

    PubMed

    Triga, D; Pamjav, H; Vellai, T; Fodor, A; Buzás, Z

    1999-06-01

    The DNA sequences constituting the internal transcribed spacer region, located between 18S and 26S rDNA genes within the rRNA operon, derived from single nematodes of two genera (Steinernema and Heterorhabditis) were amplified by polymerase chain reaction (PCR) and subjected to digestion by four restriction enzymes. The digests were analyzed by restriction fragment length polymorphism (RFLP) gel electrophoresis on the PhastSystem, using 7.5%T, 5%C(Bis) polyacrylamide. The downscaling from conventional agarose to PhastSystem gels permitted the analysis to be done on individual nematodes, rather than on mixed samples with average properties. The analysis time was reduced so as to allow for the electrophoretic separation on 200 samples/workday. The resulting patterns of DNA fragments differed from those obtained by agarose gel electrophoresis under conventional conditions by an increased number of detected fragments. The PhastSystem gel analysis provides the basis for taxonomical revisions. PMID:10380768

  12. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  13. Agarose Gel Electrophoresis System in the Classroom: Detection of DNA Strand Breaks through the Alteration of Plasmid Topology

    ERIC Educational Resources Information Center

    De Mattos, J. C. P.; Dantas, F. J. S.; Caldeira-de-Araujo, A.; Moraes, M. O.

    2004-01-01

    Good quality scientific teaching depends on the ability of researchers to translate laboratory experiments into high school and undergraduate classes, bridging the advanced and basic science with common knowledge. A fast-growing field in biomedical sciences is oxidative stress, which has been associated to several diseases, including cancer and…

  14. Extracellular Production of a Novel Endo-β-Agarase AgaA from Pseudomonas vesicularis MA103 that Cleaves Agarose into Neoagarotetraose and Neoagarohexaose

    PubMed Central

    Hsu, Pang-Hung; Wei, Chien-Han; Lu, Wen-Jung; Shen, Fen; Pan, Chorng-Liang; Lin, Hong-Ting Victor

    2015-01-01

    The gene agaA, of the isolated marine bacterium Pseudomonas vesicularis MA103, comprised 2958-bp nucleotides encoding a putative agarase AgaA of 985 amino acids, which was predicted to contain a signal peptide of 29 amino acids in the N-terminus, a catalytic domain of glycoside hydrolase 16 (GH16) family, a bacterial immunoglobulin group 2 (Big 2), and three carbohydrate binding modules 6 (CBM 6). The gene agaA was cloned and overexpressed in Escherichia coli, and the optimum temperatures for AgaA overexpression were 16, 20 and 24 °C. The agaA was cloned without its signal peptide for cytosolic production overexpression, whereas it was cloned with the heterologous signal peptide PelB and its endogenous signal peptide for periplasmic and extracellular productions, respectively. Extracellular and periplasmic rAgaA showed greater activity than that of cytosolic rAgaA, indicating that membrane translocation of AgaA may encourage proper protein folding. Time-course hydrolysis of agarose by rAgaA was accomplished and the products were analyzed using thin layer chromatography and matrix-assisted laser desorption inoization-time of flight mass spectrometry, indicating that AgaA from P. vesicularis was an endo-type β-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products. PMID:25768342

  15. Agarose functionalization: Synthesis of PEG-agarose amino acid nano-conjugate - its structural ramifications and interactions with BSA in a varying pH regime.

    PubMed

    Chudasama, Nishith A; Prasad, Kamalesh; Siddhanta, Arup Kumar

    2016-10-20

    In a rapid one-step method protein-mimicking large agarose amino acid framework (AAE; GPC 156.7kDa) was conjugated with polyethylene glycol (PEG 9kDa) affording nano-sized PEGylated amphoteric agarose (PEG-AAE; <10nm; DLS) containing amino, carboxyl and ester groups [overall degree of substitution (DS) 0.91]. The PEG groups were at the residual free carboxylic acid groups of succinate half-ester moiety at C-6 positions of the 1, 3 β-d-galactopyranose moieties of AAE. This new nano-sized PEG-AAE performed like a giant protein conjugate (GPC 331.2kDa) and exhibited pH-responsive interconversion between the triple helix and single-stranded random structures (optical rotatory dispersion) presenting a mixed solubility pattern like random coil (soluble), helical (soluble) and aggregate (precipitation) formations. Circular dichroism studies showed its pH-dependent complexation and decomplexation with bovine serum albumin (BSA). Such pH-responsive PEG-conjugate may be of pronounced therapeutic potential in the area of pharmacology as well as in sensing applications. PMID:27474620

  16. Passivated gel electrophoresis of charged nanospheres by light-scattering video tracking.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-08-15

    Gel electrophoresis (gel-EP) has been used for decades to separate charged biopolymers, such as DNA, RNA, and proteins, yet propagation of other charged colloidal objects, such as nanoparticles, during gel-EP has been studied comparatively little. Simply introducing anionic nanoparticles, such as sulfate-stabilized polystyrene nanospheres, in standard large-pore agarose gels commonly used for biomolecules does not automatically ensure propagation or size-separation because attractive interactions can exist between the gel and the nanoparticles. Whereas altering the surfaces of the nanoparticles is a possible solution, here, by contrast, we show that treating a common type I-A low-electroendoosmosis agarose gel with a passivation agent, such as poly-(ethyleneglycol), enables charged nanoparticles to propagate through large-pore passivated gels in a highly reproducible manner. Moreover, by taking advantage of the significant optical scattering from the nanoparticles, which is not easily measurable for biopolymers, relative to scattering from the gel, we perform real-time, light-scattering, video-tracking gel-EP. Continuous optical measurements of the propagation of bands of uniformly sized nanospheres in passivated gels provides the propagation distance, L, and velocity, v, as a function of time for different sphere radii, electric field strengths, gel concentrations, and passivation agent concentrations. The steady-state particle velocities vary linearly with applied electric field strength, E, for small E, but these velocities become non-linear for larger E, suggesting that strongly driven nanoparticles can become elastically trapped in the smaller pores of the gel, which act like blind holes, in a manner that thermal fluctuations cannot overcome. Based on this assumption, we introduce a simple model that fits the measured v(E) in both linear and non-linear regimes over a relevant range of applied voltages. PMID:24910054

  17. Cost-effective gel documentation using a web-cam.

    PubMed

    Goldmann, T; Zyzik, A; Loeschke, S; Lindsay, W; Vollmer, E

    2001-12-01

    In search for a cost effective gel documentation system applicable for different fields of molecular biology, we analyzed the capabilities of a cheap CCD-camera originally designed to capture images for transmission through the internet (web-cam) with regard to gel documentation. The camera was connected to a personal computer by universal serial bus (USB) and used for the documentation of DNA separated on agarose gels and stained by ethidium-bromide using the software provided with the camera. The web-cam provided digital images of sufficient quality for routine documentation and combined the low set-up costs of a Polaroid system with the low running costs of video capture systems, hence is ideal as a start-up system and as augmentation to existing equipment. PMID:11714515

  18. Direct electrochemistry of cytochrome c entrapped in agarose hydrogel in room temperature ionic liquids.

    PubMed

    Wang, Sui; Guo, Zhiyong; Zhang, Huina

    2011-08-01

    Direct electrochemistry of cytochrome c (cyt-c) entrapped in agarose hydrogel on gold electrode (Au), edge plane pyrolytic graphite electrode (EPPGE) and glassy carbon electrode (GC) in two room temperature ionic liquids was investigated. The effects of the addition of N,N-dimethylformamide (DMF) in the agarose-cyt-c film, water concentration in ionic liquids and exterior metal ions on the electrochemical behavior of cyt-c were monitored, and electrocatalytic properties of cyt-c were also done. Results showed that a good quasi-reversible redox behavior of cyt-c could be found after adding DMF in agarose-cyt-c film, and peak shape would not change after continuously scanning for 50 cycles. In addition, a certain amount of water in hydrophilic ionic liquids is necessary to maintain electrochemical activities of cyt-c, electrochemical performance of cyt-c is the best when the water content is 5.2% and 5.8% for 1-butyl-3-methylimidazolium bromide ([Bmim][Br]) and 1-butyl-3-methylimidazolium tetrafluoroborate([Bmim][BF(4)]) respectively. However, electrochemical activities of cyt-c are inhibited by exterior metal ions. Interestingly, cyt-c entrapped in agarose hydrogel on EPPGE and GC could catalyze the electroreduction of trichloroacetic acid (TCA) and tert-butyl hydroperoxide (t-BuOOH) in [Bmim][BF(4)], but could not in [Bmim][Br]. Reasons for above-mentioned differences of electrochemical properties of cyt-c in different ionic liquids were preliminarily discussed. PMID:21659008

  19. Iron detoxification by haemoperfusion through deferoxamine-conjugated agarose-polyacrolein microsphere beads.

    PubMed

    Horowitz, D; Margel, S; Shimoni, T

    1985-01-01

    The natural iron chelator deferoxamine was bonded to agarose-polyacrolein microsphere beads (APAMB). This novel deferoxamine-conjugated APAMB (DCA), when used as the sorbent in a plasma/haemoperfusion system, showed specific and rapid removal of iron from plasma and blood in vitro; in vivo experiments also showed specific iron removal. The advantages of this sorbent are minimal damage to biocompounds during haemoperfusion, high capacity and specificity to iron, and the possibility of reuse. PMID:3971021

  20. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture.

    PubMed

    Dumpala, Pradeep R; Holdcraft, Robert W; Martis, Prithy C; Laramore, Melissa A; Parker, Thomas S; Levine, Daniel M; Smith, Barry H; Gazda, Lawrence S

    2016-08-01

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. PMID:27261433

  1. Homogeneous tosylation of agarose as an approach toward novel functional polysaccharide materials.

    PubMed

    Gericke, Martin; Heinze, Thomas

    2015-01-01

    The homogeneous tosylation of agarose was studied with respect to the effects of reaction parameters, such as reaction medium, time, and molar ratio, on the reaction course, the degree of substitution (DS) with tosyl/chloro deoxy groups, and the molecular structure. Tosyl agaroses (TOSA) with DS tosyl ≤ 1 .81 could be obtained in completely homogeneous reactions by using N,N-dimethylacetamide (DMA)/LiCl or 1,3-dimethyl-2-imidazolidinone (DMI) as solvents. The products were characterized by FT-IR and NMR spectroscopy and it was demonstrated that two types of substitution pattern can be achieved: (i) non-preferential substitution at position 6 of the 1 → 3-linked β-d-galactose unit (G-6) and position 2 of the 1 → 4-linked 3,6-anyhdro-α-L-galactose unit (LA-2) and (ii) regioselective tosylation at G-6, depending on whether the reaction is performed with or without LiCl. Finally, the nucleophilic displacement reaction of TOSA was studied using azide and ethylenediamine as representative nucleophiles. Novel deoxy-agarose derivatives were obtained that showed an interesting solubility behavior and will be used for creating functional polysaccharide materials. PMID:25965480

  2. Aqueous phase catalytic conversion of agarose to 5-hydroxymethylfurfural by metal chlorides

    SciTech Connect

    Yan, Lishi; Laskar, Dhrubojyoti D.; Lee, Suh-Jane; Yang, Bin

    2013-12-14

    Abstract: 5-HMF is a key intermediate for producing chemicals and fuels that can substitute for today’s petroleum-derived feedstocks. A series of metal chlorides, including NaCl, CaCl2, MgCl2, ZnCl2, CuCl2, FeCl3, and CrCl3, were comparatively investigated to catalyze agarose degradation for production of 5-HMF at temperature 180 oC, 200 oC, and 220 oC for 30 min, with catalyst concentration of 0.5% (w/w), 1% (w/w) and 5% (w/w), and substrate concentration of 2% (w/w). Our results revealed that alkali metal chlorides and alkali earth metal chlorides such as NaCl, CaCl2 and MgCl2 gave better 5-HMF yield compared with transition metal chlorides including ZnCl2, CrCl3, CuCl2 and FeCl3. 1% (w/w) MgCl2 was the more favorable catalyst for 5-HMF production from agarose, and resulted in 40.7% 5-HMF yield but no levulinic acid or lactic acid at 200 oC, 35 min. The reaction pathways of agarose degradation catalyzed by MgCl2 were also discussed.

  3. Immobilization of proteins on agarose beads, monitored in real time by bead injection spectroscopy

    PubMed Central

    Ruzicka*, Jaromir; Carroll, Andrea D.; Lähdesmäki, Ilkka

    2006-01-01

    Summary This work introduces a novel tool for the examination and optimization of protein immobilization protocols, by measuring the rate and yield of coupling reactions, as they take place on the surface of agarose beads in a well-stirred microreactor. The power of the Bead Injection Spectroscopy (BIS) technique is demonstrated on examples of amino coupling reactions for albumin, ovalbumin, lysozyme, human IgG, ribonuclease A and cytochrome C, using commercially available Aminolink® agarose beads. It was found, surprisingly, that currently recommended protocols for reductive amination can be shortened from several hours to several minutes, and that, contrary to literature data, the yield of coupling is dependent on pH and the isoelectric point of the protein. In addition, leakage of immobilized ligands can be measured by direct spectroscopic interrogation of captured beads in situ. The methodology presented in this work documents that BIS is a useful tool for quality control of agarose-based chromatographic supports, as well as for the optimization of a wide variety of immobilization chemistries, as used for synthesis of chromatographic supports, immobilization of enzymes, and derivatization of biosensing surfaces. PMID:16802025

  4. Supplementation of Exogenous Adenosine 5′-Triphosphate Enhances Mechanical Properties of 3D Cell–Agarose Constructs for Cartilage Tissue Engineering

    PubMed Central

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr

    2013-01-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5′-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure–function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct. PMID:23651296

  5. Short protocol for pulsed field gel electrophoresis of a variety of Clostridia species.

    PubMed

    Sperner, B; Schalch, B; Eisgruber, H; Stolle, A

    1999-07-01

    While pulsed field gel electrophoresis has become an important tool for genotyping of bacteria, one of its drawbacks is that standard methods are rather time-consuming. In order to overcome this problem, shortened procedures for DNA preparation have been developed for some bacterial species. The aim of this study was to examine if a short procedure used for pulsed field gel electrophoresis of Clostridium botulinum could be applied to other Clostridia species. For this, the protocol was modified and used to prepare the DNA of 34 strains of 25 different Clostridia species. In contrast to a standard procedure, which takes at least 5 days from DNA extraction to completion of the electrophoresis, this protocol yielded results within 2 days. In order to directly compare the results of the short protocol with those of the standard, long procedure, parallel DNA preparations were performed using both methods and the two DNA samples thus obtained per strain were then run on the same gel. Briefly, the procedure was as follows. After embedding the bacterial cells in agarose, the agarose blocks were incubated for 1 h in lysis solution containing lysozyme, mutanolysin, lysostaphin and RNase. This was followed by a 1-h proteinase K treatment. Then, slices were cut from the agarose blocks and washed for 15 min in TE buffer, these washes were repeated four times with fresh TE. After a 2-h restriction with SmaI, electrophoresis was carried out overnight. PMID:10397313

  6. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  7. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  8. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    DOE PAGESBeta

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; et al

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from themore » inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  9. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    PubMed Central

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s−1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening. PMID:25615864

  10. Rapid estimation of chromosomal damage in yeast due to the effects of environmental chemicals using pulsed field gel electrophoresis.

    PubMed

    Ehlers, J; Tosch, M; AlBaz, I; Lochmann, E R

    1991-10-01

    We present a procedure to rapidly estimate the damage to yeast chromosomes by toxic chemicals. This procedure employs the following steps: incubation of yeast cells with the chemicals, DNA preparation in an agarose matrix, separation of chromosome-sized DNA molecules into reproducible band patterns by pulsed field gel electrophoresis, and quantification of the intensity of chromosomal bands by densitometry. Saccharomyces cerevisiae cells have been treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and cis-Platinum(II) diamminedichloride (cisPT), both of which are known to interact with DNA, and trichlorethylen (TCE), for which such an effect has not been shown in yeast. Treatment of cells with MNNG and cisPt led to an impairment of the intensity of the band pattern to an extent dependent on the concentration of the chemicals applied. For TCE a similar effect could not be discerned. This procedure will be useful as a screening test for the estimation of the biological hazards of toxic chemicals. PMID:1769347

  11. Functional behavior of isotropic magnetorheological gels

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, P.; Maniprakash, S.; Srinivasan, S. M.; Srinivasa, A. R.

    2010-08-01

    Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1-0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles.

  12. Gel Electrophoresis of DNA --- New Measurements and the Repton Model at High Fields

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Pasciak, P.; Dydejczyk, A.; Kulakowski, K.; Dulak, J.

    2005-05-01

    New experimental data are presented on the gel electrophoresis of DNA. Experiment was made for molecules of length 173 kbp, in 1 percent agarose gel, in TAE 1 × buffer and the field intensity between 5 and 9 V/cm. The results are compared with our computer simulations, performed within the repton model of Duke and Rubinstein. The ranges of field and molecule length are determined, where the geometration effect appears. We investigate also the field dependence of the velocity and the diffusion coefficient at the border of the geometration regime.

  13. Retention and release behavior of insulin in chitosan gel beads.

    PubMed

    Kofuji, Kyoko; Akamine, Hiroyuki; Oshirabe, Hitomi; Maeda, Yasuyo; Murata, Yoshifumi; Kawashima, Susumu

    2003-01-01

    Chitosan (CS) gel beads were prepared in a 10% (w/v) aqueous amino acid solution (pH 9.0) as a vehicle for delivering peptide and protein drugs. CS gel beads with a weight-average molecular weight of (16-280) x 10(4) were employed in this study. Preparation of the CS gel beads was affected by properties such as molecular weight and degree of deacetylation. Insulin, which is commonly used to assess protein drug delivery, was retained in the CS gel beads. Drug release from the CS gel beads was governed by diffusion of drug from the gel matrix. Sustained release of insulin from the CS gel beads was observed, despite the fact that insulin is a comparatively water-soluble drug. because insulin formed a complex with CS. Modification of the CS gel matrix by chondroitin sulfate inhibited release of insulin from the gel beads. CS gel beads were implanted into air pouches prepared subcutaneously on the dorsal surface of diabetic mice in order to investigate the efficacy of insulin retained in the CS beads. Blood glucose levels were found to be reduced after implantation of CS gel beads retaining insulin. CS gel beads may possibly improve the stability and control of insulin release. These observations indicate that CS beads are a promising biocompatible and biodegradable vehicle for peptide and protein delivery. PMID:14768911

  14. Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing.

    PubMed

    Kang, Gyumin; Lee, Ji-Hye; Lee, Chang-Soo; Nam, Yoonkey

    2009-11-21

    For cell-based biosensor applications, dissociated neurons have been cultured on planar microelectrode arrays (MEAs) to measure the network activity with substrate-embedded microelectrodes. There has been a need for a multi-well type platform to reduce the data collection time and increase the statistical power for data analysis. This study presents a novel method to convert a conventional MEA into a multi-well MEA with an array of micrometre-sized neuronal culture ('neuronal micro-circuit array'). An MEA was coated first with cell-adhesive layer (poly-D-lysine) which was subsequently patterned with a cell-repulsive layer (agarose hydrogel) to both pattern the cell adhesive region and isolate neuronal micro-circuits from each other. For a few weeks, primary hippocampal neurons were cultured on the agarose microwell MEA and the development of spontaneous electrical activities were characterized with extracellular action potentials. Using neurotransmission modulators, the simultaneous monitoring of drug responses from neuronal micro-circuit arrays was also demonstrated. The proposed approach will be powerful for neurobiological functional assay studies or neuron-based biosensor fields which require repeated trials to obtain a single data point due to biological variations. PMID:19865730

  15. Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass.

    PubMed

    Kim, Pung-Ho; Nam, Hee-Geun; Park, Chanhun; Wang, Nien-Hwa Linda; Chang, Yong Keun; Mun, Sungyong

    2015-08-01

    The economically-efficient separation of galactose, levulinic acid (LA), and 5-hydroxymethylfurfural (5-HMF) in acid hydrolyzate of agarose has been a key issue in the area of biofuel production from marine biomass. To address this issue, an optimal simulated moving bed (SMB) process for continuous separation of the three agarose-hydrolyzate components with high purities, high yields, and high throughput was developed in this study. As a first step for this task, the adsorption isotherm and mass-transfer parameters of each component on the qualified adsorbent were determined through a series of multiple frontal experiments. The determined parameters were then used in optimizing the SMB process for the considered separation. Finally, the optimized SMB process was tested experimentally using a self-assembled SMB unit with four zones. The SMB experimental results and the relevant computer simulations verified that the developed process in this study was quite successful in the economically-efficient separation of galactose, LA, and 5-HMF in a continuous mode with high purities and high yields. It is thus expected that the developed SMB process in this study will be able to serve as one of the trustworthy ways of improving the economic feasibility of biofuel production from marine biomass. PMID:26141276

  16. A Novel Agarolytic β-Galactosidase Acts on Agarooligosaccharides for Complete Hydrolysis of Agarose into Monomers

    PubMed Central

    Lee, Chan Hyoung; Kim, Hee Taek; Yun, Eun Ju; Lee, Ah Reum; Kim, Sa Rang; Kim, Jae-Han; Choi, In-Geol

    2014-01-01

    Marine red macroalgae have emerged to be renewable biomass for the production of chemicals and biofuels, because carbohydrates that form the major component of red macroalgae can be hydrolyzed into fermentable sugars. The main carbohydrate in red algae is agarose, and it is composed of d-galactose and 3,6-anhydro-l-galactose (AHG), which are alternately bonded by β1-4 and α1-3 linkages. In this study, a novel β-galactosidase that can act on agarooligosaccharides (AOSs) to release galactose was discovered in a marine bacterium (Vibrio sp. strain EJY3); the enzyme is annotated as Vibrio sp. EJY3 agarolytic β-galactosidase (VejABG). Unlike the lacZ-encoded β-galactosidase from Escherichia coli, VejABG does not hydrolyze common substrates like lactose and can act only on the galactose moiety at the nonreducing end of AOS. The optimum pH and temperature of VejABG on an agarotriose substrate were 7 and 35°C, respectively. Its catalytic efficiency with agarotriose was also similar to that with agaropentaose or agaroheptaose. Since agarotriose lingers as the unreacted residual oligomer in the currently available saccharification system using β-agarases and acid prehydrolysis, the agarotriose-hydrolyzing capability of this novel β-galactosidase offers an enormous advantage in the saccharification of agarose or agar in red macroalgae for its use as a biomass feedstock for fermentable sugar production. PMID:25038102

  17. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose.

    PubMed

    Jia, Yinshan; Jarrett, Harry W

    2015-08-01

    The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach. PMID:25935261

  18. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose

    PubMed Central

    Jia, Yinshan; Jarrett, Harry W.

    2015-01-01

    The uses of a method of coupling DNA is investigated for trapping and purifying transcription factors. Using the GFP-C/EBP fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry utilized is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA-binding. The method involves introducing a ribose nucleotide to the 3′ end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose which couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes including E2A, c-myc, and myo-D were also purified but myogenenin and NFκB were not. Therfore, this approach proved valuable for both affinity chromatography and for the trapping approach. PMID:25935261

  19. Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.

    PubMed

    Inkinen, Satu I; Liukkonen, Jukka; Malo, Markus K H; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-07-01

    Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 × 10(6) cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound. PMID:27475127

  20. Pravastatin Improves Glucose Regulation and Biocompatibility of Agarose Encapsulated Porcine Islets following Transplantation into Pancreatectomized Dogs

    PubMed Central

    Gazda, Lawrence S.; Vinerean, Horatiu V.; Laramore, Melissa A.; Hall, Richard D.; Carraway, Joseph W.; Smith, Barry H.

    2014-01-01

    The encapsulation of porcine islets is an attractive methodology for the treatment of Type I diabetes. In the current study, the use of pravastatin as a mild anti-inflammatory agent was investigated in pancreatectomized diabetic canines transplanted with porcine islets encapsulated in agarose-agarose macrobeads and given 80 mg/day of pravastatin (n = 3) while control animals did not receive pravastatin (n = 3). Control animals reached preimplant insulin requirements on days 18, 19, and 32. Pravastatin-treated animals reached preimplant insulin requirements on days 22, 27, and 50. Two animals from each group received a second macrobead implant: control animals remained insulin-free for 15 and 21 days (AUC = 3003 and 5078 mg/dL/24 hr days 1 to 15) and reached preimplant insulin requirements on days 62 and 131. Pravastatin treated animals remained insulin-free for 21 and 34 days (AUC = 1559 and 1903 mg/dL/24 hr days 1 to 15) and reached preimplant insulin requirements on days 38 and 192. Total incidence (83.3% versus 64.3%) and total severity (22.7 versus 18.3) of inflammation on tissue surfaces were higher in the control group at necropsy. These findings support pravastatin therapy in conjunction with the transplantation of encapsulated xenogeneic islets for the treatment of diabetes mellitus. PMID:24963494

  1. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model.

    PubMed

    Scionti, Giuseppe; Moral, Monica; Toledano, Manuel; Osorio, Raquel; Durán, Juan D G; Alaminos, Miguel; Campos, Antonio; López-López, Modesto T

    2014-08-01

    The effect of hydration on the biomechanical properties of fibrin and fibrin-agarose (FA) tissue-like hydrogels is reported. Native hydrogels with approximately 99.5% of water content and hydrogels with water content reduced until 90% and 80% by means of plastic compression (nanostructuration) were generated. The biomechanical properties of the hydrogels were investigated by tensile, compressive, and shear tests. Experimental results indicate that nanostructuration enhances the biomechanical properties of the hydrogels. This improvement is due to the partial draining of the water that fills the porous network of fibers that the plastic compression generates, which produces a denser material, as confirmed by scanning electron microscopy. Results also indicate that the characteristic compressive and shear parameters increase with agarose concentration, very likely due to the high water holding capacity of agarose, which reduces the compressibility and gives consistency to the hydrogels. However, results of tensile tests indicate a weakening of the hydrogels as agarose concentration increases, which evidences the anisotropic nature of these biomaterials. Interestingly, we found that by adjusting the water and agarose contents it is possible to tune the biomechanical properties of FA hydrogels for a broad range, within which the properties of many native tissues fall. PMID:23963645

  2. High-density small-volume gel loading directly from capillary tubes.

    PubMed

    Evensen, H T; Meldrum, D R; Saenphimmachak, C; Dixon, E E

    1999-11-01

    A technique has been developed for high lane density loading of small-volume DNA samples in a horizontal agarose gel. This technique has been investigated with a simple hand-held tool that is made to couple to sample output from a new capillary-based sample automation system. The approach consists of piercing the gel with pressurized sample capillaries and relieving the pressure shortly before withdrawal. The pressurization prevents the capillary from aspirating the gel buffer and keeps the sample at the tip of the capillary, so that it may be sucked into the gel during withdrawal. This method is shown to be adequate for a wide range of DNA ladders and PCR-based screening. In addition to allowing smaller lanes and a higher lane density than is achievable with traditional well-forming techniques, it relaxes the need for well formation and the alignment of the sample loader with those wells, providing an easy, efficient means of loading agarose gels. PMID:10572646

  3. Propagation and Separation of Charged Colloids by Cylindrical Passivated Gel Electrophoresis.

    PubMed

    Bikos, Dimitri; Mason, Thomas G

    2016-07-01

    We explore the electrophoretic propagation of charged colloidal objects, monodisperse anionically stabilized polystyrene spheres, in large-pore agarose gels that have been passivated using polyethylene glycol (PEG) when a radial electric field is applied in a cylindrical geometry. By contrast to standard Cartesian gel-electrophoresis geometries, in a cylindrical geometry, charged particles that start at a ring well near the central axis propagate outward more rapidly initially and then slow down as they move further away from the axis. By building a full-ring cylindrical gel electrophoresis chamber and taking movies of scattered light from propagating nanospheres undergoing electrophoresis, we experimentally demonstrate that the ring-like front of monodisperse nanospheres propagates stably in PEG-passivated agarose gels and that the measured ring radius as a function of time agrees with a simple model that incorporates the electric field of a cylindrical geometry. Moreover, we show that this cylindrical geometry offers a potential advantage when performing electrophoretic separations of objects that have widely different sizes: smaller objects can still be retained in a cylindrical gel that has a limited size over long electrophoretic run times required for separating larger objects. PMID:27109865

  4. Sequence Dependent Electrophoretic Separations of DNA in Pluronic F127 Gels

    NASA Astrophysics Data System (ADS)

    You, Seungyong; van Winkle, David H.

    2010-03-01

    Two-dimensional (2-D) electrophoresis has successfully been used to visualize the separation of DNA fragments of the same length. We electrophorese a double-stranded DNA ladder in an Agarose gel for the first dimension and in gels of Pluronic F127 for the second dimension at room temperature. The 1000 bp band that travels together as a single band in an Agarose gel is split into two bands in Pluronic gels. The slower band follows the exponential decay trend that the other ladder constituents do. After sequencing the DNA fragments, the faster band has an apparently random sequence, while the slower band and the others have two A-tracts in each 250 bp segment. The A-tracts consist of a series of at least five adenine bases pairing with thymine bases. This result leads to the conclusion that the migration of the DNA molecules bent with A-tracts is more retarded in Pluronic gels than the wild-type of DNA molecules.

  5. Microfluidic dielectrophoretic sorter using gel vertical electrodes

    PubMed Central

    Luo, Jason; Nelson, Edward L.; Li, G. P.; Bachman, Mark

    2014-01-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device. PMID:24926390

  6. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  7. Diffusion of polyelectrolytes in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Rahalkar, Anand; Muthukumar, Murugappan

    2015-03-01

    Using dynamic light scattering, we have investigated the diffusion coefficient of sodium poly(styrene sulfonate) in a matrix of poly(acrylamide-co-acrylate) gels. The diffusion coefficient of the probe polyelectrolyte exhibits a crossover behavior from a particle-diffusion to entropic-barrier dominated diffusion, as the molecular weight is increased. The effect of electrostatics, by varying the charge density of the matrix, on probe diffusion constant will be presented.

  8. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  9. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  10. A least-squares error minimization approach in the determination of ferric ion diffusion coefficient of Fricke-infused dosimeter gels

    SciTech Connect

    Tseng, Y.J.; Huang, S.-C.; Chu, W.C.

    2005-04-01

    A least-squares error minimization approach was adopted to assess ferric ion diffusion coefficient of Fricke-agarose gels. Ferric ion diffusion process was modeled as a Gaussian-shaped degradation kernel operating on an initial concentration distribution. Diffusion coefficient was iteratively determined by minimizing the error function defined as the difference between the theoretically calculated and the experimentally measured dose distributions. A rapid MR image-based differential gel dosimetry technique that time resolves the evolution of the ferric ion diffusion process minimizes smearing of the dose distribution. Our results showed that for a Fricke-agarose gel contained 1 mM ammonium ferrous sulfate, 1% agarose, 1 mM sodium chloride, and 50 mM sulfuric acid, its ferric ion diffusion coefficient is (1.59{+-}0.28)x10{sup -2} cm{sup 2} h{sup -1} at room temperature. This value falls within the 1.00-2.00x10{sup -2} cm{sup 2} h{sup -1} range previously reported under varying gelling ingredients and concentrations. This method allows a quick, nondestructive evaluation of the ferric ion diffusion coefficient that can be used in conjunction with the in situ gel dosimetry experiment to provide a practical diffusion characterization of the dosimeter gel.

  11. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  12. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose.

    PubMed

    Hammerschmidt, Andreas; Chatterji, Bijon; Zeiser, Johannes; Schröder, Anke; Genieser, Hans-Gottfried; Pich, Andreas; Kaever, Volkhard; Schwede, Frank; Wolter, Sabine; Seifert, Roland

    2012-01-01

    The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agarose matrices as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target. PMID:22808067

  13. Delivery of DNA vaccines by agarose hydrogel implants facilitates genetic immunization in cattle.

    PubMed

    Toussaint, J F; Dubois, A; Dispas, M; Paquet, D; Letellier, C; Kerkhofs, P

    2007-01-26

    The present study demonstrates the interest of two slow-release systems as vaccination tools in cattle. Two experiments show that a first intradermal administration of one DNA vaccine dose combined with the slow-release of a second dose conduct to a priming of the bovine herpesvirus 1-specific immune response similar to the one generated by two discrete administrations 4 weeks apart. The first experiment demonstrates the efficacy of the slow-release system with well-characterized Alzet osmotic pumps, whereas the second experiment extends the same concept with innovative agarose hydrogel implants. These latter implants are cheaper and more convenient than the osmotic pumps or repeated intradermal administrations since they contribute to an efficient priming of the immune response in a single manipulation of the animals. PMID:17084488

  14. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications.

    PubMed

    Tripathi, Anuj; Kumar, Ashok

    2011-01-10

    In this study agarose-alginate scaffolds are synthesized using cryogelation technology in different formats like monolith, sheet, discs, and beads, and show amiable mechanical strength like soft tissue properties and high interconnected macroporous degradable architecture. In cell-material interactions, fibroblast (NIH-3T3) cells showed good adherence and proliferation on these scaffolds presenting its potential application in soft tissue engineering. The application of cryogel beads and monoliths was also examined by the efficient immobilization of bacterial cells (BL21) on these matrices revealing their use for recovery of product from continuous fermentation systems without cell leakage. These scaffolds also showed potential as a filter for repeated recovery of heavy metal binding, such as copper and nickel from the waste water. The cryogels prepared herein do have a number of unique features that make them an important class of soft materials for developing multi-featured scaffolds as a novel carrier for bioengineering applications. PMID:21077225

  15. Stabilization of a formate dehydrogenase by covalent immobilization on highly activated glyoxyl-agarose supports.

    PubMed

    Bolivar, Juan M; Wilson, Lorena; Ferrarotti, Susana Alicia; Fernandez-Lafuente, Roberto; Guisan, Jose M; Mateo, Cesar

    2006-03-01

    Formate dehydrogenase (FDH) is a stable enzyme that may be readily inactivated by the interaction with hydrophobic interfaces (e.g., due to strong stirring). This may be avoided by immobilizing the enzyme on a porous support by any technique. Thus, even if the enzyme is going to be used in an ultra-membrane reactor, the immobilization presents some advantages. Immobilization on supports activated with bromocianogen, polyethylenimine, glutaraldehyde, etc., did not promote any stabilization of the enzyme under thermal inactivation. However, the immobilization of FDH on highly activated glyoxyl agarose has permitted increasing the enzyme stability against any distorting agent: pH, T, organic solvent, etc. The time of support-enzyme reaction, the temperature of immobilization, and the activation of the support need to be optimized to get the optimal stability-activity properties. Optimized biocatalyst retained 50% of the offered activity and became 50 times more stable at high temperature and neutral pH. Moreover, the quaternary structure of this dimeric enzyme becomes stabilized by immobilization under optimized conditions. Thus, at acidic pH (conditions where the subunit dissociation is the first step in the enzyme inactivation), the immobilization of both subunits of the enzyme on glyoxyl-agarose has allowed the enzyme to be stabilized by hundreds of times. Moreover, the optimal temperature of the enzyme has been increased (even by 10 degrees C at pH 4.5). Very interestingly, the activity with NAD(+)-dextran was around 60% of that observed with free cofactor. PMID:16529396

  16. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-01

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. PMID:27110670

  17. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    ERIC Educational Resources Information Center

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  18. Slow Release Of Reagent Chemicals From Gel Matrices

    NASA Technical Reports Server (NTRS)

    Debnam, William J.; Barber, Patrick G.; Coleman, James

    1988-01-01

    Procedure developed for slow release of reagent chemicals into solutions. Simple and inexpensive and not subject to failure of equipment. Use of toothpaste-type tube or pump dispenser conceivably provides more controlled technique for storage and dispensation of gel matrix. Possible uses include controlled, slow release of reagents in chemical reactions, crystal growth, space-flight experiments, and preformed gel medications from packets.

  19. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  20. Testosterone Nasal Gel

    MedlinePlus

    Testosterone nasal gel is used to treat symptoms of low testosterone in men who have hypogonadism (a condition in which the body does not produce enough natural testosterone). Testosterone nasal gel is used only for men ...

  1. No Evidence of Viral Transmission following Long-Term Implantation of Agarose Encapsulated Porcine Islets in Diabetic Dogs

    PubMed Central

    Gazda, Lawrence S.; Vinerean, Horatiu V.; Laramore, Melissa A.; Hall, Richard D.; Carraway, Joseph W.; Smith, Barry H.

    2014-01-01

    We have previously described the use of a double coated agarose-agarose porcine islet macrobead for the treatment of type I diabetes mellitus. In the current study, the long-term viral safety of macrobead implantation into pancreatectomized diabetic dogs treated with pravastatin (n = 3) was assessed while 2 dogs served as nonimplanted controls. A more gradual return to preimplant insulin requirements occurred after a 2nd implant procedure (days 148, 189, and >652) when compared to a first macrobead implantation (days 9, 21, and 21) in all macrobead implanted animals. In all three implanted dogs, porcine C-peptide was detected in the blood for at least 10 days following the first implant and for at least 26 days following the second implant. C-peptide was also present in the peritoneal fluid of all three implanted dogs at 6 months after 2nd implant and in 2 of 3 dogs at necropsy. Prescreening results of islet macrobeads and culture media prior to transplantation were negative for 13 viruses. No evidence of PERV or other viral transmission was found throughout the study. This study demonstrates that the long-term (2.4 years) implantation of agarose-agarose encapsulated porcine islets is a safe procedure in a large animal model of type I diabetes mellitus. PMID:24995342

  2. Nanoparticle size distributions measured by optical adaptive-deconvolution passivated-gel electrophoresis.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-12-01

    We image visible light scattered from dispersions of charged spherical nanoparticles propagating through a passivated agarose gel during electrophoresis. By analyzing one-dimensional light intensities along different lanes, we measure the mobility distributions of the nanoparticles and thereby infer their size distributions, which become time-independent after adequate propagation and separation have occurred. For a given large-pore passivated agarose gel, experiments using monodisperse, surfactant-free, sulfate-stabilized, polystyrene nanopheres establish the propagation distance as a function of time for a range of different sphere radii having known surface charges. As bands of monodisperse nanospheres propagate through the gel, the bands become smeared, developing asymmetric tails as some nanospheres experience additional delays compared to others of the same size. After background subtraction, these bands, including their tails, can be fit well using a modified log-normal distribution, yielding deconvolution parameters that vary with propagation distance and transit time. To demonstrate the approach for complex nanosphere dispersions, such as a multi-modal mixture or a broadly polydisperse nanoemulsion, we measure scattered light intensities as a function of propagation distance and time during gel-EP. Iterative deconvolution using a modified log-normal point-spread function, which changes shape according to propagation distance and time, directly yields unsmeared, high-resolution electrophoretic mobility distributions, from which detailed particle size distributions are inferred. PMID:25218049

  3. Surfactant free fractions of metallic and semiconducting single-walled carbon nanotubes via optimised gel chromatography

    SciTech Connect

    Lukaszczuk, Pawel; Ruemmeli, Mark H.; Knupfer, Martin; Kalenczuk, Ryszard J.; Borowiak-Palen, Ewa

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The application of gel permeation chromatography technique in a field of SWCNT separation. Black-Right-Pointing-Pointer Non-commercial agarose gel used as a column filling. Black-Right-Pointing-Pointer Purification route is presented, quality and quantity estimation is shown. Black-Right-Pointing-Pointer Process is ready for high-scale separation of SWCNTs. -- Abstract: We report the procedure of sorting/purification of carbon nanotubes by electronic type using chromatographic column with sodium dodecylsulfate (SDS) and sodium deoxycholate (DOC) solutions as the eluents. The non-commercial agarose gel in different concentrations has been tested in the process. It was found that in optimal gel concentration the fractionation resulted in {approx}96.2% yield of semiconducting species. Importantly, to get surfactant-free fractions the post-separation purification procedure has been carried out. The UV-vis-NIR and Raman spectroscopy have been utilised for the samples analysis. High resolution transmission microscopy and thermogravimetric analysis allowed to study the sample morphology and purity, respectively.

  4. New resin gel for uranium determination by diffusive gradient in thin films technique.

    PubMed

    Gregusova, Michaela; Docekal, Bohumil

    2011-01-17

    A new resin gel based on Spheron-Oxin(®) chelating ion-exchanger with anchored 8-hydroxyquinoline functional groups was tested for application in diffusive gradient in thin film technique (DGT) for determination of uranium. Selectivity of uranium uptake from model carbonate loaded solutions of natural water was studied under laboratory conditions and compared with selectivity of the conventional Chelex 100 based resin gel. The affinity of Spheron-Oxin(®) functional groups enables determination of the overall uranium concentration in water containing carbonates up to the concentration level of 10(2) mg L(-1). The effect of uranium binding to the polyacrylamide (APA) and agarose diffusive gels (AGE) was also studied. Uranium is probably bound in both gels by a weak interaction with traces of acrylic acid groups in the structure of APA gel and with pyruvic and sulfonic acid groups in the AGE gel. These sorption effects can be eliminated to the negligible level by prolonged deployment of DGT probes or by disassembling probes after the 1-2 days post-sampling period that is sufficient for release of uranium from diffusive gel and its sorption in resin gel. PMID:21167996

  5. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure.

    PubMed Central

    Renart, J; Reiser, J; Stark, G R

    1979-01-01

    We describe a rapid and very sensitive method for detecting proteins as antigens after their separation in polyacrylamide/agarose composite gels, with or without sodium dodecyl sulfate. The polyacrylamide matrix is crosslinked with a reagent that can be cleaved with periodate or alkali to facilitate transfer of the protein bands to diazobenzyloxymethyl-paper, where they are coupled covalently. Specific proteins are detected by autoradiography after sequential incubation with unfractionated, unlabeled specific antiserum and 125I-labeled protein A from Staphylococcus aureus. Antibody and protein A can be removed with urea and 2-mercaptoethanol, and the same paper can be probed again with a different antiserum. An antiserum specific for the simian virus 40 virion proteins VP3 and VP2 has been prepared; it does not crossreact with VP1, as demonstrated by this method. An antiserum raised in rabbits against simian virus 40-transformed rabbit kidney cells is shown to be directed primarily against a periodate-sensitive moiety present in tumor (T) antigen from infected or transformed cells, whereas an antiserum raised in rabbits against large T antigen purified from lytically infected monkey kidney cells by electrophoresis in the presence of sodium dodecyl sulfate [Lane, D.P. & Robbins, A.K. (1978) Virology 87, 182-193] is directed primarily against determinants that are not sensitive to periodate. Images PMID:91164

  6. Silica scintillating materials prepared by sol-gel methods

    SciTech Connect

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-12-31

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons.

  7. Luminescence in colorless, transparent, thermally stable thin films of Eu3+ and Tb3+ beta-diketonates in hybrid inorganic-organic zinc-based sol-gel matrix.

    PubMed

    Martins, Renata Figueredo; Silva, Rodrigo Ferreira; Gonçalves, Rogéria Rocha; Serra, Osvaldo Antonio

    2010-05-01

    Luminescent zinc-based hybrid inorganic-organic films with rare-earth (RE) complexes have been prepared using a non-alkoxide sol-gel process. The films were fabricated by the dip-coating method starting from zinc acetate dihydrate, rare earth chloride, lactic acid as hydrolytic catalyst, and anhydrous ethanol. The beta-diketones thenoylltrifluoroacetone (Httfa) and dibenzoylmethane (Hdbm) were used as ligands to Eu(3+) and Tb(3+), respectively. After deposition of the first layer, the films were fired at temperatures between 50 and 300 degrees C, in air. Photophysical properties such as excitation, emission and emission, lifetimes were determined for the films obtained in different conditions. Eu(3+)/ttfa and Tb(3+)/dbm films fired at 300 and 250 degrees C, respectively, are still transparent and gave rise to intense emission when excited through the ligand (antenna effect). PMID:20179997

  8. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties.

    PubMed

    Wang, Jingjing; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N3) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98 MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400-800 nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. PMID:26838864

  9. Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI).

    PubMed

    Peirce, Sara; Tacias-Pascacio, Veymar G; Russo, Maria Elena; Marzocchella, Antonio; Virgen-Ortíz, José J; Fernandez-Lafuente, Roberto

    2016-01-01

    Lipase B from Candida antarctica (CALB) was immobilized on octyl agarose (OC) and physically modified with polyethyleneimine (PEI) in order to confer a strong ion exchange character to the enzyme and thus enable the immobilization of other enzymes on its surface. The enzyme activity was fully maintained during the coating and the thermal stability was marginally improved. The enzyme release from the support by incubation in the non-ionic detergent Triton X-100 was more difficult after the PEI-coating, suggesting that some intermolecular physical crosslinking had occurred, making this desorption more difficult. Thermal stability was marginally improved, but the stability of the OCCALB-PEI was significantly better than that of OCCALB during inactivation in mixtures of aqueous buffer and organic cosolvents. SDS-PAGE analysis of the inactivated biocatalyst showed the OCCALB released some enzyme to the medium during inactivation, and this was partially prevented by coating with PEI. This effect was obtained without preventing the possibility of reuse of the support by incubation in 2% ionic detergents. That way, this modified CALB not only has a strong anion exchange nature, while maintaining the activity, but it also shows improved stability under diverse reaction conditions without affecting the reversibility of the immobilization. PMID:27338317

  10. Uranium (VI) recovery from aqueous medium using novel floating macroporous alginate-agarose-magnetite cryobeads.

    PubMed

    Tripathi, Anuj; Melo, Jose Savio; D'Souza, Stanislaus Francis

    2013-02-15

    This study presents a novel development of a floating polymeric-magnetite cryobead for the recovery of hexavalent uranium from the aqueous sub-surfaces. The alginate-agarose-magnetite cryobeads were synthesized by the process of cryotropic-gelation at subzero-temperature. The physico-chemical properties of cryobeads showed high surface area and high interconnected porosity (≈ 90%). Low density of these cryobeads explains their floating property in the aqueous medium. The rheological analysis of cryobeads showed its stability and increased stiffness after uranium adsorption. The presence of magnetite nanoparticles in the porous cryobeads facilitates the recovery of these beads by applying an external magnetic field. Maximum uranium adsorption (97 ± 2%) was observed in the pH range of 4.5-5.5. The thermodynamic parameters suggest passive endothermic adsorption behaviour. HCl was found to be an efficient eluent for the uranium desorption. Five repeated cycles for the desorption of uranium from biosorbent showed 69 ± 3% of uranium recovery. These results suggest stability of these novel floating magnetite-cryobeads under environmental conditions with potential for the recovery of uranium from contaminated aqueous subsurfaces. PMID:23280054

  11. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition.

    PubMed

    Xu, Li Qun; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Fu, Guo Dong

    2016-05-01

    Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films. PMID:26836479

  12. Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans.

    PubMed

    Turek, Michal; Besseling, Judith; Bringmann, Henrik

    2015-01-01

    Behavior is controlled by the nervous system. Calcium imaging is a straightforward method in the transparent nematode Caenorhabditis elegans to measure the activity of neurons during various behaviors. To correlate neural activity with behavior, the animal should not be immobilized but should be able to move. Many behavioral changes occur during long time scales and require recording over many hours of behavior. This also makes it necessary to culture the worms in the presence of food. How can worms be cultured and their neural activity imaged over long time scales? Agarose Microchamber Imaging (AMI) was previously developed to culture and observe small larvae and has now been adapted to study all life stages from early L1 until the adult stage of C. elegans. AMI can be performed on various life stages of C. elegans. Long-term calcium imaging is achieved without immobilizing the animals by using short externally triggered exposures combined with an electron multiplying charge-coupled device (EMCCD) camera recording. Zooming out or scanning can scale up this method to image up to 40 worms in parallel. Thus, a method is described to image behavior and neural activity over long time scales in all life stages of C. elegans. PMID:26132740

  13. Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans

    PubMed Central

    Turek, Michal; Besseling, Judith; Bringmann, Henrik

    2015-01-01

    Behavior is controlled by the nervous system. Calcium imaging is a straightforward method in the transparent nematode Caenorhabditis elegans to measure the activity of neurons during various behaviors. To correlate neural activity with behavior, the animal should not be immobilized but should be able to move. Many behavioral changes occur during long time scales and require recording over many hours of behavior. This also makes it necessary to culture the worms in the presence of food. How can worms be cultured and their neural activity imaged over long time scales? Agarose Microchamber Imaging (AMI) was previously developed to culture and observe small larvae and has now been adapted to study all life stages from early L1 until the adult stage of C. elegans. AMI can be performed on various life stages of C. elegans. Long-term calcium imaging is achieved without immobilizing the animals by using short externally triggered exposures combined with an electron multiplying charge-coupled device (EMCCD) camera recording. Zooming out or scanning can scale up this method to image up to 40 worms in parallel. Thus, a method is described to image behavior and neural activity over long time scales in all life stages of C. elegans. PMID:26132740

  14. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  15. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  16. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  17. Basic investigations on LCV micelle gel

    NASA Astrophysics Data System (ADS)

    Ebenezer, S. B.; Rafic, M. K.; Ravindran, P. B.

    2013-06-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  18. The biophysical properties of Basal lamina gels depend on the biochemical composition of the gel.

    PubMed

    Arends, Fabienna; Nowald, Constantin; Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  19. The Biophysical Properties of Basal Lamina Gels Depend on the Biochemical Composition of the Gel

    PubMed Central

    Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  20. Induction of plasmacytomas in genetically susceptible mice with silicone gels.

    PubMed

    Potter, M; Morrison, S; Miller, F

    1995-01-01

    Silicone gels injected intraperitoneally into strains of mice related to BALB/c develop plasmacytomas in approximately the same numbers and with similar phenotypes as previously obtained with pristane. Silicone gels produce few side effects and are well tolerated for long periods. Silicone gels contain several components that are potentially biologically active: residual vinyl groups and platinum. Microscopic and histological evidence suggests the silicone gel is degraded over a long period of time. Preliminary studies with long chain liquid dimethylpolysiloxanes with viscosities of 1000 cSt and 12,500 cSt have not produced plasmacytomas as yet. The plasmacytomagenic action of the gel appears to be due to the release of liquids from the gel matrix. PMID:7895524

  1. Separation of galactose, 5-hydroxymethylfurfural and levulinic acid in acid hydrolysate of agarose by nanofiltration and electrodialysis.

    PubMed

    Kim, Jae Hyung; Na, Jeong-Geol; Yang, Ji-Won; Chang, Yong Keun

    2013-07-01

    A two-stage membrane process for the separation of galactose, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) has been proposed. The first step of nanofiltration (NF) is to remove 5-HMF and LA from galactose solution obtained by the hydrolysis of agarose, the main component of red algal galactan for the reduction of its microbial toxicity. 5-HMF and LA are inhibitory to fermentation but at the same time useful compounds themselves with many applications. The second step of electrodialysis (ED) is to separate 5-HMF and LA in the permeate from NF. More than 91% of 5-HMF and up to 62% of LA could be removed from agarose hydrolysate, while galactose was almost completely retained by NF. Further removal of LA was expected to be possible with no loss of galactose by operating the NF process in a diafiltration mode. 5-HMF and LA could be effectively separated from each other by ED. PMID:23672940

  2. Single-Cell-Arrayed Agarose Chip for in Situ Analysis of Cytotoxicity and Genotoxicity of DNA Cross-Linking Agents.

    PubMed

    Li, Lili; Wang, Weixing; Ding, Mingyu; Luo, Guoan; Liang, Qionglin

    2016-07-01

    Development of approach or device to allow continuous multiple measurements, such as integrating cytotoxic and genotoxic analysis, is quite appealing for study of the drug's activity and mechanism of action or resistance. In this study, a single-cell-arrayed agarose chip system was developed to combine cell cultivation with subsequent in situ analysis of cytotoxicity and genotoxicity of the chemotherapeutic agent. The modified alkaline comet assay coupled with the Live/Dead assay was used to monitor the interstrand cross-links (ICLs) formation and the cytotoxic effects in different glioma cell lines. In addition, the ICL-induced double strand breaks (DSBs) was measured on the chip to reflect the level of ICLs indirectly. Compared with the traditional methods, the microarray agarose device offers higher throughput, reproducibility, and robustness, exhibiting good potential for high-content drug screening. PMID:27269449

  3. Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt(II)-carboxymethylaspartate crosslinked agarose.

    PubMed

    Chaga, G; Bochkariov, D E; Jokhadze, G G; Hopp, J; Nelson, P

    1999-12-24

    A natural 19-amino-acid poly-histidine affinity tag was cloned at the N-terminus of three recombinant proteins. The vectors containing the DNA of the fusion proteins were used for transformation of Escherichia coli DH5alpha cells. Each protein was expressed, extracted and purified in one chromatographic step. The purification procedure for each protein can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent--Co2+-carboxymethylaspartate agarose Superflow--was utilized at linear flow-rates as high as 5 cm/min. The final preparation of each protein is with purity greater than 95% as ascertained by sodium dodecyl sulfate-electrophoresis. Recovery for each purified protein was higher than 77% of the initial loaded amount as judged by biological activity. The operational capacity of Co2+-carboxymethylaspartate agarose for each protein was determined. PMID:10669292

  4. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali

    2016-04-01

    A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. PMID:26838857

  5. Inhibition of colony formation in agarose of metastatic human breast carcinoma and melanoma cells by synthetic glycoamine analogs.

    PubMed

    Glinsky, G V; Mossine, V V; Price, J E; Bielenberg, D; Glinsky, V V; Ananthaswamy, H N; Feather, M S

    1996-05-01

    We studied the influence of 10 synthetic glycoamine analogs on colony formation in 0.3 and 0.9% agarose by metastatic human breast carcinoma (MDA-MB-435) and melanoma (TXM-13) cells. Nine synthetic analogs significantly inhibited the colony formation in 0.9% agarose of MDA-MB-435 human breast carcinoma cells; five compounds caused a 73-83% reduction of colony formation. Seven synthetic glycoamines caused a significant inhibition of colony formation in 0.9% agarose by TXM-13 melanoma cells with the inhibitory effect ranging from 71 to 87%. The 50% inhibition (I50) doses and relative activity rank of the compounds were similar for both breast carcinoma and melanoma cell lines. The murine B16 melanoma cell aggregation assay was employed to elucidate the potential mechanism(s) of the inhibitory activity of synthetic glycoamines. The relative activity ranks of the compounds based on the independently determined I50 doses for both cell aggregation and clonogenic growth assays were very similar for the four most active synthetic analogs and clearly indicated the importance of hydrophobic amino acid in mediating the bioactivity of synthetic glycoamines. In both experimental systems (clonogenic growth in agarose and cell aggregation assay) the leading compound was N-(1-deoxy-D-fructos-1-yl)-D-leucine (Fru-D-Leu) and the least active analog was N-(l-deoxy-D-fructos-1-yl)-glycine (Fru-Gly). These results show that synthetic glycoamines may act by competing for specific carbohydrate-lectin interactions, particularly those involving beta-galactoside-specific lectins expressed on metastatic cells. PMID:8674280

  6. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  7. Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity

    PubMed Central

    Vetcher, Alexandre A.; McEwen, Abbye E.; Abujarour, Ramzey; Hanke, Andreas; Levene, Stephen D.

    2010-01-01

    Agarose-gel electrophoresis has been used for more than thirty years to characterize the linking-number (Lk) distribution of closed-circular DNA molecules. Although the physical basis of this technique remains poorly understood, the gel-electrophoretic behavior of covalently closed DNAs has been used to determine the local unwinding of DNA by proteins and small-molecule ligands, characterize supercoiling-dependent conformational transitions in duplex DNA, and to measure helical-repeat changes due to shifts in temperature and ionic strength. Those results have been analyzed by assuming that the absolute mobility of a particular topoisomer is mainly a function of the integral number of superhelical turns, and thus a slowly varying function of plasmid molecular weight. In examining the mobilities of Lk topoisomers for a series of plasmids that differ incrementally in size over more than one helical turn, we found that the size-dependent agarose-gel mobility of individual topoisomers with identical values of Lk (but different values of the excess linking number, ΔLk) vary dramatically over a duplex turn. Our results suggest that a simple semi-empirical relationship holds between the electrophoretic mobility of linking-number topoisomers and their average writhe in solution. PMID:20346570

  8. In vitro study of using calcium phosphate cement as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas.

    PubMed

    Kai-Chiang, Yang; Ching-Yao, Yang; Chang-Chin, Wu; Tzong-Fu, Kuo; Feng-Huei, Lin

    2007-12-15

    In this study, the feasibility of using calcium phosphate cement (CPC) as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas was evaluated. We fabricated a chamber by CPC and utilized X-ray diffraction, Scanning electron microscope and Mercury intrusion porosimetry to identify the characters of the CPC chamber. The nominal molecular weight cut-off and cytotoxicity of CPC chamber were also evaluated. An insulinoma cell line (RIN-m5F) was chosen as insulin source and encapsulated in agarose microspheres and then enclosed in preformed CPC chamber. Insulin secretion was analyzed by Enzyme-linked immunosorbant assay to evaluate the function of insulinoma enclosed in CPC chamber. Results showed that the CPC chamber was non-cytotoxicity to insulinoma and can block the penetration of molecules which molecular weight larger than 12.4 kDa. Insulinoma inside the CPC chamber can secrete insulin in stable level for 30 days. This study indicated that we may use CPC as immunoisolative material to enclose insulinoma/agarose microspheres as bioartificial pancreas. PMID:17514757

  9. Reversible covalent immobilization of Trametes villosa laccase onto thiolsulfinate-agarose: An insoluble biocatalyst with potential for decoloring recalcitrant dyes.

    PubMed

    Gioia, Larissa; Rodríguez-Couto, Susana; Menéndez, María Del Pilar; Manta, Carmen; Ovsejevi, Karen

    2015-01-01

    The development of a solid-phase biocatalyst based on the reversible covalent immobilization of laccase onto thiol-reactive supports (thiolsulfinate-agarose [TSI-agarose]) was performed. To achieve this goal, laccase-producing strains isolated from Eucalyptus globulus were screened and white rot fungus Trametes villosa was selected as the best strain for enzyme production. Reduction of disulfide bonds and introduction of "de novo" thiol groups in partially purified laccase were assessed to perform its reversible covalent immobilization onto thiol-reactive supports (TSI-agarose). Only the thiolation process dramatically improved the immobilization yield, from 0% for the native and reduced enzyme to 60% for the thiolated enzyme. Mild conditions for the immobilization process (pH 7.5 and 4°C) allowed the achievement of nearly 100% of coupling efficiency when low loads were applied. The kinetic parameters, pH, and thermal stabilities for the immobilized biocatalyst were similar to those for the native enzyme. After the first use and three consecutives reuses, the insoluble derivative kept more than 80% of its initial capacity for decolorizing Remazol Brilliant Blue R, showing its suitability for color removal from textile industrial effluents. The possibility of reusing the support was demonstrated by the reversibility of enzyme-support binding. PMID:25196324

  10. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  11. Simian Virus 40 Deoxyribonucleic Acid Synthesis: Analysis by Gel Electrophoresis

    PubMed Central

    Tegtmeyer, Peter; Macasaet, Francisco

    1972-01-01

    An agarose-gel electrophoresis technique has been developed to study simian virus 40 deoxyribonucleic acid (DNA) synthesis. Superhelical DNA I, relaxed DNA II, and replicative intermediate (RI) molecules were clearly resolved from one another for analytical purposes. Moreover, the RI molecules could be identified as early or late forms on the basis of their electrophoretic migration in relation to that of DNA II. The technique has been utilized to study the kinetics of simian virus 40 DNA synthesis in pulse and in pulse-chase experiments. The average time required to complete the replication of prelabeled RI molecules and to convert them into DNA I was approximately 10 min under the experimental conditions employed. PMID:4343542

  12. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  13. Fluorescent thin gel films using organic dyes and pigments

    NASA Astrophysics Data System (ADS)

    Nakazumi, Hiroyuki; Takashi, Tarao; Taniguchi, Shin-ichi; Nanto, Hidehito

    1997-10-01

    New organic-inorganic fluorescent thin gel films included with laser dyes or fluorescent organic pigments have been prepared for display application. The florescent dyes (benzoxazolium, pyrromethene, and rhodamine dyes) and super-fine particles of fluorescent pigments (coumarin and perylene) were successfully incorporated into thin silicate gel films prepared from tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), and methoxysilane oligomer (MTSO) under acid catalyzed hydrolysis. The blue, green, and red luminescence were observed from these thin films (thickness: 100 - 400 nm), respectively. Fluorescence spectra, fluorescent quantum yield and lifetime of thin gel films are examined. Fluorescent peaks for most of dyes and pigments used in gel films were similar to those in solution, and fluorescent lifetime for dyes and pigments used in gel films were 2.9 - 4.5 ns. Photostability of fluorescent gel films is dependent on fluorescent organic dyes and pigments used and/or silicate gel matrixes. Coumarin and perylene pigments have higher fluorescent quantum yield in gel film prepared from MTSO. The large Stokes shift was observed in fluorescent gel film using coumarin and benzoxazolium dyes. The coumarin and perylene pigments are significantly photo- stable in gel film prepared from MTSO, and photodegradation of perylene red after irradiation of 500 W Xi-lamp for 30 min is below 20%.

  14. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-01-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910

  15. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  16. Gel-Filled Holders For Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.

  17. High-Frequency Alternating-Crossed-Field Gel Electrophoresis WithNeutral or Slightly Charged Interpenetrating Networks to Improve DNASeparation

    SciTech Connect

    Boyd, B.; Prausnitz, J.; Blanch, H.

    1998-07-01

    Toward improving DNA separations, this work reports theeffects of high-frequency square-wave AC fields superimposedperpendicular to the direct current (DC) separation field on DNAmigration in both polyacrylamide-based interpenetrating networks (IPNs)and in agarose networks. Compared to standard polyacrylamide gels, IPNsallow the separation of larger DNA (9000 bp vs. 5000 bp at 5 V/cm). Innovel polyacrylamide-based IPNs, an alternating current (AC) field of 5Hz increased the maximum DNA size separable. This effect was extended tolarger DNA sizes with increasing electric-field strength up to andapparently beyond the power supply-limited maximum electric-fieldstrength of 48 V/cm. The orthogonal AC field also increased mobility.These two results combine to yield a reduction in separation time of upto a factor of 20 in novel polyacrylamide-based IPNs. When negativelycharged acrylic-acid groups were incorporated into the IPNs, the use ofthe AC field changed the DNA-network interaction, which altered the sizedependence of DNA mobility. In agarose gels, an AC field of 50 Hzincreased the size range separable; however, there was no increase in DNAmobility. There was no change in size dependence of mobility in an ACfield when the number of charged groups in the agarose network wasincreased. Based on results in the literature, possible mechanisms wereexamined for the effects of the AC field on DNA separation.

  18. Detrapping Particles in a Gel : A Numerical Study

    NASA Astrophysics Data System (ADS)

    Dubé, Antoine; Torres, Francis; Slater, Gary W.

    2009-03-01

    Pulsed fields are widely used in gel electrophoretic separations to increase resolution. For instance, Boyde & To [1] presented experimental results for the separation of spherical particles using pulsed fields. They first used alternating fields of fixed amplitudes (E±=±| E |) applied in the forward direction for a duration twice as long as in the backward direction. They then used field interruption in order to allow particles to thermally detrap. In both cases, they reported that using a pulsed field makes the particles migrate faster. We model the gel used in electrophoresis as a 2D system of obstacles on a lattice. We use a method that allows us to calculate the exact mean velocity of a particle for Monte-Carlo simulations to first reproduce the experimental results presented above. We then investigate different signals (e.g., telegraph signal) to determine the optimal conditions. Optimal conditions can be either higher velocities or larger velocity differences between particles. [4pt] [1] Pulsed-field acceleration: The electrophoretic behavior of large spherical particles in agarose gels, Electrophoresis, 1993.

  19. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  20. Modeling chemoresponsive polymer gels.

    PubMed

    Kuksenok, Olga; Deb, Debabrata; Dayal, Pratyush; Balazs, Anna C

    2014-01-01

    Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources. PMID:24498954

  1. Cell viability in a wet silica gel.

    PubMed

    Nieto, Alejandra; Areva, Sami; Wilson, Timothy; Viitala, Reeta; Vallet-Regi, Maria

    2009-11-01

    A modified two-step sol-gel route using silicon ethoxide (TEOS) has been used to synthesize amorphous sol-gel-derived silica, which has been successfully used as a cell encapsulation matrix for 3T3 mouse fibroblasts and CRL-2595 epithelial cells due to its non-toxicity. The sol-gel procedure comprised a first, low pH hydrolysis step, followed by a neutral condensation-gelation step. A high water-to-TEOS ratio and the addition of d-glucose as a porogen and source of nutrients were chosen to minimize silica dissolution and improve the biocompatibility of the process. Indeed, the cell integrity in the encapsulation process was preserved by alcohol removal from the starting solution. Cells were then added in a buffered medium, causing rapid gelation and entrapment of the cells within a randomly structured siloxane matrix in the shape of a monolith, which was maintained in the wet state. MTT and alamarBlue assays were used to check the cytotoxicity of the silica gels and the viability of entrapped cells at initial times in contact with silica. To improve cell attachment, cell clumping experiments - where groups of cells were formed - were designed, rendering improved viability. The obtained materials are therefore excellent candidates for designing tissue-culture scaffolds and implantable bioreactors for biomedical applications. PMID:19481618

  2. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  3. Toward sol-gel-based sensors

    SciTech Connect

    Jordan, J.D.; Ingersoll, C.M.; Dunbar, R.A.

    1995-12-31

    Advances in biotechnology have produced a variety of antibodies and other biomolecules that possess selective recognition capabilities. Current techniques for the immobilization of these biomolecules typically involve multistep derivatization of a primary substrate, which is labor intensive and often requires large volumes of costly reagents. Further, these immobilization chemistries often adversely affect the characteristic properties of the protein (e.g., the binding affinity). As a result, the need for fast, accurate, inexpensive, and simple to operate diagnostic assays escalates. Because of their room temperature processing, transparency, inertness, and tunable pore structure, sol-gel-derived composites represent promising chemical and biosensing platforms. To date, many researchers have entrapped proteins and enzymes in sol-gel monoliths, and found that they retain some of their native properties. Our group first reported on the affinity of a sol-gel entrapped antibody. However, although these biogel monoliths were promising, analyte diffusion through the monolith matrix is slow, resulting in long response times. Thus, it is clear that the next level of sol-gel-derived biosensor must depend on thin film technology. In the current work, the affinity of fluorescein entrapped within a sol-gel derived thin film for the anti fluorescent hapten, 5- (and 6-)-carboxy 4{prime}, 5{prime}-dimethylfluorescein, is investigated. A novel film preparation technique will be introduced, and the response and response times of these films as a function of processing and storage conditions will be discussed.

  4. Novel application of PhastSystem polyacrylamide gel electrophoresis using restriction fragment length polymorphism--internal transcribed spacer patterns of individuals for molecular identification of entomopathogenic nematodes.

    PubMed

    Pamjav, H; Triga, D; Buzás, Z; Vellai, T; Lucskai, A; Adams, B; Reid, A P; Burnell, A; Griffin, C; Glazer, I; Klein, M G; Fodor, A

    1999-06-01

    différences! [editorial] [editorial]onomic way of identifying and assigning nematodes to taxons, which had already been determined either by comparative sequence analysis of nuclear rDNA internal transcribed spacer (ITS) region or by other methods of molecular or conventional taxonomy, is provided. Molecular identification of entomopathogenic nematodes (EPN) can be upgraded by basing it on PhastSystem polyacrylamide gel electrophoresis (PAGE) analysis of restriction fragment length polymorphism (RFLP) patterns of polymerase chain reaction (PCR)-amplified DNA derived from single nematodes of Steinernema or Heterorhabditis spp. Although analysis from single worms has previously been made on agarose gel, the resolution on PhastSystem PAGE gel is much higher. The DNA sequences selected for analysis were those constituting the internal transcribed spacer region between the 18S and 26S rDNA genes within the rRNA operon. RFLP analysis was carried out by gel electrophoresis on the PhastSystem (Pharmacia) as detailed elsewhere (Triga et al., Electrophoresis 1999, 20, 1272-1277. The downscaling from conventional agarose to PhastSystem gels resulted in pattern of DNA fragments differing from those obtained with agarose gel electrophoresis under conventional conditions by increasing the number of detected fragments. The approach supported previous species identifications and was able to identify several unclassified isolates, such as those from Hungary and Ireland, and provides a method for identification of previously unclassified strains. We confirmed that Heterorhabditis "Irish Type", represented by two strains of different geographical origin, comprise a species different from H. megidis. We also confirmed that strain IS5 belongs to the species H. indicus rather than to H. bacteriophora, as had been suggested previously. PMID:10380767

  5. Monolithic diphasic gels of mullite by sol-gel process under ultrasound stimulation.

    PubMed

    Vollet, D R; Donatti, D A; Domingos, R N; de Oliveira, I

    1998-06-01

    Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (approximately 34 A) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300 degrees C. PMID:11270341

  6. A novel homocystine-agarose adsorbent for separation and preconcentration of nickel in table salt and baking soda using factorial design optimization of the experimental conditions.

    PubMed

    Hashemi, Payman; Rahmani, Zohreh

    2006-02-28

    Homocystine was for the first time, chemically linked to a highly cross-linked agarose support (Novarose) to be employed as a chelating adsorbent for preconcentration and AAS determination of nickel in table salt and baking soda. Nickel is quantitatively adsorbed on a small column packed with 0.25ml of the adsorbent, in a pH range of 5.5-6.5 and simply eluted with 5ml of a 1moll(-1) hydrochloric acid solution. A factorial design was used for optimization of the effects of five different variables on the recovery of nickel. The results indicated that the factors of flow rate and column length, and the interactions between pH and sample volume are significant. In the optimized conditions, the column could tolerate salt concentrations up to 0.5moll(-1) and sample volumes beyond 500ml. Matrix ions of Mg(2+) and Ca(2+), with a concentration of 200mgl(-1), and potentially interfering ions of Cd(2+), Cu(2+), Zn(2+) and Mn(2+), with a concentration of 10mgl(-1), did not have significant effect on the analyte's signal. Preconcentration factors up to 100 and a detection limit of 0.49mugl(-1), corresponding to an enrichment volume of 500ml, were obtained for the determination of the analyte by flame AAS. Application of the method to the determination of natural and spiked nickel in table salt and baking soda solutions resulted in quantitative recoveries. Direct ETAAS determination of nickel in the same samples was not possible because of a high background observed. PMID:18970514

  7. Viscoelasticity of silica gels

    SciTech Connect

    Scherer, G.W.

    1995-12-01

    The response of silica gels to mechanical loads depends on the properties of the solid phase and the permeability of the network. Understanding this behavior is essential for modeling of stresses developed during drying or heating of gels. The permeability and the mechanical properties are readily determined from a simple beam-bending experiment, by measuring the load relaxation that occurs at constant deflection. Load decay results from movement of the liquid within the network; in addition, there may be viscoelastic relaxation of the network itself. Silica gel is viscoelastic in chemically aggressive media, but in inert liquids (such as ethanol or acetone) it is elastic. Experiments show that the viscoelastic relaxation time decreases as the concentration and pH of the water in the pore liquid increase. During drying, the permeability decreases and the viscosity increases, both exhibiting a power-law dependence on density of the gel network.

  8. Testosterone Nasal Gel

    MedlinePlus

    ... enough natural testosterone). Testosterone nasal gel is used only for men with low testosterone levels caused by ... is a controlled substance. Prescriptions may be refilled only a limited number of times; ask your pharmacist ...

  9. Microfluidics with Gel Emulsions

    NASA Astrophysics Data System (ADS)

    Priest, Craig; Surenjav, Enkhtuul; Herminghaus, Stephan; Seemann, Ralf

    2006-03-01

    Microfluidic processing is usually achieved using single phase liquids. Instead, we use monodisperse emulsions to compartment liquids within microchannel geometries. At low continuous phase volume fractions, droplets self-organize to form well-defined arrangements, analogous to foam. While it is well-known that confined geometries can induce rearrangement of foam compartments at the millimeter-scale, similar dynamics are also expected for gel emulsions. We have studied online generation, organization and manipulation of gel emulsions using a variety of microchannel geometries. ``Passive'' reorganization, based on fixed channel geometries, can be supplemented by ``active'' manipulation by incorporating a ferrofluid phase. A ferromagnetic phase facilitates reorganization of liquid compartments on demand using an electromagnetic trigger. Moreover, coalescence between adjacent compartments within a gel emulsion can be induced using electrical potential. Microfluidics using gel emulsions will be well-suited for combinatorial chemistry, DNA sequencing, drug screening and protein crystallizations.

  10. Structural evolution and stability of sol gel biocatalysts

    NASA Astrophysics Data System (ADS)

    Rodgers, L. E.; Knott, R. B.; Holden, P. J.; Pike, K. J.; Hanna, J. V.; Foster, L. J. R.; Bartlett, J. R.

    2006-11-01

    Immobilisation strategies for catalytic enzymes are important as they allow recovery and reuse of the biocatalysts. In this work, sol-gel matrices have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme. The sol-gel bioencapsulate is produced through fluoride-catalysed hydrolysis of mixtures of tetramethylorthosilicate (TMOS) and methyltrimethoxysilane (MTMS) in the presence of CALB, yielding materials with controlled pore sizes and surface chemistries. Sol-gel matrices prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analytical techniques applied to date. Small angle neutron scattering (SANS) allows such multi-component systems to be characterised through contrast matching. In the sol-gel bioencapsulate system at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35%. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. Essentially, the inclusion of CALB modulates silicate speciation during evolution of the inorganic network, leading to associated variations in SANS contrast. The SANS protocol developed here may be applied more generally to other encapsulated enzyme systems.

  11. Preparation of chitosan gel

    NASA Astrophysics Data System (ADS)

    Moussaoui, Y.; Mnasri, N.; Elaloui, E.; Ben Salem, R.; Lagerge, S.; de Menorval, L. C.

    2012-06-01

    Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  12. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  13. Conformance Improvement Using Gels

    SciTech Connect

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  14. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  15. Polyacrylamide gel electrophoresis.

    PubMed

    Chrambach, A; Rodbard, D

    1971-04-30

    Polyacrylamide gel electrophoresis (PAGE) provides a versatile, gentle, high resolution method for fractionation and physical-chemical characterization of molecules on the basis of size, conformation, and net charge. The polymerization reaction can be rigorously controlled to provide uniform gels of reproducible, measurable pore size over a wide range. This makes it possible to obtain reproducible relative mobility (Rf) values as physical-chemical constants. Application and extension of Ogston's (random fiber) model for a gel allows for calculation of molecular volume, surface area, or radius, free mobility, and valence from RJ measurements at several gel concentrations, to calculate gel concentration for optimal resolution, and to predict behavior of macromolecules on gel gradients by computerized methods. Extension of classical moving boundary theory has been used to generate multiphasic buffer systems (providing selective stacking, unstacking, restacking, and preparative steady-state-stacking) with known operating characteristics for any pH at 0 degrees and 25 degrees C. A general strategy for isolation of macromolecules and for macromolecular mapping has been developed. Preparative scale PAGE is operational for milligram loads and feasible for gram quantities. PMID:4927678

  16. Genotoxicity effect, antioxidant and biomechanical correlation: experimental study of agarose-chitosan bone graft substitute in New Zealand white rabbit model.

    PubMed

    Jebahi, Samira; Ben Saleh, Ghada; Saoudi, Mongi; Besaleh, Salma; Oudadesse, Hassane; Mhadbi, Moufida; Rebai, Tarek; Keskes, Hassib; El Feki, Abdelfattah

    2014-08-01

    Bone loss associated with skeletal trauma or metabolic diseases often requires bone grafting. In such situations, a biomaterial is necessary for migrated cells to produce new tissue. In this study, agarose-chitosan was implanted in the femoral condyle of New Zealand White rabbits that were divided into three groups: Group I was used as control; Groups II and III were used as implanted tissue with agarose-chitosan and presenting empty defects, respectively. This study evaluated the agarose-chitosan biocompatibility by determining the in vivo genotoxicity, oxidative stress balance that correlated with the hardness mechanical property. Moreover, the histopathological and quantitative elements analyzed by using inductively coupled plasma optical emission spectrometry were determined. After 30 days of implantation, the in vivo analysis of genotoxicity showed that agarose-chitosan did not induce chromosome aberration or micronucleus damage. A significant decrease in thiobarbituric and acid-reactive substance was observed after agarose-chitosan implantation in the bone tissue. Superoxide dismutase, catalase and glutathione peroxidase were significantly enhanced in agarose-chitosan-treated group compared with that of control group. A negative correlation coefficient of the mechanical property with malonyldialdehyde level was detected (R = -0.998). The histological study exhibited a significantly increased angiogenesis and newly formed tissue. No presence of inflammatory process, necrotic or fibrous tissue was detected. Major and trace elements such as Ca, P, Zn, Mg and Fe were increased significantly in the newly formed bone. These findings show that agarose-chitosan biomaterial implantation might be effective for treating trauma and bone regeneration. PMID:25205747

  17. Dataset of gene cloning and gel filtration chromatography of R-est6.

    PubMed

    Soni, Surabhi; Odaneth, Annamma A; Lali, Arvind M; Chandrayan, Sanjeev K

    2016-06-01

    The data presented in this article are connected to the research article entitled "Expression, purification and biochemical characterization of a family 6 carboxylesterase from Methylococcus capsulatus (bath)" (Soni et al., 2016 [1]). The family 6 carboxylesterases are the smallest and display broad substrate specificity. The 1 kb gene encoding, a family 6 carboxylesterase - R-est6, was amplified from the genome of M. capsulatus (bath strain), and showed in the agarose gel. The corresponding purified protein, after overexpression in Escherichia coli, was biochemically studied in the research article (Soni et al., 2016 [1]). R-est6 has hydrophobic patches on the surface so, it is expected to show oligimeric forms. Here, we have confirmed the presence of oligomers by gel filtration chromatography data and the proteins belonging to the different peaks are shown on a SDS-PAGE. PMID:27222859

  18. The influence of ionic strength on DNA diffusion in gel networks

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Jee, Ah-Young; Kim, Hyeong-Ju; Granick, Steve

    Cations are known to reduce the rigidity of the DNA molecules by screening the negative charge along the sugar phosphate backbone. This was established by optical tweezer pulling experiment of immobilized DNA strands. However, little is known regarding the influence of ions on the motion of DNA molecules as they thread through network meshes. We imaged in real time the Brownian diffusion of fluorescent labeled lambda-DNA in an agarose gel network in the presence of salt with monovalent or multivalent cations. Each movie was analyzed using home-written program to yield a trajectory of center of the mass and the accompanying history of the shape fluctuations. One preliminary finding is that ionic strength has a profound influence on the slope of the trace of mean square displacement (MSD) versus time. The influence of ionic strength on DNA diffusion in gel networks.

  19. High performance gel imaging with a commercial single lens reflex camera

    NASA Astrophysics Data System (ADS)

    Slobodan, J.; Corbett, R.; Wye, N.; Schein, J. E.; Marra, M. A.; Coope, R. J. N.

    2011-03-01

    A high performance gel imaging system was constructed using a digital single lens reflex camera with epi-illumination to image 19 × 23 cm agarose gels with up to 10,000 DNA bands each. It was found to give equivalent performance to a laser scanner in this high throughput DNA fingerprinting application using the fluorophore SYBR Green®. The specificity and sensitivity of the imager and scanner were within 1% using the same band identification software. Low and high cost color filters were also compared and it was found that with care, good results could be obtained with inexpensive dyed acrylic filters in combination with more costly dielectric interference filters, but that very poor combinations were also possible. Methods for determining resolution, dynamic range, and optical efficiency for imagers are also proposed to facilitate comparison between systems.

  20. Dataset of gene cloning and gel filtration chromatography of R-est6

    PubMed Central

    Soni, Surabhi; Odaneth, Annamma A.; Lali, Arvind M.; Chandrayan, Sanjeev K.

    2016-01-01

    The data presented in this article are connected to the research article entitled “Expression, purification and biochemical characterization of a family 6 carboxylesterase from Methylococcus capsulatus (bath)” (Soni et al., 2016 [1]). The family 6 carboxylesterases are the smallest and display broad substrate specificity. The 1 kb gene encoding, a family 6 carboxylesterase – R-est6, was amplified from the genome of M. capsulatus (bath strain), and showed in the agarose gel. The corresponding purified protein, after overexpression in Escherichia coli, was biochemically studied in the research article (Soni et al., 2016 [1]). R-est6 has hydrophobic patches on the surface so, it is expected to show oligimeric forms. Here, we have confirmed the presence of oligomers by gel filtration chromatography data and the proteins belonging to the different peaks are shown on a SDS-PAGE. PMID:27222859

  1. Examination of Interactions of Oppositely Charged Proteins in Gels

    SciTech Connect

    Ramasamy,P.; El-Maghrabi, M.; Halada, G.; Miller, L.; Rafailovich, M.

    2007-01-01

    Understanding the interactions of proteins with one another serves as an important step for developing faster protein separation methods. To examine protein-protein interactions of oppositely charged proteins, fluorescently labeled albumin and poly-L-lysine were subjected to electrophoresis in agarose gels, in which the cationic albumin and the anionic poly-L-lysine were allowed to migrate toward each other and interact. Fluorescence microscopy was used to image fluorescently tagged proteins in the gel. The secondary structure of the proteins in solution was studied using conventional FTIR spectroscopy. Results showed that sharp interfaces were formed where FITC tagged albumin met poly-L-lysine and that the interfaces did not migrate after they had been formed. The position of the interface in the gel was found to be linearly dependent upon the relative concentration of the proteins. The formation of the interface also depended upon the fluorescent tag attached to the protein. The size of the aggregates at the interface, the fluorescence intensity modifications, and the mobility of the interface for different pore sizes of the gel were investigated. It was observed that the interface was made up of aggregates of about 1 {mu}m in size. Using dynamic light scattering, it was observed that the size of the aggregates that formed due to interactions of oppositely charged proteins depended upon the fluorescent tags attached to the proteins. The addition of small amounts of poly-L-lysine to solutions containing FITC albumin decreased the zeta potential drastically. For this, we propose a model suggesting that adding small amounts of poly-L-lysine to solutions containing FITC -albumin favors the formation of macromolecular complexes having FITC albumin molecules on its surface. Although oppositely charged FITC tagged poly-L-lysine and FITC tagged albumin influence each other's migration velocities by forming aggregates, there were no observable secondary structural

  2. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    PubMed Central

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  3. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis.

    PubMed Central

    Carle, G F; Olson, M V

    1984-01-01

    A simple agarose-gel apparatus has been developed that allows the separation of DNA molecules in the size range from 50 kb to well over 750 kb, the largest size for which size standards were available. The apparatus is based on the recent discovery that large DNA molecules are readily fractionated on agarose gels if they are alternately subjected to two approximately orthogonal electric fields. The switching time, which was on the order of 20-50 sec in our experiments, can be adjusted to optimize fractionation in a given size range. The resolution of the technique is sufficient to allow the fractionation of a sample of self-ligated lambda DNA into a ladder of approximately 15 bands, spaced at 50 kb intervals. We have applied the technique to the fractionation of yeast DNA into 11 distinct bands, several of which have been shown by DNA-DNA hybridization to hybridize uniquely to different chromosome-specific hybridization probes. In this paper, we describe the design of the apparatus, the electrophoretic protocol, and the sample-handling procedures that we have employed. Images PMID:6379602

  4. Investigations on gel forming media use in low gravity bioseparations research

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Szlag, David C.; Plank, Lindsay D.; Delcourt, Scott G.; Kunze, M. Elaine

    1989-01-01

    Research on gelling media and conditions suitable for the preservation of the spatial configuration of cell suspensions and macromolecular solutions after separation in free fluid during low gravity experiments is presented. The examples studied included free electrophoresis of cells in a cylindrical column and two-phase aqueous polymer separation. Microgravity electrophoresis experiments were simulated by separating model cell types (animal or human) in a vertical density gradient containing low-conductivity buffer, 1.7-6.5 percent Ficoll, 6.8-5.0 percent sucrose, and 1 percent SeaPrep low-melting temperature agarose. Upon cooling, a gel formed in the column and cells could be captured at the forming locations. Two-phase extraction experiments were simulated using two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2 percent), maltodextrin (5-7 percent), and gelatin (5-20 percent).

  5. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  6. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  7. Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Hatta, Akimitsu; Short, Robert D.

    2015-05-01

    We report a simple experimental approach to follow the transport of helium (He) plasma-generated reactive oxygen and nitrogen species (RONS) through millimetre thick agarose targets. These RONS may be either primary RONS, generated directly by the plasma jet, or secondary RONS generated for example at the surface of, or within, the material. Our experiment involves placing an agarose film over a quartz cuvette filled with deionized water. The agarose film is exposed to a He plasma jet and the UV absorption profile (of the deionized water) is recorded in real-time. Plasma exposure time, source-target distance and agarose film thickness and composition are varied to explore their effects on the depth of RONS delivery by the plasma jet. We conclude that plasma UV plays a minor role in the transport of RONS; whereas direct plasma contact and the He gas flow promote the transport of RONS into tissue. Our data indicate an accumulation of RONS within the agarose film (during plasma exposure) and a subsequent (time-lagged) release into the deionized water. Our approach can be readily adapted to other plasma sources; it can accommodate more complex biological materials, and has the potential to provide new insights into plasma-induced phenomena within real tissues.

  8. Improvement of proton exchange membrane fuel cell performance in low-humidity conditions by adding hygroscopic agarose powder to the catalyst layer

    NASA Astrophysics Data System (ADS)

    Hou, Sanying; Liao, Shijun; Xiong, Ziang; Zou, Haobin; Dang, Dai; Zheng, Ruiping; Shu, Ting; Liang, Zhenxing; Li, Xiuhua; Li, Yingwei

    2015-01-01

    A high-performance membrane electrode assembly (MEA) with agarose added to the anodic catalyst layer (CL) was successfully prepared. The MEA exhibited excellent performance at low relative humidity (RH) in an air/hydrogen proton exchange membrane fuel cell. The effects of agarose content, RH, cell temperature, and back pressure on the low-humidity performance of this MEA were investigated. The results of water contact angles and water uptake measurements reveal that the hydrophilicity of the anode is significantly improved with the addition of agarose. With a low RH of 20% and a cell temperature of 60 °C, the optimal MEA (MEA-4), containing 4 wt.% agarose in the anode CL, achieves excellent low-humidity performance: the current density reaches 960 mA cm-2 at 0.6 V and 500 mA cm-2 at 0.7 V. After 10 h of continuous operation under the same conditions, the current density decreases just slightly, from 960 to 840 mA cm-2, whereas the current density of a blank MEA without added agarose degrades sharply.

  9. DNA Length Ranges Exhibiting Distinct Separation Mechanisms in Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Beheshti, A.; van Winkle, D. H.; Rill, R. L.

    2003-03-01

    Electrophoresis was performed on double stranded DNA ranging from 200 to 194,000 bp in agarose gel concentrations from 0.4% - 1.3%. The electric field was varied from 0.62 to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study how the new interpolation equation, frac1μ(L) = frac1μL - (frac1μL - frac1μ_s)e^-L/γ (where μ_L, μ_s, and γ are independent free fitting parameters), helps to distinguish among different mechanisms of molecular transport. This exponential relation fits well when there is a smooth transition from Ogston sieving to reptation. These transitions are distinguished by so-called ``reptation plots" (plotting 3μ L/μ_rc vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945-1948). Fits deviate from the data more than two characteristic trends are observed in the reptation plots. The failure of the fits to follow the data appears to be a consequence of another separation mechanism, ``entropic trapping," occurring between the sieving and reptation regimes. The boundaries between length and field ranges where different separation mechanisms dominate are extracted from reptation plots of the best fits and the data. ``Phase diagrams" expressing these boundaries are derived.

  10. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  11. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-03-19

    An apparatus is described for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  12. Swelling of Olympic Gels

    NASA Astrophysics Data System (ADS)

    Lang, M.; Fischer, J.; Werner, M.; Sommer, J.-U.

    2014-06-01

    The swelling equilibrium of Olympic gels, which are composed of entangled cyclic polymers, is studied by Monte Carlo simulations. In contrast to chemically cross-linked polymer networks, we observe that Olympic gels made of chains with a larger degree of polymerization, N, exhibit a smaller equilibrium swelling degree, Q∝N-0.28ϕ0-0.72, at the same polymer volume fraction ϕ0 at network preparation. This observation is explained by a desinterspersion (reorganization with release of nontrapped entanglements) process of overlapping nonconcatenated rings upon swelling.

  13. Responsive Gel-Gel Phase Transitions in Artificially Engineered Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.

    2012-02-01

    Artificially engineered protein hydrogels provide an attractive platform for biomedical materials due to their similarity to components of the native extracellular matrix. Engineering responsive transitions between shear-thinning and tough gel phases in these materials could potentially enable gels that are both shear-thinning and tough to be produced as novel injectable biomaterials. To engineer a gel with such transitions, a triblock copolymer with thermoresponsive polymer endblocks and an artificially engineered protein gel midblock is designed. Temperature is used to trigger a transition from a single network protein hydrogel phase to a double network phase with both protein and block copolymer networks present at different length scales. The thermodynamics of network formation and resulting structural changes are established using small-angle scattering, birefringence, and dynamic scanning calorimetry. The formation of the second network is shown to produce a large, nonlinear increase in the elastic modulus as well as enhancements in creep compliance and toughness. Although the gels show yielding behavior in both the single and double network regimes, a qualitative change in the deformation mechanism is observed due to the structural changes.

  14. Sync Matrix

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  15. Process of forming a sol-gel/metal hydride composite

    DOEpatents

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  16. Gel-assisted crystallization of [Ir4(IMe)7(CO)H10](2+) and [Ir4(IMe)8H9](3+) clusters derived from catalytic glycerol dehydrogenation.

    PubMed

    Sharninghausen, Liam S; Mercado, Brandon Q; Crabtree, Robert H; Balcells, David; Campos, Jesús

    2015-11-14

    The two title clusters were formed during iridium-catalyzed glycerol dehydrogenation and display a remarkably high NHC content. They were crystallized in either agarose or polyethylene oxide gel matrices, while more conventional crystallization techniques proved unsuccessful. Cluster [Ir4(IMe)8H9](3+), with a net charge of +3, was only crystallizable with a polyoxometalate Keggin trianion. The crystal packing of this intercluster compound is discussed. Computational studies position the iridium hydrides and provide insights into the bonding. PMID:26435314

  17. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  18. How deeply cells feel: methods for thin gels

    NASA Astrophysics Data System (ADS)

    Buxboim, Amnon; Rajagopal, Karthikan; Brown, Andre'E. X.; Discher, Dennis E.

    2010-05-01

    Tissue cells lack the ability to see or hear but have evolved mechanisms to feel into their surroundings and sense a collective stiffness. A cell can even sense the effective stiffness of rigid objects that are not in direct cellular contact—like the proverbial princess who feels a pea placed beneath soft mattresses. How deeply a cell feels into a matrix can be measured by assessing cell responses on a controlled series of thin and elastic gels that are affixed to a rigid substrate. Gel elasticity E is readily varied with polymer concentrations of now-standard polyacrylamide hydrogels, but to eliminate wrinkling and detachment of thin gels from an underlying glass coverslip, vinyl groups are bonded to the glass before polymerization. Gel thickness is nominally specified using micron-scale beads that act as spacers, but gels swell after polymerization as measured by z-section, confocal microscopy of fluorescent gels. Atomic force microscopy is used to measure E at gel surfaces, employing stresses and strains that are typically generated by cells and yielding values for E that span a broad range of tissue microenvironments. To illustrate cell sensitivities to a series of thin-to-thick gels, the adhesive spreading of mesenchymal stem cells was measured on gel mimics of a very soft tissue (e.g. brain, E ~ 1 kPa). Initial results show that cells increasingly respond to the rigidity of an underlying 'hidden' surface starting at about 10-20 µm gel thickness with a characteristic tactile length of less than about 5 µm.

  19. Effect of gravity and diffusion interface proximity on the morphology of collagen gels.

    PubMed

    Roedersheimer, M T; Bateman, T A; Simske, S J

    1997-11-01

    Collagen solutions (0.25% w/v) were polymerized in microgravity (STS-77, 10 days) along with simultaneous ground controls. Assembly conditions were achieved by the passage of buffer ions across a dialysis membrane into a reaction chamber containing the dissolved collagen. The gels were analyzed macroscopically and microscopically to assess the influence of gravity and the oriented diffusion of buffer ions on the resulting product. Double-blind rankings based on visual observation of the gels established that all of the flight gels (n = 8) were more uniform in appearance than all of the ground gels (n = 6). Photography using side illumination of the gels revealed the more granular appearance of the ground gels relative to the highly uniform appearance of the flight gels. Scanning electron microscopy established this difference at the microscopic level. Proximity to the dialysis interface and the presence or absence of gravity were both found to control the porosity and uniformity of the matrix. PMID:9358322

  20. Identifying Gel-Separated Proteins Using In-Gel Digestion, Mass Spectrometry, and Database Searching: Consider the Chemistry

    ERIC Educational Resources Information Center

    Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.

    2009-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…

  1. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  2. Creating coordination-based cavities in a multiresponsive supramolecular gel.

    PubMed

    Wei, Shi-Chao; Pan, Mei; Fan, Yuan-Zhong; Liu, Haoliang; Zhang, Jianyong; Su, Cheng-Yong

    2015-05-11

    Creating cavities in varying levels, from molecular containers to macroscopic materials of porosity, have long been motivated for biomimetic or practical applications. Herein, we report an assembly approach to multiresponsive supramolecular gels by integrating photochromic metal-organic cages as predefined building units into the supramolecular gel skeleton, providing a new approach to create cavities in gels. Formation of discrete O-Pd2 L4 cages is driven by coordination between Pd(2+) and a photochromic dithienylethene bispyridine ligand (O-PyFDTE). In the presence of suitable solvents (DMSO or MeCN/DMSO), the O-Pd2 L4 cage molecules aggregate to form nanoparticles, which are further interconnected through supramolecular interactions to form a three-dimensional (3D) gel matrix to trap a large amount of solvent molecules. Light-induced phase and structural transformations readily occur owing to the reversible photochromic open-ring/closed-ring isomeric conversion of the cage units upon UV/visible light radiation. Furthermore, such Pd2 L4 cage-based gels show multiple reversible gel-solution transitions when thermal-, photo-, or mechanical stimuli are applied. Such supramolecular gels consisting of porous molecules may be developed as a new type of porous materials with different features from porous solids. PMID:25876958

  3. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  4. Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy

    PubMed Central

    Javidi, M; Heydari, M; Karimi, A; Haghpanahi, M; Navidbakhsh, M; Razmkon, A

    2014-01-01

    Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties. Methods: In this study, to solve heat transfer equation, we used COMSOL Multiphysics and to verify the model, an experimental setup has been used.  To show the accuracy of the model, simulations have been compared with experimental results. In the second part, by using experimental results of nanoparticles distribution inside Agarose gel according to various gel concentration, 0.5%, 1%, 2%, and 4%, as well as the injection velocity, 4 µL/min, 10 µL/min, 20 µL/min, and 40 µL/min, for 0.3 cc magnetite fluid, power dissipation inside gel has been calculated and used for temperature prediction inside of the gel. Results: The Outcomes demonstrated that by increasing the flow rate injection at determined concentrations, mean temperature drops. In addition, 2% concentration has a higher mean temperature than semi spherical nanoparticles distribution. Conclusion: The results may have implications for treatment of the tumor and any kind of cancer diseases. PMID:25599061

  5. A CCD-based system for the detection of DNA in electrophoresis gels by UV absorption

    NASA Astrophysics Data System (ADS)

    Mahon, Alex R.; MacDonald, John H.; Ott, Robert J.; Mainwood, Alison

    1999-06-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards.

  6. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.

    PubMed

    Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R

    2016-07-15

    The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. PMID:26826592

  7. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    NASA Astrophysics Data System (ADS)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES

  8. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  9. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  10. Fibrillar peptide gels in biotechnology and biomedicine

    PubMed Central

    Jung, Jangwook P.; Gasiorowski, Joshua Z.; Collier, Joel H.

    2012-01-01

    Peptides, peptidomimetics, and peptide derivatives that self-assemble into fibrillar gels have received increasing interest as synthetic extracellular matrices for applications in 3D cell culture and regenerative medicine. Recently, several of these fibrillizing molecules have been functionalized with bioactive components such as cell-binding ligands, degradable sequences, drug-eluting compounds, and chemical modifications for cross-linking, producing gels that can reliably display multiple factors simultaneously. This capacity for incorporating precise levels of many different biological and chemical factors is advantageous given the natural complexity of cell-matrix interactions that many current biomaterial strategies seek to mimic. In this review, recent efforts in the area of fibril-forming peptide materials are described, and advantages of biomaterials containing multiple modular elements are outlined. In addition, a few hurdles and open questions surrounding fibrillar peptide gels are discussed, including issues of the materials’ structural heterogeneity, challenges in fully characterizing the diversity of their self-assembled structures, and incomplete knowledge of how the materials are processed in vivo. PMID:20091870

  11. Semihumid gels as matrices for laser media

    NASA Astrophysics Data System (ADS)

    Larrue, Denis; Zarzycki, J.; Canva, Michael; Georges, Patrick M.; Brun, Alain

    1992-12-01

    Laser dyes were trapped in SiO2 xerogel host matrices to obtain a solid state dye laser. The evolution of the mechanical properties of two kinds of matrices, 'classic' and 'sono' gels, was followed during drying. A new impregnation process was performed on these xerogels: impregnation with a 'sono' sol. The influence of this treatment on certain physical and mechanical properties of the resulting impregnated gels was studied. The results indicate that impregnation substantially improves hardness, elastic modulus and fracture stress. The samples can then be easily polished to obtain optical quality surfaces and be used in a laser cavity. Moreover, optical properties related to laser emission of these materials such as efficiency, lifetime and longevity are better when the laser dye doped xerogels are impregnated. The organic dye molecule used was sulforhodamine 640, and results were obtained six months after their synthesis, with a pump beam working at a 5 Hz repetition rate with 450 (mu) J/pulse energy level. With the first pump shot on a fixed point of the samples, tunability from 600 to 650 nm, 60 (mu) J threshold, 2600 pump shots lifetime and a 10.5% slope efficiency were achieved using an impregnated 'sono' gel matrix.

  12. Pulsed-field gel electrophoresis (PFGE): application in population structure studies of bovine mastitis-causing streptococci.

    PubMed

    Santos-Sanches, Ilda; Chambel, Lélia; Tenreiro, Rogério

    2015-01-01

    Pulsed-field gel electrophoresis (PFGE) separates large DNA molecules by the use of an alternating electrical field, such that greater size resolution can be obtained when compared to normal agarose gel electrophoresis. PFGE is often employed to track pathogens and is a valuable typing scheme to detect and differentiate strains. Particularly, the contour-clamped homogeneous electric field (CHEF) PFGE system is considered to be the gold standard for use in epidemiological studies of many bacterial pathogens. Here we describe a PFGE protocol that was applicable to the study of bovine streptococci, namely, Streptococcus agalactiae (group B Streptococcus, GBS), Streptococcus dysgalactiae subsp. dysgalactiae (group C Streptococcus, GCS), and Streptococcus uberis-which are relevant pathogens causing mastitis, a highly prevalent and costly disease in dairy industry due to antibiotherapy and loss in milk production. PMID:25399106

  13. Heterogeneity in dermatosparaxis is shown by contraction of collagen gels.

    PubMed

    Ramshaw, J A; Mitrangas, K; Bateman, J F

    1991-01-01

    Dermal fibroblasts from sheep exhibiting a mild form of dermatosparaxis were able to contract reconstituted, fibrillar collagen gels at the same rate as control dermal fibroblasts, indicating a normal interaction between the cells and a collagenous matrix. An extract from dermatosparactic skin was shown, after partial purification, to have N-proteinase activity, although the level of activity was much lower than found in normal skin. These data show that dermatosparaxis is a heterogeneous disease, since in the severe forms of the disease the defect has been characterized as an absence of N-proteinase and an inability of the cells to interact with and contract collagen gels. PMID:2060304

  14. Harnessing Interfacially-Active Nanorods to Regenerate Severed Polymer Gels

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Kuksenok, Olga; Matyjaszewski, Krzysztof; Balazs, Anna

    2014-03-01

    With newly developed computational approaches, we design a nanocomposite that enables self-regeneration of the gel matrix when a significant portion of the material is severed. The cut instigates the dynamic cascade of cooperative events leading to the re-growth. Specifically, functionalized nanorods localize at the new interface and initiate Atom Transfer Radical Polymerization with monomers and cross-linkers in the outer solution. The reaction propagates to form a new cross-linked gel, which can be tuned to resemble the uncut material.

  15. Strategies for the crystallization of viruses: using phase diagrams and gels to produce 3D crystals of Grapevine fanleaf virus.

    PubMed

    Schellenberger, Pascale; Demangeat, Gérard; Lemaire, Olivier; Ritzenthaler, Christophe; Bergdoll, Marc; Oliéric, Vincent; Sauter, Claude; Lorber, Bernard

    2011-05-01

    The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly₂₉₇Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies. PMID:21352920

  16. Clarification Procedure for Gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G.; Simpson, Norman R.

    1987-01-01

    Procedure developed to obtain transparent gels with consistencies suitable for crystal growth, by replacing sodium ions in silicate solution with potassium ions. Clarification process uses cation-exchange resin to replace sodium ions in stock solution with potassium ions, placed in 1M solution of soluble potassium salt. Slurry stirred for several hours to allow potassium ions to replace all other cations on resin. Supernatant solution decanted through filter, and beads rinsed with distilled water. Rinsing removes excess salt but leaves cation-exchange beads fully charged with potassium ions.

  17. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    NASA Astrophysics Data System (ADS)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  18. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc-silicon dioxide matrix coatings. 175.390... Coatings § 175.390 Zinc-silicon dioxide matrix coatings. Zinc-silicon dioxide matrix coatings may be safely...-base indicator. Potassium dichromate Removed by water washing. Silica gel Sodium silicate Zinc,...

  19. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  20. Foam and gel decontamination techniques

    SciTech Connect

    McGlynn, J.F.; Rankin, W.N.

    1989-01-01

    The Savannah River Site is investigating decontamination technology to improve current decontamination techniques, and thereby reduce radiation exposure to plant personnel, reduce uptake of radioactive material, and improve safety during decontamination and decommissioning activities. When decontamination chemicals are applied as foam and gels, the contact time and cleaning ability of the chemical increases. Foam and gel applicators apply foam or gel that adheres to the surface being decontaminated for periods ranging from fifteen minutes (foam) to infinite contact (gel). This equipment was started up in a cold environment. The desired foam and gel consistency was achieved, operators were trained in its proper maintenance and operation, and the foam and gel were applied to walls, ceilings, and hard to reach surfaces. 17 figs.

  1. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  2. Characterization of β -Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose.

    PubMed

    Baraldo Junior, Anderson; Borges, Diogo G; Tardioli, Paulo W; Farinas, Cristiane S

    2014-01-01

    β -Glucosidase (BGL) is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger cultivated under solid-state fermentation (SSF) was partially purified and fully characterized in terms of optimum pH, temperature, and thermostability. The single-step purification using MANAE-agarose in a chromatographic column yielded an enzyme solution with specific activity (17.1 IU/mg protein) adequate for the characterization procedures. Electrophoresis SDS-PAGE and size-exclusion chromatography analysis resulted in an estimated molecular mass of 60 kDa. Higher enzyme activities were found in the range between 40 and 65°C and between pH 4 and 5.5, indicating an interesting characteristic for application in the hydrolysis of lignocellulosic biomass for biofuels production. Thermostability studies of purified BGL resulted in half-lives at 37°C of 56.3 h and at 50°C of 5.4 h. These results provide support for further studies of this enzyme towards revealing its potential biotechnological applications. PMID:24940510

  3. Assaying Bcr-Abl kinase activity and inhibition in whole cell extracts by phosphorylation of substrates immobilized on agarose beads

    PubMed Central

    Wu, Ding; Nair-Gill, Evan; Sher, Dorie A.; Parker, Laurie L.; Campbell, Jennifer M.; Siddiqui, Mariah; Stock, Wendy; Kron, Stephen J.

    2015-01-01

    There is a current and increasing demand for simple, robust, nonradioactive assays of protein tyrosine kinase activity with applications for clinical diagnosis and high-throughput screening of potential molecularly targeted therapeutic agents. One significant challenge is to detect and measure the activity of specific kinases with key roles in cell signaling as an approach to distinguish normal cells from cancer cells and as a means of evaluating targeted drug efficacy and resistance in cancer cells. Here, we describe a method in which kinase substrates fused to glutathione-S-transferase and immobilized on glutathione agarose beads are phosphorylated, eluted, and then assayed to detect kinase activity. The activity of recombinant, purified c-Abl kinase or Bcr-Abl kinase in whole cell extracts can be detected with equivalent specificity, sensitivity, and reproducibility. Similarly, inhibition of recombinant c-Abl or Bcr-Abl in cells or cell extracts by imatinib mesylate and other Bcr-Abl targeted kinase inhibitors is readily assayed. This simple kinase assay is sufficiently straightforward and robust for use in clinical laboratories and is potentially adaptable to high-throughput assay formats. PMID:16236241

  4. First-in-Human Phase 1 Trial of Agarose Beads Containing Murine RENCA Cells in Advanced Solid Tumors

    PubMed Central

    Smith, Barry H.; Parikh, Tapan; Andrada, Zoe P.; Fahey, Thomas J.; Berman, Nathaniel; Wiles, Madeline; Nazarian, Angelica; Thomas, Joanne; Arreglado, Anna; Akahoho, Eugene; Wolf, David J.; Levine, Daniel M.; Parker, Thomas S.; Gazda, Lawrence S.; Ocean, Allyson J.

    2016-01-01

    PURPOSE Agarose macrobeads containing mouse renal adenocarcinoma cells (RMBs) release factors, suppressing the growth of cancer cells and prolonging survival in spontaneous or induced tumor animals, mediated, in part, by increased levels of myocyte-enhancing factor (MEF2D) via EGFR-and AKT-signaling pathways. The primary objective of this study was to determine the safety of RMBs in advanced, treatment-resistant metastatic cancers, and then its efficacy (survival), which is the secondary objective. METHODS Thirty-one patients underwent up to four intraperitoneal implantations of RMBs (8 or 16 macrobeads/kg) via laparoscopy in this single-arm trial (FDA BB-IND 10091; NCT 00283075). Serial physical examinations, laboratory testing, and PET-CT imaging were performed before and three months after each implant. RESULTS RMBs were well tolerated at both dose levels (mean 660.9 per implant). AEs were (Grade 1/2) with no treatment-related SAEs. CONCLUSION The data support the safety of RMB therapy in advanced-malignancy patients, and the preliminary evidence for their potential efficacy is encouraging. A Phase 2 efficacy trial is ongoing. PMID:27499645

  5. Polyoxometalate-based Supramolecular Gel

    NASA Astrophysics Data System (ADS)

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-05-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing.

  6. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  7. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  8. Colloidal thermoresponsive gel forming hybrids.

    PubMed

    Liu, Ruixue; Tirelli, Nicola; Cellesi, Francesco; Saunders, Brian R

    2010-09-15

    Colloidal hybrids comprise organic and inorganic components and are attracting considerable attention in the literature. Recently, we reported hybrid anisotropic microsheets that formed thermoresponsive gels in polymer solutions [Liu et al., Langmuir, 25, 490, 2009]. Here, we investigate the composition and properties of these hybrid colloids themselves in detail for the first time. Three different cationic PNIPAm (N-isopropylacrylamide) graft copolymers and two inorganic nanoparticle types (laponite and Ludox silica) were used to prepare a range of hybrids. Anisotropic microsheets only formed when laponite particles were added to the copolymer implying directed self-assembly. Aqueous dispersions of the microsheets spontaneously formed gels at room temperature and these gels were thermoresponsive. They represent a new class of gel forming colloid and are termed thermoresponsive gel forming hybrids. The compositions of the hybrids were determined from thermogravimetric analysis and those that gave gel forming behaviour identified. Variable-temperature rheology experiments showed that the elasticity of the gels increased linearly with temperature. The reversibility of the thermally-triggered changes in gel elasticity was investigated. The concentration dependence of the rheology data was well described by elastic percolation scaling theory and the data could be collapsed onto a master curve. The concentration exponent for the elastic modulus was 2.5. The strong attractive interactions that exist between the dispersed gel forming hybrids was demonstrated by the formation of stable thermoresponsive hybrid hydrogels through casting of hybrid dispersions. PMID:20561633

  9. Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells.

    PubMed

    Fischer, Roman; Kessler, Benedikt M

    2015-04-01

    We describe a "gel-assisted" proteomic sample preparation method for MS analysis. Solubilized protein extracts or intact cells are copolymerized with acrylamide, facilitating denaturation, reduction, quantitative cysteine alkylation, and matrix formation. Gel-aided sample preparation has been optimized to be highly flexible, scalable, and to allow reproducible sample generation from 50 cells to milligrams of protein extracts. This methodology is fast, sensitive, easy-to-use on a wide range of sample types, and accessible to nonspecialists. PMID:25515006

  10. Optimization of Pulsed-field Gel Electrophoresis Procedure for Bacillus cereus.

    PubMed

    Zhang, Hui Juan; Pan, Zhuo; Wei, Jian Chun; Zhang, En Min; Cai, Hong; Liang, Xu Dong; Li, Wei

    2016-03-01

    In order to develop a rapid and reliable method for B. cereus genotyping, factors influencing PFGE results, including preparation of bacterial cells embedded in agarose, lysis of embedded cells, enzymatic digestion of intact genomic DNA, and electrophoresis parameters allowing for reproducible and meaningful DNA fragment separation, were controlled. Optimal cellular growth (Luria-Bertani agar plates for 12-18 h) and lysis conditions (4 h incubation with 500 µg/mL lysozyme) produced sharp bands on the gel. Restriction enzyme NotI was chosen as the most suitable. Twenty-two isolates were analyzed by NotI digestion, using three electrophoretic parameters (EPs). The EP-a was optimal for distinguishing between isolates. The optimized protocol could be completed within 40 h which is a significant improvement over the previous methods. PMID:27109136

  11. Fiber coatings for ceramic matrix composites

    SciTech Connect

    Carpenter, H.W.; Bohlen, J.W.

    1992-08-01

    Two fiber coating concepts for ceramic matrix composites were successfully demonstrated in a preliminary study. These coatings were designed to promote toughness in composites and resist oxidation. The concepts were: (1) thin, multiple unbonded layers, and (2) a single porous layer that provided low interfacial strengths between the fiber and matrix. Chemical vapor deposited (CVD) SiC and sol-gel derived oxides were used to produce the fiber coatings. Specimens consisted of a single coated monofilament fiber and a sheath of CVD SiC to represent the matrix. Results from flexure tests showed that matrix cracks were deflected and that fibers debonded the same as in specimens made using carbon-coated fibers. Crack deflection and fiber debonding were also evident after exposure in air at elevated temperatures. 5 refs.

  12. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  13. New gel electrolytes for batteries and supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Chojnacka, J.; Acosta, J. L.; Morales, E.

    The thermal behaviour, ionic conductivity and electrochemical stability of two new gel electrolytes synthesised by gelling (433 K, 5 min) polyacrylonitryle (PAN) and poly(vinylidene fluoride) and hexafluoropropylene (PVDF-HHP) (KF2801) polymer matrixes in a solution of LiCF 3SO 3 in ethylene carbonate-γ-butyrolactone (EC-γBL) solvent mixture are reported. The high ionic conductivity obtained, together with the good electrochemical stability (the current onset is detected around 4.7 V versus Li/Li + for the PAN-based gel, and 4.5 V versus Li/Li + for the PVDF-HFP gel, make this membranes of definite interest for practical applications in lithium batteries and supercapacitors technology.

  14. Hydrogen production via urea electrolysis using a gel electrolyte

    NASA Astrophysics Data System (ADS)

    King, Rebecca L.; Botte, Gerardine G.

    2011-03-01

    A technology was demonstrated for the production of hydrogen and other valuable products (nitrogen and clean water) through the electrochemical oxidation of urea in alkaline media. In addition, this process remediates toxic nitrates and prevents gaseous ammonia emissions. Improvements to urea electrolysis were made through replacement of aqueous KOH electrolyte with a poly(acrylic acid) gel electrolyte. A small volume of poly(acrylic acid) gel electrolyte was used to accomplish the electrochemical oxidation of urea improving on the previous requirement for large amounts of aqueous potassium hydroxide. The effect of gel composition was investigated by varying polymer content and KOH concentrations within the polymer matrix in order to determine which is the most advantageous for the electrochemical oxidation of urea and production of hydrogen.

  15. Resonance Energy Transfer between protein and rhamnolipid capped ZnS quantum dots: Application in in-gel staining of proteins

    NASA Astrophysics Data System (ADS)

    Janakiraman, Narayanan; Mohan, Abhilash; Kannan, Ashwin; Pennathur, Gautam

    The interaction of proteins with quantum dots is an interesting field of research. These interactions occur at the nanoscale. We have probed the interaction of Bovine Serum Albumin (BSA) and Candida rugosa lipase (CRL) with rhamnolipid capped ZnS (RhlZnSQDs) using absorption and fluorescence spectroscopy. Optical studies on mixtures of RhlZnSQDs and proteins resulted in Förster's Resonance Energy Transfer (FRET) from proteins to QDs. This phenomenon has been exploited to detect proteins in agarose gel electrophoresis. The activity of the CRL was unaffected on the addition of QDs as revealed by zymography.

  16. Method of manufacturing a matrix for the detection of mismatches

    DOEpatents

    Ershov, Gennady Moiseevich; Mirzabekov, Andrei Darievich

    1998-01-01

    This method for preparing micromatrices consists in applying a specially-patterned intermediate layer of laser-absorbing substance on a solid support. The configuration of the sublayer fully corresponds to the topology of the manufactured matrix. The intermediate layer is further covered by a continuous layer of gel , the gel and the material of the support being transparent towards laser radiation. The gel layer is irradiated by a laser beam for a time needed to evaporate simultaneously the gel in the places immediately above the laser-absorbing sublayer and the sublayer itself. Oligonucleotides from a chosen set are then attached to the formed gel `cells`, one oligonucleotide to each cell. This method is intended for use in biotechnology, specifically for deciphering the nucleotide sequence of DNA.

  17. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  18. Root-Gel Interactions and the Root Waving Behavior of Arabidopsis1[w

    PubMed Central

    Thompson, Matthew V.; Holbrook, N. Michele

    2004-01-01

    Arabidopsis roots grown on inclined agarose gels exhibit a sinusoidal growth pattern known as root waving. While root waving has been attributed to both intrinsic factors (e.g. circumnutation) and growth responses to external signals such as gravity, the potential for physical interactions between the root and its substrate to influence the development of this complex phenotype has been generally ignored. Using a rotating stage microscope and time-lapse digital imaging, we show that (1) root tip mobility is impeded by the gel surface, (2) this impedance causes root tip deflections by amplifying curvature in the elongation zone in a way that is distinctly nontropic, and (3) root tip impedance is augmented by normal gravitropic pressure applied by the root tip against the gel surface. Thus, both lateral corrective bending near the root apex and root tip impedance could be due to different vector components of the same graviresponse. Furthermore, we speculate that coupling between root twisting and bending is a mechanical effect resulting from root tip impedance. PMID:15247406

  19. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis.

    PubMed Central

    Gardella, T; Medveczky, P; Sairenji, T; Mulder, C

    1984-01-01

    A simple gel technique is described for the detection of large, covalently closed, circular DNA molecules in eucaryotic cells. The procedure is based on the electrophoretic technique of Eckhardt (T. Eckhardt, Plasmid 1:584-588, 1978) for detecting bacterial plasmids and has been modified for the detection of circular and linear extrachromosomal herpesvirus genomes in mammalian cells. Gentle lysis of suspended cells in the well of an agarose gel followed by high-voltage electrophoresis allows separation of extrachromosomal DNA from the bulk of cellular DNA. Circular viral DNA from cells which carry the genomes of Epstein-Barr virus, Herpesvirus saimiri, and Herpesvirus ateles can be detected in these gels as sharp bands which comigrate with bacterial plasmid DNA of 208 kilobases. Epstein-Barr virus producer cell lines also show a sharp band of linear 160-kilobase DNA. The kinetics of the appearance of this linear band after induction of viral replication after temperature shift parallels the known kinetics of Epstein-Barr virus production in these cell lines. Hybridization of DNA after transfer to filters shows that the circular and linear DNA bands are virus specific and that as little as 0.25 Epstein-Barr virus genome per cell can be detected. The technique is simple, rapid, and sensitive and requires relatively low amounts of cells (0.5 X 10(6) to 2.5 X 10(6)). Images PMID:6321792

  20. Polymer sol-gel composite inverse opal structures.

    PubMed

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions. PMID:25734614

  1. Agarose film liquid phase microextraction combined with gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Sanagi, Mohd Marsin; Loh, Saw Hong; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2012-11-01

    Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples. PMID:23021646

  2. Facile synthesis of nano-sized agarose based amino acid-Its pH-dependent protein-like behavior and interactions with bovine serum albumin.

    PubMed

    Chudasama, Nishith A; Siddhanta, A K

    2015-11-19

    In a facile synthesis agarose was amphoterically functionalized to afford nano-sized agarose amino acids, aminoagarose succinate half-esters (AAE) containing one pendant carboxyl group. Nano-sized AAEs (<10 nm; DLS) were characterized and they had three various degrees of substitution [overall DSs 0.88, 0.89 and 0.96], both the amino and half-ester groups were placed on C-6 positions of the 1,3 beta-d-galactopyranose moieties of agarose backbone ((13)C NMR). AAEs performed like large protein molecules exhibiting pH-responsive structural variations (optical rotatory dispersion), presenting a mixed solubility pattern like random coil (soluble) and aggregate (precipitation) formations. Circular dichroism studies showed their pH-dependent associative interactions with bovine serum albumin, which indicated complexation at acidic and basic pHs, and decomplexation at pH 6.8 with AAE (DS 0.96). Thus, these nano-sized AAE based systems may be of potential utility in the domains demanding the merits of preferential protein bindings e.g. pH-responsive cationic/anionic drug carrier, separations or chiral sensing applications. PMID:26413976

  3. Crystallization of steroids in gels

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Devanarayanan, S.

    1991-03-01

    The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.

  4. Generation of 3D Collagen Gels with Controlled Diverse Architectures.

    PubMed

    Doyle, Andrew D

    2016-01-01

    Rat tail collagen solutions have been used as polymerizable in vitro three dimensional (3D) extracellular matrix (ECM) gels for single and collective cell migration assays as well as spheroid formation. Factors such as ECM concentration, pH, ionic concentration, and temperature can alter collagen polymerization and ECM architecture. This unit describes how to generate 3D collagen gels that have distinct architectures ranging from a highly reticular meshwork of short thin fibrils with small pores to a loose matrix consisting of stiff, parallel-bundled long fibrils by changing collagen polymerization temperature. This permits analysis of 3D cell migration in different ECM architectures found in vivo while maintaining a similar ECM concentration. Also included are collagen labeling techniques helpful for ECM visualization during live fluorescence imaging. © 2016 by John Wiley & Sons, Inc. PMID:27580704

  5. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  6. Bacteria immobilised in Gels: Improved methodologies for antifouling and biocontrol applications.

    PubMed

    Holmström, C; Steinberg, P; Christov, V; Christie, G; Kjelleberg, S

    2000-01-01

    A range of bacteria, including the marine bacterium Pseudoalteromonas tunicata which produces antifouling compounds, and Escherichia coli were used to investigate methods for immobilising bacteria in gels. Different types of matrices were screened using the survival of barnacle nauplii as a bioassay. A Dupont® polyvinylalcohol (PVOH) 10% gel was found to be the optimal matrix. This non-toxic gel remained stable in seawater while allowing for an outflux of active biological compounds from the bacterial cells. The presence of active bacterial cells in the matrix was tested by CTC-staining, green fluorescent protein (GFP) expressing bacteria and a barnacle larvae bioassay. The Dupont® PVOH 10% gels containing P. tunicata cells were inhibitory against larvae for a period of up to 2 weeks. In further studies using gels containing immobilised bacteria, the E. coli strain C600 was employed based on its cell size, stress resistance and the fact that a plasmid for the expression of GFP could be transferred and maintained in the cells. Immobilised E. Coli cells maintained their viability in the Dupont® PVOH 10% gels for as long as 2 months, and the life-span of these "biologically active"; gels was increased to more than 2 months by the incorporation of small beads into the gels. The results indicate that bacteria can be immobilised in coatings for periods of time consistent with the needs of some antifouling and antibacterial applications. PMID:22115296

  7. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    NASA Technical Reports Server (NTRS)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  8. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

    PubMed Central

    Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben

    2015-01-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839

  9. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  10. Gels from soft hairy nanoparticles in polymeric matrices

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    2013-03-01

    Hairy particles represent a huge class of soft colloids with tunable interactions and properties. Advances in synthetic chemistry have enabled obtaining well-characterized such systems for specific needs. In this talk we present two model hairy soft particles with diameters of the order of tens of nanometers, star polymers and polymerically grafted spherical particles. In particular, we discuss design strategies for dispersing them in polymeric matrices and eventually creating and breaking gels. Control parameters are the matrix molar mass, the grafting density (or functionality) and the size of the grafts (or arms). The linear viscoelastic properties and slow time evolution of the gels are examined in view of the existing knowledge from colloidal gels consisting of micron-sized particles, and compared. In the case of stars we start from a concentrated glassy suspension in molecular solvent and add homopolymer at increasing concentration, and as a result of the induced osmotic pressure the stars shrink and a depletion gel is formed. For the grafted colloidal particles, they are added at low concentration to a polymer matrix, and it has been shown that under certain conditions the anisotropy of interactions gives rise to network formation. We then focus on the nonlinear rheological response and in particular the effect of shear flow in inducing a solid to liquid transition. Our studies show that the yielding process is gradual and shares many common features with that of flocculated colloidal suspensions, irrespectively of the shape of the building block of the gel. Whereas shear can melt such a gel, it cannot break it into its constituent blocks and hence fully disperse the hairy nanoparticles. On the other hand, the hairy particles are intrinsically hybrid. We show how this important feature is reflected on the heating of the gels. In that case, the mismatch of thermal expansion coefficients of core and shell appears to play a role on the particle response as it

  11. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    PubMed

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. PMID:27198889

  12. Treatment of agarose–agarose RENCA macrobeads with docetaxel selects for OCT4+ cells with tumor-initiating capability

    PubMed Central

    Gazda, Lawrence S; Martis, Prithy C; Laramore, Melissa A; Bautista, Melissa A; Dudley, Atira; Vinerean, Horatiu V; Smith, Barry H

    2013-01-01

    The cancer stem cell (CSC) theory depicts such cells as having the capacity to produce both identical CSCs (symmetrical division) and tumor-amplifying daughter cells (asymmetric division). CSCs are thought to reside in niches similar to those of normal stem cells as described for neural, intestinal, and epidermal tissue, are resistant to chemotherapy, and are responsible for tumor recurrence. We recently described the niche-like nature of mouse renal adenocarcinoma (RENCA) cells following encapsulation in agarose macrobeads. In this paper we tested the hypothesis that encapsulated RENCA colonies function as an in vitro model of a CSC niche and that the majority of cells would undergo chemotherapy-induced death, followed by tumor recurrence. After exposure to docetaxel (5 µg/ml), 50% of cells were lost one week post-treatment while only one or two cells remained in each colony by 6 weeks. Surviving cells expressed OCT4 and reformed tumors at 16 weeks post-treatment. Docetaxel-resistant cells also grew as monolayers in cell culture (16–17 weeks post-exposure) or as primary tumors following transplantation to Balb/c mice (6 of 10 mice) or NOD.CB17-Prkdcscid/J mice (9 of 9 mice; 10 weeks post-transplantation or 28 weeks post-exposure). These data support the hypothesis that a rare subpopulation of OCT4+ cells are resistant to docetaxel and these cells are sufficient for tumor recurrence. The reported methodology can be used to obtain purified populations of tumor-initiating cells, to screen for anti-tumor-initiating cell agents, and to investigate the in vitro correlate of a CSC niche, especially as it relates to chemo-resistance and tumor recurrence. PMID:24025409

  13. Inhomogeneous distribution of organic molecules adsorbed in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Chávez-Cerda, S.; Sánchez-Villicaña, V.; Sánchez-Mondragón, J. J.; King, T. A.

    1999-09-01

    The effects of the porous matrix upon the radiative characteristics of quinine sulphate doped sol-gel glasses are investigated. The broadenings of the absorption and fluorescence spectra are explained by the attachment of the molecules on distorted sites or in a non-planar fashion, creating an inhomogeneous distribution of adsorbed molecules. For this reason, each emitting center relaxes with its own characteristics. This inhomogeneous distribution is also supported by the non-exponential and the wavelength dependence of the fluorescence decay.

  14. Hysteresis of the magnetic properties of soft magnetic gels.

    PubMed

    Zubarev, A Yu; Chirikov, D N; Borin, D Yu; Stepanov, G V

    2016-08-14

    We present results of an experimental and theoretical study of the magnetic properties of soft magnetic gels consisting of micron-sized magnetizable particles embedded in a polymer matrix. Experiments demonstrate hysteretic dependences of composite magnetization on an applied magnetic field and non-monotonic, with maximum, dependence of the sample susceptibilities on the field. We propose a theoretical approach which describes the main physical features of these experimental results. PMID:27406554

  15. A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells.

    PubMed

    Köpf, Marius; Campos, Daniela F Duarte; Blaeser, Andreas; Sen, Kshama S; Fischer, Horst

    2016-01-01

    In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and optimal cytocompatibility. We hypothesise that blending of different hydrogels could lead to a novel material with favourable biological and printing properties. In our work, we combined agarose and type I collagen in order to develop a hydrogel blend capable of long-term cell encapsulation of human umbilical artery smooth muscle cells (HUASMCs) and 3D drop-on-demand printing. Different blends were prepared with 0.25%, 0.5%, 0.75%, and 1.5% agarose and 0.2% type I collagen. The cell morphology of HUASMCs and the printing accuracy were assessed for each agarose-collagen combination, keeping the content of collagen constant. The hydrogel blend which displayed sufficient cell spreading and printing accuracy (0.5% agarose, 0.2% type I collagen, AGR0.5COLL0.2) was then characterised based on swelling and degradation over 21 days and mechanical stiffness. The cellular response regarding cell attachment of HUASMCs embedded in the hydrogel blend was further studied using SEM, TEM, and TPLSM. Printing trials were fabricated in a drop-on-demand printing process. The swelling and degradation evaluation showed an average of 20% mass loss and less than 10% swelling. AGR0.5COLL0.2 exhibited significant increase in stiffness compared to pure agarose and type I collagen. In addition, columns of AGR0.5COLL0.2 three centimeters in height were successfully printed submerged in cooled perfluorocarbon, proving the intrinsic printability of the hydrogel blend. Ultimately, a promising novel hydrogel blend showing cell spreading and attachment as well as suitability for bioprinting was identified and could, for example, serve in the manufacture of in vitro 3D models to

  16. Bouncing gel balls: Impact of soft gels onto rigid surface

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yamazaki, Y.; Okumura, K.

    2003-07-01

    After being thrown onto a solid substrate, very soft spherical gels bounce repeatedly. Separate rheological measurements suggest that these balls can be treated as nearly elastic. The Hertz contact deformation expected in the static (elastic) limit was observed only at very small impact velocities. For larger velocities, the gel ball deformed into flattened forms like a pancake. We measured the size of the gel balls at the maximal deformation and the contact time as a function of velocities for samples different in the original spherical radius and the Young modulus. The experimental results revealed a number of scaling relations. To interpret these relations, we developed scaling arguments to propose a physical picture.

  17. Boundary Stiffness Regulates Fibroblast Behavior in Collagen Gels

    PubMed Central

    John, Jeffrey; Quinlan, Angela Throm; Silvestri, Chiara; Billiar, Kristen

    2010-01-01

    Recent studies have illustrated the profound dependence of cellular behavior on the stiffness of 2D culture substrates. The goal of this study was to develop a method to alter the stiffness cells experience in a standard 3D collagen gel model without affecting the physiochemical properties of the extracellular matrix. A device was developed utilizing compliant anchors (0.048–0.64 N m−1) to tune the boundary stiffness of suspended collagen gels in between the commonly utilized free and fixed conditions (zero and infinite stiffness boundary stiffness). We demonstrate the principle of operation with finite element analyses and a wide range of experimental studies. In all cases, boundary stiffness has a strong influence on cell behavior, most notably eliciting higher basal tension and activated force (in response to KCl) and more pronounced remodeling of the collagen matrix at higher boundary stiffness levels. Measured equibiaxial forces for gels seeded with 3 million human foreskin fibroblasts range from 0.05 to 1 mN increasing monotonically with boundary stiffness. Estimated force per cell ranges from 17 to 100 nN utilizing representative volume element analysis. This device provides a valuable tool to independently study the effect of the mechanical environment of the cell in a 3D collagen matrix. PMID:20012205

  18. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  19. Morphology and Rheological Behaviour of Ag-SBS Nanocomposite Gels

    NASA Astrophysics Data System (ADS)

    Peponi, Laura; Torre, Luigi; Kenny, Josè M.; Mondragon, Iñaki

    2008-08-01

    Block copolymers are of both theoretical and practical importance because of their ability to self-assemble in nano-ordered structures. The self-assembly processes in these materials, are a consequence of the intermolecular micro phase separation between the dissimilar chains covalently linked together. Another important property of block copolymers is that, in solution with a selective solvent, they aggregate to form physical gels. Their technological importance is due to their ability to form elastic solids via self-assembly, with midblocks bridging aggregated end-block micelles. In our study poly(styrene-b-butadiene-b-styrene) (SBS), form, by its dissolution in a mid-block-selective solvent (THF) physical gels. So the morphology and the rheological behavior of the thermoreversible gels have been studied and characterized. Moreover, the gel behavior was also studied when Ag nanoparticles were added to the SBS matrix. The results of this study show that the gel stability is not affected by the presence of Ag nanoparticles.

  20. Development and Characterization of NMR Measurements for Polymer Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    Kwong, Zachary; Whitney, Heather

    2012-03-01

    Polymer gel dosimeters are systems of water, gelatin, and monomers which form polymers upon irradiation. The gelatin matrix retains dose distribution in 3D form, facilitating truly integrated measurements of complex dose plans for radiation therapy. Polymer gels have two proton pools coupled by exchange: free solvent protons and bound polymerized macromolecular protons. Measuring magnetization transfer (MT) and relaxation affords useful insights into particle rigidity and chemical exchange effects on relaxation in polymer gels. Polymer gel dose response has been previously quantified with several techniques, most often in terms of MRI parameters, usually at field strengths of 1.5 T and below. The research described here investigates the dose response of a revised MAGIC gel dosimeter via both high-field imaging and simpler nuclear magnetic resonance (NMR) spectroscopy. This includes both transverse and longitudinal relaxation rates (R2 and R1) and quantitative MT parameters. We investigated estimating polymer molecular weight for a given applied dose using the Rouse model and R2 data from the imaging study. Finally, we began development of NMR methods for studying dose response, requiring adaption of NMR experiments to accommodate for radiation damping.

  1. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  2. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  3. Solid-state tunable lasers based on dye-doped sol-gel materials

    SciTech Connect

    Dunn, B.; Mackenzie, J.D.; Zink, J.I.; Stafsudd, O.M.

    1992-03-01

    The sol-gel process is a solution synthesis technique which provides a low temperature chemical route for the preparation of rigid transparent matrix materials. The luminescent organic dye molecules, rhodamine 6G and coumarin 540A have been incorporated, via the sol-gel method, into aluminosilicate and organically modified silicate host matrices. Synthesis, laser oscillation and photostability for these systems are reported. The improved photostability of these materials with respect to comparable polymeric host materials is discussed.

  4. Polyoxometalate-based Supramolecular Gel

    PubMed Central

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-01-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013

  5. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  6. Effect of PMMA impregnation on the fluorescence quantum yield of sol-gel glasses doped with quinine sulfate

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Barbosa-García, O.; Díaz-Torres, L. A.; Chávez-Cerda, S.; Torres-Cisneros, M.; King, T. A.

    2001-08-01

    The fluorescence quantum yield of quinine sulfate in sol-gel and PMMA impregnated glasses is measured. The observed quantum yield improvement in the sol-gel matrix, compared to ethanol, is interpreted as a reduction of non-radiative relaxation channels by isolation of the molecules by the cage of the glass. PMMA impregnated sol-gel glasses show an extra improvement of the fluorescence yield, which is interpreted as a reduction of the free space and the rigid fixation of the molecules to the matrix.

  7. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  8. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions.

    PubMed

    Takino, Takahisa; Saeki, Hiromi; Miyamori, Hisashi; Kudo, Tomoya; Sato, Hiroshi

    2007-12-15

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells. PMID:18089791

  9. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.

    PubMed

    Yue, Kan; Trujillo-de Santiago, Grissel; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali

    2015-12-01

    Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing. PMID:26414409

  10. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  11. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  12. Alternative imaging modalities for polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, Andrew

    2010-11-01

    This review summarizes recent work in the area of imaging polymer gel dosimeters using x-ray CT imaging, ultrasound, and radiation-induced changes in gel mechanical properties. In addition, recent work in the area of Raman tomographic imaging of canine bone, in conjunction with past efforts in Raman imaging of polymer gel dosimeters, raises new possibilities for new polymer gel imaging techniques.

  13. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation

    PubMed Central

    Mohammadi, Hamid; Arora, Pamma D.; Simmons, Craig A.; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min−1, similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml−1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation. PMID:25392399

  14. Rheological behavior of Slide Ring Gels.

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Park, Jong Seung; Park, Jung O.; Srinivasarao, Mohan

    2006-03-01

    Slide ring gels were synthesized by chemically crosslinking, sparsely populated α-cyclodextrin (α-CD) present on the polyrotaxanes consisting of α-CD and polyethylene glycol (PEG). [1] Unlike physically or chemically crosslinked gels, slide ring gels are topological gels where crosslinks can slide along the chain. [2] We investigate the rheological behavior of these gels swollen in water and compare their viscoelastic properties to those of physical and chemical gels. We also study the equilibrium swelling behavior of these gels. [1] Okumura and Ito, Adv. Mater. 2001, 13, 485 [2] C. Zhao et al, J. Phys. Cond. Mat. 2005, 17, S2841

  15. Simple protocol for secondary school hands-on activity: Electrophoresis of pre-stained nucleic acids on agar-agar borate gels.

    PubMed

    Britos, Leticia; Goyenola, Guillermo; Oroño, Silvia Umpiérrez

    2004-09-01

    An extremely simple, inexpensive, and safe method is presented, which emulates nucleic acids isolation and electrophoretic analysis as performed in a research environment, in the context of a secondary school hands-on activity. The protocol is amenable to an interdisciplinary approach, taking into consideration the electrical and chemical parameters of the electrophoretic system. Furthermore, the laboratory is framed in a more comprehensive pedagogical setting, which addresses the methodological aspects of a pivotal scientific enterprise such as the Human Genome Project. In this setting, the hands-on activity is complemented with animations, paper models, and discussions. Additionally, our results indicate that the use of borate buffer and agar-agar gels suits many of the experiments included in college-level laboratory activities, which currently make use of more expensive agarose gels and TBE or TAE buffers. PMID:21706751

  16. Self-formation of bilayer lipid membranes on agarose-coated silicon surfaces studied by simultaneous electrophysiological and surface infrared spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Oshima, Azusa; Onodera, Kota; Aoto, Kouji; Taira, Tasuku; Yamaguchi, Ryo-taro; Kimura, Yasuo; Niwano, Michio

    2009-06-01

    Self-formation process of bilayer lipid membranes (BLMs) cushioned on agarose-coated Si surfaces was in situ monitored by simultaneous electrophysiological and infrared absorption spectroscopic (IRAS) measurements using IRAS with the multiple internal reflection geometry. IRAS signals corresponding to self-thinning of lipid solution to form BLMs were demonstrated. It was found that the appearance of IRAS bands due to C=O modes of phosphstidylcholine is related to formation of BLMs with a gigaohm seal. The functionality of the present BLM system was also demonstrated by incorporating gramicidin into the BLMs and recording its channel activities.

  17. A novel matrix derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed immobilized-metal affinity chromatography.

    PubMed

    Qu, Jian-Bo; Huang, Yong-Dong; Jing, Guang-Lun; Liu, Jian-Guo; Zhou, Wei-Qing; Zhu, Hu; Lu, Jian-Ren

    2011-05-01

    Agarose coated gigaporous polystyrene microspheres were evaluated as a novel matrix for immobilized-metal affinity chromatography (IMAC). With four steps, nickel ions were successfully immobilized on the microspheres. The gigaporous structure and chromatographic properties of IMAC medium were characterized. A column packed with the matrix showed low column backpressure and high column efficiency at high flow velocity. Furthermore, this matrix was used for purifying superoxide dismutase (SOD), which was expressed in Escherichia coli (E. coli) in submerged fermentation, on an Äkta purifier 100 system under different flow velocities. The purity of the SOD from this one-step purification was 79% and the recovery yield was about 89.6% under the superficial flow velocity of 3251 cm/h. In conclusion, all the results suggested that the gigaporous matrix has considerable advantages for high-speed immobilized-metal affinity chromatography. PMID:21454141

  18. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  19. Thixotropic gel for vadose zone remediation

    DOEpatents

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  20. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  1. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Cowles, M. K.; Buckley, J. M.; Richardson, K.; Cowles, B. A.; Baicu, C. F.; Cooper G, I. V.; Gharpuray, V.

    1998-01-01

    Diastolic dysfunction is an important cause of congestive heart failure; however, the basic mechanisms causing diastolic congestive heart failure are not fully understood, especially the role of the cardiac muscle cell, or cardiocyte, in this process. Before the role of the cardiocyte in this pathophysiology can be defined, methods for measuring cardiocyte constitutive properties must be developed and validated. Thus this study was designed to evaluate a new method to characterize cardiocyte constitutive properties, the gel stretch method. Cardiocytes were isolated enzymatically from normal feline hearts and embedded in a 2% agarose gel containing HEPES-Krebs buffer and laminin. This gel was cast in a shape that allowed it to be placed in a stretching device. The ends of the gel were held between a movable roller and fixed plates that acted as mandibles. Distance between the right and left mandibles was increased using a stepper motor system. The force applied to the gel was measured by a force transducer. The resultant cardiocyte strain was determined by imaging the cells with a microscope, capturing the images with a CCD camera, and measuring cardiocyte and sarcomere length changes. Cardiocyte stress was characterized with a finite-element method. These measurements of cardiocyte stress and strain were used to determine cardiocyte stiffness. Two variables affecting cardiocyte stiffness were measured, the passive elastic spring and viscous damping. The passive spring was assessed by increasing the force on the gel at 1 g/min, modeling the resultant stress vs. strain relationship as an exponential [sigma = A/k(ekepsilon - 1)]. In normal cardiocytes, A = 23.0 kN/m2 and k = 16. Viscous damping was assessed by examining the loop area between the stress vs. strain relationship during 1 g/min increases and decreases in force. Normal cardiocytes had a finite loop area = 1.39 kN/m2, indicating the presence of viscous damping. Thus the gel stretch method provided accurate

  2. Controlled-surface-wettability-based fabrication of hydrogel substrates with matrix tethering density variations

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahmudur; Lee, Donghee; Bhagirath, Divya; Zhao, Xiangshan; Band, Vimla; Ryu, Sangjin

    2014-03-01

    It is widely accepted that cells behave differently responding to the stiffness of extracellular matrix (ECM). Such observations were made by culturing cells on hydrogel substrates of tunable stiffness. However, it was recently proposed that cells actually sense how strongly they are tethered to ECM, not the local stiffness of ECM. To investigate the hypothesis, we develop constant-stiffness hydrogel substrates with varying matrix tethering density (the number of anchoring sites between the gel and the ECM protein molecules). We fabricate polyacrylamide gel of static stiffness and conjugate ECM proteins to the gel using a cross-linker. When treating the gel with the cross-linker, we control positioning of cross-linker solutions with different concentrations using superhydrophobic barriers on glass, functionalize the gel by pressing it to the aligned cross-linker solutions, and conjugate an ECM protein of constant concentration to the gel. We expect that the gel will be functionalized to different degrees depending on the concentration distribution of the cross-linker and thus the gel will have variations of matrix tethering density even with constant ECM protein concentration. We acknowledge support from Bioengineering for Human Health grant of UNL-UNMC.

  3. A matrix lower bound

    SciTech Connect

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  4. Gel placement in fractured systems

    SciTech Connect

    Seright, R.S.

    1995-11-01

    This paper examines several factors that can have an important effect on gel placement in fractured systems, including gelant viscosity, degree of gelation, and gravity. For an effective gel treatment, the conductivity of the fracture must be reduced and a viable flow path must remain open between the wellbore and mobile oil in the reservoir. During placement, the gelant that``leaks off`` from the fracture into the rock plays an important role in determining how well a gel treatment will reduce channeling. For a given volume of gelant injected the distance of gelant leakoff is greater for a viscous gelant than for a low-viscosity gelant. In one method to minimize gelant leakoff, sufficient gelation is designed to occur before the gelant leaves the wellbore. The authors investigated this approach in numerous experiments with both fractured and unfractured cores. They studied Cr(III)/acetate/hydrolyzed polyacrylamide (HPAM), resorcinol/formaldehyde, Cr(III)/xanthan, aluminum/citrate/HPAM, and other gelants and gels with various delay times between gelant preparation and injection. Their results suggest both hope and caution concerning the injection of gels into fractured systems.

  5. Preparation and in vitro evaluation of an ilomastat microemulsion gel by a self-microemulsifying system.

    PubMed

    Senhao, Li; Dongqin, Quan

    2012-02-01

    The purpose of this study was to construct a microemulsion gel formulation by a self-microemulsifying system for transdermal topical delivery of ilomastat. The optimum formulations were screened by penetration evaluation in vitro. Ilomastat microemulsion gel was prepared by drawing a ternary phase diagram and Pluronic F127 was added as gel matrix for the formulation. The optimal formulations had wide microemulsion existent field and good self-microemulsifying efficiency. The droplet size was within 100 nm. Statistical comparison of the permeation throughout 24 h showed that the two microemulsion gel preparations of ilomastat provided higher permeation than that of the normal gel which had only a low cumulative amount of ilomastat (6.03 microg x cm(-2)) 24 h after application. Cumulative amount of ilomastat from microemulsion gels A and B was 2.2 times and 1.8 times that of the normal gel at 24 h respectively. These results indicate that the microemulsion gel may be a promising vehicle for topical delivery of ilomastat. PMID:22512086

  6. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    PubMed

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries. PMID:27247991

  7. Fabricating silver nanoplate/hybrid silica gel glasses and investigating their nonlinear optical absorption behavior

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Wenzhe, Chen; Xiaoyun, Ye; Cai, Shuguang; Xiao, Xueqing

    2014-03-01

    Silver nanoplate/hybrid silica gel glasses were prepared via the sol-gel technique. Analysis of ultraviolet-visible spectroscopy extinction spectra confirmed the successful incorporation of silver nanoplates into the hybrid silica gel glasses. The silver nanoplate/hybrid silica gel glass composites are completely noncrystalline because of their low doping level compared with that of the silica matrix. The nonlinear optical absorption behavior of the silver nanoplate/hybrid silica gel glass composites was studied via open-aperture Z-scan technique with 4 ns pulse durations at 532 nm and 1064 nm. The nonlinear optical properties of silver nanoplates are maintained after they were introduced into silica gel glasses. Furthermore, the silver nanoplate/hybrid silica gel glasses exhibit intensity-dependent transformation from saturable absorption (SA) to reverse saturable absorption (RSA). The SA behavior at low excitation intensity can be attributed to the bleaching of ground-state surface plasmon resonance absorption induced by the retarded electronic relaxation process in solid-state gel glasses. By contrast, the RSA at high incident influence may have resulted from excited-state absorption and two-photon absorption.

  8. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-01-27

    An apparatus and method are disclosed for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  9. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  10. Gels containing MMP inhibitors prevent dental erosion in situ.

    PubMed

    Kato, M T; Leite, A L; Hannas, A R; Buzalaf, M A R

    2010-05-01

    Matrix metalloproteinase (MMP) inhibition has been shown to reduce dentin caries progression, but its role in dental erosion has not yet been assessed. This study tested the hypothesis that gels containing MMP inhibitors (epigallocatechin gallate-EGCG and chlorhexidine) can prevent dental erosion. Volunteers (n = 10) wore palatal devices containing bovine dentin blocks (n = 10/group) treated for 1 min with EGCG at 10 (EGCG10) or 400 microM (EGCG400), chlorhexidine at 0.012%, F at 1.23% (NaF), and no vehicle (placebo). Erosion was performed with Coca-Cola (5 min) 4X/day during 5 days. The wear, assessed by profilometry (mean +/- SD, microm), was significantly reduced by the gels containing MMP inhibitors (0.05 +/- 0.02(a), 0.04 +/- 0.02(a), and 0.05 +/- 0.02(a) for EGCG10, EGCG400, and chlorhexidine, respectively) when compared with NaF (0.79 +/- 0.35(b)) and placebo gels (1.77 +/- 0.35(b)) (Friedman and Dunn's tests, p < 0.01). The use of gels delivering MMP inhibitors was shown to prevent erosion and opens a new perspective for protection against dental erosion. PMID:20200409

  11. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  12. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc-silicon dioxide matrix coatings. 175.390... COATINGS Substances for Use as Components of Coatings § 175.390 Zinc-silicon dioxide matrix coatings. Zinc... water washing. Silica gel Sodium silicate Zinc, as particulate metal (d) The coating in the...

  13. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc-silicon dioxide matrix coatings. 175.390... COATINGS Substances for Use as Components of Coatings § 175.390 Zinc-silicon dioxide matrix coatings. Zinc... water washing. Silica gel Sodium silicate Zinc, as particulate metal (d) The coating in the...

  14. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  15. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  16. Detection of functional matrix metalloproteinases by zymography.

    PubMed

    Hu, Xueyou; Beeton, Christine

    2010-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary

  17. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  18. Statistical physics of polymer gels

    NASA Astrophysics Data System (ADS)

    Panyukov, Sergei; Rabin, Yitzhak

    1996-05-01

    This work presents a comprehensive analysis of the statistical mechanics of randomly cross-linked polymer gels, starting from a microscopic model of a network made of instantaneously cross-linked Gaussian chains with excluded volume, and ending with the derivation of explicit expressions for the thermodynamic functions and for the density correlation functions which can be tested by experiments. Using replica field theory we calculate the mean field density in replica space and show that this solution contains statistical information about the behavior of individual chains in the network. The average monomer positions change affinely with macroscopic deformation and fluctuations about these positions are limited to length scales of the order of the mesh size. We prove that a given gel has a unique state of microscopic equilibrium which depends on the temperature, the solvent, the average monomer density and the imposed deformation. This state is characterized by the set of the average positions of all the monomers or, equivalently, by a unique inhomogeneous monomer density profile. Gels are thus the only known example of equilibrium solids with no long-range order. We calculate the RPA density correlation functions that describe the statistical properties of small deviations from the average density, due to both static spatial heterogeneities (which characterize the inhomogeneous equilibrium state) and thermal fluctuations (about this equilibrium). We explain how the deformation-induced anisotropy of the inhomogeneous equilibrium density profile is revealed by small angle neutron scattering and light scattering experiments, through the observation of the butterfly effect. We show that all the statistical information about the structure of polymer networks is contained in two parameters whose values are determined by the conditions of synthesis: the density of cross-links and the heterogeneity parameter. We find that the structure of instantaneously cross

  19. Photoacoustic Spectral Study of Lanthanide Complexes Doped in Silica Matrix

    NASA Astrophysics Data System (ADS)

    Yang, Y. T.; Gao, B.; Zhang, S. Y.; Liu, X. J.

    2015-06-01

    Lanthanide phenanthroline (phen) complexes and were incorporated into a silica matrix by an ultrasonic assisted sol-gel method. In the region of ligand absorption, the photoacoustic (PA) intensity for a lanthanide complex is the same as in wet gels. Upon heat treatment at 120C, however, the PA intensity of a O-doped sample is much larger than that of a O-doped sample. The characteristic emissions of complex-doped samples were used to interpret the stability of the complex in silica matrices. The luminescence spectra are consistent with the PA results. The study indicates that phen can only coordinate with lanthanide ions in a silica matrix after a suitable heat treatment. Moreover, the covalency parameters and PA bands of f-f transionts of have been used to study the formation of the complex in a silica matrix.

  20. Raman microspectroscopy: a noninvasive analysis tool for monitoring of collagen-containing extracellular matrix formation in a medium-throughput culture system.

    PubMed

    Kunstar, Aliz; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens; van Apeldoorn, Aart

    2011-07-01

    The three-dimensional environment is known to play an important role in promoting cell-matrix interactions. We have investigated the possibility of using Raman microspectroscopy--which has the great advantage of noninvasive sensing--for in vitro monitoring of extracellular matrix (ECM) formation in a medium-throughput pellet (3D) culture system with soft-litography, agarose-microwell arrays. Chondrocytes were seeded in the agarose microwells in basic or chondrocyte medium. After 3, 7, and 14 days of culture, samples were analyzed for ECM formation by Raman microspectroscopy, histology, and immunofluorescence. ECM formation in the chondrocyte medium-cultured samples was detected by histology and immunofluorescence, and also noninvasively by Raman microspectroscopy. The Raman band of collagen found at 937 cm(-1) can be used as a Raman marker for collagen-containing ECM formation over time in the chondrocyte pellets. This culture system can be implemented as a medium-throughput platform for Raman applications and screening microtissue formation, since with these agarose-microwell arrays relatively large numbers of cell pellets could be screened in a short time in situ, without having to transfer the pellets onto microscopic slides. Moreover, in this manner the culture system is suitable for long-term, real-time live-cell measurements. PMID:21410304

  1. Field-Theoretic Studies of Nanostructured Triblock Polyelectrolyte Gels

    NASA Astrophysics Data System (ADS)

    Audus, Debra; Fredrickson, Glenn

    2012-02-01

    Recently, experimentalists have developed nanostructured, reversible gels formed from triblock polyelectrolytes (Hunt et al. 2011, Lemmers et al. 2010, 2011). These gels have fascinating and tunable properties that reflect a heterogeneous morphology with domains on the order of tens of nanometers. The complex coacervate domains, aggregated oppositely charged end-blocks, are embedded in a continuous aqueous matrix and are bridged by uncharged, hydrophilic polymer mid-blocks. We report on simulation studies that employ statistical field theory models of triblock polyelectrolytes, and we explore the equilibrium self-assembly of these remarkable systems. As the charge complexation responsible for the formation of coacervate domains is driven by electrostatic correlations, we have found it necessary to pursue full ``field-theoretic simulations'' of the models, as opposed to the familiar self-consistent field theory approach. Our investigations have focused on morphological trends with mid- and end-block lengths, polymer concentration, salt concentration and charge density.

  2. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  3. Designing Responsive Buckled Surfaces by Halftone Gel Lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jungwook; Hanna, James A.; Byun, Myunghwan; Santangelo, Christian D.; Hayward, Ryan C.

    2012-03-01

    Self-actuating materials capable of transforming between three-dimensional shapes have applications in areas as diverse as biomedicine, robotics, and tunable micro-optics. We introduce a method of photopatterning polymer films that yields temperature-responsive gel sheets that can transform between a flat state and a prescribed three-dimensional shape. Our approach is based on poly(N-isopropylacrylamide) copolymers containing pendent benzophenone units that allow cross-linking to be tuned by irradiation dose. We describe a simple method of halftone gel lithography using only two photomasks, wherein highly cross-linked dots embedded in a lightly cross-linked matrix provide access to nearly continuous, and fully two-dimensional, patterns of swelling. This method is used to fabricate surfaces with constant Gaussian curvature (spherical caps, saddles, and cones) or zero mean curvature (Enneper’s surfaces), as well as more complex and nearly closed shapes.

  4. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  5. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  6. Nanospherical silica as luminescent markers obtained by sol-gel.

    PubMed

    Azevedo, Caroline B; Batista, TúlioM; de Faria, Emerson H; Rocha, Lucas A; Ciuffi, Katia J; Nassar, Eduardo J

    2015-03-01

    Hybrid nanosilicas constitute a broad study field. They find application as catalysts, pigments, drug delivery systems, and biomaterials, among others, and it is possible to obtain them via the sol-gel methodology. Lanthanide ions present special properties like light emission. Their incorporation into a silica matrix can enhance their luminescent properties, which enables their application as luminescent markers. This work reports on (i) the preparation of luminescent spherical hybrid silica nanoparticles by the hydrolytic sol-gel methodology, (ii) doping of the resulting matrix with the europium(III) ion or its complex with 1,10-phenanthroline, and (iii) characterization of the final powders by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and europium(III) ion photoluminescence. The synthesized materials consisted of hybrid, amorphous, polydispersed nonspherical silicas with average size of 180 nm. Photoluminescence confirmed incorporation of the europium(III) ion and its complex into the silica matrix-the ligand-metal charge transfer band emerged in the excitation spectra. The emission spectra presented the bands corresponding to the transition of the excited state (5)D0 level to (7)FJ (J = 0, 1, 2, 3 and 4). The main emission occurred in the red region; the lifetime was long. These characteristics indicated that the prepared nanospherical hybrid silicas could act as luminescent markers. PMID:25686772

  7. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems.

    PubMed

    Kojima, Chie; Suehiro, Tomoyuki; Watanabe, Kenji; Ogawa, Mikako; Fukuhara, Ayano; Nishisaka, Eiko; Harada, Atsushi; Kono, Kenji; Inui, Takashi; Magata, Yasuhiro

    2013-03-01

    Metastasis is a characteristic property of cancer cells, which degrade extracellular matrix containing collagen. We prepared a polymer prodrug-embedded collagen gel for metastasis-associated drug delivery. A collagen peptide-modified dendrimer that attached doxorubicin (Dox) via a pH-degradable linkage was synthesized as a polymer prodrug. Compared with free Dox, the diffusion of the dendrimer prodrug from the collagen gel was suppressed. Highly invasive MDA-MB-231 cells were more sensitive to the prodrug-hybrid collagen gel than poorly invasive MCF-7 cells, even though the cytotoxicity of the dendrimer prodrug by itself against these cells was almost identical. The cytotoxicity against MDA-MB-231 cells decreased in the presence of a matrix metalloproteinase (MMP) inhibitor, suggesting that the dendrimer prodrug/collagen hybrid gel was affected by MMP activity. The dendrimer prodrug/collagen hybrid gel not only suppressed tumor growth but also attenuated metastatic activity in vivo. Therefore, the dendrimer prodrug-embedded collagen gel is useful for cancer chemotherapy. PMID:23164946

  8. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  9. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  10. Effect of Long-Term Osmotic Loading Culture on Matrix Synthesis from Intervertebral Disc Cells

    PubMed Central

    Newman, Isabella B.; Carapezza, Michael A.

    2014-01-01

    Abstract The intervertebral disc is a highly hydrated tissue that acts to absorb and distribute large complex loads placed on the spine. Diurnal loading and disc degeneration causes significant changes in water volume and proteoglycan content, which alters the internal osmotic environment. Short-term osmotic loading alters disc cell gene expression; however, the long-term effect of osmotic loading on disc cell matrix synthesis is not well understood. The objective of this study was to determine the effect of long-term osmotic loading on matrix turnover and proliferation by juvenile and adult cells from the nucleus pulposus (NP) and the cartilaginous endplate (EP). Matrix synthesis was evaluated using pellets and a 3D agarose system, which has been used for developing engineered tissues. Intervertebral discs were acquired from juvenile and adult cows. Cells were acquired through enzymatic digestion and expanded in culture. Pellets were formed through centrifugation, and constructs were created by encapsulating cells within 2% w/v agarose hydrogel. Pellets and constructs were cultured up to 42 days in chemically defined medium with the osmolality adjusted to 300, 400, or 500 mOsm/kg. EP cells were evaluated as a chondrocyte comparison to chondrocyte-like NP cells. Pellet and agarose cultures of juvenile NP and EP cells demonstrated similarities with respect to cell proliferation and functional mechanical properties. Cell proliferation decreased significantly with increased osmotic loading. The final compressive Young's modulus of juvenile NP cells was 10–40× greater than initial properties (i.e., day 0) and was greater than the final Young's modulus of adult NP and juvenile EP constructs. In juvenile NP constructs, there were no significant differences in GAG content with respect to osmotic loading. However, GAG synthesis and mechanical properties were greatest for the 400 mOsm/kg group in adult NP constructs. Taken together, the results presented here suggest a

  11. Peculiarities in gel permeation chromatography of flexible-chain polymers on macroporous swelling sorbents.

    PubMed

    Belenkii, B G; Vilenchik, L Z; Nesterov, V V; Kolegov, V J; Frenkel, S Y

    1975-06-18

    In gel permeation chromatography on macroporous swelling sorbents, deviations from the Benoit principle of universal calibration were observed. It is suggested that these are caused by different degrees of thermodynamic compatibility of the eluted polymers with the sorbent matrix. PMID:1150817

  12. OPTIMIZATION OF ALKYL ESTER PRODUCTION FROM GREASE USING A PHYLLOSILICATE SOL-GEL IMMOBILIZED LIPASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple alkyl ester derivatives of restaurant grease were prepared using a lipase from Pseudomonas cepacia immobilized within a phyllosilicate sol-gel matrix as biocatalyst. Alcoholysis reactions of grease were carried out in solvent-free media using a one step addition of alcohol to reaction mixtur...

  13. Impact of crystalline form changing on behavior of microcapsules prepared from three-component gel system.

    PubMed

    Fenyvesi, Zsófia; Ashour, Khaled Omaru A; Zelkó, Romána; Müller, Ulrich; Antal, István; Klebovich, Imre; Marton, Sylvia

    2010-12-01

    In this paper, the effect of anhydrous-monohydrate process-induced transformation of theophylline was examined in microcapsules produced by in situ gelation method using sodium alginate, hydroxypropylmethylcellulose and hydroxyethylcellulose. Films produced from gel were applied to characterize the changes by NIR spectroscopy, X-ray, DSC method and stereomicroscopy because it is easier to study that in films in the case of gel systems used in situ gelation process. The properties of end-product are influenced by the swelling ability, equilibrium water uptake, release profile and encapsulation efficiency. Water penetration and drug release were evaluated by Davidson-Peppas and Korsmeyer-Peppas models. The ex tempore formed monohydrate crystals were smaller and built into the matrix structure in a greater extent. Increased drug release, matrix erosion and diffuse reflectance values at 1470 and 1950 nm were observed added theophylline later into the gel because of developing a denser structure. PMID:19848611

  14. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  15. Ciprofloxacin monoolein water gels as implants for the treatment of chronic osteomyelitis: In vitro characterization

    PubMed Central

    Sombié, Bavouma Charles; Yameogo, Josias Gérard; Semdé, Rasmané; Henschel, Viviane; Amighi, Karim; Goole, Jonathan

    2014-01-01

    This work investigated the possibility of using the biodegradable gentamicin-monoolein-water gels as models, in order to obtain a similar sustained release of ciprofloxacin hydrochloride. Four gels containing antibiotics were prepared and were examined with regard to their physicochemical properties and in vitro drug release characteristics. Ciprofloxacin, unlike gentamicin, which was dissolved in the matrix, was in dispersed form. However, despite its insolubility, microscopic observation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction showed that the developed gel was in the cubic liquid crystalline structure and have maintained their ability to progressively release ciprofloxacin. ciprofloxacin-monoolein-water (5:80:15% w/w), which released in vitro approximately 85% of ciprofloxacin after 16 days could possibly be considered as an alternative to a gentamicin-monoolein-water gel for the treatment of chronic osteomyelitis. PMID:25364693

  16. Ciprofloxacin monoolein water gels as implants for the treatment of chronic osteomyelitis: In vitro characterization.

    PubMed

    Sombié, Bavouma Charles; Yameogo, Josias Gérard; Semdé, Rasmané; Henschel, Viviane; Amighi, Karim; Goole, Jonathan

    2014-10-01

    This work investigated the possibility of using the biodegradable gentamicin-monoolein-water gels as models, in order to obtain a similar sustained release of ciprofloxacin hydrochloride. Four gels containing antibiotics were prepared and were examined with regard to their physicochemical properties and in vitro drug release characteristics. Ciprofloxacin, unlike gentamicin, which was dissolved in the matrix, was in dispersed form. However, despite its insolubility, microscopic observation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction showed that the developed gel was in the cubic liquid crystalline structure and have maintained their ability to progressively release ciprofloxacin. ciprofloxacin-monoolein-water (5:80:15% w/w), which released in vitro approximately 85% of ciprofloxacin after 16 days could possibly be considered as an alternative to a gentamicin-monoolein-water gel for the treatment of chronic osteomyelitis. PMID:25364693

  17. Localized drug delivery using crosslinked gelatin gels containing liposomes: factors influencing liposome stability and drug release.

    PubMed

    DiTizio, V; Karlgard, C; Lilge, L; Khoury, A E; Mittelman, M W; DiCosmo, F

    2000-07-01

    We describe a drug-delivery vehicle that combines the sustained release properties of liposomes with the structural advantages of crosslinked gelatin gels that can be implanted directly or coated onto medical devices. Liposome inclusion in gelatin gels does not compromise thermal stability nor does it interfere with the resiliency of gels to tensile force. However, electron spin resonance analysis of sequestered DPPC liposomes revealed a slight depression (ca. 1.0 degrees C) of the gel-to-fluid phase transition relative to liposomes in suspension. The level of liposome release from gels was determined by liposome concentration, liposome size, and the presence of poly(ethylene oxide) chains in the gel matrix or in the liposome membrane. Both neutral and charged liposomes displayed relatively high affinities for poly(ethylene glycol)gelatin gels, with only 10-15% release of initially sequestered liposomes while liposomes in which poly(ethylene glycol) was included within the membrane were not as well retained (approximately 65% release). The in vitro efflux of ciprofloxacin from liposomal gels immersed in serum was nearly complete after 24 h compared to 38% release of liposomal chlorhexidine after 6 days. The serum-induced destabilization of liposomal ciprofloxacin depended on the accessibility of serum components to gels as partly immersed gels retained approximately 50% of their load of drug after 24 h. In vivo experiments using a catheterized rabbit model of urinary tract infection revealed the absence of viable Escherichia coli on coated catheter surfaces in seven out of nine cases while all untreated catheter surfaces examined (n = 7) were contaminated. PMID:10813750

  18. User`s guide and documentation manual for ``PC-Gel`` simulator

    SciTech Connect

    Chang, Ming-Ming; Gao, Hong W.

    1993-10-01

    PC-GEL is a three-dimensional, three-phase (oil, water, and gas) permeability modification simulator developed by incorporating an in-situ gelation model into a black oil simulator (BOAST) for personal computer application. The features included in the simulator are: transport of each chemical species of the polymer/crosslinker system in porous media, gelation reaction kinetics of the polymer with crosslinking agents, rheology of the polymer and gel, inaccessible pore volume to macromolecules, adsorption of chemical species on rock surfaces, retention of gel on the rock matrix, and permeability reduction caused by the adsorption of polymer and gel. The in-situ gelation model and simulator were validated against data reported in the literature. The simulator PC-GEL is useful for simulating and optimizing any combination of primary production, waterflooding, polymer flooding, and permeability modification treatments. A general background of permeability modification using crosslinked polymer gels is given in Section I and the governing equations, mechanisms, and numerical solutions of PC-GEL are given in Section II. Steps for preparing an input data file with reservoir and gel-chemical transport data, and recurrent data are described in Sections III and IV, respectively. Example data inputs are enclosed after explanations of each input line to help the user prepare data files. Major items of the output files are reviewed in Section V. Finally, three sample problems for running PC-GEL are described in Section VI, and input files and part of the output files of these problems are listed in the appendices. For the user`s reference a copy of the source code of PC-GEL computer program is attached in Appendix A.

  19. : comparison between magnetron sputtering and sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Cosentino, S.; Knebel, S.; Mirabella, S.; Gibilisco, S.; Simone, F.; Bracht, H.; Wilde, G.; Terrasi, A.

    2014-07-01

    SiGeO films have been produced by a sol-gel derived approach and by magnetron sputtering deposition. Post-thermal annealing of SiGeO films in forming gas or nitrogen atmosphere between 600 and 900 °C ensured the phase separation of the SiGeO films and synthesis and growth of Ge nanoclusters (NCs) embedded in SiO2. Rutherford backscattering spectrometry analysis evidenced a similar Ge concentration (~12 %), but a different Ge out-diffusion after annealing between the two types of techniques with the formation of a pure SiO2 surface layer (~30 nm thick) in sol-gel samples. The thermal evolution of Ge NCs has been followed by transmission electron microscopy and Raman analysis. In both samples, Ge NCs form with similar size increase (from ~3 up to ~7 nm) and with a concomitant amorphous to crystalline transition in the 600-800 °C temperature range. Despite a similar Ge concentration, a significant lower NCs density is observed in sol-gel samples attributed to an incomplete precipitation of Ge, which probably remains still dispersed in the matrix. The optical absorption of Ge NCs has been measured by spectrophotometry analyses. Ge NCs produced by the sol-gel method evidence an optical band gap of around 2 eV, larger than that of NCs produced by sputtering (~1.5 eV). These data are presented and discussed also considering the promising implications of a low-cost sol-gel based technique towards the fabrication of light harvesting devices based on Ge nanostructures.

  20. Calculating Percent Gel For Process Control

    NASA Technical Reports Server (NTRS)

    Webster, Charles Neal; Scott, Robert O.

    1988-01-01

    Reaction state of thermosetting resin tracked to assure desired properties. Rate of gel determined as function of temperature by measuring time to gel of part of graphite fabric impregnated with Hexcel R120 (or equivalent) phenolic resin.

  1. Aggregative properties of Rhodamine dyes in polyacrylamide hydrophilic gel media

    NASA Astrophysics Data System (ADS)

    Zakerhamidi, M. S.; Moghadam, M.; Karimi, A.

    2013-02-01

    The visible absorption spectra of two Rhodamine dyes (R6G and RB) in aqueous solutions, and in the polyacrylamide hydrogel matrix with different composition were studied at room temperature. The spectral properties of the dye-loaded hydrogel were also investigated. The transport and the solute-solute interactions of the ionic dyes in aqueous solutions across the hydrophilic gels were calculated. The monomer-dimer equilibrium of these ionic dyes in water and in different composition of hydrogel environment with different soaking time has been investigated by means of UV-Vis spectroscopy. The natures of the interacting pairs in these dyes were discussed using the Kasha exciton theory.

  2. Molecular Epidemiology of Mycobacterium tuberculosis Isolates in 100 Patients With Tuberculosis Using Pulsed Field Gel Electrophoresis

    PubMed Central

    Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz

    2015-01-01

    Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly

  3. Mineralogical and microtextural characterization of ``gel-zircon`` from the Manibay uranium mine, Kazakhstan

    SciTech Connect

    Helean, K.B.; Ewing, R.C.; Burakov, B.E.; Anderson, E.B.; Strykanova, E.E.; Ushakov, S.V.

    1997-12-31

    Gel-zircon, an unusual Zr-silicate phase from the Manibay uranium mine, northern Kazakhstan, was studied using X-ray diffraction (XRD), electron microprobe energy dispersive X-ray spectroscopy (EDS) and high resolution transmission electron microscopy (HRTEM). XRD results indicate that gel-zircon is mostly amorphous and occurs with numerous impurity phases. Microprobe EDS results indicate a UO{sub 2} content up to 9.14 wt.% HRTEM images revealed that the microtexture of gel-zircon consists of nanocrystallites of zircon, 2--10 nm in size, in a dominantly amorphous matrix. Despite the U-Pb age of 420 {+-} 25 my and the lack of significant crystallinity, the gel-zircon is an apparently chemically durable phase. Leaching of uranium ores which contain gel-zircon as the major U-bearing phase is impossible using existing uranium plant technologies. The alpha-decay dose, 2.64 displacements per atom (dpa), corresponding to the age of gel-zircon is much higher than that (0.5 dpa) required to cause metamictization of crystalline zircon. However, the morphology of gel-zircon which occurs as veins up to 5 mm thick and tens of mm long does not indicate initial crystallinity. Initially crystalline natural zircons often preserve their crystal morphology after metamictization. This amorphous phase is analogous to the highly damaged state characteristic of zircon proposed as a waste form for the disposition of excess weapons plutonium.

  4. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.

    PubMed

    Shin, Su Ryon; Zihlmann, Claudio; Akbari, Mohsen; Assawes, Pribpandao; Cheung, Louis; Zhang, Kaizhen; Manoharan, Vijayan; Zhang, Yu Shrike; Yüksekkaya, Mehmet; Wan, Kai-Tak; Nikkhah, Mehdi; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2016-07-01

    Biomaterials currently used in cardiac tissue engineering have certain limitations, such as lack of electrical conductivity and appropriate mechanical properties, which are two parameters playing a key role in regulating cardiac cell behavior. Here, the myocardial tissue constructs are engineered based on reduced graphene oxide (rGO)-incorporated gelatin methacryloyl (GelMA) hybrid hydrogels. The incorporation of rGO into the GelMA matrix significantly enhances the electrical conductivity and mechanical properties of the material. Moreover, cells cultured on composite rGO-GelMA scaffolds exhibit better biological activities such as cell viability, proliferation, and maturation compared to ones cultured on GelMA hydrogels. Cardiomyocytes show stronger contractility and faster spontaneous beating rate on rGO-GelMA hydrogel sheets compared to those on pristine GelMA hydrogels, as well as GO-GelMA hydrogel sheets with similar mechanical property and particle concentration. Our strategy of integrating rGO within a biocompatible hydrogel is expected to be broadly applicable for future biomaterial designs to improve tissue engineering outcomes. The engineered cardiac tissue constructs using rGO incorporated hybrid hydrogels can potentially provide high-fidelity tissue models for drug studies and the investigations of cardiac tissue development and/or disease processes in vitro. PMID:27254107

  5. Retrogradation of Waxy Rice Starch Gel in the Vicinity of the Glass Transition Temperature

    PubMed Central

    Charoenrein, Sanguansri; Udomrati, Sunsanee

    2013-01-01

    The retrogradation rate of waxy rice starch gel was investigated during storage at temperatures in the vicinity of the glass transition temperature of a maximally concentrated system (Tg′), as it was hypothesized that such temperatures might cause different effects on retrogradation. The Tg′ value of fully gelatinized waxy rice starch gel with 50% water content and the enthalpy of melting retrograded amylopectin in the gels were investigated using differential scanning calorimetry. Starch gels were frozen to −30°C and stored at 4, 0, −3, −5, and −8°C for 5 days. The results indicated that the Tg′ value of gelatinized starch gel annealed at −7°C for 15 min was −3.5°C. Waxy rice starch gels retrograded significantly when stored at 4°C with a decrease in the enthalpy of melting retrograded starch in samples stored for 5 days at −3, −5, and −8°C, respectively, perhaps due to the more rigid glass matrix and less molecular mobility facilitating starch chain recrystallization at temperatures below Tg′. This suggests that retardation of retrogradation of waxy rice starch gel can be achieved at temperature below Tg′. PMID:26904602

  6. Low molecular weight heparin gels, based on nanoparticles, for topical delivery.

    PubMed

    Loira-Pastoriza, C; Sapin-Minet, A; Diab, R; Grossiord, J L; Maincent, P

    2012-04-15

    A commercial suspension of nanoparticles (Eudragit RS 30D) was used to manufacture a gel for topical application. Gels were prepared by mixing a polycationic polymer (Eudragit(®) RS 30D) and a low molecular weight heparin (LMWH), an antithrombotic agent. Gels formed spontaneously at a ratio of 1:1 as a result of electrostatic interactions between the polyanionic drug and the polycationic polymer. Different types of heparin were used: Bemiparin, Enoxaparin (Lovenox), Nadroparin (Fraxiparin) and Tinzaparin (Innohep). Several LMWH concentrations were tested. Rheological measurements were performed to investigate the gel behavior. Gel formation was confirmed by dynamic rheological measurements as the elastic modulus (G') was higher than the viscous one (G″). The amount of heparin incorporated into the gel matrix was determined. A maximum of incorporation (100%) was reached using a heparin solution of 600 IU/mL. The release kinetics of LMWH from the gel were also studied. Regardless of the LMWH used in the formulation, a biphasic release profile was observed. Accordingly, a burst effect was observed. Afterwards, the release rate became steady. The penetration of the LMWH through the dermal barrier was also investigated. PMID:22310458

  7. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  8. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  9. A clarified gel for crystal growth

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Simpson, N. R.

    1985-01-01

    A procedure for preparing clarified sodium silicate gels suitable for crystal growth is described. In the method described here, the silicate stock is clarified by pretreating it with cation exchange resins before preparing the gels. Also, a modified recipe is proposed for preparing gels to achieve improved transparency.

  10. Characteristics of platelet gels combined with silk.

    PubMed

    Pallotta, Isabella; Kluge, Jonathan A; Moreau, Jodie; Calabrese, Rossella; Kaplan, David L; Balduini, Alessandra

    2014-04-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel-forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  11. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  12. Elastomeric Photopolymers: Shaping Polymer Gels with Light

    NASA Astrophysics Data System (ADS)

    Kornfield, Julia

    2008-03-01

    Polymer gels that possess a latent ability to change shape, which can be triggered in a spatially resolved manner using light---``elastomeric photopolymers''---have been developed to meet the need for materials that can be reshaped without direct contact, e.g., to non-invasively adjust an implanted lens in the human eye. The physics of diffusion and swelling in elastomers are applied to create a transparent silicone suitable for making a foldable intraocular lens that can be reshaped using near ultraviolet light. A crosslinked silicone matrix dictates the initial shape of the lens, while ``macromers''--short silicone chains with polymerizable end groups—and photoinitiator enable shape adjustment using light: polymerization of the macromer in the irradiated regions, followed by diffusion of free macromer causes local swelling. To predict shape change directly from irradiation profile, a theoretical treatment is presented that captures 1. shape change with no external forces, 2. coupling between diffusion and deformation, and 3. connection between thermodynamics, constitutive equations and equations of motion. Using continuum mechanics complemented with thermodynamics within the auspices of the finite element method, we develop a steady-state model which successfully captures the coupling between diffusion and deformation. Parameter values are drawn from our prior experimental studies of the mechanical properties, equilibrium swelling, penetrant diffusivities and interaction parameters in systematically varied polydimethylsiloxane (PDMS) networks and acrylate endcapped PDMS macromers. Preliminary computational studies show qualitative agreement with experimentally observed phenomena.

  13. Physical Control of Stem Cells via Matrix Elasticity

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Discher, Dennis

    2007-03-01

    Most of our cells reside in soft tissue, but it has only become clear over the last decade that substrate elasticity exerts a major influence on cell motility, contractility, and overall cell function. The mechanical properties of the matrix can even direct the differentiation of human adult stem cells as reported by our group recently (Engler et al. Cell 2006). Basically, the greater the resistance to matrix deformation, the larger the force with which the cell pulls on the matrix, driving the assembly of cytoskeleton and adhesions. For a deeper understanding of the molecular mechanisms of force generation and transduction, various biophysical and biochemical tools must be combined with well-defined extracellular matrix (ECM) models. Past studies have been conducted mostly with synthetic and uncharged polyacrylamide (PA) gel matrices, motivating more bio-relevant gel models. We have developed such a biocompatible hydrogel system of widely and finely tunable elasticity using hyaluronic acid (HA), which is ubiquitous in development and in particular adult tissues. The effective Young's modulus E of these negatively charged hydrogels measured by AFM can be finely tuned by variation of cross-linker and HA concentration yielding a stiffness of 0.1 kPa to 150 kPa. E scales with the concentration of HA to the power of n=2.6 and is a biphasic function of cross-linker concentration. We will describe the influence of these unique gels on stem cell differentiation.

  14. Carboxylated Agarose (CA)-Silk Fibroin (SF) Dual Confluent Matrices Containing Oriented Hydroxyapatite (HA) Crystals: Biomimetic Organic/Inorganic Composites for Tibia Repair.

    PubMed

    Hu, Jing-Xiao; Ran, Jia-Bing; Chen, Si; Jiang, Pei; Shen, Xin-Yu; Tong, Hua

    2016-07-11

    By in situ combining the dual cross-linking matrices of the carboxylated agarose (CA) and the silk fibroin (SF) with the hydroxyapatite (HA) crystals, the CA-SF/HA composites with optimal physicochemical and biological properties were obtained, which were designed to meet the clinical needs of load-bearing bone repair. With the synergistic modulation of the dual organic matrices, the HA nanoparticles presented sheet and rod morphologies due to the preferred orientation, which successfully simulated the biomineralization in nature. The chemical reactivity of the native agarose (NA) was significantly enhanced via carboxylation, and the CA exhibited higher thermal stability than the NA. In the presence of SF, the composites showed optimal mechanical properties that could meet the standard of bone repair. The degradation of the composites in the presence of CA and SF was significantly delayed such that the degradation rate of the implant could satisfy the growth rate of the newly formed bone tissue. The in vitro tests confirmed that the CA-SF/HA composite scaffolds enabled the MG63 cells to proliferate and differentiate well, and the CA/HA composite presented greater capability of promoting the cell behaviors than the NA/HA composite. After 24 days of implantation, newly formed bone was observed at the tibia defect site and around the implant. Extensive osteogenesis was presented in the rats treated with the CA-SF/HA composites. In general, the CA-SF/HA composites prepared in this work had the great potential to be applied for repairing large bone defects. PMID:27314146

  15. The Swelling of Olympic Gels

    NASA Astrophysics Data System (ADS)

    Lang, Michael; Fischer, Jakob; Werner, Marco; Sommer, Jens-Uwe

    2014-03-01

    The swelling equilibrium of Olympic gels is studied by Monte Carlo Simulations. We observe that gels consisting of flexible cyclic molecules of a higher degree of polymerization N show a smaller equilibrium swelling degree Q ~N - 0 . 28φ0- 0 . 72 for the same monomer volume fraction φ0 at network preparation. This observation is explained by a disinterpenetration process of overlapping non-concatenated polymers upon swelling. In the limit of a sufficiently large number of concatenations per cyclic molecule we expect that the equilibrium degree of swelling becomes proportional to φ0- 1 / 2 independent of N. Our results challenge current textbook models for the equilibrium degree of swelling of entangled polymer networks. Now at: Bio Systems Analysis Group, Jena Centre for Bioinformatics (JCB) and Department for Mathematics and Computer Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany.

  16. Supercoiling transformation of chemical gels.

    PubMed

    Asai, Makoto; Katashima, Takuya; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-09-28

    The swelling/deswelling behavior of chemical gels has been an unsolved problem disputed over for a long time. The Obukhov-Rubinstein-Colby model depicts the influence that swelling/deswelling has on elasticity, but its physical picture is too complicated to be sufficiently validated by experiment. In this study, we use molecular dynamics simulation to verify the validity of the molecular picture of network strands predicted by the Obukhov-Rubinstein-Colby model. We conclude that the physical picture of the Obukhov-Rubinstein-Colby model is reasonable, and furthermore the simulation can reveal the details of conformational changes in network strands during the supercoiling transformation. Our findings not only reveal the validity, but also give a better understanding of the dynamics of the swelling/deswelling behavior of chemical gels. PMID:26279149

  17. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  18. Multiscale modeling of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Wittel, Falk K.; Kröplin, Bernd H.

    2006-03-01

    Electrolyte polymer gels are a very attractive class of actuation materials with remarkable electronic and mechanical properties having a great similarity to biological contractile tissues. They consist of a polymer network with ionizable groups and a liquid phase with mobile ions. Absorption and delivery of solvent lead to a considerably large change of volume. Due to this capability, they can be used as actuators for technical applications, where large swelling and shrinkage is desired. In the present work chemically and electrically stimulated polymer gels in a solution bath are investigated. To describe the different complicated phenomena occurring in these gels adequately, the modeling can be conducted on different scales. Therefore, models based on the statistical theory and porous media theory, as well as a multi-field model and a discrete element formulation are derived. A refinement of the different theories from global macroscopic to microscopic are presented in this paper: The statistical theory is a macroscopic theory capable to describe the global swelling or bending e.g. of a gel film, while the general theory of porous media (TPM) is a macroscopic continuum theory which is based on the theory of mixtures extended by the concept of volume fractions. The TPM is a homogenized model, i.e. all geometrical and physical quantities can be seen as statistical averages of the real quantities. The presented chemo-electro-mechanical multi-field formulation is a mesoscopic theory. It is capable of giving the concentrations and the electric potential in the whole domain. Finally the (micromechanical) discrete element (DE) theory is employed. In this case, the continuum is represented by distributed particles with local interaction relations combined with balance equations for the chemical field. This method is predestined for problems involving large displacements, strains and discontinuities. The presented formulations are compared and conclusions on their

  19. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  20. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications.

    PubMed

    Elnaggar, Yosra S R; El-Refaie, Wessam M; El-Massik, Magda A; Abdallah, Ossama Y

    2014-04-28

    Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies. PMID:24531009

  1. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    PubMed

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release. PMID:26138931

  2. Selective gel system for permeability profile control

    SciTech Connect

    Shu, P.

    1990-02-27

    This patent describes a process for closing pores in a more permeable zone of a formation. It comprises: placing into an aqueous solution a first composition sufficient to form ex-situ a size selective, shear thinning first gel which comprises a xanthan biopolymer, and a transitional metal ion; placing into the aqueous solution a second composition sufficient to form thermally a second in-situ gel which is substantially more resistant to formation conditions than the first gel. The composition comprises an aldehyde, and a phenolic compound; allowing the aqueous solution sufficient time to form the ex-situ gel; and injecting the aqueous solution containing the gel into the permeable zone where it reheals, is heated by the formation and thereafter forms a solid gel substantially more resistant to formation conditions than the first gel.

  3. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices

    PubMed Central

    Chaterji, Somali; Kwon, Il Keun; Park, Kinam

    2007-01-01

    This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli–responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom–up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies. PMID:18670584

  4. Physicochemical properties of surimi gels fortified with dietary fiber.

    PubMed

    Debusca, Alicia; Tahergorabi, Reza; Beamer, Sarah K; Matak, Kristen E; Jaczynski, Jacek

    2014-04-01

    Although dietary fiber provides health benefits, most Western populations have insufficient intake. Surimi seafood is not currently fortified with dietary fiber, nor have the effects of fiber fortification on physicochemical properties of surimi been thoroughly studied. In the present study, Alaska pollock surimi was fortified with 0-8 g/100 g of long-chain powdered cellulose as a source of dietary fiber. The protein/water concentrations in surimi were kept constant by adding an inert filler, silicon dioxide in inverse concentrations to the fiber fortification. Fiber-fortified surimi gels were set at 90 °C. The objectives were to determine (1) textural and colour properties; (2) heat-induced gelation (dynamic rheology); and (3) protein endothermic transitions (differential scanning calorimetry) of surimi formulated with constant protein/water, but variable fiber content. Fiber fortification up to 6 g/100 g improved (P<0.05) texture and colour although some decline occurred with 8 g/100g of fiber. Dynamic rheology correlated with texture and showed large increase in gel elasticity, indicating enhanced thermal gelation of surimi. Differential scanning calorimetry showed that fiber fortification did not interfere with thermal transitions of surimi myosin and actin. Long-chain fiber probably traps water physically, which is stabilized by chemical bonding with protein within surimi gel matrix. Based on the present study, it is suggested that the fiber-protein interaction is mediated by water and is physicochemical in nature. PMID:24262528

  5. Novel thermochromism in silica sol-gel materials

    NASA Astrophysics Data System (ADS)

    Gardener, Martin; Perry, Carole C.

    2000-05-01

    In this contribution we provide evidence for thermochromic color changes unique to silica based materials formed at low temperatures by the sol-gel process. The materials formed have potential application as temperature sensitive light filters, visual temperature indicators, self-diagnostic labels for electronic devices and IR recording media. The dopants, diamine complexes of copper(II)/nickel(II) chloride, change from purple to green following heating to 100 degrees C and revert to purple on cooling in the atmosphere. This color change has been explained by the substitution of water molecules by chloride ions in the first coordination sphere of the metal ions. When the same compounds are incorporated into a silica sol-gel matrix under acidic conditions the gel-glasses may be pale green, dark green, yellow, olive-yellow, blue or brown depending on the metal ion chosen and the extent of thermal treatment. Studies on the complexes themselves and on granular silicas doped with some of the complexes are assisting us in understanding the molecular mechanisms that give rise to these color changes.

  6. Sol-gel-derived thick-film amperometric immunosensors.

    PubMed

    Wang, J; Pamidi, P V; Rogers, K R

    1998-03-15

    Sol-gel processing is used for the first time for the preparation of electrochemical immunosensors. One-step sensor fabrication, based on the coupling of sol-gel and screen-printing technologies, is employed. A low-temperature cured ink is prepared by dispersion of rabbit immunoglobulin G (RIgG), graphite powder, and a binder in the sol-gel solution. The enzyme-labeled antibody can readily diffuse toward the encapsulated antigen, which retains its binding properties, and the association reaction is easily detected at the dispersed graphite surface. Use of anti-RIgG labeled with alkaline phosphatase, naphthyl phosphate as the substrate, and amperometric detection at +400 mV (vs Ag/AgCl) results in a low detection limit of 5 ng/mL (32 pM) for the solution antigen. Tailoring the porosity of the ceramic-carbon matrix can be used for tuning the assay performance. The high sensitivity, low cost, durability, and simplicity of the new single-use immunosensors make them well suited for various on-site applications. PMID:9530007

  7. Sol-gel thin films for photonic application

    NASA Astrophysics Data System (ADS)

    Jasieniak, Jacek J.; Martucci, Alessandro

    2012-06-01

    For the fabrication of photonic devices the sol-gel technique is a potentially lucrative alternative to methods such as physical vapor or chemical vapor deposition because of its solution-processability, low cost and relative ease of production. In this work we harness this potential by developing based photonic devices which incorporate highly luminescent CdSe@ZnS core-shell semiconductor quantum dots (QDs) doped within inorganic (TiO2, ZrO2) or hybrid organic-inorganic sol-gel films. As a pre-requisite to the formation of such devices, luminescent waveguides emitting between green and red have been obtained and their optical properties have been characterized. The photochemical stability of these waveguides was found to highly dependent on the exact sol-gel material used. QDs:Titania based composites were found to be inherently photo-unstable due to photoelectron injection into the bulk matrix and subsequent nanocrystal oxidation. In comparison, zirconia composites were significantly more robust with high photoluminescence retained up to annealing temperatures of 300 °C. Despite this difference in photo-chemical stability, both titania and zirconia composite waveguides exhibited amplified stimulated emission (ASE) with one-photon and two-photon optical pumping, however only zirconia based waveguides exhibited long term photostability. This Zirconia based films have been used for the realization of distributed feedback lasers and Bragg micro-cavities.

  8. A Novel Technique for Micro-patterning Proteins and Cells on Polyacrylamide Gels

    PubMed Central

    Tang, Xin; Ali, M. Yakut; Saif, M. Taher A.

    2012-01-01

    Spatial patterning of proteins (extracellular matrix, ECM) for living cells on polyacrylamide (PA) hydrogels has been technically challenging due to the compliant nature of the hydrogels and their aqueous environment. Traditional micro-fabrication process is not applicable. Here we report a simple, novel and general method to pattern a variety of commonly used cell adhesion molecules, i.e. Fibronectin (FN), Laminin (LN) and Collagen I (CN), etc. on PA gels. The pattern is first printed on a hydrophilic glass using polydimethylsiloxane (PDMS) stamp and micro-contact printing (μCP). Pre-polymerization solution is applied on the patterned glass and is then sandwiched by a functionalized glass slide, which covalently binds to the gel. The hydrophilic glass slide is then peeled off from the gel when the protein patterns detach from the glass, but remain intact with the gel. The pattern is thus transferred to the gel. The mechanism of pattern transfer is studied in light of interfacial mechanics. It is found that hydrophilic glass offers strong enough adhesion with ECM proteins such that a pattern can be printed, but weak enough adhesion such that they can be completely peeled off by the polymerized gel. This balance is essential for successful pattern transfer. As a demonstration, lines of FN, LN and CN with widths varying from 5–400 μm are patterned on PA gels. Normal fibroblasts (MKF) are cultured on the gel surfaces. The cell attachment and proliferation are confined within these patterns. The method avoids the use of any toxic chemistry often used to pattern different proteins on gel surfaces. PMID:23002394

  9. Mechanical Restrictions on Biological Responses by Adherent Cells within Collagen Gels

    PubMed Central

    Simon, D.D.; Horgan, C.O.; Humphrey, J.D.

    2012-01-01

    Cell-seeded collagen and fibrin gels represent excellent assays for studying interactions between adherent interstitial cells and the three-dimensional extracellular matrix in which they reside. Over one hundred papers have employed the free-floating collagen gel assay alone since its introduction in 1979 and much has been learned about mechanobiological responses of diverse types of cells. Yet, given that mechanobiology is the study of biological responses by cells to mechanical stimuli that must respect the basic laws of mechanics, we must quantify better the mechanical conditions that are imposed on or arise in cell-seeded gels. In this paper, we suggest that cell responses and associated changes in matrix organization within the classical free-floating gel assay are highly restricted by the mechanics. In particular, many salient but heretofore unexplained or misinterpreted observations in free-floating gels can be understood in terms of apparent cell-mediated residual stress fields that satisfy quasi-static equilibria and continuity of tractions. There is a continuing need, therefore, to bring together the allied fields of mechanobiology and biomechanics as we continue to elucidate cellular function within both native connective tissues and tissue equivalents that are used in basic scientific investigations or regenerative medicine. PMID:23022259

  10. Matrix cracking in ceramic-matrix composites

    SciTech Connect

    Danchaivijit, S.; Shetty, D.K. . Dept. of Materials Science and Engineering)

    1993-10-01

    Matrix cracking in ceramic-matrix composites with unbonded frictional interface has been studied using fracture mechanics theory. The critical stress for extension of a fiber-bridged crack has been analyzed using the stress-intensity approach. The analysis uses a new shear-lag formulation of the crack-closure traction applied by the bridging fibers based on the assumption of a constant sliding friction stress over the sliding length of the fiber-matrix interface. The new formulation satisfies two required limiting conditions: (a) when the stress in the bridging fiber approaches the far-field applied stress, the crack-opening displacement approaches a steady-state upper limit that is in agreement with the previous formulations; and (b) in the limit of zero crack opening, the stress in the bridging fiber approaches the far-field fiber stress. This lower limit of the bridging stress is distinctly different from the previous formulations. For all other conditions, the closure traction is a function of the far-field applied stress in addition to the local crack-opening displacement, the interfacial sliding friction stress, and the material properties. Numerical calculations using the stress-intensity approach indicate that the critical stress for crack extension decreases with increasing crack length and approaches a constant steady-state value for large cracks. The steady-state matrix-cracking stress agrees with a steady-state energy balance analysis applied to the continuum model, but it is slightly less than the matrix-cracking stress predicted by such theories of steady-state cracking as that of Aveston, Cooper, and Kelly. The origin of this difference and a method for reconciliation of the two theoretical approaches are discussed.

  11. Thin-film silica sol-gels doped with ion responsive fluorescent lipid bilayers

    SciTech Connect

    Sasaki, D.Y.; Shea, L.E.; Sinclair, M.B.

    1999-01-12

    A metal ion sensitive, fluorescent lipid-b i layer material (5oA PSIDA/DSPC) was successfully immobilized in a silica matrix using a tetramethoxysilane (TMOS) sol-gel procedure. The sol-gel immobilization method was quantitative in the entrapment of seif-assembled Iipid-bilayers and yielded thin films for facile configuration to optical fiber piatforms. The silica matrix was compatible with the solvent sensitive lipid bilayers and provided physical stabilization as well as biological protection. Immobilization in the silica sol-gel produced an added benefit of improving the bilayer's metal ion sensitivity by up to two orders of magnitude. This enhanced performance was attributed to a preconcentrator effect from the anionic surface of the silica matrix. Thin gels (193 micron thickness) were coupled to a bifurcated fiber optic bundle to produce a metal ion sensor probe. Response times of 10 - 15 minutes to 0.1 M CUCIZ were realized with complete regeneration of the sensor using an ethylenediarninetetraacetic acid (EDTA) solution.

  12. A glycosaminoglycan mimetic peptide nanofiber gel as an osteoinductive scaffold.

    PubMed

    Tansik, Gulistan; Kilic, Erden; Beter, Mustafa; Demiralp, Bahtiyar; Kiziltas Sendur, Gullu; Can, Nuray; Ozkan, Huseyin; Ergul, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-08-16

    Biomineralization of the extracellular matrix (ECM) plays a crucial role in bone formation. Functional and structural biomimetic native bone ECM components can therefore be used to change the fate of stem cells and induce bone regeneration and mineralization. Glycosaminoglycan (GAG) mimetic peptide nanofibers can interact with several growth factors. These nanostructures are capable of enhancing the osteogenic activity and mineral deposition of osteoblastic cells, which is indicative of their potential application in bone tissue regeneration. In this study, we investigated the potential of GAG-mimetic peptide nanofibers to promote the osteogenic differentiation of rat mesenchymal stem cells (rMSCs) in vitro and enhance the bone regeneration and biomineralization process in vivo in a rabbit tibial bone defect model. Alkaline phosphatase (ALP) activity and Alizarin red staining results suggested that osteogenic differentiation is enhanced when rMSCs are cultured on GAG-mimetic peptide nanofibers. Moreover, osteogenic marker genes were shown to be upregulated in the presence of the peptide nanofiber system. Histological and micro-computed tomography (Micro-CT) observations of regenerated bone defects in rabbit tibia bone also suggested that the injection of a GAG-mimetic nanofiber gel supports cortical bone deposition by enhancing the secretion of an inorganic mineral matrix. The volume of the repaired cortical bone was higher in GAG-PA gel injected animals. The overall results indicate that GAG-mimetic peptide nanofibers can be utilized effectively as a new bioactive platform for bone regeneration. PMID:27447002

  13. Self-Polarization of Cells in Elastic Gels

    NASA Astrophysics Data System (ADS)

    Zemel, Assaf; Safran, Samuel

    2008-03-01

    The shape of a cell as well as the rigidity and geometry of its surroundings play an important role in vital cellular processes. The contractile activity of cells provides a generic means by which cells may sense and respond to mechanical features. The matrix stresses, that depend on the elasticity and geometry of cells, feedback on the cells and influence their activity. This suggests a mechanical mechanism by which cells control their shape and forces. We present a quantitative, mechanical model that predicts that cells in an elastic medium can self-polarize to form well ordered stress fibers. We focus on both single cells in a gel, as well as on an ensemble of cells that is confined to some region within the gel. While the magnitude of the cellular forces is found to increase monotonically with the matrix rigidity the anisotropy of the forces, and thus the ability of the cells to polarize, is predicted to depend non-monotonically on the medium's rigidity. We discuss these results with experimental findings and with the observation of an optimal medium elasticity for cell function and differentiation.

  14. Development of novel Sol-Gel Indicators (SGI's) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    SciTech Connect

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-11-03

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report.

  15. MATRIX AND VECTOR SERVICES

    2001-10-18

    PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.

  16. Matrix metalloproteinases and epileptogenesis.

    PubMed

    Ikonomidou, Chrysanthy

    2014-12-01

    Matrix metalloproteinases are vital drivers of synaptic remodeling in health and disease. It is suggested that at early stages of epileptogenesis, inhibition of matrix metalloproteinases may help ameliorate cell death, aberrant network rewiring, and neuroinflammation and prevent development of epilepsy. PMID:26567100

  17. Transfer function matrix

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Given a multivariable system, it is proved that the numerator matrix N(s) of the transfer function evaluated at any system pole either has unity rank or is a null matrix. It is also shown that N(s) evaluated at any transmission zero of the system has rank deficiency. Examples are given for illustration.

  18. Time rate collision matrix

    SciTech Connect

    Stoenescu, M.L.; Smith, T.M.

    1980-02-01

    The collision integral terms in Boltzmann equation are reformulated numerically leading to the substitution of the multiple integrals with a multiplicative matrix of the two colliding species velocity distribution functions which varies with the differential collision cross section. A matrix of lower rank may be constructed when one of the distribution functions is specified, in which case the matrix elements represent kinetic transition probabilities in the velocity space and the multiplication of the time rate collision matrix with the unknown velocity distribution function expresses the time rate of change of the distribution. The collision matrix may be used to describe the time evolution of systems in nonequilibrium conditions, to evaluate the rate of momentum and energy transfer between given species, or to generate validity criteria for linearized kinetic equations.

  19. Grassmann matrix quantum mechanics

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-01

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. We discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.

  20. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.