Science.gov

Sample records for agarose gels polyacrylamide

  1. Nondenaturing electrophoresis of lipoproteins in agarose and polyacrylamide gradient gels

    SciTech Connect

    Shore, V.G.

    1989-12-19

    The plasma lipoproteins frequently are classified according to density and/or electrophoretic mobility. The lipoprotein classes differ characteristically also in particle size and apolipoprotein composition. Each class is heterogeneous in size and composition as well. Nondenaturing electrophoresis in agarose gels and polyacrylamide gradient gels are complementary analytical methods for classification of lipoproteins and determining distribution profiles of the major classes. In addition, gradient gel electrophoresis (GGE) has a high resolving capability for subfractionating each class according to particle size. Combination of gel electrophoresis with immunoblotting yields information on heterogeneity in apolipoprotein distribution. 14 refs., 6 figs., 3 tabs.

  2. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution.

    PubMed

    Stellwagen, Nancy C

    2009-06-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are primarily due to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 +/- 0.01) x 10(-4) cm2/V s in 40 mM Tris-acetate-EDTA buffer at 20 degrees C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration.

  3. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    PubMed

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  4. Analysis of mucosal mucins separated by SDS-urea agarose polyacrylamide composite gel electrophoresis.

    PubMed

    Issa, Samah M A; Schulz, Benjamin L; Packer, Nicolle H; Karlsson, Niclas G

    2011-12-01

    Efficient separation of mucins (200 kDa-2 MDa) was demonstrated using gradient SDS agarose/polyacrylamide composite gel electrophoresis (SDS-AgPAGE). Inclusion of urea (SDS-UAgPAGE) in the gels casting were shown to have no effect on the migration of mucins in the gel and allowed casting of gel at room temperature. This simplified the procedure for multiple casting of agarose polyacrylamide gradients and increased reproducibility of these gels. Hence, the implementation of urea makes the technique applicable for high throughput isolation and screening of mucin oligosaccharides by LC-MS after releasing the oligosaccharides from isolated, blotted mucin subpopulations. It was also shown that the urea addition had no effect on other supporting applications such as western and lectin blotting. In addition, identification of the mucin protein after tryptic digestion and LC-MS was possible and no protein carbamylation due to the presence of urea in the gel was detected. LC-MS software developed for metabolomic analysis was used for O-linked oligosaccharide detection and differential display of various mucin samples. Using this method, heterogeneous glycosylation of mucins and mucin-type molecules isolated by SDS-AgPAGE and SDS-UAgPAGE was shown to consist of more than 80 different components in a single band, and in the extreme cases, up to 300-500 components (MUC5B/AC from saliva and sputum and). Metabolomic software was also used to show that the migration of mucin isoforms within the gel is due to heterogeneous size distribution of the oligosaccharides, with the slower migrating bands enriched in high-molecular-weight oligosaccharides.

  5. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan.

    PubMed

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K

    2011-10-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 μg (for polyacrylamide) to 2.5 μg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.

  6. Electrophoresis of /sup 35/S-labeled proteoglycans of polyacrylamide-agarose composite gels and their visualization by fluorography

    SciTech Connect

    Carney, S.L.; Bayliss, M.T.; Collier, J.M.; Muir, H.

    1986-01-01

    Techniques for the electrophoresis of /sup 35/S-labeled proteoglycans on polyacrylamide-agarose gel slabs and subsequent fixation, impregnation, and fluorography of such electrophoretograms have been developed. The procedure permits the examination of newly synthesized proteoglycan subspecies using a rapid technique, previously unavailable for these labeled molecules.

  7. A shortcut organic dye-based staining method for the detection of DNA both in agarose and polyacrylamide gel electrophoresis.

    PubMed

    Cong, Weitao; Chen, Mao; Zhu, Zhongxin; Liu, Zhiguo; Nan, Jia; Ye, Weijian; Ni, Maowei; Zhao, Ting; Jin, Litai

    2013-02-21

    In this study, we describe a brief, sensitive and safe organic dye-based staining method for the visualization of DNA both in agarose and polyacrylamide gels by using Victoria Pure Blue BO (VPBBO). Down to 0.8-1.6 ng of λ DNA/HindIII markers in agarose gels and 0.4-0.8 ng of pUC18 DNA/Mspl markers in polyacrylamide gels can be successfully detected within 15 and 10 min by the new developed technique, respectively. Moreover, the mechanism of the VPBBO staining was investigated and further confirmed by electrospray ionization mass spectrometry (ESI-MS) and molecular docking. The results indicated that the interaction between VPBBO and DNA is mainly due to groove binding.

  8. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.

    PubMed

    Suriano, R; Griffini, G; Chiari, M; Levi, M; Turri, S

    2014-02-01

    Two-dimensional (2-D) gel electrophoresis currently represents one of the most standard techniques for protein separation. In addition to the most commonly employed polyacrylamide crosslinked hydrogels, acrylamide-agarose copolymers have been proposed as promising systems for separation matrices in 2-D electrophoresis, because of the good resolution of both high and low molecular mass proteins made possible by careful control and optimization of the hydrogel pore structure. As a matter of fact, a thorough understanding of the nature of the hydrogel pore structure as well as of the parameters by which it is influenced is crucial for the design of hydrogel systems with optimal sieving properties. In this work, a series of acrylamide-based hydrogels covalently crosslinked with different concentrations of allyl agarose (0.2-1%) is prepared and characterized by creep-recovery measurements, dynamic rheology and tensile tests, in the attempt to gain a clearer understanding of structure-property relationships in crosslinked polyacrylamide-based hydrogels. The rheological and mechanical properties of crosslinked acrylamide-agarose hydrogels are found to be greatly affected by crosslinker concentration. Dynamic rheological tests show that hydrogels with a percentage of allyl agarose between 0.2% and 0.6% have a low density of elastically effective crosslinks, explaining the good separation of high molecular mass proteins in 2-D gel electrophoresis. Over the same range of crosslinker concentration, creep-recovery measurements reveal the presence of non-permanent crosslinks in the hydrogel network that justifies the good resolution of low molecular mass proteins as well. In tensile tests, the hydrogel crosslinked with 0.4% of allyl agarose exhibits the best results in terms of mechanical strength and toughness. Our results show how the control of the viscoelastic and the mechanical properties of these materials allow the design of mechanically stable hydrogels with improved

  9. Stabilization of thin-layer agarose gels after isoelectric focusing with polyacrylamide enables reverse imidazole-zinc staining and facilitates two-dimensional gel electrophoresis.

    PubMed

    Hellman, Jukka

    2008-09-01

    Large-pore-size agarose gels provide excellent resolving capacity for high molecular weight biomolecules. Thin-layer agarose isoelectric focusing (IEF) gels on polyester support films are especially useful for the separation of large proteins based on their pI in native conformation, but the method has suffered from the lack of detection methods compatible with agarose gels in hydrated form. Recently, an acrylamide copolymerization method was reported to enable mass-spectrometry-compatible silver staining and in-gel digestion of proteins. In this study, the method was further applied by demonstrating successful reverse imidazole-zinc staining of thin-layer agarose IEF gels copolymerized with acrylamide. The sensitivity of the reverse staining method on the composite gel at its best equaled the sensitivity of the traditional dried agarose silver staining method. Owing to the increased durability and reversible detection, the reverse-stained first-dimension gel could be conveniently prepared for the second-dimension sodium dodecyl sulfate polyacrylamide gel electrophoresis by reduction and alkylation. In addition, the micropreparative generation of tryptic peptides of Coomassie brilliant blue R-250 stained proteins in the composite gel is demonstrated.

  10. Electroelution of nucleic acids from polyacrylamide gels: a custom-made, agarose-based electroeluter.

    PubMed

    Fadouloglou, Vasiliki E

    2013-06-01

    Polyacrylamide electrophoresis is routinely used for small-scale preparative and analytical separations. The incomparably high-resolution separations achieved by this technique, however, have not been widely exploited to the large-scale preparative isolation of biological molecules from contaminants, mainly because of difficulties in the recovery of the desired molecule from the gel matrix. Electroelution is an effective procedure applied for this purpose. However, commercially available, high-cost electroeluters are required for achieving high recovery yields. Here, we describe a custom-made electroeluter that combines low-cost, high-recovery yields, short times of electroelution, and convenience in the manipulation of sensitive samples.

  11. Agarose gel electrophoresis.

    PubMed

    Smith, D R

    1993-01-01

    After digestion of DNA with a restriction enzyme (Chapter 50), it is usually necessary, for both preparative and analytical purposes, to separate and visualize the products. In most cases, where the products are between 200 and 20,000 bp long, this is achieved by agarose gel electrophoresis. Agarose is a linear polymer that is extracted from seaweed and sold as a white powder. The powder is melted in buffer and allowed to cool, whereby the agarose forms a gel by hydrogen bonding. The hardened matrix contains pores, the size of which depends on the concentration of agarose. The concentration of agarose is referred to as a percentage of agarose to volume of buffer (w/v), and agarose gels are normally in the range of 0.3 to 3%. Many different apparatus arrangements have been devised to run agarose gels; for example, they can be run horizontally or vertically, and the current can be conducted by wicks or the buffer solution. However, today, the "submarine" gel system is almost universally used. In this method, the agarose gel is formed on a supporting plate, and then the plate is submerged into a tank containing a suitable electrophoresis buffer. Wells are preformed in the agarose gel with the aid of a "comb" that is inserted into the cooling agarose before the agarose has gelled. Into these wells are loaded the sample to be analyzed, which has been mixed with a dense solution (a loading buffer) to ensure that the sample sinks into the wells.

  12. A new agarose gel model

    SciTech Connect

    Hasenfeld, A.; Pepke, E.; Lim, H.A.; Cantor, C.R.

    1993-12-31

    A new agarose gel model is introduced, which corresponds to what the authors believe agarose gels look like microscopically. While the scientific literature is filled with studies of the microscopic structure of agarose, the fact remains that there is no unambiguous and exact model of its underlying structure. Given this, the authors are left to construct their own model numerically.

  13. Electroblotting from Polyacrylamide Gels.

    PubMed

    Goldman, Aaron; Ursitti, Jeanine A; Mozdzanowski, Jacek; Speicher, David W

    2015-11-02

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications.

  14. A robust new strategy for high-molecular-weight proteome research: a 2-hydroxyethyl agarose/polyacrylamide gel enhanced separation and ZnO-PMMA nanobeads assisted identification.

    PubMed

    Shen, Wenwen; Shen, Chengpin; Xiong, Huanming; Lu, Haojie; Yang, Pengyuan

    2010-09-15

    A new mass spectrometry based analysis strategy has been established here for high-molecular-weight (HMW) proteome research. First, a 2-hydroxyethyl agarose/polyacrylamide (HEAG/PAM) electrophoresis gel was designed for the first time to realize an easy-handling separation method with high spatial resolution for HMW proteins, good reproducibility and mass spectrometry-compatible silver staining. Second, ZnO-polymethyl methacrylate (ZnO-PMMA) nanobeads were applied here for enriching and desalting the peptides from the HMW proteins. Third, the peptides were analyzed by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) with the presence of the ZnO-PMMA nanobeads, and their MS signals were enhanced markedly. The success rate of identification for HMW proteins was significantly increased due to high enriching efficiency and salt tolerance capability as well as signal enhancing capability of the ZnO-PMMA nanobeads. We believe that this analysis strategy will inspire and accelerate the HMW proteome studies.

  15. Nondenaturing agarose gel electrophoresis of RNA.

    PubMed

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.

  16. Drying SDS-Polyacrylamide Gels.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes a method for drying SDS-polyacrylamide gels. Gels containing proteins radiolabeled with (35)S-labeled amino acids must be dried before autoradiographic images can be obtained. Nonradioactive gels can also be preserved by drying.

  17. Recycling of superfine resolution agarose gel.

    PubMed

    Seng, T-Y; Singh, R; Faridah, Q Z; Tan, S-G; Alwee, S S R S

    2013-07-08

    Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris-borate-ethylenediaminetetraacetic acid buffer, will further save time and cost. The 2.5% gel was prepared following the Agarose SFR(TM) manual by adding 2.5 g agarose powder into 100 mL 1X lithium borate buffer in a 250-mL flask with rapid stirring. Two midigels (105 x 83 mm, 17 wells) or 4 minigels (50 x 83 mm, 8 wells), 4 mm thickness can be prepared from 100 mL gel solution. A total of 1680 PCR products amplified using 140 SSR markers from oil palm DNA samples were tested in this study using SFR recycled gel. As average, the gel can be recycled 8 times with good resolution, but can be recycled up to 14 times before the resolutions get blurred.

  18. A method for horizontal polyacrylamide slab gel electrophoresis.

    PubMed

    Bellomy, G R; Record, M T

    1989-01-01

    We present a simplified method of preparation of polyacrylamide gels which is totally analogous to the procedure now widely used to pour and run horizontal agarose gels. The acrylamide is poured into an open air gel mold consisting of a glass plate with a masking tape border and a comb. It is subsequently run in a submarine horizontal electrophoresis apparatus. The electrophoretic mobility and resolution of DNA fragments obtained in such gels are identical to results obtained with gels poured and run in the vertical configuration. Numerous advantages of horizontal polyacrylamide gel electrophoresis are discussed.

  19. A composite agarose-polyacrylamide matrix as two-dimensional hard support for solid-phase protein assays.

    PubMed

    Krajewski, Wladyslaw A

    2016-03-15

    The solid-phase protein assays using blotting membranes as hard support do not allow achieving the low background and sensitivity of protein staining in clear gels. The membrane opacity complicates imaging of results on standard lab documentation systems. We describe a low-cost transparent matrix that can be used as an alternative to polymeric membranes for solid-phase assays. Protein samples are spotted onto a dry film of composite agarose-polyacrylamide matrix covering standard glass microscopic slides. After rehydration in protein-fixing solution, matrix with protein samples can be detached from glass support and stained as conventional protein polyacrylamide gels.

  20. Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions.

    PubMed

    Ream, Jennifer A; Lewis, L Kevin; Lewis, Karen A

    2016-10-15

    Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5-10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments.

  1. SDS-Polyacrylamide Gel Electrophoresis of Proteins.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes the separation of proteins by SDS-polyacrylamide gel electrophoresis. SDS is used with a reducing agent and heat to dissociate the proteins. SDS-polypeptide complexes form and migrate through the gels according to the size of the polypeptide. By using markers of known molecular weight, the molecular weight of the polypeptide chain(s) can be estimated.

  2. Bleach gel: a simple agarose gel for analyzing RNA quality.

    PubMed

    Aranda, Patrick S; LaJoie, Dollie M; Jorcyk, Cheryl L

    2012-01-01

    RNA-based applications requiring high-quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the 'bleach gel' is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality.

  3. Agarose gel electrophoresis for the separation of DNA fragments.

    PubMed

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  4. Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality

    PubMed Central

    Aranda, Patrick S.; LaJoie, Dollie M.; Jorcyk, Cheryl L.

    2013-01-01

    RNA-based applications requiring high quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the ‘bleach gel’ is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality. PMID:22222980

  5. Enhanced detection of glycoproteins in polyacrylamide gels.

    PubMed

    Muñoz, G; Marshall, S; Cabrera, M; Horvat, A

    1988-05-01

    A highly sensitive and simple method to enhance detection of glycoproteins resolved by either one- or two-dimensional polyacrylamide gel electrophoresis is described. The method is a modification of the procedure described by D. Fargeaud et al. (D. Fargeaud, J. C. Benoit, F. Kato, and G. Chappuis (1984) Arch. Virol. 80, 69-82) that uses concanavalin A conjugated with fluorescein isothyocyanate to detect the carbohydrate moiety of glycoproteins. Briefly, the electrophoresed gel is exposed to the fluorescent lectin, thoroughly washed, and sequentially transferred to 50% methanol in deionized water and to absolute methanol. The result is an abrupt dehydration of the gel which turns evenly white and stiff. At least a twofold enhancement of fluorescence is obtained as detected by exposing the treated gel to an appropriate uv source. The sensitivity of the procedure allows us to detect purified immunoglobulin molecules by their carbohydrate content in the range of 0.2 microgram of total protein. The specificity of the detection is demonstrated by a comparison with the corresponding polypeptide profile obtained by silver nitrate staining of the gel.

  6. A new agarose matrix for single-strand conformation polymorphism (SSCP), heteroduplex (HTX), and gel shift analyses

    SciTech Connect

    Dumais, M.M.; White, H.W.; Rashid, M.R.

    1994-09-01

    Detection of mutation, by SSCP or heteroduplex analysis, is important in medical genetics and oncology. Analysis of DNA binding proteins is a powerful tool in molecular biology research. Traditionally, these methods are performed using nondenaturing gel electrophoresis on poly-acrylamide or polyacrylamide-type matrices. Here we report the development of a new agarose gel matrix that can be used for all three methods. SSCP analyses were performed using the prototype agarose gel matrix for wild-type, polymorphic, and mutant samples from c-Kras exon 12, p53 exons 8 and 9, and HOX2B. We performed SSCP analyses using both isotopic and nonisotopic methods. We also analyzed the samples by deliberate HTX formation and subsequent gel analysis. Using the prototype agarose matrix, we detected single and multiple DNA sequence variants in 150-350 bp fragments with an efficiency comparable to polyacrylamide gels run under similar conditions. For SSCP and HTX assays, we achieved optimal resolution in gels run in vertical formats. However, some HTX samples could be resolved in horizontal gel systems. In addition, based on our studies, we have developed a useful battery of controls and standards for quality control of SSCP and HTX assays. We analyzed several different DNA/protein complexes (SP1, AP2, and octamer binding protein) using the prototype agarose matrix. We obtained good resolution in both vertical and horizontal gel formats. The horizontal gel system is generally superior for this application, due to its ease of use and slightly better resolution. This new prototype gel matrix offers an alternative for researchers performing analyses that previously could only be done on polyacrylamide-type gel matrices. For some applications, this new matrix offers the ease of horizontal gel casting. For all applications, this matrix offers the safety of a nontoxic system and the reproducibility of a thermally gelling system.

  7. Blinking suppression of single quantum dots in agarose gel

    SciTech Connect

    Ko, H. C.; Yuan, C. T.; Tang, Jau; Lin, S. H.

    2010-01-04

    Fluorescence blinking is commonly observed in single molecule/particle spectroscopy, but it is an undesirable feature in many applications. We demonstrated that single CdSe/ZnS quantum dots in agarose gel exhibited suppressed blinking behavior. In addition, the long-time exponential bending tail of the power-law blinking statistics was found to be influenced by agarose gel concentration. We suggest that electron transfer from the light state to the dark state might be blocked due to electrostatic surrounding of gel with inherent negatively charged fibers.

  8. Separation of long RNA by agarose-formaldehyde gel electrophoresis.

    PubMed

    Mansour, Farrah H; Pestov, Dimitri G

    2013-10-01

    We describe a method to facilitate electrophoretic separation of high-molecular-weight RNA species, such as ribosomal RNAs and their precursors, on agarose-formaldehyde gels. Two alternative "pK-matched" buffer systems were substituted for the traditionally used Mops-based conductive medium. The key advantages include shortened run times, a 5-fold reduction in formaldehyde concentration, a significantly improved resolution of long RNAs, and consistency in separation. The new procedure has a streamlined work flow that helps to minimize errors and is broadly applicable to agarose gel electrophoresis of RNA samples and their subsequent analysis by Northern blotting.

  9. Cytoplasmic polyhedrosis virus classification by electropherotype; validation by serological analyses and agarose gel electrophoresis.

    PubMed

    Mertens, P P; Crook, N E; Rubinstein, R; Pedley, S; Payne, C C

    1989-01-01

    Serological analyses of several different cytoplasmic polyhedrosis viruses (CPVs), including two type 1 CPVs from Bombyx mori, type 1 CPV from Dendrolimus spectabilis, type 12 CPV from Autographa gamma, type 2 CPV from Inachis io, type 5 CPV from Orgyia pseudotsugata and type 5 CPV from Heliothis armigera, demonstrated a close correlation between the antigenic properties of the polyhedrin or virus particle structural proteins and the genomic dsRNA electropherotypes. The dsRNAs of these viruses were analysed by electrophoresis in 3% and 10% polyacrylamide gels with a discontinuous Tris-HCl/Tris-glycine buffer system or by 1% agarose gel electrophoresis using a continuous Tris-acetate-EDTA buffer system. Electrophoretic analysis in agarose gels was found to be the most suitable for the classification of CPV isolates into electropherotypes, and the results obtained showed a close correlation with the observed antigenic relationships between different virus isolates. However, electrophoretic analysis in 10% polyacrylamide gels was most sensitive for the detection of intra-type variation and the presence of mixed virus isolates.

  10. Electric birefrigence imaging of DNA in agarose electrophoresis gels

    SciTech Connect

    Lanan, M.

    1992-01-01

    Electric birefringence imaging (EBI) provides sensitive, non-invasive detection of double-stranded DNA in agarose gels. Quasi-monochromatic, visible light is transmitted through an electrophoresis gel which is placed between plastic film polarizers. A slow-scan video camera equipped with a 12 bit A/D converter records the images. Under electrophoresis running conditions, hydrodynamically-induced gel distortion is shown to be the major source of birefringence for fragments smaller than 23 kbp. The birefringence generated approximates the DNA concentration gradient in the electric field direction. The stress-optic coefficient of 1% agarose gel is measured by mechanical compression and used to evaluate the magnitude of the induced stress on the gel during electrophoresis. Multi-linear regression analysis is used to quantitatively test the model for EBI signals. Birefringence attributed to localized electrokinetic gel distortion and to intrinsic DNA birefringence is studied by fitting ethidium bromide fluorescence profiles to EBI results. Fluorescence polarization imaging is used to assess the influence of localized gel distortion on nucleic acid orientation across a fragment band. It is shown that DNA aligns parallel, on average, with an applied electric field independent of its location within a band. Both EBI sensitivity and quantitation are improved through image processing techniques which separate the DNA Kerr effect and induced electrokinetic distortion contributions. Under standard electrophoresis conditions, detection limits of 8 ng DNA per well are obtained in hydroxyethylated agarose without signal averaging. Maintaining constant gel temperature is shown to improve the quality of the images. Stress patterns in agarose gels during DC and field-inversion gel electrophoresis (FIGE) of nucleic acid fragments of varying sizes are mapped using EBI. In addition, online EBI monitoring during FIGE of megabase pair DNA size standards is demonstrated.

  11. Enhanced detection of gold nanoparticles in agarose gel electrophoresis.

    PubMed

    Hasenoehrl, Carina; Alexander, Colleen M; Azzarelli, Nicholas N; Dabrowiak, James C

    2012-04-01

    Gel electrophoresis is a powerful tool in gold nanoparticle (AuNP) research. While the technique is sensitive to the size, charge, and shape of particles, its optimal performance requires a relatively large amount of AuNP in the loading wells for visible detection of bands. We here describe a novel and more sensitive method for detecting AuNPs in agarose gels that involves staining the gel with the common organic fluorophore fluorescein, to produce AuNP band intensities that are linear with nanoparticle concentration and almost an order of magnitude larger than those obtained without staining the gel.

  12. Function, structure, and stability of enzymes confined in agarose gels.

    PubMed

    Kunkel, Jeffrey; Asuri, Prashanth

    2014-01-01

    Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, as the average spacing between macromolecules in the cell cytosol is much smaller than the size of the macromolecules themselves. In our study, we attempt to address this question using three structurally and functionally different model enzymes encapsulated in agarose gels of different porosities. Our studies reveal that under standard buffer conditions, the initial reaction rates of the agarose-encapsulated enzymes are lower than that of the solution phase enzymes. However, the encapsulated enzymes retain a higher percentage of their activity in the presence of denaturants. Moreover, the concentration of agarose used for encapsulation had a significant effect on the enzyme functional stability; enzymes encapsulated in higher percentages of agarose were more stable than the enzymes encapsulated in lower percentages of agarose. Similar results were observed through structural measurements of enzyme denaturation using an 8-anilinonaphthalene-1-sulfonic acid fluorescence assay. Our work demonstrates the utility of hydrogels to study protein behavior in highly confined environments similar to those present in vivo; furthermore, the enhanced stability of gel-encapsulated enzymes may find use in the delivery of therapeutic proteins, as well as the design of novel strategies for biohybrid medical devices.

  13. Anomalous diffusion of poly(ethylene oxide) in agarose gels.

    PubMed

    Brenner, Tom; Matsukawa, Shingo

    2016-11-01

    We report on the effect of probe size and diffusion time of poly(ethylene) oxide in agarose gels. Time-dependence of the diffusion coefficient, reflecting anomalous diffusion, was observed for poly(ethylene) oxide chains with hydrodynamic radii exceeding about 20nm at an agarose concentration of 2%. The main conclusion is that the pore distribution includes pores that are only several nm across, in agreement with scattering reports in the literature. Interpretation of the diffusion coefficient dependence on the probe size based on a model of entangled rigid rods yielded a rod length of 72nm.

  14. Properties of cellulase immobilized on agarose gel with spacer

    SciTech Connect

    Chim-anage, P.; Kashiwagi, Y.; Magae, Y.; Ohta, T.; Sasaki, T.

    1986-12-01

    Cellulase produced by fungus Trichoderma viride was immobilized on agarose beads (Sepharose 4B) activated by cyanogen bromide and also on activated agarose beads that contained spacer arm (activated Ch-Sepharose 4B and Affi-Gel 15). The CMCase activity retained by immobilized cellulase on activated Sepharose containing the spacer tended to be higher than that immobilized without spacer, although the extent of protein immobilization was lower. Also, the higher substrate specificity for cellulase immobilized on beads with spacer was obtained for cellobiose, acid-swollen cellulose, or cellulose powder. The hydrolysis product from their substrates was mainly glucose. 10 references.

  15. Posing for a picture: vesicle immobilization in agarose gel

    PubMed Central

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-01-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs. PMID:27140695

  16. Posing for a picture: vesicle immobilization in agarose gel

    NASA Astrophysics Data System (ADS)

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-05-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs.

  17. Two-dimensional agarose gel electrophoresis of DNA topoisomers.

    PubMed

    Roca, Joaquim

    2009-01-01

    The electrophoretic velocity of a duplex DNA ring is mainly determined by its overall shape. Consequently, DNA topoisomers of opposite supercoiling handedness can have identical gel velocity, and topoisomers highly supercoiled cannot be separated beyond some point. These problems are overcome by two-dimensional agarose gel electrophoresis, which involves two successive electrophoresis steps in one gel slab. The first and second electrophoresis steps are conducted in orthogonal directions with different concentrations of DNA intercalating agents. These compounds alter the overall shape of the DNA and, thereby, change the relative mobility of individual DNA topoisomers.

  18. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  19. Agarose gel shift assay reveals that calreticulin favors substrates with a quaternary structure in solution.

    PubMed

    Boelt, Sanne Grundvad; Houen, Gunnar; Højrup, Peter

    2015-07-15

    Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation, and prefractionation of protein interactions in solution independent of isoelectric point. We demonstrate that this assay is compatible with immunochemical methods and mass spectrometry. The assay was used to investigate interactions with several potential substrates for calreticulin, a chaperone that is involved in different biological aspects through interaction with other proteins. The current analytical assays used to investigate these interactions are mainly spectroscopic aggregation assays or solid phase assays that do not provide a direct visualization of the stable protein complex but rather provide an indirect measure of interactions. Therefore, no interaction studies between calreticulin and substrates in solution have been investigated previously. The results presented here indicate that calreticulin has a preference for substrates with a quaternary structure and primarily β-sheets in their secondary structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis.

  20. Pore size of agarose gels by atomic force microscopy.

    PubMed

    Pernodet, N; Maaloum, M; Tinland, B

    1997-01-01

    The pore size of agarose gel in water at different concentrations was directly measured using atomic force microscopy (AFM). The experiment was specially designed to work under aqueous conditions and allows direct observation of the "unperturbed" gel without invasive treatment. The pore size a as a function of gel concentration C shows a power law dependence a approximately C-gamma, where gamma lies between the prediction of the Ogston model for a random array of straight chains, 0.5, and the value predicted by De Gennes for a network of flexible chains, 0.75. We confirm that gels present a wide pore size distribution and show that it narrows as the concentration increases.

  1. A polarized photobleaching study of DNA reorientation in agarose gels

    SciTech Connect

    Scalettar, B.A.; Klein, M.P. ); Selvin, P.R.; Hearst, J.E. Univ. of California, Berkeley ); Axelrod, D. )

    1990-05-22

    Polarized fluorescence recovery after photobleaching (pFRAP) has been used to study the internal dynamics of relatively long DNA molecules embedded in gels that range in concentration from 1% to 5% agarose. The data indicate that, even in very congested gels, rapid internal relaxation of DNA is largely unhindered; however, interactions with gel matrices apparently do perturb the larger amplitude, more slowly (microseconds to milliseconds) relaxing internal motions of large DNAs. The relationship between this work and recent studies which indicate that internal motions of DNA play an important role in the separation achieved with pulsed-field gel electrophoresis techniques is discussed. The polarized photobleaching technique is also analyzed in some detail. In particular, it is shown that reversible photobleaching phenomena are probably related to depletion of the ground state by intersystem crossing to the triplet state.

  2. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE).

    PubMed

    Oh-Ishi, Masamichi; Maeda, Tadakazu

    2007-04-15

    Agarose gel is the preferred electrophoretic medium currently used for separating high molecular mass (HMM) proteins (MW>100 kDa). Agarose gels are widely used for both SDS-agarose gel electrophoresis and agarose isoelectric focusing (IEF). A two-dimensional gel electrophoresis method employing agarose gels in the first dimension (agarose 2-DE) that is sufficiently good at separating up to 1.5mg of HMM proteins with molecular masses as large as 500 kDa has been used to separate proteins from various diseased tissues and cells. Although resolution of the agarose 2-DE pattern always depends on the tissue being analyzed, sample preparation procedures including (i) protein extraction with an SDS sample buffer; (ii) ultracentrifugation of a tissue homogenate; and (iii) 1% SDS in both stacking and separation gels of the second-dimension SDS-PAGE gel, are generally effective for HMM protein detection. In a comprehensive prostate cancer proteome study using agarose 2-DE, the HMM region of the gel was rich in proteins of particular gene/protein expression groups (39.1% of the HMM proteins but only 28.4% of the LMM ones were classified as transcription/translation-related proteins). Examples include transcription factors, DNA or RNA binding proteins, and ribosomal proteins. To understand oxidative stress-induced cellular damage at the protein level, a novel proteomic method, in which protein carbonyls were derivatized with biotin hydrazide followed by agarose 2-DE, was useful for detecting HMM protein carbonyls in tissues of both a diabetes model Ostuka Long-Evans Tokushima Fatty (OLETF) rat and a control Long-Evans Tokushima Otsuka (LETO) rat. In this paper, we review the use of agarose gels for separation of HMM proteins and disease proteomics of HMM proteins in general, with particular attention paid to our proteome analyzes based on the use of agarose 2-DE for protein separation followed by the use of mass spectrometry for protein identification.

  3. UNIT 10.7 Electroblotting from Polyacrylamide Gels

    PubMed Central

    Goldman, Aaron; Speicher, David W.

    2015-01-01

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications. PMID:26521711

  4. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography.

    PubMed

    Laskey, R A; Mills, A D

    1975-08-15

    Methods which use the scintillator PPO to record film images of 3H in chromatograms and polyacrylamide gels (fluorography) have been described elsewhere. This paper demonstrates that pre-exposure of the film to a brief flash of light greatly increases the sensitivity of fluorography. Pre-exposure also permits quantitative interpretation of the film image, because it corrects the non-linear relationship between radioactivity of the sample and absorbance of the film image. Therefore the distribution of radioactivity in the sample is accurately represented by microdensitometry of the image obtained on pre-exposed film. Using pre-exposed film 300 dis. 3H/min or 30 dis. 14C/min can be detected in a band in a gel in a 24-h exposure. The Appendix describes revisions and extensions of existing fluorographic procedures, including application to agarose gels and a rapid procedure for recovering PPO for re-use.

  5. Modified gel preparation for distinct DNA fragment analysis in agarose gel electrophoresis.

    PubMed

    Lee, S V; Bahaman, A R

    2010-08-01

    Agarose gel electrophoresis is the standard method that is used to separate, identify, and purify DNA fragments. However, this method is time-consuming and capable of separating limited range of fragments. A new technique of gel preparation was developed to improve the DNA fragment analysis via electrophoresis.

  6. [Preparation, characterization and surface-enhanced Raman properties of agarose gel/gold nanoparticles hybrid].

    PubMed

    Ma, Xiao-yuan; Liu, Ying; Wang, Zhou-ping

    2014-08-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Naniocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Experimental data indicated a uniform distribution of gold nanoparticles adsorbed on agarose gel network And the excellent optical absorption properties were shown. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nano-composites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules Nile blue A. Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal.

  7. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability

    PubMed Central

    Suzawa, Yoshika; Kubo, Norihiko; Iwai, Soichi; Yura, Yoshiaki; Ohgushi, Hajime; Akashi, Mitsuru

    2015-01-01

    Hydroxyapatite (HA) or calcium carbonate (CaCO3) formed on an organic polymer of agarose gel is a biomaterial that can be used for bone tissue regeneration. However, in critical bone defects, the regeneration capability of these materials is limited. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming osteoblasts. In this study, we loaded MSCs on HA- or CaCO3-formed agarose gel and cultured them with dexamethasone, which triggers the osteogenic differentiation of MSCs. High alkaline phosphatase activity was detected on both the HA- and CaCO3-formed agarose gels; however, basal activity was only detected on bare agarose gel. Bone-specific osteocalcin content was detected on CaCO3-formed agarose gel on Day 14 of culture, and levels subsequently increased over time. Similar osteocalcin content was detected on HA-formed agarose on Day 21 and levels increased on Day 28. In contrast, only small amounts of osteocalcin were found on bare agarose gel. Consequently, osteogenic capability of MSCs was enhanced on CaCO3-formed agarose at an early stage, and both HA- and CaCO3-formed agarose gels well supported the capability at a later stage. Therefore, MSCs loaded on either HA- or CaCO3-formed agarose could potentially be employed for the repair of critical bone defects. PMID:26110392

  8. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability.

    PubMed

    Suzawa, Yoshika; Kubo, Norihiko; Iwai, Soichi; Yura, Yoshiaki; Ohgushi, Hajime; Akashi, Mitsuru

    2015-06-23

    Hydroxyapatite (HA) or calcium carbonate (CaCO3) formed on an organic polymer of agarose gel is a biomaterial that can be used for bone tissue regeneration. However, in critical bone defects, the regeneration capability of these materials is limited. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming osteoblasts. In this study, we loaded MSCs on HA- or CaCO3-formed agarose gel and cultured them with dexamethasone, which triggers the osteogenic differentiation of MSCs. High alkaline phosphatase activity was detected on both the HA- and CaCO3-formed agarose gels; however, basal activity was only detected on bare agarose gel. Bone-specific osteocalcin content was detected on CaCO3-formed agarose gel on Day 14 of culture, and levels subsequently increased over time. Similar osteocalcin content was detected on HA-formed agarose on Day 21 and levels increased on Day 28. In contrast, only small amounts of osteocalcin were found on bare agarose gel. Consequently, osteogenic capability of MSCs was enhanced on CaCO3-formed agarose at an early stage, and both HA- and CaCO3-formed agarose gels well supported the capability at a later stage. Therefore, MSCs loaded on either HA- or CaCO3-formed agarose could potentially be employed for the repair of critical bone defects.

  9. Jet injection into polyacrylamide gels: investigation of jet injection mechanics.

    PubMed

    Schramm-Baxter, Joy; Katrencik, Jeffrey; Mitragotri, Samir

    2004-08-01

    Jet injectors employ high-velocity liquid jets that penetrate into human skin and deposit drugs in the dermal or subdermal region. Although jet injectors have been marketed for a number of years, relatively little is known about the interactions of high-speed jets with soft materials such as skin. Using polyacrylamide gels as a model system, the mechanics of jet penetration, including the dependence of jet penetration on mechanical properties, was studied. Jets employed in a typical commercial injector, (orifice diameter: 152 microm, velocity: 170-180 m/s) were used to inject fluid into polyacrylamide gels possessing Young's moduli in the range of 0.06-0.77 MPa and hardness values in the range of 4-70 H(OO). Motion analysis of jet entry into polyacrylamide gels revealed that jet penetration can be divided into three distinct events: erosion, stagnation, and dispersion. During the erosion phase, the jet removed the gel at the impact site and led to the formation of a distinct cylindrical hole. Cessation of erosion induced a period of jet stagnation ( approximately 600 micros) characterized by constant penetration depth. This stage was followed by dispersion of the liquid into the gel. The dispersion took place by crack propagation and was nearly symmetrical with the exception of injections into 10% acrylamide (Young's modulus of 0.06 MPa). The penetration depth of the jets as well as the rate of erosion decreased with increasing Young's modulus. The mechanics of jet penetration into polyacrylamide gels provides an important tool for understanding jet injection into skin.

  10. Acrylamide-agarose copolymers: improved resolution of high molecular mass proteins in two-dimensional gel electrophoresis.

    PubMed

    Roncada, Paola; Cretich, Marina; Fortin, Riccardo; Agosti, Susanna; De Franceschi, Lucia; Greppi, Gian Franco; Turrini, Francesco; Carta, Franco; Turri, Stefano; Levi, Marinella; Chiari, Marcella

    2005-06-01

    A method was developed in order to analyse high molecular mass proteins by two-dimensional (2-D) electrophoresis using a copolymer of acrylamide and allyl agarose instead of Bis cross-linked polyacrylamide (PA) gels in sodium dodecyl sulphate-electrophoresis. In this work, the matrix composition was optimised to improve the resolution of proteins larger than 200 kDa. The new gel type does not entrap large proteins and protein complexes at the application site. Mechanical properties were investigated through rheological measurements, which suggested the formation of a highly entangled elastomeric soft gel. A high 2-D resolution of proteins, extracted from membranes of red blood cells, was obtained in these gels. An example of tryptic digestion, peptide extraction and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry was reported. The results demonstrate that the new gel is fully compatible with mass spectrometry protein analysis.

  11. Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects.

    PubMed

    Maaloum, M; Pernodet, N; Tinland, B

    1998-07-01

    Agarose gels have been studied by atomic force microscopy (AFM). The experiments were especially designed to work in aqueous conditions, allowing direct observation of the "unperturbed" gel without invasive treatment. AFM images clearly show strong dependence of pore diameter and its distribution on ionic strength of the solvent. As the ionic strength increases, the distribution becomes broader and the position of its maximum shifts toward higher values. The evolution of the distribution curves indicates that gels become more homogeneous with decreasing Tris-borate-EDTA (TBE) buffer concentration. An empirical law of the mean pore diameter as a function of the ionic strength is established. In agreement with our previous work we found that, for a given ionic strength, the pore diameter increases when the agarose concentration decreases and that the wide pore diameter distribution narrows as the gel concentration increases.

  12. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  13. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.

    PubMed

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-01-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  14. An agarose-gel based method for transporting cell lines.

    PubMed

    Yang, Lingzhi; Li, Chufang; Chen, Ling; Li, Zhiyuan

    2009-12-16

    Cryopreserved cells stored in dry ice or liquid nitrogen is the classical method for transporting cells between research laboratories in different cities around the world in order to maintain cell viability. An alternative method is to ship the live cells in flasks filled with cell culture medium. Both methods have limitations of either a requirement on special shipping container or short times for the cells to survive on the shipping process. We have recently developed an agarose gel based method for directly transporting the live adherent cells in cell culture plates or dishes in ambient temperature. This convenient method simplifies the transportation of live cells in long distance that can maintain cells in good viability for several days.

  15. Cloning of DNA fragments: ligation reactions in agarose gel.

    PubMed

    Furtado, Agnelo

    2014-01-01

    Ligation reactions to ligate a desired DNA fragment into a vector can be challenging to beginners and especially if the amount of the insert is limiting. Although additives known as crowding agents, such as PEG 8000, added to the ligation mixes can increase the success one has with ligation reactions, in practice the amount of insert used in the ligation can determine the success or the failure of the ligation reaction. The method described here, which uses insert DNA in gel slice added directly into the ligation reaction, has two benefits: (a) using agarose as the crowding agent and (b) reducing steps of insert purification. The use of rapid ligation buffer and incubation of the ligation reaction at room temperature greatly increase the efficiency of the ligation reaction even for blunt-ended ligation.

  16. Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose.

    PubMed

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Ujihara, Hiromi; Koike, Tohru

    2009-08-01

    We describe a novel technique of phosphate-affinity SDS-PAGE using Phos-tag to analyze large phosphoproteins with molecular masses of more than 200 kDa. The protein phosphoisotypes were clearly separated as up-shifted migration bands in a 3% w/v polyacrylamide gel containing 20 microM Phos-tag and 0.5% w/v agarose. In subsequent immunoblotting, the procedure permitted the determination of the phosphoisotypes of high-molecular-mass proteins, such as mTOR (289 kDa), ATM kinase (350 kDa), and 53BP1 (213 kDa).

  17. Use of a bilayer stacking gel to improve resolution of lipopolysaccharides and lipooligosaccharides in polyacrylamide gels.

    PubMed

    Inzana, T J; Apicella, M A

    1999-03-01

    Lipopolysaccharide (LPS) and lipooligosaccharide (LOS) are important antigenic and integral components of the outer membrane of Gram-negative bacteria. Alteration or heterogeneity of LPS/LOS structure is most often assessed by alteration of electrophoretic band profiles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In order to discern minor differences in the electrophoretic profile of closely spaced bands, particularly the low molecular weight bands of LOS, optimum resolution is required. Unfortunately, many publications of LPS/LOS in polyacrylamide gels show a diffuse, smeared pattern without discernible bands. We report here a formulation for polyacrylamide gels that reproducibly yields LPS/LOS bands with sharp resolution. A key feature of this formulation is the use of a separate comb gel containing electrode buffer layered on top of the conventional stacking gel.

  18. Polyacrylamide gel electrophoresis of intact bacteriophage T4D particles.

    PubMed Central

    Childs, J D; Birnboim, H C

    1975-01-01

    A method for the electrophoresis of intact bacteriophage T4D particles through polyacrylamide gels has been developed. It was found that phage particles will migrate through dilute polyacrylamide gels (less than 2.1%) in the presence of a low concentration of MgCl2. As few as 5 x 10(9) phage particles can be seen directly as a light-scattering band during the course of electrophoresis. The band can also be detected by scanning gels at 260 to 265 nm or by eluting viable phage particles from gel slices. A new mutant (eph1) has been identified on the basis of its decreased electrophoretic mobility compared with that of the wild type; mutant particles migrated 14% slower than the wild type particles at pH 8.3 and 35% slower at pH 5.0. The isoelectric points of both the wild type and eph1 mutant were found to be between pH 4.0 and 5.0. Particles of T4 with different head lengths were also studied. Petite particles (heads 20% shorter than normal) migrated at the same rate as normal-size particles. Giant particles, heterogenous with respect to head length (two to nine times normal), migrated faster than normal-size particles as a diffuse band. This diffuseness was due to separation within the band of particles having mobilities ranging from 8 to 35% faster than those of normal-size particles. These observations extend the useful range of polyacrylamide gel electrophoresis to include much larger particles than have previously been studied, including most viruses. Images PMID:240037

  19. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation.

    PubMed

    Arimura, Shin-ichiro; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Abeyama, Kazuhiro; Tabata, Masashi; Shimoda, Toru; Ogomi, Daisuke; Matsusaki, Michiya; Kato, Shinya; Ito, Takashi; Sugihara, Kazumasa; Akashi, Mitsuru; Hashiguchi, Teruto; Maruyama, Ikuro

    2007-05-01

    We reported earlier that hydroxyapatite (HA) formed on/in agarose gels (HA/agarose) produced by alternate soaking process is a bone-filling material possessing osteoconductive and hemostatic effects. This process could allow us to make bone-like apatite that was formed on/in organic polymer hydrogel matrices. Here, we investigated the mechanism of hemostasis induced by HA/agarose and found that HA/agarose, but not agarose or HA powder, significantly shortened activated partial thromboplastin time (APTT). While HA/agarose did not show significant platelet aggregation, it markedly enhanced adenosine diphosphate (ADP)-induced platelet aggregation. Moreover, Western blot analysis revealed selective adsorption of vitronectin onto HA/agarose. We also observed marked differences between HA powder and HA/agarose in their XRD patterns. The crystallinity of HA powder was much higher compared to that of HA/agarose. Furthermore, 50-100 nm of tube-form aggregations was observed in HA powder on the other hand 100-200 nm of particles was observed in HA/agarose by SEM observation. Thus 100-200 nm of low crystallized particles on the surface structure of HA/agarose may play an important role in hemostasis. Our results demonstrated a crucial role of HA/agarose in the mechanism of hemostasis and suggested a potential role for HA/agarose as a bone-grafting material.

  20. Regenerative behavior of biomineral/agarose composite gels as bone grafting materials in rat cranial defects.

    PubMed

    Suzawa, Yoshika; Funaki, Takafumi; Watanabe, Junji; Iwai, Soichi; Yura, Yoshiaki; Nakano, Takayoshi; Umakoshi, Yukichi; Akashi, Mitsuru

    2010-06-01

    The main objective of this study was to evaluate the biological behavior of Hydroxyapatite (HAp)/agarose and calcium carbonate (CaCO3)/agarose composite gels by an alternate soaking process used for the treatment of surgically produced bone defects in rat cranium. We designed the following four groups: (i) HAp (HAp/agarose composite gel), (ii) CaCO3 (CaCO3/agarose composite gel), (iii) Agarose (bare agarose gel), and (iv) Defect (no filling materials). We subdivided (i) (ii) (iii) into two application types as a (I) Homogenized Group (homogenized materials) and a (II) Disk Group (disk shaped materials). We assessed samples by radiological and histological analyses 0, 4, and 8 weeks after implantation. The results indicated that the composite gels showed higher radiopacity in microfocus-computed tomography (muCT) images and showed higher volume in quantitative analyses using Dual Energy X-ray Absorptiometry (DEXA) and Peripheral Quantitative Computed Tomography (pQCT) than the Agarose and Defect groups. The histological examination showed characteristic images due to each application form. Consequently, HAp and CaCO3/agarose composite gels can be expected to accelerate the speed of producing more new bone associated with osteogenesis. These novel biomaterials play an important role as an alternative biocompatible and biodegradable bone grafting filler material for autogenous bone.

  1. Western Blot of Stained Proteins from Dried Polyacrylamide Gels

    NASA Technical Reports Server (NTRS)

    Gruber, Claudia; Stan-Lotter, Helga

    1996-01-01

    Western blotting of proteins is customarily performed following their separation on polyacrylamide gels, either prior to staining (1) or, as recently reported, following staining (2). We describe here Western blotting with stained gels, which had been dried and some of which had been stored for years. This procedure permits immunological analysis of proteins, to which antisera may have become available only later, or where the application of newly developed sensitive detection methods is desired. Once rehydration of the gels is achieved, proteins can be-transferred to blotting membranes by any appropriate protocol. Proteins stained with Coomassie Blue have to be detected with a non-chromogenic method, such as the film-based enhanced chemiluminescence (ECL)2) procedure (3). Silver stained proteins, which transfer in the colorless form, may be visualized by any detection method, although, because of the usually very low amounts of proteins, detection by ECL is preferable. Blotting of stained proteins from rehydrated gels is as rapid and as quantitative as from freshly prepared gels, in contrast to blotting from wet stained gels, which requires extensive washing and results in low transfer efficiency (2). Together with a photographic record of the gel pattern, unambiguous identification of immunoreactive proteins from complex mixtures is possible. Some further applications of this work are discussed.

  2. Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers.

    PubMed

    Sitaras, Chris; Naghavi, Mahsa; Herrington, Muriel B

    2011-01-15

    Curli are amyloid-like fibers on the surface of some strains of Escherichia coli and Salmonella enteritidis. We tested the use of horizontal sodium dodecyl sulfate (SDS)-agarose gel electrophoresis to detect, isolate, and quantitate curli. Cell extracts fractionated in SDS-agarose gels and stained with Coomassie blue exhibited a soluble fraction that entered the gel and an insoluble fraction that remained in the well. Much more insoluble material was observed with curli-proficient strains than with strains that do not make curli. Both highly purified curli and the insoluble material isolated from an SDS-agarose gel could be dissociated into monomers when treated with formic acid. For quantitation, we immobilized samples in SDS-agarose prior to electrophoresis. This avoids losses during the staining of the gel. Our methods provide a rapid and simple fractionation of curli using equipment that is readily available.

  3. High yield electroblotting onto polyvinylidene difluoride membranes from polyacrylamide gels.

    PubMed

    Mozdzanowski, J; Hembach, P; Speicher, D W

    1992-01-01

    Optimal conditions of electroblotting that led to high protein recovery on polyvinylidene difluoride (PVDF) membranes were determined for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). SDS concentrations in the gel and transfer buffer were found to be the most important factors affecting the amount of protein recovered on the PVDF membrane. The largest loss occurred during the first 10-30 min of transfer due to the relatively high initial SDS concentration in the gel. During this initial stage of transfer, most of the protein passed through the primary membrane and was partially retained on secondary and tertiary membranes. The value of presoaking gels prior to transfer to reduce the amount of SDS was evaluated by quantitating free SDS densitometrically and by correlating the reduced SDS concentration with increased electroblotting efficiency from presoaked gels. Transfer time was evaluated and no "overtransfer" was found even after very long transfer times. These results clearly indicate that proteins electroblotted onto PVDF membranes were tightly bound and could not be released by extending the transfer time. The effects of methanol and SDS concentrations on protein adsorption from solution to PVDF were also determined quantitatively. The results of this study strongly suggest that proteins fully saturated with SDS cannot bind efficiently to PVDF membranes. Since SDS is necessary for high protein mobility, the challenge in efficient electroblotting is to maintain an optimal SDS concentration which is high enough to permit effective removal from the gel and low enough to permit effective binding to the PVDF membrane. For 1.5 mm thick gels containing 0.2% SDS, presoaking the gel for 15-20 min in transfer buffer with 10% methanol prior to electroblotting provided the best recovery on the primary membrane.

  4. Effect of ultrasound on the separation of DNA fragments in agarose gel electrophoresis

    SciTech Connect

    Ma, Yinfa; Yeung, E.S. )

    1990-06-01

    Since its first use in 1966 interest in and the applications of electrophoresis of DNA fragments in agarose gel have grown rapidly. Nowadays, agarose gel electrophoresis has become a standard technique with high resolving power for the analysis of DNA structure, for example for the determination of the length of DNA fragments obtained by the action of restriction enzymes. The electrophoretic mobility ({mu}) of DNA fragments is influenced by various parameters-molecular weight, gel concentration, temperature, electric field, and DNA-agarose affinity. A comprehensive study of the influence of these main parameters has been reported. In this paper, the authors investigate a new effect on the electrophoretic mobility of DNA fragments in agarose gels, viz. the influence of ultrasound.

  5. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-06-14

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.

  6. Identification of a Zn(2+)-sensitive component of Ehrlich cell plasma membrane redox system by CHAPS-agarose-polyacrylamide electrophoresis and in situ staining of activity.

    PubMed

    Rodríguez-Caso, L; Rodríguez-Agudo, D; del Castillo-Olivares, A; Márquez, J; Núñez de Castro, I; Medina, M A

    1997-01-01

    A procedure based on CHAPS-agarose-polyacrylamide electrophoresis and in situ staining of activity was used to detect a Zn(2+)-sensitive component of Ehrlich cell plasma membrane redox system. The procedure is so powerful that it allows to use crude plasma membrane fractions and can be easily adapted for use in an electrophoretic approach to the purification of this protein.

  7. Scalable lithography from Natural DNA Patterns via polyacrylamide gel

    PubMed Central

    Qu, JieHao; Hou, XianLiang; Fan, WanChao; Xi, GuangHui; Diao, HongYan; Liu, XiangDon

    2015-01-01

    A facile strategy for fabricating scalable stamps has been developed using cross-linked polyacrylamide gel (PAMG) that controllably and precisely shrinks and swells with water content. Aligned patterns of natural DNA molecules were prepared by evaporative self-assembly on a PMMA substrate, and were transferred to unsaturated polyester resin (UPR) to form a negative replica. The negative was used to pattern the linear structures onto the surface of water-swollen PAMG, and the pattern sizes on the PAMG stamp were customized by adjusting the water content of the PAMG. As a result, consistent reproduction of DNA patterns could be achieved with feature sizes that can be controlled over the range of 40%–200% of the original pattern dimensions. This methodology is novel and may pave a new avenue for manufacturing stamp-based functional nanostructures in a simple and cost-effective manner on a large scale. PMID:26639572

  8. Scalable lithography from Natural DNA Patterns via polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Qu, Jiehao; Hou, Xianliang; Fan, Wanchao; Xi, Guanghui; Diao, Hongyan; Liu, Xiangdon

    2015-12-01

    A facile strategy for fabricating scalable stamps has been developed using cross-linked polyacrylamide gel (PAMG) that controllably and precisely shrinks and swells with water content. Aligned patterns of natural DNA molecules were prepared by evaporative self-assembly on a PMMA substrate, and were transferred to unsaturated polyester resin (UPR) to form a negative replica. The negative was used to pattern the linear structures onto the surface of water-swollen PAMG, and the pattern sizes on the PAMG stamp were customized by adjusting the water content of the PAMG. As a result, consistent reproduction of DNA patterns could be achieved with feature sizes that can be controlled over the range of 40%-200% of the original pattern dimensions. This methodology is novel and may pave a new avenue for manufacturing stamp-based functional nanostructures in a simple and cost-effective manner on a large scale.

  9. Single-molecule measurements of trapped and migrating circular DNA during electrophoresis in agarose gels.

    PubMed

    Cole, Kenneth D; Gaigalas, Adolfas; Akerman, Björn

    2006-11-01

    The effect of agarose gel concentration and field strength on the electrophoretic trapping of open (relaxed) circular DNA was investigated using microscopic measurements of individual molecules stained with a fluorescent dye. Three open circles with sizes of 52.5, 115, and 220 kbp were trapped by the electric field (6 V/cm) and found to be predominately fixed and stretched at a single point in the gel. The length of the stretched circles did not significantly change with agarose concentration of the gels (mass fractions of 0.0025, 0.01, and 0.02). The relaxation kinetics of the trapped circles was also measured in the gels. The relaxation of the large open circles was found to be a slow process, taking several seconds. The velocity and average length of the 52.5 kbp open circles and 48.5 kbp linear DNA were measured during electrophoresis in the agarose gels. The velocity increased when the agarose concentrations were lowered, but the average length of the open-circle DNA (during electrophoresis) did not significantly change with agarose gel concentrations. The circles move through the gels by cycles of stretching and relaxation during electrophoresis. Linear dichroism was also used to investigate the trapping and alignment of the 52.5 kbp open circles. The results in this study provide information that can be used to improve electrophoretic separations of circular DNA, an important form of genetic material and commonly used to clone DNA.

  10. Interpenetrating network formation in gellan--agarose gel composites.

    PubMed

    Amici, E; Clark, A H; Normand, V; Johnson, N B

    2000-01-01

    Thermal, mechanical, turbidity, and microscope evidence is provided which strongly suggests molecular interpenetrating network (IPN) formation by mixtures of the bacterial and seaweed polysaccharides gellan and agarose. There is no evidence for synergistic coupling of the networks, and simple phase separation (demixing) can definitely be ruled out. Some changes in the gellan gelling behavior are suggested, however, by the increased gellan effective concentrations implicit in cure curve data. The dependence of this effect on the agarose nominal concentration seems consistent with a previous model that focused on gelling parameters, and changes in these rather than real concentration effects. In large deformation mechanical tests, the influence of agarose added to gellan is to re-enforce the network (higher compression and shear moduli, higher stresses-to-break) without significantly changing the strain to break, or the gellan brittle failure mechanism.

  11. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    NASA Astrophysics Data System (ADS)

    Pilařová (Vávrů), Kateřina; Kozubíková, Petra; Šolc, Jaroslav; Spěváček, Václav

    2014-11-01

    The purpose of this study was to compare characteristics of radiochromic gel - Turnbull Blue gel (TB gel) with polymer gel - polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0-15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV-vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. Gel dosimeters are suitable for steep dose gradient verification. An optical tomography evaluation method is successful. Dose response characteristics of TB gel and PAGAT gel are presented.

  12. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  13. Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry

    NASA Astrophysics Data System (ADS)

    Mao, Bosi; Divoux, Thibaut; Snabre, Patrick

    2017-01-01

    Agarose gels are viscoelastic soft solids that display a porous microstructure filled with water at 90% w/w or more. Despite an extensive use in food industry and microbiology, little is known about the drying kinetics of such squishy solids, which suffers from a lack of time-resolved local measurements. Moreover, only scattered empirical observations are available on the role of the gel composition on the drying kinetics. Here we study by in-situ interferometry the drying of agarose gels of various compositions cast in Petri dishes. The gel thinning is associated with the displacement of interference fringes that are analyzed using an efficient spatiotemporal filtering method, which allows us to assess local thinning rates as low as 10 nm/s with high accuracy. The gel thinning rate measured at the center of the dish appears as a robust observable to quantify the role of additives on the gel drying kinetics and compare the drying speed of agarose gels loaded with various non-gelling saccharides of increasing molecular weights. Our work shows that saccharides systematically decrease the agarose gel thinning rate up to a factor two, and exemplifies interferometry as a powerful tool to quantify the impact of additives on the drying kinetics of polymer gels.

  14. Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry

    PubMed Central

    Mao, Bosi; Divoux, Thibaut; Snabre, Patrick

    2017-01-01

    Agarose gels are viscoelastic soft solids that display a porous microstructure filled with water at 90% w/w or more. Despite an extensive use in food industry and microbiology, little is known about the drying kinetics of such squishy solids, which suffers from a lack of time-resolved local measurements. Moreover, only scattered empirical observations are available on the role of the gel composition on the drying kinetics. Here we study by in-situ interferometry the drying of agarose gels of various compositions cast in Petri dishes. The gel thinning is associated with the displacement of interference fringes that are analyzed using an efficient spatiotemporal filtering method, which allows us to assess local thinning rates as low as 10 nm/s with high accuracy. The gel thinning rate measured at the center of the dish appears as a robust observable to quantify the role of additives on the gel drying kinetics and compare the drying speed of agarose gels loaded with various non-gelling saccharides of increasing molecular weights. Our work shows that saccharides systematically decrease the agarose gel thinning rate up to a factor two, and exemplifies interferometry as a powerful tool to quantify the impact of additives on the drying kinetics of polymer gels. PMID:28112236

  15. Two methods that facilitate autoradiography of small /sup 32/P-labeled DNA fragments following electrophoresis in agarose gels

    SciTech Connect

    Cockerill, P.N.

    1988-02-01

    Two methods which permit detection by autoradiography of small /sup 32/P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes.

  16. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Guarrotxena, Nekane; Braun, Gary

    2012-10-01

    The separation of surface-enhanced raman scattering (SERS)-active Ag-multi-nanoparticle (NP) assemblies by low melting point agarose gel electrophoresis was accomplished here by controlling surface charge using NP capping agents, and the pore size of agarose gel matrix. Detailed transmission electron microscopy analysis of excised gel fractions showed dimers and small clusters to have the greatest SERS activity and a mobility in between the monomers and large aggregates. This strategy enables one to: (1) stabilize small multispherical Ag clusters against further aggregation during purification; (2) fractionate and recover spherical assemblies by nuclearity; and (3) analyze SERS-enhancements for each fraction to optimize purification conditions.

  17. Agarose-dextran gels as synthetic analogs of glomerular basement membrane: water permeability.

    PubMed Central

    White, Jeffrey A; Deen, William M

    2002-01-01

    Novel agarose-dextran hydrogels were synthesized and their suitability as experimental models of glomerular basement membrane was examined by measuring their Darcy (hydraulic) permeabilities (kappa). Immobilization of large dextran molecules in agarose was achieved by electron beam irradiation. Composite gels were made with agarose volume fractions (phi(a)) of 0.04 or 0.08 and dextran volume fractions (phi(d)) ranging from 0 to 0.02 (fiber volume/gel volume), using either of two dextran molecular weights (500 or 2000). At either agarose concentration and for either size of dextran, kappa decreased markedly as the amount of dextran was increased. Statistically significant deviations from the value of kappa for pure agarose were obtained for remarkably small volume fractions of dextran: phi(d) > or = 0.0003 for phi(a) = 0.04 and phi(d) > or = 0.001 for phi(a) = 0.08. The Darcy permeabilities were much more sensitive to phi(d) than to phi(a), and were as much as 26 times smaller than those of pure agarose. Although phi(d) was an important variable, dextran molecular weight was not. The effects of dextran addition on kappa were described fairly well using simple structural idealizations. At high agarose concentrations, the dextran chains behaved as fine fibers interspersed among coarse agarose fibrils, whereas, at low concentrations, the dextran molecules began to resemble spherical obstacles embedded in agarose gels. The ability to achieve physiologically relevant Darcy permeabilities with these materials (as low as 1.6 nm2) makes them an attractive experimental model for glomerular basement membrane and possibly other extracellular matrices. PMID:11916864

  18. Application of SYPRO Ruby- and Flamingo-stained polyacrylamide gels to Western blot analysis.

    PubMed

    Hagiwara, Makoto; Kobayashi, Ken-Ichi; Tadokoro, Tadahiro; Yamamoto, Yuji

    2010-02-15

    Western blots are widely used for analysis of the expression levels of specific proteins. Blotting is conducted after sodium dodecyl sulfate or native polyacrylamide gel electrophoresis without staining the gel. However, when it is necessary to analyze the gel, duplicate polyacrylamide gels (one of which is stained) usually must be prepared, leading to the consumption of precious sample. Thus, we have developed a convenient and efficient Western blot method using a stained gel. This simple modification should be beneficial for the analysis of samples that are limited in quantity and/or samples for which the stained gel serves as the loading control.

  19. Application of SYPRO Ruby- and Flamingo-stained polyacrylamide gels to Western blot analysis.

    PubMed

    Hagiwara, Makoto; Kobayashi, Ken-Ichi; Tadokoro, Tadahiro; Yamamoto, Yuji

    2009-06-15

    Western blot analysis has been a useful method for analysis of expression levels of specific proteins and is conducted after sodium dodecyl sulfate (SDS) or native polyacrylamide gel electrophoresis without staining the gel. However, when it is necessary to analyze the gel, duplicate polyacrylamide gels usually must be prepared, one of which is stained, leading to the consumption of precious sample. Thus, we developed a convenient and efficient Western blotting method using a stained gel. This simple modification should be beneficial for analyzing samples that are limited in quantity and/or samples for which the stained gel serves as the loading control.

  20. Solvent-impregnated agarose gel liquid phase microextraction of polycyclic aromatic hydrocarbons in water.

    PubMed

    Loh, Saw Hong; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2013-08-09

    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.

  1. A simple, efficient, and economical method for recovering DNA from agarose gel.

    PubMed

    Fan, Chang-Fa; Mei, Xing-Guo

    2005-01-01

    A simple method of recovering DNA from agarose gel that is fast, inexpensive, and friendly both to operators and environment is described. Two rows of wells are made in an agarose gel, and a DNA sample is loaded into the well nearest to the negative pole for separation by electrophoresis. Recovery is accomplished by pipetting the DNA-containing TAE buffer from the well near the positive pole after target DNA fragments have migrated into the well. A recovery rate of up to 94 +/- 2.3% was observed with this method.

  2. Analysis of supercoiled DNA by agarose gel electrophoresis using low-conducting sodium threonine medium.

    PubMed

    Ishido, Tomomi; Ishikawa, Mitsuru; Hirano, Ken

    2010-05-01

    We describe a new low-ionic-strength sodium threonine (STh) medium with the advantage of avoiding relative DNA band migration changes following electrophoresis of supercoiled DNA in agarose gel when substituted for the standard conductive medium of TBE (Tris-boric acid-ethylenediaminetetraacetic acid [EDTA]) or TAE (Tris-acetic acid-EDTA) or the low-ionic-strength sodium boric acid medium. Low-ionic-strength STh medium provided better resolution, less heat generation, and prevention of relative migration order changes among linear, covalently closed circular-, and open circular-formed DNA in the range of 2-10 kilobase pairs in 1% agarose gel electrophoresis.

  3. Molecular stretching of long DNA in agarose gel using alternating current electric fields.

    PubMed Central

    Kaji, Noritada; Ueda, Masanori; Baba, Yoshinobu

    2002-01-01

    We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell. PMID:11751320

  4. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide.

    PubMed

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-12-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  5. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-09-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  6. Rapid recovery of DNA from agarose gel slices by coupling electroelution with monolithic SPE.

    PubMed

    Yu, Shengbing; Yang, Shuixian; Zhou, Ping; Zhou, Ke; Wang, Jing; Chen, Xiangdong

    2009-06-01

    An amino silica monolithic column prepared by in situ polymerization of tetraethoxysilane and N-(beta-aminoethyl)-gamma-aminopropyltriethoxysilane was firstly applied to recover DNA from agarose gel slices by coupling electroelution with monolithic SPE. DNA was electroeluted from the agarose gel slices onto the amino silica monolithic column. The DNA adsorbed on this monolithic column was then recovered using sodium phosphate solution at pH 10. The whole recovery procedure could be completed within 10 min because the use of amino silica monolithic column accelerated the DNA capture and facilitated the DNA release. Electroelution conditions, such as buffer pH, buffer concentration and applied voltage, were online optimized. The average yield for herring sperm DNA, pBR 322 DNA and lambda DNA recovered from 1.0% w/v agarose gel slices were 55+/-4, 50+/-6 and 42+/-7% (n=3), respectively. The polymerase chain reaction performance of pGM plasmid recovered from agarose gel slices demonstrated that the method could provide high-quality DNA for downstream processes. The combination of electroelution with monolithic SPE allows a rapid, simple and efficient DNA recovery method. This technique is especially useful for applications that need to purify small starting amounts of DNA.

  7. Binding of lithium dodecyl sulfate to polyacrylamide gel at 4 degrees C perturbs electrophoresis of proteins.

    PubMed

    Kubo, K; Takagi, T

    1986-07-01

    Although polyacrylamide gel has no affinity to lithium dodecyl sulfate (LDS) at 25 degrees C, the gel maximally binds 17 mg of LDS per gram dry weight at 4 degrees C. When polyacrylamide gel electrophoresis is carried out at 4 degrees C in the presence of LDS instead of sodium dodecyl sulfate (SDS) using a continuous buffer system, migration of proteins with lower molecular weight is accelerated as a result of the deficiency of LDS in the frontal region of the gel. When the gel is saturated with LDS, electrophoresis in the presence of LDS at 4 degrees C shows a resolution higher than that of SDS-polyacrylamide gel electrophoresis at 25 degrees C.

  8. Local and average diffusion of nanosolutes in agarose gel: the effect of the gel/solution interface structure.

    PubMed

    Labille, Jérôme; Fatin-Rouge, Nicolas; Buffle, Jacques

    2007-02-13

    Fluorescence correlation spectroscopy (FCS) has been used to study the diffusion of nanometric solutes in agarose gel, at microscopic and macroscopic scales. Agarose gel was prepared and put in contact with aqueous solution. Several factors were studied: (i) the role of gel relaxation after its preparation, (ii) the specific structure of the interfacial zone and its role on the local diffusion coefficient of solutes, and (iii) the comparison between the local diffusion coefficient and the average diffusion coefficient in the gel. Fluorescent dyes and labeled biomolecules were used to cover a size range of solutes of 1.5 to 15 nm. Their transport through the interface from the solution toward the gel was modeled by the first Fick's law based on either average diffusion coefficients or the knowledge of local diffusion coefficients in the system. Experimental results have shown that, at the liquid/gel interface, a gel layer with a thickness of 120 microm is formed with characteristics significantly different from the bulk gel. In particular, in this layer, the porosity of agarose fiber network is significantly lower than in the bulk gel. The diffusion coefficient of solutes in this layer is consequently decreased for steric reasons. Modeling of solute transport shows that, in the bulk gel, macroscopic diffusion satisfactorily follows the classical Fick's diffusion laws. For the tested solutes, the local diffusion coefficients in the bulk gel, measured at microscopic scale by FCS, were equal, within experimental errors, to the average diffusion coefficients applicable at macroscopic scales (>or=mm). This confirms that anomalous diffusion applies only to solutes with sizes close to the gel pore size and at short time (

  9. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations.

    PubMed Central

    Pluen, A; Netti, P A; Jain, R K; Berk, D A

    1999-01-01

    The diffusion coefficients (D) of different types of macromolecules (proteins, dextrans, polymer beads, and DNA) were measured by fluorescence recovery after photobleaching (FRAP) both in solution and in 2% agarose gels to compare transport properties of these macromolecules. Diffusion measurements were conducted with concentrations low enough to avoid macromolecular interactions. For gel measurements, diffusion data were fitted according to different theories: polymer chains and spherical macromolecules were analyzed separately. As chain length increases, diffusion coefficients of DNA show a clear shift from a Rouse-like behavior (DG congruent with N0-0.5) to a reptational behavior (DG congruent with N0-2.0). The pore size, a, of a 2% agarose gel cast in a 0.1 M PBS solution was estimated. Diffusion coefficients of the proteins and the polymer beads were analyzed with the Ogston model and the effective medium model permitting the estimation of an agarose gel fiber radius and hydraulic permeability of the gels. Not only did flexible macromolecules exhibit greater mobility in the gel than did comparable-size rigid spherical particles, they also proved to be a more useful probe of available space between fibers. PMID:10388779

  10. Rapid, simple method of preparing rotaviral double-stranded ribonucleic acid for analysis by polyacrylamide gel electrophoresis.

    PubMed Central

    Theil, K W; McCloskey, C M; Saif, L J; Redman, D R; Bohl, E H; Hancock, D D; Kohler, E M; Moorhead, P D

    1981-01-01

    A procedure for extracting rotaviral double-stranded ribonucleic acid (RNA) directly from fecal and intestinal specimens collected from calves and pigs is described. This procedure provides a rapid, simple, reproducible method of obtaining rotaviral double-stranded RNA preparations suitable for electrophoretic analysis in polyacrylamide-agarose composite gels. The rotaviral genome electrophoretic migration pattern produced by double-stranded RNA extracted directly from a specimen by this procedure was qualitatively identical to the electrophoretic migration pattern obtained with double-stranded RNA extracted from purified rotavirus derived from the same specimen. Direct extraction of specimens containing porcine rotavirus-like virus by this procedure gave preparations that had electrophoretic migration patterns similar, but not identical, to the characteristic electrophoretic migration pattern of the rotaviral genome. Sufficient rotaviral double-stranded RNA could be extracted from 6 ml of fecal or intestinal specimen by this procedure to permit 15 or more electrophoretic assays. Images PMID:6270190

  11. Laser interferometric analysis of glucose and sucrose diffusion in agarose gel.

    PubMed

    Wąsik, Sławomir; Arabski, Michał; Dworecki, Kazimierz; Janoska, Joanna; Semaniak, Jacek; Szary, Karol; Slęzak, Andrzej

    2014-01-01

    The paper presents the investigation results of glucose and sucrose diffusion in agarose gel studied with laser interferometry method and the results of fluorescence analysis of the macroscopic gel structure. The diffusion kinetics of these substances released from aqueous solutions of a molar concentration of 0.05 M into the agarose solutions of concentrations of 0.5% and 3% in two gravitational configurations of measuring system was analysed. In the first configuration the solute diffused according, whereas in the second one - opposite to the gravitational force. The diffusion was analysed in the time period between 120 and 2400 s with a time interval of Δt = 120 s. We observed that the convective instabilities were damped well by the agarose gel, which gives the possibility of the interferometric studies of the diffusive transport for other substances in different gravitational configurations of the system. The time characteristics of glucose and sucrose fluxes in both configurations of the system and the gravitational polarisation coefficient values were obtained. The substantial differences in fluxes of glucose and sucrose diffused according and opposite to the gravitational force were observed. Additionally, we observed the differences between the diffusive fluxes of these substances in both configurations in dependence on the gel solution concentration (which is associated with gel porosity dependent on its concentration) and the kind of diffused substance.

  12. Plasmid DNA topology assayed by two-dimensional agarose gel electrophoresis.

    PubMed

    Schvartzman, Jorge B; Martínez-Robles, María-Luisa; Hernández, Pablo; Krimer, Dora B

    2013-01-01

    Two-dimensional (2D) agarose gel electrophoresis is nowadays one of the best methods available to analyze DNA molecules with different masses and shapes. The possibility to use nicking enzymes and intercalating agents to change the twist of DNA during only one or in both runs, improves the capacity of 2D gels to discern molecules that apparently may look alike. Here we present protocols where 2D gels are used to understand the structure of DNA molecules and its dynamics in living cells. This knowledge is essential to comprehend how DNA topology affects and is affected by all the essential functions that DNA is involved in: replication, transcription, repair and recombination.

  13. DNA electrophoresis in agarose gels: Effects of electric field and gel concentration on the exponential dependence of reciprocal mobility on DNA length

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin; van Winkle, David; Randolph, Rill

    2002-03-01

    Electrophoresis was performed on double stranded DNA fragments ranging in length from 200 bp to 48502 bp at agarose gel concentrations T = 0.5% - 1.5% and electric fields E = 0.71 V/cm to 5 V/cm. A wide range of electric fields and gel concentrations were used to find what range of conditions work with the new interpolation equation, 1/μ(L) = 1/μl - (1/μl - 1/μ_s)e^-L/γ. The equation fit extremely well (\\chi^2 >= 0.999) to data with E = 2.5 V/cm to 5 V/cm and for lower fields (E < 2.5 V/cm) at low gel concentrations (T = 0.5% and 0.7%). This exponential relation seemed to hold when there is a smooth transition from the Ogston sieving regime to the reptation regime when looking at the “reptation plots” (plotting 3μL/μo vs. L) (Rousseau, J., Drouin, G., and Slater, G. W., Phys Rev Lett. 1997, 79, 1945-1948). For separations of single-stranded DNA in polyacrylamide, similar reptation plots have a region with a negative slope between the Ogston sieving regime and the reptation regime which has been interpreted as the signature of entropic trapping. When separating double-stranded DNA in agarose it was observed that fits deviate from the data when three different slopes are observed in the reptation plots. Failure of the simple exponential relationship between reciprocal mobility and DNA length appears to be the consequence of entropic trapping.

  14. A continuous acetic acid system for polyacrylamide gel electrophoresis of gliadins and other prolamines.

    PubMed

    Clements, R L

    1988-02-01

    A polyacrylamide gel electrophoresis system buffered by acetic acid alone was developed for electrophoresis of prolamines. When applied to gliadin electrophoresis, the acetic acid system produces more bands than does a conventional aluminum lactate-lactic acid system (using 12% acrylamide gels). The acetic acid system is relatively simple, requiring a single buffer component that is universally available in high purity.

  15. Effects of degree of hydrolysis and shear on gelation reaction kinetics and gel strength. [Polyacrylamides

    SciTech Connect

    Gao, Hong W.

    1991-02-01

    Gelation tests were conducted to investigate the effect of the degree of hydrolysis on gelation reaction kinetics and gel strength using four low-molecular-weight polyacrylamides (MW = 400,000 daltons), which were 10% (HPAM1-10), 20% (HPAM1-20), 30% (HAPM1-30), and 40% (HPAM-40) hydrolyzed, and Cr-3 (pH = 4.8) and Al-3 (pH = 7.0) crosslinkers. Results showed that for polymer/Cr-3 gel systems, samples prepared with a low-molecular-weight polyacrylamide polymer, which was 20% hydrolyzed, gelled at a faster rate and retained higher gel strength than those prepared with a low-molecular-weight polyacrylamide polymer, which was 10% hydrolyzed. Under the screening condition, no viscosity enhancement was observed in samples prepared with polymers having a degree of hydrolysis equal to or greater than 30%. For polymer/Al-3 gel systems, samples prepared with a low-molecular-weight polyacrylamide polymer, which was 20% hydrolyzed, gelled at the fastest rate and retained the strongest gel strength among the polymer/Al-3 gel systems prepared with four low-molecular-weight polyacrylamide polymers, which were 10, 20, 30, and 40% hydrolyzed, respectively. Gelation tests of gel systems in glass bead packs showed that high shear favored the gelation of a gel system that had a fast rate of gelation, but had an adverse effect on the gelation of three gel systems that had a slow rate of gelation. Weak gels were found to be injectable through porous media. Weak gels were degradable under high shear condition and regained viscosity under low shear conditions. 17 refs., 8 figs., 1 tab.

  16. DNA electrophoresis in agarose gels: A new mobility vs. DNA length dependence

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin

    2002-04-01

    Separations were performed on double stranded DNA (dsDNA) using electrophoresis. Electrophoresis is the steady transport of particles under the influence of an external electric field. Double stranded DNA fragments ranging in length from 200 base pairs (bp) to 194,000 bp (0.34 nm = 1 bp) were electrophoresed at agarose gel concentrations T = 0.4%--1.5%. The electric field was varied from 0.62 V/cm to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study the usefulness of a new interpolation equation, 1mL =1mL-( 1mL-1 ms)e-L/g , where mL,ms , and g are independent free fitting parameters. The long length mobility limit is interpreted as mL , the short length mobility limit is ms , and g is the crossover between the long length limit and the short length limit. This exponential relation fit very well (chi2 ≥ 0.999) when there are two smooth transitions observed in the "reptation plots" (plotting 3mL/m∘ vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945--1948). Fits deviate from the data when three different slopes were observed in the reptation plots. Reptation plots were used to determine a phase diagram for dsDNA migration regimes. The phase diagrams define different regions where mechanisms for molecular transport affect the migration of dsDNA in agarose gels during electrophoresis. The parameters from the equation have also been interpreted to provide a physical description of the structure of the agarose gel by calculating the pore sizes. The relations between the values for the pore sizes and the phase diagrams are interpreted to better understand the migration of the DNA through agarose gels.

  17. Isoelectric focusing in agarose gel for detection of oligoclonal bands in cerebrospinal and other biological fluids.

    PubMed

    Csako, Gyorgy

    2012-01-01

    Isoelectric focusing (IEF) coupled with immunodetection (immunofixation or immunoblotting) has become the leading technique for the detection and study of oligoclonal bands (OCBs) in cerebrospinal fluid (CSF) and also is increasingly used in other body fluids such as the tear and serum. Limited commercial availability of precast agarose IEF gels for research and a need for customization prompted reporting a detailed general protocol for the preparation and casting of agarose IEF gel along with sample, control, and isoelectric point marker preparation and carrying out the focusing itself for CSF OCBs. However, the method is readily adaptable to the use of other body fluid specimens and, possibly, research specimens such as culture fluids as well.

  18. Two-dimensional agarose gel electrophoresis for analysis of DNA replication.

    PubMed

    Villwock, Sandra K; Aparicio, Oscar M

    2014-01-01

    The initiation, elongation, and termination of DNA replication are each associated with distinct, nonlinear DNA structures that can be resolved and identified by two-dimensional (2D) agarose gel electrophoresis. This method involves: isolation of genomic DNA while preserving fragile replication structures, digestion of the DNA with a restriction enzyme, separation of DNA by size and shape through two distinct stages of agarose gel electrophoresis, and Southern blotting to probe for the specific sequence(s) of interest. The method has been most commonly used to determine the activity level of putative replication origin-containing sequences, and has also been used to analyze replication timing, fork progression, fork pausing, fork stalling and collapse, termination, and recombinational repair.

  19. Confirmation of soybean plastid rRNAs by formaldehyde denaturing agarose gel electrophoresis.

    PubMed

    Zhu, Y Q; Zheng, Y; Chen, H B; Huang, L Q

    2014-10-27

    Owing to their prokaryotic origin, plastid rRNAs are mainly 23s/16s/5s rRNAs. We present a novel plant RNA isolation method in this paper. Also, not only the eukaryotic 28s (26s, 25s)/18s rRNAs but the prokaryotic 26s/23s rRNAs as well were demonstrated in a single sample for the first time by formaldehyde denaturing agarose gel electrophoresis.

  20. Pellet pestle homogenization of agarose gel slices at 45 degrees C for deoxyribonucleic acid extraction.

    PubMed

    Kurien, B T; Kaufman, K M; Harley, J B; Scofield, R H

    2001-09-15

    A simple method for extracting DNA from agarose gel slices is described. The extraction is rapid and does not involve harsh chemicals or sophisticated equipment. The method involves homogenization of the excised gel slice (in Tris-EDTA buffer), containing the DNA fragment of interest, at 45 degrees C in a microcentrifuge tube with a Kontes pellet pestle for 1 min. The "homogenate" is then centrifuged for 30 s and the supernatant is saved. The "homogenized" agarose is extracted one more time and the supernatant obtained is combined with the previous supernatant. The DNA extracted using this method lent itself to restriction enzyme analysis, ligation, transformation, and expression of functional protein in bacteria. This method was found to be applicable with 0.8, 1.0, and 2.0% agarose gels. DNA fragments varying from 23 to 0.4 kb were extracted using this procedure and a yield ranging from 40 to 90% was obtained. The yield was higher for fragments 2.0 kb and higher (70-90%). This range of efficiency was maintained when the starting material was kept between 10 and 300 ng. The heat step was found to be critical since homogenization at room temperature failed to yield any DNA. Extracting DNA with our method elicited an increased yield (up to twofold) compared with that extracted with a commercial kit. Also, the number of transformants obtained using the DNA extracted with our method was at least twice that obtained using the DNA extracted with the commercial kit.

  1. Selective bacterial patterning using the submerged properties of microbeads on agarose gel.

    PubMed

    Park, Sung Jun; Bae, Hyeoni; Ko, Seong Young; Min, Jung-Joon; Park, Jong-Oh; Park, Sukho

    2013-10-01

    We proposed a new bacteria patterning method on the restricted region of microbeads, using the submerged property of polystyrene microbeads on various concentrations of agarose gel. Moreover, we fabricated a bacterial microrobot using attenuated Salmonella typhimurium through the new patterning methods. We controlled the submerged degree of polystyrene microbeads through the regulation of the hardness of the agarose gel. The polystyrene microbeads on agarose gel were transferred onto a poly-dimethylsiloxane (PDMS) surface for easy manipulation of the microbeads. Then, we treated the polystyrene microbeads on the PDMS surface with antibacterial adherent factors, such as O2 plasma and bovine serum albumin (BSA). The Salmonella typhimurium was attached to the entire surface of the untreated polystyrene microbeads, whereas Salmonella typhimurium were only attached to the restricted surface region of the treated polystyrene microbeads through the proposed patterning method. The bacteria-attached microbeads gain motility by the propulsion of the attached bacteria, and the selective-bacteria-attached microbeads showed enhanced motility. Compared with whole-bacteria-attached polystyrene microbeads (1.74 ± 1.62 μm/s), the selective bacteria-attached polystyrene microbeads, using O2 plasma and BSA, showed 9.18 ± 1.88 μm/s and 14.65 ± 8.66 μm/s faster moving velocities, respectively. Through the results, we expected that the proposed patterning methodology of microbeads could contribute to the development of biomedical bacterial microrobots.

  2. Response surface methodology-based optimisation of agarose gel electrophoresis for screening and electropherotyping of rotavirus.

    PubMed

    Mishra, Vikas; Nag, Vijaya Lakshmi; Tandon, Ritu; Awasthi, Shally

    2010-04-01

    Management of rotavirus diarrhoea cases and prevention of nosocomial infection require rapid diagnostic method at the patient care level. Diagnostic tests currently available are not routinely used due to economic or sensitivity/specificity constraints. Agarose-based sieving media and running conditions were modulated by using central composite design and response surface methodology for screening and electropherotyping of rotaviruses. The electrophoretic resolution of rotavirus genome was calculated from input parameters characterising the gel matrix structure and running conditions. Resolution of rotavirus genome was calculated by densitometric analysis of the gel. The parameters at critical values were able to resolve 11 segmented rotavirus genome. Better resolution and electropherotypic variation in 11 segmented double-stranded RNA genome of rotavirus was detected at 1.96% (w/v) agarose concentration, 0.073 mol l(-1) ionic strength of Tris base-boric acid-ethylenediamine tetraacetic acid buffer (1.4x) and 4.31 h of electrophoresis at 4.6 V cm(-1) electric field strength. Modified agarose gel electrophoresis can replace other methods as a simplified alternative for routine detection of rotavirus where it is not in practice.

  3. Capillary blotting of glycosaminoglycans on nitrocellulose membranes after agarose-gel electrophoresis separation.

    PubMed

    Volpi, Nicola; Maccari, Francesca

    2009-01-01

    A method for the blotting and immobilizing of several nonsulfated and sulfated complex polysaccharides on membranes made hydrophilic and positively charged by cationic detergent after their separation by conventional agarose gel electrophoresis is illustrated. This new approach to the study of glycosaminoglycans (GAGs) utilizes the capacity of agarose gel electrophoresis to separate single species of polysaccharides from mixtures and the membrane technology for further preparative and analytical uses.Nitrocellulose membranes are derivatized with the cationic detergent cetylpyridinium chloride and mixtures of GAGs are capillary blotted after their separation in agarose gel electrophoresis. Single purified species of variously sulfated polysaccharides are transferred on derivatized membranes with an efficiency of 100% and stained with alcian blue (irreversible staining) and toluidine blue (reversible staining). This enables a lower amount limit of detection of 0.1 microg. Nonsulfated polyanions, for example hyaluronic acid, may also be transferred to membranes with a limit of detection of approximately 0.1-0.5 microg after irreversible or reversible staining. The membranes may be stained with reversible staining and the same lanes are used for immunological detection or other applications.

  4. Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B.

    PubMed

    Kim, Jung Hyun; Yun, Eun Ju; Seo, Nari; Yu, Sora; Kim, Dong Hyun; Cho, Kyung Mun; An, Hyun Joo; Kim, Jae-Han; Choi, In-Geol; Kim, Kyoung Heon

    2017-02-01

    The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the sol-gel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the sol-gel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the sol-gel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40(T), was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50 °C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45 °C, which was above the sol-gel transition temperature of 1 % (w/v) agarose (∼35 °C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the sol-gel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.

  5. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    PubMed

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution.

  6. Detection of serum proteins by native polyacrylamide gel electrophoresis using Blue Sepharose CL-6B-containing stacking gels.

    PubMed

    Muratsubaki, Haruhiro; Satake, Kaoru; Yamamoto, Yasuhisa; Enomoto, Keiichiro

    2002-08-15

    Analysis of serum proteins by native polyacrylamide gel electrophoresis is difficult because albumin is abundant in serum and interferes with the resolution of other proteins, especially alpha-antitrypsin which has mobility that is very similar to that of albumin. We present here a method in which serum proteins are separated by polyacrylamide gel electrophoresis using stacking gels containing Blue Sepharose CL-6B, which has a high affinity for albumin, lipoproteins, kinases, and pyridine-nucleotide-dependent oxidoreductases. During electrophoresis, proteins that bind to Blue Sepharose CL-6B stay in the stacking gel and do not migrate into the separating gel. As a consequence, certain proteins, including alpha(1)-antitrypsin, can be detected as clear bands. This method overcomes the requirement for fractionation of serum samples prior to electrophoresis to remove albumin and allows the simultaneous analysis of many samples.

  7. Penis invalidating cicatricial outcomes in an enlargement phalloplasty case with polyacrylamide gel (Formacryl).

    PubMed

    Parodi, P C; Dominici, M; Moro, U

    2006-01-01

    The present article reports the case of a patient subjected to polyacrylamide polymers-composed gel cutaneous infiltration in the penis for cosmetic purposes, resulting in severe invalidating outcomes. A significant tissue reaction to the subcutaneous injection of polyacrylamide gel for the penis enlargement purpose resulted in permanent and invalidating scars both on the esthetic and functional levels. Such a result must be simply taken into account both singly and in the light of the international literature to exclude this method as standard uro-andrologic activity.

  8. Biochemical Identification of the Two Races of Radopholus similis by Polyacrylamide Gel Electrophoresis.

    PubMed

    Huettel, R N; Dickson, D W; Kaplan, D T

    1983-07-01

    Analysis of proteins of the banana and citrus race of Radopholus similis was carried out by several different types of polyacrylamide gel electrophoresis. These included standard slab gel, SDS slab gel, gradient slab gel, and two-ditnensional slab gel electrophoresis. A major band difference was detected between the two races by slab gel electrophoresis. However, several other poorly resolved but consistent hands of high molecular weight proteins near the gel origin also were considered as diagnostic. Resolution of protein bands was greatly improved by SDS and gradient slab gel electrophoresis, but no differences could be detected among the proteins resolved between the two rares with these techniques. Two-dimensional gels revealed a large number of proteins, but background staining obscured them hindering interpretation. When nematode races were reared on three different host plants, no differences in protein patterns were detected between them, indicating host preferences does not play a role in determining the types proteins occurring in these nematodes.

  9. Congruence between starch gel and polyacrylamide gel electrophoresis in detecting allozyme variation in pulmonate land slugs.

    PubMed

    Geenen, Sofie; Jordaens, Kurt; Castilho, Rita; Backeljau, Thierry

    2003-02-01

    The predominantly selfing slug species Arion (Carinarion) fasciatus, A. (C.) silvaticus and A. (C.) circumscriptus are native in Europe and have been introduced into North America, where each species consists of a single, homozygous multilocus genotype (strain), as defined by starch gel electrophoresis (SGE) of allozymes. In Europe, the "one strain per species" hypothesis does not hold since polyacrylamide gel electrophoresis (PAGE) of allozymes uncovered 46 strains divided over the three species. However, electrophoretic techniques may differ in their ability to detect allozyme variation. Therefore, several Carinarion populations from both continents were screened by applying the two techniques simultaneously on the same individual slugs and enzyme loci. SGE and PAGE yielded exactly the same results, so that the different degree of variation in North American and European populations cannot be attributed to differences in resolving power between SGE and PAGE. We found four A. (C.) silvaticus strains in North America indicating that in this region the "one strain per species" hypothesis also cannot be maintained. Hence, the discrepancies between previous electrophoretic studies on Carinarion are most likely due to sampling artefacts and possible founder effects.

  10. Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery.

    PubMed

    Sindhwani, Nikhil; Ivanchenko, Oleksandr; Lueshen, Eric; Prem, Komal; Linninger, Andreas A

    2011-03-01

    Convection-enhanced delivery (CED) is a promising technique to deliver large molecular weight drugs to the human brain for treatment of Parkinson's, Alzheimer's, or brain tumors. Researchers have used agarose gels to study mechanisms of agent transport in soft tissues like brain due to its similar mechanical and transport properties. However, inexpensive quantitative techniques to precisely measure achieved agent distribution in agarose gel phantoms during CED are missing. Such precise measurements of concentration distribution are needed to optimize drug delivery. An optical experimental method to accurately quantify agent concentration in agarose is presented. A novel geometry correction algorithm is used to determine real concentrations from observable light intensities captured by a digital camera. We demonstrate the technique in dye infusion experiments that provide cylindrical and spherical distributions when infusing with porous membrane and conventional single-port catheters, respectively. This optical method incorporates important parameters, such as optimum camera exposure, captured camera intensity calibration, and use of collimated light source for maximum precision. We compare experimental results with numerical solutions to the convection diffusion equation. The solutions of convection-diffusion equations in the cylindrical and spherical domains were found to match the experimental data obtained by geometry correction algorithm.

  11. Agarose gels

    NASA Astrophysics Data System (ADS)

    2016-11-01

    Discovered in 17th-century Japan, agar is a jelly-like substance obtained by boiling algae, and it is widely used as a gelling agent for desserts in Japanese, Indian, Philippine and Vietnamese cuisine.

  12. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    SciTech Connect

    Russell, D.L.; Consigli, R.A.

    1986-10-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure.

  13. Rheological monitoring of the formation of polyacrylamide/Cr+3 gels

    SciTech Connect

    Prud'Homme, R.K.; Uhl, J.T.; Poinsatte, J.P.; Halverson, F.

    1983-10-01

    The formation of polyacrylamide/chromium-ion gels has been followed rheologically. The time dependence of the storage modulus has been used to analyze the kinetics of the gelation process. The kinetic theory of rubber elasticity has been used to determine the crosslink density in the gel from the measured value of the storage modulus. The effects of changing polymer, chromium ion, and reducing agent concentrations have been studied. 30 references.

  14. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE).

    PubMed

    Brunelle, Julie L; Green, Rachel

    2014-01-01

    This protocol describes a denaturing polyacrylamide gel system utilizing sodium dodecyl sulfate (SDS) to separate protein molecules based on size as first described by Laemmli (1970). SDS-PAGE can be used to monitor protein purifications, check the purity of samples, and to estimate molecular weights for unknown proteins.

  15. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis.

    PubMed

    Vetcher, Alexandre A; Srinivasan, Srimeenakshi; Vetcher, Ivan A; Abramov, Semen M; Kozlov, Mikhail; Baughman, Ray H; Levene, Stephen D

    2006-08-28

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  16. Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan.

    PubMed

    Cowman, Mary K; Chen, Cherry C; Pandya, Monika; Yuan, Han; Ramkishun, Dianne; LoBello, Jaclyn; Bhilocha, Shardul; Russell-Puleri, Sparkle; Skendaj, Eraldi; Mijovic, Jovan; Jing, Wei

    2011-10-01

    The molecular mass of the polysaccharide hyaluronan (HA) is an important determinant of its biological activity and physicochemical properties. One method currently used for the analysis of the molecular mass distribution of an HA sample is gel electrophoresis. In the current work, an improved agarose gel electrophoresis method for analysis of high molecular mass HA is presented and validated. HA mobility in 0.5% agarose minigels was found to be linearly related to the logarithm of molecular mass in the range from approximately 200 to 6000 kDa. A sample load of 2.5 μg for polydisperse HA samples was employed. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in the sample as well as calculation of weight-average and number-average values. The method was validated for a polydisperse HA sample with a weight-average molecular mass of approximately 2000 kDa. Excellent agreement was found between the weight-average molecular mass determined by electrophoresis and that determined by rheological measurement of the solution viscosity. The revised method was then used to show that heating solutions of HA at 100°C, followed by various cooling procedures, had no effect on the HA molecular mass distribution.

  17. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel.

    PubMed

    Zhang, Dongwei; Das, Diganta B; Rielly, Chris D

    2014-02-01

    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively.

  18. Quantitation of pyrimidine dimer contents of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels

    SciTech Connect

    Sutherland, B.M.; Shih, A.G.

    1983-02-15

    We have developed a method of quantitating the pyrimidine dimer content of nonradioactive DNAs. DNA samples are treated with the UV-endonuclease from Micrococcus luteus and then separated according to molecular weight by electrophoresis on alkaline agarose gels. From their migration relative to known molecular weight standards, their median molecular weight and thus the number of dimers per DNA molecule in each sample can be calculated. Results of action spectra for dimer formation in T7 bacteriophage measured by this method agree well with action spectra for T7 killing. In addition, the method gives dimer yields in good agreement with those obtained by others using alkaline sucrose gradient sedimentation.

  19. Plasmid DNA replication and topology as visualized by two-dimensional agarose gel electrophoresis.

    PubMed

    Schvartzman, J B; Martínez-Robles, M L; Hernández, P; Krimer, D B

    2010-01-01

    During the last 20 years, two-dimensional agarose gel electrophoresis combined with other techniques such as Polymerase Chain Reaction, helicase assay and electron microscopy, helped to characterize plasmid DNA replication and topology. Here we describe some of the most important findings that were made using this method including the characterization of uni-directional replication, replication origin interference, DNA breakage at the forks, replication fork blockage, replication knotting, replication fork reversal, the interplay of supercoiling and catenation and other changes in DNA topology that take place as replication progresses.

  20. Tailor-made cell patterning using a near-infrared-responsive composite gel composed of agarose and carbon nanotubes.

    PubMed

    Koga, Haruka; Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Nakazawa, Kohji

    2013-03-01

    Micropatterning is useful for regulating culture environments. We developed a highly efficient near-infrared-(NIR)-responsive gel and established a new technique that enables cell patterning by NIR irradiation. As a new culture substratum, we designed a tissue culture plate that was coated with a composite gel composed of agarose and carbon nanotubes (CNTs). A culture plate coated with agarose only showed no response to NIR irradiation. In contrast, NIR laser irradiation induced heat generation by CNTs; this permitted local solation of the CNT/agarose gel, and consequently, selective cell-adhesive regions were exposed on the tissue culture plate. The solation area was controlled by the NIR intensity, magnification of the object lens and CNT concentration in the gel. Furthermore, we formed circular patterns of HeLa cells and linear patterns of 3T3 cells on the same culture plate through selective and stepwise NIR irradiation of the CNT/agarose gel, and we also demonstrated that individual 3T3 cells migrated along a linear path formed on the CNT/agarose gel by NIR irradiation. These results indicate that our technique is useful for tailor-made cell patterning of stepwise and/or complex cell patterns, which has various biological applications such as stepwise co-culture and the study of cell migration.

  1. Tris-acetate polyacrylamide gradient gel electrophoresis for the analysis of protein oligomerization.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Sánchez-Tena, Susana; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-02-01

    Here we report a new approach for studying protein oligomerization in cells using a single electrophoresis gel. We combined the use of a crosslinking reagent for sample preparation, such as glutaraldehyde, with the analysis of oligomers by Tris-acetate polyacrylamide gel electrophoresis. The use of a 3-15% Tris-acetate polyacrylamide gradient gel allows for the simultaneous analysis of proteins of masses ranging from 10 to 500 kDa. We showed the usefulness of this method for analyzing endogenous p53 oligomerization with high resolution and sensitivity in human cells. Oligomerization analysis was dependent on the crosslinker concentration used. We also showed that this method could be used to study the regulation of oligomerization. In all experiments, Tris-acetate polyacrylamide gel electrophoresis proved to be a robust, manageable, and cost- and time-efficient method that provided excellent results using a single gel. This approach can be easily extrapolated to the study of other oligomers. All of these features make this method a highly useful tool for the analysis of protein oligomerization.

  2. Resolution of high molecular weight proteins in dependence on electric field strength in polyacrylamide gel electrophoresis.

    PubMed

    Starita-Geribaldi, M; Houri, A

    1997-01-01

    Resolution of high molecular weight proteins, in the upper region of polyacrylamide gels, was studied in relation to the type of electric field. Separations by constant field gel electrophoresis (CFGE) were compared to those in pulsed oscillatory high-performance electrophoresis (POPE), a novel technique which allows electrophoresis at high field strengths owing to a novel local field distribution. This distribution contributes to structural and mechanical stability of the gel with resultant well-reproducible separation, enhanced resolution, and higher absolute mobility of proteins in POPE.

  3. Polyacrylamide gel electrophoretic methods in the separation of structural muscle proteins.

    SciTech Connect

    Barany, K.; Barany, M.; Giometti, C. S.; Center for Mechanistic Biology and Biotechnology; Univ. of Illinois at Chicago

    1995-04-28

    Polyacrylamide gel electrophoresis plays a major role in analyzing the function of muscle structural proteins. This review describes one- and two-dimensional gel electrophoretic methods for qualitative and quantitative investigation of the muscle proteins, with special emphasis on determination of protein phosphorylation. The electrophoretic studies established the subunit structures of the muscle proteins, characterized their multiple forms, revealed changes in subunit composition or shifts in isoform distribution of specific proteins during development, upon stimulation or denervation of the muscle. Protein phosphorylation during muscle contraction is preferentially studied by two-dimensional gel electrophoresis. The same method demonstrated protein alterations in human neuromuscular diseases.

  4. Enhancement of polyacrylamide gel slice dissolution in hydrogen peroxide by cupric sulfate.

    PubMed

    Donato, H; Doig, M T; Priest, D G

    1988-04-01

    An improved method is described for quantitation of radio-labelled protein by scintillation counting after polyacrylamide gel electrophoresis. The method is based upon copper catalyzed dissolution of gel slices in hydrogen peroxide under ambient conditions. Complete dissolution of gel sections was accomplished by incubation at 25 degrees C in 30% H2O2 that contained 0.9 mM CuSO4. Recovery of tritiated protein was greater than 90% under these conditions while in the absence of CuSO4 recovery was less than 50%.

  5. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  6. An agarose gel-based neurosphere culture system leads to enrichment of neuronal lineage cells in vitro.

    PubMed

    Park, Kyuhee; Nam, Yeonju; Choi, Yongmun

    2015-05-01

    Stem cell-based therapy holds great potential especially for neurological disorders. However, clinical applications await further understanding of many aspects of stem cell differentiation and development of technology enabling manipulation of stem cells into desired cell types in the central nervous system. Here, we developed a new method that leads to enrichment of neuronal lineage cells in neural stem cell cultures. The protocol involves cultivation of primary cells derived from the forebrains of rat E18 embryos above a layer of nonadhesive hard agarose gel in the form of neurospheres. In contrast to the neurospheres that were cultured above an anti-adhesive hydrogel layer, the primary cells that were cultured above a layer of agarose gel preferentially differentiated into β-III tubulin-positive neurons when allowed to undergo differentiation in vitro.In an effort to investigate the mechanism behind this observation, we found that the gene expression of a vertebrate neuronal determination gene (neurogenin1) was enhanced in the neurospheres that proliferated above a layer of agarose gel as compared with the control, and the gene expression level of neurogenin1 was quite well correlated with the rigidity of agarose gel. These results indicate that agarose gel can contribute, at least in part, to enrich neuronal progenitors and immature postmitotic neurons during neurosphere formation and may provide additional information to establish efficient protocols for the neural stem cell-based study.

  7. A New Organic Dye-Based Staining for The Detection of Plant DNA in Agarose Gels.

    PubMed

    Sönmezoğlu, Özlem Ateş; Özkay, Kerime

    2015-01-01

    Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies.

  8. Assaying cooperativity of protein-DNA interactions using agarose gel electrophoresis.

    PubMed

    Williams, Tanya L; Levy, Daniel L

    2013-01-01

    DNA-binding proteins play essential roles in many cellular processes. Understanding on a molecular level how these proteins interact with their cognate sequences can provide important functional insights. Here, we describe a band shift assay in agarose gel to assess the mode of protein binding to a DNA molecule containing multiple protein-binding sites. The basis for the assay is that protein-DNA complexes display retarded gel electrophoresis mobility, due to their increased molecular weight relative to free DNA. The degree of retardation is higher with increasing numbers of bound protein molecules, thereby allowing resolution of complexes with differing protein-DNA stoichiometries. The DNA is radiolabeled to allow for visualization of both unbound DNA and all the different DNA-protein complexes. We present a quantitative analysis to determine whether protein binding to multiple sites within the same DNA molecule is independent or cooperative.

  9. Agarose gel-coated LPG based on two sensing mechanisms for relative humidity measurement.

    PubMed

    Miao, Yinping; Zhang, Kaikiang; Yuam, Yujie; Liu, Bo; Zhang, Hao; Liu, Yan; Yao, Jianquan

    2013-01-01

    A relative humidity (RH) sensor based on long-period grating (LPG) with different responses is proposed by utilizing agarose gel as the sensitive cladding film. The spectral characteristic is discussed as the ambient humidity level ranges from 25% to 95% RH. Since increment of RH will result in volume expansion and refractive index increment of the agarose gel, the LPG is sensitive to applied strain and ambient refractive index; both the resonance wavelength and coupling intensity present particular responses to RH within two different RH ranges (25%-65% RH and 65%-96% RH). The coupling intensity decreases within a lower RH range while it increases throughout a higher RH range. The resonance wavelength is sensitive to the higher RH levels, and the highest sensitivity reaches 114.7 pm/% RH, and shares the same RH turning point with coupling intensity response. From a practical perspective, the proposed RH sensor would find its potential applications in high humidity level, temperature-independent RH sensing and multiparameter sensing based on wavelength/power hybrid demodulation and even static RH alarm for automatic monitoring of a particular RH value owing to the nonmonotonic RH dependence of the transmission power within the whole tested RH range.

  10. Agarose-gel electrophoresis for the quality assurance and purity of heparin formulations.

    PubMed

    Volpi, Nicola; Buzzega, Dania

    2012-01-01

    The adulteration of raw heparin (Hep) with a synthetic oversulfated chondroitin sulfate (OSCS) not found in nature produced in 2007-2008 a global crisis giving rise to the development of additional, new and specific methods for its quality assurance and purity. In this study, a simple and sensitive agarose-gel electrophoresis method has been developed for the visualization of OSCS in Hep samples along with other natural glycosaminoglycans possibly present as "process-related impurities", in particular dermatan sulfate (DS) and chondroitin sulfate (CS). Agarose-gel electrophoresis under non-conventional conditions is able to separate OSCS from Hep with its two components, the slow-moving and fast-moving species, DS and CS by performing separation for 15 h (overnight) and under high voltage (100 mA, ∼200 V). Densitometric scanning enabled us to calculate a limit of detection of ∼0.5 μg OSCS with a linear behaviour from 0.1 to 5 μg, comparable to CS/DS. Contaminated samples from Hep manufacturers were analyzed and quantitative data were found comparable to previous studies. Due to its capacity to process many samples in a single run and to the equipment commonly available in laboratories, this analytical method would be suitable for the identification and quantification of contamination by other polysaccharides, in particular OSCS and DS, within Hep preparations and formulations.

  11. Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose gel electrophoresis

    SciTech Connect

    Theodorakis, C.W. ); D'Surney, S.J. . Dept. of Biology); Shugart, L.R. . Environmental Sciences Division)

    1994-07-01

    DNA, isolated from the blood cells of bluegill sunfish (Lepomis macrochirus) exposed in the lab to bedded sediment collected from a site contaminated with genotoxic compounds (i.e., PAHs, PCBs, and heavy metals), was examined for strand breakage by agarose gel electrophoresis. Before electrophoresis the blood cells were embedded in agarose plugs and incubated with proteinase. After electrophoresis under both neutral (pH 7) or alkaline (pH 12) conditions, the median molecular length (MML) of the DNA distributed in the gel was determined. These quantitative measures were used to estimate the difference in the number of double- and single-strand breaks between DNA preparations. Both types of strand breakage were found to be greater in fish exposed to sediment contaminated with genotoxic compounds as compared to nonexposed fish. A statistically significant correlation was demonstrated between the MML value obtained by the electrophoretic assay reported here and the F value (measure of DNA double-strandedness) obtained by the alkaline unwinding assay.

  12. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis.

    PubMed

    Wang, Jian; Ugaz, Victor M

    2006-09-01

    Photopolymerized cross-linked polyacrylamide hydrogels are attractive sieving matrix formulations for DNA electrophoresis owing to their rapid polymerization times and the potential to locally tailor the gel pore structure through spatial variation of illumination intensity. This capability is especially important in microfluidic systems, where photopolymerization allows gel matrices to be precisely positioned within complex microchannel networks. Separation performance is also directly related to the nanoscale gel pore structure, which is in turn strongly influenced by polymerization kinetics. Unfortunately, detailed studies of the interplay among polymerization kinetics, mechanical properties, and structural morphology are lacking in photopolymerized hydrogel systems. In this paper, we address this issue by performing a series of in situ dynamic small-amplitude oscillatory shear measurements during photopolymerization of cross-linked polyacrylamide electrophoresis gels to investigate the relationship between rheology and parameters associated with the gelation environment including UV intensity, monomer and cross-linker composition, and reaction temperature. In general, we find that the storage modulus G' increases with increasing initial monomer concentration, cross-linker concentration, and polymerization temperature. The steady-state value of G', however, exhibits a more complex dependence on UV intensity that varies with gel concentration. A simple model based on rubber elasticity theory is used to obtain estimates of the average gel pore size that are in surprisingly good agreement with corresponding data obtained from analysis of DNA electrophoretic mobility in gels cast under identical polymerization conditions.

  13. [THE USE OF THE COMMERCIAL APPARATUS DUAL GEL MODULE FOR THE TWO-DIMENSIONAL POLYACRYLAMIDE GEL ELECTROPHORESIS].

    PubMed

    Evteeva, I N; Starkova, T Yu; Artemov, A V; Barlev, N A

    2015-01-01

    Two-dimensional gel electrophoresis, continues to be one of the fundamental methods to study the biological protein diversity. This method described by O'Farrell in 1975 includes two following steps: isoelectric focusing in the first dimension and polyacrylamide gel electrophoretic fractionation of proteins according to their molecular weight in the second dimension. In this manuscript we described several technical parameters of the commercial apparatus Dual Gel Module for the gel electrophoresis by means of which it is possible to accomplish the electrophoretic protein fractionation in both dimensions. The distribution of the highly purified commercial proteins used as molecular standards in the detection system of the apparatus Dual Gel Module was identical to the commercial strips of the device GE Healthcare, USA.

  14. Performance comparison of capillary and agarose gel electrophoresis for the identification and characterization of monoclonal immunoglobulins.

    PubMed

    McCudden, Christopher R; Mathews, Stephanie P; Hainsworth, Shirley A; Chapman, John F; Hammett-Stabler, Catherine A; Willis, Monte S; Grenache, David G

    2008-03-01

    The objective of this study was to compare gel- and capillary-based serum protein electrophoresis methods to identify and characterize monoclonal immunoglobulins (M proteins). Five reviewers interpreted 149 consecutively ordered serum specimens following agarose gel electrophoresis (AGE), capillary electrophoresis (CE), immunofixation electrophoresis (IFE), and subtraction immunotyping (IT). As a screening test for detecting M proteins, AGE and CE displayed similar sensitivity (91% and 92%, respectively). CE was less specific (74%) than AGE (81%). An analysis of interinterpreter agreement revealed that interpretations were more consistent using gel-based methods than capillary-based methods, with 80% of the gel interpretations being in complete (5/5) agreement compared with 67% of the capillary interpretations. After implementing the capillary-based methods, the number of tests per reportable result increased (from 1.58 to 1.73). CE is an analytically suitable alternative to AGE, but laboratories implementing it will need to continue IFE testing to characterize all M proteins detected by CE.

  15. Directionality of replication fork movement determined by two-dimensional native-native DNA agarose gel electrophoresis.

    PubMed

    Ivessa, Andreas S

    2013-01-01

    The analysis of replication intermediates by the neutral-neutral two-dimensional agarose gel technique allows determining the chromosomal positions where DNA replication initiates, whether replication forks pause or stall at specific sites, or whether two DNA molecules undergo DNA recombination events. This technique does not, however, immediately tell in which direction replication forks migrate through the DNA region under investigation. Here, we describe the procedure to determine the direction of replication fork progression by carrying out a restriction enzyme digest of DNA imbedded in agarose after the completion of the first dimension of a 2D gel.

  16. Subpopulations of liver coated vesicles resolved by preparative agarose gel electrophoresis

    SciTech Connect

    Kedersha, N.L.; Hill, D.F.; Kronquist, K.E.; Rome, L.H.

    1986-01-01

    Rat liver clathrin coated vesicles (CVs) were separated into several distinct subpopulations using non-sieving concentrations of agarose, which allowed the separation of species differing primarily in surface charge. Using preparative agarose electrophoresis, the CVs were recovered and analyzed for differences in morphology, coat protein composition, and stripped vesicle protein composition. Coat proteins from difference populations appeared identical on SDS PAGE, and triskelions stripped from the different populations showed the same mobility on the agarose gel, suggesting that the mobility differences observed in intact CVs were due to differences in the surface charge of underlying vesicles rather than to variations in their clathrin coats. Stripped CVs exhibited considerable heterogeneity when analyzed by Western blotting: the fast-migrating population was enriched in the mannose 6-phosphate receptor, secretory acetyl-choline esterase, and an M/sub r/ 195,000 glycoprotein. The slow-migrating population of CVs was enriched in the asialoglycoprotein receptor, and it appeared to contain all detectable concanavalin A-binding polypeptides as well as the bulk of detectable WGA-binding proteins. When CVs were prepared from /sup 125/I-asialoorosomucoid-perfused rat liver, ligand was found in the slow-migrating CVs, suggesting that these were endocytic in origin. Morphological differences were also observed: the fast-migrating population was enriched in smaller CVs, whereas the slow-migrating population exhibited an enrichment in larger CVs. As liver consists largely of hepatocytes, these subpopulations appear to originate from the same cell type and probably represent CVs of different intracellular origin and destination.

  17. Detection of connexins in liver cells using sodiumdodecylsulfate polyacrylamide gel electrophoresis and immunoblot analysis

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the set-up of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodiumdodecylsulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  18. Highly sensitive fluorescent stain for detecting lipopolysaccharides in sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Wang, Xu; Zhou, Ayi; Cai, Wanhui; Yu, Dongdong; Zhu, Zhongxin; Jiang, Chengxi; Jin, Litai

    2015-08-01

    A sensitive and simple technique was developed for the visualization of gel-separated lipopolysaccharides by using a hydrazide derivative, UGF202. As low as 0.5-1 ng total LPS could be detected by UGF202 stain, which is 2- and 16-fold more sensitive than that of the commonly used Pro-Q Emerald 300 and Keenan et al. developed silver stain, respectively. The results indicated that UGF202 stain could be a good choice for LPS determination in polyacrylamide gels.

  19. Visualization of DNA in agarose gels as migrating colored bands: Applications to laboratory techniques

    SciTech Connect

    Adkins, S.; Burmeister, M.

    1994-09-01

    We have developed a method to visualize DNA without the use of ethidium bromide and UV radiation. Anionic dyes (colored anion) have long been used in the detection of pharmaceutical amines via ion pairing, here we show that cationic dyes may be used to detect DNA. In gel electrophoresis in which DNA is traveling toward the positive electrode and a cationic dye is traveling toward the negative electrode, we expect ion pairing of the DNA and the dye as they meet in the gel. The dye should bind to the anionic DNA. If the DNA is not completely neutralized by the dye, it should continue to migrate. Ethidium bromide, which is believed to stain DNA primarily by intercalation between bases, exhibits the fluorescence through its cation and also may bind to DNA, to some extent, through ionic pairing. We observed that DNA forms colored bands during electrophoresis in standard agarose gels when a cationic dye is present in the gel and running buffer. DNA in amounts equal to or greater than 80 ng is seen as a discrete migrating colored band in ambient room lighting. Colored bands may be transferred to nitrocellulose by vacuum transfer in room temperature gel dryer, Xeroxed, fixed with NaOH and dye removed with dilute detergent. Also, isolation of DNA bands from preparative gels may be accomplished without the typical use of ethidium bromide and UV radiation which are known to alter DNA and pose hazards to laboratory personnel. We are presently investigating the general utility of using dyes to visualize DNA for various laboratory techniques.

  20. Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model.

    PubMed

    Lake, Spencer P; Barocas, Victor H

    2011-07-01

    The mechanical role of non-fibrillar matrix and the nature of its interaction with the collagen network in soft tissues remain poorly understood, in part because of the lack of a simple experimental model system to quantify these interactions. This study's objective was to examine mechanical and structural properties of collagen-agarose co-gels, utilized as a simplified model system, to understand better the relationships between the collagen network and non-fibrillar matrix. We hypothesized that the presence of agarose would have a pronounced effect on microstructural reorganization and mechanical behavior. Samples fabricated from gel solutions containing 1.0 mg/mL collagen and 0, 0.125, or 0.25% w/v agarose were evaluated via scanning electron microscopy, incremental tensile stress-relaxation tests, and polarized light imaging. While the incorporation of agarose did not dramatically alter collagen network morphology, agarose led to concentration-dependent changes in mechanical and structural properties. Specifically, resistance of co-gels to volume change corresponded with differences in fiber reorientation and elastic/viscoelastic mechanics. Results demonstrate strong relationships between tissue properties and offer insight into behavior of tissues of varying Poisson's ratio and fiber kinematics. Results also suggest that non-fibrillar material may have significant effects on properties of artificial and native tissues even in tension, which is generally assumed to be collagen dominated.

  1. 'Catalysts' for polyacrylamide gel polymerization and detection of proteins by silver staining.

    PubMed

    Hochstrasser, D F; Merril, C R

    1988-01-01

    The crosslinker diacrylyl-piperazine produces polyacrylamide gels which display improved electrophoretic separation of proteins and better physical strength. It also produces gels with improved detection of proteins by ammoniacal silver staining by reducing the background. This reduced background provided us with an opportunity to investigate residual background staining caused by the catalytic reagents utilized in the polymerization of acrylamide gels. The commonly used catalyst system, tetramethyl-ethylenediamine and ammonium persulfate was shown to be responsible for the yellow staining background found after a prolonged development time with silver staining. An alternate catalyst system has been designed to decrease further the formation of this background staining. Dimethyl-piperazine or tetramethylethylenediamine, potassium or ammonium persulfate, and sodium thiosulfate are shown to provide for gels which have excellent mechanical and staining characteristics. These catalytic systems produce little background staining despite prolonged development time with the ammoniacal silver stain, and they reduce background staining with the dichromate silver stain.

  2. Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis.

    PubMed

    Holt, Ian J; Kazak, Lawrence; Reyes, Aurelio; Wood, Stuart R

    2016-01-01

    Our understanding of the mechanisms of DNA replication in a broad range of organisms and viruses has benefited from the application of two-dimensional agarose gel electrophoresis (2D-AGE). The method resolves DNA molecules on the basis of size and shape and is technically straightforward. 2D-AGE sparked controversy in the field of mitochondria when it revealed replicating molecules with lengthy tracts of RNA, a phenomenon never before reported in nature. More recently, radioisotope labeling of the DNA in the mitochondria has been coupled with 2D-AGE. In its first application, this procedure helped to delineate the "bootlace mechanism of mitochondrial DNA replication," in which processed mitochondrial transcripts are hybridized to the lagging strand template at the replication fork as the leading DNA strand is synthesized. This chapter provides details of the method, how it has been applied to date and concludes with some potential future applications of the technique.

  3. Analyzing modifiers of protein aggregation in C. elegans by native agarose gel electrophoresis.

    PubMed

    Holmberg, Mats; Nollen, Ellen A A

    2013-01-01

    The accumulation of specific aggregation-prone proteins during aging is thought to be involved in several diseases, most notably Alzheimer's and Parkinson's disease as well as polyglutamine expansion disorders such as Huntington's disease. Caenorhabditis elegans disease models with transgenic expression of fluorescently tagged aggregation-prone proteins have been used to screen for genetic modifiers of aggregation. To establish the role of modifying factors in the generation of aggregation intermediates, a method has been developed using native agarose gel electrophoresis (NAGE) that enables parallel screening of aggregation patterns of fluorescently labeled aggregation-prone proteins. Together with microscopy-based genetic screens this method can be used to identify modifiers of protein aggregation and characterize their molecular function. Although described here for analyzing aggregates in C. elegans, NAGE can be adjusted for use in other model organisms as well as for cultured cells.

  4. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    PubMed

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  5. Isoelectric focusing of human von Willebrand factor in urea-agarose gels

    SciTech Connect

    Fulcher, C.A.; Ruggeri, Z.M.; Zimmerman, T.S.

    1983-02-01

    An analytical technique has been developed for the isoelectric focusing (IEF) of plasma von Willebrand factor (vWF) in agarose gels containing urea. Under these conditions, vWF freely enters the gel and focuses without artifact. The focused vWF is visualized by staining fixed gels with /sup 125/I-labeled affinity-purified heterologous antibody. Utilizing a pH gradient of 5.0-6.5, normal vWF in plasma or purified preparations focuses into at least three bands with apparent isoelectric points (pI) between pH 5.7 and 5.9. A reproducible difference in the IEF pattern of vWF has been established between normal plasmas and those of individuals with variant von Willebrand's disease (vWd) type IIA and type IIB. In type IIA, vWF has a distinctly lower pI than normal. This difference may be related to the presence of smaller vWF multimers in IIA plasma because forms of vWF of corresponding size contained in normal cryoprecipitate supernatant have a similar pI. Type IIB von Willebrand factor has a pI intermediate between normal and IIA. Neuraminidase treatment of plasma samples before IEF results in an increase in pI in normal, type IIA, and type IIB vWF. The data suggest that none of the 16 type IIA and 9 IIB plasmas studied here contain significantly decreased amounts of sialic acid.

  6. Measurement of DNA damage using agarose gel electrophoresis and electronic imaging

    SciTech Connect

    Sutherland, J.C.; Bergman, A.M.; Chen, Chun-Zhang; Monteleone, D.C.; Trunk, J.; Sutherland, B.M.

    1988-01-01

    Damage done to DNA by ultraviolet (uv) light, gamma rays and other carcinogens can be quantified using agarose gel electrophororesis. Agents that either produce strand breaks directly or that produce lesions that can be enzymatically or chemically converted to strand breaks can be studied. The method requires: (1) accurate measurement of the disribution of mass of DNA as a function of the distance of migration in the gel, (2) determination of the dispersion function of the electrophoresis system and (3) calculation of weighted averages of these functions by a computer. Less than 50 ng of DNA are required and the DNA need not be labeled with a radioactive tracer. Hence, the damage and repair of DNA in non-dividing cells and intact organisms---including humans---can be studied. Initial applications have focused on the quantitation of cyclobutyl pyrimidine dimers in the DNA of uv irradiated human skin. The sensitivity of lesion detection is increased by unidirectional pulsed field electrophoresis and other methods that separate longer DNA molecules. Replacing photographic detection of ethidium fluorescence by electronic imaging increases the accuracy of the measurement and the speed of data analysis. Quantitative electronic imaging of gel fluorescence offers advantages over photography in other areas of molecular biology, medicine and biotechnology. 26 refs., 5 figs.

  7. Peptide fractionation by SDS-free polyacrylamide gel electrophoresis for proteomic analysis via DF-PAGE.

    PubMed

    Ramos, Yassel; Besada, Vladimir; Castellanos-Serra, Lila

    2012-01-01

    Here we present a procedure for peptide fractionation by SDS-free polyacrylamide gel electrophoresis, based on discontinuous buffer systems. In the absence of SDS, peptide migration depends both on their molecular mass and on their net charge at the electrophoresis pH. By selecting the separation pH, peptide mobility is modulated. In the original discontinuous buffer system (Tris/glycine), peptides that migrate to the anode have pI values below 6.8 and distribute along the lane in a pI decreasing order, while at acidic pH, as that afforded by histidine/MOPS buffer system, peptides with pI below 5.5 are fractionated. Separation at acid pH is particularly useful for recovering phosphopeptides as well as other highly negatively charged peptides, as those containing sialic or sulfate substituents. Both separation conditions in Tris/glycine and in histidine/MOPS are applicable to proteomic studies, by dual-fractionation polyacrylamide gel electrophoresis (DF-PAGE). First, complex protein samples are separated via SDS-PAGE, and after in-gel proteolysis, peptides are loaded on a second SDS-free gel, where they are separated as described here.

  8. Comparison between agarose gel electrophoresis and capillary electrophoresis for variable numbers of tandem repeat typing of Mycobacterium tuberculosis.

    PubMed

    Yokoyama, Eiji; Kishida, Kazunori; Uchimura, Masako; Ichinohe, Sadato

    2006-06-01

    Variable numbers of tandem repeat (VNTR) typing of Mycobacterium tuberculosis was performed on 54 strains including 23 strains derived from 9 outbreaks. PCR amplicon sizes of 12 mycobacterial interspersed repetitive unit tandem repeat loci were measured using both agarose gel electrophoresis and capillary electrophoresis. Similarities using agarose gel electrophoresis of Euclidian distances among the 23 strains derived from the 9 outbreaks were significantly lower than that using capillary electrophoresis (Wilcoxon signed ranks test, P < 0.01). By clustering analysis using unweighted pair group method using arithmetic averages, all of the 23 strains derived from the 9 outbreaks were each clustered with more than 90% similarities based on the distance using capillary electrophoresis. In contrast, differential clusters with more than 90% similarity were observed with only 7 strains derived from 3 outbreaks when analyzed by agarose gel electrophoresis. These results indicated that measurement of PCR amplicon size of tandem repeat loci should be carried out using capillary electrophoresis and that agarose gel electrophoresis is not suitable for clustering analysis of M. tuberculosis VNTR typing.

  9. Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum.

    PubMed

    Karim, Asima; Hall, Andrew C

    2017-05-01

    Changes to chondrocyte volume/morphology may have deleterious effects on extracellular matrix (ECM) metabolism potentially leading to cartilage deterioration and osteoarthritis (OA). The factors controlling chondrocyte properties are poorly understood, however, pericellular matrix (PCM) weakening may be involved. We have studied the density, volume, morphology, and clustering of cultured bovine articular chondrocytes within stiff (2% w/v) and soft (0.2% w/v) three-dimensional agarose gels. Gels with encapsulated chondrocytes were cultured in Dulbecco's Modified Eagle's Medium (DMEM; fetal calf serum (FCS) 1-10%;380 mOsm) for up to 7 days. Chondrocytes were fluorescently labeled after 1, 3, and 7 days with 5-chloromethylfluorescein-diacetate (CMFDA) and propidium iodide (PI) or 1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-dihydroxyanthracene-9,10-dione (DRAQ5) to identify cytoplasmic space or DNA and imaged by confocal laser scanning microscopy (CLSM). Chondrocyte density, volume, morphology, and clustering were quantified using Volocity™ software. In stiff gels after 7 d with 10% FCS, chondrocyte density remained unaffected and morphology was relatively normal with occasional cytoplasmic processes. However, in soft gels by day 1, chondrocyte volume increased (P = 0.0058) and by day 7, density increased (P = 0.0080), along with the percentage of chondrocytes of abnormal morphology (P < 0.0001) and enhanced clustering (P < 0.05), compared to stiff gels. FCS exacerbated changes to density (P < 0.01), abnormal morphology (P < 0.001) and clustering (P < 0.01) compared to lower concentrations at the same gel strength. Reduced gel stiffness and/or increased FCS concentrations promoted chondrocyte proliferation and clustering, increased cell volume, and stimulated abnormal morphology, producing similar changes to those occurring in OA. The increased penetration of factors in FCS into soft gels may be important in the development of

  10. Glutamine Synthetase Regulation, Adenylylation State, and Strain Specificity Analyzed by Polyacrylamide Gel Electrophoresis

    PubMed Central

    Bender, Robert A.; Streicher, Stanley L.

    1979-01-01

    We used polyacrylamide gel electrophoresis to examine the regulation and adenylylation states of glutamine synthetases (GSs) from Escherichia coli (GSE) and Klebsiella aerogenes (GSK). In gels containing sodium dodecyl sulfate (SDS), we found that GSK had a mobility which differed significantly from that of GSE. In addition, for both GSK and GSE, adenylylated subunits (GSK-adenosine 5′-monophosphate [AMP] and GSE-AMP) had lesser mobilities in SDS gels than did the corresponding non-adenylylated subunits. The order of mobilities was GSK-AMP < GSK < GSE-AMP < GSE. We were able to detect these mobility differences with purified and partially purified preparations of GS, crude cell extracts, and whole cell lysates. SDS gel electrophoresis thus provided a means of estimating the adenylylation state and the quantity of GS present independent of enzymatic activity measurements and of determining the strain origin. Using SDS gels, we showed that: (i) the constitutively produced GS in strains carrying the glnA4 allele was mostly adenylylated, (ii) the GS-like polypeptide produced by strains carrying the glnA51 allele was indistinguishable from wild-type GSK, and (iii) strains carrying the glnA10 allele contained no polypeptide having the mobility of GSK or GSK-AMP. Using native polyacrylamide gels, we detected the increased amount of dodecameric GS present in cells grown under nitrogen limitation compared with cells grown under conditions of nitrogen excess. In native gels there was neither a significant difference in the mobilities of adenylylated and non-adenylylated GSs nor a GS-like protein in cells carrying the glnA10 allele. Images PMID:33958

  11. Quantitation of specific proteins in polyacrylamide gels by the elution of Fast Green FCF.

    PubMed

    Gilmore, L B; Hook, G E

    1981-07-01

    The quantitation of proteins in polyacrylamide gels stained with Fast green FCF has been investigated using a modification of the elution technique originally described by Fenner et al. (Fenner, C., Traut, R.R., Mason, D.T. and Wikman-Coffelt, J. (1975) Anal. Biochem. 63, 595--602) for Coomassie Blue and adapted by Medugorac (Medugorac, I. (1979) Basic Res. Cardiol. 74, 406--416) for use with proteins stained with Fast Green FCF. The elution of dye from stained protein was accomplished using 1.0 M NaOH instead of aqueous pyridine as required by the original method. The primary advantages of our modification are that the time required for protein quantitation has been considerably reduced and the use of toxic organic solvents has been eliminated. We have investigated the applicability of the method of several different proteins and our results indicate: (a) The quantity of Fast Green FCF eluted from specific proteins is proportional to the quantity of protein applied to the gel, but varies for each individual protein. (b) The method allows quantitation over a very wide range of protein (1--800 micrograms). (c) Quantitation of protein is independent of the width of the stained bands as well as acrylamide concentration. (d) The method is applicable to gels of many types including disc, slab and continuous gradient gels. (e) Protein can be estimated from the patterns obtained by two-dimensional polyacrylamide gel electrophoresis. (f) The presence of Triton X-100 in gel and protein sample does not affect quantitation; the method is applicable to gels containing SDS provided that SDS is removed prior to staining. (g) Precipitation of protein with 12.5% TCA following electrophoresis does not interfere with quantitation. (h) The reproducibility of the technique is excellent, with standard deviations being less than 10% of the mean in all cases. This method appears highly versatile but requires appropriate standards for the quantitation of individual proteins.

  12. Detection and mapping of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels.

    PubMed Central

    Roninson, I B

    1983-01-01

    A new molecular hybridization approach to the analysis of complex genomes has been developed. Tracer and driver DNAs were digested with the same restriction enzyme(s), and tracer DNA was labeled with 32P using T4 DNA polymerase. Tracer DNA was mixed with an excess amount of driver, and the mixture was electrophoresed in an agarose gel. Following electrophoresis, DNA was alkali-denatured in situ and allowed to reanneal in the gel, so that tracer DNA fragments could hybridize to the driver only when homologous driver DNA sequences were present at the same place in the gel, i.e. within a restriction fragment of the same size. After reannealing, unhybridized single-stranded DNA was digested in situ with S1 nuclease. The hybridized tracer DNA was detected by autoradiography. The general applicability of this technique was demonstrated in the following experiments. The common EcoRI restriction fragments were identified in the genomes of E. coli and four other species of bacteria. Two of these fragments are conserved in all Enterobacteriaceae. In other experiments, repeated EcoRI fragments of eukaryotic DNA were visualized as bands of various intensity after reassociation of a total genomic restriction digest in the gel. The situation of gene amplification was modeled by the addition of varying amounts of lambda phage DNA to eukaryotic DNA prior to restriction enzyme digestion. Restriction fragments of lambda DNA were detectable at a ratio of 15 copies per chicken genome and 30 copies per human genome. This approach was used to detect amplified DNA fragments in methotrexate (MTX)-resistant mouse cells and to identify commonly amplified fragments in two independently derived MTX-resistant lines. Images PMID:6310499

  13. Shotgun electroelution: a proteomic tool for simultaneous sample elution from whole SDS-polyacrylamide gel slabs.

    PubMed

    Antal, József; Bányász, Borbála; Buzás, Zsuzsanna

    2007-02-01

    A high-throughput device has been constructed which allows parallel electroelution of separated SDS-protein bands directly from intact unsectioned polyacrylamide gel slabs as well as single electroelution of certain protein spots into a 384-well standard flat-bottom multiwell plate. The prototype provides complete, quick elution for proteomics from 1-D or from 2-D gels without gel sectioning. Since the elution chamber matrix requires no assembly, sample handling can be easily carried out by existing robotic workstations. The current design is a good candidate for automation of spot elution since there are no moving liquid containing components in the apparatus. Eight SDS-proteins were eluted in test runs and an average 70% sample recovery was achieved by re-electrophoresis of the electro-eluates.

  14. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  15. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products.

    PubMed

    Jimenez, Maria S; Luque-Alled, Jose M; Gomez, Teresa; Castillo, Juan R

    2016-05-01

    Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes-AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes-AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA-ICP-MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs-protein binding (what is not possible using SDS-PAGE).

  16. Influence of pinning effects on the electrochemical formation of silver patterns in agarose-containing sols and gels.

    PubMed

    Pasquale, M A; Saracco, G P; Marchiano, S L; Arvia, A J

    2005-11-03

    The formation of silver patterns via electrolysis from aqueous silver sulfate + x% w/v agarose sol and gel media, with and without supporting electrolyte, in a quasi-two-dimensional (2D) cylindrical cell at room temperature, is utilized as a reference system to investigate the complexity of pinning effects. From pattern morphology and electrochemical data, both delocalized and localized pinning in the bulk dominate the drift of the growth front, depending on the concentration of agarose in the heterogeneous media. Delocalized pinning results from mobile, small agarose aggregates at the growth front and from their accumulation by the front drift. For gels, localized pinning comes from their own percolated structure. A depinning/pinning transition is observed in going from sols to gels. The relative contribution of diffusion and advection in mass-transport-controlled silver electrodeposition depends on the plating bath composition. On the other hand, silver ion attachment to the cathode appears to be interfered with by some screening caused by weakly adsorbed, mobile agarose aggregates at the metal surface without slowing down the rate of the electron-transfer step at the cathode. Their relative contribution of a delocalized, localized pinning and screening effect to a great extent determines the morphology and transition in the growth mode of silver patterns in both media. The analysis of charge and current transients and the corresponding silver pattern morphologies for open and dense radial patterns is made. Results are qualitatively simulated with a novel, rather simple cellular automaton algorithm.

  17. Accommodating brightness and exposure levels in densitometry of stained polyacrylamide electrophoresis gels

    SciTech Connect

    Tan, Han Yen; Ng, Tuck Wah; Liew, Oi Wah

    2010-03-20

    Flatbed scanner densitometers can be operated under various illumination and recording exposure levels. In this work, we show that optical density measurement accuracy, sensitivity, and stability of stained polyacrylamide electrophoresis gel densitometry are crucially dependent on these two factors (brightness and exposure level), notwithstanding that the source is monochromatic, spatially uniform, and the measurements are made using an accurately calibrated step wedge in tandem. We further outline a method to accommodate the intensity deviations over a range of illumination and exposure levels in order to maintain sensitivity and repeatability in the computed optical densities. Comparisons were also made with results from a commercial densitometer.

  18. Rapid extraction and structural characterization of biomolecules in agarose gels by laser desorption Fourier transform mass spectrometry

    SciTech Connect

    Dunphy, J.C.; Busch, K.L. ); Hettich, R.L.; Buchanan, M.V. )

    1993-05-15

    A method originally developed for the extraction of biomolecules from agarose gel slices has been utilized as a rapid means of isolating biological compounds from gels for subsequent structural characterization by matrix-assisted laser desorption-ionization Fourier transform mass spectrometry (MALDI/FTMS). This [open quotes]freeze-squeeze[close quotes] extraction method involves pressure extrusion of fluid from frozen gel slices and provides near 50% recovery of analyte in less than 5 min. Experiments were directed at examining the recovery efficiency of the extraction method using [sup 14]C-labeled adenosine monophosphate and investigating the effect of high buffer concentrations on the laser desorption mass spectra. When coupled with this extraction technique, MALDI/FTMS can be used to detect and identify biomolecules at the low picomole level in agarose gel slices. The accurate mass measurements and MS/MS capabilities of the FTMS were exploited to provide detailed structural information at the isomeric level for oligonucleotides electrophoresed into agarose gels. 41 refs., 5 figs., 1 tab.

  19. Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting.

    PubMed

    Kim, Dohyun; Karns, Kelly; Tia, Samuel Q; He, Mei; Herr, Amy E

    2012-03-06

    We report a novel protein immobilization matrix for fully integrated microfluidic Western blotting (WB). The electrostatic immobilization gel (EIG) enables immobilization of all proteins sized using cetyl trimethylammonium bromide polyacrylamide gel electrophoresis (CTAB-PAGE), for subsequent electrophoretic probing with detection affinity reagents (e.g., labeled antibodies). The "pan-analyte" capture strategy introduced here uses polyacrylamide gel grafted with concentrated point charges (zwitterionic macromolecules), in contrast to existing microfluidic WB strategies that rely on a sandwich immunoassay format for analyte immobilization and detection. Sandwich approaches limit analyte immobilization to capture of only a priori known targets. A charge interaction mechanism study supports the hypothesis that electrostatic interaction plays a major role in analyte immobilization on the EIG. We note that protein capture efficiency depends on both the concentration of copolymerized charges and ionic strength of the gel buffer. We demonstrate pan-analyte immobilization of sized CTAB-laden model proteins (protein G, ovalbumin, bovine serum albumin, β-galactosidase, lactoferrin) on the EIG with initial capture efficiencies ranging from 21 to 100%. Target proteins fixed on the EIG (protein G, lactoferrin) are detected using antibody probes with signal-to-noise ratios of 34 to 275. The approach advances protein immunoblotting performance through 200× reduction on sample consumption, 12× reduction in assay duration, and automated assay operation, compared to slab-gel WB. Using the microfluidic WB assay, assessment of lactoferrin in human tear fluid is demonstrated with a goal of advancing toward nonbiopsy-based diagnosis of Sjögren's Syndrome, an autoimmune disease.

  20. Tris-acetate polyacrylamide gradient gels for the simultaneous electrophoretic analysis of proteins of very high and low molecular mass.

    PubMed

    Cubillos-Rojas, Monica; Amair-Pinedo, Fabiola; Tato, Irantzu; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2012-01-01

    Polyacrylamide gel electrophoresis (PAGE) is one of the most powerful tools used for protein analysis. We describe the use of Tris-acetate buffer and 3-15% polyacrylamide gradient gels to simultaneously separate proteins in the mass range of 10-500 kDa. We show that this system is highly sensitive, it has good resolution and high reproducibility, and that it can be used for general applications of PAGE such as Coomassie Brilliant Blue staining and immunoblotting. Moreover, we describe how to generate mini Tris-acetate polyacrylamide gels to use them in miniprotein electrophoresis systems. These economical gels are easy to generate and to manipulate and allow a rapid analysis of proteins. All these features make the Tris-acetate-PAGE system a very helpful tool for protein analysis.

  1. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE)

    PubMed Central

    Jha, Pooja; Wang, Xu; Auwerx, Johan

    2016-01-01

    Mitochondria are cellular organelles that produce energy in the form of ATP through a process termed oxidative phosphorylation (OXPHOS), which occurs via the protein complexes of the electron transport chain (ETC). In recent years it has become unequivocally clear that mitochondrial complexes of the ETC are not static entities in the inner mitochondrial membrane. These complexes are dynamic and in mammals they aggregate in different stoichiometric combinations to form supercomplexes (SCs) or respirasomes. It has been proposed that the net respiration is more efficient via SCs than via isolated complexes. However, it still needs to be determined whether the activity of a particular SC is associated with a disease etiology. Here we describe a simplified method to visualize and assess in-gel activity of SCs and the individual complexes with a good resolution on blue native polyacrylamide gel electrophoresis (BN-PAGE). PMID:26928661

  2. Improved detection of amylase activity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with copolymerized starch.

    PubMed

    Martínez, T F; Alarcón, F J; Díaz-López, M; Moyano, F J

    2000-08-01

    An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.

  3. Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis.

    PubMed

    He, Mei; Herr, Amy E

    2009-10-01

    We introduce an automated immunoblotting method that reports protein electrophoretic mobility and identity in a single streamlined microfluidic assay. Native polyacrylamide gel electrophoresis (PAGE) was integrated with subsequent in situ immunoblotting. Integration of three PA gel elements into a glass microfluidic chip achieved multiple functions, including (1) rapid protein separation via on-chip PAGE, (2) directed electrophoretic transfer of resolved protein peaks to an in-line blotting membrane, and (3) high-efficiency identification of the transferred proteins using antibody-functionalized blotting membranes. In-chip blotting membranes were photopatterned with biotinylated antibody using streptavidin polyacrylamide (PA) thus yielding postseparation sample analysis. No pressure driven flow or fluid valving was required, as the assay was operated by electrokinetically programmed control. A model sample of fluorescently labeled BSA (negative control), alpha-actinin, and prostate specific antigen (PSA) was selected to develop and characterize the assay. A 5 min assay time was required without operator intervention. Optimization of the blotting membrane (geometry, operation, and composition) yielded a detection limit of approximately 0.05 pg (alpha-actinin peak). An important additional blotting fabrication strategy was developed and characterized to allow vanishingly small antibody consumption (approximately 1 microg), as well as end-user customization of the blotting membrane after device fabrication and storage. This first report of rapid on-chip protein PAGE integrated with in situ immunoblotting forms the basis for a sensitive, automated approach applicable to numerous forms of immunoblotting.

  4. Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate

    PubMed Central

    Serwer, Philip; Wright, Elena T.

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979

  5. Agarose gel electrophoresis reveals structural fluidity of a phage T3 DNA packaging intermediate.

    PubMed

    Serwer, Philip; Wright, Elena T

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (i) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for the stabilization of structure and then (ii) determining effective radius by two-dimensional agarose gel electrophoresis (2D-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase the production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2D-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when the ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging.

  6. Model creation of moving redox reaction boundary in agarose gel electrophoresis by traditional potassium permanganate method.

    PubMed

    Xie, Hai-Yang; Liu, Qian; Li, Jia-Hao; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-02-21

    A novel moving redox reaction boundary (MRRB) model was developed for studying electrophoretic behaviors of analytes involving redox reaction on the principle of moving reaction boundary (MRB). Traditional potassium permanganate method was used to create the boundary model in agarose gel electrophoresis because of the rapid reaction rate associated with MnO(4)(-) ions and Fe(2+) ions. MRB velocity equation was proposed to describe the general functional relationship between velocity of moving redox reaction boundary (V(MRRB)) and concentration of reactant, and can be extrapolated to similar MRB techniques. Parameters affecting the redox reaction boundary were investigated in detail. Under the selected conditions, good linear relationship between boundary movement distance and time were obtained. The potential application of MRRB in electromigration redox reaction titration was performed in two different concentration levels. The precision of the V(MRRB) was studied and the relative standard deviations were below 8.1%, illustrating the good repeatability achieved in this experiment. The proposed MRRB model enriches the MRB theory and also provides a feasible realization of manual control of redox reaction process in electrophoretic analysis.

  7. High resolution melt analysis (HRMA); a viable alternative to agarose gel electrophoresis for mouse genotyping.

    PubMed

    Thomsen, Nicole; Ali, Radiya G; Ahmed, Jehangir N; Arkell, Ruth M

    2012-01-01

    Most mouse genetics laboratories maintain mouse strains that require genotyping in order to identify the genetically modified animals. The plethora of mutagenesis strategies and publicly available mouse alleles means that any one laboratory may maintain alleles with random or targeted insertions of orthologous or unrelated sequences as well as random or targeted deletions and point mutants. Many experiments require that different strains be cross bred conferring the need to genotype progeny at more than one locus. In contrast to the range of new technologies for mouse mutagenesis, genotyping methods have remained relatively static with alleles typically discriminated by agarose gel electrophoresis of PCR products. This requires a large amount of researcher time. Additionally it is susceptible to contamination of future genotyping experiments because it requires that tubes containing PCR products be opened for analysis. Progress has been made with the genotyping of mouse point mutants because a range of new high-throughput techniques have been developed for the detection of Single Nucleotide Polymorphisms. Some of these techniques are suitable for genotyping point mutants but do not detect insertion or deletion alleles. Ideally, mouse genetics laboratories would use a single, high-throughput platform that enables closed-tube analysis to genotype the entire range of possible insertion and deletion alleles and point mutants. Here we show that High Resolution Melt Analysis meets these criteria, it is suitable for closed-tube genotyping of all allele types and current genotyping assays can be converted to this technology with little or no effort.

  8. Microviscosity in polyacrylamide gels with pendant triphenyl-methane leuco derivatives: picosecond time-resolved fluorescence study

    NASA Astrophysics Data System (ADS)

    Tamai, Naoto; Ishikawa, Masazumi; Kitamura, Noboru; Masuhara, Hiroshi

    1991-10-01

    Picosecond fluorescence dynamics of triphenylmethane dyes bonded to polyacrylamide gels before and after swelling was studied by a single-photon timing technique. Microviscosity in the gels after swelling was estimated to be 10-11 cP by examining the viscosity dependence of fluorescence dynamics of malachite green in various alcohols. The results were interpreted in terms of structured stiff water in a microcavity of the gels.

  9. Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization.

    PubMed

    Zhang, Zepeng; Hu, Qian; Zhao, Yong

    2017-01-01

    In mammalian cells, in addition to double-stranded telomeric DNA at chromosome ends, extra telomere-homologous DNA is present that adopts different conformations, including single-stranded G- or C-rich DNA, extrachromosomal circular DNA (T-circle), and telomeric complex (T-complex) with an unidentified structure. The formation of such telomere-homologous DNA is closely related to telomeric DNA metabolism and chromosome end protection by telomeres. Conventional agarose gel electrophoresis is unable to separate DNA based on conformation. Here, we introduce the method of two-dimensional (2D) agarose electrophoresis in combination with in-gel native/denatured hybridization to determine different conformations formed by telomere-homologous DNA.

  10. A method for direct application of human plasmin on a dithiothreitol-containing agarose stacking gel system.

    PubMed

    Choi, Nack-Shick; Chung, Dong-Min; Yoon, Kab-Seog; Maeng, Pil Jae; Kim, Seung-Ho

    2005-11-30

    A new simplified procedure for identifying human plasmin was developed using a DTT copolymerized agarose stacking gel (ASG) system. Agarose (1 %) was used for the stacking gel because DTT inhibits the polymerization of acrylamide. Human plasmin showed the lowest activity at pH 9.0. There was a similar catalytically active pattern observed under acidic conditions (pH 3.0) to that observed under alkaline conditions (pH 10.0 or 11.0). Using the ASG system, the primary structure of the heavy chain could be established at pH 3.0. This protein was found to consist of three fragments, 45 kDa, 23 kDa, and 13 kDa. These results showed that the heavy chain has a similar structure to the autolysed plasmin (Wu et al., 1987b) but there is a different start amino acid sequence of the N-termini.

  11. Measurement of Ferric Ion Diffusion Coefficient in Fricke-Infused Agarose Gel From MR Image Intensity Changes

    DTIC Science & Technology

    2007-11-02

    Coefficient in Fricke-Infused Agarose Gel From MR Image Intensity Changes Contract Number Grant Number Program Element Number Author( s ) Project Number Task...Number Work Unit Number Performing Organization Name( s ) and Address(es) Institutes of Biomedical Engineering and Radiological Sciences National...Yang Ming University Pei-Tou Taipei, Taiwan, R.O.C. Performing Organization Report Number Sponsoring/Monitoring Agency Name( s ) and Address(es) US

  12. Analysis of DNA structures from eukaryotic cells by two-dimensional native-native DNA agarose gel electrophoresis.

    PubMed

    Ivessa, Andreas S

    2013-01-01

    The neutral-neutral two-dimensional agarose gel technique is mainly used to determine the chromosomal positions where DNA replication starts, but it is also applied to visualize replication fork progression and breakage as well as intermediates in DNA recombination. Here we provide a step-by-step protocol to analyze the fairly underrepresented and fragile replication intermediates in yeast chromosomal DNA. The technique can also be adapted to analyze replication intermediates in chromosomal DNA of higher eukaryotic organisms.

  13. Immobilization of urease from pigeonpea (Cajanus cajan L.) in polyacrylamide gels and calcium alginate beads.

    PubMed

    Das, N; Kayastha, A M; Malhotra, O P

    1998-02-01

    Urease from pigeonpea was entrapped in polyacrylamide gel with 50% immobilization at 10% total monomer (containing 5% cross-linker) with high mechanical stability of the gel. Approximately 0.61 mg of protein could be loaded per 5 ml of gel. The immobilized enzyme had a t1/2 of approx. 200 days when stored in 0.1 M Tris/acetate buffer, pH 6.5, at 4 degrees C. The gel strips were used 4-5 times for urea assay over a period of 6 h with less than 2% loss of activity. Approximately 50% immobilization of urease in calcium alginate was observed at 3% alginate with 0.12 mg protein/ml alginate. The resultant enzyme beads showed a t1/2 of approx. 75 days when stored in 0.1 M Tris/acetate buffer, pH 6.5, at 4 degrees C. The beads were used 4-5 times for urea assay over a period of 6 h with about 40% loss of activity. In both cases, the enzyme activity was directly proportional to the amount of immobilized enzyme. There was practically no leaching of the entrapped enzyme over a period of 48 h from either of the polymers. Both the immobilized enzyme preparations were used to analyse the blood urea of some clinical samples from the University hospital. The results obtained compared favourably with those obtained by the usual method employed in the clinical pathology laboratory.

  14. Photothermal Microneedle Etching: Improved Three-Dimensional Microfabrication Method for Agarose Gel for Topographical Control of Cultured Cell Communities

    NASA Astrophysics Data System (ADS)

    Moriguchi, Hiroyuki; Yasuda, Kenji

    2006-08-01

    We have developed a new three-dimensional (3D) microfabrication method for agarose gel, photothermal microneedle etching (PTMNE), by means of an improved photothermal spot heating using a focused 1064 nm laser beam for melting a portion of the agarose layer at the tip of the microneedle, where a photoabsorbent chromium layer is coated to be heated. The advantage of this method is that it allows the 3D control of the melting topography within the thick agarose layer with a 2 μm resolution, whereas conventional photothermal etching can enable only two-dimensional (2D) control on the surface of the chip. By this method, we can form the spheroid clusters of particular cells from isolated single cells without any physical contact with other cells in other chambers, which is important for measuring the community effect of the cell group from isolated single cells. When we set single cancer cells in microchambers of 100 μm in diameter, formed in a 50-μm-thick agarose layer, we observed that they grew, divided, and formed spheroid clusters of cells in each microchamber. The result indicates the potential of this method to be a fundamental technique in the research of multicellular spherical clusters of cells for checking the community effect of cells in 3D structures, such as the permeabilities of chemicals and substrates into the cluster, which is complementary to conventional 2D dish cultivation and can contribute to the cell-based screening of drugs.

  15. Highly increased detection of silver stained protein bands in polyacrylamide gels with thermo-optical methods

    NASA Astrophysics Data System (ADS)

    Mazza, Giulia; Posnicek, Thomas; Brandl, Martin

    2016-11-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a well-known technique to separate proteins by their molecular weight. After electrophoresis, the gels are commonly stained for protein band analysis with silver stain; this allows the detection of protein loads to about 1 ng. To increase the detection sensitivity of the protein bands down in the subnanogram level, a sensor has been developed based on the thermal lens effect to scan and quantify protein loads which would remain undetected using the standard imaging systems. The thermal lens sensor is equipped with a 450 nm diode pump laser modulated at 1 Hz and a HeNe probe laser mounted in collinear geometry. The sensor could detect protein bands of 0.05 ng when the gel was soaked in methanol/water and 0.1 ng in water. The limit of detection ranged from 8 to 20 pg, depending on the soaking medium and the staining efficiency. Thus, the detection of silver stain by thermal lens effect results 10 to 20 times more sensitive than the standard colorimetric method.

  16. Comparison of fluorographic methods for detecting radioactivity in polyacrylamide gels or on nitrocellulose filters

    SciTech Connect

    Roberts, P.L.

    1985-06-01

    The commercial fluorographic enhancers, En3Hance or Amplify, were not as efficient as 2,5-diphenyloxazole (PPO) for detecting radioactively labeled proteins in polyacrylamide gels or on nitrocellulose filters. For most of the X-ray films tested, optimal preexposure was essential to obtain maximum sensitivity in fluorography or indirect autoradiography using intensifying screens. The best results were obtained with nitrocellulose by saturating the filters with PPO. The minimum levels of /sup 35/S//sup 14/C that could be detected on filters by autoradiography or fluorography in a 24-h exposure were 4 X 10(2) or 1 X 10(2) dpm cm-2 respectively. For /sup 3/H these levels were, respectively, 20 X 10(3) or 0.5 X 10(3) dpm cm-2.

  17. Performing isoelectric focusing and simultaneous fractionation of proteins on a rotary valve followed by sodium dodecyl-polyacrylamide gel electrophoresis.

    PubMed

    Wang, Wei; Lu, Joann J; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-07-16

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl-polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE, the second-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed.

  18. Studies on the bioactivity of radioiodinated highly purified bovine thyrotropin: analytical polyacrylamide gel electrophoresis

    SciTech Connect

    Takai, N.A.; Filetti, S.; Rapoport, B.

    1981-01-01

    Highly purified bovine TSH (stored in solution at -70 C) was radioiodinated by the stoichiometric chloroamine-T method. The iodinated material ws subjected to analytical polyacrylamide disc gel electrophoresis. TSH was eluted from gel slices (1 mm width) and was analyzed for radioactivity and bioactivity. The latter was determined using the cultured thyroid cell cAMP response assay. Radioactivity in the TSH preparation migrated separately from bioactivity, but concordant with the protein bands observed in gels run in parallel. Further studies performed on bovine TSH purified in our laboratory, as well as on a different TSH preparation of exceptionally high potency (both stored as lyophilized powder) revealed a different pattern, with TSH bioactivity and radioactivity eluting concurrently. Iodination of TSH did not alter its electrophoretic migration on disc gel electrophoresis. In all preparations polymorphism of TSH bioactivity was observed, with at least four separate protein bands containing TSH bioactivity being present in our preparation. The relationship between the degree of iodination and retention of TSH bioactivity was examined. Incorporation of /sup 125/I into TSH was greatly different at two different concentrations of chloramine-T. Despite this, however, the progressive loss of TSH bioactivity was similar at both concentrations, indicating that incorporation of iodine into the TSH molecule is not itself responsible for the decrease in bioactivity. These studies indicate variability among different TSH preparations in terms of their retention of bioactivity. Significant loss of TSH bioactivity appears to occur during storage in solution. The damage to the biological activity of TSH during the iodination procedure is more likely related to the oxidation process than to the incorporation of iodine.

  19. Carbon nanotube-modified sodium dodecyl sulfate-polyacrylamide gel electrophoresis for molecular weight determination of proteins.

    PubMed

    Parthasarathy, Meera; Debgupta, Joyashish; Kakade, Bhalchandra; Ansary, Abu A; Islam Khan, M; Pillai, Vijayamohanan K

    2011-02-15

    The effect of incorporating carbon nanotubes (CNTs) in the gel matrix on the electrophoretic mobility of proteins based on their molecular weight differences was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). More specifically, a reduction in standard deviation in the molecular weight calibration plots by 55% in the case of multiwalled carbon nanotubes (MWCNTs) and by 34% in the case of single-walled carbon nanotubes (SWCNTs) compared with that of pristine polyacrylamide gels was achieved after incorporating an insignificant amount of functionalized CNTs into the gel matrix. A mechanism based on a more uniform pore size distribution in CNT modified polyacrylamide gel matrix is proposed. Furthermore, the impact of SWCNTs and MWCNTs on the mobility of proteins in different molecular weight regimes at a given acrylamide concentration offers a tunable gel matrix in terms of the selection of molecular weight ranges of proteins. The robustness and excellent reproducibility of the CNT-PAGE protocol are expected to have a significant impact on the molecular weight determination of newly isolated proteins.

  20. Serum alkaline phosphatase isoenzymes in laboratory beagle dogs detected by polyacrylamide-gel disk electrophoresis.

    PubMed

    Hatayama, Kazuhisa; Nishihara, Yoshito; Kimura, Sayaka; Goto, Ken; Nakamura, Daichi; Wakita, Atsushi; Urasoko, Yoshinaka

    2011-10-01

    Serum alkaline phosphatase (ALP) activity is frequently measured in toxicity studies. Itoh et al. (2002) reported that a commercially available polyacrylamide-gel (PAG) disk electrophoresis kit used in humans (AlkPhor System, Jokoh Co., Ltd., Tokyo, Japan) for identifying serum ALP isoenzymes was useful for veterinary clinicopathological diagnosis in mongrel dogs. In the present study, based on the report of Itoh et al. (2002), we tried to expand the application range of this kit to laboratory beagle dogs which are commonly used in toxicity studies. In order to identify the origin of each ALP isoenzyme, tissue ALP extracts from the liver, bone and small intestine and serum samples were treated with neuraminidase, anti-small intestinal ALP antibody, ALP inhibitor levamisole and/or wheat germ agglutinin (WGA). The main serum ALP isoenzymes in 5-month-old intact beagle dogs were bone-derived (bone and atypical ALP: corresponding to human variant bone ALP) and they tended to decrease with age. However, liver-derived ALP isoenzyme greatly increased in the serum of cholestasis model dogs. The cholestasis model dogs also had a large molecular ALP detected in the resolving gel. This ALP could be originated from intestinal ALP or corticosteroid-induced ALP (CALP), because the activity remained even after levamisole inhibition. CALP was observed in intact laboratory beagle dogs with individual differences. These results suggest that the present method is a useful tool for detecting serum ALP isoenzymes in laboratory beagle dogs and concomitant levamisole inhibition with another gel is applicable for the evaluation of organ toxicity.

  1. Carbon nanotubes-assisted polyacrylamide gel electrophoresis for enhanced separation of human serum proteins and application in liverish diagnosis.

    PubMed

    Jiang, Fubin; Wang, Yanan; Hu, Xinfang; Shao, Na; Na, Na; Delanghe, Joris R; Ouyang, Jin

    2010-11-01

    The application of pore-gradient polyacrylamide gel electrophoresis (PG-PAGE) incorporated with carbon nanotube modified by Triton X-100 and carboxylation so as to improve the separation of human serum proteins is reported. The novel PG-PAGE was made by adding water-soluble single-walled carbon nanotubes (CNTs) when preparing the polyacrylamide gel. Significant improvements in separation of complement C3 protein and haptoglobin (Hp) in human serum were achieved. It was estimated that the interactions between the hydrophilic groups on the proteins and the surface of the CNTs result in different adsorption kinetics of complement C3 and Hp subtype on the nanoparticles incorporated in the gel, thus enhancing the separation of the two proteins in serum. This new CNT matrix-assisted PG-PAGE method for enhanced separation of complement C3 and Hp in human serum was successfully applied to distinguish the samples from liverish patients and healthy people.

  2. Pulsed field electrophoresis for the separation of protein-sodium dodecyl sulfate-complexes in polyacrylamide gels.

    PubMed

    Houri, A; Starita-Geribaldi, M

    1994-01-01

    Polyacrylamide gel electrophoresis of proteins was studied using a pulsed-current mode. A new "local field" distribution was used to correct the gel patterns and optimize migration. A corrective field was applied at fixed 2 s intervals to a constant field, inducing a complex relaxation mechanism. Calculated variations in the local field directions decreased the electric strain on the gel during the run, with resultant optimum gel structure. The relaxation mechanism was found to enhance the absolute mobility of proteins with shorter running times compared to constant field gel electrophoresis (CFGE) and other pulsed field techniques. The enhancement of molecular mobility was explored by transverse pore gradient gel electrophoresis. Ferguson curves which exhibited a convex shape in CFGE were linearized by the new pulsed-field method named pulsed oscillatory high-performance electrophoresis (POPE).

  3. Monthly variations in ovine seminal plasma proteins analyzed by two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Cardozo, J A; Fernández-Juan, M; Forcada, F; Abecia, A; Muiño-Blanco, T; Cebrián-Pérez, J A

    2006-09-01

    This study was conducted to evaluate monthly changes in the ram seminal plasma protein profile using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with a polyacrylamide linear gradient gel. Likewise, comparative analyses of the protein composition of ovine seminal plasma (SP) from ejaculates obtained along the year, and its relationship with sperm motility, viability and concentration of ejaculate were carried out. Western-blot analysis was performed to specifically detect P14, a ram SP protein postulated to be involved in sperm capacitation and gamete interaction [Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA. Immunocytochemical localization and biochemical characterization of two seminal plasma proteins which protect ram spermatozoa against cold-shock. J Androl 2005;26:539-49], and its variations along the year have also been established. The experiment was carried out from May 2003 to April 2004, with nine Rasa Aragonesa rams. Ejaculates obtained every 2 days were pooled and used for each assay, to avoid individual differences, and three two-dimensional SDS-PAGE gels were run for each month. The high resolution of the gradient gel allowed the image analysis software to detect around 252 protein spots, with pIs ranging from 4.2 to 7.6, and molecular weight (M(r)) from 12.5 to 83.9 kDa. Four protein spots (1, 2, 3 and 4) of low M(r) (15.1, 15.7, 15.9 and 21.0 kDa) and acidic pI (5.9, 5.3, 5.7 and 6.6), respectively, had the highest relative intensity in the SP map (11.2, 9.3, 4.7 and 7.7%, respectively). Spot 3 was more abundant (P<0.05) from May to December, and negatively correlated (P<0.05, r=-0.34) with sperm viability and concentration (P<0.05, r=0.36). Another 12 protein spots also had significant quantitative differences (P<0.05) along the year, and 17 protein spots, which correlated with some seminal quality parameter, did not show quantitative monthly changes. Western-blot analysis indicated that spots 1 and 2 reacted

  4. A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes.

    PubMed

    Ladig, Roman; Sommer, Maik S; Hahn, Alexander; Leisegang, Matthias S; Papasotiriou, Dimitrios G; Ibrahim, Mohamed; Elkehal, Rajae; Karas, Michael; Zickermann, Volker; Gutensohn, Michael; Brandt, Ulrich; Klösgen, Ralf Bernd; Schleiff, Enrico

    2011-07-01

    Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN-) and high resolution clear native (hrCN-) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine- and deoxycholate-based native (HDN-) PAGE. We compared the capacity of HDN-, BN- and hrCN-PAGE to resolve the well-studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN-PAGE. The analysis of isolated chloroplast envelope complexes by HDN-PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN-PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons.

  5. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry

    NASA Astrophysics Data System (ADS)

    Moshayedi, Pouria; Costa, Luciano da F.; Christ, Andreas; Lacour, Stephanie P.; Fawcett, James; Guck, Jochen; Franze, Kristian

    2010-05-01

    Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G' = 100 Pa and G' = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells' morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 µg ml - 1 PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.

  6. Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis of freshwater photosynthetic sulfur bacteria.

    PubMed

    Osuna, M Begoña; Casamayor, Emilio O

    2011-01-01

    Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis (SDS-PAGE) was carried out using different bacterial strains of the photosynthetic sulfur bacteria Chlorobium, Thiocapsa, Thiocystis, and Chromatium cultured in the laboratory, and the natural blooms in two karstic lakes (Lake Cisó and Lake Vilar, NE Spain) where planktonic photosynthetic bacteria (purple and green sulfur bacteria) massively developed accounting for most of the microbial biomass. Several extraction, solubilization, and electrophoresis methods were tested to develop an optimal protocol for the best resolution of the SDS-PAGE. Protein composition from different water depths and at different times of the year was visualized within a molecular mass range between 100 and 15 kDa yielding up to 20 different protein bands. Protein banding patterns were reproducible and changed in time and with depth in agreement with changes in photosynthetic bacteria composition. When a taxonomically stable community was followed in time, differences were observed in the intensity but not in the composition of the SDS-PAGE banding pattern. Three environmental variables directly related to the activity of sulfur bacteria (light, oxygen, and sulfide concentrations) had a significant effect on protein banding patterns and explained 33% of the variance. Changes in natural protein profiles of the bacterial blooms agreed with changes in species composition and in the in situ metabolic state of the populations.

  7. A crystallization technique for obtaining large protein crystals with increased mechanical stability using agarose gel combined with a stirring technique

    NASA Astrophysics Data System (ADS)

    Maruyama, Mihoko; Hayashi, Yuki; Yoshikawa, Hiroshi Y.; Okada, Shino; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Takano, Kazufumi; Murakami, Satoshi; Yoshimura, Masashi; Mori, Yusuke

    2016-10-01

    We developed a protein crystallization technique using a 0.0-2.0 w/v% agarose gel solution combined with a stirring technique for the purpose of controlling the crystal number in the gelled solutions. To confirm the stirring effect in the gelled solution, we investigated the nucleation probability and growth rate of the crystals produced using this method. The stirring operation by a rotary shaker affected the behavior of protein molecules in the gelled solution, and both a significant decrease in the nucleation rate and an enhancement of the crystal growth rate were achieved by the method. As a result, we concluded that the proposed technique, the stirring technique in a gel solution, was effective for generating protein crystals of sufficient and increased mechanical stability.

  8. Serum protein electrophoresis by using high-resolution agarose gel in clinically healthy and Aspergillus species-infected falcons.

    PubMed

    Kummrow, Maya; Silvanose, Christudas; Di Somma, Antonio; Bailey, Thomas A; Vorbrüggen, Susanne

    2012-12-01

    Serum protein electrophoresis has gained importance in avian medicine during the past decade. Interpretation of electrophoretic patterns should be based on species-specific reference intervals and the electrophoresis gel system. In this study, serum protein electrophoresis by using high-resolution agarose gels was performed on blood samples collected from 105 falcons, including peregrine falcons (Falco peregrinus), gyrfalcons (Falco rusticolus), saker falcons (Falco cherrug), red-naped shaheens (Falco pelegrinoides babylonicus), and hybrid falcons, that were submitted to the Dubai Falcon Hospital (Dubai, United Arab Emirates) between 2003 and 2006. Reference values were established in clinically healthy birds and compared with values from falcons infected with Aspergillus species (n = 32). Falcons with confirmed aspergillosis showed significantly lower prealbumin values, which is a novel finding. Prealbumin has been documented in many avian species, but further investigation is required to illuminate the diagnostic significance of this negative acute-phase protein.

  9. Characterization of a heterogeneous chicken plasma protein, HEF, by analytical isotachophoresis in agarose gel.

    PubMed

    Nicolaisen, E M

    1985-02-22

    Chicken plasma contains proteins that associate with immunoglobulin. One of these proteins enhances the titre of haemagglutinating alloantibodies, and it was therefore named HEF, haemagglutination enhancing factor. A purified HEF preparation mixed with ampholytes splits into four bands in analytical agarose isotachophoresis. One of the HEF bands can be separated from two others with beta-alanine as discrete spacer. The separated HEF populations differ in molecular size and in their ability to enhance agglutination.

  10. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  11. Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin

    DTIC Science & Technology

    1989-07-01

    SIl Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin A thesis submitted in partial fulfillment of the...16 Wheat Germ Lectin Electrophoresis to Quantitate Alkaline Phosphatase Isoenzymes ................ 16 Alkaline Phosphatase Isoenzyme...vs Polyacrylamide Gel Electrophoresis ......................... 40 Clinical Correlation Using Wheat Germ Lectin 45 Placental Alkaline Phosphatase

  12. An enzyme-entrapped agarose gel for visualization of ischemia-induced L-glutamate fluxes in hippocampal slices in a flow system.

    PubMed

    Tanaka, Kazuhisa; Shoji, Atushi; Sugawara, Masao

    2015-01-01

    An agarose gel slip containing L-glutamate oxidase (GluOx), horseradish peroxidase (HRP) and a dye DA-64 is proposed as a tool for visualizing ischemia-induced L-glutamate release in hippocampal slices in a flow system. The agarose slip with a detection limit of 6.0 ± 0.8 μmol L(-1) for L-glutamate enabled us to visualize L-glutamate fluxes in a flow system. The leak of a dye from the agarose gel was negligible and a diffusion blur due to spreading of Bindshedler's Green (BG) within the gel was suppressed. Monitoring the time-dependent change of ischemia-induced L-glutamate fluxes at neuronal regions CA1, DG and CA3 of hippocampal slices is demonstrated.

  13. A stable double-stranded DNA-ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels.

    PubMed Central

    Glazer, A N; Peck, K; Mathies, R A

    1990-01-01

    The complex between double-stranded DNA and ethidium homodimer (5,5'-diazadecamethylene)bis(3,8-diamino-6-phenylphenanthridini um) cation, formed at a ratio of 1 homodimer per 4 or 5 base pairs, is stable in agarose gels under the usual conditions for electrophoresis. This unusual stability allows formation of the complex before electrophoresis and then separation and detection in the absence of background stain. Competition experiments between the preformed DNA-ethidium homodimer complex and a 50-fold molar excess of unlabeled DNA show that approximately one-third of the dye is retained within the original complex independent of the duration of the competition. However, dye-extraction experiments show that these are not covalent complexes. After electrophoretic separation, detection of bands containing 25 pg of DNA was readily achieved in 1-mm thick agarose gels with laser excitation at 488 nm and a scanning confocal fluorescence imaging system. The band intensity was linear with the amount of DNA applied from 0.2 to 1.0 ng per lane and with the number of kilobase pairs (kbp) per band within a lane. Analysis of an aliquot of a polymerase-chain-reaction mixture permitted ready detection of 80 pg of a 1.6-kbp amplified fragment. The use of the ethidium homodimer complex together with laser excitation for DNA detection on gels is at least two orders of magnitude more sensitive than conventional fluorescence-based procedures. The homodimer-DNA complex exemplifies a class of fluorescent probes where the intercalation of dye chromophores in DNA forms a stable, highly fluorescent ensemble. Images PMID:2339125

  14. A stable double-stranded DNA-ethidium homodimer complex: Application to picogram fluorescence detection of DNA in agarose gels

    SciTech Connect

    Glazer, A.N.; Mathies, R.A. Lawrence Berkeley Laboratory, CA ); Peck, K. )

    1990-05-01

    The complex between double-stranded DNA and ethidium homodimer (5,5{prime}-diazadecamethylene)bis(3,8-diamino-6-phenylphenanthridinium) cation, formed at a ratio of 1 homodimer per 4 or 5 base pairs, is stable in agarose gels under the usual conditions for electrophoresis. This unusual stability allows formation of the complex before electrophoresis and then separation and detection in the absence of background stain. Competition experiments between the performed DNA-ethidium homodimer complex and a 50-fold molar excess of unlabeled DNA show that approximately one-third of the dye is retained within the original complex independent of the duration of the competition. However, dye-extraction experiments show that these are not covalent complexes. After electrophoretic separation, detection of bands containing 25 pg of DNA was readily achieved in 1-mm thick agarose gels with laser excitation at 488 nm and a scanning confocal fluorescence imaging system. The band intensity was linear with the amount of DNA applied from 0.2 to 1.0 ng per lane and with the number of kilobase pairs (kbp) per band within a lane. Analysis of an aliquot of a polymerase-chain-reaction mixture permitted ready detection of 80 pg of a 1.6-kbp amplified fragment. The use of the ethidium homodimer complex together with laser excitation for DNA detection on gels is at least two orders of magnitude more sensitive than conventional fluorescence-based procedures. The homodimer-DNA complex exemplifies a class of fluorescent probes where the intercalation of dye chromophores in DNA forms a stable, highly fluorescent ensemble.

  15. Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response.

    PubMed

    Varoni, Elena; Tschon, Matilde; Palazzo, Barbara; Nitti, Paola; Martini, Lucia; Rimondini, Lia

    2012-01-01

    Maxillofacial, orthopedic, oral, and plastic surgery require materials for tissue augmentation, guided regeneration, and tissue engineering approaches. In this study, the aim was to develop and characterize a new extrudable hydrogel, based on agarose gel (AG; 1.5% wt) and to evaluate the local effects after subcutaneous implantation in comparison with collagen and hyaluronic acid. AG chemical-physical properties were ascertained through Fourier transform infrared (FT-IR) spectroscopy and rheological analysis. In vivo subcutaneous implants were performed, and histological and histomorphometric evaluations were done at 1, 4, 12, and 16 weeks. FT-IR confirmed that spectroscopic properties were the same for the baseline agarose and rheological characterization established that AG is a weak hydrogel. Subcutaneous AG implants induced new vessels and fibrous tissue formation rich in neutrophils; the capsule thickness around AG increased until the 12th week but remained thinner than those around hyaluronic acid and collagen. At 16 weeks, the thickness of the capsule significantly decreased around all materials. This study confirmed that 1.5% wt AG possesses some of the most important features of the ideal biocompatible material: safety, effectiveness, costless, and easily obtained with specific chemical and geometrical characters; the AG can represent a finely controllable and biodegradable polymeric system for cells and drug delivery applications.

  16. Multiplex agarose gel electrophoresis system for variable number of tandem repeats genotyping: analysis example using Mycobacterium tuberculosis.

    PubMed

    Wada, Takayuki; Maeda, Shinji

    2013-04-01

    As one genotyping method for Mycobacterium tuberculosis, variable number of tandem repeats (VNTR) is a promising tool to trace the undefined transmission of tuberculosis, but it often requires large equipment such as a genetic analyzer for DNA fragment analysis or CE system to conduct systematic analyses. For convenient genotyping at low cost in laboratories, we designed a multiplex PCR system that is applicable to agarose gel electrophoresis using fluorescent PCR primers. For tuberculosis genotyping by VNTR, the copy quantities of minisatellite DNA must be determined in more than 12 loci. The system can halve laborious electrophoresis processes by presenting an image of two VNTR amplicons on a single lane. No expensive equipment is necessary for this method. Therefore, it is useful even in developing countries.

  17. A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.

    PubMed

    Cao, Hui-Ling; Sun, Li-Hua; Li, Jian; Tang, Lin; Lu, Hui-Meng; Guo, Yun-Zhu; He, Jin; Liu, Yong-Ming; Xie, Xu-Zhuo; Shen, He-Fang; Zhang, Chen-Yan; Guo, Wei-Hong; Huang, Lin-Jun; Shang, Peng; He, Jian-Hua; Yin, Da-Chuan

    2013-10-01

    High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and the Rmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals.

  18. Effect of gel structure of matrix orientation in pulsed alternating electric fields

    SciTech Connect

    Stellwagen, N.C.; Stellwagen, J.

    1993-12-31

    Four polymeric gels with different structures, LE agarose, HEEO agarose, beta-carrageenan, and polyacrylamide, were studied by transient electric birefringence to determine the importance of various structural features on the orientation of the gels in pulsed alternating electric fields. The birefrigence relaxation times observed for agarose gels in low voltage electric fields suggest that long fibers and/or domains, ranging up to tens of microns in size, are oriented by the electric field. The sign of the birefringence reverses when the direction of the electric field is reversed, suggesting that the oriented domains change their direction of orientation from parallel to perpendicular (or vice versa) when the polarity of the electric field is reversed. These anamalous orientation effects are observed with both types of agarose gels, but not with beta-carrageenan or polyacrylamide gels, suggesting that the alternating D,L galactose residues in the agarose backbone are responsible for the anomalies.

  19. Incorporation of fluorescent enzyme substrates in agarose gel for in situ zymography.

    PubMed

    Yi, C F; Gosiewska, A; Burtis, D; Geesin, J

    2001-04-01

    The currently available methods for the detection of proteases in tissue sections are characterized by limited substrate specificity and low sensitivity and are also cumbersome. We have developed a novel in situ zymography method that uses a synthetic substrate conjugated to a fluorescent tag for detection of proteases in tissue sections. In the presence of active enzyme, the fluorescent tag is cleaved off from the substrate peptide chain resulting in an approximately 100-fold increase in the fluorescent signal. In order to minimize the diffusion of the fluorescent tag, the substrate is incorporated into 1% agarose prior to overlaying onto the tissue section. This method retains the morphological details of the tissue section, is highly sensitive and specific for the designated peptide sequence, and provides information regarding the functional status of the enzyme. Thus, this method could be used for detection and monitoring of enzymatic activity in tissue sections for a variety of applications.

  20. Quantification of DNA by Agarose Gel Electrophoresis and Analysis of the Topoisomers of Plasmid and M13 DNA Following Treatment with a Restriction Endonuclease or DNA Topoisomerase I

    ERIC Educational Resources Information Center

    Tweedie, John W.; Stowell, Kathryn M.

    2005-01-01

    A two-session laboratory exercise for advanced undergraduate students in biochemistry and molecular biology is described. The first session introduces students to DNA quantification by ultraviolet absorbance and agarose gel electrophoresis followed by ethidium bromide staining. The second session involves treatment of various topological forms of…

  1. DNA electrophoresis in agarose gels: effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length.

    PubMed

    Rill, Randolph L; Beheshti, Afshin; Van Winkle, David H

    2002-08-01

    Electrophoretic mobilities of DNA molecules ranging in length from 200 to 48 502 base pairs (bp) were measured in agarose gels with concentrations T = 0.5% to 1.3% at electric fields from E = 0.71 to 5.0 V/cm. This broad data set determines a range of conditions over which the new interpolation equation nu(L) = (beta+alpha(1+exp(-L/gamma))(-1) can be used to relate mobility to length with high accuracy. Mobility data were fit with chi(2) > 0.999 for all gel concentrations and fields ranging from 2.5 to 5 V/cm, and for lower fields at low gel concentrations. Analyses using so-called reptation plots (Rousseau, J., Drouin, G., Slater, G. W., Phys. Rev. Lett. 1997, 79, 1945-1948) indicate that this simple exponential relation is obeyed well when there is a smooth transition from the Ogston sieving regime to the reptation regime with increasing DNA length. Deviations from this equation occur when DNA migration is hindered, apparently by entropic-trapping, which is favored at low fields and high gel concentrations in the ranges examined.

  2. The migration behaviour of DNA replicative intermediates containing an internal bubble analyzed by two-dimensional agarose gel electrophoresis.

    PubMed Central

    Schvartzman, J B; Martínez-Robles, M L; Hernández, P

    1993-01-01

    Initiation of DNA replication in higher eukaryotes is still a matter of controversy. Some evidence suggests it occurs at specific sites. Data obtained using two-dimensional (2D) agarose gel electrophoresis, however, led to the notion that it may occur at random in broad zones. This hypothesis is primarily based on the observation that several contiguous DNA fragments generate a mixture of the so-called 'bubble' and 'simple Y' patterns in Neutral/neutral 2D gels. The interpretation that this mixture of hybridisation patterns is indicative for random initiation of DNA synthesis relies on the assumption that replicative intermediates (RIs) containing an internal bubble where initiation occurred at different relative positions, generate comigrating signals. The latter, however, is still to be proven. We investigated this problem by analysing together, in the same 2D gel, populations of pBR322 RIs that were digested with different restriction endonucleases that cut the monomer only once at different locations. DNA synthesis begins at a specific site in pBR322 and progresses in a uni-directional manner. Thus, the main difference between these sets of RIs was the relative position of the origin. The results obtained clearly showed that populations of RIs containing an internal bubble where initiation occurred at different relative positions do not generate signals that co-migrate all-the-way in 2D gels. Despite this observation, however, our results support the notion that random initiation is indeed responsible for the peculiar 'bubble' signal observed in the case of several metazoan eukaryotes. Images PMID:8265365

  3. Applicability of RAPD markers on silver-stained polyacrylamide gels to ascertain genetic diversity in Peripatus acacioi (Peripatidae; Onychophora).

    PubMed

    DeLaat, Daiane Mariele; Carvalho, Maria Raquel Santos; Lovato, Maria Bernadete; Acedo, Maria Dolores Porto; da Fonseca, Cleusa Graça

    2005-12-30

    RAPD (random amplification of polymorphic DNA) molecular markers can be utilized for analyzing genetic variability in populations for which only a few or no molecular markers are available. They were used in a study of an endangered species, Peripatus acacioi, found in the Tripuí Ecological Station, in Ouro Preto, MG, Brazil. The ecological station was specifically created to protect this velvet worm species, the first of this group found in Brazil. For an initial evaluation of the genetic diversity of this species, DNA samples from the lobopods of four individuals, collected at random, were analyzed using RAPD. Each reaction was run with a different primer (Operon RAPD 10-mer Kits), totaling 13 primers (OPC2, OPC3, OPC4, OPC6, OPC8, OPC10, OPC11, OPL2, OPL7, OPL11, OPL13, OPL18, and OPL19). Due to the low amplification yield, RAPD fragments were separated in polyacrylamide gels and stained with silver nitrate. Numerous bands were observed. Fifty-five of the amplified bands proved to be reproducible, both in terms of presence and intensity. Among these, 27 were variable and 28 were constant. The average number of bands per gel was 4.2. Nine of the 13 primers tested allowed the identification of constant and variable bands among these four individuals. RAPD analysis of genetic variation using silver-stained polyacrylamide gel electrophoresis provided measures of band sharing among the individuals, and therefore could be used in population genetics studies of P. acacioi.

  4. Topological complexity of different populations of pBR322 as visualized by two-dimensional agarose gel electrophoresis.

    PubMed Central

    Martín-Parras, L; Lucas, I; Martínez-Robles, M L; Hernández, P; Krimer, D B; Hyrien, O; Schvartzman, J B

    1998-01-01

    Neutral/neutral two-dimensional (2D) agarose gelelectrophoresis was used to investigate populations of the different topological conformations that pBR322 can adopt in vivo in bacterial cells as well as in Xenopus egg extracts. To help in interpretation and identification of all the different signals, undigested as well as DNA samples pretreated with DNase I, topoisomerase I and topoisomerase II were analyzed. The second dimension of the 2D gel system was run with or without ethidium bromide to account for any possible changes in the migration behavior of DNA molecules caused by intercalation of this planar agent. Finally, DNA samples were isolated from a recA-strain of Escherichia coli , as well as after direct labeling of the replication intermediates in extracts of Xenopus laevis eggs. Altogether, the results obtained demonstrated that 2D gels can be readily used to identify most of the complex topological populations that circular molecules can adopt in vivo in both bacteria and eukaryotic cells. PMID:9649629

  5. Beverage-Agarose Gel Electrophoresis: An Inquiry-Based Laboratory Exercise with Virtual Adaptation

    ERIC Educational Resources Information Center

    Cunningham, Steven C.; McNear, Brad; Pearlman, Rebecca S.; Kern, Scott E.

    2006-01-01

    A wide range of literature and experience has shown that teaching methods that promote active learning, such as inquiry-based approaches, are more effective than those that rely on passive learning. Gel electrophoresis, one of the most common laboratory techniques in molecular biology, has a wide range of applications in the life sciences. As…

  6. Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yao; Xu, Zheng; Li, Yong-kui; Liu, Chong; Liu, Jun-shan; Chen, Li; Du, Li-qun; Wang, Li-ding

    2013-07-01

    In this paper, the nanopore density effect on ion enrichment is quantitatively described with the ratio between electrophoresis flux and electroosmotic flow flux based on the Poisson-Nernst-Planck equations. A polyacrylamide gel plug is integrated into a microchannel to form a micro-nanofluidic chip. With the chip, electrokinetic ion enrichment is relatively stable and enrichment ratio of fluorescein isothiocyanate can increase to 600-fold within 120 s at the electric voltage of 300 V. Both theoretical research and experiments show that enrichment ratio can be improved through increasing nanopore density. The result will be beneficial to the design of micro-nanofluidic chips.

  7. Separation and recovery of nucleic acids with improved biological activity by acid-degradable polyacrylamide gel electrophoresis.

    PubMed

    Kim, Yoon Kyung; Kwon, Young Jik

    2010-05-01

    One of the fundamental challenges in studying biomacromolecules (e.g. nucleic acids and proteins) and their complexes in a biological system is isolating them in their structurally and functionally intact forms. Electrophoresis offers convenient and efficient separation and analysis of biomacromolecules but recovery of separated biomacromolecules is a significant challenge. In this study, DNAs of various sizes were separated by electrophoresis in an acid-degradable polyacrylamide gel. Almost 100% of the nucleic acids were recovered after the identified gel bands were hydrolyzed under a mildly acidic condition and purified using anion exchange resin. Further concentration by centrifugal filtration and a second purification using ion exchange column chromatography yielded 44-84% of DNA. The second conventional (non-degradable) gel electrophoresis confirmed that the nucleic acids recovered from acid-degradable gel bands preserved their electrophoretic properties through acidic gel hydrolysis, purification, and concentration processes. The plasmid DNA recovered from acid-degradable gel transfected cells significantly more efficiently than the starting plasmid DNA (i.e. improved biological activity via acid-degradable PAGE). Separation of other types of nucleic acids such as small interfering RNA using this convenient and efficient technique was also demonstrated.

  8. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    PubMed

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track.

  9. Apolipoprotein distribution in human lipoproteins separated by polyacrylamide gradient gel electrophoresis.

    PubMed

    Vézina, C A; Milne, R W; Weech, P K; Marcel, Y L

    1988-05-01

    The heterogeneity of serum lipoproteins (excluding very low density (VLDL) and intermediate density (IDL) lipoproteins) and that of lipoproteins secreted by HepG2 cells has been studied by immunoblot analysis of the apolipoprotein composition of the particles separated by polyacrylamide gradient gel electrophoresis (GGE) under nondenaturing conditions. The reactions of antibodies to apoA-I, apoA-II, apoE, apoB, apoD, and apoA-IV have revealed discrete bands of particles which differ widely in size and apolipoprotein composition. GGE of native serum lipoproteins demonstrated that apoA-II is present in lipoproteins of limited size heterogeneity (apparent molecular mass 345,000 to 305,000) and that apoB is present in low density lipoproteins (LDL) and absent from all smaller or denser lipoproteins. In contrast, serum apoA-I, E, D, and A-IV are present in very heterogeneous particles. Serum apoA-I is present mainly in particles of 305 to 130 kDa where it is associated with apoA-II, and in decreasing order of immunoreactivity in particles of 130-90 kDa, 56 kDa, 815-345 kDa, and finally within the size range of LDL, all regions where there is little detectable apoA-II. Serum apoE is present in three defined fractions, one within the size range of LDL, one containing heterogeneous particles between 640 and 345 kDa, and one defined fraction at 96 kDa. Serum apoD is also present in three defined fractions, one comigrating with LDL, one containing heterogeneous particles between 390 and 150 kDa, and one band on the migration front. Most of serum apoA-IV is contained in a band comigrating with albumin. GGE of centrifugally prepared LDL shows the presence of apoB, apoE, and apoD, but not that of apoA-I. However, the particles containing apoA-I, which, in serum, migrated within the LDL size range and as bands of 815 to 345 kDa, were recovered upon centrifugation in the d greater than 1.21 g/ml fraction. GGE of high density lipoproteins (HDL) indicated that most of apoA-I, A

  10. Agarose gel purification of PCR products for denaturing gradient gel electrophoresis results in GC-clamp deletion.

    PubMed

    Sun, Guowei; Xiao, Jinzhou; Lu, Man; Wang, Hongming; Chen, Xiaobing; Yu, Yongxin; Pan, Yingjie; Wang, Yongjie

    2015-01-01

    The 16S ribosomal RNA (rRNA) gene of marine archaeal samples was amplified using a nested PCR approach, and the V3 region of 16S rRNA gene of crab gut microbiota (CGM) was amplified using the V3 universal primer pair with a guanine and cytosine (GC)-clamp. Unpurified PCR products (UPPs), products purified from reaction solution (PPFSs), and products purified from gel (PPFGs) of above two DNA samples were used for denaturing gradient gel electrophoresis (DGGE) analysis, respectively. In contrast to almost identical band patterns shared by both the UPP and PPFS, the PPFGs were barely observed on the DGGE gel for both the marine archaea and CGM samples. Both PPFS and PPFG of CGM V3 regions were subjected to cloning. A small amount of positive clones was obtained for PPFS, but no positive clones were observed for PPFG. The melt curve and direct sequencing analysis of PPFS and PPFG of E. coli V3 region indicated that the Tm value of PPFG (82.35 ± 0.19 °C) was less than that of PPFS (83.81 ± 0.11 °C), and the number of shorter GC-clamps was significant higher in PPFG than in PPFS. The ultraviolet exposure experiment indicated that the ultraviolet was not responsible for the deletion of the GC-clamps. We conclude that the gel purification method is not suitable for DGGE PCR products or even other GC-rich DNA samples.

  11. Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis.

    PubMed

    Broglie, R M; Hunter, C N; Delepelaire, P; Niederman, R A; Chua, N H; Clayton, R K

    1980-01-01

    When purified photosynthetic membranes from Rhodopseudomonas sphaeroides were treated with lithium dodecyl sulfate and subjected to polyacrylamide gel electrophoresis at 4 degrees C, up to 11 pigment-protein complexes were resolved. Absorption spectra revealed that the smallest complex contained reaction center pigments and the others contained the antenna components B850 and B875 in various proportions. Of these antenna complexes, the largest was almost entirely B850 and the smallest contained only B875. After solubilization at 100 degrees C and electrophoresis on polyacrylamide gradient gels, the B850 complex gave rise to two polypeptide components migrating with apparent Mr of 10,000 and 8000, whereas with the B875 complex, two components were observed with apparent Mr of 12,000 and 8000. The reaction center complex gave rise to only the 24 and 21 kilodalton polypeptide subunits. Fluorescence emission spectra showed maxima at 872 and 902 nm for B850 and B875, respectively. Analyses of bacteriochlorophyll a and carotenoids indicated that, in the B875 complex, two molecules of each of these pigments are associated with the two polypeptides. The associations of B850 and B875 in large and small complexes obtained by lithium dodecyl sulfate treatment are consistent with models of their organization within the membrane.

  12. Mutation analysis of fragile X syndrome by Southern blot, radioactive PCR, silver-stained polyacrylamide gel and DIG DNA

    SciTech Connect

    Lee, Sook-Hwan; Kim, Un-Kyung; Chung-Woong, M.S.

    1994-09-01

    Fragile X syndrome is the most common inherited form of mental retardation. In fragile X syndrome, the underlying mutation is caused by an expansion of the CTG triplet in the 5{prime} untranslated region of the FMR-1 gene located at Xq27.3 and diagnosed by methylation of the associated CpG island. This disorder becomes clinically manifested when the mutation is caused by an expansion of (CGG)n reaching a threshold of about 600bp (200 repeats). The number of inserted repeats increases through the generation. We have analyzed fragile X syndrome by 4 different methods: Southern blot, radioactive PCR, polyacrylamide gel and DIG DNA labeling/detection techniques. Southern blot and DIG DNA labeling/detection by double DNA digestion with EcoRI and EagI reveals both the presence of the mutation and the methylation status. Radioactive PCR and silver-stained polyacrylamide gel is a rapid and sensitive technique to define the unaffected carriers and NTMs, but it is difficult to amplify such a highly GC-rich sequence. Further testing in other fragile X patients is currently in progress.

  13. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    SciTech Connect

    Pagratis, N.; Revel, H.R. )

    1990-07-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription.

  14. Visualization of UV-induced replication intermediates in E. coli using two-dimensional agarose-gel analysis.

    PubMed

    Jeiranian, H Arthur; Schalow, Brandy J; Courcelle, Justin

    2010-12-21

    Inaccurate replication in the presence of DNA damage is responsible for the majority of cellular rearrangements and mutagenesis observed in all cell types and is widely believed to be directly associated with the development of cancer in humans. DNA damage, such as that induced by UV irradiation, severely impairs the ability of replication to duplicate the genomic template accurately. A number of gene products have been identified that are required when replication encounters DNA lesions in the template. However, a remaining challenge has been to determine how these proteins process lesions during replication in vivo. Using Escherichia coli as a model system, we describe a procedure in which two-dimensional agarose-gel analysis can be used to identify the structural intermediates that arise on replicating plasmids in vivo following UV-induced DNA damage. This procedure has been used to demonstrate that replication forks blocked by UV-induced damage undergo a transient reversal that is stabilized by RecA and several gene products associated with the RecF pathway. The technique demonstrates that these replication intermediates are maintained until a time that correlates with the removal of the lesions by nucleotide excision repair and replication resumes.

  15. Plasma protein electrophoresis in birds: comparison of a semiautomated agarose gel system with an automated capillary system.

    PubMed

    Roman, Yannick; Bomsel-Demontoy, Marie-Claude; Levrier, Julie; Chaste-Duvernoy, Daniel; Saint Jalme, Michel

    2013-06-01

    Plasma agarose gel electrophoresis (AGE) is recognized as a very reliable diagnostic tool in avian medicine. Within the last 10 years, new electrophoresis techniques such as capillary zone electrophoresis (CZE) have emerged in human laboratory medicine but have never been investigated in birds. To investigate the use of CZE in birds and to compare it with AGE, plasma samples from 30 roosters (Gallus gallus), 20 black kites (Milvus migrans), and 10 racing pigeons (Columba livia) were analyzed by both AGE and CZE. For the 3 species studied, values determined by AGE and CZE were well correlated for albumin and beta and gamma fractions whereas other values differed significantly. Values for alpha-3 fraction in the rooster, alpha-1 fraction in the black kite, and alpha fractions in the pigeon obtained by AGE were very well correlated with the prealbumin fraction values obtained by CZE. Repeatability and reproducibility appeared higher with CZE than with AGE. Although the interpretation of CZE electrophoresis patterns seems to produce results similar to those obtained with AGE, some proteins present in the alpha fraction measured with AGE migrated to the prealbumin fraction found with CZE. Although CZE requires the use of specific reference intervals and a much higher sample volume, this method has many advantages when compared with AGE, including better repeatability and reproducibility and higher analysis output.

  16. Lambda light chain myeloma with co-migrating paraprotein at beta region on agarose gel electrophoresis: a case report.

    PubMed

    Siti Sarah, M; Nor Aini, U; Nurismah, M I; Hafiza, A; Khalidah, M; Mokhtar, A B; Das, S

    2014-01-01

    Paraproteinemia is one of the diagnostic features of multiple myeloma. A commonly used method is the detection of paraprotein by agarose gel electrophoresis (AGE) followed by by immunofixation electrophoresis (IFE) to confirm monoclonality. Due to their smaller size, immunoglobulin A (IgA) and light chain only paraproteins may appear at the beta or even alpha 2 protein fractions. Here, we discuss a case report of a 47-year-old man who presented with pathological fracture of third thoracic (T3) vertebra. Serum protein electrophoresis (SPE) was initially reported as no paraprotein detected. However, a bone biopsy was reported to show plasma cell proliferation with light chain restriction. A repeat sample for protein electrophoresis together with IFE revealed lambda light chain paraprotein co-migrating at the beta region. The beta band plus paraprotein was quantitated as 4.3 g/L (7.0%), which was within normal limits of the beta protein fraction. Hence, it has to be remembered that if the SPE is negative, it does not necessarily mean that the paraprotein is absent in cases which are highly suspicious.

  17. Characterisation of rat and human tissue alkaline phosphatase isoforms by high-performance liquid chromatography and agarose gel electrophoresis.

    PubMed

    Dziedziejko, Violetta; Safranow, Krzysztof; Slowik-Zylka, Dorota; Machoy-Mokrzynska, Anna; Millo, Barbara; Machoy, Zygmunt; Chlubek, Dariusz

    2009-03-01

    Alkaline phosphatase (ALP) exists as several isoenzymes and many isoforms present in tissues and serum. The objective of this study was to separate tissue ALP forms in rats and humans and characterise their properties. The materials for the investigation were intestinal, bone, and liver tissue of rats and commercially available human preparations of tissue ALP. Two methods of separation were used: high-performance liquid chromatography (HPLC) and agarose gel electrophoresis. Using HPLC in the rat tissues, two ALP isoforms in the intestine, one in the bone, and three in the liver were identified. In humans three intestinal, two bone, and one liver isoform were resolved. Electrophoresis showed two ALP activity bands in rat intestine, one wide band in the bone, and three bands in the liver. ALP of human tissues was visualised as a single wide band, with a different mobility observed for each organ. In both species the presence of a form with properties characteristic of the bone isoform of the tissue-nonspecific isoenzyme was observed in the intestine. HPLC offers a higher resolution than electrophoresis with respect to tissue ALP fractions in rats and in humans, but electrophoresis visualises high-molecular-mass insoluble enzyme forms.

  18. Comparison of three methods of DNA extraction in endocervical specimens for Chlamydia trachomatis infection by spectrophotometry, agarose gel, and PCR.

    PubMed

    Jenab, Anahita; Roghanian, Rasoul; Golbang, Naser; Golbang, Pouran; Chamani-Tabriz, Leili

    2010-06-01

    Chlamydia trachomatis is the major cause of sexually transmitted disease in the world. The aim of this study was to determine the best method of DNA extraction for detecting C. trachomatis by polymerase chain reaction (PCR) in sexually active women (n = 80) attending Shahid Beheshti Hospital in Isfahan, Iran. Endocervical swabs were collected from 80 women, 22 of whom were asymptomatic and 58 symptomatic. Three different DNA extraction methods were used in this study (phenol-chlorophorm, proteinase K, and boiling). DNA yield was evaluated by spectrophotometry, agarose gel, and PCR. The internal control was assayed by beta-globin primers (PCO4, GH20). The DNA cryptic plasmid was selected as the target for C. trachomatis and samples were examined by PCR using specific KL1 and KL2 primers. It was shown that DNA extraction by boiling was the most sensitive with the highest yield of DNA. Of the 80 samples, 17 (21.25%) showed positivity for C. trachomatis by PCR. The highest rate of C. trachomatis infection was found in the group aged between 35 and 45 years old and those who used withdrawal or an intrauterine device as methods of contraception. It was demonstrated that DNA extraction by boiling was the least expensive and a very rapid method that gave the highest DNA yield. The infection rate in the sexually active women, including symptomatic and asymptomatic, was 21.25%, with a presumably high prevalence compared with other studies done in this field.

  19. A systematic investigation into the recovery of radioactively labeled proteins from sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Zhou, Shaobo; Bailey, Matthew J; Dunn, Michael J; Preedy, Victor R; Emery, Peter W

    2004-01-01

    We report the results of a systematic investigation designed to optimize a method for quantifying radioactivity in proteins in sodium dodecyl sulfate-polyacrylamide gels. The method involves dissolving appropriately sized pieces of gel in hydrogen peroxide and heating to 70 degrees C overnight followed by liquid scintillation counting. H(2)O(2) had no effect on the count rates of [(14)C]bovine serum albumin (BSA) when counted in a conventional liquid scintillation system, and the count rates remained stable for several days. Temperatures below 70 degrees C resulted in incomplete extraction of radioactivity from gels containing [(14)C]BSA, but there was also a significant reduction in count rates in samples incubated at 80 degrees C. At 70 degrees C recovery was not affected by the amount of sample loaded onto the gel or by the staining procedure (Coomassie Brilliant Blue or SYPRO Ruby). Recoveries were in the range of 89-94%, and the coefficient of variation for five replicate samples was 5-10%. This method offers a reliable way of measuring the amount of radioactivity in proteins that have been separated by electrophoresis. It may be useful, for example, in quantitative metabolic labeling experiments when it is necessary to know precisely how much tracer has been incorporated into a particular protein.

  20. Resolution of 8-aminonaphthalene-1,3,6-trisulfonic acid-labeled glucose oligomers in polyacrylamide gel electrophoresis at low gel concentration.

    PubMed

    Cabanes-Macheteau, Marion; Chrambach, Andreas; Taverna, Myriam; Buzás, Zsuzsanna; Berna, Patrick

    2004-01-01

    A discontinuous Tris-Cl/acetate (OAc) buffer system, unprecedently containing OAc as the trailing constituent, and operative in polyacrylamide gel electrophoresis (PAGE) at low polyacrylamide concentration (T = 4.8%) is described in the paper. The characteristics of the electrophoretic system are illustrated by the resolution of fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)-labeled malto-oligosaccharides and dextran homopolymers. In this buffer system, the resolving phase is constituted by Tris-OAc behind a moving boundary formed between the leading chloride ion of Tris-HCl gel buffer and the trailing OAc ion provided by a catholyte of NH(4)OAc. In contrast with the results obtained with Tris-CI/glycinate buffer commonly used in electrophoresis, or with Tris-CI/borate, the best resolution of the glucose oligomers containing 1-4 glucose units in Tris-OAc, pH 8.8, ionic strength of 0.08, was obtained at 4.8% polyacrylamide concentration, using 0.5 M NH(4)OAc, pH 9.5 as the catholyte. Under those conditions, the ANTS-glucose oligomers were separated with mobilities decreasing from glucose to maltohexaose. The linear Ferguson plots (log relative mobility, R(f), vs.%T) of the glucose oligomers show that the surface net charge of those oligomers is inversely related to their sizes, given by the slopes, K(R), of the plots. The molecular weight of the oligomers is directly but nonlinearly related to K(R). The novel electrophoretic system illustrated here for separation of short ANTS-saccharides can be potentially applied to the resolution of other biomolecules such as rapidly migrating DNA, peptides or proteins.

  1. Isoelectric focusing of human hair keratins: correlation with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and effect of cosmetic treatments.

    PubMed

    Rodriguez-Calvo, M S; Carracedo, A; Muñoz, I; Concheiro, L

    1992-03-01

    A new isoelectric focusing (IEF) technique in polyacrylamide gels with 6M urea and 1.5% Nonidet P40 has been developed to characterize human hair samples. The phenotypes demonstrated with this procedure has been correlated with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns described by other authors. The method described can be applied in the forensic science analysis of a single human hair. Using the same IEF technique we have studied the changes in electrophoretic patterns of cosmetically treated hair. The characteristics of the modifications observed and its utility in forensic science work are also discussed in this paper.

  2. Silver stain for detecting 10-femtogram quantities of protein after polyacrylamide gel electrophoresis.

    PubMed

    Ohsawa, K; Ebata, N

    1983-12-01

    A rapid and highly sensitive silver stain and color stain were developed for visualizing proteins. The procedure is simple and the bands were clear. This silver stain detects 100 pg quantities of proteins. In order to stain quickly, sensitively, and sharply a protein matrix in a gel, the repeated shrinkage and swelling gel was developed with a hyper- and hypotonic solution to remove the sodium dodecyl sulfate (SDS) from SDS-protein complex and to generate influx of staining solution into the gel. We have found that the silver staining method with the repeated exposure to hyper- and hypotonic solution and a narrow well produced 10 fg order of proteins.

  3. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays.

  4. Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels.

    PubMed

    Nims, Robert J; Cigan, Alexander D; Albro, Michael B; Hung, Clark T; Ateshian, Gerard A

    2014-06-27

    Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]-[agarose gel] system, total synthesis rate (matrix accumulation rate+matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3's influences on pyridinoline content and mechanical properties were also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al. (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and the highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to the previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs.

  5. Biomimetic materials processing: Implementation of molecular imprinting and study of biomineralization through the development of an agarose gel assay

    NASA Astrophysics Data System (ADS)

    Boggavarapu, Sajiv

    agarose gel matrix for studying inhibition and growth as influenced by various organic molecule functionalities. The gel mineralization assay is a novel approach in which quantitative and qualitative data could be generated in a high throughput fashion to determine organic molecule mediation of calcium based crystal growth. Such methods provide an approach for eventually providing control in development of synthetic biocomposites with customized materials properties.

  6. A charge-coupled-device camera image analysis system for quantifying DNA distributions in agarose gels after pulsed-field gel electrophoresis

    SciTech Connect

    Dewey, W.C.; Thompson, L.L.; Trinh, M.L.; Latz, D.L. |; Ward, J.F.

    1994-10-01

    A charge-coupled-device camera system was coupled to a personal computer and, with uniformity in illumination and detection (within 4-8%) along each lane, was used for quantifying the distribution of DNA molecules that migrate from the PFGE well (plug) into the lane at distances varying from 1 to 50 mm (with 0.5 mm/pixel). By using a specially designed transmission filter for transmitting 470-725 nm fluorescence from ethidium bromide-stained DNA while eliminating most of the fluorescence (<400 nm) from the agarose gel, and by using neutral density filters to prevent saturation of the camera, the fluorescence intensity is linearly related to the amount of DNA varying from {approximately} 0.03 {mu}g in a 3-mm-diameter cylindrical plug 5 mm long (equal to background) to {approximately} 4 {mu}g (where ethidium bromide staining saturates). The percentage DNA released from the plug and distribution in the lane (with 1-2 mm resolution) obtained by quantifying DNA fluorescence were not significantly different from the same data obtained by analysis of radioactivity of the same DNA labeled with [{sup 3}H]dThd. However, scattering of fluorescence from one lane into an adjacent lane 3 mm away and as far as 10 mm from the plug into the lane presented a problem. This problem was overcome by using a form with slots to cover every other lane when the images were obtained and either (1) cutting the lane from the plug and moving it 15 mm away or (2) imaging the intact gel and applying a correction for {approximately} 7% of the fluorescence from the plug tailing out {approximately} 10 mm beyond the first 1 mm in the lane. In addition, the following were required: (1) carefully controlled staining and destaining procedures, and (2) a low background that is obtained as an average uniform background in each lane 5 mm beyond where DNA migration stops. 31 refs., 7 figs.

  7. Prestaining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by dansylhydrazine.

    PubMed

    Wang, Yang; Zhou, Xuan; Yu, Qing; Duan, Yuanmeng; Huang, Binbin; Hong, Guoying; Zhou, Ayi; Jin, Litai

    2014-06-01

    A new fluorescent prestaining method for gel-separated glycoproteins in 1D and 2D SDS-PAGE was developed by using dansylhydrazine in this study. The prestained gels could be easily imaged after electrophoresis without any time-consuming steps needed for poststains. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be selectively detected, which is comparable to that of Pro-Q Emerald 488, one of the most commonly used glycoprotein stain. In addition, a subsequent study of deglycosylation, glycoprotein affinity isolation, and LC-MS/MS analysis was performed to confirm the specificity of the newly developed method.

  8. Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE).

    PubMed Central

    Cilley, C D; Williamson, J R

    1997-01-01

    The antitermination protein N from bacteriophage lambda (Nlambda) interacts with the nut site in its own mRNA, as well as host factors, to facilitate formation of a termination-resistant transcription complex. The conserved, amino-terminal arginine-rich domain of Nlambda protein is known to interact with a small RNA hairpin (boxB) derived from the nut site RNA. We have examined the binding of Nlambda protein, peptides derived from the amino terminus of Nlambda, and the related phage P22 N protein to lambda boxB RNAs. To facilitate the study of complexes that are not amenable to gel retardation assays, a new polyacrylamide affinity coelectrophoresis technique (PACE) was developed. Using the PACE assay, we have demonstrated that a 19-amino acid peptide from the amino terminus of Nlambda protein binds lambda boxB RNA with a Kd,app of 5.2 nM. PACE was also used to study the binding affinity of a number of Nlambda peptide and lambda boxB RNA mutants. The PACE technique is complementary to the traditional gel retardation assay for direct measurement of binding interactions, and will be useful for any procedure that requires a pool of RNAs to be resolved based on their relative affinities for proteins or peptides. PMID:8990399

  9. Sensitive detection of proteins in polyacrylamide gel via isatoic anhydride derivatization: Introduction of a low-cost fluorescent prelabeling procedure.

    PubMed

    Asadollahi, Kazem; Rafiee, Saharnaz; Riazi, Gholamhossein

    2016-10-01

    Here, we introduce isatoic anhydride as a sensitive and commodious fluorescent prelabel for detection of proteins in one-dimensional polyacrylamide gels. High reactivity of isatoic anhydride with nucleophiles in mild alkaline environments makes it an appropriate tag for labeling of biomolecules. In this study, we show that preelectrophoresis labeling of proteins with isatoic anhydride for few minutes at room temperature allows detection of 2-4 ng of standard proteins, BSA and lysozyme, per band. Proteins were successfully labeled in the presence of a wide range of common biological reagents and in crude cell extract. The labeled proteins have the same electrophoretic migration in comparison to unlabeled proteins; however the application of saturation labeling method results in slight band broadening. Compatibility of the method with downstream processes was assessed by tryptic digestion of labeled proteins and study of peptide mixture using gel electrophoresis which revealed partial digestion of labeled proteins due to lysine modification. The present procedure is sensitive, rapid, and inexpensive and is a promising alternative for current protein staining procedures, where downstream processes are not desired.

  10. Use of Two-Dimensional Polyacrylamide Gel Electrophoresis to Identify and Classify Rhizobium Strains

    PubMed Central

    Roberts, Gary P.; Leps, Walter T.; Silver, Lin E.; Brill, Winston J.

    1980-01-01

    Fifty-seven strains of various Rhizobium species were analyzed by two-dimensional gel electrophoresis. Since the protein pattern on such gels is a reflection of the genetic background of the tested strains, similarities in pattern allowed us to estimate the relatedness between these strains. All group II rhizobia (slow growing) were closely related and were very distinct from group I rhizobia (fast growing). Rhizobium meliloti strains formed a distinct group. The collection of R. leguminosarum and R. trifolii strains together formed another distinct group. Although there were some similarities within the R. phaseoli, sesbania rhizobia, and lotus rhizobia, the members within these seemed much more diverse than the members of the above groups. The technique also is useful to determine whether two unknown strains are identical. Images PMID:16345514

  11. Detection of biotinylated proteins in polyacrylamide gels using an avidin-fluorescein conjugate.

    PubMed

    Nakamura, Michihiro; Tsumoto, Kouhei; Ishimura, Kazunori; Kumagai, Izumi

    2002-05-15

    Biotinylated proteins are widely used as a molecular tool in biotechnological applications. In this paper, we demonstrated that biotinylated proteins after electrophoresis were detected directly in gels using an avidin-fluorescein conjugate with a fluorescence image analyzer. Upon analysis of the purified and chemically biotinylated protein, the sensitivity of this method was almost equal to that of silver staining. Chemically biotinylated proteins of Escherichia coli cell surfaces could also be specifically detected with our method. Furthermore, recombinant proteins fused with the biotin acceptor domain and biotinylated enzymatically in vivo were also detected in a lysate of E. coli specifically. The sensitivity and specificity of our method are high, and the procedure is simple. Therefore, our method would benefit detection of biotinylated proteins via gel electrophoresis and also various fields of study using avidin-biotin technology.

  12. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels.

    PubMed

    Chandel, Arvind K Singh; Kumar, Chinta Uday; Jewrajka, Suresh K

    2016-02-10

    We synthesized agarose-polycaprolactone (Agr-PCL) bicomponent and Agr-polyethylene glycol-PCL (Agr-PEG-PCL) tricomponent amphiphilic co-network (APCN) gels by the sequential nucleophilic substitution reaction between amine-functionalized Agr and activated halide terminated PCL or PCL-b-PEG-b-PCL copolymer for the sustained and localized delivery of hydrophilic and hydrophobic drugs. The biodegradability of the APCNs was confirmed using lipase and by hydrolytic degradation. These APCN gels displayed good cytocompatibility and blood compatibility. Importantly, these APCN gels exhibited remarkably high drug loading capacity coupled with sustained and triggered release of both hydrophilic and hydrophobic drugs. PEG in the APCNs lowered the degree of phase separation and enhanced the mechanical property of the APCN gels. The drug loading capacity and the release kinetics were also strongly influenced by the presence of PEG, the nature of release medium, and the nature of the drug. Particularly, PEG in the APCN gels significantly enhanced the 5-fluorouracil loading capacity and lowered its release rate and burst release. Release kinetics of highly water-soluble gemcitabine hydrochloride and hydrophobic prednisolone acetate depended on the extent of water swelling of the APCN gels. Cytocompatibility/blood compatibility and pH and enzyme-triggered degradation together with sustained release of drugs show great promise for the use of these APCN gels in localized drug delivery and tissue engineering applications.

  13. Comparison between a second generation automated multicapillary electrophoresis system with an automated agarose gel electrophoresis system for the detection of M-components.

    PubMed

    Larsson, Anders; Hansson, Lars-Olof

    2008-01-01

    During the last decade, capillary electrophoresis (CE) has emerged as an interesting alternative to traditional analysis of serum, plasma and urine proteins by agarose gel electrophoresis. Initially there was a considerable difference in resolution between the two methods but the quality of CE has improved significantly. We thus wanted to evaluate a second generation of automated multicapillary instruments (Capillarys, Sebia, Paris, France) and the high resolution (HR) buffer for serum or plasma protein analysis with an automated agarose gel electrophoresis system for the detection of M-components. The comparison between the two systems was performed with patients samples with and without M-components. The comparison included 76 serum samples with M-components > 1 g/L. There was a total agreement between the two methods for detection of these M-components. When studying samples containing oligoclonal bands/small M-components, there were differences between the two systems. The capillary electrophoresis system detected a slightly higher number of samples with oligoclonal bands but the two systems found oligoclonal bands in different samples. When looking at resolution, the agarose gel electrophoresis system yielded a slightly better resolution in the alpha and beta regions, but it required an experienced interpreter to be able to benefit from the increased resolution. The capillary electrophoresis has shorter turn-around times and bar-code reader that allows positive sample identification. The Capillarys in combination with HR buffer gives better resolution of the alpha and beta regions than the same instrument with the beta1-beta2+ buffer or the Paragon CZE2000 (Beckman) which was the first generation of capillary electrophoresis systems.

  14. Improved staining of phosphoproteins with high sensitivity in polyacrylamide gels using Stains-All.

    PubMed

    Cong, Wei-Tao; Ye, Wei-Jian; Chen, Mao; Zhao, Ting; Zhu, Zhong-Xin; Niu, Chao; Ruan, Dan-Dan; Ni, Mao-Wei; Zhou, Xuan; Jin, Li-Tai

    2013-12-01

    An improved Stains-All (ISA) staining method for phosphoproteins in SDS-PAGE was described. Down to 0.5-1 ng phosphoproteins (α-casein, β-casein, or phosvitin) can be successfully selectively detected by ISA stain, which is approximately 120-fold higher than that of original Stains-All stain, but is similar to that of commonly used Pro-Q Diamond stain. Furthermore, unlike the original Stains-All protocol that was time consuming and light unstable, ISA stain could be completed within 60 min without resorting to protect the gels from light during the whole staining procedure. According to the results, it is concluded that ISA stain is a rapid, sensitive, specific, and economic staining method for a broad application to the research of phosphoproteins.

  15. Cat and dog primordial follicles enclosed in ovarian cortex sustain viability after in vitro culture on agarose gel in a protein-free medium.

    PubMed

    Fujihara, M; Comizzoli, P; Wildt, D E; Songsasen, N

    2012-12-01

    Our objective was to examine the influences of differing media, protein supplementation and the microenvironment on cat vs dog primordial follicle viability in vitro. Ovarian cortical slices were cultured for 3, 9 or 15 days in α-minimum essential medium (α-MEM) or MEM supplemented with 10% fetal bovine serum (FBS), 10% knock-out serum replacement (KSR) or 0.1% polyvinyl alcohol (protein free). In a separate study, cat and dog ovarian tissues were cultured in protein-free α-MEM and MEM, respectively, in cell culture inserts, on 1.5% agarose gel or in 24-well cell culture plates (control). Follicle viability was assessed in both studies using calcein AM/ethidium homodimer and histological evaluation with haematoxylin/eosin staining. No cat follicle sustained viability beyond 9 days of in vitro culture in α-MEM compared to 37.5% of those incubated for 15 days in MEM in protein-free condition (p < 0.05). In contrast, α-MEM was superior (p < 0.05) to MEM in maintaining dog follicle viability (32.7% vs 8.1%) in protein-free condition at 15 days. Serum was detrimental (p < 0.05) to follicle survival in both species. Knock-out serum replacement supplementation and a protein-free condition supported cat follicle viability, whereas the latter was superior (p < 0.05) to the former for sustaining dog follicle survival. Likewise, dog follicle viability was enhanced (p < 0.05) by the agarose gel compared to the cell culture insert and control groups after 3 and 9 days of culture. For the cat, the agarose gel better (p < 0.05) supported follicle viability compared to the control, but was equivalent to the cell culture insert. Therefore, sustaining primordial follicle survival from intracortical ovarian slices requires a different in vitro microenvironment for the cat vs the dog. A key factor to enhancing survival of these early stage follicles in culture appears to be the use of agarose gel, which enhances follicle viability, perhaps by promoting gas exchange.

  16. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  17. An improved plant leaf protein extraction method for high resolution two-dimensional polyacrylamide gel electrophoresis and comparative proteomics.

    PubMed

    Alam, I; Sharmin, Sa; Kim, K-H; Kim, Y-G; Lee, Jj; Lee, B-H

    2013-02-01

    We report here a simple and universally applicable protocol for extracting high quality proteins from plant leaf tissues. The protocol provides improved resolution and reproducibility of two-dimensional polyacrylamide gel electrophoresis (2-DE) and reduces the time required to analyze samples. Partitioning rubisco by polyethylene glycol (PEG) fractionation provides clearer detection of low-abundance proteins. Co-extraction of interfering substances increases the sample conductivity, which results in poor electrophoretic separation. Re-extraction of PEG-fractionated samples with phenol effectively eliminated interfering substances, which results in optimal conductivity during separation in the first dimension of the isoelectric focusing. Smooth focusing reduces analysis time and provides superior resolution in 2-DE gels. Incubating the samples at -80° C instead of -20° C reduced protein precipitation time to 2-3 h. Removal of nonprotein contaminants and the use of sonication increased protein solubility without additional reagents. These changes enabled loading and separation of maximum amounts of proteins, which permitted improved protein identification by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). An immunological approach revealed that little or no ribulose-1, 5-bisphosphte bisphosphate carboxylase oxygenase was present in the PEG supernatant. In addition, low-abundance proteins, such as myelocytomatosis transcription factor (MYC) and alpha subunit of heterotrimeric guanine nucleotide-binding protein complex (Gα), were detected only in the modified PEG supernatant and not in the total protein. These results suggest that our protocol produced high quality proteins and made many low-abundant proteins available for proteomic analysis. The successful application of this protocol for analyzing the leaf proteomes of soybean, Miscanthus sinensis, barley, Chinese cabbage, peanut and tea (Camellia sinensis) suggests

  18. Genetic diversity analysis of faba bean (Vicia faba L.) germplasms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hou, W W; Zhang, X J; Shi, J B; Liu, Y J

    2015-10-30

    To investigate genetic diversity and relationships of 101 faba bean (Vicia faba L.), landraces and varieties from different provinces of China and abroad were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A total of 2625 unambiguous and stable bands from 101 germplasms were detected, and 36 different bands were classified according to the electrophoretic mobility patterns of the proteins as determined by the SDS-PAGE analysis, of which 16 were polymorphic. Besides the common bands, the protein bands of 92, 75, 62, 40, 34, 17, and 13 kDa presented the highest frequencies of 92.08, 90.10, 99.01, 95.05, 95.05, 98.02, and 95.05%, respectively. The other 29 polymorphic protein bands showed higher polymorphism with 16.09 polymorphic bands in average. The genetic similarity of the 101 genotypes tested varied from 0.6111 to 0.9722, with an average of 0.7122. Cluster analysis divided the 101 genotypes into six major clusters, which was consistent with the systematic classification of faba bean done in previous studies. The overall results indicated that SDS-PAGE was a useful tool for genetic diversity analysis and laid a solid foundation for future faba bean breeding.

  19. Analysis of cell wall extracts of Candida albicans by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques.

    PubMed Central

    Ponton, J; Jones, J M

    1986-01-01

    Cell walls of intact yeast- and mycelial-phase Candida albicans B311 were extracted with different compounds: dithiothreitol, dithiothreitol with protease, dithiothreitol with lyticase, and dithiothreitol with protease followed by beta-glucuronidase with chitinase. Extracts were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques. Dithiothreitol extracts contained the most satisfactory array of components for study. Analysis of these extracts demonstrated that the outer cell wall layers of Candida blastoconidia and germ tubes contained a complex array of polysaccharides, glycoproteins, and proteins. The proteins contributed to a latticework stabilized by covalent bonds that was important in determining the porosity of the outer cell wall layers. When equivalent weights were analyzed, mycelial-phase extract contained a more varied array of proteins than did yeast-phase extract. Only a portion of proteins in mycelial-phase extract elicited antibody responses in hyperimmunized rabbits or infected humans. A polysaccharide-rich, high-molecular-weight component (migrating at a position that would correspond to proteins having molecular weights of 235,000 to 250,000) and a protein component (molecular weight, 19,000) were readily demonstrable in the mycelial-phase extract but could not be identified in the yeast-phase extract. Images PMID:3527986

  20. Capillary zone electrophoresis of soil humic acid fractions obtained by coupling size-exclusion chromatography and polyacrylamide gel electrophoresis.

    PubMed

    Cavani, Luciano; Ciavatta, Claudio; Trubetskaya, Olga E; Reznikova, Olga I; Afanas'eva, Gaida V; Trubetskoj, Oleg A

    2003-01-03

    Capillary zone electrophoresis (CZE) was used for characterisation of soil humic acid (HA) fractions obtained by coupling size-exclusion chromatography with polyacrylamide gel electrophoresis, on the basis of their molecular size and electrophoretic mobility. CZE was conducted using several low alkaline buffers as background electrolyte (BGE): 50 mM carbonate, pH 9.0; 50 mM phosphate, pH 8.5; 50 mM borate, pH 8.3; 50 mM Tris-borate+1 mM EDTA+7 M urea+0.1% sodium dodecyl sulphate (SDS), pH 8.3. Independently of BGE conditions, the effective electrophoretic mobility of HA fractions were in good agreement with their molecular size. The better resolution of HA were obtained in Tris-borate-EDTA buffer with urea and SDS. This results indicated that CZE, mostly with BGE-contained disaggregating agents, is useful for separating HAs in fractions with different molecular sizes.

  1. Polyacrylamide gel disc electrophoresis of alkaline phosphatase isoenzymes in bone and liver disease.

    PubMed Central

    Warnes, T W; Hine, P; Kay, G

    1976-01-01

    Acrylamide gel disc electrophoresis provides a reliable and reasonably rapid method of differentiating the raised serum alkaline phosphatase (AP) of bone origin from that of liver origin. The technique has been placed for the first time on a semiquantitative basis. Measurement of both band width and band position effectively distinguishes the bone from the liver isoenzyme, but band width provides superior discrimination. An origin band was seen in none of the normal subjects and in only 7% of patients with bone disease but was present in 78% of patients with liver disease, a highly significant increase. Fifty percent of normal individuals had a small-intestinal band in serum taken two hours after a meal, as did 35% of patients with liver disease, but the incidence of intestinal bands in bone disease was only 11%, significantly less than in the other two groups. The genetic control of small-intestinal AP in serum has been confirmed, but it has been demonstrated that the decrease of intestinal AP in bone disorders is not genetically determined. Images PMID:977779

  2. High-resolution gel electrophoresis and sodium dodecyl sulphate-agarose gel electrophoresis on urine samples for qualitative analysis of proteinuria in dogs.

    PubMed

    Giori, Luca; Tricomi, Flavia Marcella; Zatelli, Andrea; Roura, Xavier; Paltrinieri, Saverio

    2011-07-01

    The aims of the current study were to assess whether sodium dodecyl sulphate-agarose gel electrophoresis (SDS-AGE) and high-resolution electrophoresis (HRE) can identify dogs with a urinary protein-to-creatinine ratio (UPC ratio) >0.2 and whether HRE can provide preliminary information about the type of proteinuria, using SDS-AGE as a reference method. HRE and SDS-AGE were conducted on 87 urine samples classified according to the International Renal Interest Society as non-proteinuric (NP; UPC ratio: <0.20; 32/87), borderline proteinuric (BP; UPC ratio: 0.21-0.50; 15/87), or proteinuric (P; UPC ratio: >0.51; 40/87). SDS-AGE and HRE were positive in 14 out of 32 and 3 out of 32 NP samples and in 52 out of 55 and 40 out of 55 samples with a UPC ratio >0.20, respectively. The concordance between HRE or SDS and UPC ratio was comparable (κ = 0.59; κ = 0.55). However, specificity (90%) and positive likelihood ratio (7.76) were higher for HRE than for SDS-AGE (56% and 2.16) while sensitivity was lower (73% vs. 94%). The analysis of HRE results revealed that a percentage of albumin >41.4% and an albumin/α(1)-globulin ratio (alb/α(1) ratio) >1.46 can identify samples classified by SDS-AGE as affected by glomerular proteinuria while a percentage of α(1)-globulin >40.8% and an alb/α(1) ratio <0.84 can identify samples classified by SDS-AGE as affected by tubular proteinuria. In conclusion, both SDS-AGE and HRE could misclassify samples with a UPC ratio higher or lower than 0.20. Therefore, UPC ratio must always be determined before conducting these tests. The percentage of albumin and α(1)-globulin or the alb/α(1) ratio determined by HRE can provide preliminary information about the origin of proteinuria.

  3. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry.

    PubMed

    Mears, Rainy; Craven, Rachel A; Hanrahan, Sarah; Totty, Nick; Upton, Carol; Young, Sarah L; Patel, Poulam; Selby, Peter J; Banks, Rosamonde E

    2004-12-01

    Exosomes are 40-100 nm vesicles released by numerous cell types and are thought to have a variety of roles depending on their origin. Exosomes derived from antigen presenting cells have been shown to be capable of initiating immune responses in vivo and eradicating established tumours in murine models. Tumour-derived exosomes can be utilised as a source of tumour antigen for cross-priming to T-cells and are thus of interest for use in anti-tumour immunotherapy. Further exploration into the protein composition of exosomes may increase our understanding of their potential roles in vivo and this study has examined the proteome of exosomes purified from cell supernatants of the melanoma cell lines MeWo and SK-MEL-28. The vesicular nature and size (30-100 nm) of the purified exosomes was confirmed by electron microscopy and sucrose density gradient centrifugation. Western blotting demonstrated the absence of calnexin and cytochrome c, verifying the purity of the exosome preparations, as well as enrichment of MHC class I and the tumour-associated antigens Mart-1 and Mel-CAM. The two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) protein profiles of exosomes from the two cell lines were highly comparable and strikingly different from the profiles of the total cell lysates. Mass spectrometric sequencing identified proteins present in 49 protein spots in the exosome lysates. Several of these have been identified previously in exosomes but some are novel, including p120 catenin, radixin, and immunoglobulin superfamily member 8 (PGRL). Proteins present in whole-cell lysates that were significantly reduced or excluded from exosomes were also identified and included several mitochondrial and lysosomal proteins, again confirming the proposed endosomal origin of exosomes. This study presents a starting point for future more in-depth protein studies of tumour-derived exosomes which will aid the understanding of their biogenesis and targeting for use in anti

  4. Use of polyacrylamide gel moving boundary electrophoresis to enable low-power protein analysis in a compact microdevice.

    PubMed

    Duncombe, Todd A; Herr, Amy E

    2012-10-16

    In designing a protein electrophoresis platform composed of a single-inlet, single-outlet microchannel powered solely by voltage control (no pumps, values, injectors), we adapted the original protein electrophoresis format-moving boundary electrophoresis (MBE)-to a high-performance, compact microfluidic format. Key to the microfluidic adaptation is minimization of injection dispersion during sample injection. To reduce injection dispersion, we utilize a photopatterned free-solution-polyacrylamide gel (PAG) stacking interface at the head of the MBE microchannel. The nanoporous PAG molecular sieve physically induces a mobility shift that acts to enrich and sharpen protein fronts as proteins enter the microchannel. Various PAG configurations are characterized, with injection dispersion reduced by up to 85%. When employed for analysis of a model protein sample, microfluidic PAG MBE baseline-resolved species in 5 s and in a separation distance of less than 1 mm. PAG MBE thus demonstrates electrophoretic assays with minimal interfacing and sample handling, while maintaining separation performance. Owing to the short separation lengths needed in PAG MBE, we reduced the separation channel length to demonstrate an electrophoretic immunoassay powered with an off-the-shelf 9 V battery. The electrophoretic immunoassay consumed less than 3 μW of power and was completed in 30 s. To our knowledge, this is the lowest voltage and lowest power electrophoretic protein separation reported. Looking forward, we see the low-power PAG MBE as a basis for highly multiplexed protein separations (mobility shift screening assays) as well as for portable low-power diagnostic assays.

  5. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    SciTech Connect

    Ono, K; Fujimoto, S; Akagi, Y; Hirokawa, Y; Hayashi, S; Miyazawa, M

    2014-06-01

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 T MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.

  6. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose

    SciTech Connect

    Armstrong, G.D.; Peppler, M.S.

    1987-05-01

    We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin or other contaminants in the labeled PT preparations. All five of the subunits of the toxin appeared to be labeled by the procedure. The labeling method will facilitate further investigations into the nature of the interaction and activity of PT in host tissues.

  7. A new approach for calibration of laser ablation inductively coupled plasma mass spectrometry using thin layers of spiked agarose gels as references.

    PubMed

    Stärk, H-J; Wennrich, Rainer

    2011-02-01

    Calibration of analytical methods using laser ablation for sample introduction is often problematic. The availability of matrix-adapted standard materials is a crucial factor in the analysis of biological samples in particular. In this work a method for preparation of thin-film references for LA-ICP-MS is presented which is inexpensive, relatively simple and generally practicable. Aqueous solutions of agarose spiked with defined amounts of the analytes were cast on a carrier and then dried. When the thin-film references were characterized the average thickness of the films was 0.03 mm in the centre of the film and the relative standard deviation was 8%. Nebulization ICP-MS analysis after acid digestion of the agarose film was used to investigate the effectiveness of the spiking procedure. Recovery of the spiked elements was frequently in the range 90-110% (for rare earth elements 97-102%). Laser ablation ICP-MS analysis was used to investigate the distribution of the spiked elements in the film. When the laser was scanned across the gel the measured intensities were not constant, but had a peak-shaped profile with a flat top. Use of this flat-top region for analytical purposes, after its characterization by laser ablation ICP-MS, is proposed. Analysis of cell cultures was carried out by direct laser ablation-ICP-MS with the calibration method described. The results were in accordance with values previously achieved by nebulization ICP-MS.

  8. A small (58-nm) attached sphere perturbs the sieving of 40-80-kilobase DNA in 0.2-2.5% agarose gels: analysis of bacteriophage T7 capsid-DNA complexes by use of pulsed field electrophoresis.

    PubMed

    Serwer, P; Hayes, S J; Moreno, E T; Park, C Y

    1992-09-15

    Although the icosahedral bacteriophage T7 capsid has a diameter (58 nm) that is 234-fold smaller than the length of the linear, double-stranded T7 DNA, binding of a T7 capsid to T7 DNA is found here to have dramatic effects on the migration of the DNA during both pulsed field agarose gel electrophoresis (PFGE; the field inversion mode is used) and constant field agarose gel electrophoresis (CFGE). For these studies, capsid-DNA complexes were obtained by expelling DNA from mature bacteriophage T7; this procedure yields DNA with capsids bound at a variable position on the DNA. When subjected to CFGE at 2-6 V/cm in 0.20-2.5% agarose gels, capsid-DNA complexes arrest at the electrophoretic origin. Progressively lowering the electrical potential gradient to 0.5 V/cm results in migration; most complexes form a single band. The elevated electrical potential gradient (3 V/cm) induced arrest of capsid-DNA complexes is reversed when PFGE is used instead of CFGE. For some conditions of PFGE, the mobility of capsid-DNA complexes is a function of the position of the capsid on the DNA. During either CFGE (0.5 V/cm) or PFGE, capsid-DNA complexes increasingly separate from capsid-free DNA as the percentage of agarose increases. During these studies, capsid-DNA complexes are identified by electron microscopy of enzymatically-digested pieces of agarose gel; this is apparently the first successful electron microscopy of DNA from an agarose gel.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and the effect of agarose and temperature

    SciTech Connect

    Mathew, M.K.; Smith, C.L.; Cantor, C.R. )

    1988-12-27

    Pulsed-field gel electrophoresis (PGF) subjects DNA alternately to two electrical fields to resolve DNA ranging from 10,000 base pairs (10 kb) to 10,000 kb in size. The separations are quite sensitive to a variety of experimental variables. This makes it critical to have a wide range of reliable size standards. A technique is described for preparing mixtures of bacteriophage DNA oligomers that span a size range from monomer to more than 30-mer. The relationship between size and mobility of oligomers of different bacteriophage DNA monomers is generally self-consistent. Thus, these samples can serve as primary length standards for DNAs ranging from 10 kb to more than 1,500 kb. They have been used to estimate the size of the chromosomal DNAs from various Saccharomyces cerevisiae strains and to test the effect of gel concentration and temperature on PFG. DNA resolution during PFG is slightly improved in agarose gels with small pore sizes, in contrast to continuous electrophoresis where the opposite is observed. PFG mobility is surprisingly sensitive to changes in the running temperature.

  10. Isolation of a component from commercial coomassie brilliant blue R-250 that stains rubrophilin and other proteins red on polyacrylamide gels.

    PubMed

    Rosenthal, H L; Berger, R A; Tyler, A N; Moore, B W

    1988-05-12

    Commercially available Coomassie Brilliant Blue R-250 (C.I. 42660) is a popular and useful dye that stains most proteins blue on polyacrylamide gels. Some proteins from brain (rubrophilin), collagens, histones and parotid gland proteins are distinctly red when stained with Coomassie Blue. Commonly used Coomassie Brilliant Blue R-250 preparations may contain more than 30 distinct colored and fluorescent components that can be separated on silica gel chromatographic columns. A specific component has been isolated on silica gel columns that stains rubrophilin and other proline-rich proteins a reddish color. Fast atom bombardment mass spectrometry of the isolated rubrophilin staining principle indicates a molecular weight of 634 as compared to 826 for the major dye in the original Coomassie Brilliant Blue R-250. Infrared spectrometry is consistent with a difference between the rubrophilin staining principle and Coomassie Brilliant Blue R-250 of a toluene sulfonic acid residue.

  11. PhosphorImager enhancement of sedimentation equilibrium-quantitative polyacrylamide gel electrophoresis: a highly sensitive technique for quantitation of equilibrium gradients of individual components in mixtures.

    PubMed

    Darawshe, S; Merezhinskaya, N; Minton, A P

    1995-07-20

    The technique called sedimentation equilibrium-quantitative polyacrylamide gel electrophoresis (Darawshe et al. (1993) Anal. Biochem. 215, 236-242) has been extended to permit the quantitation and analysis of gradients of individual radiolabeled components in a mixture of radiolabeled solutes centrifuged to sedimentation equilibrium. Immediately following centrifugation, the contents of a sample tube are fractionated into aliquots corresponding to laminae of solution at different radial positions in the centrifuge. Following treatment with sodium dodecyl sulfate-containing buffer, a portion of each fraction is subjected to electrophoresis on a polyacrylamide gel. The gel is then incubated with a strong phosphor plate and subsequently scanned with a Molecular Dynamics PhosphorImage. The concentration of an individual radiolabeled component at a particular radial distance is proportional to the integrated intensity of the image of the radiolabeled band of that component in the fraction corresponding to that radial distance. Concentration gradients reconstructed in this fashion are interpreted in the context of conventional sedimentation equilibrium theory. The results of control experiments carried out with purified proteins of known molar mass and the measurement of the molar mass of a new, partially purified protein are reported.

  12. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  13. Nondenaturing polyacrylamide gel electrophoresis to study the dissociation of the p53·MDM2/X complex by potentially anticancer compounds.

    PubMed

    Sgammato, Roberta; Desiderio, Doriana; Lamberti, Anna; Raimo, Gennaro; Novellino, Ettore; Carotenuto, Alfonso; Masullo, Mariorosario

    2015-12-01

    A new analytical method to study the dissociation of the complexes between the oncosuppressor p53 and its negative modulators murine double-minute protein 2 (MDM2) or MDMX, is proposed. This technique is reliable to determine the dissociative power exerted by small molecules on the complex taking advantage of the appearance of migrating MDM2 or MDMX in a native polyacrylamide gel, when inhibitors are added to the complex mixture. Therefore, we propose this new approach to easily screen library of compounds, with potential pharmacological anticancer activity.

  14. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  15. Fluid diversion and sweep improvement with chemical gels in oil recovery processes. [Four types of gels: resorcinol-formaldehyde; colloidal silica; Cr sup 3+ (chloride)-xanthan; and Cr sup 3+ (acetate)-polyacrylamide

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1992-09-01

    The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

  16. Analysis of HeLa cell hypoxanthine phosphoribosyltransferase mutants and revertants by two-dimensional polyacrylamide gel electrophoresis: evidence for silent gene activation.

    PubMed Central

    Milman, G; Lee, E; Ghangas, G S; McLaughlin, J R; George, M

    1976-01-01

    The spot corresponding to hypoxanthine phosphoribosyltransferase (HPRT; IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) has been identified in two-dimensional polyacrylamide gels of HeLa cell extracts. This spot is absent in gels of 24 HPRT dificient mutants. A missense mutant displays a new HPRT spot at the same molecular weight but different isoelectric focusing position. Five independently isolated revertants of the missense mutant display spots corresponding to both the wild-type and mutant proteins indicating that they synthesize HPRT from two separate genes. If the missense protein is synthesized from a mutated form of the initially active HPRT gene, then wild-type HPRT protein in the revertants must be snythesized from a newly activated but prevously silent wild-type gene. The newly activated gene in the revertants of the missense mutation appears unstable producing a high frequency of spontaneous HPRT mutants. Images PMID:63948

  17. Protein/RNA coextraction and small two-dimensional polyacrylamide gel electrophoresis for proteomic/gene expression analysis of renal cancer biopsies.

    PubMed

    Barbero, Giovanna; Carta, Franco; Giribaldi, Giuliana; Mandili, Giorgia; Crobu, Salvatore; Ceruti, Carlo; Fontana, Dario; Destefanis, Paolo; Turrini, Francesco

    2006-02-01

    A small amount of bioptic tissue ( approximately 5-10mg of fresh tissue) usually does not contain enough material to extract protein and RNA separately, to obtain preparative two-dimensional polyacrylamide gel electrophoresis (2-DE), and to identify a large number of separated proteins by MS. We tested a method, on small renal cancer specimens, for the coextraction of protein and RNA coupled with 2-DE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) or quadrupole time-of-flight (Q-TOF) analysis. We coextracted 0.28+/-0.05mg of proteins and 2.5+/-0.33microg of RNA for each 10mg of renal carcinoma tissue. Small and large 2-DE gels were compared: they showed a similar number of spots, and it was possible to match each other; using small format gels, one-fifth of the protein amount was required to identify, by Q-TOF analysis, the same number of proteins identifiable in large-format gel using MALDI-TOF analysis. Quality of RNA coextracted with the proteins was tested by real-time PCR on a set of housekeeping genes. They were quantified with high amplification efficiency and specificity. In conclusion, using 5 to 10mg of fresh tissue, it was possible to perform comprehensive parallel proteomic and genomic analysis by high-resolution, small-format 2-DE gels, allowing approximately 300 proteins identification and 1000 genes expression analysis.

  18. On-bead expression of recombinant proteins in an agarose gel matrix coated on a glass slide.

    PubMed

    Lee, Kyung-Ho; Lee, Ka-Young; Byun, Ju-Young; Kim, Byung-Gee; Kim, Dong-Myung

    2012-05-07

    A system for expression and in situ display of recombinant proteins on a microbead surface is described. Biotinylated PCR products were immobilized on microbead surfaces, which were then embedded in a gel matrix and supplied with translation machinery and substrates. Upon the incubation of the gel matrix, target proteins encoded on the bead-immobilized DNA were expressed and captured on the same bead, thus allowing bead-mediated linkage of DNA and encoded proteins. The new method combines the simplicity and convenience of solid-phase separation of genetic information with the benefits of cell-free protein synthesis, such as instant translation of genetic information, unrestricted substrate accessibility and flexible assay configuration design.

  19. Phosphohydrolase activity of the isolated, brush-border membrane of Hymenolepis diminuta (Cestoda) following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis.

    PubMed

    Pappas, P W

    1980-12-01

    Following electrophoresis of isolated, brush-border membranes of Hymenolepis diminuta on SDS-polyacrylamide gels, three distinct areas of alpha-naphthyl phosphate (NP) hydrolysis were detected; these corresponded to proteins with molecular weights of 106,800, 172,700, and greater than 340,000 Daltons. Hydrolysis of NP was inhibited by adenosine triphosphate, adenosine;5'-monophosphate, p-nitrophenyl-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, molybdate, ethylenediaminetetraacetate (EDTA), and ethyleneglycol-bis-(beta-amino-ethyl)-N,N'-tetraacetate (EGTA), but not by fluoride. Inhibition of NP hydrolysis by EDTA was relieved in the presence of Mg++ or Ca++. Heating the isolated, brush-border membrane in the presence of SDS for 5 min at 95 C destroyed all enzymatic activity. These characteristics indicated that the enzyme(s) responsible for NP hydrolysis (following separation of membrane proteins by SDS-polyacrylamide gel electrophoresis) were the same enzymes responsible for the phosphohydrolase activity associated with intact and solubilized, brush-border membrane preparations of H. diminuta.

  20. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins

    SciTech Connect

    Prem Das, O.; Henderson, E.J.

    1986-11-01

    Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum.

  1. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations.

    PubMed

    Zhou, Chengjun; Lee, Sunyoung; Dooley, Kerry; Wu, Qinglin

    2013-12-15

    Porous nanocomposite gels were fabricated by a facile method consisting of the electrospinning and subsequent heat treatment based on partially hydrolyzed polyacrylamide (HPAM) of ultra-high molecular weight, with cellulose nanocrystals (CNCs) as crosslinker. The effects of three electrospinning parameters (i.e., solution concentration, composition of solvent mixture, and CNC loading level) on morphology and diameter of electrospun fibers were systematically investigated. The swelling properties of porous gels and their application in the removal of methylene blue dye (as a compound representative of contaminants) were evaluated. Electrospun fiber morphologies without beads, branches, and ribbons were achieved by optimizing the electrospinning solutions. The thermal crosslinking between HPAM and CNCs was realized through esterification, rendering the product nanocomposite membranes insoluble in water. Electrospun fibers of approximately 220 nm in diameter comprised the 3D porous nanocomposite gels, with porosity greater than 50%. The porous nanocomposite gels displayed a rapid swelling rate and an efficient adsorption capacity in removing methylene blue at low concentrations from aqueous solutions.

  2. Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound.

    PubMed

    Tomita, Y; Matsuura, T; Kodama, T

    2015-01-01

    Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s

  3. Effect of natural and semisynthetic pseudoguianolides on the stability of NF-κB:DNA complex studied by agarose gel electrophoresis.

    PubMed

    Villagomez, Rodrigo; Hatti-Kaul, Rajni; Sterner, Olov; Almanza, Giovanna; Linares-Pastén, Javier A

    2015-01-01

    The nuclear factor κB (NF-κB) is a promising target for drug discovery. NF-κB is a heterodimeric complex of RelA and p50 subunits that interact with the DNA, regulating the expression of several genes; its dysregulation can trigger diverse diseases including inflammation, immunodeficiency, and cancer. There is some experimental evidence, based on whole cells studies, that natural sesquiterpene lactones (Sls) can inhibit the interaction of NF-κB with DNA, by alkylating the RelA subunit via a Michael addition. In the present work, 28 natural and semisynthetic pseudoguianolides were screened as potential inhibitors of NF-κB in a biochemical assay that was designed using pure NF-κB heterodimer, pseudoguianolides and a ~1000 bp palindromic DNA fragment harboring two NF-κB recognition sequences. By comparing the relative amount of free DNA fragment to the NF-κB - DNA complex, in a routine agarose gel electrophoresis, the destabilizing effect of a compound on the complex is estimated. The results of the assay and the following structure-activity relationship study, allowed the identification of several relevant structural features in the pseudoguaianolide skeleton, which are necessary to enhance the dissociating capacity of NF-κB-DNA complex. The most active compounds are substituted at C-3 (α-carbonyl), in addition to having the α-methylene-γ-lactone moiety which is essential for the alkylation of RelA.

  4. Native agarose gel electrophoresis and electroelution: A fast and cost-effective method to separate the small and large hepatitis B capsids.

    PubMed

    Yoon, Kam Yee; Tan, Wen Siang; Tey, Beng Ti; Lee, Khai Wooi; Ho, Kok Lian

    2013-01-01

    Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self-assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost-effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE-EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE-EE method are monodisperse with polydispersity values of ∼15% and ∼13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE-EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ∼84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.

  5. Coupling sodium dodecyl sulfate-capillary polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry via a poly(tetrafluoroethylene) membrane.

    PubMed

    Lu, Joann J; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-03-01

    Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS-capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time, and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI-TOF-MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE-resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE-separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes.

  6. Use of fluorescein hydrazide and fluorescein thiosemicarbazide reagents for the fluorometric determination of protein carbonyl groups and for the detection of oxidized protein on polyacrylamide gels.

    PubMed

    Ahn, B; Rhee, S G; Stadtman, E R

    1987-03-01

    Highly fluorescent thiosemicarbazide and hydrazide prepared by reaction of fluorescein isothiocyanate with hydrazine or adipic acid dihydrazide have been used to monitor the presence of carbonyl groups in oxidatively modified proteins. After oxidation, proteins react with these reagents under anaerobic conditions in the dark to yield fluorescent protein conjugates (presumably thiosemicarbazones or hydrazones) which can be visualized as fluorescent bands following electrophoresis (0-4 degrees C) on lithium dodecyl sulfate-polyacrylamide gels. These reagents do not react with unoxidized proteins. The conjugates formed dissociate readily at room temperature but are fairly stable at pH 6-9, 0 degrees C. Current data suggest that these reagents will be useful in the detection and quantitation of oxidatively modified proteins in biological systems.

  7. Determination of the molecular weight of human gamma-3 chains by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

    PubMed Central

    Virella, G.; Parkhouse, R. M. E.

    1972-01-01

    The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255

  8. Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Warnken, Kent W; Zhang, Hao; Davison, William

    2004-10-15

    A simple method for the analysis of polyacrylamide diffusive gradients in thin film (DGT) gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), employing a novel use of (115)In internal standardization, has been developed. This method allows the determination of Co, Ni, Cu, Zn, Cd, and Pb concentrations (at the DGT filter face) or fluxes in sediments at a spatial resolution of 100 microm. Single-layered gels, using an optimized laser defocus of 4000 microm at 400 mJ power, showed high precision (generally approximately 10%) and a linear response during solution deployment. Of the elements Sc, In, Ba, La, Ce, and Tb, Ba most closely tracked variations in laser energy and showed the highest analytical precision but could not be used as an internal standard due to its elevated presence in natural sediments. Therefore, internal standardization, necessary to normalize data collected on different days, was carried out using (115)In contained within a second layer of backing gel and dried along with the analyte layer as a dual-gel disk. This multilayered gel standard required a laser defocus setting of 1000 microm and a laser power of approximately 800 mJ. Analytical precision for a 64-spot ablation grid at 100-microm spacing was approximately 10%. Verification of this method was carried out on DGT sediment probes deployed in Priest Pot (English Lake District). Results obtained by conventional slicing techniques and aqueous elution agreed with laser ablation results when the different sampling areas were considered. The elution results varied by a factor of <2, whereas the laser ablation technique showed a variability of approximately 4, indicating localized elevated concentrations of Co. This higher resolution LA-ICPMS method could ultimately lead to an improved understanding of the geochemical processes responsible for metal uptake and release in sediments.

  9. Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry: application to selenium.

    PubMed

    Chéry, Cyrille C; Günther, Detlef; Cornelis, Rita; Vanhaecke, Frank; Moens, Luc

    2003-10-01

    The capabilities of laser ablation-inductively coupled plasma-mass spectrometry for the detection of trace elements in a gel after gel electrophoresis were systematically studied. Figures of merit, such as limit of detection, linearity, and repeatability, were evaluated for various elements (Li, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Pd, Ag, Cd, Pt, Tl, Pb). Two ablation strategies were followed: single hole drilling, relevant for ablation of spots after two-dimensional (2-D) separations, and ablation with translation, i.e., on a line, relevant for one-dimensional (1-D) separations. This technique was applied to the detection of selenoproteins in red blood cells extracts after a 1-D separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and the detection of selenium-containing proteins in yeast after 2-D electrophoresis (2-DE). The detection procedure was further improved by using the dynamic reaction cell technology, which allowed the removal of the Ar_2(+) interference and hence the use of the most abundant Se isotope, (80)Se. Reaction gases were compared (methane, carbon monoxide, ammonia, oxygen and the combination of argon (collision gas) and hydrogen (reaction gas)). In each instance, the reaction cell parameters were optimized in order to obtain the lowest detection limit for Se (as (80)Se(+), (82)Se(+) or (77)Se(+); and as (80)Se(16)O(+), (82)Se(16)O(+) or (77)Se(16)O(+) with O(2) as the reaction gas). Carbon monoxide was found to offer the best performance. The detection limit with the use of DRC and He as transport gas was 0.07 microg Se g(-1) gel with single hole drilling and 0.15 microg Se g(-1) gel for ablation with translation.

  10. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  11. An optical comparator for measuring two-dimensional polyacrylamide gel electrophoresis records using an on-line microcomputer.

    PubMed

    Spragg, S P; Jones, M I; Hill, B J

    1983-03-01

    A comparator which makes it possible to compare two wet gels or photographic negatives or autoradiograms through a flickering light system has been built. The system consists of two special-purpose projectors which combine the images on a digitizing platform. When the lights are switched On and off out of phase, the positions of the common components remain unchanged, whereas those that are spatially displaced appear to jump from side to side and those present in one image but not the other switch on and off. This produces a flickering image in which differences are readily seen. Commercial camera lenses were used to construct the projectors and the overall specifications for the system are given. The coordinates of both the displaced components, as well as the selected standards from the two images, are digitized and entered automatically into an on-line microcomputer. By using an iterative procedure for collecting records from several superimposable records of the gel, it is possible to compensate for the lack of total reproducibility over the whole gels. These coordinates are then normalized and superimposed on a master map through a television display using a curser to adjust the coordinates. The whole procedure can be repeated for many gels using a common reference gel in the comparator, and the result is a set of normalized coordinates which can be plotted on a single map to provide a final record of the experiments.

  12. Application of urea-agarose gel electrophoresis to select non-redundant 16S rRNAs for taxonomic studies: palladium(II) removal bacteria.

    PubMed

    Assunção, Ana; Costa, Maria Clara; Carlier, Jorge Dias

    2016-03-01

    The 16S ribosomal RNA (rRNA) gene has been the most commonly used sequence to characterize bacterial communities. The classical approach to obtain gene sequences to study bacterial diversity implies cloning amplicons, selecting clones, and Sanger sequencing cloned fragments. A more recent approach is direct sequencing of millions of genes using massive parallel technologies, allowing a large-scale biodiversity analysis of many samples simultaneously. However, currently, this technique is still expensive when applied to few samples; therefore, the classical approach is still used. Recently, we found a community able to remove 50 mg/L Pd(II). In this work, aiming to identify the bacteria potentially involved in Pd(II) removal, the separation of urea/heat-denatured DNA fragments by urea-agarose gel electrophoresis was applied for the first time to select 16S rRNA-cloned amplicons for taxonomic studies. The major raise in the percentage of bacteria belonging to genus Clostridium sensu stricto from undetected to 21 and 41 %, respectively, for cultures without, with 5 and 50 mg/L Pd(II) accompanying Pd(II) removal point to this taxa as a potential key agent for the bio-recovery of this metal. Despite sulfate-reducing bacteria were not detected, the hypothesis of Pd(II) removal by activity of these bacteria cannot be ruled out because a slight decrease of sulfate concentration of the medium was verified and the formation of PbS precipitates seems to occur. This work also contributes with knowledge about suitable partial 16S rRNA gene regions for taxonomic studies and shows that unidirectional sequencing is enough when Sanger sequencing cloned 16S rRNA genes for taxonomic studies to genus level.

  13. Comparison of diazo-coupling, formazan, and silver staining techniques for visualizing alkaline phosphatase isoenzymes after electrophoresis in homogeneous-pore and gradient-pore polyacrylamide gels.

    PubMed

    Hodson, A W; Skillen, A W

    1988-03-01

    Three techniques for visualization of alkaline phosphatase after polyacrylamide-gel electrophoresis are compared. These are diazo-dye simultaneous coupling with the substrate sodium naphthyl phosphate and 5-chloro-2-toluene diazonium chloride; formazan precipitation with the substrate 5-bromo-4-chloro-3-indolyl phosphate and 3-[4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; and silver staining with the substrate sodium glycerophosphate. Each staining technique was tested with gradient-pore and homogeneous-pore acrylamide-gel electrophoresis. The main factors assessed are sensitivity; separation of the human serum alkaline phosphatase isoenzymes of the liver, bone, and intestinal types; and differences in substrate affinity, as well as the complexity of each technique. Using the three techniques only minor differences in substrate affinity are evident. There is some nonspecific staining with the diazo-coupling technique but not with the formazan and silver staining techniques. The differences, in the mobility of the liver, bone, and intestinal isoenzymes achieved by homogeneous-pore gel electrophoresis are sufficient to allow them to be clearly distinguished. However, only very small differences in mobility are found with gradient-pore gel electrophoresis, but the sharper bands in this medium allow much smaller amounts of activity to be detected. As little as 160 microU of enzyme can be visualized by the diazo technique. Silver staining gives an approximately fourfold increase in sensitivity over the formazan technique, which in turn gives a fourfold increase over the diazo technique. An important aspect of the silver staining technique is the potential of increasing sensitivity much further by improvements in the photographic physical development stage.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  15. Polyacrylamide gel substrates that simulate the mechanical stiffness of normal and malignant neuronal tissues increase protoporphyin IX synthesis in glioma cells

    NASA Astrophysics Data System (ADS)

    Niu, Carolyn J.; Fisher, Carl; Scheffler, Kira; Wan, Rachel; Maleki, Hoda; Liu, Haijiao; Sun, Yu; Simmons, Craig A.; Birngruber, Reginald; Lilge, Lothar

    2015-09-01

    Protoporphyrin IX (PPIX) produced following the administration of exogenous 5d-aminolevulinic acid is clinically approved for photodynamic therapy and fluorescence-guided resection in various jurisdictions around the world. For both applications, quantification of PPIX forms the basis for accurate therapeutic dose calculation and identification of malignant tissues for resection. While it is well established that the PPIX synthesis and accumulation rates are subject to the cell's biochemical microenvironment, the effect of the physical microenvironment, such as matrix stiffness, has received little attention to date. Here we studied the proliferation rate and PPIX synthesis and accumulation in two glioma cell lines U373 and U118 cultured under five different substrate conditions, including the conventional tissue culture plastic and polyacrylamide gels that simulated tissue stiffness of normal brain (1 kPa) and glioblastoma tumors (12 kPa). We found that the proliferation rate increased with substrate stiffness for both cell lines, but not in a linear fashion. PPIX concentration was significantly higher in cells cultured on tissue-simulating gels than on the much stiffer tissue culture plastic for both cell lines. These findings, albeit preliminary, suggest that the physical microenvironment might be an important determinant of tumor aggressiveness and PPIX synthesis in glioma cells.

  16. Light Scattering Induced Giant Red-Shift in Photoluminescence from CdTe Quantum Dots Encapsulated in Polyacrylamide Gel Nanospheres

    NASA Astrophysics Data System (ADS)

    Garner, Brett W.; Cai, Tong; Hu, Zhibing; Kim, Moon; Neogi, Arup

    2009-07-01

    The photoluminescence emission from CdTe quantum dots embedded in hydrogel nanospheres based on poly(N-isopropylacrylamide) (PNIPAM) polymer is observed to be modified by the random light scattering within the colloidal medium. Photoluminescence emission from CdTe quantum dots of various size has been observed making the gel fluorescent. The optical properties of the quantum dots entrapped within the gel microspheres can be modified due to change in refractive index, volume density of the surrounding hydrogel medium. A red-shift of ˜100 nm has been observed from quantum dots emitting in the green wavelength region as the cell length is increased. This shift is due to secondary scattering and energy transfer induced by the larger scattering cross-section within the medium which results in a re-excitation of larger sized quantum dots.

  17. A rapid and simple 8-quinolinol-based fluorescent stain of phosphoproteins in polyacrylamide gel after electrophoresis.

    PubMed

    Wang, Xu; Hwang, Sun-Young; Cong, Wei-Tao; Jin, Li-Tai; Choi, Jung-Kap

    2015-10-01

    In order to obtain an easy and rapid protocol to visualize phosphoproteins in SDS-PAGE, a fluorescent detection method named 8-Quinolinol (8-Q) stain is described. 8-Q can form ternary complexes in the gel matrix contributed by the affinity of aluminum ion (Al(3+) ) to the phosphate groups on the proteins and the metal chelating property of 8-Quinolinol, exhibiting strong fluorescence in ultraviolet light. It can visualize as little as 4∼8 ng of α-casein and β-casein, 16∼32 ng of ovalbumin and κ-casein which is more sensitive than Stains-All but less sensitive than Pro-Q Diamond. The protocol of 8-Q requires only 70 min in 0.75 mm mini-size or 1.0 mm large-size gels with five changes of solutions without destaining step; Pro-Q takes at least 250 min with 11 changes of solutions. In addition, the new method was confirmed by the study of dephosphorylation and LC-MS/MS, respectively. The approach to visualize phosphoprotein utilizing 8-Q could be an alternative to simplify the analytical operations for phosphoproteomics research.

  18. Development of a low-cost, high-throughput native polyacrylamide gel electrophoresis (N-PAGE) protocol for lipoprotein sub-fractionation using Quality by Design approach.

    PubMed

    Pathak, Mili; Chaudhary, Neha; Rathore, Anurag S

    2014-04-01

    Ratio of low density to high density lipoprotein concentration is critical for normal functioning of human body. Deviation in this ratio has been linked to various diseases, many of which are fatal if not diagnosed at early stages. For example, cardiovascular diseases (CVD) have been linked to the level of low density lipoprotein (LDL). Henceforth, detection of the lipoprotein subtractions is crucial for health of an individual. To date, methods like ultracentrifugation, nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC) and gradient gel electrophoresis (GGE) have been used for separation and identification of lipoprotein types and subtypes. However, these methods are expensive, time consuming and require specialized equipments and expertise. This paper aims to propose a low-cost, high-throughput native polyacrylamide gel electrophoresis (N-PAGE) based protocol for analysis of lipoproteins. Quality by Design (QbD) based approach has been utilized. The initial screening of parameters was followed by a fractional factorial design to optimize the protocol. The lipoprotein subtractions obtained by the optimized protocol were compared with the commercially available and commonly used Lipoprint(®) Lipoprotein Subfractions Testing System from Quantimetrix. The proposed method gave comparable results to those obtained with the commercial system. The proposed method is capable of analysis of up to forty different samples in two hours at a cost of approximately 2$/sample. This is an order of magnitude better than the present cost of 265$/sample when using the commercial system. We think that the proposed method would be of particular interest to the developing and under-developed economies of the world, where this cost differential would be deemed quite significant and would make testing affordable to the majority of the population.

  19. Separation of native allophycocyanin and R-phycocyanin from marine red macroalga Polysiphonia urceolata by the polyacrylamide gel electrophoresis performed in novel buffer systems.

    PubMed

    Wang, Yu; Gong, Xueqin; Wang, Shumei; Chen, Lixue; Sun, Li

    2014-01-01

    Three buffer systems of Imidazole-Acetic acid, HEPES-Imidazole/Bis-tris and Bis-tris-HEPES-MES were designed based on the principle of discontinuous polyacrylamide gel electrophoresis (PAGE) for the native PAGE which could be performed in pH 7.0 and 6.5 in order to analyze and prepare the minor components of allophycocyanin (AP) and R-phycocyanin (R-PC) from marine red macroalga Polysiphonia urceolata. These AP and R-PC phycobiliproteins are easily denatured in alkaline environments. The obtained results demonstrated that the PAGE modes performed in the buffer systems of HEPES-Imidazole/Bis-tris and Bis-tris-HEPES-MES gave the satisfactory resolution and separation of AP and R-PC proteins. The absorption and fluorescence spectra of the AP and R-PC proteins which were prepared by the established PAGE modes proved that they maintained natural spectroscopic characteristics. The established PAGE modes may also provide useful references and selections for some other proteins that are sensitive to alkaline environments or are not effectively separated by the classical PAGE modes performed normally in alkaline buffer systems.

  20. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes.

    PubMed

    Delepelaire, P; Chua, N H

    1979-01-01

    Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of Chlamydomonas reinhardtii thylakoid membranes at room temperature gave two chlorophyll-protein complexes, CP I and CP II, as had been reported previously. However, when the electrophoresis was performed at 4 degrees C, there was an increase in the amount of chlorophyll associated with CP I and CP II, and in addition, three other chlorophyll-protein complexes appeared. Two of these complexes, designated CP III and CP IV, were characterized and found to be similar in their compositions. Each complex contains four to five molecules of chlorophyll a, one molecule of beta-carotene, and one polypeptide chain. The apoprotein of CP III is polypeptide 5 (M(r) 50,000) and that of CP IV is polypeptide 6 (M(r) 47,000); the two polypeptides are structurally unrelated. Chlorophyll-protein complexes similar to C. reinhardtii CP III and CP IV were also detected in higher plants (e.g., Pisum sativum). The apoproteins of the higher plant complexes are immunochemically related to those of the C. reinhardtii complexes, as shown by crossed immunoelectrophoresis. Absorption spectra of CP III and CP IV at -196 degrees C revealed a component at 682 nm. This observation, together with the previous results on photosystem II mutants [Chua, N.-H. & Bennoun, P. (1975) Proc. Natl. Acad. Sci. USA 72, 2175-2179], provides indirect evidence that CP III and CP IV may be involved in the primary photochemistry of photosystem II.

  1. Identification of new proteins in follicular fluid from mature human follicles by direct sample rehydration method of two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Lee, Han-Chul; Lee, Sang-Wha; Lee, Kyo Won; Lee, Sook-Whan; Cha, Kwang-Yul; Kim, Kye Hyun; Lee, Suman

    2005-06-01

    Human follicular fluid (HFF) includes various biologically active proteins which can affect follicle growth and oocyte fertilization. Thus far, these proteins from mature follicles in human follicular fluid have been poorly characterized. Here, two-dimensional polyacrylamide gel electrophoresis (2-DE) with matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to identify new proteins in HFF. Mature follicular fluids were obtained from five females after oocyte collection during in vitro fertilization (IVF). We directly rehydrated HFF samples, obtained high-resolution 2-DE maps, and processed them for 2-DE and MALDI-MS. One hundred eighty spots were detected and 10 of these spots were identified. By the 2-DE database, six of them had been reported, as proteins already existing in HFF. Hormone sensitive lipase (HSL), Unnamed protein product 1 (UPP1), Unnamed protein product 2 (UPP2), and apolipoprotein A-IV precursor were newly detected. HSL and apolipoprotein A-IV participate in lipid metabolism. UPP1 has a homology with selenocysteine lyase. We found by RT-PCR that these genes are expressed from human primary granulosa cells. The proteins identified here may emerge as potential candidates for specific functions during folliculogenesis, hormone secretion regulation, or oocyte maturation. Further functional analysis of these proteins is necessitated to determine their biological implications.

  2. Cell adhesion to proteins separated by lithium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto a polyvinylidene difluoride membrane: a new cell-blotting technique.

    PubMed

    Seshi, B

    1994-12-02

    Cell blotting, although conceptually simple, has failed to achieve wide practical application. Described here is a new cell-blotting technique which involves cell adhesion to protein bands after separation by lithium dodecyl sulfate-polyacrylamide gel electrophoresis (LDS-PAGE) and blotting onto polyvinylidene difluoride (PVDF) membrane at 4 degrees C. Cell bands adherent on PVDF are detected using hematoxylin, or propidium iodide (PI) staining followed by viewing under ultraviolet (UV) light. The technique allows quick microscopic visualization of adherent cells composing the bands, without requiring clearing of the membrane. Representative cell adhesion proteins from different sources, i.e., plant lectins (e.g., phytohemagglutinin, PHA; concanavalin A, ConA; and wheat germ agglutinin, WGA); extracellular matrix (ECM) proteins; and integral membrane proteins (e.g., recombinant soluble vascular cell adhesion molecule-1, rs VCAM-1) were tested for cell binding by the new cell-blotting technique using human lymphoid progenitor (NALM-6) and myeloid progenitor (KG1a) cell lines. Cell adhesion proteins retained their adhesion function in all cases tested. Specificity of cell binding on PVDF blot was demonstrated by inhibition of cell adhesion to WGA protein bands using an appropriate sugar, i.e., N-acetyl D-glucosamine. The cell blotting assay was comparable in sensitivity to Coomassie blue staining of protein bands. The ability to conduct protein extraction, separation and blotting at low temperature avoids thermal denaturation, thereby preserving the adhesion properties of the proteins. The electrophoretic/blotting system has unique detergent removal/protein renaturation properties and the ability to preserve functionally active adhesion protein complexes. The cell-blotting technique described is sufficiently robust for routine application in the investigation of novel cell adhesion proteins.

  3. Quantification of bovine sperm separation by a swim-up method. Relationship to sperm motility, integrity of acrosomes, sperm migration in polyacrylamide gel and fertility.

    PubMed

    Parrish, J J; Foote, R H

    1987-01-01

    The number of bovine spermatozoa separated in a swim-up procedure was quantified using an electronic cell counter. In an initial test of the swim-up procedure, non-frozen sperm samples with different ratios of live to dead cells were prepared and tested for the number of spermatozoa counted by the swim-up procedure. In ejaculates from six bulls, the number of spermatozoa swimming up was related to the number of live cells present (R2 = 0.97). Next, sperm quality of frozen-thawed semen immediately after thawing was measured at 37 C by swim-up sperm count, sperm motility, spermatozoa with an intact acrosome and migration in polyacrylamide gel and then compared with the fertility of the semen used for artificial insemination. Twenty-nine ejaculates of frozen-thawed semen from 11 bulls were evaluated. Correlations with fertility were highest on an ejaculate basis for motility (r = 0.41, P = 0.05) and for swim-up sperm count (r = 0.35, P = 0.06). On a bull basis, swim-up sperm count had the highest correlation with fertility (r = 0.59, P = 0.06). In a multiple regression model to predict male fertility that included all described measures of semen quality, a R2 value of 0.69 was obtained. This is the first report showing that the ability of spermatozoa to swim out of a more dense medium (whole milk-glycerol extender) into culture media is quantitatively related to in vivo fertility.

  4. Qualitative and quantitative changes in barley seed protein patterns during the malting process analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with respect to malting quality.

    PubMed

    Weiss, W; Postel, W; Görg, A

    1992-01-01

    Seeds of two barley cultivars, similar in total protein content and malt extract yield but different in their final attenuation values, were malted. Samples taken at daily intervals during the malting process were extracted sequentially with Tris-HCl buffer, aqueous 2-propanol, aqueous 2-propanol containing 0.5% dithiothreitol, and 4 M urea, containing 0.5% dithiothreitol and 1% Nonidet P-40. The protein composition of these extracts was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and computer densitometry to determine whether differences observed in the rate or extent of protein modification are related to the malting quality character final attenuation. It was found that, common to both cultivars, the albumin and globulin proteins were relatively resistant to proteolysis, whereas the hordeins suffered a dramatic breakdown during malting, with the D hordein being degraded most rapidly, followed by the B and C hordeins. Besides these similarities, differences between both cultivars were observed in the relative rates of D hordein degradation, as this rate was considerably higher in the cultivar with high malting quality. Similar, but much less distinct kinetics were seen with certain B hordeins. Since a possible relationship might exist between the rate of proteolysis of the D hordeins and the character final attenuation, we analyzed a larger number of barley cultivars with different final attenuation values with a simplified technique. For the ten cultivars examined, differences during germination were again seen in the rates of modification of the D hordeins. However, significant correlations between the D hordein breakdown and final attenuation values were not obtained, so that we propose that there exists at best a loose correlation between the relative rate of proteolysis of these proteins and the malting quality character final attenuation.

  5. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, J.S.; Giometti, C.S.; Tollaksen, S.L.

    1989-04-25

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower and of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  6. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  7. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  8. High-frequency alternating-crossed-field gel electrophoresis with neutral or slightly charged interpenetrating networks to improve DNA separation.

    PubMed

    Boyd, B M; Prausnitz, J M; Blanch, H W

    1998-12-01

    Toward improving DNA separations, this work reports the effects of high-frequency square-wave AC fields superimposed perpendicular to the direct current (DC) separation field on DNA migration in both polyacrylamide-based interpenetrating networks (IPNs) and in agarose networks. Compared to standard polyacrylamide gels, IPNs allow the separation of larger DNA (9000 bp vs. 5000 bp at 5 V/cm). In novel polyacrylamide-based IPNs, an alternating current (AC) field of 5 Hz increased the maximum DNA size separable. This effect was extended to larger DNA sizes with increasing electric-field strength up to and apparently beyond the power supply-limited maximum electric-field strength of 48 V/cm. The orthogonal AC field also increased mobility. These two results combine to yield a reduction in separation time of up to a factor of 20 in novel polyacrylamide-based IPNs. When negatively charged acrylic-acid groups were incorporated into the IPNs, the use of the AC field changed the DNA-network interaction, which altered the size dependence of DNA mobility. In agarose gels, an AC field of 50 Hz increased the size range separable; however, there was no increase in DNA mobility. There was no change in size dependence of mobility in an AC field when the number of charged groups in the agarose network was increased. Based on results in the literature, possible mechanisms were examined for the effects of the AC field on DNA separation.

  9. High-Frequency Alternating-Crossed-Field Gel Electrophoresis WithNeutral or Slightly Charged Interpenetrating Networks to Improve DNASeparation

    SciTech Connect

    Boyd, B.; Prausnitz, J.; Blanch, H.

    1998-07-01

    Toward improving DNA separations, this work reports theeffects of high-frequency square-wave AC fields superimposedperpendicular to the direct current (DC) separation field on DNAmigration in both polyacrylamide-based interpenetrating networks (IPNs)and in agarose networks. Compared to standard polyacrylamide gels, IPNsallow the separation of larger DNA (9000 bp vs. 5000 bp at 5 V/cm). Innovel polyacrylamide-based IPNs, an alternating current (AC) field of 5Hz increased the maximum DNA size separable. This effect was extended tolarger DNA sizes with increasing electric-field strength up to andapparently beyond the power supply-limited maximum electric-fieldstrength of 48 V/cm. The orthogonal AC field also increased mobility.These two results combine to yield a reduction in separation time of upto a factor of 20 in novel polyacrylamide-based IPNs. When negativelycharged acrylic-acid groups were incorporated into the IPNs, the use ofthe AC field changed the DNA-network interaction, which altered the sizedependence of DNA mobility. In agarose gels, an AC field of 50 Hzincreased the size range separable; however, there was no increase in DNAmobility. There was no change in size dependence of mobility in an ACfield when the number of charged groups in the agarose network wasincreased. Based on results in the literature, possible mechanisms wereexamined for the effects of the AC field on DNA separation.

  10. An improved protocol for the preparation and restriction enzyme digestion of pulsed-field gel electrophoresis agarose plugs for the analysis of Legionella isolates.

    PubMed

    Chang, Bin; Amemura-Maekawa, Junko; Watanabe, Haruo

    2009-01-01

    Pulsed-field gel electrophoresis (PFGE), which determines the genomic relatedness of isolates, is currently used for the epidemiological investigation of infectious agents such as bacteria. In particular, this method has been used for the epidemiological investigation of Legionella outbreaks. However, it takes 4 days to complete a Legionella-PFGE analysis. Due to partial digestion and DNA damage, the reproducibility of the obtained fragment digestion patterns is poor for this pathogen. In this study, we report an improved protocol that takes only 2 days to complete and that allows clear discrimination of the restriction profile with higher reproducibility than that previously achieved.

  11. Protein and glycoprotein abnormalities in platelets from human Chediak-Higashi syndrome: polyacrylamide gel electrophoretic study of platelets from five patients.

    PubMed

    Ledezma, E; Apitz-Castro, R

    1985-10-01

    Polyacrylamide electrophoretic analysis of proteins and Tritium-labelled glycoproteins of the platelets from five patients with Chediak-Higashi Syndrome shows the existence of marked quantitative differences when compared to normal platelets. While the glycoprotein abnormalities are solely related to the plasma membrane, some of the abnormalities detected in the Coomasie blue pattern are probably representative of defects related to the dense bodies and the alpha-granules. Some of the abnormalities found may, in part, explain the variability of aggregatory responses described in these patients, as well as the marked tendency towards desaggregation exhibited by platelets from humans with the Chediak-Higashi Syndrome.

  12. Estimating the DNA strand breakage using a fuzzy inference system and agarose gel electrophoresis, a case study with toothed carp Aphanius sophiae exposed to cypermethrin.

    PubMed

    Poorbagher, Hadi; Moghaddam, Maryam Nasrollahpour; Eagderi, Soheil; Farahmand, Hamid

    2016-07-01

    The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies.

  13. Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness.

    PubMed

    Su, Yixue; Chu, Bin; Gao, Yuan; Wu, Chaoxi; Zhang, Lingmin; Chen, Peng; Wang, Xiaoying; Tang, Shunqing

    2013-02-15

    In order to improve bioactivity of agarose, we modified agarose by carboxylation and grafting dopamine. Under alkaline condition, carboxylated agarose was prepared using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation system by oxidizing C(6) hydroxyl on D-galactose ring into carboxyl group, and the maximum value of the degree of carboxylation reached 30%. With the increase of the amount of oxidant, the molecular weight of the carboxylated agarose decreased to 4 kDa by gel permeation chromatography (GPC) measure. Carboxylated agarose reacted with dopamine through EDC condensation reaction to obtain agarose grafting dopamine (Ag-g-DA), and the grafting rate of dopamine was determined to be 9.3% by UV spectroscopy at 280 nm. The structures of these modified agaroses were determined by FT-IR and (13)C NMR. Both carboxylated agarose and Ag-g-DA showed no cytotoxicity and promoted cell-adhesiveness.

  14. Microscale mechanisms of agarose-induced disruption of collagen remodeling.

    PubMed

    Ulrich, Theresa A; Lee, Tae Geol; Shon, Hyun Kyong; Moon, Dae Won; Kumar, Sanjay

    2011-08-01

    Cells are strongly influenced by the local structure and mechanics of the extracellular matrix (ECM). We recently showed that adding agarose to soft collagen ECMs can mechanically stiffen these hydrogels by two orders of magnitude while limiting 3D cell motility, which we speculated might derive from agarose-mediated inhibition of collagen fiber deformation and remodeling. Here, we directly address this hypothesis by investigating the effects of agarose on cell-collagen interactions at the microscale. Addition of agarose progressively restricts cell spreading, reduces stress fiber and focal adhesion assembly, and inhibits macroscopic gel compaction. While time-of-flight secondary ion mass spectrometry and scanning electron microscopy fail to reveal agarose-induced alterations in collagen ligand presentation, the latter modality shows that agarose strongly impairs cell-directed assembly of large collagen bundles. Agarose-mediated inhibition of cell spreading and cytoarchitecture can be rescued by β-agarase digestion or by covalently crosslinking the matrix with glutaraldehyde. Based on these results, we argue that cell spreading and motility on collagen requires local matrix stiffening, which can be achieved via cell-mediated fiber remodeling or by chemically crosslinking the fibers. These findings provide new mechanistic insights into the regulatory function of agarose and bear general implications for cell adhesion and motility in fibrous ECMs.

  15. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation.

    PubMed

    Zamora-Mora, Vanessa; Velasco, Diego; Hernández, Rebeca; Mijangos, Carmen; Kumacheva, Eugenia

    2014-10-13

    The preparation of composite biopolymer hydrogels offers the capability to produce biocompatible and biodegradable materials with cooperative properties. In this paper, two natural polymers, namely, chitosan and agarose were employed to prepare composite hydrogels with dual pH and temperature properties. The elastic modulus of the composite hydrogels increased with agarose concentration reaching the value of 1 kPa for the chitosan/agarose gel with a 2% (w/v) concentration of agarose. In addition, composite gels exhibited a higher stability in acidic aqueous solutions, in comparison with agarose gels. The drug release properties of the composite hydrogels were tested by loading a model anticancer drug, 5-Fluorouracil, in the hydrogel interior. At pH=7.4, the cumulative release of 5-FU was ∼ 50% within 96 h and decreased to ∼ 33% at pH = 5.2, which was attributed to the different solubility of 5-FU as a function of pH. The preparation of composite microgels with controllable dimensions in the range from 42 to 18 μm and with narrow size distribution (polidispersity not exceeding 1.5%) was achieved by the microfluidic emulsification of an aqueous mixture of chitosan and agarose and subsequent gelation of the precursor droplets by cooling.

  16. Towards a proteomic analysis of atopic dermatitis: a two-dimensional-polyacrylamide gel electrophoresis/mass spectrometric analysis of cultured patient-derived fibroblasts.

    PubMed

    Park, Yong-Doo; Kim, So-Yeon; Jang, Hee-Sun; Seo, Eun-Young; Namkung, Jung-Hyun; Park, Hyung-Seok; Cho, Sang Yun; Paik, Young-Ki; Yang, Jun-Mo

    2004-11-01

    Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease typically characterized by a distribution of eczematous skin lesions with lichenification, pruritic excoriations, and dry skin with wide varieties of pathophysiologic aspects. Recently, AD was divided into extrinsic and intrinsic forms according to the presence or absence of an allergy. We investigated alterations in protein expression in primary cultured AD cells from the patient biopsy samples by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight. In the primary cultured fibroblasts, we obtained 31 candidate proteins from the two-dimensional gel image analysis in which 18 proteins were up-regulated, eight proteins were down-regulated and five proteins were post-translationally modified. From these 2-DE results, we found several candidate genes matched proteomic expression patterns by semiquantitative reverse transcription PCR. Since the exact mechanism of atopic alterations in fibroblasts remains unknown, our results may provide new clues to aid in understanding AD.

  17. Fluorescent staining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide.

    PubMed

    Zhu, Zhongxin; Zhou, Xuan; Wang, Yang; Chi, Lisha; Ruan, Dandan; Xuan, Yuanhu; Cong, Weitao; Jin, Litai

    2014-06-07

    A fluorescent detection method for glycoproteins in SDS-PAGE by using 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide (BH) was developed in this study. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be specifically detected by the BH staining method, which is twofold more sensitive than that of the most commonly used Pro-Q Emerald 488 glycoprotein stain. Furthermore, the specificity of the newly developed stain for glycoproteins was demonstrated by 1-D and 2-D SDS-PAGE, deglycosylation, glycoprotein affinity enrichment and LC-MS/MS, respectively. According to the results, it is concluded that BH stain may provide new choices for convenient, sensitive, specific and economic visualization of gel-separated glycoproteins.

  18. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform).

  19. Speciation analysis of inorganic arsenic in river water by Amberlite IRA 910 resin immobilized in a polyacrylamide gel as a selective binding agent for As(V) in diffusive gradient thin film technique.

    PubMed

    Rolisola, Ana M C M; Suárez, Carlos A; Menegário, Amauri A; Gastmans, Didier; Kiang, Chang H; Colaço, Camila D; Garcez, Daniel L; Santelli, Ricardo E

    2014-09-07

    In this study, a method is proposed for the selective retention of As(V) using diffusive gradient in thin film (DGT) samplers containing a strongly basic anion exchange resin (Amberlite IRA 910) supported on a polyacrylamide gel. In addition, the total arsenic content is determined by ferrihydrite gel discs. Subsequently, the concentration of As(III) was obtained by determining the difference between the total As and As(V). DGT experiments showed linear accumulation of As(V) (up to 280 ng) until a deployment time of 8 h deployment (R(2) > 0.99). The retention of As(V) was appropriate (97.9-112.3%) between pH 5 and 9. For a solution with an ionic strength ranging from 0.001 to 0.05 mol L(-1), the As(V) uptake ranged from 90-120%. The proposed method was applied for the speciation of arsenic in river water. For the analysis of spiked samples collected at the Furnas stream, the recoveries of total arsenic content ranged between 103.9% and 118.8%. However, the recoveries of As(III) and As(V) were 43.3-75.2% and 147.3-153.4%, respectively. These differences were probably because of the oxidation of As(III) to As(V) during deployments. For spiked samples collected at the Ribeirão Claro, the recoveries of dissolved As(III), As(V) and As(T) were 103.1%, 108.0% and 106.3%, respectively. Thus, the DGT technique with Amberlite IRA 910 resin as the binding phase can be employed for the in situ redox speciation of inorganic arsenic.

  20. Quantitation of estrogen receptor in seventy-five specimens of breast cancer: comparison between an immunoassay (Abbott ER-EIA monoclonal) and a (3H)estradiol binding assay based on isoelectric focusing in polyacrylamide gel

    SciTech Connect

    Pousette, A.; Gustafsson, S.A.; Thoernblad, A.M.N.; Nordgren, A.; Saellstroem, J.Li.; Lindgren, A.; Sundelin, P.; Gustafsson, J.A.

    1986-08-01

    Quantitation of estrogen receptor has been performed in cytosol prepared from 75 specimens of breast cancer tissue from patients who had not received hormonal therapy. The study was performed in order to compare an immunoassay (Abbott Laboratories, North Chicago, IL) with our currently used method for estrogen receptor analysis based on isoelectric focusing of (/sup 3/H)estradiol-receptor complex in polyacrylamide gels. Using linear regression analysis, a regression coefficient (slope) of 1.30 and a correlation coefficient of 0.75 were calculated. The differences in results between the two methods are probably partly explained by the fact that the ligand-based method only measures unoccupied receptor, whereas the immunoassay detects the total amount of receptor, resulting in generally slightly higher concentrations with the latter method. However, in five of 75 specimens the ligand-based method gave a considerably higher concentration of estrogen receptor. This was most probably explained by partial proteolysis resulting in the formation of receptor fragment(s), which was undetectable with the immunoassay but detectable with the ligand-based method. These observations underline the importance of careful handling of specimens during the whole immunoassay procedure.

  1. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  2. Chemotaxis: Under Agarose Assay.

    PubMed

    Brazill, Derrick

    2016-01-01

    The unicellular eukaryote Dictyostelium discoideum represents a superb model for examining chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folate. Under starved conditions, they lose their sensitivity to pterins, and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including its conservation of mammalian signaling pathways, its ease of growth, and its genetic tractability. In this chapter, we describe the use of the under agarose chemotaxis assay to identify proteins involved in controlling motility and directional sensing in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect the conserved pathways involved in eukaryotic chemotaxis.

  3. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.

    PubMed

    Lira, Rafael B; Dimova, Rumiana; Riske, Karin A

    2014-10-07

    Giant unilamellar vesicles (GUVs) are presumably the current most popular biomimetic membrane model. Preparation of GUVs in physiological conditions using the classical electroformation method is challenging. To circumvent these difficulties, a new method was recently reported, by which GUVs spontaneously swell from hybrid films of agarose and lipids. However, agarose is left encapsulated in the vesicles in different amounts. In this work, we thoroughly characterize the mechanical properties of these agarose-GUVs in response to electric pulses, which induce vesicle deformation and can lead to membrane poration. We show that the relaxation dynamics of deformed vesicles, both in the presence and absence of poration, is significantly slowed down for agarose-GUVs when compared to agarose-free GUVs. In the presence of poration, agarose polymers prevent complete pore closure and lead to high membrane permeability. A fraction of the vesicles were found to encapsulate agarose in the form of a gel-like meshwork. These vesicles rupture and open up after electroporation and the meshwork is expelled through a macropore. When the agarose-GUVs are heated above the melting temperature of agarose for 2 h before use, vesicle response is (partially) recovered due to substantial release of encapsulated agarose during temperature treatment. Our findings reveal potential artifactual behavior of agarose-GUVs in processes involving morphological changes in the membrane as well as poration.

  4. Direct assay for O6-methylguanine-DNA methyltransferase and comparison of detection methods for the methylated enzyme in polyacrylamide gels and electroblots.

    PubMed

    Major, G N; Gardner, E J; Lawley, P D

    1991-07-01

    other human cells and tissues, extracts of human spleen in the present study showed wide interindividual differences in O6-MT specific activity (18-fold), which spanned the range 50-900 fmol/mg of protein. Cultured human lymphoblastoid Jurkat cells contained approx. 57,000 enzyme molecules/cell. Substrate-inactivated [Me-3H]methylated O6-MT was analysed by SDS/PAGE and electroblotting. The different but similarly sized forms of this enzyme that we previously detected in human spleen [Major, Gardner, Carne & Lawley (1990) Nucleic Acids Res. 18, 1351-1359] were clearly resolved by fluorography of electroblots, but only at considerable expense of time. As expected, scintillation counting of the protein extracted from gel slices and linear-wire scanning of enzyme-associated radioactivity on electroblots were quicker methods for detecting the [Me-3H]methylated inactivated O6-MT.

  5. Removal of digoxin from plasma using monoclonal anti-digoxin antibodies immobilized on agarose

    SciTech Connect

    Brizgys, M.; Pincus, S.; Rollins, D.E.

    1986-05-01

    Monoclonal anti-digoxin antibodies (dig-Ab) have been covalently coupled to agarose supports to evaluate them as part of an extracorporeal device for removal of digoxin from the circulation. The agarose supports studied were Sepharose CL-6B, agarose-polyacrolein microsphere (APAM) beads, Bio Gel A-5m and Affi-gel 15 (Bio-Rad). Antibody concentrations between 2 and 4 mg/g gel were coupled to the agarose beads which were then placed in glass columns. Bovine ..cap alpha..-globulin coupled to the agarose supports was used as a control. Binding capacity and affinity of the immobilized antibody were determined by perfusing the dig-Ab agarose beads with a plasma solution containing /sup 3/H-digoxin and various concentrations of digoxin. The binding capacity of the immobilized dig-Ab was 30% of the theoretical value for Sepharose, Bio Gel and Affigel, and 10% of the theoretical value for dig-Ab coupled to APAM beads. The affinity of the immobilized dig-Ab was 10-100 fold less than non-immobilized Ab (3.4 x 10/sup 8/M/sup -1/. The APAM beads showed a significant decrease in binding of digoxin as the flow rate was increased from 0.5 to 5.0 ml/min. These data demonstrate that dig-Ab coupled to agarose and incorporated into a column can be used to remove digoxin from plasma in vitro.

  6. Band broadening in gel electrophoresis: scaling laws for the dispersion coefficient measured by FRAP.

    PubMed

    Tinland, B; Pernodet, N; Pluen, A

    1998-10-05

    We determined quantitatively the band broadening effect during gel electrophoresis by measuring the longitudinal dispersion coefficient Dx, with a fluorescence recovery after photobleaching setup, coupled to an electrophoretic cell. We carried out measurements as a function of the electric field, the average pore size, and the molecular length of DNA fragments. Our results are in good agreement with the predictions of the biased reptation model with fluctuations described by T. A. Duke et al. [(1992) Physics Review Letters, vol. 69, pp. 3260-3263]. This agreement is observed on single-stranded DNA [persistence length approximately equal to 4 nm; B. Tinland et al. (1997) Macromolecules, vol. 30, pp. 5763-5765] in polyacrylamide gels and on double-stranded DNA (persistence length approximately equal to 50 nm) in agarose gels, two systems where the ratio between the average pore size and the Kuhn length is larger than 1.

  7. Agarose coated spherical micro resonator for humidity measurements.

    PubMed

    Mallik, Arun Kumar; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Farrell, Gerald; Semenova, Yuliya

    2016-09-19

    A new type of fiber optic relative humidity (RH) sensor based on an agarose coated silica microsphere resonator is proposed and experimentally demonstrated. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a tapered fiber with ~3.3 µm waist diameter. A change in the relative humidity of the surrounding the resonator air induces changes in the refractive index (RI) and thickness of the Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, which can be related to the RH value after a suitable calibration. Studies of the repeatability, long-term stability, measurement accuracy and temperature dependence of the proposed sensor are carried out. The RH sensitivity of the proposed sensor depends on the concentration of the agarose gel which determines the initial thickness of the deposited coating layer. Studies of the micro- resonators with coating layers fabricated from gels with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an increase in the initial thickness of the coating material results in an increase in sensitivity but also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The proposed sensor offers the advantages of a very compact form factor, low hysteresis, good repeatability, and low cross sensitivity to temperature.

  8. Dosimetry of {sup 60}Co and {sup 192}Ir gamma-irradiated agarose gels by proton relaxation time measurement and NMR imaging, in a 0-100 Gy dose range

    SciTech Connect

    Chalansonnet, A.; Briguet, A.; Bonnat, J.L.

    1997-05-01

    Localized irradiation of the skin and subcutaneous tissues with large single doses of gamma rays can induce immediate effects characterized by erythema, desquamation, and necrosis. Correlations between the evolution of the lesions and dosimetry studies have to be established by biophysical methods. NMR studies of the effects of an irradiated Fricke solution might be a means of controlling the delivered irradiation doses. After exposition to ionizing radiations, ferrous ions are transformed into ferric ions. Both are paramagnetic ions, and proton spin-lattice relaxation is accelerated depending on the oxidation reaction. In this study, solution of ammonium ferrous sulfate in an acid environment was incorporated into a gelling substance made with agarose, so that T{sub 1} weighted image contrast could be used to detect ferric ion formation. Experiments with {sup 192}Ir and {sup 90}Co gamma rays with doses in the 0 to 100 Gy range were conducted with Fe{sup 2+} concentrations of 0.5, 1, 1.5, and 2 mM in a gelling substance containing 4% agarose. A relationship was established between the amount of Fe{sup 3+} created and the spin-lattice proton relaxation rate, which led to a straightforward dose-effect relation. The use of such high doses allowed us to reproduce realistic conditions of accidental overexposure. A linear relationship was obtained between the doses absorbed and the NMR parameters measured (T{sub 1} and relative image intensity). 17 refs., 3 figs., 1 tab.

  9. Fabrication of Self-Healable and Patternable Polypyrrole/Agarose Hybrid Hydrogels for Smart Bioelectrodes.

    PubMed

    Park, Nokyoung; Chae, Seung Chul; Kim, Il Tae; Hur, Jaehyun

    2016-02-01

    We present a new class of electrically conductive, mechanically moldable, and thermally self-healable hybrid hydrogels. The hybrid gels consist of polypyrrole and agarose as the conductive component and self-healable matrix, respectively. By using the appropriate oxidizing agent under conditions of mild temperature, the polymerization of pyrrole occurred along the three-dimensional network of the agarose hydrogel matrix. In contrast to most commercially available hydrogels, the physical crosslinking of agarose gel allows for reversible gelation in the case of our hybrid gel, which could be manipulated by temperature variation, which controls the electrical on/off behavior of the hybrid gel electrode. Exploiting this property, we fabricated a hybrid conductive hydrogel electrode which also self-heals thermally. The novel composite material we report here will be useful for many technological and biological applications, especially in reactive biomimetic functions and devices, artificial muscles, smart membranes, smart full organic batteries, and artificial chemical synapses.

  10. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.

    PubMed

    Zignego, Donald L; Jutila, Aaron A; Gelbke, Martin K; Gannon, Daniel M; June, Ronald K

    2014-06-27

    Cartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25-200kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction. The first objective of this study was to analyze the spatial variability of applied mechanical deformations in physiologically stiff agarose on cellular and sub-cellular length scales. Fluorescent microspheres were embedded in physiologically stiff agarose hydrogels. Microsphere positions were measured via confocal microscopy and used to calculate displacement and strain fields as a function of spatial position. The second objective was to assess the feasibility of encapsulating primary human chondrocytes in physiologically stiff agarose. The third objective was to determine if primary human chondrocytes could deform in high-stiffness agarose gels. Primary human chondrocyte viability was assessed using live-dead imaging following 24 and 72h in tissue culture. Chondrocyte shape was measured before and after application of 10% compression. These data indicate that (1) displacement and strain precision are ~1% and 6.5% respectively, (2) high-stiffness agarose gels can maintain primary human chondrocyte viability of >95%, and (3) compression of chondrocytes in 4.5% agarose can induce shape changes indicative of cellular compression. Overall, these results demonstrate the feasibility of using high-concentration agarose for applying in vitro compression to chondrocytes as a model for understanding how chondrocytes respond to in vivo loading.

  11. A simple and effective SuperBuffer for DNA agarose electrophoresis.

    PubMed

    Zhang, Jun-He; Wang, Fang; Wang, Tian-Yun

    2011-11-01

    In the paper, we describe a unique effective electrophoresis buffer for DNA agarose electrophoresis, called SuperBuffer. Using this buffer, electrophoresis could be performed within 10 min at voltages as high as 25V/cm. In addition, DNA fragments of different lengths could be isolated clearly even at lower agarose gel concentrations and the DNA recovery efficiency was higher than that of the TAE/TBE running buffers. The SuperBuffer still retained its electrophoretic effect even after several uses.

  12. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction.

    PubMed

    Jutila, Aaron A; Zignego, Donald L; Schell, William J; June, Ronald K

    2015-05-01

    In articular cartilage, chondrocytes reside within a gel-like pericellular matrix (PCM). This matrix provides a mechanical link through which joint loads are transmitted to chondrocytes. The stiffness of the PCM decreases in the most common degenerative joint disease, osteoarthritis. To develop a system for modeling the stiffness of both the healthy and osteoarthritic PCM, we determined the concentration-stiffness relationships for agarose. We extended these results to encapsulate chondrocytes in agarose of physiological stiffness. Finally, we assessed the relevance of stiffness for chondrocyte mechanotransduction by examining the biological response to mechanical loading for cells encapsulated in low- and high-stiffness gels. We achieved agarose equilibrium stiffness values as large as 51.3 kPa. At 4.0% agarose, we found equilibrium moduli of 34.3 ± 1.65 kPa, and at 4.5% agarose, we found equilibrium moduli of 35.7 ± 0.95 kPa. Cyclical tests found complex moduli of ~100-300 kPa. Viability was >96% for all studies. We observed distinct metabolomic responses in >500 functional small molecules describing changes in cell physiology, between primary human chondrocytes encapsulated in 2.0 and 4.5% agarose indicating that the gel stiffness affects cellular mechanotransduction. These data demonstrate both the feasibility of modeling the chondrocyte pericellular matrix stiffness and the importance of the physiological pericellular stiffness for understanding chondrocyte mechanotransduction.

  13. A new preclinical 3-dimensional agarose colony formation assay.

    PubMed

    Kajiwara, Yoshinori; Panchabhai, Sonali; Levin, Victor A

    2008-08-01

    The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines. Colonies were grown in a two-tiered agarose that had 0.7% agarose on the bottom and 0.3% agarose on top. We then studied the effects of DFMO, carboplatin, and SAHA over a 3-log dose range and over multiple days of drug exposure. Using GelCount we approximated the area under the curve (AUC) of colony volumes as the sum of colony volumes (microm2xOD) in each plate to calculate IC50 values. Adenocarcinoma colonies were recognized by GelCount scanning at 3-4 days, while it took 6-7 days to detect glioma colonies. The growth rate of MiaPaCa and SW480 cells was rapid, with 100 colonies counted in 5-6 days; glioma cells grew more slowly, with 100 colonies counted in 9-10 days. Reliable log dose versus AUC curves were observed for all drugs studied. In conclusion, the GelCount method that we describe is more quantitative than traditional colony assays and allows precise study of drug effects with respect to both dose and time of exposure using fewer culture plates.

  14. Fabrication of superporous agarose beads for protein adsorption: effect of CaCO3 granules content.

    PubMed

    Du, Kai-Feng; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2010-09-10

    Agarose gels were fabricated by water-in-oil emulsification with the addition of CaCO(3) granules at 8-16 wt%. Thus agarose beads of different superporosities were produced after dissolving the solid porogen. The superporous agarose (SA) and homogeneous agarose gels were double cross-linked and modified with diethylaminoethyl chloride to produce anion exchangers. We have proposed to use a superporous replica (porous titania microspheres) to examine the superporous structure and pore size distribution of the soft gel. The replica was prepared with the agarose gel entrapping CaCO(3) granules by a sol-gel-templating method. It was found that the superpores created by CaCO(3) granules were uniformly distributed and ranged from 0.95 microm to 1.33 microm. The physical properties of the gels were significantly affected by the porogen content. Importantly, by increasing the solid porogen to 12 wt%, the bed permeability and effective porosity increased about 48% and 33%, respectively. Further increase in the porogen to 16 wt% led to a decrease of the mechanical strength. With increasing superpores in the beads, the dynamic adsorption capacity of the packed columns increased obviously at 305-916 cm/h. Besides, the column efficiency changed less with increasing flow velocity up to 1200 cm/h. It was concluded that the use of 12 wt% CaCO(3) granules in agarose solution was beneficial for the fabrication of the SA gel with good mechanical stability and promising performance for protein chromatography.

  15. A microfluidic device for on-chip agarose microbead generation with ultralow reagent consumption.

    PubMed

    Desbois, Linda; Padirac, Adrien; Kaneda, Shohei; Genot, Anthony J; Rondelez, Yannick; Hober, Didier; Collard, Dominique; Fujii, Teruo

    2012-01-01

    Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the "push-pull" method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications.

  16. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    PubMed

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering.

  17. Interfacing solid-state nanopores with gel media to slow DNA translocations.

    PubMed

    Waugh, Matthew; Carlsen, Autumn; Sean, David; Slater, Gary W; Briggs, Kyle; Kwok, Harold; Tabard-Cossa, Vincent

    2015-08-01

    We demonstrate the ability to slow DNA translocations through solid-state nanopores by interfacing the trans side of the membrane with gel media. In this work, we focus on two reptation regimes: when the DNA molecule is flexible on the length scale of a gel pore, and when the DNA behaves as persistent segments in tight gel pores. The first regime is investigated using agarose gels, which produce a very wide distribution of translocation times for 5 kbp dsDNA fragments, spanning over three orders of magnitude. The second regime is attained with polyacrylamide gels, which can maintain a tight spread and produce a shift in the distribution of the translocation times by an order of magnitude for 100 bp dsDNA fragments, if intermolecular crowding on the trans side is avoided. While previous approaches have proven successful at slowing DNA passage, they have generally been detrimental to the S/N, capture rate, or experimental simplicity. These results establish that by controlling the regime of DNA movement exiting a nanopore interfaced with a gel medium, it is possible to address the issue of rapid biomolecule translocations through nanopores-presently one of the largest hurdles facing nanopore-based analysis-without affecting the signal quality or capture efficiency.

  18. Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications

    PubMed Central

    Priya, Murali Vishnu; Kumar, Rajendran Arun; Sivashanmugam, Amirthalingam; Nair, Shantikumar Vasudevan; Jayakumar, Rangasamy

    2015-01-01

    Injectable hydrogels are gaining popularity as tissue engineering constructs because of their ease of handling and minimal invasive delivery. Making hydrogels from natural polymers helps to overcome biocompatibility issues. Here, we have developed an Amorphous Chitin (ACh)-Agarose (Agr) composite hydrogel using a simpletechnique. Rheological studies, such as viscoelastic behavior (elastic modulus, viscous modulus, yield stress, and consistency), inversion test, and injectability test, were carried out for different ACh-Agr concentrations. The composite gel, having a concentration of 1.5% ACh and 0.25% Agr, showed good elastic modulus (17.3 kPa), yield stress (3.8 kPa), no flow under gravity, injectability, and temperature stability within the physiological range. Based on these studies, the optimum concentration for injectability was found to be 1.5% ACh and 0.25% Agr. This optimized concentration was used for further studies and characterized using FT-IR and SEM. FT-IR studies confirmed the presence of ACh and Agr in the composite gel. SEM results showed that the lyophilized composite gel had good porosity and mesh like networks. The cytocompatibility of the composite gel was studied using human mesenchymal stem cells (hMSCs). The composite gels showed good cell viability.These results indicated that this injectable composite gel can be used for biomedical applications. PMID:26308065

  19. Pulse Field Gel Electrophoresis

    PubMed Central

    Sharma-Kuinkel, Batu K.; Rude, Thomas H.; Fowler, Vance G.

    2015-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  20. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  1. 21 CFR 172.255 - Polyacrylamide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Films and Related Substances § 172.255 Polyacrylamide. Polyacrylamide containing not more than 0.2 percent of acrylamide monomer may be safely used as a film former in the imprinting of soft-shell...

  2. 21 CFR 172.255 - Polyacrylamide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Films and Related Substances § 172.255 Polyacrylamide. Polyacrylamide containing not more than 0.2 percent of acrylamide monomer may be safely used as a film former in the imprinting of soft-shell...

  3. 21 CFR 172.255 - Polyacrylamide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Films and Related Substances § 172.255 Polyacrylamide. Polyacrylamide containing not more than 0.2 percent of acrylamide monomer may be safely used as a film former in the imprinting of soft-shell...

  4. 21 CFR 172.255 - Polyacrylamide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Films and Related Substances § 172.255 Polyacrylamide. Polyacrylamide containing not more than 0.2 percent of acrylamide monomer may be safely used as a film former in the imprinting of soft-shell...

  5. An inexpensive microslab gel DNA electrophoresis system with real-time fluorescence detection.

    PubMed

    Chen, Xiaojia; Ugaz, Victor M

    2006-02-01

    In this paper, we describe the construction of a simple yet powerful gel electrophoresis apparatus that can be used to perform size-selective separations of DNA fragments in virtually any laboratory. This system employs a microslab gel format with a novel gel casting technique that eliminates the need for delicate combs to define sample loading wells. The compact size of the microslab gel format allows rapid separations to be performed at low voltages using submicroliter sample volumes. Real time fluorescence detection of the migrating DNA fragments is accomplished using an inexpensive digital microscope that directly connects to any PC with a USB interface. The microscope is readily adaptable for this application by replacing its white light source with a blue light-emitting diode (LED) and adding an appropriate emission filter. Both polyacrylamide and agarose gels can be used as separation matrices. Separation performance was characterized using standard dsDNA ladders, and correct sizing of a 191 bp PCR product was achieved in 15 min. The low cost and simplicity of this system makes it ideally suited for use in a variety of laboratory and educational settings.

  6. Agarose-based microfluidic device for point-of-care concentration and detection of pathogen.

    PubMed

    Li, Yiwei; Yan, Xinghua; Feng, Xiaojun; Wang, Jie; Du, Wei; Wang, Yachao; Chen, Peng; Xiong, Liang; Liu, Bi-Feng

    2014-11-04

    Preconcentration of pathogens from patient samples represents a great challenge in point-of-care (POC) diagnostics. Here, a low-cost, rapid, and portable agarose-based microfluidic device was developed to concentrate biological fluid from micro- to picoliter volume. The microfluidic concentrator consisted of a glass slide simply covered by an agarose layer with a binary tree-shaped microchannel, in which pathogens could be concentrated at the end of the microchannel due to the capillary effect and the strong water permeability of the agarose gel. The fluorescent Escherichia coli strain OP50 was used to demonstrate the capacity of the agarose-based device. Results showed that 90% recovery efficiency could be achieved with a million-fold volume reduction from 400 μL to 400 pL. For concentration of 1 × 10(3) cells mL(-1) bacteria, approximately ten million-fold enrichment in cell density was realized with volume reduction from 100 μL to 1.6 pL. Urine and blood plasma samples were further tested to validate the developed method. In conjugation with fluorescence immunoassay, we successfully applied the method to the concentration and detection of infectious Staphylococcus aureus in clinics. The agarose-based microfluidic concentrator provided an efficient approach for POC detection of pathogens.

  7. Nanotube-grafted polyacrylamide hydrogels for electrophoretic protein separation.

    PubMed

    Gunavadhi, Murugappan; Maria, Lourdusamy Arul Antony; Chamundeswari, Vidya N; Parthasarathy, Meera

    2012-04-01

    Multiwalled carbon nanotube-modified polyacrylamide gels have been employed for the electrophoretic separation of proteins. Two approaches are compared in this investigation, one using nanotubes only as fillers inside the gel matrix and the other using nanotubes as catalyst for polymerization of acrylamide. In both the cases, polymerization of acryl-amide/bisacrylamide has been carried out in situ in the presence of nanotubes dispersed in the gel buffer containing monomer and cross-linker. In the former case, initiator and catalyst have been added after ultrasonication of nanotubes in the gel buffer mixture where the nanotubes play the role of filler. On the other hand, the second approach precludes use of catalyst and involves addition of initiator alone during ultrasonication of nanotubes in the gel buffer containing monomer and cross-linker, which leads to the formation of nanotube-grafted gel after 25 min. When nanotubes are used as a catalyst instead of N,N,N',N'-tetramethylethylenediamine, pore size distribution of the gel matrix and linearity of molecular weight calibration plots are found to be improved. In addition, other issues associated with the use of an external catalyst like handling the moisture-sensitive and corrosive reagent and associated irreproducibility are addressed in this approach.

  8. Network generation enhances interpretation of proteomics data sets by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    PubMed

    Wang, Xijun; Zhang, Aihua; Sun, Hui; Wu, Gelin; Sun, Wenjun; Yan, Guangli

    2012-10-21

    Recent advances in proteomic technologies have enabled us to create detailed protein-protein interaction maps in diseases. As the size of the interaction dataset increases, powerful computational methods are required in order to effectively interpret network models from large scale interactome data. In this study, we carried out comparative proteomics to construct and identify the proteins networks associated with hepatic injury (HI) which are largely unknown, as a case study. All proteins expressed were separated and identified by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Protein-interacting networks and pathways were mapped using STRING analysis program. We have performed for the first time a comprehensive profiling of changes in protein expression of HI rats, to uncover the networks altered by treated with CCl(4). Identification of fifteen spots (seven over-expressed and eight under-expressed) were established by MALDI-TOF/TOF MS. These proteins were subjected to functional pathway analysis using STRING software for better understanding of the biological context of the identified proteins. It suggested that modulation of multiple vital physiological pathways including DNA repair process, cell apoptosis, oxidation reduction, signal transduction, metabolic process, intracellular signaling cascade, regulation of biological processes, cell communication, regulation of cellular process, and molecular transport. In summary, the present study provides the first protein-interacting network maps and novel insights into the biological responses and potential pathways of HI. The generation of protein interaction networks clearly enhances the interpretation of proteomic data, particularly in respect of understanding molecular mechanisms of panel protein biomarkers.

  9. Electrode films of porous agarose: The effects of physical structure on electron transport processes. [Impregnated with Nafion; immobilized electroactive species

    SciTech Connect

    Moran, K.D.

    1988-02-01

    Potential use of chemically modified electrodes in electrocatalysis has stimulated interest in creation and characterization of electrode films for reagent immobilization. We have created two highly porous electrocatalyst support matrices, with high rates of electron transport. Both are based on immobilization of reagents in agarose gel. In one case, Nafion was impregnated into agarose gel films. Diffusion of methyl viologen in Nafionagarose matrices are higher than in Nafion. In Nafion, the diffusion coefficient decreases with increasing methyl viologen concentration, while in Nafionagarose, the opposite dependence is observed. The faster rate of electron transport in Nafionagarose films is related to the heterogeneous structure and the coupling of the diffusion pathways. In the second application of agarose gels as an electrode coating material, agarose hydroxyl groups were activated in 1,1'carbonyldiimidazole and subsequently reacted with amine derivatives of electroactive mediators. Electron transport between the electroactive sites in the gel is very rapid (on the order of 10/sup -7/ cm/sup 2/s. Interpreting the data in light of the Dahms-Ruff description of electron transport shows that the rate of electron transport through both ferrocene and viologen derivatized gels is limited by the rate of electron self-exchange of the species. 22 figs., 15 tabs

  10. A simple monolithic column electroelution for protein recovery from gel electrophoresis.

    PubMed

    Li, Guo-Qing; Shao, Jing; Guo, Chen-Gang; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi

    2012-11-01

    Protein recovery from gel electrophoresis plays an important role in functional genomics and proteomics but faces a series of issues (e.g., complex procedure, low recovery, long experimental time). In this study, a monolithic column electroelution (MCE) was developed for protein recovery from gel electrophoresis. With the model proteins of bovine serum albumin (BSA), hemoglobin (Hb), and myoglobin (Mb), the developed device and method were compared with common electroelution procedures in agarose gel electrophoresis (AGE). The comparative experiments revealed that (i) the protein recovery achieved with the developed device was greater than 83%, much higher than the 41% to 50% achieved with the common devices; (ii) the running time to obtain 70% recovery was approximately 15 min, evidently shorter than the 240 min with the common devices; and (iii) the device and procedure were simple and less time-consuming as compared with those of the common devices. It was observed that the serum protein bands cut from polyacrylamide gel electrophoresis could be transferred into solution in 15 to 30 min with 82% yield. The device, along with its relevant procedure, has potential use in protein extraction and proteomics as well as in DNA studies.

  11. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  12. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  13. Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis.

    PubMed

    Lee, Der-Yen; Chang, Geen-Dong

    2015-01-01

    Diffusion blotting method can couple immunoblotting analysis with another biochemical technique in a single polyacrylamide gel, however, with lower transfer efficiency as compared to the conventional electroblotting method. Thus, with diffusion blotting, protein blots can be obtained from an SDS polyacrylamide gel for zymography assay, from a native polyacrylamide gel for electrophoretic mobility shift assay (EMSA) or from a 2-D polyacrylamide gel for large-scale screening and identification of a protein marker. Thereafter, a particular signal in zymography, electrophoretic mobility shift assay, and 2-dimensional gel can be confirmed or identified by simultaneous immunoblotting analysis with a corresponding antiserum. These advantages make diffusion blotting desirable when partial loss of transfer efficiency can be tolerated or be compensated by a more sensitive immunodetection reaction using enhanced chemiluminescence detection.

  14. Functional modification of agarose: a facile synthesis of a fluorescent agarose-tryptophan based hydrogel.

    PubMed

    Kondaveeti, Stalin; Prasad, Kamalesh; Siddhanta, A K

    2013-08-14

    Microwave assisted facile synthesis of a fluorescent agarose-l-tryptophan hydrogel material employing carbodiimide chemistry (dicyclohexylcarbodiimide/4-dimethylaminopyridine; DCC/DMAP) has been described. The product formed fluorescent hydrogel at 1-1.5% (w/v), exhibiting fluorescence emission in water (λmax 350 nm; 1x10(-4)M), which was significantly higher (ca. 65%) than that of tryptophan at the same concentration. Subsequently, the agarose ester was cross linked with the natural cross linker genipin to yield a blue hydrogel (G-Ag-TrpEst), confirming thereby the insertion of tryptophan moiety on to agarose backbone. Both the ester and cross linked hydrogels demonstrated gelling characteristics similar to agarose and were stable across a wide range of pH media (pHs 1.2, 7.0 and 12.5) under ambient conditions. These tryptophan containing fluorescent hydrogel materials may find applications in biomedical and pharmaceutical industries as potential radical scavengers and sensors.

  15. Crosslinking of agarose bioplastic using citric acid.

    PubMed

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls.

  16. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  17. An overlay gel method for identification and isolation of bacterial beta-lactamases.

    PubMed

    Eftekhar, Fereshteh; Rafiee, Roya

    2006-01-01

    A modification of the iodometric technique using an overlay gel was employed for fast identification and isolation of beta-lactamase types TEM, SHV and AmpC from non-denaturing gels. Osmotic shock preparations of the three beta-lactamases were run on polyacrylamide gels without SDS and ampicillin containing overlay gels were flooded with the iodine solution before being placed on polyacrylamide gel strips. Distinct clear bands appeared in dark blue backgrounds indicating beta-lactamase activity.

  18. Comparison of oligonucleotide migration in a bicontinuous cubic phase of monoolein and water and in a fibrous agarose hydrogel.

    PubMed

    Sanandaji, Nima; Carlsson, Nils; Voinova, Marina; Akerman, Björn

    2006-08-01

    Porous hydrogels such as agarose are commonly used to analyze DNA and water-soluble proteins by electrophoresis. More recently lyotropic liquid crystals, such as the diamond cubic phase formed by the lipid monoolein and water, has become a new type of well-defined porous structure of interest for both hydrophilic and amphiphilic analytes. Here we compare these two types of matrixes by investigating the nature of retardation they confer to an oligonucleotide that migrates in their respective aqueous phases. The retardation for a 25-mer oligonucleotide was found to be about 35-fold stronger in the cubic phase than in an agarose hydrogel modified to have the same average pore size. According to modelling, the strong retardation is primarily due to the fact that hydrodynamic interaction with the continuous monoolein membrane is a stronger source of friction than the steric interactions (collisions) with discrete gel fibres. A secondary effect is that the regular liquid crystal has a narrower pore-size distribution than the random network of the agarose gel. In agreement with experiments, these two effects together predict that the retardation in the cubic phase is a 30-fold stronger than in an agarose gel with the same average pore radius.

  19. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.

    PubMed

    Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S

    2013-11-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells.

  20. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering

    PubMed Central

    Rennerfeldt, DA; Renth, AN; Talata, Z; Gehrke, SH; Detamore, MS

    2013-01-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. PMID:23932504

  1. Evaluation du potentiel radiosensibilisateur ou radioprotecteur/antioxydant de quelques composes selectionnes par dosimetrie par gel de polyacrylamide et dosimetre de Fricke, et utilisation de la filamentation par impulsion laser infrarouge fenitoseconde comme un nouveau et puissant faisceau pour la radiotherapie du cancer

    NASA Astrophysics Data System (ADS)

    Meesat, Ridthee

    In radiation treatment, a sufficiently high radiation dose must be delivered to the tissue volumes containing the tumor cells while the lowest possible dose should be deposited in surrounding healthy tissue. We developed an original approach that is fast and easy to implement for the early assessment of the efficiency of radiation sensitizers and protectors. In addition, we characterized a new femtosecond laser pulse irradiation technique. We are able to deposit a considerable dose with a very high dose rate inside a well-controlled macroscopic volume without deposition of energy in front or behind the target volume. The radioprotective efficiency was measured by irradiation of the Fricke solution incorporating a compound under study and measuring the corresponding production of ferric ions G(Fe3+). The production of ferric ions is most sensitive to the radical species produced in the radiolysis of water. We studied experimentally and simulated with a full Monte-Carlo computer code the radiation-induced chemistry of Fricke/cystamine solutions. Results clearly indicate that the protective effect of cystamine originates from its radical-capturing ability, which allows this compound to compete with the ferrous ions for the various free radicals - especially ·OH radicals and H· atoms - formed during irradiation of the surrounding water. The sensitizing capacity of radiation sensitizers was measured by irradiation of a polyacrylamide gel (PAG) dosimeter incorporating a compound under study and measuring the corresponding increase in the gradient between spin-spin relaxation rate (R2) and absorbed dose. We measured an irradiation energy-dependent increase in R 2-dose sensitivity for halogenated compounds or a decrease for radioprotectors. Finally, we studied a novel laser irradiation method called "filamentation". We showed that this phenomenon results in an unprecedented deposition of energy and the dose rate thus achieved exceeds by orders of magnitude values

  2. Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Kikuta, Koichi; Ohtsuki, Chikara

    2010-08-01

    Calcium phosphate crystals were formed in polyacrylamide (PAAm) hydrogels containing phosphate ions by diffusion of calcium ions from calcium nitrate (Ca(NO 3) 2) solutions covering the gels. Changes in crystalline phases and crystal morphology of calcium phosphate, and in ion concentrations of the Ca(NO 3) 2 solutions were investigated as a function of reaction time. Single or two coexisting crystalline phases of calcium phosphate, hydroxyapatite (HAp), HAp/dicalcium phosphate dihydrate (DCPD) or octacalcium phosphate (OCP)/DCPD were formed in the gels. HAp crystals are formed near the surface of the gels. The dense HAp layer and HAp/DCPD layer prevented diffusion of calcium ions from the Ca(NO 3) 2 solution, thus formation of calcium phosphate in the gel phase was inhibited. Formation of DCPD was observed to follow the formation of OCP or HAp. The size of the OCP crystals gradually increased with reaction time, while changes in size of HAp crystals were not observed. The reaction time required for DCPD formation depended on the degree of supersaturation with respect to DCPD in the systems. DCPD formed within 1 day under high supersaturation conditions, whereas it formed at 10 days in low supersaturation conditions.

  3. Agarose hydrogels embedded with pH-responsive diblock copolymer micelles for triggered release of substances.

    PubMed

    Jin, Naixiong; Morin, Emily A; Henn, Daniel M; Cao, Yu; Woodcock, Jeremiah W; Tang, Shuangcheng; He, Wei; Zhao, Bin

    2013-08-12

    Hybrid agarose hydrogels embedded with pH-responsive diblock copolymers micelles were developed to achieve functional hydrogels capable of stimulus-triggered drug release. Specifically, a well-defined poly(ethylene oxide) (PEO)-based diblock copolymer, PEO-b-poly(2-(N,N-diisopropylamino)ethyl methacrylate) (PEO(113)-b-PDPAEMA(31), where the subscripts represent the degrees of polymerization of two blocks), was synthesized by atom transfer radical polymerization. PDPAEMA is a pH-responsive polymer with a pKa value of 6.3. The PEO(113)-b-PDPAEMA(31) micelles were formed by a solvent-switching method, and their pH-dependent dissociation behavior was investigated by dynamic light scattering and fluorescence spectroscopy. Both studies indicated that the micelles were completely disassembled at pH = 6.40. The biocompatibility of PEO(113)-b-PDPAEMA(31) micelles was demonstrated by in vitro primary cortical neural culture. Hybrid agarose hydrogels were made by cooling 1.0 wt % agarose solutions that contained various amounts of PEO(113)-b-PDPAEMA(31) micelles at either 2 or 4 °C. Rheological measurements showed that the mechanical properties of gels were not significantly adversely affected by the incorporation of diblock copolymer micelles with a concentration as high as 5.0 mg/g. Using Nile Red as a model hydrophobic drug, its incorporation into the core of diblock copolymer micelles was demonstrated. Characterized by fluorescent spectroscopy, the release of Nile Red from the hybrid hydrogel was shown to be controllable by pH due to the responsiveness of the block copolymer micelles. Based on the prominent use of agarose gels as scaffolds for cell transplantation for neural repair, the hybrid hydrogels embedded with stimuli-responsive block copolymer micelles could allow the controlled delivery of hydrophobic neuroprotective agents to improve survival of transplanted cells in tune with signals from the surrounding pathological environment.

  4. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  5. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  6. Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34.

    PubMed

    Raj, J; Prasad, S; Sharma, N N; Bhalla, T C

    2010-09-01

    The nitrile hydratase (NHase) of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The resting cells (having NHase activity) (8 %; 1 mL corresponds to 22 mg dry cell mass, DCM) were immobilized in polyacrylamide gel containing 12.5 % acrylamide, 0.6 % bisacrylamide, 0.2 % diammonium persulfate and 0.4 % TEMED. The polyacrylamide entrapped cells (1.12 mg DCM/mL) completely converted acrylonitrile in 3 h at 10 °C, using 0.1 mol/L potassium phosphate buffer. In a partitioned fed batch reactor, 432 g/L acrylamide was accumulated after 1 d. The polyacrylamide discs were recycled up to 3×; 405, 210 and 170 g/L acrylamide was produced in 1st, 2nd and 3rd recycling reactions. In four cycles, a total of 1217 g acrylamide was produced by recycling the same mass of entrapped cells.

  7. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  8. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    PubMed

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  9. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro.

    PubMed

    Yin, Na; Stilwell, Matthew D; Santos, Thiago M A; Wang, Huaping; Weibel, Douglas B

    2015-01-01

    Bacterial cellulose (BC) is a biocompatible hydrogel with a three-dimensional (3-D) structure formed by a dense network of cellulose nanofibers. A limitation of using BC for applications in tissue engineering is that the pore size of the material (∼0.02-10μm) is smaller than the dimensions of mammalian cells and prevents cells from penetrating into the material and growing into 3-D structures that mimic tissues. This paper describes a new route to porous bacterial cellulose (pBC) scaffolds by cultivating Acetobacter xylinum in the presence of agarose microparticles deposited on the surface of a growing BC pellicle. Monodisperse agarose microparticles with a diameter of 300-500μm were created using a microfluidic technique, layered on growing BC pellicles and incorporated into the polymer as A. xylinum cells moved upward through the growing pellicle. Removing the agarose microparticles by autoclaving produced BC gels containing a continuous, interconnected network of pores with diameters ranging from 300 to 500μm. Human P1 chondrocytes seeded on the scaffolds, replicated, invaded the 3-D porous network and distributed evenly throughout the substrate. Chondrocytes grown on pBC substrates displayed a higher viability compared to growth on the surface of unmodified BC substrates. The approach described in this paper introduces a new method for creating pBC substrates with user-defined control over the physical dimensions of the pore network, and demonstrates the application of these materials for tissue engineering.

  10. Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose-chitosan.

    PubMed

    Gómez-Mascaraque, Laura G; Méndez, José Alberto; Fernández-Gutiérrez, Mar; Vázquez, Blanca; San Román, Julio

    2014-02-01

    Hydrogel networks that combine suitable physical and biomechanical characteristics for tissue engineering scaffolds are in demand. The aim of this work was the development of hydrogel networks based on agarose and chitosan using oxidized dextrins as low cytotoxicity crosslinking agents, paying special attention to the study of the influence of the polysaccharide composition and oxidation degree of the dextrins in the final characteristics of the network. The results show that the formation of an interpenetrating or a semi-interpenetrating polymer network was mainly dependent on a minimum agarose content and degree of oxidation of dextrin. Spectroscopic, thermal and swelling analysis revealed good compatibility with an absence of phase separation of polysaccharides at agarose:chitosan proportions of 50:50 and 25:75. The analysis of atomic force microscopy images showed the formation of a fibrillar microstructure whose distribution within the crosslinked chitosan depended mainly on the crosslinker. All materials exhibited the viscoelastic behaviour typical of gels, with a constant storage modulus independent of frequency for all compositions. The stiffness was strongly influenced by the degree of oxidation of the crosslinker. Cellular response to the hydrogels was studied with cells of different strains, and cell adhesion and proliferation was correlated with the homogeneity of the samples and their elastic properties. Some hydrogel formulations seemed to be candidates for tissue engineering applications such as wound healing or soft tissue regeneration.

  11. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

    PubMed

    DeKosky, Brandon J; Dormer, Nathan H; Ingavle, Ganesh C; Roatch, Christopher H; Lomakin, Joseph; Detamore, Michael S; Gehrke, Stevin H

    2010-12-01

    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.

  12. Polyacrylamide Hydrogel Properties for Horticultural Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyacrylamide (PAAm) hydrogels are commonly employed to ensure hydration of the growth media and minimize crop losses during the crop production and postproduction phases in horticulture. However, studies of the effect of these materials have shown that they have a minimal effect on crop life and q...

  13. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.

    PubMed

    Kolanthai, Elayaraja; Abinaya Sindu, P; Thanigai Arul, K; Sarath Chandra, V; Manikandan, E; Narayana Kalkura, S

    2017-01-01

    The powder composites are predominantly used for filling of voids in bone and as drug delivery carrier to prevent the infection or inflammatory reaction in the damaged tissues. The objective of this work was to study the synthesis of agarose encapsulation on carbonated hydroxyapatite powder and their biological and drug delivery properties. Mesoporous, nanosized carbonated hydroxyapatite/agarose (CHAp/agarose) powder composites were prepared by solvothermal method and subsequently calcined to study the physico-chemical changes, if it subjected to thermal exposure. The phase of the as-synthesized powder was CHAp/agarose whereas the calcinated samples were non-stoichiometric HAp. The CHAp/agarose nanorods were of length 10-80nm and width 40-190nm for the samples synthesized at temperatures 120°C (ST120) and 150°C (ST150). The calcination process produced spheres (10-50nm) and rods with reduced size (40-120nm length and 20-30nm width). Composites were partially dissolved in SBF solution followed by exhibited better bioactivity than non-stoichiometric HAp confirmed by gravimetric method. Hemo and biocompatibility remained unaffected by presence of agarose or carbonate in the HAp. Specific surface area of the composites was high and exhibited an enhanced amoxicillin and 5-fluorouracil release than the calcined samples. The composites demonstrated a strong antimicrobial activity against E. coli, S. aureus and S. epidermidis. The ST120 showed prolonged drug (AMX and 5-Fcil) release and antimicrobial efficacy than ST150 and calcined samples. This technique would be simple and rapid for composites preparation, to produce high quality crystalline, resorbable, mesoporous and bioactive nanocomposite (CHAp/agarose) powders. This work provides new insight into the role of agarose coated on bioceramics by solvothermal technique and suggests that CHAp/agarose composites powders are promising materials for filling of void in bone and drug delivery applications.

  14. Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose.

    PubMed

    Guzik, Urszula; Hupert-Kocurek, Katarzyna; Krysiak, Marta; Wojcieszyńska, Danuta

    2014-01-01

    Microbial intradiol dioxygenases have been shown to have a great potential for bioremediation; however, their structure is sensitive to various environmental and chemical agents. Immobilization techniques allow for the improvement of enzyme properties. This is the first report on use of glyoxyl agarose and calcium alginate as matrixes for the immobilization of protocatechuate 3,4-dioxygenase. Multipoint attachment of the enzyme to the carrier caused maintenance of its initial activity during the 21 days. Immobilization of dioxygenase in calcium alginate or on glyoxyl agarose resulted in decrease in the optimum temperature by 5 °C and 10 °C, respectively. Entrapment of the enzyme in alginate gel shifted its optimum pH towards high-alkaline pH while immobilization of the enzyme on glyoxyl agarose did not influence pH profile of the enzyme. Protocatechuate 3,4-dioygenase immobilized in calcium alginate showed increased activity towards 2,5-dihydroxybenzoate, caffeic acid, 2,3-dihydroxybenzoate, and 3,5-dihydroxybenzoate. Slightly lower activity of the enzyme was observed after its immobilization on glyoxyl agarose. Entrapment of the enzyme in alginate gel protected it against chelators and aliphatic alcohols while its immobilization on glyoxyl agarose enhanced enzyme resistance to inactivation by metal ions.

  15. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  16. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  17. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  18. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conditions: (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not... polyacrylamide resin contains not more than 0.05 percent residual acrylamide. (c) The modified...

  19. 21 CFR 173.10 - Modified polyacrylamide resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyacrylamide resin is produced by the copolymerization of acrylamide with not more than 5-mole percent β....05 percent residual acrylamide. (c) The modified polyacrylamide resin is used as a flocculent in...

  20. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  1. Thermoreversible gelation in aqueous binary solvents of chemically modified agarose.

    PubMed

    Dahmani, Mohammed; Ramzi, Mohamed; Rochas, Cyrille; Guenet, Jean-Michel

    2003-01-15

    The thermoreversible gelation of chemically modified agarose has been studied in aqueous binary solvents (dimethyl sulfoxide and a series of formamide) by differential calorimetry, mechanical testing, and small-angle neutron scattering. The temperature-composition phase diagrams have been established. It is concluded that gelation is promoted by the formation of ternary complexes modified agarose/water/cosolvent, wherein the cosolvent mediates the interaction between chains through the formation of electrostatic interactions.

  2. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain.

    PubMed

    Simmons, Chelsey S; Ribeiro, Alexandre J S; Pruitt, Beth L

    2013-02-21

    Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes.

  3. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  4. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors.

    PubMed

    Tomizawa, M; Latli, B; Casida, J E

    1996-10-01

    Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.

  5. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study.

    PubMed

    Zheng, Li; Hu, Xuefeng; Huang, Yuanjie; Xu, Guojie; Yang, Jinsong; Li, Li

    2015-01-29

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo 'bioreactors' for the screening of favorable cell vehicles for tumor engineering in vitro.

  6. Mechanical Properties of DNA-Crosslinked Polyacrylamide Hydrogels with Increasing Crosslinker Density.

    PubMed

    Previtera, Michelle L; Chippada, Uday; Schloss, Rene S; Yurke, Bernard; Langrana, Noshir A

    2012-10-01

    DNA-cross-linked polyacrylamide hydrogels (DNA gels) are dynamic mechanical substrates. The addition of DNA oligomers can either increase or decrease the crosslinker density to modulate mechanical properties. These DNA-responsive gels show promise as substrates for cell culture and tissue-engineering applications, since the gels allow time-dependent mechanical modulation. Previously, we reported that fibroblasts plated on DNA gels responded to modulation in elasticity via an increase or decrease in crosslinker density. To better characterize fibroblast mechanical signals, changes in stress and elastic modulus of DNA gels were measured over time as crosslinker density altered. In a previous study, we observed that as crosslinker density decreased, stress was generated, and elasticity changed over time; however, we had not evaluated stress and elastic modulus measurements of DNA gels as crosslinker density increased. Here, we completed this set of fibroblast studies by reporting stress and elastic modulus measurements over time as the crosslinker density increased. We found that the stress generated and the elastic modulus alterations were correlated. Hence, it seemed impossible to separate the effect of stress from the effect of modulus changes for fibroblasts plated on DNA gels. Yet, previous results and controls revealed that stress contributed to fibroblast behavior.

  7. Conducting polymer electrodes for gel electrophoresis.

    PubMed

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  8. Quantification of viscoelastic effects of polyacrylamide solutions

    SciTech Connect

    Heemskerk, J.; Holtslag, R.J.; Janssen-van Rosmalen, R.; Teeuw, D.

    1984-04-01

    Beyond a critical rate of flow in cores the viscoelasticity of polyacrylamide solutions is reflected by shear thickening behaviour. Practical information is provided on the critical flow rate and magnitude of shear thickening and their dependency on core permeability, temperature, molecular weight and concentration of commercial polymers. To describe the onset of shear thickening, critical Deborah numbers were calculated using fluid relaxation times obtained by oscillation rheometry. Using three core-flow parameters, viz. the critical flow rate and two powerlaw exponents, the viscoelastic effects are quantified.

  9. Functionalized Agarose Self-Healing Ionogels Suitable for Supercapacitors.

    PubMed

    Trivedi, Tushar J; Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung; Kumar, Arvind

    2015-10-12

    Agarose has been functionalized (acetylated/carbanilated) in an ionic liquid (IL) medium of 1-butyl-3-methylimidazolium acetate at ambient conditions. The acetylated agarose showed a highly hydrophobic nature, whereas the carbanilated agarose could be dissolved in water as well as in the IL medium. Thermoreversible ionogels were obtained by cooling the IL sols of carbanilated agarose at room temperature. The ionogel prepared from a protic-aprotic mixed-IL system (1-butyl-3-methylimidazolium chloride and N-(2-hydroxyethyl)ammonium formate) demonstrated a superior self-healing property, as confirmed from rheological measurements. The superior self-healing property of such an ionogel has been attributed to the unique inter-intra hydrogen-bonding network of functional groups inserted in the agarose. The ionogel was tested as a flexible solid electrolyte for an activated-carbon-based supercapacitor cell. The measured specific capacitance was found to be comparable with that of a liquid electrolyte system at room temperature and was maintained for up to 1000 charge-discharge cycles. Such novel functionalized-biopolymer self-healing ionogels with flexibility and good conductivity are desirable for energy-storage devices and electronic skins with superior lifespans and robustness.

  10. Purification of radiolabeled RNA products using denaturing gel electrophoresis

    PubMed Central

    Adachi, Hironori; Yu, Yi-Tao

    2014-01-01

    This unit discusses a basic method for purification of radiolabeled RNAs using denaturing polyacrylamide gel electrophoresis. The method consists of a number of experimental procedures, including total RNA preparation from yeast cells, isolation of a specific RNA from total yeast RNA, RNA 3' terminal labeling using nucleotide (5’[32P]pCp) addition (via ligation), denaturing (8 M urea) polyacrylamide gel electrophoresis, and RNA extraction from the gel slice. Key points for achieving good electrophoretic separation of RNA are also discussed. PMID:24510465

  11. Radio-synthesized polyacrylamide hydrogels for proteins release

    NASA Astrophysics Data System (ADS)

    Ferraz, Caroline C.; Varca, Gustavo H. C.; Lopes, Patricia S.; Mathor, Monica B.; Lugão, Ademar B.

    2014-01-01

    The use of hydrogels for biomedical purposes has been extensively investigated. Pharmaceutical proteins correspond to highly active substances which may be applied for distinct purposes. This work concerns the development of radio-synthesized hydrogel for protein release, using papain and bovine serum albumin as model proteins. The polymer was solubilized (1% w/v) in water and lyophilized. The proteins were incorporated into the lyophilized polymer and the hydrogels were produced by simultaneous crosslinking and sterilization using γ-radiation under frozen conditions. The produced systems were characterized in terms of swelling degree, gel fraction, crosslinking density and evaluated according to protein release, bioactivity and cytotoxicity. The hydrogels developed presented different properties as a function of polymer concentration and the optimized results were found for the samples containing 4-5% (w/v) polyacrylamide. Protein release was controlled by the electrostatic affinity of acrylic moieties and proteins. This selection was based on the release of the proteins during the experiment period (up to 50 h), maintenance of enzyme activity and the nanostructure developed. The system was suitable for protein loading and release and according to the cytotoxic assay it was also adequate for biomedical purposes, however this method was not able to generate a matrix with controlled pore sizes.

  12. Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels

    PubMed Central

    Darnell, Max; Sun, Jeong-Yun; Mehta, Manav; Johnson, Chris; Arany, Praveen; Suo, Zhigang

    2013-01-01

    Although hydrogels now see widespread use in a host of applications, low fracture toughness and brittleness have limited their more broad use. As a recently described interpenetrating network (IPN) of alginate and polyacrylamide demonstrated a fracture toughness of ∼9000 J/m2, we sought to explore the biocompatibility and maintenance of mechanical properties of these hydrogels in cell culture and in vivo conditions. These hydrogels can sustain a compressive strain of over 90% with minimal loss of Young's Modulus as well as minimal swelling for up to 50 days of soaking in culture conditions. Mouse mesenchymal stem cells exposed to the IPN gel-conditioned media maintain high viability, and although cells exposed to conditioned media demonstrate slight reductions in proliferation and metabolic activity (WST assay), these effects are abrogated in a dose-dependent manner. Implantation of these IPN hydrogels into subcutaneous tissue of rats for 8 weeks led to mild fibrotic encapsulation and minimal inflammatory response. These results suggest the further exploration of extremely tough alginate/PAAM IPN hydrogels as biomaterials. PMID:23896005

  13. Swelling kinetics of microgels embedded in a polyacrylamide hydrogel matrix.

    PubMed

    Huang, Na; Guan, Ying; Zhu, X X; Zhang, Yongjun

    2014-06-23

    Composite hydrogels--macroscopic hydrogels with embedded microgel particles--are expected to respond to external stimuli quickly because microgels swell much faster than bulky gels. In this work, the kinetics of the pH-induced swelling of a composite hydrogel are studied using turbidity measurements. The embedded microgel is a pH- and thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) microgel and the hydrogel matrix is polyacrylamide. A rapid pH-induced swelling of the embedded microgel particles is observed, confirming that composite hydrogels respond faster than ordinary hydrogels. However, compared with the free microgels, the swelling of the embedded microgel is much slower. Diffusion of OH(-) into the composite hydrogel film is identified as the main reason for the slow swelling of the embedded microgel particles, as the time of the pH-induced swelling of this film is comparable to that of OH(-) diffusion into the film. The composition of the hydrogel matrix does not significantly change the characteristic swelling time of the composite hydrogel film. However, the swelling pattern of the film changes with composition of the hydrogel matrix.

  14. Monolithic cryogels made of agarose-chitosan composite and loaded with agarose beads for purification of immunoglobulin G.

    PubMed

    Sun, Sijuan; Tang, Yuhai; Fu, Qiang; Liu, Xuan; Guo, Li'an; Zhao, Yanding; Chang, Chun

    2012-05-01

    In order to obtain a novel absorbent with high adsorption capacity for the purification of immunoglobulin G (IgG), continuous supermacroporous agarose beads embedded agarose-chitosan composite monolithic cryogels (agarose-chitosan cryogels) were prepared by cryo-copolymerization of agarose-chitosan blend solutions with glutaraldehyde as the crosslinker in the presence of agarose beads. After coupling 2-mercaptopyridine onto divinylsulfone-activated matrix, the obtained cryogels were used for the purification of IgG. The microstructure morphologies of the cryogels were analyzed by scanning electron microscopy. The results showed that the obtained cryogels possess interconnected pores of 10-100 μm size. The specific surface area was 350 m(2)/g with maximum adsorption capacity of IgG 71.4 mg/g. The cryogels showed workable stability, and can be reused at least 15 times without significant loss in adsorption capacity. IgG purity after one-step purification from human plasma was monitored by electrophoresis and the average recovery was estimated to be 90%.

  15. Diffusion of polymer gel implants.

    PubMed

    Davis, B K

    1974-08-01

    Crosslinked polyacrylamide and polyvinylpyrrolidone gels have been used to subcutaneously implant (125)I-labeled immunoglobulin, (125)I-labeled luteinizing hormone, (125)I-labeled bovine serum albumin, (125)I-labeled insulin, [(3)H]prostaglandin F(2alpha), and Na(125)I into hamsters. From the rates of absorption of the solutes, their diffusion coefficients were determined. The diffusion coefficients showed a logarithmic dependence on implant polymer concentration and solute molecular weight. Release of the solutes from gel preparations incubated 10 mM phosphate buffer (pH 7.2) at 37 degrees revealed a similar relationship between solute diffusion coefficient, molecular weight, and the concentration of polymer. A general equation was derived that gives the expected diffusion coefficient of a substance in a polymer gel from its molecular weight, diffusion coefficient in solvent, and polymer concentration of the gel.

  16. A simple and cost-effective solid-phase protein nano-assay using polyacrylamide-coated glass plates.

    PubMed

    Krajewski, Wladyslaw A

    2015-02-01

    A new solid-phase protein nano-assay is suggested for simple and sensitive estimation of protein content in sample buffers (a 1-μl sample is sufficient for analysis). The assay is different from conventional "on-filter" assays in that it uses inexpensive fully transparent polyacrylamide gel (PAAG)-coated glass plates as solid support and, thus, combines the convenience of "on-membrane" staining with the sensitivity and ease of documentation of "in-gel" staining (and, therefore, is especially suited for standard lab gel documentation systems). The PAAG plates assay is compatible with all dyes for in-gel protein staining. Depending on the sensitivity of the staining protocol, the assay can be used in macro-, micro-, and nano-assay formats. We also describe a low-cost two-component colloidal Coomassie brilliant blue G-250 (CBB G-250) staining protocol for fast quantitative visualization of proteins spotted on a PAAG plate (the detection limit is up to 2 ng of proteins even when using a Nikon CoolPix digital camera and white light transilluminator instead of a gel scanner). The suggested colloidal CBB G-250 protocol could also be used for visualizing nano-amounts of proteins in polyacrylamide gels. The PAAG plate assay could be useful for proteomic applications and, in general, for all cases where a fast, sensitive, and easily documentable cost-effective solid-phase protein assay is required.

  17. Data of microstructure and mechanical properties of carbon foams derived from sucrose/polyacrylamide hydrogel

    PubMed Central

    Yao, Yao; Chen, Fei; Chen, Xi; Shen, Qiang; Zhang, Lianmeng

    2016-01-01

    An easy method that combined gel casting and physical foaming was used to fabricate modified carbon foams. The design of carbon foams from sucrose/polyacrylamide hydrogel is a new concept for controlling the microstructure and improving the compressive properties of carbon foams. This article provides the micrographs obtained from optical and scanning electron microscope for foaming solution and carbon foams. Weight loss data used to construct the thermo-gravimetric curves are included. Load–displacement data constructing the stress–strain curves and the derived compressive properties are also included. PMID:26933668

  18. Pulsed-field gel electrophoresis of bacterial chromosomes.

    PubMed

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  19. Quaternary ammonium substituted agarose as surface coating for capillary electrophoresis.

    PubMed

    Ullsten, Sara; Söderberg, Lennart; Folestad, Staffan; Markides, Karin E

    2004-05-01

    A novel positively charged polymer of quaternary ammonium substituted agarose (Q-agarose) has been synthesized and explored for use as a coating in capillary electrophoresis. The fast and simple coating procedure is based on a multi-site electrostatic interaction between the polycationic agarose polymer and the negatively charged fused-silica surface. By simply flushing fused-silica capillaries with hot polymer solution a positively charged, hydrophilic deactivation layer is achieved. The polymer surface provides an intermediate electroosmotic flow of reversed direction, over a range of pH 2-11, compared to unmodified fused-silica. The coating procedure was highly reproducible with an RSD of 4%, evaluated as the electroosmotic flow mobility for 30 capillaries prepared at 10 different occasions. The application of Q-agarose coated capillaries in separation science was investigated using a set of basic drugs and model proteins and peptides. Due to the intermediate electroosmotic flow generated, the resolution of basic drugs could be increased, compared to using bare fused-silica capillaries. Moreover, the coating enabled separation of proteins and peptides with efficiencies up to 300.000 plates m(-1).

  20. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production.

    PubMed

    Kim, Hee Taek; Lee, Saeyoung; Kim, Kyoung Heon; Choi, In-Geol

    2012-03-01

    A sugar platform equipped with acetic acid, multiple agarases and neoagarobiose hydrolase (NABH) converted recalcitrant agar polysaccharide into monosugars, which was evaluated by simultaneous saccharification and fermentation (SSF). The sugar platform was divided into chemical liquefaction and enzymatic saccharification. The chemical liquefaction was carried out in mild conditions (using a dilute acetic acid at 80°C for 1-6h) to avoid the production of fermentation inhibitors and hence the highest degree of liquefaction of 95.6% (w/w) was obtained. We mimicked the natural agarolytic pathway using three microbial agarases (Aga16B, Aga50D and DagA) and NABH, and the enzyme system converted 79.1% of agarose to monosugars. The chemical liquefaction and SSF of 30 g/l agarose resulted in 4.4 g/l ethanol concentration and 49.3% of the theoretical ethanol yield to d-galactose. This is the first report on the complete enzymatic conversion of agarose into its monosugars and the SSF of agarose into ethanol.

  1. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  2. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  3. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  4. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  5. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  6. In vivo measurement of flavour release from mixed phase gels.

    PubMed

    Taylor, A J; Besnard, S; Puaud, M; Linforth, R S

    2001-05-01

    Flavour release was investigated from pure gelatin, pure agarose and mixed gelatin-agarose gels, all containing 25% sucrose and flavoured with p-cymene, ethyl butyrate, pyrazine and ethanol. Gels were characterised by optical microscopy, and rheological techniques to determine phase separation, elastic modulus and melting temperature. Volatile release was measured by monitoring the four volatiles in the expired air from one individual eating the gels, using Atmospheric Pressure Chemical Ionisation-Mass Spectrometry. The release pattern of p-cymene was not affected by gel type. The release of ethanol, ethyl butyrate and pyrazine was affected to different extents by the matrix suggesting that both the properties of the volatile and the matrix determine volatile release in vivo.

  7. Spectrophotometric determination of substrate-borne polyacrylamide.

    PubMed

    Lu, Jianhang; Wu, Laosheng

    2002-08-28

    Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were <7.5% in all cases. The optimum range of PAM in each sample is 10-80 microg. The technique can serve as an effective tool in improving PAM application and facilitating PAM-related research.

  8. Field demonstration of in situ grouting of radioactive solid waste burial trenches with polyacrylamide. [Polyacrylamide

    SciTech Connect

    Spalding, B.P.; Fontaine, T.A.

    1990-01-01

    Demonstrations of in situ grouting with polyacrylamide were carried out on two undisturbed burial trenches and one dynamically compacted burial trench in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The injection of polyacrylamide was achieved quite facilely for the two undisturbed burial trenches which were filled with grout, at typical pumping rates of 95 L/min, in several batches injected over several days. The compacted burial trench, however, failed to accept grout at more than 1.9 L/min even when pressure was applied. Thus, it appears that burial trenches, stabilized by dynamic compaction, have a permeability too low to be considered groutable. The water table beneath the burial trenches did not respond to grout injections indicating a lack of hydrologic connection between fluid grout and the water table which would have been observed if the grout failed to set. Because grout set times were adjusted to less than 60 min, the lack of hydrologic connection was not surprising. Postgrouting penetration testing revealed that the stability of the burial trenches was increased from 26% to 79% that measured in the undisturbed soil surrounding the trenches. In situ permeation tests on the grouted trenches indicated a significant reduction in hydraulic conductivity of the trench contents from a mean of 2.1 {times} 10{sup {minus}3} to 1.85 {times} 10{sup {minus}5} cm/s. Preliminary observations indicated that grouting with polyacrylamide is an excellent method for both improved stability and hydrologic isolation of radioactive waste and its incidental hazardous constituents.

  9. Interaction of electromagnetic fields with chondrocytes in gel culture. Final report, February-August 1989

    SciTech Connect

    Grodzinsky, A.J.; Gluzband, Y.A.; Buschmann, M.D.

    1990-02-01

    The research accomplished during this project period focused on control experiments designed to establish whether cartilage cells from normal cartilage will continue to synthesize and accumulate normal extracellular matrix in agarose gel culture. This information is essential to properly design experiments to qualify changes in chondrocyte biosynthesis due to applied electromagnetic fields. The results suggest that both normal chondrocytes and swarm rat chondrosarcoma cells in agarose culture can continue to synthesize matrix macromolecules at a rate similar to or slightly higher than that in normal cartilage; also, that chondrocytes in agarose can successfully mediate assembly and accumulation of normal, mechanically functional extracellular matrix.

  10. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CM-Asp-agarose by positive and negative chromatography.

    PubMed

    Mourão, Cecília Alves; Carmignotto, Gabriela Pannunzio; Bueno, Sonia Maria Alves

    2016-04-01

    This study evaluated the feasibility of using immobilized metal-ion affinity chromatography (IMAC) for separation of human Fab fragments using four different transition metal ions copper, nickel, zinc, and cobalt chelated to CM-Asp (carboxymethylaspartate) immobilized on the agarose gel. The Fab and Fc fragments (from human IgG digested with papain) interacted differently with the chelates studied, depending on the adsorption buffer system. The interaction between chelate and Fc fragment is predominantly based on the coordination bonds using adsorption buffer containing NaCl. Negative chromatography was performed on Cu(II)-CM-Asp-agarose obtaining 2.9mg of Fab per mL of adsorbent in nonretained fractions (Fc fragment-free without uncleaved IgG). The adsorption of Fab fragments is governed by electrostatic forces in the absence of NaCl in the adsorption buffer. High selectivity was achieved on Co(II)-CM-Asp-agarose and 5.7mg of Fab per mL of adsorbent was obtained in eluted fractions without Fc fragments, although having uncleaved IgG. The results showed that chromatography on transition metal ions chetated to CM-Asp-agarose is a promising approach to separation of Fab fragments from papain-digested human IgG solution.

  11. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities.

    PubMed

    Yun, Eun Ju; Lee, Saeyoung; Kim, Ji Hye; Kim, Bo Bae; Kim, Hee Taek; Lee, Sun Hee; Pelton, Jeffrey G; Kang, Nam Joo; Choi, In-Geol; Kim, Kyoung Heon

    2013-04-01

    3,6-Anhydro-L-galactose (L-AHG) constitutes 50% of agarose, which is the main component of red macroalgae. No information is currently available on the mass production, metabolic fate, or physiological effects of L-AHG. Here, agarose was converted to L-AHG in the following three steps: pre-hydrolysis of agarose into agaro-oligosaccharides by using acetic acid, hydrolysis of the agaro-oligosaccharides into neoagarobiose by an exo-agarase, and hydrolysis of neoagarobiose into L-AHG and galactose by a neoagarobiose hydrolase. After these three steps, L-AHG was purified by adsorption and gel permeation chromatographies. The final product obtained was 95.6% pure L-AHG at a final yield of 4.0% based on the initial agarose. In a cell proliferation assay, L-AHG at a concentration of 100 or 200 μg/ mL did not exhibit any significant cytotoxicity. In a skin whitening assay, 100 μg/ mL of L-AHG showed significantly lower melanin production compared to arbutin. L-AHG at 100 and 200 μg/ mL showed strong anti-inflammatory activity, indicating the significant suppression of nitrite production. This is the first report on the production of high-purity L-AHG and its physiological activities.

  12. Synthesis of agarose-graft-poly[3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] zwitterionic graft copolymers via ATRP and their thermally-induced aggregation behavior in aqueous media.

    PubMed

    Tian, Miao; Wang, Jinmei; Zhang, Ershuai; Li, Junjie; Duan, Cuimi; Yao, Fanglian

    2013-06-25

    A novel polysaccharide-based zwitterionic copolymer, agarose-graft-poly[3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] (agarose-g-PDMAPS) with UCST, depending both on hydrogen bonding and electrostatic interaction, was synthesized by ATRP, and its aggregation behavior in aqueous media was investigated in detail. Proton nuclear magnetic resonance spectroscopy, Fourier transform-infrared spectroscopy, and gel-permeation chromatography were performed to characterize the copolymer. Thermosensitive behaviors of the copolymers in water, NaCl, and urea solution were tracked by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis. It was found that the copolymers existed as "core-shell" spheres at an elevated temperature, as a result of the self-assembly of the agarose backbones located in the "core" driven by hydrogen-bonding interactions. When the copolymer solution was cooled below UCST, the core-shell spheres began to aggregate because of the electrostatic interactions and collapse of PDMAPS side chains in the "shell" layer. UCST of the copolymer could be tuned in a wide range, depending on the chain lengths of PDMAPS. This is the first example to investigate the thermosensitivity, combining ionic interactions of the zwitterionic side chains with hydrogen bondings from the biocompatible agarose backbones. The synthetic strategy presented here can be employed in the preparation of other novel biomaterials from a variety of polysaccharides.

  13. Agarose and methylcellulose hydrogel blends for nerve regeneration applications

    NASA Astrophysics Data System (ADS)

    Martin, Benton C.; Minner, Eric J.; Wiseman, Sherri L.; Klank, Rebecca L.; Gilbert, Ryan J.

    2008-06-01

    Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 °C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 °C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 °C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.

  14. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics.

    PubMed

    Jain, Aadhar; Yang, Allen H J; Erickson, David

    2012-05-01

    In this Letter, we demonstrate a biocompatible microscale optical device fabricated from agarose hydrogel that allows for encapsulation of cells inside an optical waveguide. This allows for better interaction between the light in the waveguide and biology, since it can interact with the direct optical mode rather than the evanescent field. We characterize the optical properties of the waveguide and further incorporate a microfluidic channel over the optical structure, thus developing an integrated optofluidic system fabricated entirely from agarose gel.

  15. Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms.

    PubMed

    Kinoshita, Keita; Iwase, Masaki; Yamada, Masumi; Yajima, Yuya; Seki, Minoru

    2016-11-01

    Vascular tissues fabricated in vitro are useful tools for studying blood vessel-related cellular physiologies and for constructing relatively large 3D tissues. An efficient strategy for fabricating vascular tissue models with multilayered, branched, and thick structures through the in situ hydrogel formation in fluidic channels is proposed. First, an aqueous solution of RGD-alginate containing smooth muscle cells (SMCs) is introduced into channel structures made of agarose hydrogel, forming a cell-embedding Ca-alginate hydrogel layer with a thickness of several hundred micrometers on the channel surface because of the Ca(2+) ions diffused from the agarose hydrogel matrix. Next, endothelial cells (ECs) are introduced and cultured for up to seven days to form hierarchically organized, multilayered vascular tissues. The factors affecting the thickness of the Ca-alginate hydrogel layer, and prepared several types of microchannels with different morphologies are examined. The fabricated vascular tissue models are easily recovered from the channel by simply detaching the agarose hydrogel plates. In addition, the effect of O2 tension (20 or 80%) on the viability and elastin production of SMCs during the perfusion culture is evaluated. This technique would pave a new way for vascular tissue engineering because it enables the facile production of morphologically in vivo vascular tissue-like structures that can be employed for various biomedical applications.

  16. BANANA GEL.

    PubMed

    McGuire, G; Falk, K G

    1922-03-20

    The conditions for the formation of gels from banana extracts were studied. Gels were obtained with extracts more alkaline than pH 7.0 with very small quantities of calcium, strontium, and barium salts, the gel formation with these salts decreasing in the indicated order. In solutions more acid than pH 6.0, no gels were obtained with these salts. Magnesium, lithium, and sodium salts did not cause gel formation either in acid or alkaline solutions. Pancreatine gave a gel on incubation with banana extract at pH 5.0. The gel-forming property of banana extracts was destroyed on boiling.

  17. In situ grouting of buried transuranic waste with polyacrylamide

    SciTech Connect

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs.

  18. Efficacy of transdermal magnesium ascorbyl phosphate delivery after ultrasound treatment with microbubbles in gel-type surrounding medium in mice.

    PubMed

    Liao, Ai-Ho; Lu, Ying-Jui; Hung, Chi-Ray; Yang, Meng-Yu

    2016-04-01

    Liquid microemulsions appropriate for topical application were obtained by increasing their viscosity through the addition of thickening agents. The present study first assessed the usefulness of ultrasound (US) plus US contrast agent, microbubbles (MBs), in agarose gel for enhancing transdermal drug delivery. The effect of US plus MBs in agarose gel on the penetration of the skin by magnesium ascorbyl phosphate (MAP) was explored both in vitro and in vivo. In the in vitro experiments, the stability of MBs was investigated by examining the penetration of MAP by the model drug, Evans blue, in two media: an agarose phantom and pig skin. The penetration depth in the agarose phantom and pig skin increased by 40% and 195%, respectively, when treated with US plus MBs in 0.1% agarose solution combined with MAP (UMB1), and by 48% and 206%, respectively, when treated with US plus MBs in 0.15% agarose solution and MAP (UMB2). The skin-whitening effects in C57BL/6J mice in the UMB1 and UMB2 groups over a 4-week experimental period were significantly increased by 63% and 70%, respectively, in the fourth week. The findings of this study suggest that the survival of MBs with US is affected by the viscosity of the surrounding medium, and that in mice, treatment with US plus MBs in a suitable agarose gel can increase skin permeability and enhance transdermal MAP delivery.

  19. Polyacrylamide Transport in Water Delivery Canals

    NASA Astrophysics Data System (ADS)

    Chen, L.; Zhu, J.; Young, M.

    2007-12-01

    Linear, anionic polyacrylamide (PAM) is being considered in the western United States as a technology to reduce seepage in unlined water delivery canals. A broad laboratory and field testing program has been undertaken to understand the benefits and potential environmental impacts of PAM use. The ability to predict the fate and transport of PAM in water delivery canals could prove to be a useful planning tool for PAM application. However, one key area of uncertainty of this type of canal treatment is the hydration, reaction, and settling rates of PAM after the dry powder is added to the canal water. In this study, we have developed a model that incorporates a number of known physical and chemical processes that can affect PAM transport, such as convection, dispersion, dissolution, flocculation, and settling, while solving the governing convection-dispersion transport equation. The model uses a mixed analytical and advanced numerical approach, and implements a transient partitioning of PAM mass between the canal water, the substrate soil, and potentially to open water bodies downstream of the application point. All source terms are modeled based on physical and chemical mechanisms as well as laboratory or field determined parameters. To more closely simulate field treatment of some canals, where PAM application moves upstream in time, the model is capable of implementing either a fixed or mobile upper boundary. In the latter treatment, the PAM can be added discretely or continuously in both time and space. A number of test situations have been simulated thus far, including theoretical and hypothetical cases for a wide range of conditions. The model also performed well when predicting PAM concentrations from a full-scale canal treatment experiment. The model provides a useful tool for predicting PAM fate and transport in water delivery canals, and therefore can play an important role in evaluating the efficacy of PAM application for water resources management

  20. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  1. Effect of cationic polyacrylamide on the processing and properties of nanocellulose films.

    PubMed

    Raj, Praveena; Varanasi, Swambabu; Batchelor, Warren; Garnier, Gil

    2015-06-01

    The use of high molecular weight cationic polyacrylamide (CPAM) was investigated to accelerate the drainage of nanocellulose (Microfibrillated Cellulose) suspensions into films. The mechanism was quantified and optimized by measuring the gel point, the lowest solids concentration at which a continuous network is formed. The flocculation of MFC was analysed as a function of the polyelectrolyte dosage, charge density and molecular weight as well as process parameters (drainage time) and material properties. The adsorption isotherms of CPAMs on nanocellulose and their zeta potential curves were also analysed as a function of CPAM charge and dosage. Measured CPAM adsorption capacities for the 50% and 10% charged 13MDa CPAM onto MFC were 5mg/g and 8mg/g, respectively, corresponding to adsorption coverage on cellulose of 0.14mg/m(2) and 0.22mg/m(2). The floc strength and drainability of MFC suspensions were quantified with the gel point as a function of CPAM properties. For all combinations of polyelectrolyte molecular weight and charge density, the gel point of a nanocellulose suspension goes through a minimum with increasing polymer dosage. The minimum gel point was independent of the polyelectrolyte charge density at constant molecular weight. However, it reduced with decreasing CPAM molecular weight, at a constant addition rate. The drainage time of a nanocellulose suspension into a film is reduced by 2/3 by halving the gel point from 0.2 to 0.1kg/m(3); this is due to the more flocculated suspension facilitating drainage between flocs. Nanocellulose films of increased porosity also result from reducing the gel point, signifying that the more open 3D structure of the flocculated cellulose suspension is retained upon drying the 2D film cellulose film structure.

  2. Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis.

    PubMed

    Huang, Qing; Fu, Wei-Ling

    2005-01-01

    Ethidium bromide (EB) is a mutagen and toxin that is widely used in the laboratory for visualization of nucleic acids. Safer nucleic acid stains, such as SYBR Gold, SYBR Green, GoldView, GeneFinder, and GoldStar, have been developed. However, there has been no systematic comparative analysis of the staining efficiencies of these dyes. In the present study, SYBR Gold, SYBR Green I, GoldView and EB were compared. Although both SYBR Gold and SYBR Green alter electrophoretic mobility and thus DNA size estimates, they are cost-effective alternatives to EB. SYBR Gold was more sensitive than SYBR Green I at detecting short fragments, but 50-bp bands were clearly visible using either dye when visualized with a long integration time. SYBR Gold or SYBR Green I are sensitive and relatively safe alternatives to EB. In our laboratory, the SYBR Gold method is now used routinely by all members of our group with great consistency and success.

  3. Using Linear Agarose Channels to Study Drosophila Larval Crawling Behavior.

    PubMed

    Sun, Xiao; Heckscher, Ellie S

    2016-11-26

    Drosophila larval crawling is emerging as a powerful model to study neural control of sensorimotor behavior. However, larval crawling behavior on flat open surfaces is complex, including: pausing, turning, and meandering. This complexity in the repertoire of movement hinders detailed analysis of the events occurring during a single crawl stride cycle. To overcome this obstacle, linear agarose channels were made that constrain larval behavior to straight, sustained, rhythmic crawling. In principle, because agarose channels and the Drosophila larval body are both optically clear, the movement of larval structures labeled by genetically-encoded fluorescent probes can be monitored in intact, freely-moving larvae. In the past, larvae were placed in linear channels and crawling at the level of whole organism, segment, and muscle were analyzed(1). In the future, larvae crawling in channels can be used for calcium imaging to monitor neuronal activity. Moreover, these methods can be used with larvae of any genotype and with any researcher-designed channel. Thus the protocol presented below is widely applicable for studies using the Drosophila larva as a model to understand motor control.

  4. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters.

    PubMed

    Yuan, Ningxiao; Xu, Lu; Zhang, Lu; Ye, Haowen; Zhao, Jianhao; Liu, Zhong; Rong, Jianhua

    2016-10-01

    Hybrid polyacrylamide/bacterial cellulose nanofiber clusters (PAM/BC) hydrogels with high strength, toughness and recoverability were synthesized by in situ polymerization of acrylamide monomer in BC nanofiber clusters suspension. The hybrid gels exhibited an extremely large elongation at break of 2200%, and a high fracture stress of 1.35MPa. Additionally, the original length of hydrogels could be recovered after releasing the tensile force. Compressive results showed that the PAM/BC hybrid gels could reach a strain of about 99% without break, and was able to completely recover its original shape immediately after releasing the compression force. The compressive stress at 99% reached as high as 30MPa. Nearly no hysteresis in cyclic compressive tests was observed with these hybrid gels. The FT-IR, XRD and TGA analysis showed that hydrogen bonds between the PAM chains and BC nanofiber clusters mainly contributed to the superior mechanical properties of hybrid hydrogels. The cell viability results suggested that PAM/BC hybrid hydrogel was benign for biomedical application. These PAM/BC hydrogels offer a great promise as biomaterials such as bone and cartilage repair materials.

  5. Ultrahigh-throughput approach for analyzing single-cell genomic damage with an agarose-based microfluidic comet array.

    PubMed

    Li, Yiwei; Feng, Xiaojun; Du, Wei; Li, Ying; Liu, Bi-Feng

    2013-04-16

    Genomic DNA damage was generally identified with a "comet assay" but limited by low throughput and poor reproducibility. Here we demonstrated an ultrahigh-throughput approach with a microfluidic chip to simultaneously interrogate DNA damage conditions of up to 10,000 individual cells (approximately 100-fold in throughput over the conventional method) with better reproducibility. For experiment, agarose was chosen as the chip fabrication material, which would further act as an electrophoretic sieving matrix for DNA fragments separation. Cancer cells (HeLa or HepG2) were lined up in parallel microchannels by capillary effect to form a dense array of single cells. After treatment with different doses of hydrogen peroxide, individual cells were then lysed for subsequent single-cell gel electrophoresis in the direction vertical to microchannel and fluorescence detection. Through morphological analysis and fluorescent measurement of comet-shaped DNA, the damage conditions of individual cells could be quantified. DNA repair capacity was further evaluated to validate the reliability of this method. It indicated that the agarose-based microfluidic comet array electrophoresis was simple, highly reproducible, and of high throughput, providing a new method for highly efficient single-cell genomic analysis.

  6. On-line detection of proteins in gel electrophoresis by ultraviolet absorption and by native fluorescence utilizing a charge-coupled device imaging system

    SciTech Connect

    Koutny, L.B.; Yeung, E.S. )

    1993-01-15

    Slab-gel electrophoresis is the most common technique for the separation of high molecular weight biomolecules such a proteins. Acrylamide gels, as described by Laemmli, are generally the matrix of choice for the separation of SDS-denatured proteins via electrophoresis. Agarose gels, similar to those used for nucleic acids, are also useful for the separation of proteins but have not been widely applied. Agarose gels are advantageous for many reasons including simplicity of gel casting, easy sample recovery, and the fact that it is nontoxic to both the experimenter and the proteins. In the past, agarose was not used because of its poor resolving power at molecular weights below 40,000. New agarose gel systems are available that will resolve proteins ranging from 20,000 to 200,000 with or without SDS denaturing. In this study, agarose gel was chosen for its optical qualities and ability to be cast in an open system that can be imaged as the experiment is running. 17 refs., 7 figs.

  7. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  8. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  9. Adsorption of human serum proteins onto TREN-agarose: purification of human IgG by negative chromatography.

    PubMed

    Bresolin, Igor Tadeu Lazzarotto; Borsoi-Ribeiro, Mariana; Caro, Juliana Rodrigues; dos Santos, Francine Petit; de Castro, Marina Polesi; Bueno, Sonia Maria Alves

    2009-01-01

    Tris(2-aminoethyl)amine (TREN) - a chelating agent used in IMAC - immobilized onto agarose gel was evaluated for the purification of IgG from human serum by negative chromatography. A one-step purification process allowed the recovery of 73.3% of the loaded IgG in the nonretained fractions with purity of 90-95% (based on total protein concentration and nephelometric analysis of albumin, transferrin, and immunoglobulins A, G, and M). The binding capacity was relatively high (66.63 mg of human serum protein/mL). These results suggest that this negative chromatography is a potential technique for purification of IgG from human serum.

  10. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments.

    PubMed

    Ersson, Clara; Möller, Lennart

    2011-11-01

    The single cell gel electrophoresis (comet assay) is a popular method for measuring DNA migration as an estimate of DNA damage. No standardised comet assay protocol exists, which make comparisons between studies complicated. In a previous inter-laboratory validation study of the comet assay, we identified important parameters in the protocol that might affect DNA migration. The aim of this study was to assess how different comet assay protocols affect DNA migration. The results in this study suggest that (i) there is a significant linear dose-response relationship between the agarose gel's density and DNA migration and that damaged cells are more sensitive to the agarose gel's density; (ii) incubation with formamidopyrimidine DNA glycosylase for 10 min is inadequate, whereas 30 min is sufficient; (iii) the typically used 20 min of alkaline treatment might be to short when analysing samples that contain particular alkali-labile sites (ALS) and (iv) the duration of electrophoresis as well as the strength of the electric field applied affects the DNA migration. By using protocol-specific calibration curves, it is possible to reduce the variation in DNA migration caused by differences in comet assay protocols. This does, however, not completely remove the impact of the durations of alkaline treatment and electrophoresis when analysing cells containing ALS that are relatively resistant to high alkaline treatment.

  11. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors.

    PubMed

    Moon, Won Gyun; Kim, Gil-Pyo; Lee, Minzae; Song, Hyeon Don; Yi, Jongheop

    2015-02-18

    Despite the significant advances in solid polymer electrolytes used for supercapacitors, intractable problems including poor ionic conductivity and low electrochemical performance limit the practical applications. Herein, we report a facile approach to synthesize a NaCl-agarose gel electrolyte for use in flexible supercapacitors. The as-prepared agarose hydrogel consists of a three-dimensional chemically interconnected agarose backbone and oriented interparticular submicropores filled with water. The interconnected agarose matrix acts as a framework that provides mechanical stability to the gel electrolyte and hierarchical porous networks for optimized ion transport. The developed pores with the water filler provide an efficient ionic pathway to the storage sites of electrode. With these properties, the gel electrolyte enables the supercapacitor to have a high specific capacitance of 286.9 F g(-1) and a high rate capability that is 80% of specific capacitance obtained in the case of a liquid electrolyte at 100 mV s(-1). In addition, attributed to the simple procedure and its components, the gel electrolyte is highly scalable, cost-effective, safe, and nontoxic. Thus, the developed gel electrolyte has the potential for use in various energy storage and delivery systems.

  12. Growth in Agarose of Human Cells Infected with Cytomegalovirus

    PubMed Central

    Lang, David J.; Montagnier, Luc; Latarjet, Raymond

    1974-01-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation. Images PMID:4367907

  13. Composites of Quasi-Colloidal Layered Double Hydroxide Nanoparticles and Agarose Hydrogels for Chromate Removal

    PubMed Central

    Gwak, Gyeong-Hyeon; Kim, Min-Kyu; Oh, Jae-Min

    2016-01-01

    Composite hydrogels were prepared that consisted of quasi-colloidal layered double hydroxide (LDH) nanoparticles and agarose via the electrophoretic method, starting from three different agarose concentrations of 0.5, 1, and 2 wt/v%. The composite hydrogel was identified to have a uniform distribution of LDH nanoparticles in agarose matrix. Microscopic studies revealed that the composite hydrogel had a homogeneous quasi-colloidal state of LDHs, while the simple mixture of LDH powder and agarose hydrogels did not. It was determined that agarose concentration of the starting hydrogel did not significantly influence the amount of LDH that developed in the composite. The chromate scavenging efficiency of the composite hydrogel and corresponding agarose or mixture hydrogel was evaluated with respect to time, and chromate concentration. In general, the composite hydrogels exhibited much higher chromate removal efficacy compared with agarose or mixture hydrogels. Through estimating chromate adsorption by LDH moiety in the composite or mixture hydrogel, it was suggested that the agarose component facilitated the stability and dispersibility of the quasi-colloidal state of LDH nanoparticles in the composite resulting in high adsorption efficacy. From Freundlich isotherm adsorption fitting, composites were determined to possess beneficial cooperative adsorption behavior with a high adsorption coefficient. PMID:28344282

  14. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    PubMed

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  15. Multimaterial polyacrylamide: fabrication with electrohydrodynamic jet printing, applications, and modeling.

    PubMed

    Poellmann, Michael J; Johnson, Amy J Wagoner

    2014-09-01

    Micropatterned, multimaterial hydrogels have a wide range of applications, including the study of microenvironmental factors on cell behavior, and complex materials that rapidly change shape in response to fluid composition. This paper presents a method to fabricate microscale polyacrylamide features embedded in a second hydrogel of a different composition. An electrohydrodynamic jet (e-jet) printer was used to pattern hemispherical droplets of polyacrylamide prepolymer on a passive substrate. After photopolymerization, the droplets were backfilled with a second polyacrylamide mixture, the second mixture was polymerized and the sample was peeled off the substrate. Fluorescent and confocal microscopy confirmed multimaterial patterning, while scanning probe microscopy revealed a patterned topography with printed spots forming shallow wells. Finite element modeling was used to understand the mechanics of the formation of the topographical features during backfill and subsequent polymerization. Finally, polyacrylamide containing acrylic acid was used to demonstrate two applications of the micropatterned hydrogels: stimuli-responsive materials and patterned substrates for cell culture. The e-jet fabrication technique described here is a highly flexible, high resolution method for creating multimaterial hydrogels.

  16. Acrylamide monomer leaching from polyacrylamide-treated irrigation furrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-soluble polyacrylamide (WSPAM), used to reduce erosion in furrow irrigated fields and other agriculture applications, contain less than 0.05% Acrylamide monomer (AMD). The AMD, a potent neurotoxicant and suspected carcinogen, is readily dissolved and transported in flowing water. Deep percol...

  17. HRP-Mediated Synthesis of Starch-Polyacrylamide Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modified starch-based polymers can be engineered for specific properties by combining starch with synthetic polymers through graft copolymerization. Polyacrylamide grafted starch have received a great deal of applications in areas such as superabsorbent paper-making additives, drag reduction and te...

  18. HRP-Mediated Synthesis of Starch-Polyacrylamide Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modified starch-based polymers can be engineered for specific properties by combining starch with synthetic polymers through graft copolymerization. Polyacrylamide grafted starches have received a great deal of applications in areas such as superabsorbent paper-making additives, drag reduction and ...

  19. Graphitic carbon nitride embedded hydrogels for enhanced gel electrophoresis.

    PubMed

    Zarei, Mohammad; Ahmadzadeh, Hossein; Goharshadi, Elaheh K; Farzaneh, Ali

    2015-08-05

    Here, we show, for the first time, the use of graphitic carbon nitride (g-C3N4) nanosheets to improve the resolution and efficiency of protein separation in gel electrophoresis. By loading 0.04% (m/v) g-C3N4 nanosheets into the polyacrylamide gel at 25 °C, the thermal conductivity increased approximately 80% which resulted in 20% reduction in Joule heating and overall increase of separation efficiency. Also, polymerization of acrylamide occurred in the absence of tetramethylethylenediamine (TEMED) when the polyacrylamide gel contained g-C3N4 nanosheets. Hence, the g-C3N4 act simultaneously as a polymerization catalyst as well as heat sinks to lower Joule heating effect on band broadening.

  20. Sequencing of Proteins from Two-Dimensional Gels by Using in situ Digestion and Transfer of Peptides to Polyvinylidene Difluoride Membranes: Application to Proteins Associated with Sensitization in Aplysia

    NASA Astrophysics Data System (ADS)

    Kennedy, T. E.; Gawinowicz, M. A.; Barzilai, A.; Kandel, E. R.; Sweatt, J. D.

    1988-09-01

    We have developed a method for obtaining partial internal amino acid sequence data from proteins isolated directly from preparative two-dimensional polyacrylamide gels. Proteins from a crude cell homogenate are separated using preparative two-dimensional polyacrylamide gel electrophoresis. Then, the gel is stained with Coomassie blue and the protein spots of interest are cut out. The in situ protein is digested with Staphylococcus aureus V8 protease in a second polyacrylamide gel and the peptides are separated by one-dimensional polyacrylamide gel electrophoresis. The peptides are then electroblotted onto a polyvinylidene difluoride membrane, visualized using Coomassie blue, cut out, and sequenced using an automated gas phase sequencer. Using this method, we have obtained amino acid sequence data for two proteins that are altered after long-term sensitization: actin and Aplysia protein 407. In addition, we have obtained amino acid sequence data for rat protein 425, a protein that appears to be homologous to Aplysia protein 407.

  1. Pulsed field gel electrophoresis on frozen tumour tissue sections.

    PubMed Central

    Boultwood, J.; Kaklamanis, L.; Gatter, K. C.; Wainscoat, J. S.

    1992-01-01

    The application of pulsed field gel electrophoresis (PFGE) to the molecular genetic analysis of solid tumours has been restricted by the requirement for whole single cells as a DNA source. A simple technique which allows for the direct analysis of histologically characterised solid tumour material by pulsed field gel electrophoresis was developed. Single frozen tissue sections obtained from colonic carcinoma specimens were embedded without further manipulation in molten, low melting temperature agarose. The tumour DNA contained within the agarose plug was subjected to restriction enzyme digestion and PFGE. Sufficient high molecular weight DNA is yielded by this method to obtain a hybridisation signal with a single copy probe. Histological examination of adjacent tissue sections may also be carried out, permitting correlation between molecular analysis and tumour histology. Images PMID:1401187

  2. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.

  3. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  4. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  5. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  6. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  7. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  8. Feasibility of a DNA-Based Combinatorial Array Recognition Surface (CARS) in a Polyacrylamide Gel Matrix

    DTIC Science & Technology

    2007-12-12

    the phosphate backbone. wherever p.·J.Ttial hybrids naturally occur, via Taq DNA ligase (16). Ligation may not have been entirely necessary for the...CARS libraries, noncontiguous pieces can be ligaled togclher willi Taq DNA ligase . The lOp half o(lhe figure iIIu51Tates Ihe appearance o( a I-D CARS...cluding dideoxynucleotides. were from a "Si lver Sequence" kit purchased from Promega Corporation (Madison. WI). ThermliS aquaticus (Taq) DNA ligase was

  9. A platform to enable the pharmacological profiling of small molecules in gel-based electrophoretic mobility shift assays

    PubMed Central

    Foley, Timothy L.; Dorjsuren, Dorjbal; Dexheimer, Thomas; Burkart, Michael D.; Wight, William C.; Simeonov, Anton

    2017-01-01

    We describe a polyacrylamide gel casting cassette that overcomes limitations of commercially available gel electrophoresis equipment. This apparatus molds a single polyacrylamide gel that can evaluate more than 200 samples in parallel, is loaded with a multichannel pipettor, and is flexible with respect to composition of the separating matrix. We demonstrate its use to characterize inhibitors of enzymes that modify protein and nucleic acid substrates. Throughputs of greater than 1000 samples per day were achieved when this system was paired with a quantitative laser-based imaging system, yielding data of remarkable quality. PMID:27269812

  10. Time Controlled Protein Release from Layer-by-Layer Assembled Multilayer Functionalized Agarose Hydrogels

    PubMed Central

    Mehrotra, Sumit; Lynam, Daniel; Maloney, Ryan; Pawelec, Kendell M.; Tuszynski, Mark H.; Lee, Ilsoon

    2009-01-01

    Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain-derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH-responsive H-bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer-by-layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month-long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process. PMID:20200599

  11. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    ERIC Educational Resources Information Center

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels.…

  12. Sorption of copper(II) onto super-adsorbent of bentonite-polyacrylamide composites.

    PubMed

    Zhao, Guixia; Zhang, Hongxia; Fan, Qiaohui; Ren, Xuemei; Li, Jiaxing; Chen, Yixue; Wang, Xiangke

    2010-01-15

    In this work, bentonite embedded in the polyacrylamide (PAAm) gels was used as a novel adsorbent for the removal of Cu(II) from aqueous solution. The sorption and desorption of Cu(II) on bentonite-polyacrylamide (BENT-PAAm) was investigated as the function of pH, ionic strength, adsorbent content, Cu(II) concentrations and temperature. The results indicated that the sorption of Cu(II) on BENT-PAAm was strongly dependent on pH, ionic strength and temperature. The sorption increased from about 9% to 97% at pH ranging from 2.4 to 7. The sorption of Cu(II) on BENT-PAAm increased with increasing temperature and decreasing ionic strength. The sorption of Cu(II) on BENT and on BENT-PAAm was an endothermic and irreversible process. The results of desorption indicated that the adsorbed Cu(II) ions on solid particles were difficult to be desorbed from solid to liquid phase. From the comparison with BENT, BENT-PAAm showed higher sorption capacity with C(smax) increasing from 29 to 33 mg/g at pH 6.2 and from 11 to 20mg/g at pH 5.0 for the sorption of Cu(II) from BENT to BENT-PAAm composites. The average standard enthalpy change (Delta H degrees) and the entropy change (DeltaS degrees ) of Cu(II) sorption on BENT-PAAm are higher than those of Cu(II) sorption on BENT. The BENT-PAAm composites can be used as a super-adsorbent for the removal of Cu(II) from aqueous solution.

  13. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration

    PubMed Central

    Khanarian, Nora T.; Haney, Nora M.; Burga, Rachel A.; Lu, Helen H.

    2013-01-01

    Regeneration of the osteochondral interface is critical for integrative and functional cartilage repair. This study focuses on the design and optimization of a hydrogel-ceramic composite scaffold of agarose and hydroxyapatite (HA) for calcified cartilage formation. The first study objective was to compare the effects of HA on non-hypertrophic and hypertrophic chondrocytes cultured in the composite scaffold. Specifically, cell growth, biosynthesis, hypertrophy, and scaffold mechanical properties were evaluated. Next, the ceramic phase of the scaffold was optimized in terms of particle size (200 nm vs. 25 µm) and dose (0–6 w/v%). It was observed that while deep zone chondrocyte (DZC) biosynthesis and hypertrophy remained unaffected, hypertrophic chondrocytes measured higher matrix deposition and mineralization potential with the addition of HA. Most importantly, higher matrix content translated into significant increases in both compressive and shear mechanical properties. While cell hypertrophy was independent of ceramic size, matrix deposition was higher only with the addition of micron-sized ceramic particles. In addition, the highest matrix content, mechanical properties and mineralization potential were found in scaffolds with 3% micro-HA, which approximates both the mineral aggregate size and content of the native interface. These results demonstrate that the biomimetic hydrogel-ceramic composite is optimal for calcified cartilage formation and is a promising design strategy for osteochondral interface regeneration. PMID:22531222

  14. A New Electrophoresis Technique to Seperate Microsatellite Alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional agarose and polyacrylamide gel electrophoresis have been used commonly for microsatellite (simple sequence repeats, SSRs) analysis, but they are labor- intensive and not always able to provide accurate sizes for different alleles. Capillary sequencers provide automated analysis and accur...

  15. Dynamics of DNA molecules under gel electrophoresis

    SciTech Connect

    Kotaka, Tadao, Adachi, Shiro; Shikata, Toshiyuki

    1993-12-31

    Electrophoretic mobilities {mu} of double stranded linear DNAs were examined in agarose gels subjected to a biased sinusoidal field (BSF) that utilizes a sinusoidal field of strength E{sub s} and frequency f superposed on a steady bias field of strength E{sub b}. Under BSF with E{sub s} {much_gt} E{sub b}. DNA fragments with the size M > 20 kbp exhibited peculiar behavior which the authors called a pin down phenomenon in that the {mu} shows a minimum {mu}{sub p} at a particular f{sub p} (pin down frequency) specific to M, C{sub gel} and the field strengths. The dynamics of DNA molecules under such pin-down conditions were examined by direct observation via fluorescence microscopy as well as dynamic electric birefringence.

  16. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.

    PubMed

    Tripathi, Anuj; Kathuria, Neeraj; Kumar, Ashok

    2009-09-01

    The focus of this work was to design a macroporous scaffold with controlled porosity in isotropic and anisotropic manner for tissue-engineering applications. Agarose-gelatin scaffolds were synthesized by cryogelation method, in which agarose was used to improve the mechanical characteristics and gelatin-provided amiable property of elasticity, cell adhesion, and cell proliferation in the scaffold. Agarose-gelatin (8%) cryogels synthesized in two different solvent systems (i.e., water and 0.1% acetic acid) at subzero temperature (-12 degrees C) showed well-interconnected porous structure. The agarose-gelatin cryogel synthesized in water solvent system (WSS) showed gradient porosity with an average pore diameter of a monolith (four sections from bottom to top; height 5 mm and diameter 13 mm each) ranging from 76 to 187 microm. The monolith of agarose-gelatin synthesized in 0.1% acetic acid solvent system (0.1% ASS) did not show any remarkable difference in average pore diameter of a monolith to their whole column length as revealed by scanning electron microscopy (SEM). These cryogels swelled up to approximately 90% of their capacity within 1 min. The aggregate tensile modulus showed good elasticity of the cryogels, in which agarose-gelatin synthesized in WSS showed higher tensile modulus, that is, 380.23 +/- 63.97 kPa in comparison with agarose-gelatin synthesized in 0.1% ASS, i.e., 278.08 +/- 94.08 kPa. The unconfined fatigue observation with varying strain (10-40%) and varying frequencies (2 and 5 Hz) showed no deformation of cryogels. The fibroblast (Cos-7) cell line seeded on the scaffold displayed good cell attachment in both types of cryogels and MTT assay showed good cell compatibility and favorable conditions for cell proliferation. These results indicate that agarose-gelatin cryogels can be a promising material of choice for tissue-engineering applications.

  17. Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.

    PubMed

    Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang

    2014-09-01

    A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused.

  18. Cationic polyacrylamides enhance rates of starch and cellulose saccharification.

    PubMed

    Reye, John T; Maxwell, Kendra; Rao, Swati; Lu, Jian; Banerjee, Sujit

    2009-10-01

    Adding a cationic polyacrylamide (c-PAM) to either the amylase mediated hydrolysis of corn starch or the hydrolysis of wood fiber by cellulase can enhance the initial hydrolysis rates, although a rate decrease can occur under some conditions. Several c-PAMs can serve as catalysts and the same c-PAM can improve the efficiency of both amylase and cellulase. The initial amylase rate approximately doubles; the analogous cellulase hydrolysis rate increases by about 40%. c-PAMs increase the binding of enzyme to substrate.

  19. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    -electrophoresis experiments have recently been applied. To demonstrate its practical application, the model is applied to (pH charge regulating) carboxylated polystyrene nanospheres in low-density passivated agarose gels (weak steric effects). This furnishes a new theoretical interpretation of literature data for which a finite diffuse-layer-thickness, pH-charge regulation, high charge, and relaxation effects dominate over the steric influences.

  20. Single nucleus versus single-cell gel electrophoresis: kinetics of DNA track formation.

    PubMed

    Afanasieva, Katerina; Chopei, Marianna; Sivolob, Andrei

    2015-04-01

    Single-cell gel electrophoresis, or the comet assay, is usually performed with nucleoids prepared after a lysis of either whole cells (more often) or isolated cell nuclei (rarely). Electrophoretic properties of the second type of nucleoids have never been investigated carefully. We measured the kinetics of the DNA exit from nuclei-derived nucleoids in comparison with cell-derived nucleoids. The results show that general organization of the nuclei-derived nucleoids is not changed very much in comparison with nucleoids commonly obtained from whole cells. At the same time, in contrast to the cell-derived nucleoids, for which the exit is stepwise and cooperative, the DNA exit from the nuclei-derived nucleoids can be described by a simple monomolecular kinetics. This difference is probably due to agarose penetration into nuclei (but not into cells) before polymerization of the agarose gel. We suggest that single-nucleus gel electrophoresis may be a way for the comet assay standardization.

  1. Fabricating neuromast-inspired gel structures for membrane-based hair cell sensing

    NASA Astrophysics Data System (ADS)

    Tamaddoni, Nima J.; Stephens, Christopher P.; Sarles, S. A.

    2012-04-01

    Recent research has shown that a new class of mechanical sensor, assembled from biomolecules and which features an artificial cell membrane as the sensing element, can be used to mimic basic hair cell mechanotransduction in vertebrates. The work presented in this paper is motivated by the need to increase sensor performance and stability by refining the methods used to fabricate and connect lipid-encapsulated hydrogels. Inspired by superficial neuromasts found on fish, three hydrogel materials are compared for their ability to be readily shaped into neuromast-inspired geometries and enable lipid bilayer formation using self-assembly at an oil/water interface. Agarose, polyethylene glycol (PEG, 6kg/mole), and hydroxyethyl methacrylate (HEMA) gel materials are compared. The results of this initial study determined that UV-curable gel materials such as PEG and HEMA enable more accurate shaping of the gel-needed for developing a sensor that uses a gel material both for mechanical support and membrane formation-compared to agarose. However, the lower hydrophobicity of agarose and PEG materials provide a more fluid, water-like environment for membrane formation-unlike HEMA. In working toward a neuromast-inspired design, a final experiment demonstrates that a bilayer can also be formed directly between two lipid-covered PEG surfaces. These initial results suggest that candidate gel materials with a low hydrophobicity, high fluidity, and a low modulus can be used to provide membrane support.

  2. Microchannel gel electrophoretic separation systems and methods for preparing and using

    SciTech Connect

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  3. Microchannel gel electrophoretic separation systems and methods for preparing and using

    SciTech Connect

    Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J

    2015-02-24

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  4. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: temperature, light, and pH.

    PubMed

    Smith, E A; Prues, S L; Oehme, F W

    1996-11-01

    A polyacrylamide thickening agent (PATA) was formulated at four concentrations in distilled-deionized water, without and with a glyphosate-surfactant herbicide (GH). Over a 6-week period, these mixtures were exposed to various controlled temperature and light conditions. Acrylamide concentration, ammonium concentration, and pH were measured at weekly intervals to assess the degradation of polyacrylamide and acrylamide. Satellite studies were conducted to examine the effect of altered pH on solutions of PATA (i.e., does pH promote polyacrylamide depolymerization?) and GH binding to amine groups (i.e., protection from degradation). The results of these studies suggest that polyacrylamide can degrade to acrylamide by thermal and photolytic effects, that changes in pH do not promote the depolymerization of polyacrylamide, and that GH does protect polyacrylamide and acrylamide from environmental degradation. Statistically there was no linear correlation between the various parameters measured.

  5. Increase in local protein concentration by field-inversion gel electrophoresis.

    PubMed

    Tsai, Henghang; Leung, Hon-Chiu Eastwood

    2012-01-01

    Proteins that migrate through cross-linked polyacrylamide gels (PAGs) under the influence of a constant electric field experience negative factors, such as diffusion and nonspecific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein recovery efficiency. Here, we describe the enhancement of protein separation efficiency up to twofold in conventional one-dimensional PAG electrophoresis (1D PAGE), two-dimensional (2D) PAGE, and native PAGE by implementing pulses of inverted electric field during gel electrophoresis.

  6. The latest advancements in proteomic two-dimensional gel electrophoresis analysis applied to biological samples.

    PubMed

    Santucci, Laura; Bruschi, Maurizio; Ghiggeri, Gian Marco; Candiano, Giovanni

    2015-01-01

    Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.

  7. Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Ohtsuki, Chikara

    2013-11-01

    Growing crystals in hydrogels is an attractive method to form inorganic solids with designed morphology under ambient conditions. Precipitation of the inorganic solids in a hydrogel matrix can be regarded as mimicking the process of biomineralization. In the construction of biominerals, an organic template composed of insoluble macromolecules is used to control the crystal growth of the inorganic compounds. The morphological control in biomineralization can be applied to artificial reaction systems. In this study, the morphology of calcium phosphate crystals formed in polymeric hydrogels of various polymer concentrations was investigated. Spherical octacalcium phosphate (OCP) precipitated in the polyacrylamide (PAAm) hydrogels. Fibrous crystals gradually covered the surface of the spherical crystals as the polymer concentration of the gel increased. The morphology of the OCP crystals changed from sea urchin shapes to wool-ball shapes with increasing PAAm concentration. The morphological change is generated by the template effect of the polymer wall, which is made up of stacked PAAm sheets, surrounding the spherical OCP crystals.

  8. Isolation and Characterization of Polyacrylamide-Degrading Bacteria from Dewatered Sludge

    PubMed Central

    Yu, Feng; Fu, Ruimin; Xie, Yun; Chen, Wuling

    2015-01-01

    Polyacrylamide (PAM) is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm). The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family. PMID:25893998

  9. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  10. Gel mesh as ``brake'' to slow down DNA translocation through solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Tang, Zhipeng; Liang, Zexi; Lu, Bo; Li, Ji; Hu, Rui; Zhao, Qing; Yu, Dapeng

    2015-07-01

    Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results.Agarose gel is introduced onto the cis side of silicon nitride nanopores by a simple and low-cost method to slow down the speed of DNA translocation. DNA translocation speed is slowed by roughly an order of magnitude without losing signal to noise ratio for different DNA lengths and applied voltages in gel-meshed nanopores. The existence of the gel moves the center-of-mass position of the DNA conformation further from the nanopore center, contributing to the observed slowing of translocation speed. A reduced velocity fluctuation is also noted, which is beneficial for further applications of gel-meshed nanopores. The reptation model is considered in simulation and agrees well with the experimental results. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03084f

  11. Analysis of soybean embryonic axis proteins by two-dimensional gel electrophoresis and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissecte...

  12. Influence of graphene-oxide nanosheets impregnation on properties of sterculia gum-polyacrylamide hydrogel formed by radiation induced polymerization.

    PubMed

    Singh, Baljit; Singh, Baldev

    2017-06-01

    Present work is an attempt, to explore the potential of graphene oxide nanoplates impregnation, on the mechanical and drug delivery properties of sterculia gum-polyacrylamide composite hydrogel formed by radiation induced polymerization. These polymers were characterized by SEM, cryo-SEM, AFM, FTIR's, (13)C NMR and swelling studies. Release profile of an anticancer drug 'gemcitabine' was studied to determine the drug release mechanism and best fit kinetic model. Furthermore, some important biomedical properties of the polymers such as blood compatibility, mucoadhesion, antioxidant properties and gel strength were also studied. Impregnation of GO into sterculia gum-poly(AAm) hydrogels decreased the swelling of hydrogels but improved the mechanical, drug loading and drug release properties of the hydrogels. Release of gemcitabine from drug loaded hydrogels occurred through non-Fickian diffusion mechanism and release profile was best fitted in first order kinetic model. These hydrogels have been found as haemocompatible, mucoadhesive, and antioxidant in nature.

  13. Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs.

    PubMed

    Griebel, A J; Khoshgoftar, M; Novak, T; van Donkelaar, C C; Neu, C P

    2014-06-27

    Biomechanical factors play an important role in the growth, regulation, and maintenance of engineered biomaterials and tissues. While physical factors (e.g. applied mechanical strain) can accelerate regeneration, and knowledge of tissue properties often guide the design of custom materials with tailored functionality, the distribution of mechanical quantities (e.g. strain) throughout native and repair tissues is largely unknown. Here, we directly quantify distributions of strain using noninvasive magnetic resonance imaging (MRI) throughout layered agarose constructs, a model system for articular cartilage regeneration. Bulk mechanical testing, giving both instantaneous and equilibrium moduli, was incapable of differentiating between the layered constructs with defined amounts of 2% and 4% agarose. In contrast, MRI revealed complex distributions of strain, with strain transfer to softer (2%) agarose regions, resulting in amplified magnitudes. Comparative studies using finite element simulations and mixture (biphasic) theory confirmed strain distributions in the layered agarose. The results indicate that strain transfer to soft regions is possible in vivo as the biomaterial and tissue changes during regeneration and maturity. It is also possible to modulate locally the strain field that is applied to construct-embedded cells (e.g. chondrocytes) using stratified agarose constructs.

  14. Investigation of the repair of single-strand breaks in human DNA using alkaline gel electrophoresis

    SciTech Connect

    Kovacs, E.; Langemann, H. )

    1990-11-01

    Unstimulated lymphocytes from eight healthy persons were exposed to 10-, 30-, and 100-Gy doses of 60Co gamma radiation. The repair of damaged DNA was measured by (1) alkaline gel electrophoresis (extracted DNA loaded on 0.25% agarose gel, run at 1 V/cm for 39-44 h) at 0, 1, and 2 h after exposure and (2) incorporation of (3H)thymidine into unstimulated lymphocytes in the presence of 2 mM hydroxyurea 1 and 2 h after exposure. Both methods--alkaline gel electrophoresis and thymidine incorporation--showed that repair was completed within 2 h.

  15. Preparation of DNA and protein micro arrays on glass slides coated with an agarose film

    PubMed Central

    Afanassiev, Victor; Hanemann, Vera; Wölfl, Stefan

    2000-01-01

    A thin layered agarose film on microscope slides provides a versatile support for the preparation of arrayed molecular libraries. An activation step leading to the formation of aldehyde groups in the agarose creates reactive sites that allow covalent immobilization of molecules containing amino groups. Arrays of oligonucleotides and PCR products were prepared by tip printing. After hybridization with complementary fluorescence labeled nucleic acid probes strong fluorescence signals of sequence-specific binding to the immobilized probes were detected. The intensity of the fluorescence signals was proportional to the relative amount of immobilized oligonucleotides and to the concentration of the fluorescence labeled probe. We also used the agarose film-coated slides for the preparation of protein arrays. In combination with specific fluorescence labeled antibodies these protein arrays can be used for fluorescence linked immune assays. With this approach different protein tests can be performed in parallel in a single reaction with minimal amounts of the binding reagents. PMID:10871389

  16. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples.

  17. Quantitative determination of glycine in aqueous solution using glutamate dehydrogenase-immobilized glyoxal agarose beads.

    PubMed

    Keskin, Semra Yilmazer; Keskin, Can Serkan

    2014-01-01

    In this study, an enzymatic procedure for the determination of glycine (Gly) was developed by using a column containing immobilized glutamate dehydrogenase (GDH) on glyoxal agarose beads. Ammonia is produced from the enzymatic reactions between Gly and GDH with NAD(+) in phosphate buffer medium. The indophenol blue method was used for ammonia detection based on the spectrophotometric measurements of blue-colored product absorbing at 640 nm. The calibration graph is linear in the range of 0.1-10 mM of Gly concentrations. The effect of pH, temperature, and time interval was studied to find column stability, and also the interference effects of other amino acids was investigated. The interaction between GDH and glyoxal agarose beads was analyzed by Fourier transform infrared (FTIR) spectroscopy. The morphology of the immobilized and non-immobilized agarose beads were characterized by atomic force microscopy (AFM).

  18. Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds.

    PubMed

    Lynam, Daniel A; Shahriari, Dena; Wolf, Kayla J; Angart, Phillip A; Koffler, Jacob; Tuszynski, Mark H; Chan, Christina; Walton, Patrick; Sakamoto, Jeffrey

    2015-05-01

    Agarose nerve guidance scaffolds (NGS) seeded with cells expressing brain derived neurotrophic factor (BDNF) have demonstrated robust nerve regeneration in the rat central nervous system. The purpose of this work was to explore whether agarose NGS coated with hydrogen-bonded layer-by-layer (HLbL) could provide an acellular method of delivering prolonged and consistent dosages of active BDNF. Our results show that HLbL-coated agarose NGS could release BDNF over 10days in consistent dosages averaging 80.5±12.5(SD)ng/mL. Moreover, the BDNF released from HLbL was confirmed active by in vitro cell proliferation assays. To our knowledge, this is the first report demonstrating that HLbL assembled onto a hydrogel can provide consistent, prolonged release of active BDNF in clinically relevant dosages.

  19. Environmental degradation of polyacrylamides. II. Effects of environmental (outdoor) exposure.

    PubMed

    Smith, E A; Prues, S L; Oehme, F W

    1997-06-01

    The environmental fate of a polyacrylamide thickening agent (PATA), formulated without and with a glyphosate-surfactant herbicide (GH), was examined under various environmental situations: formulation in surface water and ground water, volatility, and soil mobility. Environmental Fate of PATA in Surface Water and Ground Water: PATA was formulated at four concentrations in distilled-deionized water, three surface water samples, and two ground water samples, without and with a GH. Solutions were placed in glass bottles, covered with plastic wrap, and exposed to environmental (outdoor) conditions for 6 weeks. Acrylamide and ammonium concentration, pH, and bacterial and fungal populations were measured weekly. All solutions in this portion of the study had a homogeneous milky appearance but the conclusions of the study were nearly transparent. The results of this study suggest that polyacrylamide can degrade to acrylamide under environmental conditions. Statistically, there was no linear correlation between the various parameters measured. Volatility: PATA was formulated without and with GH. Each solution plus an acrylamide standard (positive control) was placed in a glass beaker and exposed to environmental (outdoor) conditions for 6 days. Acrylamide concentration, ammonium concentration, pH, and solution volume were measured daily. Acrylamide and ammonium concentrations increased during the study in all formulations, except when solutions evaporated to dryness. pH did not change greatly over the course of the study for these samples. Those solutions containing PATA had a homogeneous milky appearance but by the conclusions of the study were nearly transparent. This suggests a physical structural change in the polymer. Soil Mobility: PATA formulated with GH was also applied to soil columns and soil boxes containing sand, Eudora sandy loam, Eudora sandy clay, and Kohola silt loam. Acrylamide could be detected by Day 2 in all soil columns. Acrylamide could not be

  20. Passivated gel electrophoresis of charged nanospheres by light-scattering video tracking.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-08-15

    Gel electrophoresis (gel-EP) has been used for decades to separate charged biopolymers, such as DNA, RNA, and proteins, yet propagation of other charged colloidal objects, such as nanoparticles, during gel-EP has been studied comparatively little. Simply introducing anionic nanoparticles, such as sulfate-stabilized polystyrene nanospheres, in standard large-pore agarose gels commonly used for biomolecules does not automatically ensure propagation or size-separation because attractive interactions can exist between the gel and the nanoparticles. Whereas altering the surfaces of the nanoparticles is a possible solution, here, by contrast, we show that treating a common type I-A low-electroendoosmosis agarose gel with a passivation agent, such as poly-(ethyleneglycol), enables charged nanoparticles to propagate through large-pore passivated gels in a highly reproducible manner. Moreover, by taking advantage of the significant optical scattering from the nanoparticles, which is not easily measurable for biopolymers, relative to scattering from the gel, we perform real-time, light-scattering, video-tracking gel-EP. Continuous optical measurements of the propagation of bands of uniformly sized nanospheres in passivated gels provides the propagation distance, L, and velocity, v, as a function of time for different sphere radii, electric field strengths, gel concentrations, and passivation agent concentrations. The steady-state particle velocities vary linearly with applied electric field strength, E, for small E, but these velocities become non-linear for larger E, suggesting that strongly driven nanoparticles can become elastically trapped in the smaller pores of the gel, which act like blind holes, in a manner that thermal fluctuations cannot overcome. Based on this assumption, we introduce a simple model that fits the measured v(E) in both linear and non-linear regimes over a relevant range of applied voltages.

  1. Low-velocity super-lubrication of sodium-alginate/polyacrylamide ionic-covalent hybrid double-network hydrogels.

    PubMed

    Li, Xuefeng; Wu, Chu; Yang, Qian; Long, Shijun; Wu, Chonggang

    2015-04-21

    Structural and frictional behaviours of sodium alginate (SA)/polyacrylamide (PAAm) ionic-covalent hybrid, sequential double-network (DN) hydrogels against glass have been investigated in water, NaCl and CaCl2 aqueous solutions using a rotational rheometer. Dilution of adsorptive elastohydrodynamic friction for the PAAm covalent network with repulsive hydrodynamic lubrication for the minor SA ionic network was found to control the frictional stresses of the SA/PAAm gels within between those of the SA and PAAm single-network gels. A tentative qualitative model was proposed to describe the impact of ionic environmental solution on the frictional behaviour of the hybrid gel by selectively affecting the SA-network structure and friction. It was revealed that strong Debye shielding in the NaCl solution significantly reduced the thickness of the electric double layer for hydrodynamic lubrication of the SA network, which made the SA/PAAm gel's friction the highest among the three solutions. Dramatically increased ionic cross-linking of the SA network in the CaCl2 solution, although effectively mediated by the PAAm-network flexible skeleton, still functioned partially to conserve a portion of the SA fractional boundary-friction at the interface, making the friction of the hybrid gel intermediate among the three solutions. In contrast, extreme hydration of the SA network in water sharply increased the volume fraction of its unshielded hydrodynamic lubrication at the interface, which greatly reduced the SA/PAAm's friction to the lowest among the three solutions. We have thus incorporated for the first time both super-lubrication (frictional coefficients of below 10(-2) over low sliding-velocities of 3 × 10(-5) to 2 × 10(-3) m s(-1)) and previously reported high fracture energy (over 9000 J m(-2)) into a single ionic-covalent hybrid DN hydrogel, which is the SA/PAAm (∼1/8.5 w/w) gel in water. Effects of inversion of DN-formation sequence further indicated that frictional

  2. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    SciTech Connect

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn; Paviet, Patricia Denise; Drigert, Mark William

    2016-11-29

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution of the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.

  3. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels.

    PubMed Central

    Timofeev, E; Kochetkova, S V; Mirzabekov, A D; Florentiev, V L

    1996-01-01

    Four types of polyacrylamide or polydimethyl-acrylamide gels for regioselective (by immobilization at the 3' end) of short oligonucleotides have been designed for use in manufacturing oligonucleotide microchips. Two of these supports contain amino or aldehyde groups in the gel, allowing coupling with oligonucleotides bearing aldehyde or amino groups, respectively, in the presence of a reducing agent. The aldehyde gel support showed a higher immobilization efficiency relative to the amino gel. Of all reducing agents tested, the best results were obtained with a pyridine-borane complex. The other supports are based on an acrylamide gel activated with glutaraldehyde or a hydroxyalkyl-functionalized gel treated with mesyl chloride. The use of dimethylacrylamide instead of acrylamide allows subsequent gel modifications in organic solvents. All the immobilization methods are easy and simple to perform, give high and reproducible yields, allow long durations of storage of the activated support, and provide high stability of attachment and low non-specific binding. Although these gel supports have been developed for preparing oligonucleotide microchips, they may be used for other purposes as well. PMID:8774893

  4. Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy.

    PubMed

    Nweke, Mauryn C; Turmaine, Mark; McCartney, R Graham; Bracewell, Daniel G

    2017-03-01

    The drying of chromatography resins prior to scanning electron microscopy is critical to image resolution and hence understanding of the bead structure at sub-micron level. Achieving suitable drying conditions is especially important with agarose-based chromatography resins, as over-drying may cause artefact formation, bead damage and alterations to ultrastructural properties; and under-drying does not provide sufficient resolution for visualization under SEM. This paper compares and contrasts the effects of two drying techniques, critical point drying and freeze drying, on the morphology of two agarose based resins (MabSelect™/dw ≈85 µm and Capto™ Adhere/dw ≈75 µm) and provides a complete method for both. The results show that critical point drying provides better drying and subsequently clearer ultrastructural visualization of both resins under SEM. Under this protocol both the polymer fibers (thickness ≈20 nm) and the pore sizes (diameter ≈100 nm) are clearly visible. Freeze drying is shown to cause bead damage to both resins, but to different extents. MabSelect resin encounters extensive bead fragmentation, whilst Capto Adhere resin undergoes partial bead disintegration, corresponding with the greater extent of agarose crosslinking and strength of this resin. While freeze drying appears to be the less favorable option for ultrastructural visualization of chromatography resin, it should be noted that the extent of fracturing caused by the freeze drying process may provide some insight into the mechanical properties of agarose-based chromatography media.

  5. Can You Solve the Crime? Using Agarose Electrophoresis To Identify an Unknown Colored Protein.

    ERIC Educational Resources Information Center

    Wiltfong, Cynthia L.; Chester, Emily; Albertin, Faith; Smith, Julia; Hall, Judith C.; Arth, Emily C.; Martin, Stephanie

    2003-01-01

    Describes a lab that introduces agarose electrophoresis techniques and basic information on proteins to middle school and high school students. Insists that, built around a scenario in which students must solve a crime, the lab has real-world applications that should spark student interest. (KHR)

  6. Agarose-Based Substrate Modification Technique for Chemical and Physical Guiding of Neurons In Vitro.

    PubMed

    Krumpholz, Katharina; Rogal, Julia; El Hasni, Akram; Schnakenberg, Uwe; Bräunig, Peter; Bui-Göbbels, Katrin

    2015-08-26

    A new low cost and highly reproducible technique is presented that provides patterned cell culture substrates. These allow for selective positioning of cells and a chemically and mechanically directed guiding of their extensions. The patterned substrates consist of structured agarose hydrogels molded from reusable silicon micro templates. These templates consist of pins arranged equidistantly in squares, connected by bars, which mold corresponding wells and channels in the nonadhesive agarose hydrogel. Subsequent slice production with a standard vibratome, comprising the described template pattern, completes substrate production. Invertebrate neurons of locusts and pond snails are used for this application as they offer the advantage over vertebrate cells as being very large and suitable for cultivation in low cell density. Their neurons adhere to and grow only on the adhesive areas not covered by the agarose. Agarose slices of 50 μm thickness placed on glass, polystyrene, or MEA surfaces position and immobilize the neurons in the wells, and the channels guide their neurite outgrowth toward neighboring wells. In addition to the application with invertebrate neurons, the technique may also provide the potential for the application of a wide range of cell types. Long-term objective is the achievement of isolated low-density neuronal networks on MEAs or different culture substrates for various network analysis applications.

  7. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies.

    PubMed

    Vardar, E; Vert, Michel; Coudane, Jean; Hasirci, V; Hasirci, N

    2012-01-01

    Hydrogels are frequently considered for medical applications due to the ease of preparation in different forms and high water content that makes them comparable to natural tissues. However, these general properties are not sufficient to make any hydrogel suitable for cell attachment and growth which are necessary for their use in tissue regeneration. Besides, the high water content makes the hydrogels mechanically weak. The formation of semi-interpenetrating networks (semi-IPNs) can be used in attempts to enhance physical, mechanical and thermal properties. In this study, semi-IPNs of agarose were prepared with chitosan and alginate, two polyelectrolytes that are positively and negatively charged under physiological conditions, respectively. Zeta potential was used to confirm the formation of charged hydrogels. All hydrogels had ultimate compression strengths in the range of 91-210 Pa where the value for pure agarose was about 103 Pa. Chitosan increased the compressive strength about two folds whereas the alginate had opposite effects. The amount of strongly bound water present in the hydrogels were estimated from TGA and DSC analysis and the highest value was found for alginate-agarose hydrogels as about 15%. The attachment and the migration of L929 fibroblasts were monitored in vitro using the MTS assay and confocal microscopy. The highest cell proliferation and penetration were observed for positively charged chitosan-agarose semi-IPN hydrogels.

  8. Modification of agarose: 6-aminoagarose mediated syntheses of fluorogenic pyridine carboxylic acid amides.

    PubMed

    Kondaveeti, Stalin; Mehta, Gaurav K; Siddhanta, A K

    2014-06-15

    A facile 6-aminoagarose (AA) mediated synthesis of new fluorogenic amides of agarose with nicotinic (AA-NA) and picolinic acids (AA-PA) employing carbodiimide chemistry have been described. 6-Amino agarose (AA) was synthesized in a facile Mitsunobu-inspired microwave mediated method involving the reaction of agarose with phthalimide in presence of diisopropyl azodicarboxylate and triphenylphosphene (DIAD/TPP) followed by hydrazinolysis. All compounds were characterized by GPC, UV spectrophotometry, fluorescence spectroscopy, FT-IR, (1)H and (13)C NMR spectra. The fluorescence emissions (λmax 430 and 412 nm) of 1 × 10(-3)M solutions of AA-NA and AA-PA in water were significantly higher (ca. 82% and ca. 90%) than those of the molar equivalents (0.2mg) of NA and PA present in the 1 × 10(-3)M solutions of the amides, respectively. These fluorogenic pyridine carboxylic acid amides of agarose may find applications as sensors in biomedical and pharmaceutical industries.

  9. A novel mechanism of “metal gel-shift” by histidine-rich Ni2+-binding Hpn protein from Helicobacter pylori strain SS1

    PubMed Central

    Ito, Yuki; Masumoto, Junya; Morita, Eugene Hayato; Hayashi, Hidenori

    2017-01-01

    Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is a universally used method for determining approximate molecular weight (MW) in protein research. Migration of protein that does not correlate with formula MW, termed “gel shifting” appears to be common for histidine-rich proteins but not yet studied in detail. We investigated “gel shifting” in Ni2+-binding histidine-rich Hpn protein cloned from Helicobacter pylori strain SS1. Our data demonstrate two important factors determining “gel shifting” of Hpn, polyacrylamide-gel concentration and metal binding. Higher polyacrylamide-gel concentrations resulted in faster Hpn migration. Irrespective of polyacrylamide-gel concentration, preserved Hpn-Ni2+ complex migrated faster (3–4 kDa) than apo-Hpn, phenomenon termed “metal gel-shift” demonstrating an intimate link between Ni2+ binding and “gel shifting”. To examine this discrepancy, eluted samples from corresponding spots on SDS-gel were analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The MW of all samples was the same (6945.66±0.34 Da) and identical to formula MW with or without added mass of Ni2+. MALDI-TOF-MS of Ni2+-treated Hpn revealed that monomer bound up to six Ni2+ ions non-cooperatively, and equilibrium between protein-metal species was reliant on Ni2+ availability. This corroborates with gradually increased heterogeneity of apo-Hpn band followed by compact "metal-gel shift" band on SDS-PAGE. In view of presented data metal-binding and “metal-gel shift” models are discussed. PMID:28207866

  10. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on Nomega-homocysteinyl-aminohexyl-Agarose.

    PubMed

    Perła, Joanna; Undas, Anetta; Twardowski, Tomasz; Jakubowski, Hieronim

    2004-08-05

    Modification with homocysteine (Hcy)-thiolactone leads to the formation of N-Hcy-Lys-protein. Although N-Hcy-Lys-proteins are immunogenic, pure antibodies have not yet been obtained. Here we describe synthesis and application of Nomega-homocysteinyl-aminohexyl-Agarose for affinity purification of anti-N-Hcy-Lys-protein antibodies. Nomega-homocysteinyl-aminohexyl-Agarose was prepared by N-homocysteinylation of omega-aminohexyl-Agarose with Hcy-thiolactone. Immune serum was obtained from rabbits inoculated with N-Hcy-Lys-keyhole limpet hemocyanine and IgG fraction prepared by chromatography on protein A-Agarose. Anti-N-Hcy-Lys-protein IgG was adsorbed on Nomega-homocysteinyl-aminohexyl-Agarose column at pH 8.6 and eluted with a pH 2.3 buffer. Enzyme-linked immunosorbent assays demonstrate that the antibody recognizes specifically N-homocysteinylated variants of hemoglobin, albumin, transferrin, and antitrypsin.

  11. Embedded ceria nanoparticles in gel improve electrophoretic separation: a preliminary demonstration.

    PubMed

    Zarei, Mohammad; Ahmadzadeh, Hossein; Goharshadi, Elaheh K

    2015-07-07

    Slab gel electrophoresis is still the gold standard method for the separation of biomolecules such as proteins and DNA with advantages such as simplicity, affordability, and high throughput, but it suffers from inadequate separation speed and resolution. Single capillary gel electrophoresis, on the other hand, offers faster separation time and improved resolution at the expense of higher cost and loss of high throughput capability. The high surface to volume ratio of the capillary causes improved heat dissipation leading to a reduced Joule heating and a higher resolution. Here, for the first time, we show the use of dispersed ceria nanoparticles (NPs) to improve the resolution and speed of protein separation in slab gel electrophoresis. We measured the rheological parameters of separation medium in order to find a meaningful relationship between viscosity changes, Joule heating, and band broadening. The results showed that ceria NPs decrease the viscosity of polyacrylamide gel. By loading 0.03% (w/v) ceria NPs into polyacrylamide gel at 25 °C, the viscosity decreased 22% and the thermal conductivity increased to 81%, which resulted in 35% reduction in Joule heating and 47% increase in resolution. This work is a cross disciplinary of theoretical physical chemistry for thermal conductivity and rheological measurements of PA and ceria suspensions and application in slab gel electrophoresis. We report here, for the first time, that embedded NPs in PA gel could potentially interface high throughput capability of slab gel electrophoresis with high separation speed of single capillary electrophoresis.

  12. Centrifugal methods and devices for rapid in-gel digestion of proteins.

    PubMed

    Lazarev, Alexander V; Rejtar, Tomas; Dai, Shujia; Karger, Barry L

    2009-03-01

    Modern proteomic research frequently relies upon separation of proteins in a polyacrylamide gel matrix followed by in-gel enzymatic digestion and extraction of peptides for subsequent analysis by MS. In this work, we propose a novel semi-automated method of mechanical processing of gel bands by passing these bands through a specially designed centrifugal device termed a Gel Shredder prior to digestion and extraction of peptides. Such a device allows integrated washing, destaining and shredding of gel bands into uniform blocks of controlled size, approximately 150-300 microm, prior to the enzymatic digestion and extraction of peptides. Shredding into uniform blocks increases the surface area of the gel pieces and promotes improved gel rehydration, allowing improved diffusion of the proteolytic enzymes and solvent into the gel lattice. We demonstrate that the new method substantially reduces the time spent on tedious manual handling of gel bands, while minimizing the risk of sample contamination. The performance of the Gel Shredder has been compared with a conventional in-gel digestion protocol using several standard proteins and a complex proteomic sample in terms of relative quantitation by either MALDI-TOF/TOF or nanoLC-ESI IT-Fourier transformation ion cyclotron resonance MS. It is shown that significant time savings and improved peptide recovery can be obtained for many proteins using the Gel Shredder compared with the traditional in-gel digestion protocol.

  13. Enhancement of in vitro and in vivo function of agarose-encapsulated porcine islets by changes in the islet microenvironment.

    PubMed

    Holdcraft, Robert W; Gazda, Lawrence S; Circle, Lisa; Adkins, Hollie; Harbeck, Steven G; Meyer, Eric D; Bautista, Melissa A; Martis, Prithy C; Laramore, Melissa A; Vinerean, Horatiu V; Hall, Richard D; Smith, Barry H

    2014-01-01

    The transplantation of porcine islets of Langerhans to treat type 1 diabetes may provide a solution to the demand for insulin-producing cells. Porcine islets encapsulated in agarose-agarose macrobeads have been shown to function in nonimmunosuppressed xenogeneic models of both streptozotocin-induced and autoimmune type 1 diabetes. One advantage of agarose encapsulation is the ability to culture macrobeads for extended periods, permitting microbiological and functional assessment. Herein we describe optimization of the agarose matrix that results in improved islet function. Porcine islets (500 IEQs) from retired breeding sows were encapsulated in 1.5% SeaKem Gold (SG), 0.8% SG, or 0.8% Litex (Li) agarose, followed by an outer capsule of 5% SG agarose. Insulin production by the encapsulated islets exhibited an agarose-specific effect with 20% (0.8% SG) to 50% (0.8% Li) higher initial insulin production relative to 1.5% SG macrobeads. Insulin production was further increased by 40-50% from week 2 to week 12 in both agarose types at the 0.8% concentration, whereas islets encapsulated in 1.5% SG agarose increased insulin production by approximately 20%. Correspondingly, fewer macrobeads were required to restore normoglycemia in streptozotocin-induced diabetic female CD(SD) rats that received 0.8% Li (15 macrobeads) or 0.8% SG (17 macrobeads) as compared to 1.5% SG (19 macrobeads). Islet cell proliferation was also observed during the first 2 months postencapsulation, peaking at 4 weeks, where approximately 50% of islets contained proliferative cells, including β-cells, regardless of agarose type. These results illustrate the importance of optimizing the microenvironment of encapsulated islets to improve islet performance and advance the potential of islet xenotransplantation for the treatment of type 1 diabetes.

  14. A templated agarose scaffold for axon guidance in the central and peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Gros, Thomas Richard

    This thesis examined the hypothesis that axonal guidance could be improved in the central and peripheral nervous systems using a highly linearized templated agarose scaffold. In the present study we examined whether a templated agarose scaffold improved axon retention across a large central nervous system (CNS) lesion and how cellular and axonal orientation was affected within the scaffold channels. The "physical" guidance from the scaffold was applied to an existing CNS "chemical" guidance strategy, shown to promote axons beyond the lesion site, to enhance the number of crossing axons in larger, disorganized, lesions. Specifically, there was the greatest number of long-tract sensory axons reaching the distal aspect of the lesion when the templated agarose scaffold was combined with a neurotrophic source of NT-3 beyond the lesion site and a conditioning lesion, to enhance chemical axon guidance and the intrinsic growth state of axons, respectively. When comparing the scaffold implant to a cell suspension grafts, we found a higher retention of long-tract ascending (sensory) axons and descending (motor) axons crossing large lesions (2mm). The enhanced axon retention may be attributed to the finding that cellular orientation within the scaffold channels is highly linear, thus promoting a less tortuous environment for axon orientation and bridging. Although an enhanced number of axons were able to cross the lesion, the axons did not repenetrate the host tissue due to a reactive cell layer, present only in scaffold the implant groups. Additionally, a peripheral nerve conduit, with the agarose scaffold as the core, displayed biocompatiablility and supported axon growth and vasculature beyond the clinically applicable distance of 4mm. Thus, the templated agarose scaffold enhances axon retention and guidance within CNS injury sites and has potential applications to the PNS.

  15. Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application.

    PubMed

    Lam, P-L; Gambari, R; Kok, S H-L; Lam, K-H; Tang, J C-O; Bian, Z-X; Lee, K K-H; Chui, C-H

    2015-02-01

    Aspergillus niger (A. niger) is a common species of Aspergillus molds. Cutaneous aspergillosis usually occurs in skin sites near intravenous injection and approximately 6% of cutaneous aspergillosis cases which do not involve burn or HIV-infected patients are caused by A. niger. Biomaterials and biopharmaceuticals produced from microparticle-based drug delivery systems have received much attention as microencapsulated drugs offer an improvement in therapeutic efficacy due to better human absorption. The frequently used crosslinker, glutaraldehyde, in gelatin-based microencapsulation systems is considered harmful to human beings. In order to tackle the potential risks, agarose has become an alternative polymer to be used with gelatin as wall matrix materials of microcapsules. In the present study, we report the eco-friendly use of an agarose/gelatin-based microencapsulation system to enhance the antifungal activity of gallic acid and reduce its potential cytotoxic effects towards human skin keratinocytes. We used optimal parameter combinations, such as an agarose/gelatin ratio of 1:1, a polymer/oil ratio of 1:60, a surfactant volume of 1% w/w and a stirring speed of 900 rpm. The minimum inhibitory concentration of microencapsulated gallic acid (62.5 µg/ml) was significantly improved when compared with that of the original drug (>750 µg/ml). The anti-A. niger activity of gallic acid -containing microcapsules was much stronger than that of the original drug. Following 48 h of treatment, skin cell survival was approximately 90% with agarose/gelatin microcapsules containing gallic acid, whereas cell viability was only 25-35% with free gallic acid. Our results demonstrate that agarose/gelatin-based microcapsules containing gallic acid may prove to be helpful in the treatment of A. niger-induced skin infections near intravenous injection sites.

  16. Analysis of DAPI and SYBR Green I as Alternatives to Ethidium Bromide for Nucleic Acid Staining in Agarose Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Bourzac, Kevin M.; Lavine, Lori J.; Rice, Margaret S.

    2003-11-01

    DNA electrophoresis and staining is a common procedure in biochemistry laboratories, but the use of ethidium bromide (EB) for DNA detection is worrisome as EB is a mutagen and probable carcinogen. Five alternative stains were evaluated for DNA detection, safety, cost, and ease of use: BlueView, methylene blue, Carolina Blu, DAPI (4',6-diamidino-2-phenylindole dihydrochloride:hydrate), and SYBR Green I. BlueView, Carolina Blu, and methylene blue are not sensitive enough to detect the microgram amounts of DNA used in many procedures. However, DAPI and SYBR Green I are good staining alternatives to ethidium bromide in that they have similar sensitivity and are both easy to use. SYBR Green I is more expensive than EB or DAPI; however, the limited safety data suggest that SYBR Green I is the safest stain.

  17. Agarose Gel Electrophoresis System in the Classroom: Detection of DNA Strand Breaks through the Alteration of Plasmid Topology

    ERIC Educational Resources Information Center

    De Mattos, J. C. P.; Dantas, F. J. S.; Caldeira-de-Araujo, A.; Moraes, M. O.

    2004-01-01

    Good quality scientific teaching depends on the ability of researchers to translate laboratory experiments into high school and undergraduate classes, bridging the advanced and basic science with common knowledge. A fast-growing field in biomedical sciences is oxidative stress, which has been associated to several diseases, including cancer and…

  18. Polyacrylamide medium for the electrophoretic separation of biomolecules

    DOEpatents

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  19. Antimicrobial activity of silver/starch/polyacrylamide nanocomposite.

    PubMed

    Abdel-Halim, E S; Al-Deyab, Salem S

    2014-07-01

    A novel silver/starch/polyacrylamide nanocomposite hydrogel was prepared by grafting acrylamide onto starch in presence of silver nitrate by use of ammonium persulphate as an initiator and N,N-methylene-bisacrylamide as a crosslinking agent, then reducing the silver ions enclosed in the hydrogel structure to silver nanoparticles by treating the hydrogel with sodium hydroxide solution. All factors which affect the grafting/crosslinking reaction were optimized and the concentration of silver ion was changed from 0ppm to 50ppm. The produced nanocomposite hydrogel was characterized for its nanosilver content and the UV-spectra showed similar absorption spectra at wavelength 405nm for all AgNO3 concentrations but the plasmon showed increase in the intensity of the absorption peak as AgNO3 concentration incorporated to the hydrogel structure increases. The nanocomposite hydrogel was also characterized for its antimicrobial activity toward two types of bacteria and two types of fungi. The results showed that the hydrogel with 0ppm silver content has no antimicrobial activity, and that the antimicrobial activity expressed as inhibition zone increases as the silver content increases from 5ppm to 50ppm.

  20. A new staining and evaluating procedure for protein gel electropherograms based on the pyrogallol red-molybdate complex.

    PubMed

    Csiba, A; Szécsényi-Nagy, L

    1989-01-01

    A new method is reported for staining and evaluating gel electropherograms of proteins. With pyrogallol red-molybdate reagent the gel-embedded proteins are transformed into a derivative of blue colour. After destaining, the blue-coloured proteins are well visible against a colourless background and can be quantified by densitometry with high reliability. The quantity of the coloured protein is directly proportional to the height of peaks in the densitogram. Colour intensity is concentration dependent. The measurement range of serum albumin was 1 to 50 micrograms/tube and 10 to 100 micrograms/slab in polyacrylamide gel disc electrophoresis and agar gel electrophoresis, respectively.

  1. Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose.

    PubMed

    Guerrero, Cecilia; Vera, Carlos; Serna, Nestor; Illanes, Andrés

    2017-02-07

    Aspergillus oryzae β-galactosidase was immobilized in monofunctional glyoxyl-agarose and heterofunctional supports (amino-glyoxyl, carboxy-glyoxyl and chelate-glyoxyl agarose), for obtaining highly active and stable catalysts for lactulose synthesis. Specific activities of the amino-glyoxyl agarose, carboxy-glyoxyl agarose and chelate-glyoxyl agarose derivatives were 3676, 430 and 454IU/g biocatalyst with half-life values at 50°C of 247, 100 and 100h respectively. Specific activities of 3490, 2559 and 1060IU/g were obtained for fine, standard and macro agarose respectively. High immobilization yield (39.4%) and specific activity of 7700IU/g was obtained with amino-glyoxyl-agarose as support. The highest yields of lactulose synthesis were obtained with monofunctional glyoxyl-agarose. Selectivity of lactulose synthesis was influenced by the support functionalization: glyoxyl-agarose and amino-glyoxyl-agarose derivatives retained the selectivity of the free enzyme, while selectivity with the carboxy-glyoxyl-agarose and chelate-glyoxyl-agarose derivatives was reduced, favoring the synthesis of transgalactosylated oligosaccharides over lactulose.

  2. Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters through magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Collura, Giorgio; Gallo, Salvatore; Nici, Stefania; Tranchina, Luigi; Abbate, Boris Federico; Marineo, Sandra; Caracappa, Santo; d'Errico, Francesco

    2017-04-01

    This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.

  3. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

    PubMed Central

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-01-01

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM. PMID:26144551

  4. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics.

    PubMed

    Zhang, Huifa; Jenkins, Gareth; Zou, Yuan; Zhu, Zhi; Yang, Chaoyong James

    2012-04-17

    A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5'-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis.

  5. A facile one-pot synthesis of a fluorescent agarose-O-naphthylacetyl adduct with slow release properties.

    PubMed

    Kondaveeti, Stalin; Chejara, Dharmesh R; Siddhanta, A K

    2013-10-15

    A microwave assisted facile synthesis of a fluorescent 6-O-naphthylacetyl agarose (NA-agarose) employing carbodiimide chemistry (dicyclohexylcarbodiimide/4-dimethylaminopyridine) has been described. NA-agarose was characterized by TGA, GPC, UV spectrophotometry, fluorescence spectroscopy, FT-IR, (1)H and (13)C NMR spectra, exhibiting that in NA-agarose the naphthylacetyl group was attached to the backbone of the agarose polymer. The hydrolysis of NA-agarose in heterogeneous aqueous phase showed that the 1-naphthyl acetic acid (NAA), a plant growth regulator, got released in a controlled manner, the release rate being dependent on the hydrophilicity of the polymer adduct as well as on pH and temperature. The fluorescence emission (λmax 332 nm) of NA-agarose (1×10(-3) M) in ethylene glycol was significantly higher (ca. 82%) than that of the molar equivalent of NAA content in the product i.e. 0.08 mg in 1×10(-3) M solution. The resulting polymer would be of potential utility as a sustained release plant growth regulator and sensory applications.

  6. Mullins effect behaviour under compression in micelle-templated silica and micelle-templated silica/agarose systems.

    PubMed

    Puértolas, J A; Vadillo, J L; Sánchez-Salcedo, S; Nieto, A; Gómez-Barrena, E; Vallet-Regí, M

    2012-02-01

    The mechanical properties of bioceramic conformed pieces based on micelle-templated silica (MTS) such as SBA15, MCM41 and MCM48 as well as MTS/agarose systems have been evaluated under static and cyclic compressive tests. The MTS pieces exhibited a brittle behaviour. Agarose, a biocompatible and biodegradable hydrogel, has been used to shape ceramic-agarose pieces following a low temperature shaping method. Agarose conferred toughness, ductility and a rubbery consistency up to a 60% strain in ceramic MTS/agarose systems leading to a maximum strength of 10-50 MPa, without losing their initial cylindrical structure. This combination of ceramic and organic matrix contributes to avoiding the inherent brittleness of the bioceramic and enhances the compression resistance of hydrogel. The presence of mechanical hysteresis, permanent deformation after the first cycle and recovery of the master monotonous curve of MTS/agarose systems indicate a Mullins-like effect similar to that found in carbon-filled rubber systems. We report this type of mechanical behaviour, the Mullins effect, for the first time in MTS bioceramics and MTS bioceramic/agarose systems.

  7. Two-dimensional gel electrophoresis: vertical isoelectric focusing.

    PubMed

    Dorri, Yaser

    2012-01-01

    Two-dimensional gel electrophoresis (2-DE) is one of the most powerful tools for separating proteins based on their size and charge. 2-DE is very useful to separate two proteins with identical molecular weights but different charges, which cannot be achieved with just sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Here, a simpler and easier version of 2-DE is presented which is also faster than all the currently available techniques. In this modified version of 2-DE, isoelectric focusing is carried out in the first dimension using a vertical SDS-PAGE apparatus. Following the first-dimensional IEF, each individual lane is excised from the IEF gel and, after a 90° rotation, is inserted into a second-dimensional SDS-PAGE, which can be stained with Coomassie Brilliant Blue for protein analysis or immunoblotted for further analysis. This version of IEF can be run in less than 2 h compared to the overnight run required by O'Farrell's method. Difficult tube gel casting and gel extrusion as well as tube gel distortion are eliminated in our method. This method is simpler, faster, and inexpensive. Both dimensions can be done on the same SDS-PAGE apparatus, and up to ten samples can be run simultaneously using one gel.

  8. Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness.

    PubMed

    Diederich, Vincent E G; Studer, Peter; Kern, Anita; Lattuada, Marco; Storti, Giuseppe; Sharma, Ram I; Snedeker, Jess G; Morbidelli, Massimo

    2013-05-01

    We propose a novel, single step method for the production of polyacrylamide hydrogels with a gradient in mechanical properties. In contrast to already existing techniques such as UV photo-polymerization with photomasks (limited penetration depth) or microfluidic gradient mixers (complex microfluidic chip), this technique is not suffering such limitations. Young's modulus of the hydrogels was varied by changing the total monomer concentration of the hydrogel precursor solution. Using programmable syringe pumps, the total monomer concentration in the solution fed to the hydrogel mold was varied from 16 wt% down to 5 wt% over the feeding time to obtain a gradient in compliance ranging from 150 kPa down to 20 kPa over a length of 10 mm down to 2.5 mm. Polymerization was achieved with the dual initiation system composed of ammonium persulfate and N,N,N',N'-tetramethylethylenediamine, which were both fed through separate capillaries to avoid premature polymerization. Functionalized with the model ligand collagen I, the substrates were bioactive and supported the attachment of human foreskin fibroblasts (around 30% of the cells seeded attached after 1 h). A kinetic morphology study on homogeneous hydrogels of different stiffness's indicated that fibroblasts tend to spread to their final size within 2 h on stiff substrates, while the spreading time was much longer (ca. 4-5 h) on soft substrates. These trends were confirmed on hydrogels with compliance gradients, showing well spread fibroblasts on the stiff end of the hydrogel after 2 h, while the cells on the soft end still had small area and rounded morphology.

  9. Turbidimetric determination of anionic polyacrylamide in low carbon soil extracts.

    PubMed

    Kang, Jihoon; Sowers, Tyler D; Duckworth, Owen W; Amoozegar, Aziz; Heitman, Joshua L; McLaughlin, Richard A

    2013-11-01

    Concerns over runoff water quality from agricultural lands and construction sites have led to the development of improved erosion control practices, including application of polyacrylamide (PAM). We developed a quick and reliable method for quantifying PAM in soil extracts at low carbon content by using a turbidimetric reagent, Hyamine 1622. Three high-molecular weight anionic PAMs differing in charge density (7, 20, and 50 mol%) and five water matrices, deionized (DI) water and extracts from four different soils, were used to construct PAM calibration curves by reacting PAM solutions with hyamine and measuring turbidity development from the PAM-hyamine complex. The PAM calibration curve with DI water showed a strong linear relationship ( = 0.99), and the sensitivity (slope) of calibration curves increased with increasing PAM charge density with a detection limit of 0.4 to 0.9 mg L. Identical tests with soil extracts showed the sensitivity of the hyamine method was dependent on the properties of the soil extract, primarily organic carbon concentration. Although the method was effective in mineral soils, the highest charge density PAM yielded a more reliable linear relationship ( > 0.97) and lowest detection limit (0.3 to 1.2 mg L), compared with those of the lower charge density PAMs (0.7 to 23 mg L). Our results suggest that the hyamine test could be an efficient method for quantifying PAM in environmental soil water samples as long as the organic carbon in the sample is low, such as in subsurface soil material often exposed at construction sites.

  10. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.

    PubMed

    Zhao, Chao; Zhao, Jun; Li, Xiaosi; Wu, Jiang; Chen, Shenfu; Chen, Qiang; Wang, Qiuming; Gong, Xiong; Li, Lingyan; Zheng, Jie

    2013-07-01

    We have synthesized two different polyacrylamide polymers with amide groups (polySBAA and polyHEAA) and two corresponding polyacrylate polymers without amide groups (polySBMA and polyHEA), with particular attention to the evaluation of the effect of amide group on the hydration and antifouling ability of these systems using both computational and experimental approaches. The influence of polymer architectures of brushes, hydrogels, and nanogels, prepared by different polymerization methods, on antifouling performance is also studied. SPR and ELISA data reveal that all polymers exhibit excellent antifouling ability to repel proteins from undiluted human blood serum/plasma, and such antifouling ability can be further enhanced by presenting amide groups in polySBAA and polyHEAA as compared to polySBMA and polyHEA. The antifouling performance is positively correlated with the hydration properties. Simulations confirm that four polymers indeed have different hydration characteristics, while all presenting a strong hydration overall. Integration of amide group with pendant hydroxyl or sulfobetaine group in polymer backbones is found to increase their surface hydration of polymer chains and thus to improve their antifouling ability. Importantly, we present a proof-of-concept experiment to synthesize polySBAA nanogels, which show a switchable property between antifouling and pH-responsive functions driven by acid-base conditions, while still maintaining high stability in undiluted fetal bovine serum and minimal toxicity to cultured cells. This work provides important structural insights into how very subtle structural changes in polymers can yield great improvement in biological activity, specifically the inclusion of amide group in polymer backbone/sidechain enables to obtain antifouling materials with better performance for biomedical applications.

  11. Check dam and polyacrylamide performance under simulated stormwater runoff.

    PubMed

    Kang, Jihoon; McCaleb, Melanie M; McLaughlin, Richard A

    2013-11-15

    High levels of turbidity and fine suspended sediments are often found in stormwater discharges from construction sites even when best management practices (BMPs) for sediment control are in place. This study evaluated turbidity reduction by three check dam types: 1) rock check dam representing a standard BMP, 2) excelsior wattle representing a fiber check dam (FCD), and 3) rock check dam wrapped with excelsior erosion control blanket (rock + excelsior ECB) representing an alternative FCD. Three check dams (all same type) were installed in a lined, 24-m ditch on a 5-7% slope and three consecutive simulated stormwater flows were run in the ditch. Additional tests were performed by adding granular polyacrylamide (PAM) on the check dams in the same manner using two sediment sources differing in clay content. Without PAM treatment, significantly higher effluent turbidity (>900 nephelometric turbidity units (NTU)) exited the ditch with rock check dams than with excelsior wattles or rock + excelsior ECBs (<440 NTU). The extent of sediment deposition between the check dam types was in the order of excelsior wattle > rock + excelsior ECB > rock check dam, indicating better water pooling behind the wattle. The PAM treatment reduced turbidity substantially (>75% relative to no PAM treatment) for all check dam types and it was very effective in excelsior wattles (<57 NTU) and rock + excelsior ECBs (<90 NTU) even during the third storm event. This study demonstrates that the passive treatment of runoff with PAM on FCDs (or rock + excelsior ECB) in construction site ditches can be very effective for sediment retention and turbidity reduction.

  12. One-step preparation of hybrid materials of polyacrylamide networks and gold nanoparticles.

    PubMed

    Song, Yonghai; Li, Zhiqiang; Wang, Li; Yao, Yong; Chen, Chuangye; Cui, Kang

    2008-06-01

    Hybrid materials of polyacrylamide networks and gold nanoparticles were prepared by directly heating an aqueous solution containing HAuCl(4), acrylamide, N,N'-methylenebis-acrylamide, and sodium sulfite (Na(2)SO(3)). Acrylamide, N,N'-methylenebis-acrylamide, and Na(2)SO(3) were used as monomers, crosslinking agent, and initiator, respectively. In the process of polyacrylamide network synthesis, HAuCl(4) was reduced by acrylamide and Na(2)SO(3) into gold nanoparticles and adsorbed on the produced polyacrylamide networks. Transmission electron microscopy proved that the size of gold nanoparticles was in the range of 3-10 nm. Atomic force microscopy showed that the gold nanoparticles homogeneously dispersed into the polyacrylamide networks matrix. The hybrid materials as absorbents may be useful in healthcare, communication technology, building industry, chromatography, water purification, and agriculture.

  13. Product-selective blot: a technique for measuring enzyme activities in large numbers of samples and in native electrophoresis gels

    SciTech Connect

    Thompson, G.A.; Davies, H.M.; McDonald, N.

    1985-08-01

    A method termed product-selective blotting has been developed for screening large numbers of samples for enzyme activity. The technique is particularly well suited to detection of enzymes in native electrophoresis gels. The principle of the method was demonstrated by blotting samples from glutaminase or glutamate synthase reactions into an agarose gel embedded with ion-exchange resin under conditions favoring binding of product (glutamate) over substrates and other substances in the reaction mixture. After washes to remove these unbound substances, the product was measured using either fluorometric staining or radiometric techniques. Glutaminase activity in native electrophoresis gels was visualized by a related procedure in which substrates and products from reactions run in the electrophoresis gel were blotted directly into a resin-containing image gel. Considering the selective-binding materials available for use in the image gel, along with the possible detection systems, this method has potentially broad application.

  14. A gel-based solid-phase amplification and its application for SNP typing and sequencing on-chip.

    PubMed

    Huang, Huan; Xiao, Pengfeng; Qi, Zongtai; Bu, Ying; Liu, Wenbo; Zhou, Guohua

    2009-12-01

    As conventional solid-phase amplification (SPA) on a two-dimensional slide has a low amplification capacity due to a limited amount of immobilized primers, we propose a three-dimensional SPA by immobilizing primers in hydrogel attached to a slide. One of the PCR primers, modified with an acrylamide group at the 5'-terminal, was copolymerized with both polyacrylamide gel and an acryl-modified glass slide, resulting in a high amplification capacity. The immobilization process was carried out by adding the catalysis reagent N,N,N',N'-tetramethylethylenediamine (TEMED) volatilized in vacuum, with uniform sample-concentration and gel-viscosity in the course of one-step nucleic acid immobilization. The porous structure of polyacrylamide gel, which allows PCR reagents such as Taq DNA polymerase, primers, dNTPs and DNA templates to freely enter the gel matrix, provides a homogeneous solution-mimicking environment for SPA on the interface or the inside of gel pads. Based on gel-based SPA, genotypes of different samples were accurately discriminated by either dual-color fluorescence hybridization or BAMPER (Bioluminometric Assay coupled with Modified Primer Extension Reactions). Pyrosequencing was also successfully carried out on SPA products. As the linkage between DNA molecules and gel is very strong, SPA products immobilized on gel pads could be reused several times if extended strands were removed by electrophoresis. Thus, the gel-based SPA provides a powerful tool for directly using on-chip amplicons for parallel detection.

  15. Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics.

    PubMed

    Geng, Tao; Mathies, Richard A

    2015-01-01

    The presence of PCR inhibitors in forensic and other biological samples reduces the amplification efficiency, sometimes resulting in complete PCR failure. Here we demonstrate a high-performance digital agarose droplet microfluidics technique for single-cell and single-molecule forensic short tandem repeat (STR) typing of samples contaminated with high concentrations of PCR inhibitors. In our multifaceted strategy, the mitigation of inhibitory effects is achieved by the efficient removal of inhibitors from the porous agarose microgel droplets carrying the DNA template through washing and by the significant dilution of targets and remaining inhibitors to the stochastic limit within the ultralow nL volume droplet reactors. Compared to conventional tube-based bulk PCR, our technique shows enhanced (20 ×, 10 ×, and 16 ×) tolerance of urea, tannic acid, and humic acid, respectively, in STR typing of GM09948 human lymphoid cells. STR profiling of single cells is not affected by small soluble molecules like urea and tannic acid because of their effective elimination from the agarose droplets; however, higher molecular weight humic acid still partially inhibits single-cell PCR when the concentration is higher than 200 ng/μL. Nevertheless, the full STR profile of 9948 male genomic DNA contaminated with 500 ng/μL humic acid was generated by pooling and amplifying beads carrying single-molecule 9948 DNA PCR products in a single secondary reaction. This superior performance suggests that our digital agarose droplet microfluidics technology is a promising approach for analyzing low-abundance DNA targets in the presence of inhibitors.

  16. New directions in electrophoretic methods

    SciTech Connect

    Forgensen, J.W.; Phillips, M.

    1987-01-01

    This text presents the state of art of electrophoretic technology and applications. Included are electrophoresis in polyacrylamide gels; immobilized pH gradients; rehydratable polyacrylamide gels; silver-stain detection of proteins; color silver staining of polypeptides; electrophoresis and electrofocusing standards; standardization in isoelectric focusing, high-resolution, two-dimensional electrophoresis; applications of isoelectric focusing; agarose gel electrophoresis; pulsed electrophoresis; capillary zone electrophoresis; capillary isotachophoresis; isotachophoresis of synthetic ion-containing polymers; and preparative electrophoresis.

  17. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    SciTech Connect

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel.

  18. One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan.

    PubMed

    Oza, Mihir D; Prasad, Kamalesh; Siddhanta, A K

    2012-08-01

    New fluorescent polysaccharides were synthesized by grafting the nucleobase adenine on to the backbones of agarose and κ-carrageenan, which were characterized by FT-IR, (13)C NMR, TGA, XRD, UV, and fluorescence properties. The synthesis involved a rapid water based potassium persulfate (KPS) initiated method under microwave irradiation. The emission spectra of adenine grafted agarose and κ-carrageenan were recorded in aqueous (5×10(-5) M) solution, exhibiting λ(em,max) 347 nm by excitation at 261 nm, affording ca. 30% and 40% enhanced emission intensities, respectively compared to that of pure adenine solution in the same concentration. Similar emission intensity was recorded in the pure adenine solution at its molar equivalent concentrations present in the 5×10(-5) M solution of the agarose and carrageenan grafted products, that is, 3.28×10(-5) M and 4.5×10(-5) M respectively. These fluorescent adenine grafted products may have potential utility in various sensor applications.

  19. A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate.

    PubMed

    Vashist, Sandeep Kumar; Schneider, E Marion; Luong, John H T

    2015-07-09

    A rapid sandwich immunoassay (IA) with enhanced signal response for human fetuin A (HFA) was developed by modifying the surface of a KOH-treated polystyrene microtiter plate (MTP) with agarose and 3-aminopropyltriethoxysilane (APTES). The agarose-APTES complex binds covalently to the hydroxyl moiety of the MTP plate to serve as a binding platform for bioconjugation of EDC-activated anti-HFA antibody (Ab) via carbodiimide coupling. The one-step kinetics-based sandwich enzyme-linked immunosorbent assay (ELISA) enabled the detection of HFA in 30 min with a limit of detection (LOD) and a linear range of 0.02 ng mL(-1) and 1-243 ng mL(-1), respectively. It detected HFA spiked in diluted human whole blood and serum, and HFA in ethylenediaminetetraacetic acid (EDTA)-plasma of patients with high precision similar to that of conventional ELISA. The anti-HFA Ab-bound agarose-functionalized MTPs retained their functional activity after 6 weeks of storage in 0.1 M PBS, pH 7.4 at 4 °C.

  20. Xenotransplantation of islets enclosed in agarose microcapsule carrying soluble complement receptor 1.

    PubMed

    Luan, Nguyen Minh; Iwata, Hiroo

    2012-11-01

    Strong immunological reactions remain a major barrier to treating diabetic patients using xenogeneic islets. In a previous study, we developed a method for enclosing islets with agarose microbeads carrying soluble complement receptor 1 (sCR1-Mics), a potent complement inhibitor in both classical and alternative complement activation pathways. This is the follow-up in vivo study to evaluate the protective effect of these sCR1-Mics using a xenotransplantation model (rats to mice). ACI/NSIc rat islets enclosed in sCR1-Mics were transplanted into the intraperitoneal cavity of diabetic C57BL/6 mice without immunosuppression therapy. Transplantation of islets in plain agarose microbeads (Mics) was used as a reference. While islets enclosed in plain Mics were rapidly destroyed (graft survival in recipients of 1000 islets: 11.6±3.8 days), transplantation of islets in sCR1-Mics significantly prolonged graft survival (34.1±3.2 days). Moreover, intraperitoneal glucose tolerance tests revealed that islets in sCR1-Mics normalized blood glucose levels in a similar manner as islets in pancreas of normal mice. In conclusion, sCR1 immobilized onto agarose microbeads exerted some protective effect in xenogeneic islets resulting in prolonged graft survival.