Science.gov

Sample records for agb asymptotic giant

  1. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    SciTech Connect

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F.; Marigo, Paola; Girardi, Léo; Gullieuszik, Marco; Bressan, Alessandro; Dolphin, Andrew; Aringer, Bernhard

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  2. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 ≲ {{[Fe/H]}} ≲ -0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  3. Early Asymptotic Giant Branch: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Frantsman, Ju.

    1995-08-01

    While on the asymptotic giant branch (AGB), a star passes through two evolutionary phases: an early stage (E-AGB), and thermally pulsing AGB (TP-AGB). The theory of two AGB stages was developed more than a decade ago but till now some authors do not take into account the E-AGB phase in spite of the fact that E-AGB phase lasts for some stars considerably longer than the TP-AGB phase. The typical outcomes of such ignoration are shown in the report (wrong conclusions about the evolution of Large Magellanic Cloud, the mistakes in the determination of the ages of Magellanic Cloud clusters). The results are obtained using the "population simultaion" technique. The origin of some types of chemically peculiar stars is investigated (S-stars, faint carbon stars, carbon stars bluer and somewhat brighter than in the mean N-Type stars in the Magellanic Clouds). A suggestion is proposed that these stars are on the E-AGB evolutionary stage. They develop chemical peculiarities in the process of mass transfer in close binaries. It was assumed that during the TP-AGB phase, the primary (more massive) component, when being the carbon star, transfered the carbon enriched material by Roche-lobe overflow to the secondary component, which becomes the star with carbon overabundance. During the subsequent evolution the former secondary (and now after mass transfer carbon enriched) component reaches the E-AGB phase. The results of calculations are discussed and compared with observations.

  4. Nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    El Eid, Mounib F.

    2014-05-09

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  5. Nucleosynthesis in asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    El Eid, Mounib F.

    2014-05-01

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  6. Simulated asymptotic giant branch populations for Magellanic Cloud clusters

    SciTech Connect

    Frantsman, IU.L.

    1986-04-01

    An approximate numerical calculation for an evolving 100,000-star cluster simulates the asymptotic giant branch (AGB) populations of two Magellanic Cloud globular clusters. Several laws of mass loss by AGB stars and various initial heavy-element abundances and cluster ages are considered. In the H-R diagram the early-AGB stars differ in both luminosity and Teff from AGB stars passing through the helium shell thermal-flash stage. The numbers of M- and C-type stars in this second phase are predicted for model clusters with different parameters. 18 references.

  7. Rubidium-rich asymptotic giant branch stars.

    PubMed

    García-Hernández, D A; García-Lario, P; Plez, B; D'Antona, F; Manchado, A; Trigo-Rodríguez, J M

    2006-12-15

    A long-debated issue concerning the nucleosynthesis of neutron-rich elements in asymptotic giant branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidium-rich as a result of overproduction of the long-lived radioactive isotope (87)Rb, as predicted theoretically 40 years ago. This finding represents direct observational evidence that the (22)Ne(alpha,n)(25)Mg reaction must be the dominant neutron source in these stars. These stars challenge our understanding of the late stages of the evolution of intermediate-mass stars and would have promoted a highly variable Rb/Sr environment in the early solar nebula.

  8. CHEMICAL ANALYSIS OF ASYMPTOTIC GIANT BRANCH STARS IN M62

    SciTech Connect

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Lanzoni, B.; Dalessandro, E.

    2015-11-10

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al). For the majority (five out of six) of the AGB targets, we find that the abundances of both iron and titanium determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of nonlocal thermodynamic equilibrium (NLTE) effects. In the O–Na, Al–Mg, and Na–Al planes, the RGB stars show the typical correlations observed for GC stars. Instead, all the AGB targets are clumped in the regions where first-generation stars are expected to lie, similar to what was recently found for the AGB population of NGC 6752. While the sodium and aluminum abundances could be underestimated as a consequence of the NLTE bias affecting iron and titanium, the oxygen line used does not suffer from the same effects, and the lack of O-poor AGB stars therefore is a solid result. We can thus conclude that none of the investigated AGB stars belongs to the second stellar generation of M62. We also find an RGB star with extremely high sodium abundance ([Na/Fe] = +1.08 dex)

  9. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NASA Astrophysics Data System (ADS)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-11-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al). For the majority (five out of six) of the AGB targets, we find that the abundances of both iron and titanium determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of nonlocal thermodynamic equilibrium (NLTE) effects. In the O-Na, Al-Mg, and Na-Al planes, the RGB stars show the typical correlations observed for GC stars. Instead, all the AGB targets are clumped in the regions where first-generation stars are expected to lie, similar to what was recently found for the AGB population of NGC 6752. While the sodium and aluminum abundances could be underestimated as a consequence of the NLTE bias affecting iron and titanium, the oxygen line used does not suffer from the same effects, and the lack of O-poor AGB stars therefore is a solid result. We can thus conclude that none of the investigated AGB stars belongs to the second stellar generation of M62. We also find an RGB star with extremely high sodium abundance ([Na/Fe] = +1.08 dex). Based on observations collected at the ESO-VLT (Cerro Paranal, Chile) under program 193.D-0232. Also based on observations (GO10120 and GO11609) with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  10. The asymptotic giant branch of Magellanic Cloud clusters

    SciTech Connect

    Frogel, J.A.; Mould, J.; Blanco, V.M. Palomar Observatory, Pasadena, CA Observatorio Interamericano de Cerro Tololo, La Serena )

    1990-03-01

    The present search for carbon and M-type asymptotic giant branch (AGB) stars in the 39 clusters of the Magellanic Clouds has yielded identifications and near-IR photometry for about 400 such stars. The Searle et al. (1980) cluster-age-related classification scheme is a basic element of the present analysis of these data. In a C-M diagram, the cluster M stars shift steadily redward as one proceeds from clusters of SWB type I to VI, due to the increasing age of the clusters along the sequence. Luminous carbon stars are present only in SWB IV-VI clusters, and are easily distinguished from M stars by their color and luminosity. 82 refs.

  11. The asymptotic giant branch of Magellanic Cloud clusters

    NASA Astrophysics Data System (ADS)

    Frogel, Jay A.; Mould, Jeremy; Blanco, V. M.

    1990-03-01

    The present search for carbon and M-type asymptotic giant branch (AGB) stars in the 39 clusters of the Magellanic Clouds has yielded identifications and near-IR photometry for about 400 such stars. The Searle et al. (1980) cluster-age-related classification scheme is a basic element of the present analysis of these data. In a C-M diagram, the cluster M stars shift steadily redward as one proceeds from clusters of SWB type I to VI, due to the increasing age of the clusters along the sequence. Luminous carbon stars are present only in SWB IV-VI clusters, and are easily distinguished from M stars by their color and luminosity.

  12. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    SciTech Connect

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-08-10

    Fluorine ({sup 19}F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 {mu}m in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  13. WHO PULLED THE TRIGGER: A SUPERNOVA OR AN ASYMPTOTIC GIANT BRANCH STAR?

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A. E-mail: keiser@dtm.ciw.ed

    2010-07-01

    The short-lived radioisotope (SLRI) {sup 60}Fe requires production in a core collapse supernova or asymptotic giant branch (AGB) star immediately before its incorporation into the earliest solar system solids. Shock waves from a somewhat distant supernova, or a relatively nearby AGB star, have the right speeds to simultaneously trigger the collapse of a dense molecular cloud core and to inject shock wave material into the resulting protostar. A new set of FLASH2.5 adaptive mesh refinement hydrodynamic models shows that the injection efficiency depends sensitively on the assumed shock thickness and density. Supernova shock waves appear to be thin enough to inject the amount of shock wave material necessary to match the SLRI abundances measured for primitive meteorites. Planetary nebula shock waves from AGB stars, however, appear to be too thick to achieve the required injection efficiencies. These models imply that a supernova pulled the trigger that led to the formation of our solar system.

  14. SiO AND H{sub 2}O MASER SURVEY TOWARD POST-ASYMPTOTIC GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Yoon, Dong-Hwan; Park, Yong-Sun; Cho, Se-Hyung; Kim, Jaeheon; Yun, Young joo E-mail: yspark@astro.snu.ac.kr E-mail: jhkim@kasi.re.kr

    2014-03-01

    We performed simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0 and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 143 AGB and 164 post-asymptotic giant branch (AGB) stars in order to investigate how evolutionary characteristics from AGB to post-AGB stars appear in both SiO and H{sub 2}O maser emissions. The observations were carried out from 2011 February to 2012 March using the Korean VLBI Network single-dish telescopes. We have detected SiO and/or H{sub 2}O maser emission from 21 sources out of 164 post-AGB stars including 12 new detections. Of 143 AGB stars, we detected SiO and/or H{sub 2}O maser emission from 44 stars including 24 new detections. SiO v = 2, J = 1-0 maser emission without a SiO v = 1 maser was detected from 7 sources among 14 SiO-detected post-AGB stars, and the intensity of the SiO v = 2, J = 1-0 maser tends to be much stronger than that of SiO v = 1, which is different from those of AGB stars. This may be related to the development of hot dust shells according to the evolutionary processes of post-AGB stars. We also found that both SiO and H{sub 2}O masers were detected in the blue group (LI, or Left of IRAS), while only the H{sub 2}O maser was detected in the red group (RI, or Right of IRAS) for post-AGB stars. These different detection rates between SiO and H{sub 2}O masers may originate from the different abundances of masing molecules in the circumstellar envelope according to the different mass and expansion velocity between LI and RI regions together with their evolutionary stages.

  15. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    SciTech Connect

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-12-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M < 1.5 M{sub sun}, [Fe/H]{approx}< -1.0). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 M{sub sun}. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  16. Multiple populations along the asymptotic giant branch of the globular cluster M4

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Salaris, M.; Savino, A.; Donati, P.; Stetson, P. B.; Cassisi, S.

    2017-04-01

    Nearly all Galactic globular clusters host stars that display characteristic abundance anticorrelations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investigation questioned the presence of O-poor/Na-rich stars amongst a sample of asymptotic giant branch (AGB) stars in the cluster M4, at variance with the spectroscopic detection of a O-poor/Na-rich component along both the cluster red giant branch (RGB) and horizontal branch. This is contrary to what is expected from the cluster horizontal branch morphology and horizontal branch stellar evolution models. Here, we have investigated this issue by employing the CUBI = (U - B) - (B - I) index, that previous studies have demonstrated to be very effective in separating multiple populations along both the RGB and AGB sequences. We confirm previous results that the RGB is intrinsically broad in the V-CUBI diagram, with the presence of two components that nicely correspond to the two populations identified by high-resolution spectroscopy. We find that AGB stars are distributed over a wide range of CUBI values, in close analogy with what is observed for the RGB, demonstrating that the AGB of M4 also hosts multiple stellar populations.

  17. Detection of second-generation asymptotic giant branch stars in metal-poor globular clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.

    2017-03-01

    Multiple stellar populations are actually known to be present in Galactic globular clusters (GCs). The first generation (FG) displays a halo-like chemical pattern, while the second generation (SG) one is enriched in Al and Na (depleted in Mg and O).Both generations of stars are found at different evolutionary stages like the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB), but the SG seems to be absent - especially in metal-poor ([Fe/H] < -1) GCs - in more evolved evolutionary stages such as the asymptotic giant branch (AGB) phase. This suggests that not all SG stars experience the AGB phase and that AGB-manqué stars may be quite common in metal-poor GCs, which represents a fundamental problem for the theories of GC formation and evolution and stellar evolution. Very recently, we have combined the H-band Al abundances obtained by the APOGEE survey with ground-based optical photometry, reporting the first detection of SG Al-rich AGB stars in several metal-poor GCs with different observational properties such as horizontal branch (HB) morphology, metallicity, and age. The APOGEE observations thus resolve the apparent problem for stellar evolution, supporting the existing horizontal branch star canonical models, and may help to discern the nature of the GC polluters.

  18. Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity

    SciTech Connect

    Fishlock, Cherie K.; Karakas, Amanda I.; Yong, David; Lugaro, Maria E-mail: amanda.karakas@anu.edu.au E-mail: maria.lugaro@monash.edu

    2014-12-10

    We present stellar evolutionary tracks and nucleosynthetic predictions for a grid of stellar models of low- and intermediate-mass asymptotic giant branch (AGB) stars at Z = 0.001 ([Fe/H] =–1.2). The models cover an initial mass range from 1 M {sub ☉} to 7 M {sub ☉}. Final surface abundances and stellar yields are calculated for all elements from hydrogen to bismuth as well as isotopes up to the iron group. We present the first study of neutron-capture nucleosynthesis in intermediate-mass AGB models, including a super-AGB model, of [Fe/H] = –1.2. We examine in detail a low-mass AGB model of 2 M {sub ☉} where the {sup 13}C(α,n){sup 16}O reaction is the main source of neutrons. We also examine an intermediate-mass AGB model of 5 M {sub ☉} where intershell temperatures are high enough to activate the {sup 22}Ne neutron source, which produces high neutron densities up to ∼10{sup 14} n cm{sup –3}. Hot bottom burning is activated in models with M ≥ 3 M {sub ☉}. With the 3 M {sub ☉} model, we investigate the effect of varying the extent in mass of the region where protons are mixed from the envelope into the intershell at the deepest extent of each third dredge-up. We compare the results of the low-mass models to three post-AGB stars with a metallicity of [Fe/H] ≅ – 1.2. The composition is a good match to the predicted neutron-capture abundances except for Pb and we confirm that the observed Pb abundances are lower than what is calculated by AGB models.

  19. A BOUND ON THE LIGHT EMITTED DURING THE THERMALLY PULSING ASYMPTOTIC GIANT BRANCH PHASE

    SciTech Connect

    Bird, Jonathan C.; Pinsonneault, Marc H. E-mail: pinsono@astronomy.ohio-state.edu

    2011-06-01

    The integrated luminosity of the thermally pulsing asymptotic giant branch (TP-AGB) phase is a major uncertainty in stellar population synthesis models. We revise the white dwarf initial-final mass relation (IFMR), incorporating the latest composition and distance measurements for several clusters. Using this IFMR and stellar interiors models, we demonstrate that a significant fraction of the core mass growth for intermediate (1.5 < M{sub sun} < 6) mass stars must take place during the TP-AGB phase. This conclusion holds using models both with and without convective overshoot. We find evidence that the peak fractional core mass contribution for TP-AGB stars is {approx}20% and occurs for stars between 2 M{sub sun} and 3.5 M{sub sun}. Using a simple fuel consumption argument we couple this core mass increase to a lower limit on the TP-AGB phase energy output. We demonstrate that the current TP-AGB models of Pietrinferni et al. and Bertelli et al. systematically grow the core less than we require while the latter predict sufficient integrated light. Our calculated lower bound, coupled with chemical evolution constraints, may provide an upper limit to the integrated luminosity of stars in the TP-AGB phase. Alternatively, a robust measurement of the emitted light in this phase and our constraints could set strong constraints on helium enrichment from TP-AGB stars. We estimate the yields predicted by current models as a function of initial mass. Implications for stellar population studies and prospects for improvements are discussed.

  20. WIDE BINARY EFFECTS ON ASYMMETRIES IN ASYMPTOTIC GIANT BRANCH CIRCUMSTELLAR ENVELOPES

    SciTech Connect

    Kim, Hyosun; Taam, Ronald E. E-mail: r-taam@northwestern.edu

    2012-11-01

    Observations of increasingly higher spatial resolution reveal the existence of asymmetries in the circumstellar envelopes of a small fraction of asymptotic giant branch (AGB) stars. Although there is no general consensus for their origin, a binary companion star may be responsible. Within this framework, we investigate the gravitational effects associated with a sufficiently wide binary system, where Roche lobe overflow is unimportant, on the outflowing envelopes of AGB stars using three-dimensional hydrodynamic simulations. The effects due to individual binary components are separately studied, enabling the investigation of the stellar and circumstellar characteristics in detail. The reflex motion of the AGB star alters the wind velocity distribution, thereby determining the overall shape of the outflowing envelope. On the other hand, the interaction of the companion with the envelope produces a gravitational wake, which exhibits a vertically thinner shape. The two patterns overlap and form clumpy structures. To illustrate the diversity of shapes, we present the numerical results as a function of inclination angle. Not only is spiral structure produced by the binary interaction, but arc patterns are also found that represent the former structure when viewed at different inclinations. The arcs reveal a systematic shift of their centers of curvature for cases when the orbital speed of the AGB star is comparable to its wind speed. They take on the shape of a peanut for inclinations nearly edge-on. In the limit of slow orbital motion of the AGB star relative to the wind speed, the arc pattern becomes nearly spherically symmetric. We find that the aspect ratio of the overall oblate shape of the pattern is an important diagnostic probe of the binary as it can be used to constrain the orbital velocity of the AGB star, and moreover, the binary mass ratio.

  1. A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32

    NASA Technical Reports Server (NTRS)

    Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.

  2. Future Directions In The Study Of Asymptotic Giant Branch Stars With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hjort, Adam; Zackrisson, Erik; Eriksson, Kjell

    2016-10-01

    In this study we present photometric predictions for C-type Asymptotic Giant Branch Stars (AGB) stars from Eriks- son et al. (2014) for the James Webb Space Telescope (JWST) and the Wide- eld Infrared Survey Explorer (WISE) instruments. The photometric predictions we have done are for JWST's general purpose wide-band lters on NIR- Cam and MIRI covering wavelengths of 0.7 — 21 microns. AGB stars contribute substantially to the integrated light of intermediate-age stellar popula- tions and is a substantial source of the metals (especially carbon) in galaxies. Studies of AGB stars are (among other reasons) important for the understanding of the chemical evolution and dust cycle of galaxies. Since the JWST is scheduled for launch in 2018 it should be a high priority to prepare observing strategies. With these predictions we hope it will be possible to optimize observing strategies of AGB stars and max- imize the science return of JWST. By testing our method on Whitelock et al. (2006) objects from the WISE catalog and comparing them with our photometric results based on Eriksson et al. (2014) we have been able to fit 20 objects with models. The photometric data set can be accessed at: http://www.astro.uu.se/AGBmodels/ABmags/

  3. THE S{sup 4}G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    SciTech Connect

    Meidt, Sharon E.; Schinnerer, Eva; Holwerda, Benne; Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menendez-Delmestre, Karin; Seibert, Mark; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Hinz, Joannah L.; Regan, Michael; De Paz, Armando Gil; Mizusawa, Trisha; Gadotti, Dimitri A.; Laurikainen, Eija; Salo, Heikki; and others

    2012-04-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters-each the analogue of a {approx}1 Gyr old post-starburst galaxy-has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average {approx}0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from {approx}70%, as predicted in the latest generation of synthesis models, to {approx}35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  4. THE INSIDIOUS BOOSTING OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS IN INTERMEDIATE-AGE MAGELLANIC CLOUD CLUSTERS

    SciTech Connect

    Girardi, Léo; Marigo, Paola; Bressan, Alessandro; Rosenfield, Philip

    2013-11-10

    In the recent controversy about the role of thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate, to various extents, the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect, linked to the physics of stellar interiors, that in all probability is the main cause of this conundrum. As soon as stellar populations intercept the ages at which red giant branch stars first appear, a sudden and abrupt change in the lifetime of the core He-burning phase causes a temporary 'boost' in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of ∼2. The boost occurs for turn-off masses of ∼1.75 M{sub ☉}, just in the proximity of the expected peak in the TP-AGB lifetimes (for MC metallicities), and for ages of ∼1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. As we discuss in this paper, the identification of this evolutionary effect brings about three main consequences. First, we claim that present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters are biased toward too large values. Second, the relative TP-AGB contribution of single-burst populations falling in

  5. STRONG VARIABLE ULTRAVIOLET EMISSION FROM Y GEM: ACCRETION ACTIVITY IN AN ASYMPTOTIC GIANT BRANCH STAR WITH A BINARY COMPANION?

    SciTech Connect

    Sahai, Raghvendra; Neill, James D.; Gil de Paz, Armando; Sanchez Contreras, Carmen

    2011-10-20

    Binarity is believed to dramatically affect the history and geometry of mass loss in asymptotic giant branch (AGB) and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to look for hot binary companions to cool AGB stars using the Galaxy Evolution Explorer archive, we have discovered a late-M star, Y Gem, to be a source of strong and variable UV emission. Y Gem is a prime example of the success of our technique of UV imaging of AGB stars in order to search for binary companions. Y Gem's large and variable UV flux makes it one of the most prominent examples of a late-AGB star with a mass accreting binary companion. The UV emission is most likely due to emission associated with accretion activity and a disk around a main-sequence companion star. The physical mechanism generating the UV emission is extremely energetic, with an integrated luminosity of a few x L{sub sun} at its peak. We also find weak CO J = 2-1 emission from Y Gem with a very narrow line profile (FWHM of 3.4 km s{sup -1}). Such a narrow line is unlikely to arise in an outflow and is consistent with emission from an orbiting, molecular reservoir of radius 300 AU. Y Gem may be the progenitor of the class of post-AGB stars which are binaries and possess disks but no outflows.

  6. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, Marcelo Miguel

    2016-04-01

    Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at

  7. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-11-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M {<=} 3 M{sub sun}), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M{sub sun}. Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) {identical_to} log {epsilon}(Li) {approx_equal} 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and {sup 12}C/{sup 13}C ratios) can be explained. This requires generally moderate efficiencies (M-dot < or approx. 0.3-0.5 x 10{sup -6} M{sub sun} yr{sup -1}) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the {sup 12}C/{sup 13}C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K

  8. A test for asymptotic giant branch evolution theories: planetary nebulae in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Stanghellini, L.; Dell'Agli, F.; García-Hernández, D. A.; Di Criscienzo, M.

    2015-10-01

    We used a new generation of asymptotic giant branch (AGB) stellar models that include dust formation in the stellar winds to find the links between evolutionary models and the observed properties of a homogeneous sample of Large Magellanic Cloud (LMC) planetary nebulae (PNe). Comparison between the evolutionary yields of elements such as CNO and the corresponding observed chemical abundances is a powerful tool to shed light on evolutionary processes such as hot bottom burning (HBB) and third dredge-up (TDU). We found that the occurrence of HBB is needed to interpret the nitrogen-enriched (log (N/H) + 12 > 8) PNe. In particular, N-rich PNe with the lowest carbon content are nicely reproduced by AGB models of mass M ≥ 6 M⊙, whose surface chemistry reflects the pure effects of HBB. PNe with log (N/H) + 12 < 7.5 correspond to ejecta of stars that have not experienced HBB, with initial mass below ˜3 M⊙. Some of these stars show very large carbon abundances, owing to the many TDU episodes experienced. We found from our LMC PN sample that there is a threshold to the amount of carbon accumulated at AGB surfaces, log (C/H) + 12 < 9. Confirmation of this constraint would indicate that, after the C-star stage is reached, AGBs experience only a few thermal pulses, which suggests a rapid loss of the external mantle, probably owing to the effects of radiation pressure on carbonaceous dust particles present in the circumstellar envelope. The implications of these findings for AGB evolution theories and the need to extend the PN sample currently available are discussed.

  9. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    NASA Astrophysics Data System (ADS)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-02-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  10. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  11. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    SciTech Connect

    Jönsson, H.; Ryde, N.; Harper, G. M.; Richter, M. J.; Hinkle, K. H.

    2014-07-10

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic.

  12. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 < Z < 2 Z⊙. They are compared to recent precise nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  13. The Mass Loss Return from Evolved Stars to the Large Magellanic Cloud: Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.; Kemper, F.; Tielens, X.; Speck, A.; Matsuura, M.; Bernard, J.; Hony, S.; Gordon, K.; Indebetouw, R.; Marengo, M.; Sloan, G.; Woods, P.; Vijh, U. P.

    2010-01-01

    The Spitzer Space Telescope Legacy program Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) has observed over 6 million stars in the Large Magellanic Cloud with both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) instruments to explore the life-cycle of matter in a galaxy. Over 17000 of these stars were found to be candidate Oxygen-rich Asymptotic Giant Branch (O-rich AGB) stars. We combine photometry from Spitzer and elsewhere in constructing Spectral Energy Distributions (SEDs) for the SAGE candidate O-rich AGB stars. These SEDs are then modeled using the radiative transfer program 2Dust, with the goal of determining the O-rich AGB star candidates' mass-loss rates. Spitzer Infrared Spectrograph (IRS) spectra are available as part of the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) for a number of SAGE O-rich AGB star candidates; for two of these, IRS spectra in addition to the photometry are modeled with 2Dust to determine reasonable dust grain parameters to use for the candidate O-rich AGB stars in the rest of the SAGE sample. Using these dust grain properties, a grid of radiative transfer models was computed using 2Dust, varying stellar effective temperature and luminosity, dust shell inner radius, and dust shell optical depth at 10 microns wavelength. Synthetic photometry from models and observed photometry are plotted on color-color and color-magnitude diagrams, and model SEDs are directly compared to observed SEDs. The mass-loss rates from all O-rich AGB stars, especially those with the highest mass-loss rates, in the LMC are estimated and compared to its mass budget. Dust composition is also discussed in light of the results of the model grids.

  14. Identification of oxygen-rich late/post-asymptotic giant branch stars and water fountains via maser and infrared criteria

    NASA Astrophysics Data System (ADS)

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Henkel, Christian; Hsia, Chih-Hao

    2016-07-01

    The transitional phase between the asymptotic giant branch (AGB) and post-AGB phases holds the key to our understanding of the late-stage metamorphosis of intermediate-mass stars. In particular, high velocity jets forming during this phase are suggested to contribute significantly to the shaping of planetary nebulae. For oxygen-rich stars, the rare “water fountains (WFs)” have been regarded as representative objects in this phase, and it is important to identify more of them for further studies. Here we briefly report the results of our latest OH and H2O maser surveys in which a new WF candidate (IRAS 19356+0754) was found. We also performed radiative transfer modelling on the spectral energy distributions (SEDs) of all known WFs. It is concluded that WFs might in fact not be the transitional objects, as opposed to previous belief. WFs could be AGB or post-AGB stars with no obvious similarities amongst their SEDs. Further efforts are still needed to improve the identification criteria.

  15. Spitzer-IRS Spectroscopic Studies of Oxygen-Rich Asymptotic Giant Branch Star and Red Supergiant Star Dust Properties

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Speck, Angela; Volk, Kevin; Kemper, Ciska; Reach, William T.; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret

    2015-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We present an update of our investigation of differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  16. Comparative Studies of the Dust around Red Supergiant and Oxygen-Rich Asymptotic Giant Branch Stars in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Speck, Angela K.; Volk, Kevin; Kemper, Ciska; Reach, William; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret; Sloan, Greg; Jones, Olivia

    2015-08-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 μm emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  17. Comparative Studies of the Dust around Red Supergiant and Oxygen-Rich Asymptotic Giant Branch Stars in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sargent, B. A.; Srinivasan, S.; Speck, A.; Volk, K.; Kemper, F.; Reach, W.; Lagadec, E.; Bernard, J.-P.; McDonald, I.; Meixner, M.; Sloan, G. C.; Jones, O.

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  18. Binary Blue Metal-poor Stars: Evidence for Asymptotic Giant Branch Mass Transfer

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Preston, George W.; Cowan, John J.

    2003-07-01

    We present new abundance analyses of six blue metal-poor (BMP) stars with very low iron abundances ([Fe/H]<-2), based on new high-resolution echelle spectra. Three are spectroscopic binaries, and three have constant radial velocities. The chemical compositions of these two groups are very different, as the binary BMP stars have large enhancements of carbon and neutron-capture elements that are products of s-process nucleosynthesis. One star, CS 29497-030, has an extreme enhancement of lead, [Pb/Fe]=+3.7, the largest abundance in any star yet discovered. It probably also has an oxygen overabundance compared to the other BMP stars of our sample. The binary BMP stars must have attained their status via mass transfer during the asymptotic giant branch (AGB) evolutions of their companion stars, which are now unseen and most likely are compact objects. We have not found any examples of AGB mass transfer among BMP binaries with [Fe/H]>-2.

  19. NON-LOCAL THERMODYNAMICAL EQUILIBRIUM EFFECTS ON THE IRON ABUNDANCE OF ASYMPTOTIC GIANT BRANCH STARS IN 47 TUCANAE

    SciTech Connect

    Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Massari, D.

    2014-12-20

    We present the iron abundance of 24 asymptotic giant branch (AGB) stars, members of the globular cluster 47 Tucanae, obtained with high-resolution spectra collected with the FEROS spectrograph at the MPG/ESO 2.2 m Telescope. We find that the iron abundances derived from neutral lines (with a mean value [Fe I/H] =–0.94 ± 0.01, σ = 0.08 dex) are systematically lower than those derived from single ionized lines ([Fe II/H] =–0.83 ± 0.01, σ = 0.05 dex). Only the latter are in agreement with those obtained for a sample of red giant branch (RGB) cluster stars, for which the Fe I and Fe II lines provide the same iron abundance. This finding suggests that non-local thermodynamical equilibrium (NLTE) effects driven by overionization mechanisms are present in the atmosphere of AGB stars and significantly affect the Fe I lines while leaving Fe II features unaltered. On the other hand, the very good ionization equilibrium found for RGB stars indicates that these NLTE effects may depend on the evolutionary stage. We discuss the impact of this finding on both the chemical analysis of AGB stars and on the search for evolved blue stragglers.

  20. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    SciTech Connect

    Suh, Kyung-Won

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  1. Multi-band polarimetry of post-asymptotic giant branch stars - I. Optical measurements

    NASA Astrophysics Data System (ADS)

    Akras, S.; Ramírez Vélez, J. C.; Nanouris, N.; Ramos-Larios, G.; López, J. M.; Hiriart, D.; Panoglou, D.

    2017-04-01

    We present new optical broad-band (UBVRI) aperture polarimetric observations of 53 post-asymptotic giant branch (AGB) stars selected to exhibit a large near-infrared excess. 24 out of the 53 stars (45 per cent of our sample) are presented for the first time. A statistical analysis shows four distinctive groups of polarized post-AGB stars: unpolarized or very lowly polarized (degree of polarization or DoP < 1 per cent), lowly polarized (1 per cent < DoP < 4 per cent), moderately polarized (4 per cent < DoP < 8 per cent) and highly polarized (DoP > 8 per cent). 23 out of the 53 (66 per cent) belong to the first group, 10 (19 per cent) to the second, five (9 per cent) to the third and only three (6 per cent) to the last group. Approximately 34 per cent of our sample was found to be unpolarized objects, which is close to the percentage of round planetary nebulae. On average, the low and moderate groups show a wavelength-dependent polarization that increases towards shorter wavelengths, implying an intrinsic origin of the polarization, which signifies a Rayleigh-like scattering spectrum typical for non-symmetrical envelopes composed principally of small dust grains. The moderately polarized stars exhibit higher K - W3 and W1 - W3 colour indices compared with the group of lowly polarized stars, suggesting a possible relation between DoP and mass-loss rate. Moreover, they are found to be systematically colder (redder in B - V), which may be associated with the condensation process close to these stars that results in a higher degree of polarization. We also provide evidence that multiple scattering in optically thin polar outflows is the mechanism that gives high DoP in post-AGB stars with bipolar or multi-polar envelopes.

  2. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    SciTech Connect

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola E-mail: paola.marigo@unipd.it

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  3. Evolution of thermally pulsing asymptotic giant branch stars - I. The COLIBRI code

    NASA Astrophysics Data System (ADS)

    Marigo, Paola; Bressan, Alessandro; Nanni, Ambra; Girardi, Léo; Pumo, Maria Letizia

    2013-09-01

    We present the COLIBRI code for computing the evolution of stars along the thermally pulsing asymptotic giant branch (TP-AGB) phase. Compared to purely synthetic TP-AGB codes, COLIBRI relaxes a significant part of their analytic formalism in favour of a detailed physics applied to a complete envelope model, in which the stellar structure equations are integrated from the atmosphere down to the bottom of the hydrogen-burning shell. This allows us to predict self-consistently: (i) the effective temperature, and more generally the convective envelope and atmosphere structures, correctly coupled to the changes in the surface chemical abundances and gas opacities; (ii) the conditions under which sphericity effects may significantly affect the atmospheres of giant stars; (iii) the core mass-luminosity relation and its possible break-down due to the occurrence of hot-bottom burning (HBB) in the most massive AGB stars, by taking properly into account the nuclear energy generation in the H-burning shell and in the deepest layers of the convective envelope; (iv) the HBB nucleosynthesis via the solution of a complete nuclear network (including the pp chains, and the CNO, NeNa and MgAl cycles) coupled to a diffusive description of mixing, suitable to follow also the synthesis of 7Li via the Cameron-Fowler beryllium transport mechanism; (v) the intershell abundances left by each thermal pulse via the solution of a complete nuclear network applied to a simple model of the pulse-driven convective zone (PDCZ); (vi) the onset and quenching of the third dredge-up, with a temperature criterion that is applied, at each thermal pulse, to the result of envelope integrations at the stage of the post-flash luminosity peak. At the same time, COLIBRI pioneers new techniques in the treatment of the physics of stellar interiors, not yet adopted in full TP-AGB models. It is the first evolutionary code ever to use accurate on-the-fly computation of the equation of state (EoS) for roughly 800

  4. On the Relation between the Mysterious 21 μm Emission Feature of Post-asymptotic Giant Branch Stars and Their Mass-loss Rates

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, Aigen; Jiang, B. W.

    2016-07-01

    Over two decades ago, a prominent, mysterious emission band peaking at ˜20.1 μm was serendipitously detected in four preplanetary nebulae (PPNe; also known as “protoplanetary nebulae”). To date, this spectral feature, designated as the “21 μm” feature, has been seen in 27 carbon-rich PPNe in the Milky Way and the Magellanic Clouds. The nature of its carriers remains unknown although many candidate materials have been proposed. The 21 μm sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 μm. While the 21 μm feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 μm feature is more commonly observed in all stages of stellar evolution from the AGB through PPN to PN phases. We derive the stellar mass-loss rates (\\dot{M}) of these sources from their infrared (IR) emission, using the “2-DUST” radiative transfer code for axisymmetric dusty systems which allows one to distinguish the mass-loss rates of the AGB phase ({\\dot{M}}{AGB}) from that of the superwind ({\\dot{M}}{SW}) phase. We examine the correlation between {\\dot{M}}{AGB} or {\\dot{M}}{SW} and the fluxes emitted from the 21 and 30 μm features. We find that both features tend to correlate with {\\dot{M}}{AGB}, suggesting that their carriers are probably formed in the AGB phase. The nondetection of the 21 μm feature in AGB stars suggests that, unlike the 30 μm feature, the excitation of the carriers of the 21 μm feature may require ultraviolet photons which are available in PPNe but not in AGB stars.

  5. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    SciTech Connect

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-03-20

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  6. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon

  7. PROBING SUBSTELLAR COMPANIONS OF ASYMPTOTIC GIANT BRANCH STARS THROUGH SPIRALS AND ARCS

    SciTech Connect

    Kim, Hyosun; Taam, Ronald E. E-mail: taam@tonic.astro.northwestern.edu

    2012-01-10

    Recent observations of strikingly well-defined spirals in the circumstellar envelopes of asymptotic giant branch (AGB) stars point to the existence of binary companions in these objects. In the case of planet- or brown-dwarf-mass companions, we investigate the observational properties of the spiral-onion shell wakes due to the gravitational interaction of these companions with the outflowing circumstellar matter. Three-dimensional hydrodynamical simulations at high resolution show that the substellar mass objects produce detectable signatures, corresponding to density contrasts (10%-200%) and arm separations (10-400 AU) at 100 AU distance from the central star, for the wake induced by a Jupiter to brown-dwarf-mass object orbiting a solar mass AGB star. In particular, the arm pattern propagates in the radial direction with a speed depending on the local wind speed and sound speed, implying possible variations of the arm separation in the wind acceleration region and/or in a slow wind with significant temperature variation. The pattern propagation speeds of the inner and outer boundaries differ by twice the sound speed, leading to the overlap of high-density boundaries in slow winds and producing a subpattern of the spiral arm feature. Vertically, the wake forms concentric arcs with angular sizes anticorrelated to the wind Mach number. We provide an empirical formula for the peak density enhancement as a function of the mass, orbital distance, and velocity of the object as well as the wind and local sound speed. In typical conditions of AGB envelopes, the arm-interarm density contrast can be greater than 30% of the background density within a distance of {approx}10 (M{sub p} /M{sub J} ) AU for the object mass M{sub p} in units of Jupiter mass M{sub J} . These results suggest that such features may probe unseen substellar mass objects embedded in the winds of AGB stars and may be useful in planning future high-sensitivity/resolution observations with the Atacama Large

  8. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  9. Magnetically Driven Winds from Post-Asymptotic Giant Branch Stars: Solutions for High-Speed Winds and Extreme Collimation

    NASA Astrophysics Data System (ADS)

    García-Segura, Guillermo; López, José Alberto; Franco, José

    2005-01-01

    This paper explores the effects of post-asymptotic giant branch (AGB) winds driven solely by magnetic pressure from the stellar surface. It is found that winds can reach high speeds under this assumption and lead to the formation of highly collimated proto-planetary nebulae. Bipolar knotty jets with periodic features and constant velocity are well reproduced by the models. Several wind models with terminal velocities from a few tens of km s-1 up to 103 km s-1 are calculated, yielding outflows with linear momenta in the range 1036-1040 g cm s-1, and kinetic energies in the range 1042-1047 ergs. These results are in accord with recent observations of proto-planetary nebulae that have pointed out serious energy and momentum deficits if radiation pressure is considered as the only driver for these outflows. Our models strengthen the notion that the large mass loss rates of post-AGB stars, together with the short transition times from the late AGB to the planetary nebula stage, could be directly linked with the generation of strong magnetic fields during this transition stage.

  10. Barium isotopic composition of mainstream silicon carbides from Murchison: Constraints for s-process nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio; Gyngard, Frank; Willingham, David G.; Pignatari, Marco; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.

  11. FORETELLINGS OF RAGNAROeK: WORLD-ENGULFING ASYMPTOTIC GIANTS AND THE INHERITANCE OF WHITE DWARFS

    SciTech Connect

    Mustill, Alexander J.; Villaver, Eva

    2012-12-20

    The search for planets around white dwarf stars, and evidence for dynamical instability around them in the form of atmospheric pollution and circumstellar disks, raises questions about the nature of planetary systems that can survive the vicissitudes of the asymptotic giant branch (AGB). We study the competing effects, on planets at several AU from the star, of strong tidal forces arising from the star's large convective envelope, and of the planets' orbital expansion due to stellar mass loss. We study, for the first time, the evolution of planets while following each thermal pulse on the AGB. For Jovian planets, tidal forces are strong, and can pull into the envelope planets initially at {approx}3 AU for a 1 M{sub Sun} star and {approx}5 AU for a 5 M{sub Sun} star. Lower-mass planets feel weaker tidal forces, and terrestrial planets initially within 1.5-3 AU enter the stellar envelope. Thus, low-mass planets that begin inside the maximum stellar radius can survive, as their orbits expand due to mass loss. The inclusion of a moderate planetary eccentricity slightly strengthens the tidal forces experienced by Jovian planets. Eccentric terrestrial planets are more at risk, since their eccentricity does not decay and their small pericenter takes them inside the stellar envelope. We also find the closest radii at which planets will be found around white dwarfs, assuming that any planet entering the stellar envelope is destroyed. Planets are in that case unlikely to be found inside {approx}1.5 AU of a white dwarf with a 1 M{sub Sun} progenitor and {approx}10 AU of a white dwarf with a 5 M{sub Sun} progenitor.

  12. Heavy elements in globular clusters: The role of asymptotic giant branch stars

    SciTech Connect

    Straniero, O.; Cristallo, S.; Piersanti, L.

    2014-04-10

    Recent observations of heavy elements in globular clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few globular clusters only. We show that the combined pollution of asymptotic giant branch (AGB) stars with a mass ranging between 3 to 6 M {sub ☉} may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two very different neutron-capture nucleosynthesis episodes. The first is due to the {sup 13}C(α, n){sup 16}O reaction and takes place during the interpulse periods. The second is due to the {sup 22}Ne(α, n){sup 25}Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Rb, Sr, Y, Zr). The first mainly operates in the less massive AGB stars, while the second dominates in the more massive. From the heavy-s/light-s ratio, we derive that the pollution phase should last for 150 ± 50 Myr, a period short enough compared to the formation timescale of the globular cluster system, but long enough to explain why the s-process pollution is observed in a few cases only. With few exceptions, our theoretical prediction provides a reasonable reproduction of the observed s-process abundances, from Sr to Hf. However, Ce is probably underproduced by our models, while Rb and Pb are overproduced. Possible solutions are discussed.

  13. A Spitzer survey of asymptotic giant branch stars: Dust production and mass loss at low metallicity

    NASA Astrophysics Data System (ADS)

    Boyer, Martha L.

    We conducted infrared (IR) surveys of ten Galactic globular clusters (GCs) and eight Local Group dwarf irregular galaxies using the Spitzer Space Telescope . The main objective of these surveys is to further the understanding of dust production in low metallicity environments akin to the early Universe. In GCs, we investigate the stars with IR excesses, attributed to dust, and the intracluster medium (ICM). The GC M15 is the most metal-poor Galactic GC, and is ideal for studying dust production at metallicity less than 1% solar. The most massive Galactic GC, o Centauri, harbors three distinct populations of differing metallicities, providing the opportunity to study dust production at three metallicities within the same environment. The large population of dusty Asymptotic Giant Branch (AGB) stars present in the eight observed Local Group dwarf galaxies allows a statistically significant study of dusty stellar mass loss at a broad range of metallicities (2%-19% solar). In all observed systems, we find large populations of dust enshrouded stars and, in some cases, dusty interstellar medium. The surplus of both interstellar dust and the dust producing stars in M15 is surprising, given its extremely low metal-content. No significant amount of ICM dust is detected in any other GC observed, suggesting that ICM dust does not survive long compared to its production rate and is thus a part of a stochastic process. In oCen, we see no difference in dust production between the three populations, and overall, we see that dust is not formed in larger quantities than seen in M15. In dwarf galaxies, we see that circumstellar dust is prolific enough to create at least a small population of completely optically obscured AGB stars in each galaxy, regardless of the galaxy's metallicity, but higher metallicity galaxies tend to harbor more stars with slight IR excesses. These results suggest that dust production is not prohibited at very low metallicity, although it may be produced in

  14. Differential chemical abundance analysis of a 47 Tucanæ asymptotic giant branch star with respect to Arcturus

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; Cottrell, P. L.; Freeman, K. C.; Wylie-de Boer, E. C.

    2009-12-01

    This study resolves a discrepancy in the abundance of Zr in the 47 Tucanæ asymptotic giant branch (AGB) star Lee 2525. This star was observed using the echelle spectrograph on the 2.3-m telescope at Siding Spring Observatory. The analysis was undertaken by calibrating Lee 2525 with respect to the standard giant star Arcturus. This work emphasizes the importance of using a standard star with stellar parameters comparable to the star under analysis rather than a calibration with respect to the Sun as in Koch & McWilliam. Systematic errors in the analysis process are then minimized due to the similarity in atmospheric structure between the standard and programme stars. The abundances derived for Lee 2525 were found to be in general agreement with the Brown & Wallerstein values except for Zr. In this study Zr has a similar enhancement ([Zr/Fe] = +0.51 dex) to another light s-process element, Y ([Y/Fe] = +0.53 dex), which reflects current theory regarding the enrichment of s-process elements by nuclear processes within AGB stars. This is contrary to the results of Brown & Wallerstein where Zr was underabundant ([Zr/Fe] = -0.51 dex) and Y was overabundant ([Y/Fe] = +0.50 dex) with respect to Fe.

  15. Magnetohydrodynamics and Deep Mixing in Evolved Stars. I. Two- and Three-dimensional Analytical Models for the Asymptotic Giant Branch

    NASA Astrophysics Data System (ADS)

    Nucci, M. C.; Busso, M.

    2014-06-01

    The advection of thermonuclear ashes by magnetized domains emerging near the H shell was suggested to explain asymptotic giant branch (AGB) star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple two-dimensional (2D) geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macroturbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that for both studied regions the solution previously found can be seen as a planar section of a more complex behavior, in which the average radial velocity retains the same dependency on the radius found in 2D. As a final check, we compare our results to approximate descriptions of buoyant magnetic structures. For realistic boundary conditions, the envelope crossing times are sufficient to disperse in the huge convective zone any material transported, suggesting magnetic advection as a promising mechanism for deep mixing. The mixing velocities are smaller than for convection but larger than for diffusion and adequate for extra mixing in red giants.

  16. Magnetohydrodynamics and deep mixing in evolved stars. I. Two- and three-dimensional analytical models for the asymptotic giant branch

    SciTech Connect

    Nucci, M. C.; Busso, M. E-mail: busso@fisica.unipg.it

    2014-06-01

    The advection of thermonuclear ashes by magnetized domains emerging near the H shell was suggested to explain asymptotic giant branch (AGB) star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple two-dimensional (2D) geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macroturbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that for both studied regions the solution previously found can be seen as a planar section of a more complex behavior, in which the average radial velocity retains the same dependency on the radius found in 2D. As a final check, we compare our results to approximate descriptions of buoyant magnetic structures. For realistic boundary conditions, the envelope crossing times are sufficient to disperse in the huge convective zone any material transported, suggesting magnetic advection as a promising mechanism for deep mixing. The mixing velocities are smaller than for convection but larger than for diffusion and adequate for extra mixing in red giants.

  17. Nucleosynthesis in helium-enriched asymptotic giant branch models: Implications for heavy element enrichment in ω Centauri

    SciTech Connect

    Karakas, Amanda I.; Marino, Anna F.; Nataf, David M.

    2014-03-20

    We investigate the effect of helium enrichment on the evolution and nucleosynthesis of low-mass asymptotic giant branch (AGB) stars of 1.7 M {sub ☉} and 2.36 M {sub ☉} with a metallicity of Z = 0.0006 ([Fe/H] ≈–1.4). We calculate evolutionary sequences with the primordial helium abundance (Y = 0.24) and with helium-enriched compositions (Y = 0.30, 0.35, 0.40). For comparison, we calculate models of the same mass but at a lower metallicity Z = 0.0003 ([Fe/H] ≈–1.8) with Y = 0.24. Post-processing nucleosynthesis calculations are performed on each of the evolutionary sequences to determine the production of elements from hydrogen to bismuth. Elemental surface abundance predictions and stellar yields are presented for each model. The models with enriched helium have shorter main sequence and AGB lifetimes, and they enter the AGB with a more massive hydrogen-exhausted core than the primordial helium model. The main consequences are as follows: (1) low-mass AGB models with enhanced helium will evolve more than twice as fast, giving them the chance to contribute sooner to the chemical evolution of the forming globular clusters, and (2) the stellar yields will be strongly reduced relative to their primordial helium counterparts. An increase of ΔY = 0.10 at a given mass decreases the yields of carbon by up to ≈60% and of fluorine by up to 80%; it also decreases the yields of the s-process elements barium and lanthanum by ≈45%. While the yields of first s-process peak elements strontium, yttrium, and zirconium decrease by up to 50%, the yields of rubidium either do not change or increase.

  18. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    SciTech Connect

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Dolphin, A. E-mail: ben@astro.washington.ed E-mail: ammons@ucolick.or E-mail: koo@ucolick.or E-mail: adolphin@raytheon.co

    2010-03-20

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10{sup -4} M{sub sun} yr{sup -1}) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  19. Cool Bottom Processing on the AGB and Presolar Grain Compositions

    NASA Technical Reports Server (NTRS)

    Nollett, Kenneth M.; Busso, M.; Wasserburg, G. J.

    2002-01-01

    We describe results from a model of cool bottom processing (CBP) in AGB (asymptotic giant branch) stars. We predict O, Al, C and N isotopic compositions of circumstellar grains. Measured compositions of mainstream SiC grains and many oxide grains are consistent with CBP. Additional information is contained in the original extended abstract.

  20. K{sub s} -BAND LUMINOSITY EVOLUTION OF THE ASYMPTOTIC GIANT BRANCH POPULATION BASED ON STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Ko, Youkyung; Lee, Myung Gyoon; Lim, Sungsoon E-mail: mglee@astro.snu.ac.kr

    2013-11-10

    We present a study of K{sub s} -band luminosity evolution of the asymptotic giant branch (AGB) population in simple stellar systems using star clusters in the Large Magellanic Cloud (LMC). We determine physical parameters of LMC star clusters including center coordinates, radii, and foreground reddenings. Ages of 83 star clusters are derived from isochrone fitting with the Padova models, and those of 19 star clusters are taken from the literature. The AGB stars in 102 star clusters with log(age) = 7.3-9.5 are selected using near-infrared color-magnitude diagrams based on Two Micron All Sky Survey photometry. Then we obtain the K{sub s} -band luminosity fraction of AGB stars in these star clusters as a function of ages. The K{sub s} -band luminosity fraction of AGB stars increases, on average, as age increases from log(age) ∼ 8.0, reaching a maximum at log(age) ∼ 8.5, and it decreases thereafter. There is a large scatter in the AGB luminosity fraction for given ages, which is mainly due to stochastic effects. We discuss this result in comparison with five simple stellar population models. The maximum K{sub s} -band AGB luminosity fraction for bright clusters is reproduced by the models that expect the value of 0.7-0.8 at log(age) = 8.5-8.7. We discuss the implication of our results with regard to the study of size and mass evolution of galaxies.

  1. FIRST DETECTION OF ULTRAVIOLET EMISSION FROM A DETACHED DUST SHELL: GALAXY EVOLUTION EXPLORER OBSERVATIONS OF THE CARBON ASYMPTOTIC GIANT BRANCH STAR U Hya

    SciTech Connect

    Sanchez, Enmanuel; Montez, Rodolfo Jr.; Stassun, Keivan G.; Ramstedt, Sofia

    2015-01-10

    We present the discovery of an extended ring of ultraviolet (UV) emission surrounding the asymptotic giant branch (AGB) star U Hya in archival observations performed by the Galaxy Evolution Explorer. This is the third discovery of extended UV emission from a carbon AGB star and the first from an AGB star with a detached shell. From imaging and photometric analysis of the FUV and NUV images, we determined that the UV ring has a radius of ∼110'', thus indicating that the emitting material is likely associated with the detached shell seen in the infrared. We find that scattering of the central point source of NUV and FUV emission by the dust shell is negligible. Moreover, we find that scattering of the interstellar radiation field by the dust shell can contribute at most ∼10% of the FUV flux. Morphological and photometric evidence suggests that shocks caused by the star's motion through space and, possibly, shock-excited H{sub 2} molecules are the most likely origins of the UV flux. In contrast to previous examples of extended UV emission from AGB stars, the extended UV emission from U Hya does not show a bow-shock-like structure, which is consistent with a lower space velocity and lower interstellar medium density. This suggests the detached dust shell is the source of the UV-emitting material and can be used to better understand the formation of detached shells.

  2. Spitzer-IRS Spectroscopic Studies of the Properties of Dust from Oxygen-Rich Asymptotic Giant Branch and Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Speck, A.; Volk, K.; Kemper, C.; Reach, W. T.; Lagadec, E.; Bernard, J.; McDonald, I.; Meixner, M.; Srinivasan, S.

    2014-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  3. Approaching a Physical Calibration of the AGB Phase

    NASA Astrophysics Data System (ADS)

    Marigo, Paola

    2015-08-01

    The widespread impact of Asymptotic Giant Branch (AGB) stars on the observed properties of galaxies is universally accepted. Despite their importance, severe uncertainties plague AGB models and propagate through to current population synthesis studies of galaxies, undermining the interpretation of a galaxy's basic properties (mass, age, chemical evolution, dust budget). The only reliable path forward is to apply a physically-sound calibration of AGB stellar models in which all main physical processes and their interplay are taken into account (e.g., mixing, mass loss, nucleosynthesis, pulsation, molecular chemistry, dust formation). In this context, I will review recent and ongoing efforts to calibrate the evolution of AGB stars, which combine an all-round theoretical approach anchored by stellar physics with exceptionally high quality data of resolved AGB stars in the Milky Way and nearby galaxies.

  4. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-01-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is

  5. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-03-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (106 less than or equal to Tau-bar less than or equal to 2 x 107 yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau0 were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau0. It is found that small masses MHe of He-shell material (10-4-10-7 solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau0 = 0.03 mbarn-1) which contaminated the cloud with a dilution factor of MHe/solar mass approximately 1.5 x 10-4. This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10-4 of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is also found that Fe-60 is produced in small but significant quantities

  6. HEAVY ELEMENT NUCLEOSYNTHESIS IN THE BRIGHTEST GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Karakas, Amanda I.; Garcia-Hernandez, D. A.

    2012-05-20

    We present updated calculations of stellar evolutionary sequences and detailed nucleosynthesis predictions for the brightest asymptotic giant branch (AGB) stars in the Galaxy with masses between 5 M{sub Sun} and 9 M{sub Sun }, with an initial metallicity of Z = 0.02 ([Fe/H] = 0.14). In our previous studies we used the Vassiliadis and Wood mass-loss rate, which stays low until the pulsation period reaches 500 days after which point a superwind begins. Vassiliadis and Wood noted that for stars over 2.5 M{sub Sun} the superwind should be delayed until P Almost-Equal-To 750 days at 5 M{sub Sun }. We calculate evolutionary sequences where we delay the onset of the superwind to pulsation periods of P Almost-Equal-To 700-800 days in models of M = 5, 6, and 7 M{sub Sun }. Post-processing nucleosynthesis calculations show that the 6 and 7 M{sub Sun} models produce the most Rb, with [Rb/Fe] Almost-Equal-To 1 dex, close to the average of most of the Galactic Rb-rich stars ([Rb/Fe] Almost-Equal-To 1.4 {+-} 0.8 dex). Changing the rate of the {sup 22}Ne +{alpha} reactions results in variations of [Rb/Fe] as large as 0.5 dex in models with a delayed superwind. The largest enrichment in heavy elements is found for models that adopt the NACRE rate of the {sup 22}Ne({alpha}, n){sup 25}Mg reaction. Using this rate allows us to best match the composition of most of the Rb-rich stars. A synthetic evolution algorithm is then used to remove the remaining envelope resulting in final [Rb/Fe] of Almost-Equal-To 1.4 dex although with C/O ratios >1. We conclude that delaying the superwind may account for the large Rb overabundances observed in the brightest metal-rich AGB stars.

  7. Exploring wind-driving dust species in cool luminous giants. III. Wind models for M-type AGB stars: dynamic and photometric properties

    NASA Astrophysics Data System (ADS)

    Bladh, S.; Höfner, S.; Aringer, B.; Eriksson, K.

    2015-03-01

    Context. Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions which creates favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg2SiO4 and MgSiO3). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. Aims: The purpose of this study is to investigate if photon scattering on Mg2SiO4 grains can produce realistic outflows for a wide range of stellar parameters in M-type AGB stars. Methods: We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg2SiO4 grains to calculate the first extensive set of time-dependent wind models for M-type AGB stars. This set includes 139 solar-mass models, with three different luminosities (5000 L⊙, 7000 L⊙, and 10 000 L⊙) and effective temperatures ranging from 2600 K to 3200 K. The resulting wind properties, visual and near-IR photometry and mid-IR spectra are compared with observations. Results: We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they reproduce observed mass-loss rates and wind velocities, as well as visual and near-IR photometry. However, the current models do not show the characteristic silicate features at 10 and 18 μm as a result of the cool temperature of Mg2SiO4 grains in the wind. Including a small amount of Fe in the grains further out in the circumstellar envelope will

  8. The Contribution of Thermally-Pulsing Asymptotic Giant Branch and Red Supergiant Starts to the Luminosities of the Magellanic Clouds at 1-24 micrometers

    NASA Technical Reports Server (NTRS)

    Melbourne, J.; Boyer, Martha L.

    2013-01-01

    We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

  9. THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1-24 {mu}m

    SciTech Connect

    Melbourne, J.; Boyer, Martha L. E-mail: martha.l.boyer@nasa.gov

    2013-02-10

    We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at {approx}3-4 {mu}m, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at {approx}3-4 {mu}m and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 {mu}m, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1-4 {mu}m. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8-1 {mu}m). At longer wavelengths ({>=}8 {mu}m), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 {mu}m, TP-AGB and RSG contribute less than 4% of the 8 {mu}m flux. However, 19% of the SMC 8 {mu}m flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 {mu}m flux (e.g., observed-frame 24 {mu}m at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

  10. NUCLEOSYNTHESIS IN ELECTRON CAPTURE SUPERNOVAE OF ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Wanajo, S.; Nomoto, K.; Janka, H.-T.; Kitaura, F. S.; Mueller, B. E-mail: nomoto@astron.s.u-tokyo.ac.jp E-mail: kitaura@mpa-garching.mpg.de

    2009-04-10

    We examine nucleosynthesis in the electron capture supernovae of progenitor asymptotic giant branch stars with an O-Ne-Mg core (with the initial stellar mass of 8.8 M {sub sun}). Thermodynamic trajectories for the first 810 ms after core bounce are taken from a recent state-of-the-art hydrodynamic simulation. The presented nucleosynthesis results are characterized by a number of distinct features that are not shared with those of other supernovae from the collapse of stars with iron core (with initial stellar masses of more than 10 M {sub sun}). First is the small amount of {sup 56}Ni (0.002-0.004 M {sub sun}) in the ejecta, which can be an explanation for the observed properties of faint supernovae such as SNe 2008S and 1997D. In addition, the large Ni/Fe ratio is in reasonable agreement with the spectroscopic result of the Crab nebula (the relic of SN 1054). Second is the large production of {sup 64}Zn, {sup 70}Ge, light p-nuclei ({sup 74}Se, {sup 78}Kr, {sup 84}Sr, and {sup 92}Mo), and in particular, {sup 90}Zr, which originates from the low Y{sub e} (0.46-0.49, the number of electrons per nucleon) ejecta. We find, however, that only a 1%-2% increase of the minimum Y{sub e} moderates the overproduction of {sup 90}Zr. In contrast, the production of {sup 64}Zn is fairly robust against a small variation of Y{sub e} . This provides the upper limit of the occurrence of this type of events to be about 30% of all core-collapse supernovae.

  11. Super asymptotic giant branch stars. I - Evolution code comparison

    NASA Astrophysics Data System (ADS)

    Doherty, C. L.; Siess, L.; Lattanzio, J. C.; Gil-Pons, P.

    2010-01-01

    We present an extensive set of detailed stellar models in the mass range 7.7-10.5 Msolar over the metallicity range Z = 10-5-0.02. These models were produced using the Monash University version of the Mount Stromlo Stellar Structure Program (MONSTAR) and follow the evolution from the pre-main sequence to the first thermal pulse of these super asymptotic giant branch stars. A quantitative comparison is made to the study of Siess. Prior to this study, only qualitative comparisons and code validations existed in this critical mass range, and the large variations in the literature were largely unexplained. The comparison presented here is particularly detailed due to the standardization of the input physics, where possible. The minimum initial mass of star which ignites carbon, Mup, was found to agree within 0.2Msolar between the codes over the entire metallicity range. We find exceptional agreement in the model results between these two codes for all stages of evolution up to and including carbon burning. For additional comparison, we also present results from the EVOLVE code, a modified version of the IBEN code as described in Gil-Pons, Gutiérrez & García-Berro for some important variables during the carbon burning phase. Several numerical tests showed that the carbon burning phase is weakly dependent on the spatial resolution but that inadequate temporal resolution alters the behaviour of the convective zones. We also discovered that stars just below Mup may experience a carbon flash that is not followed by the development of the flame. Such aborted carbon burning models thus preserve a CO core surrounding by a 0.2-0.3Msolar shell of partially burnt carbon material. We present a simplified algorithm for calculating carbon burning that only relies on tracking two species, 12C and 16O, but which tests show works quite accurately for the a wide range of initial masses and compositions.

  12. Intermediate-mass Asymptotic Giant Branch Stars and Sources of 26Al, 60Fe, 107Pd, and 182Hf in the Solar System

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Karakas, Amanda I.; Lugaro, Maria

    2017-02-01

    We explore the possibility that the short-lived radionuclides {}26{{A}}l, {}60{{F}}e, {}107{{P}}d, and {}182{{H}}f inferred to be present in the proto-solar cloud originated from 3–8 {M}ȯ asymptotic giant branch (AGB) stars. Models of AGB stars with initial mass above 5 {M}ȯ are prolific producers of {}26{{A}}l owing to hot bottom burning (HBB). In contrast, {}60{{F}}e, {}107{{P}}d, and {}182{{H}}f are produced by neutron captures: {}107{{P}}d and {}182{{H}}f in models ≲ 5 {M}ȯ , and {}60{{F}}e in models with higher mass. We mix stellar yields from solar-metallicity AGB models into a cloud of solar mass and composition to investigate whether it is possible to explain the abundances of the four radioactive nuclides at the Sun’s birth using one single value of the mixing ratio between the AGB yields and the initial cloud material. We find that AGB stars that experience efficient HBB (≥slant 6 {M}ȯ ) cannot provide a solution because they produce too little {}182{{H}}f and {}107{{P}}d relative to {}26{{A}}l and {}60{{F}}e. Lower-mass AGB stars cannot provide a solution because they produce too little {}26{{A}}l relative to {}107{{P}}d and {}182{{H}}f. A self-consistent solution may be found for AGB stars with masses in between (4–5.5 {M}ȯ ), provided that HBB is stronger than in our models and the {}13{{C}}(α, n){}16{{O}} neutron source is mildly activated. If stars of {{M}}< 5.5 {M}ȯ are the source of the radioactive nuclides, then some basis for their existence in proto-solar clouds needs to be explored, given that the stellar lifetimes are longer than the molecular cloud lifetimes.

  13. The s-process in low-metallicity stars - II. Interpretation of high-resolution spectroscopic observations with asymptotic giant branch models

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F.

    2011-11-01

    High-resolution spectroscopic observations of 100 metal-poor carbon and s-rich stars (CEMP-s) collected from the literature are compared with the theoretical nucleosynthesis models of the asymptotic giant branch (AGB) presented in Paper I (MAGBini= 1.3, 1.4, 1.5, 2 M⊙, - 3.6 ≲ [ Fe/H ] ≲- 1.5). The s-process enhancement detected in these objects is associated with binary systems: the more massive companion evolved faster through the thermally pulsing AGB phase (TP-AGB), synthesizing s-elements in the inner He intershell, which are partly dredged up to the surface during the third dredge-up (TDU) episode. The secondary observed low-mass companion became CEMP-s by the mass transfer of C- and s-rich material from the primary AGB. We analyse the light elements C, N, O, Na and Mg, as well as the two s-process indicators, [hs/ls] (where ls = is the the light-s peak at N = 50 and hs = the heavy-s peak at N = 82) and [Pb/hs]. We distinguish between CEMP-s with high s-process enhancement, [hs/Fe] >rsim 1.5 (CEMP-sII), and mild s-process enhanced stars, [hs/Fe] < 1.5 (CEMP-sI). To interpret the observations, a range of s-process efficiencies at any given metallicity is necessary. This is confirmed by the high spread observed in [Pb/hs] (˜2 dex). A degeneration of solutions is found with some exceptions: most main-sequence CEMP-sII stars with low [Na/Fe] can only be interpreted with MAGBini= 1.3-1.4 M⊙. Giants having suffered the first dredge-up (FDU) need a dilution >rsim1 dex (dil is defined as the mass of the convective envelope of the observed star, Mobs★, over the material transferred from the AGB to the companion, MtransAGB). Then AGB models with higher AGB initial masses (MAGBini= 1.5-2 M⊙) are adopted to interpret CEMP-sII giants. In general, solutions with AGB models in the mass range MAGBini= 1.3-2 M⊙ and different dilution factors are found for CEMP-sI stars. About half of the CEMP-s stars with europium measurements show a high r

  14. The Rb problem in massive AGB stars.

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} < M < 8 M_{⊙}) in their last nuclear-burning phase, when they develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  15. Thermohaline Mixing and Isotopic Ratios in AGB Stars

    NASA Astrophysics Data System (ADS)

    Stancliffe, R. J.

    2015-08-01

    I investigate the effects of thermohaline mixing on the isotopic ratios of asymptotic giant branch (AGB) stars. While thermohaline mixing has been shown to be an effective means of changing the surface composition of low-mass stars while they ascend the upper part of the giant branch, the effect of this mechanism on the AGB is almost negligible. The carbon isotopic ratio is barely affected during the earliest pulses, and as the 12C content increases due to third dredge-up this effect becomes seriously curtailed. This is because structural changes affect the relative locations of 3He-burning and the CNO cycle. While the isotopic ratios are barely affected by thermohaline mixing on the AGB, there is a substantial increase in the surface lithium abundance due to the action of this mechanism.

  16. Duplicity: Its Part in the AGB's Downfall

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; Keller, D.

    2015-08-01

    Half or more of stars more massive than our Sun are orbited by a companion star in a binary system. Many binaries have short enough orbits that the evolution of both stars is greatly altered by an exchange of mass and angular momentum between the stars. Such mass transfer is highly likely on the asymptotic giant branch (AGB) because this is when a star is both very large and has strong wind mass loss. Direct mass transfer truncates the AGB, and its associated nucleosynthesis, prematurely compared to the case of a single star. In wide binaries we can probe nucleosynthesis in the long-dead AGB primary star by today observing its initially lower-mass companion. The star we see now may be polluted by ejecta from the primary either through a wind or Roche-lobe overflow. We highlight recent quantitative work on nucleosynthesis in (ex-)AGB mass-transfer systems, such as carbon and barium stars, and the link between binary stars and planetary nebulae; finally, we suggest AGB stars as a possible source of the enigmatic element, lithium.

  17. Hot Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Gauba, G.; Fujii, T.; Nakada, Y.

    2001-08-01

    From the study of IRAS sources with far-IR colors similar to planetary nebulae (PNe), several proto-planetary nebulae with hot (OB) post-AGB central stars have been detected. These stars form an evolutionary link between the cooler G,F,A supergiant stars that have evolved off the Asymptotic Giant Branch (AGB) and the hot (OB) central stars of PNe. The optical spectra of these objects show strong Balmer emission lines and in some cases low excitation nebular emission lines such as [NII] and [SII] superposed on the OB stellar continuum. The absence of of [OIII] 5007Å line and the presence of low excitation nebular emission lines indicate that photoionisation has just started. The UV(IUE) spectra of some of these objects revealed violet shifted stellar wind P-Cygni profiles of CIV, SiIV and NV, indicating hot and fast stellar wind and post-AGB mass loss. These objects appear to be rapildy evolving into the early stages of PNe similar to that observed in the case of Hen1357 IRAS 17119-5926 (Stingray Nebula) and IRAS 18062+2410 SAO85766.

  18. Out on a Limb: Updates on the Search for X-ray Emission from AGB Stars

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Ramstedt, Sofia; Santiago-Boyd, Andrea; Kastner, Joel; Vlemmings, Wouter

    2016-01-01

    X-rays from asymptotic giant branch (AGB) stars are rarely detected, however, few modern X-ray observatories have targeted AGB stars. In 2012, we searched a list of 480 galactic AGB stars and found a total of 13 targeted or serendipitous observations with few detections (Ramstedt et al. 2012). Since this initial search new programs have successfully targeted and detected X-ray emission from a handful of AGB stars. The X-ray emission, when detected, reveals high temperature plasma (>= 10 MK). This plasma might be heated by a large-scale magnetic field or indicate the presence of accretion onto a compact companion. In this poster, we update our search for X-ray emission from AGB stars with a review of their characteristics, potential origins, and impact of X-ray emission in this late stage of stellar evolution.

  19. LITHIUM ABUNDANCES IN RED GIANTS OF M4: EVIDENCE FOR ASYMPTOTIC GIANT BRANCH STAR POLLUTION IN GLOBULAR CLUSTERS?

    SciTech Connect

    D'Orazi, Valentina; Marino, Anna F. E-mail: anna.marino@unipd.i

    2010-06-20

    The determination of Li and proton-capture element abundances in globular cluster (GC) giants allows us to constrain several key questions on the multiple population scenarios in GCs, from formation and early evolution to pollution and dilution mechanisms. In this Letter, we present our results on Li abundances for a large sample of giants in the intermediate-metallicity GC NGC 6121 (M4), for which Na and O have been already determined by Marino et al. The stars analyzed are both below and above the red giant branch bump luminosity. We found that the first and second generation stars share the same Li content, suggesting that a Li production must have occurred. This provides strong observational evidence supporting the scenario in which asymptotic giant branch stars are GC polluters.

  20. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Marengo, M.; Sloan, G. C.

    2010-06-10

    We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and

  1. Post-AGB Binaries and Their Connection to the B[e] Phenomenon

    NASA Astrophysics Data System (ADS)

    Van Winckel, H.

    2017-02-01

    We argue in this contribution that secondary stable disks around evolved stars can be found over a wide range in luminosity all over the HR-diagram. The disks around B[e] supergiants form the high luminosity end of similar structures found around post-Asymptotic Giant Branch (post-AGB) stars as well as the recently discovered post-Red Giant Branch (post-RGB) stars. We focus here on the observational properties of disks around binary post-AGB stars and end with a link to the B[e] phenomenon.

  2. FAR-INFRARED IMAGING OF POST-ASYMPTOTIC GIANT BRANCH STARS AND (PROTO)-PLANETARY NEBULAE WITH THE AKARI FAR-INFRARED SURVEYOR

    SciTech Connect

    Cox, N. L. J.; Garcia-Hernandez, D. A.; Manchado, A.

    2011-04-15

    By tracing the distribution of cool dust in the extended envelopes of post-asymptotic giant branch stars and (proto)-planetary nebulae ((P)PNe), we aim to recover, or constrain, the mass-loss history experienced by these stars in their recent past. The Far-Infrared Surveyor (FIS) instrument on board the AKARI satellite was used to obtain far-infrared maps for a selected sample of post-AGB stars and (P)PNe. We derived flux densities (aperture photometry) for 13 post-AGB stars and (P)PNe at four far-infrared wavelengths (65, 90, 140, and 160 {mu}m). Radial (azimuthally averaged) profiles are used to investigate the presence of extended emission from cool dust. No (detached) extended emission is detected for any target in our sample at levels significant with respect to background and cirrus emission. Only IRAS 21046+4739 reveals tentative excess emission between 30'' and 130''. Estimates of the total dust and gas mass from the obtained maps indicate that the envelope masses of these stars should be large in order to be detected with the AKARI FIS. Imaging with higher sensitivity and higher spatial resolution is needed to detect and resolve, if present, any cool compact or extended emission associated with these evolved stars.

  3. EUROPIUM s-PROCESS SIGNATURE AT CLOSE-TO-SOLAR METALLICITY IN STARDUST SiC GRAINS FROM ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Avila, Janaina N.; Ireland, Trevor R.; Holden, Peter; Lugaro, Maria; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Rauscher, Thomas

    2013-05-01

    Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of {approx}1.5-3 M{sub Sun} carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The {sup 151}Eu fractions [fr({sup 151}Eu) = {sup 151}Eu/({sup 151}Eu+{sup 153}Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr({sup 151}Eu) values derived from our measurements agree well with fr({sup 151}Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr({sup 151}Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr({sup 151}Eu) values. The SiC aggregate yields a fr({sup 151}Eu) value within the range observed in the single grains and provides a more precise result (fr({sup 151}Eu) = 0.54 {+-} 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the {sup 151}Sm(n, {gamma}) stellar reaction rate.

  4. Maser and infrared studies of oxygen-rich late/post-asymptotic giant branch stars and water fountains: development of a new identification method

    SciTech Connect

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Henkel, Christian

    2014-10-10

    We explored an efficient method to identify evolved stars with oxygen-rich envelopes in the late asymptotic giant branch (AGB) or post-AGB phase of stellar evolution, which include a rare class of objects—the 'water fountains (WF)'. Our method considers the OH and H{sub 2}O maser spectra, the near-infrared Q-parameters (these are color indices accounting for the effect of extinction), and far-infrared AKARI colors. Here we first present the results of a new survey on OH and H{sub 2}O masers. There were 108 color-selected objects: 53 of them were observed in the three OH maser lines (1612, 1665, and 1667 MHz), with 24 detections (16 new for 1612 MHz); and 106 of them were observed in the H{sub 2}O maser line (22 GHz), with 24 detections (12 new). We identify a new potential WF source, IRAS 19356+0754, with large velocity coverages of both OH and H{sub 2}O maser emission. In addition, several objects with high-velocity OH maser emission are reported for the first time. The Q-parameters as well as the infrared [09]–[18] and [18]–[65] AKARI colors of the surveyed objects are then calculated. We suggest that these infrared properties are effective in isolating aspherical from spherical objects, but the morphology may not necessarily be related to the evolutionary status. Nonetheless, by considering altogether the maser and infrared properties, the efficiency of identifying oxygen-rich late/post-AGB stars could be improved.

  5. TP-AGB Stars in M31: Results from PHAT

    NASA Astrophysics Data System (ADS)

    Girardi, L.; Beerman, L. C.; Boyer, M. L.; Dalcanton, J. J.; Dolphin, A.; Fouesnaeu, M.; Hamren, K.; Johnson, L. C.; Lang, D.; Lewis, A.; Marigo, P.; Rosenfield, P.; Senchyna, P.; Seth, A. C.; Veyette, M.; Weisz, D. R.; Williams, B. F.

    2015-08-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that mapped one-third of M31 from the UV through the near-IR. It provides photometry in up to 6 filters for about 117 million stars distributed across ˜20 kpc of the M31 disk, with a spatial resolution comparable to that routinely attained for the Magellanic Clouds from the ground. These data are revolutionising our view of the spatial distribution of stars and dust across M31. Here we present an overview of PHAT data and results, with a focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars. We comment on (1) the overall spatial distribution of TP-AGB stars as compared to stars of the red giant branch (RGB); (2) the detection of a dramatic drop in the C/M ratio toward the inner M31 disk; (3) the large population of TP-AGB stars in star clusters; (4) an improved view of the planetary nebula population; and (5) the unusual populations of UV-bright stars in the M31 bulge, which correspond to either post-AGB or "failed-AGB” stars. These rich datasets allow us to test the evolution of TP-AGB stars in a metal-rich and star-forming environment, avoiding the incompleteness and distance uncertainties that severely limit similar studies in the Milky Way.

  6. AGB Stars in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Portman, Matthew; Sargent, Benjamin A.; Held, Leander; Kastner, Joel; SAGE Team

    2016-01-01

    Asymptotic giant branch (AGB) stars are evolved, pulsating variable stars that generate massive outflows of gas and dust, thereby enriching the interstellar medium (ISM) in the products of stellar nucleosynthesis. Recent studies find the dustiest, most extreme AGB stars contribute a disproportionately large amount of matter to their host galaxies; these extreme AGB stars are also the most variable, and they emit most of their energy at mid-infrared wavelengths. Therefore, using the Spitzer Space Telescope, we have imaged several target AGB stars identified in previous surveys of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Our aim is to obtain light curves at 3.6 and 4.5 microns wavelength for these extreme AGB stars. Using multiple epochs of data taken within the last 3 years by our survey and then further comparing this data to past surveys of the SMC and LMC with Spitzer, we were able to generate preliminary light curves for a sample of 30 extreme AGB stars, as well as for other stars found within the image fields. This research project was made possible by the Rochester Institute of Technology Center for Imaging Science Research Experience for Undergraduates program, funded by National Science Foundation grant PHY-1359361 to RIT.

  7. The creation of AGB fallback shells

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason

    2016-04-01

    The possibility that mass ejected during Asymptotic Giant Branch (AGB) stellar evolution phases falls back towards the star has been suggested in applications ranging from the formation of accretion discs to the powering of late-thermal pulses. In this paper, we seek to explicate the properties of fallback flow trajectories from mass-loss events. We focus on a transient phase of mass ejection with sub-escape speeds, followed by a phase of a typical AGB wind. We solve the problem using both hydrodynamic simulations and a simplified one-dimensional analytic model that matches the simulations. For a given set of initial wind characteristics, we find a critical shell velocity that distinguishes between `shell fallback' and `shell escape'. We discuss the relevance of our results for both single and binary AGB stars. In particular, we discuss how our results help to frame further studies of fallback as a mechanism for forming the substantial population of observed post-AGB stars with dusty discs.

  8. POST ASYMPTOTIC GIANT BRANCH BIPOLAR REFLECTION NEBULAE: RESULT OF DYNAMICAL EJECTION OR SELECTIVE ILLUMINATION?

    SciTech Connect

    Koning, N.; Kwok, Sun; Steffen, W. E-mail: sunkwok@hku.hk

    2013-03-10

    A model for post asymptotic giant branch bipolar reflection nebulae has been constructed based on a pair of evacuated cavities in a spherical dust envelope. Many of the observed features of bipolar nebulae, including filled bipolar lobes, an equatorial torus, searchlight beams, and a bright central light source, can be reproduced. The effects on orientation and dust densities are studied and comparisons with some observed examples are offered. We suggest that many observed properties of bipolar nebulae are the result of optical effects and any physical modeling of these nebulae has to take these factors into consideration.

  9. THE WIDESPREAD OCCURRENCE OF WATER VAPOR IN THE CIRCUMSTELLAR ENVELOPES OF CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS: FIRST RESULTS FROM A SURVEY WITH HERSCHEL /HIFI

    SciTech Connect

    Neufeld, D. A.; Gonzalez-Alfonso, E.; Melnick, G.; Szczerba, R.; Schmidt, M.; Decin, L.; Alcolea, J.; De Koter, A.; Dominik, C.; Waters, L. B. F. M.; Schoeier, F. L.; Justtanont, K.; Olofsson, H.; Bujarrabal, V.; Planesas, P.; Cernicharo, J.; Teyssier, D.; Marston, A. P.; Menten, K.

    2011-02-01

    We report the preliminary results of a survey for water vapor in a sample of eight C stars with large mid-IR continuum fluxes: V384 Per, CIT 6, V Hya, Y CVn, IRAS 15194-5115, V Cyg, S Cep, and IRC+40540. This survey, performed using the HIFI instrument on board the Herschel Space Observatory, entailed observations of the lowest transitions of both ortho- and para-water: the 556.936 GHz 1{sub 10}-1{sub 01} and 1113.343 GHz 1{sub 11}-0{sub 00} transitions, respectively. Water vapor was unequivocally detected in all eight of the target stars. Prior to this survey, IRC+10216 was the only carbon-rich asymptotic giant branch (AGB) star from which thermal water emissions had been discovered, in that case with the use of the Submillimeter Wave Astronomy Satellite (SWAS). Our results indicate that IRC+10216 is not unusual, except insofar as its proximity to Earth leads to a large line flux that was detectable with SWAS. The water spectral line widths are typically similar to those of CO rotational lines, arguing against the vaporization of a Kuiper Belt analog being the general explanation for water vapor in carbon-rich AGB stars. There is no apparent correlation between the ratio of the integrated water line fluxes to the 6.3 {mu}m continuum flux-a ratio which measures the water outflow rate-and the total mass-loss rate for the stars in our sample.

  10. IRAS 17423-1755 (HEN 3-1475) REVISITED: AN O-RICH HIGH-MASS POST-ASYMPTOTIC GIANT BRANCH STAR

    SciTech Connect

    Manteiga, M.; GarcIa-Hernandez, D. A.; Manchado, A.; GarcIa-Lario, P.

    2011-03-15

    The high-resolution (R {approx} 600) Spitzer/IRS spectrum of the bipolar protoplanetary nebula (PN) IRAS 17423-1755 is presented in order to clarify the dominant chemistry (C-rich versus O-rich) of its circumstellar envelope as well as to constrain its evolutionary stage. The high-quality Spitzer/IRS spectrum shows weak 9.7 {mu}m absorption from amorphous silicates. This confirms for the first time the O-rich nature of IRAS 17423-1755 in contradiction to a previous C-rich classification, which was based on the wrong identification of the strong 3.1 {mu}m absorption feature seen in the Infrared Space Observatory spectrum as due to acetylene (C{sub 2}H{sub 2}). The high-resolution Spitzer/IRS spectrum displays a complete lack of C-rich mid-IR features such as molecular absorption features (e.g., 13.7 {mu}m C{sub 2}H{sub 2}, 14.0 {mu}m HCN, etc.) or the classical polycyclic aromatic hydrocarbon infrared emission bands. Thus, the strong 3.1 {mu}m absorption band toward IRAS 17423-1755 has to be identified as water ice. In addition, an [Ne II] nebular emission line at 12.8 {mu}m is clearly detected, indicating that the ionization of its central region may be already started. The spectral energy distribution in the infrared ({approx}2-200 {mu}m) and other observational properties of IRAS 17423-1755 are discussed in comparison with the similar post-asymptotic giant branch (AGB) objects IRAS 19343+2926 and IRAS 17393-2727. We conclude that IRAS 17423-1755 is an O-rich high-mass post-AGB object that represents a link between OH/IR stars with extreme outflows and highly bipolar PN.

  11. DRAMATIC INFRARED VARIABILITY OF WISE J1810-3305: CATCHING EARLY-TIME DUST EJECTION DURING THE THERMAL PULSE OF AN ASYMPTOTIC GIANT BRANCH STAR?

    SciTech Connect

    Gandhi, Poshak; Yamamura, Issei; Takita, Satoshi

    2012-05-20

    We present the discovery of a source with broadband infrared photometric characteristics similar to Sakurai's object. WISE J180956.27-330500.2 (hereafter J1810-3305) shows very red WISE colors, but a very blue 2MASS [K] versus WISE [W1 (3.4 {mu}m)] color. It was not visible during the IRAS era, but now has a 12 {mu}m flux well above the IRAS point-source catalog detection limit. There are also indications of variability in historical optical photographic plates as well as in multi-epoch AKARI mid-infrared measurements. The broadband infrared spectral energy distribution (SED) shape, post-IRAS brightening, and multiwavelength variability are all characteristics also shared by Sakurai's object-a post-asymptotic giant branch (post-AGB) star which underwent a late thermal pulse and recently ejected massive envelopes of dust that are currently expanding and cooling. Optical progenitor colors suggest that J1810-3305 may have been of late spectral class. Its dramatic infrared brightening and the detection of a late-type optical counterpart are consistent with a scenario in which we have caught an extremely massive dust ejection event (in 1998 or shortly before) during the thermal pulse of an AGB star, thus providing a unique opportunity to observe stellar evolution in this phase. J1810-3305 is the only source in the entire WISE preliminary data release with similar infrared SED and variability, emphasizing the rarity of such sources. Confirmation of its nature is of great importance.

  12. From AGBs to PNe: understanding the observations of evolved stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Dell'Agli, Flavia

    2015-08-01

    Asymptotic Giant Branch (AGB) stars represent one of the main stellar sources for dust production in the Universe. We provide a description of the formation and growth of dust particles in the circumstellar envelope of AGBs, based on detailed calculations of the AGB evolutionary phase. We use stellar population synthesis to interpret the Spitzer observations of dusty AGBs in the Large Magellanic Cloud (LMC). Our results show that carbon-rich and oxygen-rich stars evolve into different and separated regions of the observational diagrams obtained with the Spitzer bands. This allows a straight comparison with the spectroscopically confirmed samples of AGBs in the LMC present in the literature. The overall impact of AGBs on the dust production rate in the LMC is also discussed.The interpretation of the AGB population of the LMC is used to describe the observed chemical abundances of the Planetary Nebulae in the same galaxy. This analysis outlines a clear distinction between stars which experience Hot Bottom Burning and those the Third Dredge Up.

  13. Ultraviolet emission from main-sequence companions of AGB stars

    NASA Astrophysics Data System (ADS)

    Ortiz, Roberto; Guerrero, Martín A.

    2016-09-01

    Although the majority of known binary asymptotic giant branch (AGB) stars are symbiotic systems (i.e. with a white dwarf as a secondary star), main-sequence companions of AGB stars can be more numerous, even though they are more difficult to find because the primary high luminosity hampers the detection of the companion at visual wavelengths. However, in the ultraviolet the flux emitted by a secondary with Teff > 5500 ˜ 6000 K may prevail over that of the primary, and then it can be used to search for candidates to binary AGB stars. In this work, theoretical atmosphere models are used to calculate the UV excess in the GALEX near- and far-UV bands due to a main-sequence companion. After analysing a sample of confirmed binary AGB stars, we propose as a criterium for binarity: (1) the detection of the AGB star in the GALEX far-UV band and/or (2) a GALEX near-UV observed-to-predicted flux ratio >20. These criteria have been applied to a volume-limited sample of AGB stars within 500 pc of the Sun; 34 out of the sample of 58 AGB stars (˜60 per cent) fulfill them, implying to have a main-sequence companion of spectral type earlier than K0. The excess in the GALEX near- and far-UV bands cannot be attributed to a single temperature companion star, thus suggesting that the UV emission of the secondary might be absorbed by the extended atmosphere and circumstellar envelope of the primary or that UV emission is produced in accretion flows.

  14. CEMP-s Stars: AGB Yield Predictions and Thermohaline Mixing

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Ivans, I. I.; Preston, G. W.; Aoki, W.

    2008-03-01

    CS 29497-030 and CS 31062-050 belong to a sample of C-rich, s-process rich and extremely metal-poor stars (CEMP-s+r). To explain the s-process enrichment, we considered these stars to be extrinsic asymptotic giant branch (AGB) stars, belonging to binary systems where the more massive AGB companion polluted the observed star (of ~0.8 Msolar) with efficient stellar winds. To explain the r-process enrichment, we assumed that the parental cloud was already enriched in r-process elements. For the main sequence CS 29497-030 we hypothesize that the primary AGB had an initial mass of ~1.3 Msolar and underwent a very limited number of third dredge up episodes. A very small dilution between AGB winds and envelope mass of the observed star is derived by comparing AGB nucleosynthesis yields and observed abundances, consistent with the fact that dwarf stars of ~0.8 Msolar are characterized by a limited subphotospheric convective zone. This is compatible with moderate thermohaline mixing (e.g., [l]). AGB models of higher initial mass undergo an increasing number of third dredge up (TDU) episodes and produce larger carbon and s-process abundances at the surface. For AGB models of 1.5 Msolar and 2 Msolar a good match with the observed s-process abundance distribution can still be found, provided a dilution factor of 0.5 dex or 0.8 dex is applied. The predicted yields of Na and Mg, which are extremely sensitive to the number of thermal pulses, however, would be much higher than observed. CS 31062-050 is a red subgiant that has likely undergone the first dredge up episode, where the convective envelope extends over about 80% of the stellar mass, erasing any effect of thermohaline mixing. The ~1.3 Msolar AGB model will fit the observed elemental distribution, but will only be compatible with a quite large amount of mass accreted by the AGB donor. For this star, AGB models of 1.5 Msolar to 2 Msolar and dilution factors of 1.0 dex to 1.3 dex may be more appropriate, including the

  15. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    SciTech Connect

    Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A. E-mail: iain.mcdonald-2@manchester.ac.uk; and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will

  16. THE INTERACTION OF ASYMPTOTIC GIANT BRANCH STARS WITH THE INTERSTELLAR MEDIUM

    SciTech Connect

    Villaver, Eva; Manchado, Arturo

    2012-04-01

    We study the hydrodynamical behavior of the gas expelled by moving asymptotic giant branch stars interacting with the interstellar medium (ISM). Our models follow the wind modulations prescribed by stellar evolution calculations, and we cover a range of expected relative velocities (10-100 km s{sup -1}), ISM densities (between 0.01 and 1 cm{sup -3}), and stellar progenitor masses (1 and 3.5 M{sub Sun }). We show how and when bow shocks and cometary-like structures form, and in which regime the shells are subject to instabilities. Finally, we analyze the results of the simulations in terms of the different kinematical stellar populations expected in the Galaxy.

  17. The identification of extreme asymptotic giant branch stars and red supergiants in M33 with 24 μm variability

    SciTech Connect

    Montiel, Edward J.; Clayton, Geoffrey C.; Johnson, Christopher B.; Srinivasan, Sundar; Engelbracht, Charles W.

    2015-02-01

    We present the first detection of 24 μm variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of Multiband Imaging Photometer for Spitzer observations, which are irregularly spaced over ∼750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the submillimeter to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars, while the remaining source is the Giant H ii region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8±0.9)×10{sup 4} L{sub ⊙} and a total DPR of (2.3±0.1)×10{sup −5} M{sub ⊙} yr{sup −1}. Most of the sources, given the high DPRs and short wavelength obscuration, are likely extreme asymptotic giant branch (XAGB) stars. Five of the sources are found to have luminosities above the classical AGB limit (M{sub bol} <−7.1 mag, L > 54,000 L{sub ⊙}), which classifies them as probable red supergiants (RSGs). Almost all of the sources are classified as oxygen-rich. As also seen in the LMC, a significant fraction of the dust in M33 is produced by a handful of XAGB and RSG stars.

  18. AGB stars in the disk, satellites, and halo of M31

    NASA Astrophysics Data System (ADS)

    Hamren, Katherine M.

    2016-08-01

    Asymptotic giant branch (AGB) stars are simultaneously one of the most important and least well understood phases of stellar evolution. Luminous, red, AGB stars are excellent tracers of kinematical and morphological structure, and track the presence of intermediate age populations. In addition, they contribute significantly to the near-infrared flux and gas/dust budgets of galaxies. As a result, they are essential for studying galaxies in both the local and distance universe. However, their observable properties depend on complicated physical processes, including dredge-up, dust production, and stellar pulsations. As a result, they are difficult to model on both the individual and population-level scales. Homogenous samples of AGB stars are necessary to calibrate ever improving models. In this thesis I use data from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey to identify and characterize clean, homogenous samples of carbon- and oxygen-rich AGB stars (carbon stars and M-stars, respectively) in the disk, satellites and halo of the Andromeda galaxy (M31). Using these stars, I constrain the ratio (C/M) of carbon- to oxygen-rich in fields throughout the M31 system, compare the AGB stars to their observationally similar contaminants (extrinsic carbon stars and oxygen-rich red giant branch stars), and discuss major physical properties (color, temperature, metallicity, dust production, and variability).

  19. ÔøºA VLTI survey of dusty envelopes of AGB stars

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Hron, J.; Jorissen, A.; Groenewegen, M.; Kerschbaum, F.; Verhoelst, T.; Richichi, A.; Olofsson, H.

    2014-04-01

    Taking advantage of the results from the Herschel Mass-Loss of Evolved StarS (MESS) program we initiated a coordinated effort to study the same sample of Asymptotic Giant Branch (AGB) stars with different techniques. The aim is to characterise the geometry of the mass-loss process in AGB stars at different spatial scales. Being able to understand the shaping-mechanism on this evolutionary stage is crucial also for the successors. In this contribution we present the results of the VLTI/MIDI Large Program on AGB stars. While MESS probes the interface between the stellar atmosphere and the interstellar medium with MIDI we probe the onset of the stellar wind and of the dust formation. Our sample of 15 AGB stars cover different chemistry and variability type, spanning ideally the all AGB evolution. In our study we report spectral variability but not interferometric variability. This fact has implications on the size of the structures involved in the dust formation process. We detect asymmetric structures and elongation in a few cases, and we make an attempt to connect this with the evolution on the AGB.

  20. HV2112, a Thorne-Żytkow object or a super asymptotic giant branch star

    NASA Astrophysics Data System (ADS)

    Tout, Christopher A.; Żytkow, Anna N.; Church, Ross P.; Lau, Herbert H. B.; Doherty, Carolyn L.; Izzard, Robert G.

    2014-11-01

    The very bright red star HV2112 in the Small Magellanic Cloud could be a massive Thorne-Żytkow object (TŻO), a supergiant-like star with a degenerate neutron core. With a luminosity of over 105 L⊙, it could also be a super asymptotic giant branch (SAGB) star, a star with an oxygen/neon core supported by electron degeneracy and undergoing thermal pulses with third dredge up. Both TŻOs and SAGB stars are expected to be rare. Abundances of heavy elements in HV2112's atmosphere, as observed to date, do not allow us to distinguish between the two possibilities based on the latest models. Molybdenum and rubidium can be enhanced by both the irp-process in a TŻO or by the s-process in SAGB stars. Lithium can be generated by hot bottom burning at the base of the convective envelope in either. HV2112's enhanced calcium could thus be the key determinant. Neither SAGB stars nor TŻOs are known to be able to synthesize their own calcium but it may be possible to produce it in the final stages of the process that forms a TŻO, when the degenerate electron core of a giant star is tidally disrupted by a neutron star. Hence, it is more likely, on a fine balance, that HV2112 is indeed a genuine TŻO.

  1. Asymptotic analysis of dipolar mixed modes of oscillations in red giant stars

    NASA Astrophysics Data System (ADS)

    Takata, Masao

    2016-12-01

    Dipolar modes of solar-like oscillations of red giant stars are analyzed asymptotically. Because of the high mass concentration in the helium core, the oscillations of the stars are composed of internal gravity waves in the core and acoustic waves in the envelope. The two types of oscillations interact with each other through a thin intermediate evanescent region to form an eigenmode of the mixed character. The process of the eigenmode formation is analyzed by assuming that the wavelength of the oscillations is much shorter than the scale height of the equilibrium stellar structure. Special care is paid to the following two points: (1) the effect of the perturbation to the gravitational potential is fully taken into account; (2) the interaction between the gravity waves in the core and the acoustic waves in the envelope can be strong. The condition that every eigenfrequency of the oscillations should satisfy is formulated. Also discussed are the amplitude ratio between the core and the envelope, and the transmission and reflection of the progressive-wave solutions at the intermediate evanescent region. The analysis should be of fundamental use in the interpretation of the observed solar-like oscillations in red giant stars.

  2. Optical Properties of Amorphous Alumina Dust in the Envelopes around O-Rich AGB Stars

    NASA Astrophysics Data System (ADS)

    Suh, Kyung-Won

    2016-08-01

    We investigate optical properties of amorphous alumina (Al_2O_3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars using laboratory measured optical data. We derive the optical constants of amorphous alumina over a wide wavelength range that satisfy the Kramers-Kronig relation and reproduce the laboratory data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with observations on various IR two-color diagrams for a large sample of O-rich AGB stars, we find that the amorphous alumina dust (about 10-40%) mixed with amorphous silicate better models the observed points for the O-rich AGB stars with thin dust envelopes.

  3. FROM THE COLOR-MAGNITUDE DIAGRAM OF {omega} CENTAURI AND (SUPER-)ASYMPTOTIC GIANT BRANCH STELLAR MODELS TO A GALACTIC PLANE PASSAGE GAS PURGING CHEMICAL EVOLUTION SCENARIO

    SciTech Connect

    Herwig, Falk; VandenBerg, Don A.; Navarro, Julio F.; Ferguson, Jason; Paxton, Bill E-mail: vandenbe@uvic.ca E-mail: paxton@kitp.ucsb.edu

    2012-10-01

    We have investigated the color-magnitude diagram of {omega} Centauri and find that the blue main sequence (bMS) can be reproduced only by models that have a helium abundance in the range Y = 0.35-0.40. To explain the faint subgiant branch of the reddest stars ('MS-a/RG-a' sequence), isochrones for the observed metallicity ([Fe/H] Almost-Equal-To -0.7) appear to require both a high age ({approx}13 Gyr) and enhanced CNO abundances ([CNO/Fe] Almost-Equal-To 0.9). Y Almost-Equal-To 0.35 must also be assumed in order to counteract the effects of high CNO on turnoff colors and thereby to obtain a good fit to the relatively blue turnoff of this stellar population. This suggests a short chemical evolution period of time (<1 Gyr) for {omega} Cen. Our intermediate-mass (super-)asymptotic giant branch (AGB) models are able to reproduce the high helium abundances, along with [N/Fe] {approx}2 and substantial O depletions if uncertainties in the treatment of convection are fully taken into account. These abundance features distinguish the bMS stars from the dominant [Fe/H] Almost-Equal-To -1.7 population. The most massive super-AGB stellar models (M{sub ZAMS} {>=} 6.8 M{sub Sun }, M{sub He,core} {>=} 1.245 M{sub Sun }) predict too large N enhancements, which limit their role in contributing to the extreme populations. In order to address the observed central concentration of stars with He-rich abundance, we show here quantitatively that highly He- and N-enriched AGB ejecta have particularly efficient cooling properties. Based on these results and on the reconstruction of the orbit of {omega} Cen with respect to the Milky Way, we propose the Galactic plane passage gas purging scenario for the chemical evolution of this cluster. The bMS population formed shortly after the purging of most of the cluster gas as a result of the passage of {omega} Cen through the Galactic disk (which occurs today every {approx}40 Myr for {omega} Cen) when the initial mass function of the dominant

  4. Molecular and Dusty Layers of Asymptotic Giant Branch Stars Studied with the VLT Interferometer

    DTIC Science & Technology

    2011-09-01

    the evolution of low to intermediate mass stars towards planetary nebulae . It is also one of the most important sources of chemical enrichment of...planetary nebula (PN) phases, and is thus the most important driver for the further stellar evolution (e.g., Habing & Olofsson, 2003). Mass loss from AGB...branch (AGB) stars is the most important driver for the evolution of low to intermediate mass stars towards planetary nebulae . It is also one of the

  5. Sodium abundances of AGB and RGB stars in Galactic globular clusters. I. Analysis and results of NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-07-01

    Context. Galactic globular clusters (GC) are known to have multiple stellar populations and be characterised by similar chemical features, e.g. O-Na anti-correlation. While second-population stars, identified by their Na overabundance, have been found from the main sequence turn-off up to the tip of the red giant branch (RGB) in various Galactic GCs, asymptotic giant branch (AGB) stars have rarely been targeted. The recent finding that NGC 6752 lacks an Na-rich AGB star has thus triggered new studies on AGB stars in GCs, since this result questions our basic understanding of GC formation and stellar evolution theory. Aims: We aim to compare the Na abundance distributions of AGB and RGB stars in Galactic GCs and investigate whether the presence of Na-rich stars on the AGB is metallicity-dependent. Methods: With high-resolution spectra obtained with the multi-object high-resolution spectrograph FLAMES on ESO/VLT, we derived accurate Na abundances for 31 AGB and 40 RGB stars in the Galactic GC NGC 2808. Results: We find that NGC 2808 has a mean metallicity of -1.11 ± 0.08 dex, in good agreement with earlier analyses. Comparable Na abundance dispersions are derived for our AGB and RGB samples, with the AGB stars being slightly more concentrated than the RGB stars. The ratios of Na-poor first-population to Na-rich second-population stars are 45:55 in the AGB sample and 48:52 in the RGB sample. Conclusions: NGC 2808 has Na-rich second-population AGB stars, which turn out to be even more numerous - in relative terms - than their Na-poor AGB counterparts and the Na-rich stars on the RGB. Our findings are well reproduced by the fast rotating massive stars scenario and they do not contradict the recent results that there is not an Na-rich AGB star in NGC 6752. NGC 2808 thus joins the larger group of Galactic GCs for which Na-rich second-population stars on the AGB have recently been found. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  6. FORMATION OF SiC GRAINS IN PULSATION-ENHANCED DUST-DRIVEN WIND AROUND CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Yasuda, Yuki; Kozasa, Takashi

    2012-02-01

    We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich asymptotic giant branch (C-rich AGB) stars to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process: one is the local thermal equilibrium (LTE) case where the vibration temperature of SiC clusters T{sub v} is equal to the gas temperature as usual, and another is the non-LTE case in which T{sub v} is assumed to be the same as the temperature of small SiC grains. The results of the hydrodynamical calculations for a model with stellar parameters of mass M{sub *} = 1.0 M{sub Sun }, luminosity L{sub *} = 10{sup 4} L{sub Sun }, effective temperature T{sub eff} = 2600 K, C/O ratio = 1.4, and pulsation period P = 650 days show the following: in the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains, and the resulting averaged mass ratio of SiC to carbon grains of {approx}10{sup -8} is too small to reproduce the value of 0.01-0.3, which is inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of the SiC grains is more internal and/or almost identical to that of the carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability {alpha}{sub s} = 0.1-1.0. The size distributions with the peak at {approx}0.2-0.3 {mu}m in radius cover the range of size derived from the analysis of the presolar SiC grains. Thus, the difference between the temperatures of the small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.

  7. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.

    PubMed

    Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J

    2003-08-07

    Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.

  8. The composition of freshly-formed dust in recent (post-)AGB thermal pulses

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak

    2013-01-01

    We recently discovered a candidate Asymptotic Giant Branch (AGB) star undergoing a thermal pulse (TP). WISE J1810--3305 is one of only two sources in the WISE sky survey which show very red WISE colors but a very blue 2MASS [K] vs. WISE [W1 (3.4 mu m)] color, and drastic brightening at 12 mu m since IRAS observation. This favours a scenario in which we have caught a massive dust ejection event during a TP that began only ~15 years ago. The other source is Sakurai's object, which also underwent a massive dust expulsion around the same time, but is in a later evolutionary (post-AGB) phase. Few firm constraints exist on the TP stage because of its brevity. These objects provide a unique opportunity for understanding TP evolution and dust production in real-time. Here we propose COMICS spectroscopy of WISE J1810--3305 in order to study the composition of the circumstellar dust. We will search for molecular bands, and identify whether the central object is an Oxygen or Carbon rich AGB star. We also propose identical spectroscopy of Sakurai's object in order to compare AGB with post-AGB evolution. These objects are presently brightest in the mid-IR, and COMICS is the only ground-based mid-IR camera with the requisite capability for observation.

  9. THE EFFECTS OF ROTATION ON s-PROCESS NUCLEOSYNTHESIS IN ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Piersanti, L.; Cristallo, S.; Straniero, O.

    2013-09-10

    In this paper, we analyze the effects induced by rotation on low-mass asymptotic giant branch stars. We compute two sets of models, M = 2.0 M{sub Sun} at [Fe/H] = 0 and M = 1.5 M{sub Sun} at [Fe/H] = -1.7, by adopting main-sequence rotation velocities in the range 0-120 km s{sup -1}. At high metallicity, we find that the Goldreich-Schubert-Fricke instability, active at the interface between the convective envelope and the rapid rotating core, contaminates the {sup 13}C-pocket (the major neutron source) with {sup 14}N (the major neutron poison), thus reducing the neutron flux available for the synthesis of heavy elements. As a consequence, the yields of heavy-s elements (Ba, La, Nd, Sm) and, to a lesser extent, those of light-s elements (Sr, Y, Zr) decrease with increasing rotation velocities up to 60 km s{sup -1}. However, for larger initial rotation velocities, the production of light-s and, to a lesser extent, that of heavy-s, begins again to increase, due to mixing induced by meridional circulations. At low metallicity, the effects of meridional circulations are important even at rather low rotation velocity. The combined effect of the Goldreich-Schubert-Fricke instability and meridional circulations determines an increase of light-s and, to a lesser extent, heavy-s elements, while lead is strongly reduced. For both metallicities, the rotation-induced instabilities active during the interpulse phase reduce the neutron-to-seed ratio, so that the spectroscopic indexes [hs/ls] and [Pb/hs] decrease by increasing the initial rotation velocity. Our analysis suggests that rotation could explain the spread in the s-process indexes, as observed in s-process enriched stars at different metallicities.

  10. The Effects of Rotation on s-process Nucleosynthesis in Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Cristallo, S.; Straniero, O.

    2013-09-01

    In this paper, we analyze the effects induced by rotation on low-mass asymptotic giant branch stars. We compute two sets of models, M = 2.0 M ⊙ at [Fe/H] = 0 and M = 1.5 M ⊙ at [Fe/H] = -1.7, by adopting main-sequence rotation velocities in the range 0-120 km s-1. At high metallicity, we find that the Goldreich-Schubert-Fricke instability, active at the interface between the convective envelope and the rapid rotating core, contaminates the 13C-pocket (the major neutron source) with 14N (the major neutron poison), thus reducing the neutron flux available for the synthesis of heavy elements. As a consequence, the yields of heavy-s elements (Ba, La, Nd, Sm) and, to a lesser extent, those of light-s elements (Sr, Y, Zr) decrease with increasing rotation velocities up to 60 km s-1. However, for larger initial rotation velocities, the production of light-s and, to a lesser extent, that of heavy-s, begins again to increase, due to mixing induced by meridional circulations. At low metallicity, the effects of meridional circulations are important even at rather low rotation velocity. The combined effect of the Goldreich-Schubert-Fricke instability and meridional circulations determines an increase of light-s and, to a lesser extent, heavy-s elements, while lead is strongly reduced. For both metallicities, the rotation-induced instabilities active during the interpulse phase reduce the neutron-to-seed ratio, so that the spectroscopic indexes [hs/ls] and [Pb/hs] decrease by increasing the initial rotation velocity. Our analysis suggests that rotation could explain the spread in the s-process indexes, as observed in s-process enriched stars at different metallicities.

  11. Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.

    2014-05-01

    An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass MMs ˜ 7 - 9.5M⊙. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 1050 erg and the small 56Ni mass of 2.5 × 10-3 M⊙, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ˜ 2 × 1044 erg s-1 and can evaporate circumstellar dust up to R ˜ 1017 cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ˜ 1042 erg s-1 and t ˜ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ˜ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ˜ 1048 erg.

  12. Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054

    SciTech Connect

    Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.

    2014-05-02

    An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M{sub Ms} ∼ 7 - 9.5M{sub ⊙}. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 10{sup 50} erg and the small {sup 56}Ni mass of 2.5 × 10{sup −3} M{sub ⊙}, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ∼ 2 × 10{sup 44} erg s{sup −1} and can evaporate circumstellar dust up to R ∼ 10{sup 17} cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ∼ 10{sup 42} erg s{sup −1} and {sup t} ∼ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ∼ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ∼ 10{sup 48} erg.

  13. Testing the asymptotic relation for period spacings from mixed modes of red giants observed with the Kepler mission

    NASA Astrophysics Data System (ADS)

    Buysschaert, B.; Beck, P. G.; Corsaro, E.; Christensen-Dalsgaard, J.; Aerts, C.; Arentoft, T.; Kjeldsen, H.; García, R. A.; Silva Aguirre, V.; Degroote, P.

    2016-04-01

    Context. Dipole mixed pulsation modes of consecutive radial order have been detected for thousands of low-mass red-giant stars with the NASA space telescope Kepler. These modes have the potential to reveal information on the physics of the deep stellar interior. Aims: Different methods have been proposed to derive an observed value for the gravity-mode period spacing, the most prominent one relying on a relation derived from asymptotic pulsation theory applied to the gravity-mode character of the mixed modes. Our aim is to compare results based on this asymptotic relation with those derived from an empirical approach for three pulsating red-giant stars. Methods: We developed a data-driven method to perform frequency extraction and mode identification. Next, we used the identified dipole mixed modes to determine the gravity-mode period spacing by means of an empirical method and by means of the asymptotic relation. In our methodology we consider the phase offset, ɛg, of the asymptotic relation as a free parameter. Results: Using the frequencies of the identified dipole mixed modes for each star in the sample, we derived a value for the gravity-mode period spacing using the two different methods. These values differ by less than 5%. The average precision we achieved for the period spacing derived from the asymptotic relation is better than 1%, while that of our data-driven approach is 3%. Conclusions: Good agreement is found between values for the period spacing derived from the asymptotic relation and from the empirical method. The achieved uncertainties are small, but do not support the ultra-high precision claimed in the literature. The precision from our data-driven method is mostly affected by the differing number of observed dipole mixed modes. For the asymptotic relation, the phase offset, ɛg, remains ill defined, but enables a more robust analysis of both the asymptotic period spacing and the dimensionless coupling factor. However, its estimation might

  14. Asymptotic Giant Branch Variables in the Isolated Local Group Dwarf Irregular IC1613

    NASA Astrophysics Data System (ADS)

    Whitelock, Patricia Ann; Menzies, John; Feast, Michael W.

    2015-08-01

    Observations of large amplitude variables in IC 1613 reveal the presence of both oxygen- and carbon-rich AGB stars. These must have had progenitors with a large range of initial masses and a comparison with theoretical isochrones indicates that most of them fall in the range between 2 x 108 and 2 x 109 yrs, although older stars are certainly present. These results could be pivotal in resolving the very considerable uncertainty about the contribution of AGB stars, in the age range mentioned, to the integrated infrared light of distant galaxies.Spectroscopy from the Southern African Large Telescope (SALT) shows strong lithium absorption in one of the O-rich variables, from which we can infer that it must be undergoing hot bottom burning (HBB). This is consistent with the age implied by the isochrones and predictions from the period-luminosity relation. It is also notable that these HBB variables are not necessarily recognized as AGB stars at all from the simple near-infrared surveys that are often used to divide populations into O- and C-rich stars.

  15. SUPER-AGB-AGB EVOLUTION AND THE CHEMICAL INVENTORY IN NGC 2419

    SciTech Connect

    Ventura, Paolo; D'Antona, Francesca; Carini, Roberta; Di Criscienzo, Marcella; D'Ercole, Annibale; Vesperini, Enrico

    2012-12-20

    We follow the scenario of formation of second-generation stars in globular clusters by matter processed by hot bottom burning (HBB) in massive asymptotic giant branch (AGB) stars and super-AGB stars (SAGB). In the cluster NGC 2419 we assume the presence of an extreme population directly formed from the AGB and SAGB ejecta, so we can directly compare the yields for a metallicity Z = 0.0003 with the chemical inventory of the cluster NGC 2419. At such a low metallicity, the HBB temperatures (well above 10{sup 8} K) allow a very advanced nucleosynthesis. Masses {approx}6 M{sub Sun} deplete Mg and synthesize Si, going beyond Al, so this latter element is only moderately enhanced; sodium cannot be enhanced. The models are consistent with the observations, although the predicted Mg depletion is not as strong as in the observed stars. We predict that the oxygen abundance must be depleted by a huge factor (>50) in the Mg-poor stars. The HBB temperatures are close to the region where other p-capture reactions on heavier nuclei become possible. We show that high potassium abundance found in Mg-poor stars can be achieved during HBB by p-captures on the argon nuclei, if the relevant cross section(s) are larger than listed in the literature or if the HBB temperature is higher. Finally, we speculate that some calcium production is occurring owing to proton capture on potassium. We emphasize the importance of a strong effort to measure a larger sample of abundances in this cluster.

  16. Ground-based infrared observations of variable IRAS sources as candidates for late asymptotic giant branch stars

    NASA Technical Reports Server (NTRS)

    Kwok, Sun; Boreiko, R. T.; Hrivnak, Bruce J.

    1987-01-01

    Analysis of the color distribution of OH/IR stars and IRAS low-resolution spectra class 30 objects suggests the presence of a well-defined evolutionary sequence which is populated by late asymptotic giant branch (LAGB) stars. The paper reports ground-based identification and infrared photometry of 10 candidates of news LAGB stars. None of the selected sources are found to have optical counterparts, and eight of the 10 show a strong 10-micron silicate absorption feature. It is suggested that these stars represent an invisible extension of extreme Mira variables and are some of the most evolved stars observed to date.

  17. Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite

    SciTech Connect

    Amari, Sachiko; Zinner, Ernst; Gallino, Roberto

    2014-05-02

    Pesolar graphite grains exhibit a range of densities (1.65 – 2.20 g/cm{sup 3}). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractions KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with {sup 86}Kr/{sup 82}Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of

  18. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    SciTech Connect

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  19. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  20. The nature of dust around the post-asymptotic giant branch objects HD 161796 and HD 179821

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Barlow, M. J.; Skinner, C. J.; Tielens, A. G. G. M.

    1992-01-01

    Ground-based 7.4-24-micron spectra of two post-AGB objects, HD 161796 and HD 179821, are reported, and they are compared to those of other preplanetary nebulae. HD 161796 and HD 17982 show emission features at 10-12 microns and at 10 microns, and they exhibit a very rapid increase in flux between 13 and 15.5 microns. In view of the O-rich photosphere of HD 161796 and the presence of OH maser emission around all three objects, these features are ascribed to various oxides. The observed spectral features are quite different from the canonical silicate features observed in most O-rich giants. It is argued that HD 161796 and the bipolar nebulae Roberts 22 and NGC 6302 have all undergone the third dredge-up, with most of the dredged-up carbon having been converted to nitrogen by envelope-burning. It is concluded that carbon-rich grain material, produced during the interval between the end of the third dredge-up and the moment when envelope burning finally reduced the C/O ratio below unity again, could be responsible for the UIR bands now being excited in Roberts 22 and NGC 6302.

  1. The optically bright post-AGB population of the LMC

    NASA Astrophysics Data System (ADS)

    van Aarle, E.; van Winckel, H.; Lloyd Evans, T.; Ueta, T.; Wood, P. R.; Ginsburg, A. G.

    2011-06-01

    Context. The detected variety in chemistry and circumstellar shell morphology of the limited sample of Galactic post-asymptotic giant branch (AGB) stars is so large that there is no consensus yet on how the different objects are linked by evolutionary channels. The evaluation is complicated by the fact that their distances and hence luminosities remain largely unknown. Aims: We construct a catalogue of the optically bright post-AGB stars in the Large Magellanic Cloud (LMC). The sample forms an ideal testbed for stellar evolution theory predictions of the final phase of low- and intermediate-mass stars, because the distance and hence luminosity and also the current and initial mass of these objects is well constrained. Methods: Via cross-correlation of the Spitzer SAGE catalogue with optical catalogues we selected a sample of LMC post-AGB candidates based on their [8] - [24] colour index and estimated luminosity. We determined the fundamental properties of the central stars of 105 of these objects using low-resolution, optical spectra that we obtained at Siding Spring Observatory and SAAO. Results: We constructed a catalogue of 70 high probability and 1337 candidate post-AGB stars that is available at the CDS. About half of the objects in our sample of post-AGB candidates show a spectral energy distribution (SED) that is indicative of a disc rather than an expanding and cooling AGB remnant. Like in the Galaxy, the disc sources are likely associated with binary evolution. Important side products of this research are catalogues of candidate young stellar objects, candidate supergiants with circumstellar dust, and discarded objects for which a spectrum was obtained. These too are available at the CDS. Appendices A-D are available in electronic form at http://www.aanda.orgCatalogues are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A90

  2. A New Generation of PARSEC-COLIBRI Stellar Isochrones Including the TP-AGB Phase

    NASA Astrophysics Data System (ADS)

    Marigo, Paola; Girardi, Léo; Bressan, Alessandro; Rosenfield, Philip; Aringer, Bernhard; Chen, Yang; Dussin, Marco; Nanni, Ambra; Pastorelli, Giada; Rodrigues, Thaíse S.; Trabucchi, Michele; Bladh, Sara; Dalcanton, Julianne; Groenewegen, Martin A. T.; Montalbán, Josefina; Wood, Peter R.

    2017-01-01

    We introduce a new generation of PARSEC–COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Zi < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in the stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.

  3. S-process nucleosynthesis in AGB models with the FST prescription for convection

    NASA Astrophysics Data System (ADS)

    Yagüe, A.; García-Hernández, D. A.; Ventura, P.; Lugaro, M.

    The chemical evolution of asymptotic giant branch (AGB) stars depends greatly on the input physics (e.g., mass loss recipe, convective model). Variations in the hot bottom burning (HBB) strength, third dredge-up (TDU) efficiency and AGB evolutionary timescale are among the main consequences of adopting different input physics. The ATON evolutionary code stands apart from others in that it uses the Blöcker mass loss prescription and the Full Spectrum of Turbulence (FST) convective model. We have developed an s-process module for ATON by extending the element network from 30 to 320 elements, which uses the physical inputs (such as temperature or density) calculated by ATON. Here we present the first preliminary results of s-process nucleosynthesis for ATON AGB models with different progenitor masses. These preliminary results are compared with predictions from other AGB nucleosynthesis models that use different input physics. We also outline our future tasks to improve the current s-process ATON simulations.

  4. SiO rotation-vibration bands in cool giants II. The behaviour of SiO bands in AGB stars

    NASA Astrophysics Data System (ADS)

    Aringer, B.; Höfner, S.; Wiedemann, G.; Hron, J.; Jørgensen, U. G.; Käufl, H. U.; Windsteig, W.

    1999-02-01

    The first overtone rotation-vibration transitions of SiO give rise to prominent bandheads in the wavelength range between 4.0 and 4.5 mu m. In order to study the behaviour of these features in AGB stars we observed the 3.94 to 4.12 mu m spectra for a sample of 23 oxygen-rich late-type variables. In contrast to the SRb objects, the Miras show a very large scatter of the equivalent widths of the SiO bands. Despite their cool temperatures some of them have only weak or no SiO absorption, which seems to be related to their strong pulsations producing a large variability of the features. When comparing the band intensities with photometric data, we found a general decrease with bluer IRAS (12-25) colors. However, this trend may only reflect the different behaviour of the Miras and SRb stars in our sample. We did not discover any correlation of the equivalent widths with the effective temperatures derived from (J-K), or with the (K-12) color and the IRAS-LRS class, both of which can be regarded as a rough measure for the thickness of the circumstellar shell. In Paper I of this series (Aringer et al. \\cite{siop}) we have shown that synthetic spectra calculated from hydrostatic MARCS atmospheres are successful in reproducing the observed band intensities of giants with spectral types earlier than about M5 III and M2 II\\@. However, they generally predict too strong features for very cool and extended objects, as they are discussed in this work. And they fail completely when it comes to Miras with weak or no SiO absorption. These stars are dominated by dynamical phenomena and, not surprisingly, they can therefore not be described by hydrostatic structures. Thus, we have also computed synthetic spectra based on experimental dynamical models. Although they still have some shortcomings, we demonstrate that, in principle, they are able to explain the whole range of equivalent widths of the observed SiO bandheads and their variations. Based on observations made at the European

  5. Spectroscopic analysis of four post-AGB candidates

    NASA Astrophysics Data System (ADS)

    Molina, R. E.; Giridhar, S.; Pereira, C. B.; Arellano Ferro, A.; Muneer, S.

    2014-10-01

    We have done a detailed abundance analysis of four unexplored candidate post- Asymptotic Giant Branch(AGB) stars IRAS 13110 - 6629, IRAS 17579 - 3121, IRAS 18321 - 1401 and IRAS 18489 - 0629 using high resolution spectra. We have constructed Spectral Energy Distributions (SED) for these objects using the existing photometric data combined with infrared (IR) fluxes. For all sample stars, the SEDs exhibit double peaked energy distribution with well separated IR peaks showing the presence of dusty circumstellar material. The CNO abundances indicate the production of N via CN cycling, but observed [C/Fe] indicates the mixing of carbon produced by He burning by third dredge up although C/O ratio remains less that 1. A moderate DG-effect is clearly seen for IRAS 18489 - 0629 and IRAS 17579 - 3121 while a large scatter observed in depletion plots for IRAS 18321 - 1401 and IRAS 13110 - 6629 indicate the presence of other processes affecting the observed abundance pattern.

  6. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cunha, Katia

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  7. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. Hubble Space Telescope/NICMOS Observations of I Zw 18: A Population of Old Asymptotic Giant Branch Stars Revealed.

    PubMed

    Östlin

    2000-06-01

    I present the first results from a Hubble Space Telescope/NICMOS imaging study of the most metal-poor blue compact dwarf galaxy, I Zw 18. The near-infrared color-magnitude diagram (CMD) is dominated by two populations, one 10-20 Myr population of red supergiants and one 0.1-5 Gyr population of asymptotic giant branch stars. Stars older than 1 Gyr are required to explain the observed CMD at the adopted distance of 12.6 Mpc, showing that I Zw 18 is not a young galaxy. The results hold also if the distance to I Zw 18 is significantly larger. This rules out the possibility that I Zw 18 is a truly young galaxy formed recently in the local universe.

  9. Condensation of refractory metals in asymptotic giant branch and other stellar environments

    SciTech Connect

    Schwander, D.; Berg, T.; Schönhense, G.; Ott, U.

    2014-09-20

    The condensation of material from a gas of solar composition has been extensively studied, but less so condensation in the environment of evolved stars, which has been mainly restricted to major compounds and some specific element groups such as the Rare Earth elements. Also of interest, however, are refractory metals like Mo, Ru, Os, W, Ir, and Pt, which may condense to form refractory metal nuggets (RMNs) like the ones that have been found in association with presolar graphite. We have performed calculations describing the condensation of these elements in the outflows of s-process enriched AGB stars as well as from gas enriched in r-process products. While in carbon-rich environments (C > O), the formation of carbides is expected to consume W, Mo, and V (Lodders and Fegley), the condensation sequence for the other refractory metals under these conditions does not significantly differ from the case of a cooling gas of solar composition. The composition in detail, however, is significantly different due to the completely different source composition. Condensation from an r-process enriched source differs less from the solar case. Elemental abundance ratios of the refractory metals can serve as a guide for finding candidate presolar grains among the RMNs in primitive meteorites—most of which have a solar system origin—for confirmation by isotopic analysis. We apply our calculations to the case of the four RMNs found by Croat et al., which may very well be presolar.

  10. (Re)Solving Mysteries Of Convection And Mass Loss Of AGB Stars: What New Models And Observations Tell Us About Long-Standing Problems

    NASA Astrophysics Data System (ADS)

    Höfner, Susanne

    2016-09-01

    The recent progress in high-spatial-resolution techniques, spanning wavelengths from the visual to the radio regime, is leading to new valuable insights into the complex dynamical atmospheres of Asymptotic Giant Branch (AGB) stars and their wind forming regions. Striking examples are images of asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months. These features are probably related to large-scale convective flows predicted by 3D 'star-in-a-box' models. Furthermore, high-resolution observations make it possible to measure dust condensation distances, and they give information about the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models.

  11. The lead discrepancy in intrinsically s-process enriched post-AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Karakas, A. I.; Siess, L.; Goriely, S.; Wood, P.

    2014-03-01

    Context. Our understanding of the s-process nucleosynthesis in asymptotic giant branch (AGB) stars is incomplete. AGB models predict, for example, large overabundances of lead (Pb) compared to other s-process elements in metal-poor low-mass AGB stars. This is indeed observed in some extrinsically enhanced metal-poor stars, but not in all. An extensive study of intrinsically s-process enriched objects is essential for improving our knowledge of the AGB third dredge-up and associated s-process nucleosynthesis. Aims: We compare the spectral abundance analysis of the SMC post-AGB star J004441.04-732136.4 with state-of-the-art AGB model predictions with a main focus on Pb. The low signal-to-noise (S/N) in the Pb line region made the result of our previous study inconclusive. We acquired additional data covering the region of the strongest Pb line. Methods: By carefully complementing re-reduced previous data, with newly acquired UVES optical spectra, we improve the S/N of the spectrum around the strongest Pb line. Therefore, an upper limit for the Pb abundance is estimated from a merged weighted mean spectrum using synthetic spectral modeling. We then compare the abundance results from the combined spectra to predictions of tailored AGB evolutionary models from two independent evolution codes. In addition, we determine upper limits for Pb abundances for three previously studied LMC post-AGB objects. Results: Although theoretical predictions for J004441.04-732136.4 match the s-process distribution up to tungsten (W), the predicted very high Pb abundance is clearly not detected. The three additional LMC post-AGB stars show a similar lack of a very high Pb abundance. Conclusions: From our study, we conclude that none of these low-mass, low-metallicity post-AGB stars of the LMC and SMC are strong Pb producers. This conflicts with current theoretical predictions. Based on observations collected with the Very Large Telescope at the ESO Paranal Observatory (Chili) of programme

  12. Probing the collimation of pristine post-AGB jets with STIS

    NASA Astrophysics Data System (ADS)

    Sanchez Contreras, Carmen

    2009-07-01

    The shaping of planetary and protoplanetary nebulae {PNe and PPNe} is probably the most exciting yet least understood problem in the late evolution of 1-8 solar mass stars. An increasing number of astronomers believe that fast jet-like winds ejected in the PPN phase are responsible for carving out the diverse shapes in the dense envelopes of the Asymptotic Giant Branch {AGB} stars. To date, the properties of these post-AGB jets have not been characterized and, indeed, their launching/collimation mechanism is still subject to controversial debate. This is due to the lack of the direct observations probing the spatio-kinematic structure of post-AGB winds in the stellar vicinity { 10e16cm}, which is only possible with HST+STIS. Recently, STIS observations have allowed us for the first time the DIRECT study of the structure and kinematics of the elusive post-AGB winds in one PPN, He3-1475 {Sanchez Contreras & Sahai 2001}. Those winds have been discovered through H-alpha blue-shifted absorption features in the inner 0.3"-0.7" of the nebula. These STIS observations have revealed an ultra-fast collimated outflow relatively unaffected by the interaction with the AGB wind that is totally hidden in ground-based spectroscopic observations and HST images. The discovery of the pristine ultra-fast { 2300km/s} jet in He3-1475 is the first observational confirmation of the presence of collimated outflows as close as 10e16cm from the central star. Most importantly, the spatio-kinematic structure of the ultra-fast jet clearly rules out hydrodynamical collimation alone and favors magnetic wind collimation. Therefore, STIS observations provide a unique method of probing the structure, kinematics, and collimation mechanism of the elusive post-AGB winds. We now propose similar observations for a sample of bipolar PPNe with ongoing post-AGB ejections in order to investigate the frequency of jets like those in He3-1475 in other PPNe and elucidate their nature and collimation mechanism

  13. On the introduction of {sup 17}O+p reaction rates evaluated through the THM in AGB nucleosynthesis calculations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2014-05-09

    The rates for the {sup 17}O(p,αα{sup 14}N, {sup 17}O(p,α){sup 18}F and {sup 18}O(p,α){sup 15}N reactions deduced trough the Trojan Horse Method (THM) have been introduced into a state-of-the-art asymptotic giant branch (AGB) models for proton-capture nucleosynthesis and cool bottom process. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis.

  14. Discriminating among stellar population synthesis models of the TP-AGB phase in early quiescent galaxies

    NASA Astrophysics Data System (ADS)

    MacDougall, Mason; Newman, Andrew; Belli, Sirio; Ellis, Richard S.

    2017-01-01

    Galactic evolution at high redshifts is largely understood through stellar population synthesis (SPS) modeling of spectra and photometry integrated over all starlight of a galaxy. However, complex and poorly understood stellar phases like the unstable thermally-pulsating asymptotic giant branch (TP-AGB) phase make SPS modeling a difficult task. Recent models fail to agree on the TP-AGB contribution to the infrared luminosity, leading to significant discrepancy among the properties derived from modern SPS models when applied to early galaxies. Here we provide a thorough assessment of each of the most widely used SPS models by comparing their results and assessing their accuracy in modeling our unique dataset. We combine high-resolution spectroscopic observations from Keck/MOSFIRE with photometric data for 21 early quiescent galaxies with redshifts of z ~ 2. These galaxies are around the age of peak TP-AGB activity, between ~0.3 and 2 Gyr, and therefore provide an ideal test of the models. We find that models with a “light” TP-AGB contribution provide much better descriptions of our galaxies at ages of ~1 Gyr or less. This is true at high statistical significance and holds for models with or without dust reddening. However, contrary to previous studies, the model-dependent photometrically estimated ages are similar among the models, but they show only moderate agreement with the more model-independent spectroscopic ages derived from stellar absorption lines. The largest discrepancies are found for the Charlot & Bruzual (2007) models which show an artificial clustering of ages around 1 Gyr. The TP-AGB “light” models require more reddening, which can be independently tested by examining dust emission in the mid-infrared. The modeled fluxes are also mostly consistent with mid-infrared observations, with the exception of one model. Resolving these differences among the models will substantially strengthen our estimates of the properties of early quiescent

  15. RELICS OF ANCIENT POST-AGB STARS IN A PRIMITIVE METEORITE

    SciTech Connect

    Jadhav, M.; Huss, G. R.; Pignatari, M.; Herwig, F.; Zinner, E.; Gallino, R.

    2013-11-10

    Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca, and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low {sup 12}C/{sup 13}C isotopic ratios in these grains are a result of abundant {sup 12}C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of ∼10{sup 15} cm{sup –3}, typical of the i-process, are achieved during this phase in post-AGB stars. The large {sup 42,43,44}Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from {sup 46,48}Ca, which cannot be resolved from the isobars {sup 46,48}Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a VLTP.

  16. A Spitzer/IRAC characterization of Galactic AGB and RSG stars

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Marengo, Massimo; Hora, Joseph L.; Fazio, Giovanni G.

    2015-03-01

    We present new Spitzer/InfraRed Array Camera (IRAC) observations of 55 dusty long-period variables (48 asymptotic giant branch, AGB, and 6 red supergiant stars) in the Galaxy that have different chemistry, variability type, and mass-loss rate. O-rich AGB stars (including intrinsic S-type) tend to have redder [3.6]-[8.0] colours than carbon stars for a given [3.6]-[4.5] colour due to silicate features increasing the flux in the 8.0-μm IRAC band. For colours including the 5.8 μm band, carbon stars separate into two distinct sequences, likely due to a variable photospheric C3 feature that is only visible in relatively unobscured, low mass-loss rate sources. Semiregular variables tend to have smaller infrared (IR) excess in [3.6]-[8.0] colour than Miras, consistent with the hypothesis that semiregular variables lose mass discontinuously. Miras have redder colours for longer periods while semiregular variables do not. Galactic AGB stars follow the period-luminosity sequences found for the Magellanic Clouds. Mira variables fall along the fundamental pulsation sequence, while semiregular variables are mostly on overtone sequences. We also derive a relationship between mass-loss rate and [3.6]-[8.0] colour. The fits are similar in shape to those found by other authors for AGBs in the Large Magellanic Cloud, but discrepant in overall normalization, likely due to different assumptions in the models used to derive mass-loss rates. We find that IR colours are not unique discriminators of chemical type, suggesting caution when using colour selection techniques to infer the chemical composition of AGB dust returned to the interstellar medium.

  17. ON THE POSSIBLE EXISTENCE OF SHORT-PERIOD g-MODE INSTABILITIES POWERED BY NUCLEAR-BURNING SHELLS IN POST-ASYMPTOTIC GIANT BRANCH H-DEFICIENT (PG1159-TYPE) STARS

    SciTech Connect

    Corsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: jgperez@iac.es

    2009-08-20

    We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T {sub eff}-log g diagram characterized by short-period g-modes excited by the {epsilon}-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical {kappa}-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical {kappa}-mechanism, while the observed short-period branch below {approx}300 s could correspond to modes triggered by the He-burning shell through the {epsilon}-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the {kappa}-mechanism and the {epsilon}-mechanism of mode driving are simultaneously operating.

  18. SMA Spectral Line Imaging Survey at 279 - 355 GHz of the Oxygen-rich AGB Star IK Tau

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Kamiński, T.; Menten, K. M.; Patel, N. A.; Young, K. H.; Gottlieb, C. A.

    2015-08-01

    Dedicated, unbiased spectral scans of asymptotic giant branch stars have so far been published only for a few carbon-rich stars, with a strong focus on the nearby and bright IRC +10216. We present results from a spectral survey of the circumstellar envelope of the oxygen-rich AGB star IK Tau obtained with the Submillimeter Array (SMA) at ~ 0'.9 angular resolution in the frequency range 279-355 GHz, expanding the molecular inventory for M-type evolved stars and filling an observational gap. The survey shows over 140 emission lines, belonging to more than 30 species. The emission of AlO and of several vibrationally excited species traces the acceleration of the wind. Isotopic ratios for carbon, silicon, and sulfur will be derived from the observed emission of isotopologues of CO, SiO, SiS, HCN, SO, and SO2. This will allow us to constrain the AGB nucleosynthesis of IK Tau. We highlight the first detection of PO and PN around an oxygen-rich AGB star, detected at unexpectedly high abundances, and emphasise the importance of unbiased spectral surveys of AGB stars and the need for updated chemical models.

  19. The mass-loss return from evolved stars to the Large Magellanic Cloud. III. Dust properties for carbon-rich asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Matsuura, M.; Meixner, M.; Kemper, F.; Tielens, A. G. G. M.; Volk, K.; Speck, A. K.; Woods, P. M.; Gordon, K.; Marengo, M.; Sloan, G. C.

    2010-12-01

    We present a radiative transfer model for the circumstellar dust shell around a Large Magellanic Cloud (LMC) long-period variable (LPV) previously studied as part of the Optical Gravitational Lensing Experiment (OGLE) survey of the LMC. OGLE LMC LPV 28579 (SAGE J051306.40-690946.3) is a carbon-rich asymptotic giant branch (AGB) star for which we have Spitzer broadband photometry and spectra from the SAGE and SAGE-Spec programs along with broadband UBVIJHKs photometry. By modeling this source, we obtain a baseline set of dust properties to be used in the construction of a grid of models for carbon stars. We reproduce the spectral energy distribution of the source using a mixture of amorphous carbon and silicon carbide with 15% SiC by mass. The grain sizes are distributed according to the KMH model, with γ = 3.5, amin = 0.01 μm and a0 = 1.0 μm. The best-fit model produces an optical depth of 0.28 for the dust shell at the peak of the SiC feature (11.3 μm), with an inner radius of about 1430 R_⊙ or 4.4 times the stellar radius. The temperature at this inner radius is 1310 K. Assuming an expansion velocity of 10 km s-1, we obtain a dust mass-loss rate of 2.5 × 10-9 M_⊙ yr-1. We calculate a 15% variation in this mass-loss rate by testing the sensitivity of the fit to variation in the input parameters. We also present a simple model for the molecular gas in the extended atmosphere that could give rise to the 13.7 μm feature seen in the spectrum. We find that a combination of CO and C2H2 gas at an excitation temperature of about 1000 K and column densities of 3 × 1021 cm-2 and 1019 cm-2 respectively are able to reproduce the observations. Given that the excitation temperature is close to the temperature of the dust at the inner radius, most of the molecular contribution probably arises from this region. The luminosity corresponding to the first epoch of SAGE observations is 6580 L_⊙. For an effective temperature of about 3000 K, this implies a stellar mass of

  20. On the missing second generation AGB stars in NGC 6752

    NASA Astrophysics Data System (ADS)

    Cassisi, Santi; Salaris, Maurizio; Pietrinferni, Adriano; Vink, Jorick S.; Monelli, Matteo

    2014-11-01

    In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, it is now thought that basically all globular clusters host multiple stellar populations, each with its own chemical abundance pattern and colour-magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the globular cluster NGC 6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first generation stars, and that all second generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second generation horizontal branch stars - all located at the hot side of the blue and extended horizontal branch of this cluster - possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the asymptotic giant branch phase, thus explaining at the same time the low value of the ratio between horizontal branch and asymptotic giant branch stars (the R2 parameter) observed in NGC 6752. We have critically discussed this mass-loss scenario, finding that the required mass-loss rates are of the order of 10-9 M⊙ yr-1, significantly higher than current theoretical and empirical constraints. By making use of synthetic horizontal branch simulations, we demonstrate that our modelling correctly predicts the R2 parameter for NGC 6752, without the need to invoke very efficient mass loss during the core He-burning stage. As a test of our stellar models we show that we can reproduce the observed value of R2 for both M 3, a cluster of approximately the same metallicity and with a redder horizontal branch morphology, and M 13, a cluster with a horizontal branch very similar to NGC 6752. However, our simulations for the NGC 6752 horizontal branch predict however the presence of a significant fraction of second generation stars (about 50%) along

  1. Improving the distances of post-AGB objects in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vickers, Shane B.; Frew, David J.; Owers, Matt S.; Parker, Quentin A.; Bojičič, Ivan S.

    2016-07-01

    Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. RV Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment.

  2. The 13C Neutron Source and s-Processing in AGB Stars

    NASA Astrophysics Data System (ADS)

    Trippella, Oscar; Busso, Maurizio; Palmerini, Sara; La Cognata, Marco

    The main component of the s-process accounts for about 50% of elements heavier than Kr, through n-captures occurring in asymptotic giant branch (AGB) stars, where the 13C(α, n)16O reaction is the main neutron source. Its activation below the convective envelope at third dredge-up (TDU) and its efficiency are still matters of debate, as: (i) the astrophysical factor is affected by a broad resonance near the reaction threshold and (ii) mixing mechanisms to locally produce 13C were so far mimicked mainly parametrically. We discuss both problems and, in particular, we adopt one of the recent model proposed for producing 13C and based on an exact multi-D analytical solution of MHD equations, where magnetic buoyancy induces partial mixing at the envelope border. The resulting distribution of 13C is used, together with our upgraded prescription for the reaction rate, to reproduce solar abundances through AGB models. It can account for the chemical evolution of s-elements and for the s/(C/O) ratios in low-metallicity post-AGB stars.

  3. Evidence of AGB Pollution in Galactic Globular Clusters from the Mg-Al Anticorrelations Observed by the APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Ventura, P.; García-Hernández, D. A.; Dell'Agli, F.; D'Antona, F.; Mészáros, Sz.; Lucatello, S.; Di Criscienzo, M.; Shetrone, M.; Tailo, M.; Tang, Baitian; Zamora, O.

    2016-11-01

    We study the formation of multiple populations in globular clusters (GCs), under the hypothesis that stars in the second generation formed from the winds of intermediate-mass stars, ejected during the asymptotic giant branch (AGB) phase, possibly diluted with pristine gas, sharing the same chemical composition of first-generation stars. To this aim, we use the recent Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, which provide the surface chemistry of a large sample of giant stars, belonging to clusters that span a wide metallicity range. The APOGEE data set is particularly suitable to discriminate among the various pollution scenarios proposed so far, as it provides the surface abundances of Mg and Al, the two elements involved in a nuclear channel extremely sensitive to the temperature, hence to the metallicity of the polluters. The present analysis shows a remarkable agreement between the observations and the theoretical yields from massive AGB stars. In particular, the observed extension of the depletion of Mg and O and the increase in Al is well reproduced by the models and the trend with the metallicity is also fully accounted for. This study further supports the idea that AGB stars were the key players in the pollution of the intra-cluster medium, from which additional generations of stars formed in GCs.

  4. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  5. The Frequency of Lithium-Rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia M. L.

    2016-01-01

    Although red giants destroy lithium, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  6. Stellar Evolution with Rotation: Mixing Processes in AGB Stars

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Blöcker, T.

    We included diffusive angular momentum transport and rotationally induced mixing processes in our stellar evolution code and studied the influence of rotation on the evolution of intermediate mass stars (M*=2dots6 Msolar) towards and along the asymptotic giant branch (AGB). The calculations start in the fully convective pre-main sequence phase and the initial angular momentu m was adjusted such that on the zero-age main sequence vrot=200 km/ s is achieved. The diffusion coefficients for the five rotational instabilities considered (dynamical shear, secular shear, Eddington-Sweet (ES) circulation, Solberg-Høiland-instability and Goldreich-Schubert-Fricke (GSF) instability) were adopted from Heger et al. (2000, ApJ 528, 368). Mixing efficiency and sensitivity of these processes against molecular weight gradients have been determined by calibration of the main sequence width. In this study we focus on the abundance evolution of carbon. On the one hand, the surface abundance ratios of 12C/13C a nd 12C/16O at the base of the AGB were found to be ≈ 7dots 10 and ≈ 0.1, resp., being a factor of two lower than in non-rotating models. This results from the slow but continuously operating rotationally induced mixing due to the ES-circulation and the GSF-instability during the long main sequence phase. On the other hand, 13C serves as neutron source for interior s-process nucleosynthesis in AGB stars vi a 13C(α,n)16O. Herwig et al. (1997, A&A 324, L81) found that a 13C pocket is forme d in the intershell region of 3 Msolar AGB star if diffusive overshoot is considered. Our calculations show, that mixing processes due to rotation open an alternative channel for the formation of a 13C pocket as found by Langer et al. (1999, A&A 346, L37). Again, ES-circulation and GSF-instability are the predominant rotational mixing processes.

  7. The Surprising mid-IR Appearance of the Asymptotic Giant Branch Stars R Aql, R Aqr, R Hya, V Hya and W Hya : Molecular and dust shell diameters and their pulsation dependence probed with the MIDI interferometer

    NASA Astrophysics Data System (ADS)

    Zhao-Geisler, Ronny

    2011-01-01

    Asymptotic Giant Branch (AGB) stars are the main distributors of dust into the interstellar medium due to their high mass loss rates in combination with an effective dust condensation. It is therefore important to understand the dust formation process and sequence in their extended atmosphere. The wind of these stars is driven by strong stellar pulsation in combination with radiation pressure on dust. High-resolution mid-IR interferometry is sensitive to the structure of the stellar atmosphere, consisting of the continuum photosphere and overlying molecular layers, as well as to the properties of the dust shell. This work studies the location of molecular layers and newly formed dust as a function of pulsation cycle and chemistry, as well as tries to identify molecules and dust species which cause the diameter of the star to vary across the N-band spectral domain (8-13 microns). Mid-IR interferometric data of the oxygen-rich AGB stars R Aql, R Aqr, R Hya and W Hya, and the carbon rich AGB star V Hya were obtained with MIDI/VLTI between April 2007 and September 2009, covering several pulsation cycles. The spectrally dispersed visibility data are modeled by fitting a fully limb-darkened disk in order to analyze the molecular layers, and by fitting a Gaussian in order to constrain the extension of the dust shell. Because uv-coverage was sufficient for R Hya and W Hya, asymmetries could be studied with an elliptical fully limb-darkened disk. The angular diameters of all oxygen-rich stars in the sample appear to be about two times larger in the mid-IR than their photospheric diameters estimated from the near-IR. The overall larger diameter in the mid-IR originates from a warm optically thick molecular layer of H2O, and a detected gradual increase longword of 10 microns can be attributed to the contribution of a spatially resolved, optically thin, close corundum (Al2O3) dust shell. A significant contribution of SiO shortward of 10 microns cannot be ruled out for R Aqr

  8. THREE-DIMENSIONAL HYDRODYNAMICAL SIMULATIONS OF A PROTON INGESTION EPISODE IN A LOW-METALLICITY ASYMPTOTIC GIANT BRANCH STAR

    SciTech Connect

    Stancliffe, Richard J.; Lattanzio, John C.; Heap, Stuart A.; Campbell, Simon W.; Dearborn, David S. P.

    2011-12-01

    We use the three-dimensional (3D) stellar structure code DJEHUTY to model the ingestion of protons into the intershell convection zone of a 1 M{sub Sun} asymptotic giant branch star of metallicity Z = 10{sup -4}. We have run two simulations: a low-resolution one of around 300,000 zones and a high-resolution one consisting of 2,000,000 zones. Both simulations have been evolved for about 4 hr of stellar time. We observe the existence of fast, downward flowing plumes that are able to transport hydrogen into close proximity to the helium-burning shell before burning takes place. The intershell in the 3D model is richer in protons than the 1D model by several orders of magnitude and so we obtain substantially higher hydrogen-burning luminosities-over 10{sup 8} L{sub Sun} in the high-resolution simulation-than are found in the 1D model. Convective velocities in these simulations are over ten times greater than the predictions of mixing length theory, though the 3D simulations have greater energy generation due to the enhanced hydrogen burning. We find no evidence of the convective zone splitting into two, though this could be as a result of insufficient spatial resolution or because the models have not been evolved for long enough. We suggest that the 1D mixing length theory and particularly the use of a diffusion algorithm for mixing do not give an accurate picture of these events. An advective mixing scheme may give a better representation of the transport processes seen in the 3D models.

  9. Carbon-rich dust past the asymptotic giant branch: Aliphatics, aromatics, and fullerenes in the Magellanic Clouds

    SciTech Connect

    Sloan, G. C.; Lagadec, E.; Zijlstra, A. A.; Kraemer, K. E.; Weis, A. P.; Matsuura, M.; Volk, K.; Peeters, E.; Cami, J.; Duley, W. W.; Bernard-Salas, J.; Kemper, F.

    2014-08-10

    Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.

  10. Supernova Explosions of Super-asymptotic Giant Branch Stars: Multicolor Light Curves of Electron-capture Supernovae

    NASA Astrophysics Data System (ADS)

    Tominaga, Nozomu; Blinnikov, Sergei I.; Nomoto, Ken'ichi

    2013-07-01

    An electron-capture supernova (ECSN) is a core-collapse supernova (CCSN) explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M MS ~ 7-9.5 M ⊙. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curve of a CCSN. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 1050 erg and the small 56Ni mass of 2.5 × 10-3 M ⊙, we perform a multi-group radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope masses and hydrogen abundances. We demonstrate that a shock breakout has a peak luminosity of L ~ 2 × 1044 erg s-1 and can evaporate circumstellar dust up to R ~ 1017 cm for the case of carbon dust, that the plateau luminosity and plateau duration of ECSNe are L ~ 1042 erg s-1 and t ~ 60-100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ~4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by the spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires an ECSN model with a significantly low explosion energy of E ~ 1048 erg.

  11. Presenting Optical Spectra of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Hamren, K.; Guhathakurta, P.; Toloba, E.; Dorman, C. E.; Seth, A. C.; Splash Collaboration; Phat Collaboration

    2015-08-01

    We present optical spectra of oxygen- and carbon-rich AGB stars in the disk of the Andromeda spiral galaxy (M31). Our AGB sample is drawn from the ˜10 000 stars covered by both the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey and the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This dual coverage means that we have moderate resolution optical spectra taken with the DEIMOS spectrograph on the Keck II 10-m telescope, as well as six-filter HST photometry spanning the ultraviolet, optical and infrared. Our full AGB sample contains 143 carbon-rich AGB stars (C stars) and ˜1700 oxygen-rich AGB stars (M giants). We explore the spatial and kinematic distribution of these stars, the C/M ratio, spectral trends as a function of physical properties, and the fit to synthetic photometry.

  12. Constraints of the Physics of Low-mass AGB Stars from CH and CEMP Stars

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Karinkuzhi, D.; Goswami, A.; Piersanti, L.; Gobrecht, D.

    2016-12-01

    We analyze a set of published elemental abundances from a sample of CH stars which are based on high resolution spectral analysis of ELODIE and SUBARU/HDS spectra. All the elemental abundances were derived from local thermodynamic equilibrium analysis using model atmospheres, and thus they represent the largest homogeneous abundance data available for CH stars to date. For this reason, we can use the set to constrain the physics and the nucleosynthesis occurring in low mass asymptotic giant branch (AGB) s.tars. CH stars have been polluted in the past from an already extinct AGB companion and thus show s-process enriched surfaces. We discuss the effects induced on the surface AGB s-process distributions by different prescriptions for convection and rotation. Our reference theoretical FRUITY set fits only part of the observations. Moreover, the s-process observational spread for a fixed metallicity cannot be reproduced. At [Fe/H] > -1, a good fit is found when rotation and a different treatment of the inner border of the convective envelope are simultaneously taken into account. In order to increase the statistics at low metallicities, we include in our analysis a selected number of CEMP stars and, therefore, we compute additional AGB models down to [Fe/H] = -2.85. Our theoretical models are unable to attain the large [hs/ls] ratios characterizing the surfaces of those objects. We speculate on the reasons for such a discrepancy, discussing the possibility that the observed distribution is a result of a proton mixing episode leading to a very high neutron density (the so-called i-process).

  13. Evolution models from the AGB to the PNe and the rapid evolution of SAO 244567

    NASA Astrophysics Data System (ADS)

    Lawlor, Timothy M.; Sebzda, Steven; Peterson, Zach

    2015-08-01

    We present evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PNe) phase for models of mass 1 M⊙ over a range of metallicities from primordial, Z = 10-14, through near solar, Z = 0.02. Using our grid of models, we determine a central star mass dependence on initial metallicity. We also present a range of low masses for our low to very low metal models. The understanding of these objects is an important part of galactic evolution and the evolution of the composition of the universe over a broad range of red shits. For our low Z models, we find key differences in how they cross the HR diagram to the PNe phase, compared with models with higher initial Z. Some of our models experience the so called AGB Final Thermal Pulse (AFTP), which is a helium pulse that occurs while leaving the AGB and causes a rapid looping evolution while evolving between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, SAO 244567. This object has been observed to be rapidly evolving (heating) over more than the last 50 years and is the central star of the youngest known planetary nebula. These two characteristics are similar to what is expected for AFTP models. It is a short lived phase that is related to, but different than, very late thermal pulse objects such as Sakurai’s Object, FG Sge, and V605 Aql. These objects experienced a similar thermal pulse, but later on the white dwarf cooling track.

  14. Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Cernicharo, J.; Engels, D.; Perea-Calderón, J. V.

    2016-07-01

    Spitzer/IRS spectra of eleven heavily obscured C-rich sources rapidly evolving from asymptotic giant branch (AGB) stars to Planetary Nebulae are presented. IRAM 30m observations for three of these post-AGBs are also reported. A few (3) of these sources are known to exhibit strongly variable maser emission of O-bearing molecules such as OH and H2 O, suggesting a transitory O-rich chemistry because of the quickly changing physical and chemical conditions in this short evolutionary phase. Interestingly, the Spitzer/IRS spectra show a rich circumstellar carbon chemistry, as revealed by the detection of small hydrocarbon molecules such as C2H2, C4H2, C6H2, C6H6, and HCN. Benzene is detected towards two sources, bringing up to three the total number of Galactic post-AGBs where this molecule has been detected. In addition, we report evidence for the possible detection of other hydrocarbon molecules like HC3N, CH3C2H, and CH3 in several of these sources. The available IRAM 30m data confirm that the central stars are C-rich - in despite of the presence of O-rich masers - and the presence of high velocity molecular outflows together with extreme AGB mass-loss rates (∼⃒10-4 Mʘ /yr). Our observations confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of small C-rich molecules and a transitory O-rich chemistry.

  15. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  16. On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Karakas, A. I.; Dell'Agli, F.; García-Hernández, D. A.; Boyer, M. L.; Di Criscienzo, M.

    2016-04-01

    The stars in the Magellanic Clouds with the largest degree of obscuration are used to probe the highly uncertain physics of stars in the asymptotic giant branch (AGB) phase of evolution. Carbon stars in particular provide key information on the amount of third dredge-up and mass-loss. We use two independent stellar evolution codes to test how a different treatment of the physics affects the evolution on the AGB. The output from the two codes is used to determine the rates of dust formation in the circumstellar envelope, where the method used to determine the dust is the same for each case. The stars with the largest degree of obscuration in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are identified as the progeny of objects of initial mass 2.5-3 M⊙ and ˜1.5 M⊙, respectively. This difference in mass is motivated by the difference in the star formation histories of the two galaxies, and offers a simple explanation of the redder infrared colours of C-stars in the LMC compared to their counterparts in the SMC. The comparison with the Spitzer colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass fraction X(C) ˜ 5 × 10-3 must have been reached by stars of initial mass around 1.5 M⊙. Our results confirm the necessity of adopting low-temperature opacities in stellar evolutionary models of AGB stars. These opacities allow the stars to obtain mass-loss rates high enough (≳10-4 M⊙ yr-1) to produce the amount of dust needed to reproduce the Spitzer colours.

  17. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  18. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  19. The AGB star nucleosynthesis in the light of the recent 17O ( p ,α)14N and 18O ( p ,α)15N reaction rate determinations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-02-01

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O ( p ,α)14N and 18O ( p ,α)15N reactions. Moreover, the strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of "presolar" grains to determine their impact on astrophysical environments.

  20. Dynamic atmospheres and winds of cool luminous giants. I. Al2O3 and silicate dust in the close vicinity of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Bladh, S.; Aringer, B.; Ahuja, R.

    2016-10-01

    Context. In recent years, high spatial resolution techniques have given valuable insights into the complex atmospheres of AGB stars and their wind-forming regions. They make it possible to trace the dynamics of molecular layers and shock waves, to estimate dust condensation distances, and to obtain information on the chemical composition and size of dust grains close to the star. These are essential constraints for understanding the mass loss mechanism, which presumably involves a combination of atmospheric levitation by pulsation-induced shock waves and radiation pressure on dust, forming in the cool upper layers of the atmospheres. Aims: Spectro-interferometric observations indicate that Al2O3 condenses at distances of about 2 stellar radii or less, prior to the formation of silicates. Al2O3 grains are therefore prime candidates for producing the scattered light observed in the close vicinity of several M-type AGB stars, and they may be seed particles for the condensation of silicates at lower temperatures. The purpose of this paper is to study the necessary conditions for the formation of Al2O3 and the potential effects on mass loss, using detailed atmosphere and wind models. Methods: We have constructed a new generation of Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN), including a time-dependent treatment of grain growth and evaporation for both Al2O3 and Fe-free silicates (Mg2SiO4). The equations describing these dust species are solved in the framework of a frequency-dependent radiation-hydrodynamical model for the atmosphere and wind structure, taking pulsation-induced shock waves and periodic luminosity variations into account. Results: Condensation of Al2O3 at the close distances and in the high concentrations implied by observations requires high transparency of the grains in the visual and near-IR region to avoid destruction by radiative heating. We derive an upper limit for the imaginary part of the refractive

  1. Astrophysical reaction rate for the neutron-generator reaction 13C(alpha,n)16O in asymptotic giant branch stars.

    PubMed

    Johnson, E D; Rogachev, G V; Mukhamedzhanov, A M; Baby, L T; Brown, S; Cluff, W T; Crisp, A M; Diffenderfer, E; Goldberg, V Z; Green, B W; Hinners, T; Hoffman, C R; Kemper, K W; Momotyuk, O; Peplowski, P; Pipidis, A; Reynolds, R; Roeder, B T

    2006-11-10

    The reaction 13C(alpha,n) is considered to be the main source of neutrons for the s process in asymptotic giant branch stars. At low energies, the cross section is dominated by the 1/2+ 6.356 MeV subthreshold resonance in (17)O whose contribution at stellar temperatures is uncertain by a factor of 10. In this work, we performed the most precise determination of the low-energy astrophysical S factor using the indirect asymptotic normalization (ANC) technique. The alpha-particle ANC for the subthreshold state has been measured using the sub-Coulomb alpha-transfer reaction ((6)Li,d). Using the determined ANC, we calculated S(0), which turns out to be an order of magnitude smaller than in the nuclear astrophysics compilation of reaction rates.

  2. Short-lived radioactivity in the early solar system: The Super-AGB star hypothesis

    NASA Astrophysics Data System (ADS)

    Lugaro, Maria; Doherty, Carolyn L.; Karakas, Amanda I.; Maddison, Sarah T.; Liffman, Kurt; García-Hernández, D. A.; Siess, Lionel; Lattanzio, John C.

    2012-12-01

    The composition of the most primitive solar system condensates, such as calcium-aluminum-rich inclusions (CAIs) and micron-sized corundum grains, show that short-lived radionuclides (SLR), e.g., 26Al, were present in the early solar system. Their abundances require a local or stellar origin, which, however, is far from being understood. We present for the first time the abundances of several SLR up to 60Fe predicted from stars with initial mass in the range approximately 7-11 M⊙. These stars evolve through core H, He, and C burning. After core C burning they go through a "Super"-asymptotic giant branch (Super-AGB) phase, with the H and He shells activated alternately, episodic thermal pulses in the He shell, a very hot temperature at the base of the convective envelope (approximately 108 K), and strong stellar winds driving the H-rich envelope into the surrounding interstellar medium. The final remnants of the evolution of Super-AGB stars are mostly O-Ne white dwarfs. Our Super-AGB models produce 26Al/27Al yield ratios approximately 0.02-0.26. These models can account for the canonical value of the 26Al/27Al ratio using dilutions with the solar nebula of the order of 1 part of Super-AGB mass per several 102 to several 103 of solar nebula mass, resulting in associated changes in the O-isotope composition in the range Δ17O from 3 to 20‰. This is in agreement with observations of the O isotopic ratios in primitive solar system condensates, which do not carry the signature of a stellar polluter. The radionuclides 41Ca and 60Fe are produced by neutron captures in Super-AGB stars and their meteoritic abundances are also matched by some of our models, depending on the nuclear and stellar physics uncertainties as well as the meteoritic experimental data. We also expect and are currently investigating Super-AGB production of SLR heavier than iron, such as 107Pd.

  3. Is CO radio line emission a reliable mass-loss-rate estimator for AGB stars?

    NASA Astrophysics Data System (ADS)

    Ramstedt, Sofia; Scḧier, Frederik; Olofsson, Hans

    The final evolutionary stage of low- to intermediate-mass stars, as they evolve along the asymptotic giant branch (AGB), is characterized by mass loss so intense (10-8-10-4 Msol yr-1) that eventually the AGB life time is determined by it. The material lost by the star is enriched in nucleo-synthesized material and thus AGB stars play an important role in the chemical evolution of galaxies. A reliable mass-loss-rate estimator is of utmost importance in order to increase our understanding of late stellar evolution and to reach conclusions about the amount of enriched material recycled by AGB stars. For low-mass-loss-rate AGB stars, modelling of observed rotational CO radio line emission has proven to be a good tool for estimating mass-loss rates [Olofsson et al. (2002) for M-type stars and Schöier & Olofsson (2001) for carbon stars], but several lines are needed to get good constraints. For high-mass-loss-rate objects the situation is more complicated, the main reason being saturation of the optically thick CO lines. Moreover, Kemper et al. (2003) introduced temporal changes in the mass-loss rate, or alternatively, spatially varying turbulent motions, in order to explain observed line-intensity ratios. This puts into question whether it is possible to model the circumstellar envelope using a constant mass-loss rate, or whether the physical structure of the outflow is more complex than normally assumed. We present observations of CO radio line emission for a sample of intermediate- to high-mass-loss-rate AGB stars. The lowest rotational transition line (J =1-0) was observed at OSO and the higher-frequency lines (J =2-1, 3-2, 4-3 and in some cases 6-5) were observed at the JCMT. Using a detailed, non-LTE, radiative transfer model we are able to reproduce observed line ratios (Figure 1) and constrain the mass-loss rates for the whole sample, using a constant mass-loss rate and a "standard" circumstellar envelope model. However, for some objects only a lower limit to

  4. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; McDonald, Iain; Zijlstra, Albert; Sloan, G. C.; Van Loon, Jacco Th.

    2015-02-10

    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  5. ALMA observations of the variable 12CO/13CO ratio around the asymptotic giant branch star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Maercker, M.; Lindqvist, M.; Mohamed, S.; Olofsson, H.; Ramstedt, S.; Brunner, M.; Groenewegen, M. A. T.; Kerschbaum, F.; Wittkowski, M.

    2013-08-01

    C/13C abundance ratios for specific asymptotic giant branch stars, in particular binaries or stars that display signs of chromospheric stellar activity. Appendices are available in electronic form at http://www.aanda.orgData cubes of maps (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/L1

  6. ALMA observations of the vibrationally excited rotational CO transition v = 1, J = 3 - 2 towards five AGB stars

    NASA Astrophysics Data System (ADS)

    Khouri, T.; Vlemmings, W. H. T.; Ramstedt, S.; Lombaert, R.; Maercker, M.; De Beck, E.

    2016-11-01

    We report the serendipitous detection with the Atacama Large Millimeter/submillimeter Array (ALMA) of the vibrationally excited pure-rotational CO transition v = 1, J = 3 - 2 towards five asymptotic giant branch (AGB) stars, o Cet, R Aqr, R Scl, W Aql, and π1 Gru. The observed lines are formed in the poorly understood region located between the stellar surface and the region where the wind starts, the so-called warm molecular layer. We successfully reproduce the observed lines profiles using a simple model. We constrain the extents, densities, and kinematics of the region where the lines are produced. R Aqr and R Scl show inverse P-Cygni line profiles which indicate infall of material on to the stars. The line profiles of o Cet and R Scl show variability. The serendipitous detection towards these five sources shows that vibrationally excited rotational lines can be observed towards a large number of nearby AGB stars using ALMA. This opens a new possibility for the study of the innermost regions of AGB circumstellar envelopes.

  7. Spitzer SAGE-Spec: Near Infrared Spectroscopy, Dust Shells, and Cool Envelopes in Extreme Large Magellanic Cloud Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  8. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    SciTech Connect

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  9. Detailed abundance study of four s-process enriched post-AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    van Aarle, E.; Van Winckel, H.; De Smedt, K.; Kamath, D.; Wood, P. R.

    2013-06-01

    Context. The photospheric abundances of evolved solar-type stars of different metallicities serve as probes into stellar evolution theory. Aims: Stellar photospheres of post-asymptotic giant branch (post-AGB) stars bear witness to the internal chemical enrichment processes, integrated over their entire stellar evolution. Here we study post-AGB stars in the Large Magellanic Cloud (LMC). With their known distances, these rare objects are ideal tracers of AGB nucleosynthesis and dredge-up phenomena. Methods: We used the UVES spectrograph mounted on the Very Large Telescope at the European Southern Observatory, to obtain high-resolution spectra with high signal-to-noise of a sample of four post-AGB stars. The objects display a spectral energy distribution that indicates the presence of circumstellar dust. We perform a detailed abundance analysis on the basis of these spectra. Results: All objects are C-rich, and strongly enhanced in s-process elements. We deduced abundances of heavy s-process elements for all stars in the sample, and even found an indication of the presence of Hg in the spectrum of one object. The metallicity of all stars except J053253.51-695915.1 is considerably lower than the average value that is observed for the LMC. The derived luminosities show that we witness the late evolution of low-mass stars with initial masses close to 1 M⊙. An exception is J053253.51-695915.1 and we argue that this object is likely a binary. Conclusions: We confirmed the correlation between the efficiency of the third-dredge up and the neutron exposure that is detected in Galactic post-AGB stars. The non-existence of a correlation between metallicity and neutron irradiation is also confirmed and expanded to smaller metallicities. We confirm the status of 21 μm stars as post-carbon stars. Current theoretical AGB models overestimate the observed C/O ratios and fail to reproduce the variety of s-process abundance patterns that is observed in otherwise very similar objects

  10. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up.

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Van Winckel, H.; Wood, P. R.; Asplund, M.; Karakas, A. I.; Lattanzio, J. C.

    2017-02-01

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type (T eff = 8250 ± 250 K) luminous (8200 ± 700 L ⊙) metal-poor ([Fe/H] = ‑1.18 ± 0.10) low-mass (M initial ≈ 1.5–2.0 M ⊙) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancement (upper limit of [C/Fe] < 0.50) nor enrichment of s-process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.

  11. The role of AGB stars feedback in sustaining galaxy evolution

    NASA Astrophysics Data System (ADS)

    Javadi, A.; van Loon, J. Th.; Khosroshahi, H.

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M 33. The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In first instance, only the central square kiloparsec were monitored and analysed, with the UIST camera. Photometry was obtained for 18,398 stars; of these 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. We constructed the birth mass function and hence derived the star formation history. These stars are also important dust factories. We measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. The mass loss rates are seen to increase with increasing strength of pulsation and with increasing bolometric luminosity. We construct a 2D map of the mass return rate, showing a radial decline but also local enhancements due to the concentration of red supergiants. We conclude that star formation in the central region of M 33 can only be sustained if gas is accreted from further out in the disc or from circum-galactic regions. By using data of the wide-field camera (WFCAM), the campaign was expanded to cover two orders of magnitude larger area, comprising the disc of M 33 and its spiral arms. Photometry was obtained for 403,734 stars; of these 4643 stars were found to be variable. We here present the star formation history across the disc of M 33.

  12. OXYGEN AND SODIUM ABUNDANCES IN M13 (NGC 6205) GIANTS: LINKING GLOBULAR CLUSTER FORMATION SCENARIOS, DEEP MIXING, AND POST-RGB EVOLUTION

    SciTech Connect

    Johnson, Christian I.; Pilachowski, Catherine A. E-mail: catyp@astro.indiana.edu

    2012-08-01

    We present O, Na, and Fe abundances, as well as radial velocities, for 113 red giant branch (RGB) and asymptotic giant branch (AGB) stars in the globular cluster M13. The abundances and velocities are based on spectra obtained with the WIYN-Hydra spectrograph, and the observations range in luminosity from the horizontal branch (HB) to RGB tip. The results are examined in the context of recent globular cluster formation scenarios. We find that M13 exhibits many key characteristics that suggest its formation and chemical enrichment are well described by current models. Some of these observations include the central concentration of O-poor stars, the notable decrease in [O/Fe] (but small increase in [Na/Fe]) with increasing luminosity that affects primarily the 'extreme' population, the small fraction of stars with halo-like composition, and the paucity of O-poor AGB stars. In agreement with recent work, we conclude that the most O-poor M13 giants are likely He-enriched and that most (all?) O-poor RGB stars evolve to become extreme HB and AGB-manque stars. In contrast, the 'primordial' and 'intermediate' population stars appear to experience standard HB and AGB evolution.

  13. Spectroscopic survey of post-AGB star candidates

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Miranda, L. F.

    2007-01-01

    Aims:Our goal is to establish the true nature of post-AGB star candidates and to identify new post-AGB stars. Methods: We used low resolution optical spectroscopy and we compared the spectra of the candidate post-AGB stars with those of stars in the library specta available in the literature and with spectra of "standard" post-AGB stars, and direct imaging in narrow-band filters. Results: Spectra were obtained for 16 objects: 14 objects have not been observed previously and 2 objects are already known post-AGB stars used as "standards" for identification. From the spectra we identify: six new post-AGB stars with spectral types between G5 and F5, two H ii regions the morphology of which is revealed in the direct images for the first time, a G giant with infrared emission, a young stellar object, a probable post-AGB star with emission lines and three objects for which the classification is still unclear. As a whole, our results provide new, reliable identifications for 10 objects among listed post-AGB star candidates. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and at the Observatorio de Sierra Nevada, which is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía (Granada, Spain). Appendices A-D are only available in electronic form at http://www.aanda.org

  14. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  15. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  16. ALMA observations of the nearby AGB star L2 Puppis. I. Mass of the central star and detection of a candidate planet

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Homan, W.; Richards, A. M. S.; Decin, L.; McDonald, I.; Montargès, M.; Ohnaka, K.

    2016-12-01

    Six billion years from now, while evolving on the asymptotic giant branch (AGB), the Sun will metamorphose from a red giant into a beautiful planetary nebula. This spectacular evolution will impact the solar system planets, but observational confirmations of the predictions of evolution models are still elusive as no planet orbiting an AGB star has yet been discovered. The nearby AGB red giant L2 Puppis (d = 64 pc) is surrounded by an almost edge-on circumstellar dust disk. We report new observations with ALMA at very high angular resolution (18 × 15 mas) in band 7 (ν ≈ 350 GHz) that allow us to resolve the velocity profile of the molecular disk. We establish that the gas velocity profile is Keplerian within the central cavity of the dust disk, allowing us to derive the mass of the central star L2 Pup A, mA = 0.659 ± 0.011 ± 0.041 M⊙ (± 6.6%). From evolutionary models, we determine that L2 Pup A had a near-solar main-sequence mass, and is therefore a close analog of the future Sun in 5 to 6 Gyr. The continuum map reveals a secondary source (B) at a radius of 2 AU contributing fB/fA = 1.3 ± 0.1% of the flux of the AGB star. L2 Pup B is also detected in CO emission lines at a radial velocity of vB = 12.2 ± 1.0 km s-1. The close coincidence of the center of rotation of the gaseous disk with the position of the continuum emission from the AGB star allows us to constrain the mass of the companion to mB = 12 ± 16 MJup. L2 Pup B is most likely a planet or low-mass brown dwarf with an orbital period of about five years. Its continuum brightness and molecular emission suggest that it may be surrounded by an extended molecular atmosphere or an accretion disk. L2 Pup therefore emerges as a promising vantage point on the distant future of our solar system.

  17. An Analytical Approach to the Evolution and Death of AGB Stars

    NASA Astrophysics Data System (ADS)

    Prager, Henry Alexander; Willson, Lee Anne M.; Marengo, Massimo; Creech-Eakman, Michelle J.

    2017-01-01

    Pop. I and II stars have a significant amount of metals throughout their structure, In the final stages of their evolution, intermediate mass stars (between 0.7 and 2 solar masses) ascend the Asymptotic Giant Branch (AGB). During their last few hundred thousand years on the AGB, these stars quickly lose their envelopes, recycling their metals as dust into the interstellar medium. The rate at which this happens consequently impacts the formation rate of stars, stellar systems, and the wider distribution of s-process isotopes.At the end of their life cycles, AGB stars experience a steep increase in mass loss rate. We can define the death line in two steps. First we define the critical mass loss rate to be where the mass loss rate equals the initial mass divided by the evolution time. Then the death line is where the rate of change of logMdot equals the rate of change of logL. Most of the stars we observe to be rapidly losing mass appear in the death zone between 0.1 and 10 times the critical mass loss rate.Assuming the mass loss rate increases exponentially with time, or, equivalently, the luminosity increases as a power of a characteristic exponent b, then the width of the death zone is the change in logL. This directly implies time is inversely proportional to b. This can be found for any mass-loss rate formula near the death line. By combining this with what we know about the initial-final mass relation and the core mass-luminosity relation, we can test for b with three observables — duration (width) of the death zone, the amplitude of mass loss variations (when L varies on an observable time scale such as a shell flash), and distributions of luminosity and pulsation period.By applying the initial mass function (IMF) and star formation rate (SFR) of an observed region, we can relate these observables to the characteristic exponent. We will need to look at nearby regions where we can see large numbers of AGB stars, such as the Magellanic clouds. We will show that

  18. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  19. Hydrodynamic simulations of the interaction between an AGB star and a main-sequence companion in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; De Marco, Orsola; Macdonald, Daniel; Galaviz, Pablo; Passy, Jean-Claude; Iaconi, Roberto; Low, Mordecai-Mark Mac

    2016-02-01

    The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ˜800 yr ago. We have performed hydrodynamic simulations of an asymptotic giant branch (AGB) star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are ≪100 yr. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and time-scale of the simulated disc formed around the companion before the common envelope phase, we analytically estimate the properties of jets that could be launched. Allowing for super-Eddington accretion rates, we find that jets similar to those observed are plausible, provided that the putative lost companion was relatively massive.

  20. Breaking news from the HST: the central star of the Stingray Nebula is now returning towards the AGB

    NASA Astrophysics Data System (ADS)

    Reindl, Nicole; Rauch, T.; Miller Bertolami, M. M.; Todt, H.; Werner, K.

    2017-01-01

    SAO 244567 is a rare example of a star that allows us to witness stellar evolution in real time. Between 1971 and 1990, it changed from a B-type star into the hot central star of the Stingray Nebula. This observed rapid heating has been a mystery for decades, since it is in strong contradiction with the low mass of the star and canonical post-asymptotic giant branch (AGB) evolution. We speculated that SAO 244567 might have suffered from a late thermal pulse (LTP) and obtained new observations with Hubble Space Telescope (HST)/COS to follow the evolution of the surface properties of SAO 244567 and to verify the LTP hypothesis. Our non-LTE spectral analysis reveals that the star cooled significantly since 2002 and that its envelope is now expanding. Therefore, we conclude that SAO 244567 is currently on its way back towards the AGB, which strongly supports the LTP hypothesis. A comparison with state-of-the-art LTP evolutionary calculations shows that these models cannot fully reproduce the evolution of all surface parameters simultaneously, pointing out possible shortcomings of stellar evolution models. Thereby, SAO 244567 keeps on challenging stellar evolution theory and we highly encourage further investigations.

  1. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  2. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE

    SciTech Connect

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-15

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M{sub ⊙}) at different metallicities (−2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M{sub ⊙} ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the {sup 22}Ne(α,n){sup 25}Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY)

  3. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  4. NEW DETERMINATION OF THE {sup 13}C({alpha}, n){sup 16}O REACTION RATE AND ITS INFLUENCE ON THE s-PROCESS NUCLEOSYNTHESIS IN AGB STARS

    SciTech Connect

    Guo, B.; Li, Z. H.; Li, Y. J.; Su, J.; Yan, S. Q.; Bai, X. X.; Chen, Y. S.; Fan, Q. W.; Jin, S. J.; Li, E. T.; Li, Z. C.; Lian, G.; Liu, J. C.; Liu, X.; Shu, N. C.; Lugaro, M.; Buntain, J.; Pang, D. Y.; Karakas, A. I.; Shi, J. R. E-mail: guobing@ciae.ac.cn; and others

    2012-09-10

    We present a new measurement of the {alpha}-spectroscopic factor (S{sub {alpha}}) and the asymptotic normalization coefficient for the 6.356 MeV 1/2{sup +} subthreshold state of {sup 17}O through the {sup 13}C({sup 11}B, {sup 7}Li){sup 17}O transfer reaction and we determine the {alpha}-width of this state. This is believed to have a strong effect on the rate of the {sup 13}C({alpha}, n){sup 16}O reaction, the main neutron source for slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the {sup 13}C({alpha}, n){sup 16}O reaction. At a temperature of 100 MK, our rate is roughly two times larger than that by Caughlan and Fowler and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected s-process elements and isotopic ratios. There are no changes in the final results using the different rates for the {sup 13}C({alpha}, n){sup 16}O reaction when the {sup 13}C burns completely in radiative conditions. When the {sup 13}C burns in convective conditions, as in stars of initial mass lower than {approx}2 M{sub Sun} and in post-AGB stars, some changes are to be expected, e.g., of up to 25% for Pb in our models. These variations will have to be carefully analyzed when more accurate stellar mixing models and more precise observational constraints are available.

  5. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  6. Effect of Metallicity on the Evolution of the Habitable Zone from the Pre-main Sequence to the Asymptotic Giant Branch and the Search for Life

    NASA Astrophysics Data System (ADS)

    Danchi, William C.; Lopez, Bruno

    2013-05-01

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M ⊙ for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M ⊙ star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and ~4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  7. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    SciTech Connect

    Danchi, William C.; Lopez, Bruno E-mail: bruno.lopez@oca.eu

    2013-05-20

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M{sub Sun} for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M{sub Sun} star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and {approx}4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  8. AGB Connection and Ultraviolet Luminosity Excess in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, Alberto; González-Lópezlira, Rosa A.

    2008-10-01

    Relying on infrared surface brightness fluctuactions to trace AGB properties in a sample of elliptical galaxies in the Virgo and Fornax Clusters, we assess the puzzling origin of the ``UV upturn'' phenomenon, recently traced to the presence of a hot horizontal branch (HB) stellar component. The UV upturn actually signals a profound change in the galaxy stellar populations, involving both the hot stellar component and red giant evolution. In particular, the strengthening of the UV rising branch is always seen to correspond to a shortening in AGB deployment; this trend can be readily interpreted as an age effect, perhaps mildly modulated by metal abundance. Brightest stars in ellipticals are all found to be genuine AGB members, all the way, and with the AGB tip exceeding the RGB tip by some 0.5-1.5 mag. The inferred core mass of these stars is found to be lesssim0.57 M⊙ among giant ellipticals. This value accounts for the recognized deficiency of planetary nebulae in these galaxies, as a result of a lengthy transition time for the post-AGB stellar core to become a hard UV emitter and eventually ``fire up'' the nebula. The combined study of galaxy (1550 - V)0 color and integrated Hβ index points to a a bimodal temperature distribution for the HB with both a red clump and an extremely blue component, in a relative proportion [N(RHB) : N(BHB)] ~ [80 : 20]. For the BHB stellar population, [Fe/H] values of either simeq-0.7 or gtrsim+0.5 dex may provide the optimum ranges to feed the needed low-mass stars (M*ll 0.58 M⊙) that at some stage begin to join the standard red clump stars.

  9. Chemical Abundances in Field Red Giants from High-resolution H-band Spectra Using the APOGEE Spectral Linelist

    NASA Astrophysics Data System (ADS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12C, 13C, 14N, and 16O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12C synthesized during 4He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ~0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  10. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    SciTech Connect

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcia Perez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  11. Polynomial Asymptotes

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2010-01-01

    This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…

  12. Presolar Graphite from AGB Stars: Microstructure and s-Process Enrichment

    NASA Astrophysics Data System (ADS)

    Croat, Thomas K.; Stadermann, Frank J.; Bernatowicz, Thomas J.

    2005-10-01

    Correlated transmission electron microscopy and secondary ion mass spectrometry with submicron spatial resolution (NanoSIMS) investigations of the same presolar graphites spherules from the Murchison meteorite were conducted, to link the isotopic anomalies with the mineralogy and chemical composition of the graphite and its internal grains. Refractory carbide grains (especially titanium carbide) are commonly found within the graphite spherules, and most have significant concentrations of Zr, Mo, and Ru in solid solution, elements primarily produced by s-process nucleosynthesis. The effect of chemical fractionation on the Mo/Ti ratio in these carbides is limited, and therefore from this ratio one can infer the degree of s-process enrichment in the gas from which the graphite condensed. The resulting s-process enrichments within carbides are large (~200 times solar on average), showing that most of the carbide-containing graphites formed in the mass outflows of asymptotic giant branch (AGB) stars. NanoSIMS measurements of these graphites also show isotopically light carbon (mostly in the 100<12C/13C<400 range). The enrichment of these presolar graphites in both s-process elements and 12C considerably exceeds that astronomically observed around carbon stars. However, a natural correlation exists between 12C and s-process elements, as both form in the He intershell region of thermally pulsing AGB stars and are dredged up together to the surface. Their observation together suggests that these graphites may have formed in chemically and isotopically inhomogeneous regions around AGB stars, such as high-density knots or jets. As shown in the companion paper, a gas density exceeding that expected for smooth mass outflows is required for graphite of the observed size to condense at all in circumstellar environments, and the spatially inhomogeneous, high-density regions from which they condense may also be incompletely mixed with the surrounding gas. We have greatly expanded

  13. Large-scale asymmetries in the winds of (binary) AGB stars

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Nowotny, W.; Aringer, B.; Paladini, C.; Mecina, M.; Pourbaix, D.; Groenewegen, M.; Mohamed, S.

    2014-04-01

    Observations of 78 Asymptotic Giant Branch (AGB) stars and Red Supergiants were carried out with the PACS photometer on-board Herschel as part of the MESS (Mass loss of Evolved StarS) program. For about 60% of these objects, the dusty wind differs from spherically symmetric and reveals a complex morphology. The majority of these asymmetries are caused by a rather simple incident, the interaction of the stellar wind with the interstellar medium. A bow shock is formed in direction of the stellar motion where the two media interact. However, also much more irregular shapes are encountered in the sample. These structures are often related to the binarity of the stellar system. Accreted material by the companion can cause nova outbursts or bipolar outflows which are relatively common. A rather rare encounter are Archimedean spirals that are imprinted in the wind which are now found for a handful of objects, among W Aquilae observed with Herschel and R Sculptoris with ALMA. The most complicated structures in the MESS sample indicate the interplay of multiple interacting influences. A prominent case is o Ceti (Mira). Its exceptionally high space motion produces a strong bow shock and its white dwarf companion drags an Archimedean spiral into the deformed stellar wind bubble and pierces it with a fast bipolar outflow.

  14. VLTI/MIDI Large Program: AGB Stars at Different Spatial Scales

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Klotz, D.; Wittkowski, M.; Hron, J.; Richichi, A.; Lagadec, E.; Verhoelst, T.; Rau, G.; Sacuto, S.; Jorissen, A.; Groenewegen, M. A. T.; Olofsson, H.; Kerschbaum, F.

    2015-08-01

    We have observed a sample of Asymptotic Giant Branch (AGB) stars from the Herschel Mass-loss of Evolved StarS (MESS) program with the VLTI MID-infrared Interferometric instrument (MIDI). The program aims at providing insight to the atmospheres of those stars, to be able to understand the role of the mass-loss process at different spatial scales. We obtained visibilities and spectra of fourteen objects with different chemistries and variability classes. These observations, together with data we retrieved from the archive, allow us to characterize not only the geometry of the dust-forming region, but in some cases also the time variability in the N band. As previously reported in the literature, we confirm the detection of spectroscopic but not interferometric variability. This result has implications on the size of the structures involved in the dust-formation process. We also report two cases of asymmetric structures; the nature of these structures will be clearly identified only with the second generation VLTI instrument MATISSE.

  15. Abundance Anomalies in NGC6752 - Do AGB Stars Have a Role?

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Fenner, Y.; Karakas, A. I.; Lattanzio, J. C.; Gibson, B. K.

    2005-07-01

    We are in the process of testing a popular theory that the observed abundance anomalies in the Globular Cluster NGC 6752 are due to `internal pollution' from intermediate mass asymptotic giant branch stars. To this end we are using a chemical evolution model incorporating custom-made stellar evolution yields calculated using a detailed stellar evolution code. By tracing the chemical evolution of the intracluster gas, which is polluted by two generations of stars, we are able to test the internal pollution scenario in which the Na- and Al-enhanced ejecta from intermediate mass stars is either accreted onto the surfaces of other stars, or goes toward forming new stars. In this paper we focus mainly on the nucleosynthetic yields of the AGB stars and discuss whether these stars are the source of the observed Na-O anticorrelation. Comparing our preliminary results with observational data suggests that the qualitative theory is not supported by this quantitative study.This study has recently been completed and published in [Fenner, Y., Campbell, S.W., Karakas, A.I., Lattanzio, J.C, Gibson, B.K., 2004, MNRAS, 353, 789]. Details of the stellar models will be in a forthcoming paper [Campbell, S. W., et al. 2004, in prep.].

  16. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.; Soszyński, I.; Petersen, E. A.

    2009-11-01

    Context: Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims: To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Methods: Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 μm Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. Results: We derive (dust) mass-loss rates and luminosities for the entire sample. Based on luminosities, periods and amplitudes and colours, the O-rich stars are classified as foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to “astronomical silicates”. Overall, the grain type by Volk & Kwok (1988, ApJ, 331, 435) fits the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. A computationally convenient method that seems to describe the observed properties in the 10 μm window are a distribution of hollow spheres with a large vacuum fraction (typically 70%), and grain size of about 1 μm. Relations between mass-loss rates and luminosity and pulsation

  17. DDT_yamamura_1: Herschel photometry of WISE J180956.27-330500.2; a newly discovered AGB star undergoing episodic mass ejection

    NASA Astrophysics Data System (ADS)

    Yamamura, I.

    2012-05-01

    We propose to carry out imaging photometry of WISE J180956.27-330500.2 (hereafter WISE J1810) using PACS (at 70, 110, 160 micron) and SPIRE (at 250, 350, 500 micron) in order to obtain the latest far-IR and sub-mm fluxes of the object and constrain the nature of its mass-loss history. WISE J1810 was discovered very recently by us (Gandhi et al. 2012) as an object with a peculiar 2MASS--WISE spectral energy distribution (SED). We propose that the object is an asymptotic giant branch (AGB) star presently experiencing an episodic mass-loss event following a thermal pulse. If this is the case, it is the first opportunity of real-time observation of AGB mass ejection at thermal pulse. The infrared SED of this object is rapidly evolving over the past 15 years and updated observations over a broad wavelength range are essential. Herschel is the only available facility with the capability of high-sensitivity, high-spatial resolution observations at far-infrared and sub-mm wavelengths, and can provide indispensable information of the rapidly expanding dust shell of this object. The unique nature of this source, its recent bright appearance and rapid evolution prompt us to request a DDT observation while Herschel is still operating. The requested observing time is 1414 sec, which is the minimum operation time for the observing modes that will be used.

  18. Dust formation and mass loss around intermediate-mass AGB stars with initial metallicity Zini ≤ 10-4 in the early Universe - I. Effect of surface opacity on stellar evolution and the dust-driven wind

    NASA Astrophysics Data System (ADS)

    Tashibu, Shohei; Yasuda, Yuki; Kozasa, Takashi

    2017-04-01

    Dust formation and the resulting mass loss around asymptotic giant branch (AGB) stars with initial metallicity in the range 0 ≤ Zini ≤ 10-4 and initial mass 2 ≤ Mini/M⊙ ≤ 5 are explored by hydrodynamical calculations of the dust-driven wind (DDW) along the AGB evolutionary tracks. We employ the MESA code to simulate the evolution of stars, assuming an empirical mass-loss rate in the post-main-sequence phase and considering three types of low-temperature opacity (scaled-solar, CO-enhanced and CNO-enhanced opacity) to elucidate the effect on stellar evolution and the DDW. We find that the treatment of low-temperature opacity strongly affects dust formation and the resulting DDW; in the carbon-rich AGB phase, the maximum dot{M} of Mini ≥ 3 M⊙ stars with the CO-enhanced opacity is at least one order of magnitude smaller than that with the CNO-enhanced opacity. A wide range of stellar parameters being covered, the necessary condition for driving efficient DDW with dot{M} ≥ 10^{-6} M⊙ yr-1 is expressed as effective temperature Teff ≲ 3850 K and log (δCL/κRM) ≳ 10.43log Teff - 32.33, with the carbon excess δC defined as εC - εO, the Rosseland mean opacity κR in units of cm2 g-1 in the surface layer and the stellar mass (luminosity) M(L) in solar units. The fitting formulae derived for gas and dust mass-loss rates in terms of input stellar parameters could be useful for investigating the dust yield from AGB stars in the early Universe being consistent with stellar evolution calculations.

  19. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna; Beers, Timothy C.; Karakas, Amanda I.; Kennedy, Catherine R.; Christlieb, Norbert; Stancliffe, Richard J.

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  20. A Comparative Study of Two 47 Tuc Giant Stars with Different s-process Enrichment

    NASA Astrophysics Data System (ADS)

    Cordero, M. J.; Hansen, C. J.; Johnson, C. I.; Pilachowski, C. A.

    2015-07-01

    Here we aim to understand the origin of 47 Tuc’s La-rich star Lee 4710. We report abundances for O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu and present a detailed abundance analysis of two 47 Tuc stars with similar stellar parameters but different slow neutron-capture (s-)process enrichment. Star Lee 4710 has the highest known La abundance ratio in this cluster ([La/Fe] = 1.14), and star Lee 4626 is known to have normal s-process abundances (e.g., [Ba/Eu] < 0). The nucleosynthetic pattern of elements with Z ≳ 56 for star Lee 4710 agrees with the predicted yields of a 1.3{M}⊙ asymptotic giant branch (AGB) star. Therefore, Lee 4710 may have been enriched by mass transfer from a more massive AGB companion, which is compatible with its location far away from the center of this relatively metal-rich ([Fe/H] ˜ -0.7) globular cluster. A further analysis comparing the abundance pattern of Lee 4710 with data available in the literature reveals that nine out of the ˜200 47 Tuc stars previously studied show strong s-process enhancements that point toward later enrichment by more massive AGB stars.

  1. Magnetic fields in single late-type giants in the Solar vicinity: How common is magnetic activity on the giant branches?

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, Renada; Aurière, Michel; Charbonnel, Corinne; Drake, Natalia; Wade, Gregg; Tsvetkova, Svetla; Petit, Pascal; Schröder, Klaus-Peter; Lèbre, Agnes

    2014-08-01

    We present our first results on a new sample containing all single G, K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M ⊙, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64% of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.

  2. History of the mass ejection in K4-37: from the AGB to the evolved planetary nebula phase

    NASA Astrophysics Data System (ADS)

    Miranda, L. F.; Guillén, P. F.; Olguín, L.; Vázquez, R.

    2017-04-01

    We present narrow-band, broad-band and Wide-field Infrared Survey Explorer (WISE) archive images, and high- and intermediate-resolution long-slit spectra of K4-37, a planetary nebula that has never been analysed in detail. Although K4-37 appears bipolar, the morphokinematical analysis discloses the existence of three distinct axes and additional particular directions in the object, indicating that K4-37 is a multi-axis planetary nebula that has probably been shaped by several bipolar outflows at different directions. A 4-6 M⊙ main-sequence progenitor is estimated from the derived high nebular He and N abundances, and very high N/O abundance ratio (∼2.32). The general properties are compatible with K4-37 being a highly evolved planetary nebula located at ∼14 kpc. The WISE image at 22 μm reveals K4-37 to be surrounded by a large (∼13 × 8 pc2) elliptical detached shell probably related to material ejected from the asymptotic giant branch (AGB) progenitor. The observed elliptical morphology suggests deformation of an originally spherical AGB shell by the interstellar medium magnetic field or by the influence of a companion. We compare K4-37 and NGC 6309 and found remarkable similarities in their physical structure but noticeably different chemical abundances that indicate very different progenitor mass. This strongly suggests that, irrespective of the initial mass, their (presumably binary) central stars have shared a very similar mass ejection history.

  3. SPITZER DETECTION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SILICATE FEATURES IN POST-AGB STARS AND YOUNG PLANETARY NEBULAE

    SciTech Connect

    Cerrigone, Luciano; Hora, Joseph L.; Umana, Grazia; Trigilio, Corrado

    2009-09-20

    We have observed a small sample of hot post-asymptotic giant branch (AGB) stars with the Infrared Array Camera (IRAC) and the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The stars were selected from the literature on the basis of their far-infrared (IR) excess (i.e., post-AGB candidates) and B spectral type (i.e., close to the ionization of the envelope). The combination of our IRAC observations with Two Micron All Sky Survey and IRAS catalog data, along with previous radio observations in the cm range (where available) allowed us to model the spectral energy distributions of our targets and find that in almost all of them at least two shells of dust at different temperatures must be present, the hot dust component ranging up to 10{sup 3} K. In several targets, grains larger than 1 {mu}m are needed to match the far-IR data points. In particular, in IRAS 17423-1755 grains up to 100 {mu}m must be introduced to match the emission in the millimeter range. We obtained IRS spectra to identify the chemistry of the envelopes and found that more than one-third of the sources in our sample have mixed chemistry, showing both mid-IR bands attributed to polycyclic aromatic hydrocarbons (PAHs) and silicate features. The analysis of the PAH features indicates that these molecules are located in the outflows, far away from the central stars. We consider the larger than expected percentage of mixed-chemistry targets as a selection bias toward stars with a disk or torus around them. Our results strengthen the current picture of mixed chemistry being due to the spatial segregation of different dust populations in the envelopes.

  4. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J. W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; Paxton, B.

    2016-08-01

    The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the {}13{{C}} pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M = 2 and M=3 {M}⊙ , and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of {}12{{C}} and {}16{{O}} are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the {}22{Ne}(α, n){}25{Mg} activation and the s-process efficiency in the {}13{{C}}-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the {}13{{C}}-pocket with a mass of ≈ {10}-4 {M}⊙ . The final s-process abundances are characterized by 0.36\\lt [{{s}}/{Fe}]\\lt 0.78 and the heavy-to-light s-process ratio is -0.23\\lt [{hs}/{ls}]\\lt 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work.

  5. Mass loss from red giants: its development, dust properties, and dependence on the stellar parameters mass, luminosity and metallicity

    NASA Astrophysics Data System (ADS)

    Wood, Peter; Blommaert, Joris; Cioni, Maria-Rosa; Feast, Michael; Groenewegen, Martin; Habing, Harm; Hony, Sacha; Loup, Cecile; Matsuura, Mikako; Omont, Alain; Waters, Rens; Whitelock, Patricia; Zijlstra, Albert; van Loon, Jacco

    2004-09-01

    We wish to obtain low resolution IRS spectra of highly evolved, low and intermediate mass stars in the Large and Small Magellanic Clouds. Our sample of stars consists of asymptotic giant branch (AGB) stars in both the general field of the Clouds and in clusters, and it complements the GTO samples of Houck and Kemper. The stars range from lower luminosity stars with small mass loss rates in the two clusters NGC419 and NGC1978 to dust-enshrouded stars in the "superwind" phase. The stars have been studied from the ground (mostly by members of this team) in order to determine spectral types, pulsation periods and amplitudes, and optical and near-infrared fluxes. Our aim is to use the IRS spectra to empirically determine the dependence of mass loss rate on stellar mass, luminosity, pulsation period and amplitude, and metallicity. We will also examine the dust properties as a function of mass loss rate, luminosity and photospheric chemical type. The AGB mass loss law resulting from this study will allow accurate AGB stellar evolution calculations to be made, meaning that reliable estimates can be made of the total mass loss from an AGB star, the stellar remnant mass, and the amounts of nucleosynthetic products ejected. Since the rate of mass return to, and enrichment of, the interstellar medium by low and intermediate mass stars depends critically on the mass loss rate and surface enrichment during the AGB phase, an accurate mass loss law will greatly enhance the reliability of galactic enrichment models. Our total request is for 31.4 hours.

  6. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    NASA Technical Reports Server (NTRS)

    Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.

  7. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  8. The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity

    NASA Astrophysics Data System (ADS)

    Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F.

    2017-02-01

    We present the results of our survey of 1612-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC). We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from infrared (IR) stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust-driven winds: vexp ∝ ZL0.4. We compare the subsolar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic bulge. We derive pulsation periods for eight of the bulge stars for the first time by using near-IR photometry from the Vista Variables in the Via Lactea survey. We have modelled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass-loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and bulge and derived a new mass-loss prescription which includes luminosity, pulsation period, and gas-to-dust ratio dot{M} = 1.06^{+3.5}_{-0.8} × }10^{-5 (L/10^4 L_{⊙})^{0.9± 0.1}(P/500 {d})^{0.75± 0.3} (r_gd/200)^{-0.03± 0.07} M⊙ yr-1. The tightest correlation is found between mass-loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass-loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that the mass-loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.

  9. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  10. Post-AGB stars in the SMC as tracers of stellar evolution: the extreme s-process enrichment of the 21 μm star J004441.04-732136.4

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Karakas, A. I.; Siess, L.; Goriely, S.; Wood, P. R.

    2012-05-01

    Context. This paper is part of a larger project in which we want to focus on the still poorly understood asymptotic giant branch (AGB) third dredge-up processes and associated s-process nucleosynthesis. Aims: We confront accurate spectral abundance analyses of post-AGB stars in both the Magellanic Clouds, to state-of-the-art AGB model predictions. With this comparison we aim at improving our understanding of the 3rd dredge-up phenomena and their dependencies on initial mass and metallicity. Methods: Because of the well constrained distance with respect to Galactic post-AGB stars, we choose an extra-galactic post-AGB star for this contribution, namely the only known 21 μm object of the Small Magellanic Cloud (SMC): J004441.04-732136.4. We used optical UVES spectra to perform an accurate spectral abundance analysis. With photometric data of multiple catalogues we construct a spectral energy distribution (SED) and perform a variability analysis. The results are then compared to predictions of tailored theoretical chemical AGB evolutionary models for which we used two evolution codes. Results: Spectral abundance results reveal J004441.04-732136.4 to be one of the most s-process enriched objects found up to date, while the photospheric C/O ratio of 1.9 ± 0.7, shows the star is only modestly C-rich. J004441.04-732136.4 also displays a low [Fe/H] = -1.34 ± 0.32, which is significantly lower than the mean metallicity of the SMC. From the SED, a luminosity of 7600 ± 200 L⊙ is found, together with E(B - V) = 0.64 ± 0.02. According to evolutionary post-AGB tracks, the initial mass should be ≈1.3 M⊙. The photometric variability shows a clear period of 97.6 ± 0.3 days. The detected C/O as well as the high s-process overabundances (e.g. [Y/Fe] = 2.15, [La/Fe] = 2.84) are hard to reconcile with the predictions. The chemical models also predict a high Pb abundance, which is not compatible with the detected spectrum, and a very high 12C/13C, which is not yet constrained

  11. The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Vlemmings, W. H. T.; Marigo, P.; Sloan, G. C.; Decin, L.; Feast, M. W.; Goldman, S. R.; Justtanont, K.; Kerschbaum, F.; Matsuura, M.; McDonald, I.; Olofsson, H.; Sahai, R.; van Loon, J. Th.; Wood, P. R.; Zijlstra, A. A.; Bernard-Salas, J.; Boyer, M. L.; Guzman-Ramirez, L.; Jones, O. C.; Lagadec, E.; Meixner, M.; Rawlings, M. G.; Srinivasan, S.

    2016-11-01

    Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC). Methods: The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models.

  12. Post-AGB Stars in Nearby Galaxies as Calibrators for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    2003-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as

  13. Large-scale environments of binary AGB stars probed by Herschel. II. Two companions interacting with the wind of π1 Gruis

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Paladini, C.; Kerschbaum, F.; Pourbaix, D.; Siopis, C.; Ottensamer, R.; Mečina, M.; Cox, N. L. J.; Groenewegen, M. A. T.; Klotz, D.; Sadowski, G.; Spang, A.; Cruzalèbes, P.; Waelkens, C.

    2014-10-01

    Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology is most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebulæ (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims: We probe the environment of the very evolved AGB star π1 Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods: Observations made with Herschel/PACS at 70 μm and 160 μm picture the large-scale environment of π1 Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results: The Herschel/PACS images of π1 Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of 38″ from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation

  14. Asymptotic eigenstructures

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain feedback decouples into single input single ouput systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  15. Asymptotic Eigenstructures

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  16. The effect of the recent 17O(p,α)14N and 18O(p,α)15N fusion cross section measurements in the nucleosynthesis of AGB stars

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-01-01

    The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O(p,α)14N and 18O(p,α)15N fusion reactions and to extract the strengths of the resonances that more contribute to the reaction rates at astrophysical energies. Moreover, the strength of the 65 keV resonance in the 17O(p,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. Since, proton-induced fusion reactions on 17O and 18O belong to the CNO cycle network for H-burning in stars, the new estimates of the cross sections have been introduced into calculations of Asymptotic giant branch (AGB) star nucleosynthesis to determine their impact on astrophysical environments. Results of nucleosynthesis calculations have been compared with geochemical analysis of "presolar" grains. These solids form in the cold and dusty envelopes that surround AGB stars and once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of fusion reactions in astrophysical environments.

  17. The AGB star nucleosynthesis in the light of the recent {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reaction rate determinations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2015-02-24

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reactions. Moreover, the strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of 'presolar' grains to determine their impact on astrophysical environments.

  18. AGB stars and presolar grains

    SciTech Connect

    Busso, M.; Trippella, O.; Maiorca, E.; Palmerini, S.

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  19. A Luminous Yellow Post-AGB Star in the Galactic Globular Cluster M79

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Ciardullo, Robin; Siegel, Michael H.

    2016-02-01

    We report the discovery of a luminous F-type post-asymptotic-giant-branch (PAGB) star in the Galactic globular cluster (GC) M79 (NGC 1904). At visual apparent and absolute magnitudes of V=12.20 and {M}V=-3.46, this “yellow” PAGB star is by a small margin the visually brightest star known in any GC. It was identified using CCD observations in the uBVI photometric system, which is optimized to detect stars with large Balmer discontinuities, indicative of very low surface gravities. Follow-up observations with the SMARTS 1.3 and 1.5 m telescopes show that the star is not variable in light or radial velocity, and that its velocity is consistent with cluster membership. Near- and mid-infrared observations with 2MASS and WISE show no evidence for circumstellar dust. We argue that a sharp upper limit to the luminosity function exists for yellow PAGB stars in old populations, making them excellent candidates for Population II standard candles, which are four magnitudes brighter than RR Lyrae variables. Their luminosities are consistent with the stars being in a PAGB evolutionary phase, with core masses of ˜ 0.53 {M}⊙ . We also detected four very hot stars lying above the horizontal branch (“AGB-manqué” stars); along with the PAGB star, they are the brightest objects in M79 in the near-ultraviolet. In the Appendix, we give periods and light curves for five variables in M79: three RR Lyrae stars, a Type II Cepheid, and a semiregular variable. Based in part on observations with the 1.3 and 1.5 m telescopes operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  20. Tsunami asymptotics

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2005-01-01

    By applying the technique of uniform asymptotic approximation to the oscillatory integrals representing tsunami wave profiles, the form of the travelling wave far from the source is calculated for arbitrary initial disturbances. The approximations reproduce the entire profiles very accurately, from the front to the tail, and their numerical computation is much faster than that of the oscillatory integrals. For one-dimensional propagation, the uniform asymptotics involve Airy functions and their derivatives; for two-dimensional propagation, the uniform asymptotics involve products of these functions. Separate analyses are required when the initial disturbance is specified as surface elevation or surface velocity as functions of position, and when these functions are even or odd. 'There was an awful rainbow once in heaven' (John Keats, 1820)

  1. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; De Beck, E.; Black, J. H.; Olofsson, H.; Justtanont, K.

    2016-04-01

    Aims: The sulphur compounds SO and SO2 have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO2 lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. Methods: We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO2 line emission. We use molecular data files for both SO and SO2 that are more extensive than those previously available. Results: Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of (6.7 ± 0.9) × 10-6 and an SO2 abundance of 5 × 10-6 with both species having high abundances close to the star. We also modelled 34SO and found an abundance of (3.1 ± 0.8) × 10-7, giving an 32SO/34SO ratio of 21.6 ± 8.5. We derive similar results for the circumstellar SO and SO2 abundances and their distributions for the low mass-loss rate object W Hya. For the higher mass-loss rate stars, we find shell-like SO distributions with peak abundances that decrease and peak abundance radii that increase with increasing mass-loss rate. The positions of the peak SO abundance agree very well with the photodissociation radii of H2O. We also modelled SO2 in two higher mass-loss rate stars but our models for these were less conclusive. Conclusions: We conclude that for the low mass-loss rate stars, the circumstellar SO and SO2 abundances are much higher than predicted by chemical models of the extended stellar atmosphere. These two species may also account for all the available sulphur. For the higher mass-loss rate stars we find evidence that SO is most efficiently formed in the circumstellar envelope, most likely through the photodissociation of H2O and the subsequent reaction between S and OH. The S

  2. Large-scale environments of binary AGB stars probed by Herschel. I. Morphology statistics and case studies of R Aquarii and W Aquilae

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Nowotny, W.; Cox, N. L. J.; Aringer, B.; Blommaert, J. A. D. L.; Decin, L.; van Eck, S.; Gail, H.-P.; Groenewegen, M. A. T.; Kornfeld, K.; Mecina, M.; Posch, Thomas; Vandenbussche, B.; Waelkens, C.

    2013-01-01

    The Mass loss of Evolved StarS (MESS) sample offers a selection of 78 asymptotic giant branch (AGB) stars and red supergiants (RSGs) observed with the PACS photometer on-board Herschel at 70 μm and 160 μm. For most of these objects, the dusty AGB wind is not spherically symmetric and the wind shape can be subdivided into four classes. In the present paper we concentrate on the influence of a companion on the morphology of the stellar wind. Literature was searched to find binaries in the MESS sample, which were subsequently linked to their wind-morphology class to assert that the binaries are not distributed equally among the classes. In the second part of the paper we concentrate on the circumstellar environment of the two prominent objects R Aqr and W Aql. Each shows a characteristic signature of a companion interaction with the stellar wind. For the symbiotic star R Aqr, PACS revealed two perfectly opposing arms that in part reflect the previously observed ring-shaped nebula in the optical. However, from the far-IR there is evidence that the emitting region is elliptical rather than circular. The outline of the wind of W Aql seems to follow a large Archimedean spiral formed by the orbit of the companion but also shows strong indications of an interaction with the interstellar medium. We investigated the nature of the companion of W Aql and found that the magnitude of the orbital period supports the size of the spiral outline. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. s-processing in AGB stars revisited. I. Does the main component constrain the neutron source in the {sup 13}C pocket?

    SciTech Connect

    Trippella, O.; Busso, M.; Maiorca, E.; Käppeler, F.; Palmerini, S. E-mail: maurizio.busso@fisica.unipg.it

    2014-05-20

    Slow neutron captures at A ≳ 85 are mainly guaranteed by the reaction {sup 13}C(α,n){sup 16}O in asymptotic giant branch (AGB) stars, requiring proton injections from the envelope. These were so far assumed to involve a small mass (≲ 10{sup –3} M {sub ☉}), but models with rotation suggest that in such tiny layers excessive {sup 14}N hampers s-processing. Furthermore, s-element abundances in galaxies require {sup 13}C-rich layers substantially extended in mass (≳ 4 × 10{sup –3} M {sub ☉}). We therefore present new calculations aimed at clarifying those issues and at understanding whether the solar composition helps to constrain the {sup 13}C 'pocket' extension. We show that: (1) mixing 'from bottom to top' (as in magnetic buoyancy or other forced mechanisms) can form a {sup 13}C reservoir substantially larger than assumed so far, covering most of the He-rich layers; (2) on the basis of this idea, stellar models at a fixed metallicity reproduce the main s-component as accurately as before; and (3) they make nuclear contributions from unknown nucleosynthesis processes (LEPP) unnecessary, against common assumptions. These models also avoid problems of mixing at the envelope border and fulfil requirements from C-star luminosities. They yield a large production of nuclei below A = 100, so that {sup 86,} {sup 87}Sr may be fully synthesized by AGB stars, while {sup 88}Sr, {sup 89}Y, and {sup 94}Zr are contributed more efficiently than before. Finally, we suggest tests suitable for providing a final answer regarding the extension of the {sup 13}C pocket.

  4. The abundance spread in the giants of NGC 6752

    NASA Astrophysics Data System (ADS)

    Norris, J.; Cottrell, P. L.; Freeman, K. C.; Da Costa, G. S.

    1981-02-01

    A spectroscopic survey has been performed of 69 stars on or near the giant branches of the metal-poor globular cluster NGC 6752. Our basic results are: (i) There is a large range in the strength of the violet cyanogen bands on the red giant branch, with the available evidence strongly suggesting that the distribution is bimodal. (ii) The cyanogen variations on the giant branch appear to be accompanied by an anticorrelated variation in the abundance of the CH molecule. Spectrum synthesis analysis of a (CN strong)/(CN weak) pair of stars for which relatively high resolution data are available shows that there is a variation of Δ[N/A] ˜+0.9, and Δ[C/A] ˜-0.3, indicative of the CN cycle. (iii) On the red giant branch there are variations in the strength of the lines of Al I which correlate positively with the cyanogen variations. The size of the variations is consistent with the hypothesis that the same phenomenon has occurred in NGC 6752 and ω Centauri, but to a much smaller extent in the former. (iv) On the asymptotic giant branch (AGB), the features of CH are weaker than on the red giant branch at the same color or magnitude, and there are no examples of stars in the strong CN group. Spectrum synthesis suggests that the behavior of the CH features is consistent, on the average, with the effective temperature and gravities of the AGB stars, but that the absence of strong CN stars cannot be explained in this way. We set an upper limit of Δ[C/H] ˜0.3 to the possible range of carbon on the AGB at log L/L -- stars: individual: ˜2.3, and between this group and stars of similar color on the red giant branch. (v) Most of the stars on the anomalously low luminosity end of the AGB are not members of NGC 6752. Two stars, (CS 41 and CS 44), however, deserve further study, since they could be examples of partially mixed stars. No definitive statement can be made concerning the origin of the abundance anomalies. if mixing is responsible, the data require this process to

  5. Nucleosynthesis in AGB stars: Observation of Mg-25 and Mg-26 in IRC+10216 and possible detection of Al-26

    NASA Technical Reports Server (NTRS)

    Guelin, M.; Forestini, M.; Valiron, P.; Ziurys, L. M.; Anderson, M. A.; Cernicharo, J.; Kahane, C.

    1995-01-01

    We report the detection in the circumstellar envelope IRC+10216 of millimeter lines of the rare isotopomers (25)MgNC and (26)MgNC, as well as of a line at 234433 MHz, which could be the J= 7-6 transition of (26)AlF (an alternate, although less likely identified would be the J= 9-8 transition of NaF). The derived Mg-24:Mg-25:Mg-26 isotopic abundance ratios (78 : 11+/- 1 : 11 +/-1) are consistent with the solar system values (79.0:10.0:11.0), following Anders & Grevesse 1989). According to new calculations of evolutionary models of 3 solar mass and 5 solar mass asymptotic giant branch (AGB) stars, these ratios and the previously measured N, O and Si isotopic ratios imply that the central star had an initial mass 3 solar mass (less than or equal to M(sub *, ini) less than 5 solar mass and has already experienced many 3rd dredge-up events. From this, it can be predicted that the Al-26/Al-27 isotopics ratio lies between 0.01 and 0.08; in fact, the value derived in the case that U234433 arises from (26)AlF is Al-26/Al-27 = 0.04. The identification of the (25)MgNC and (26)MgNC lines was made possible by ab-initio quantum mechanical calculations of the molecule geometrical structure. It was confirmed through millimeter-wave laboratory measurements. The quantum mechanical calculations are briefly described and the laboratory results presented in some detail. The rotation constants B, D, H and the spin-rotation constant gamma of (25)MgNC and (26)MgNC are determined from a fit of laboratory and astronomical data.

  6. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing

    NASA Astrophysics Data System (ADS)

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. C.

    2016-02-01

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M⊙ ≲ 3), where the main neutron source is the 13C(α, n)16O reaction. This last reaction is activated from locally produced 13C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the 13C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing 13C reservoirs of several 10-3 M⊙. The ensuing 13C-enriched zone has an almost flat profile, while only a limited production of 14N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large 13C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  7. s-PROCESSING IN AGB STARS REVISITED. II. ENHANCED {sup 13}C PRODUCTION THROUGH MHD-INDUCED MIXING

    SciTech Connect

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. C.

    2016-02-20

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M{sub ⊙} ≲ 3), where the main neutron source is the {sup 13}C(α, n){sup 16}O reaction. This last reaction is activated from locally produced {sup 13}C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the {sup 13}C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing {sup 13}C reservoirs of several 10{sup −3} M{sub ⊙}. The ensuing {sup 13}C-enriched zone has an almost flat profile, while only a limited production of {sup 14}N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large {sup 13}C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  8. The Investment Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Yoder, Jay A.

    2011-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices included in this text support the objectives of board committees:…

  9. The Compensation Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Hyatt, Thomas K.

    2013-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  10. The Audit Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Staisloff, Richard L.

    2011-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  11. The Executive Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Legon, Richard D.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  12. 2011 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This report, the second of AGB's studies of higher education governance, documents the extent to which college and university boards are following good-governance practices. In addition, it takes a focused look at board engagement to determine the degree to which governing boards are actively, intellectually, and strategically involved with their…

  13. The Facilities Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  14. Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T.; Groenewegen, M. A. T.; Kerschbaum, F.; Cernicharo, J.; Vandenbussche, B.; Waelkens, C.

    2016-04-01

    Context. The recent detection of warm H2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2O molecules in the intermediate wind. Aims: We aim to determine the properties of H2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2O formation pathway. Methods: Using far-infrared spectra taken with the PACS instrument onboard the Herschel telescope, we combined two methods to identify H2O emission trends and interpreted these in terms of theoretically expected patterns in the H2O abundance. Through the use of line-strength ratios, we analyzed the correlation between the strength of H2O emission and the mass-loss rate of the objects, as well as the radial dependence of the H2O abundance in the circumstellar outflow per individual source. We computed a model grid to account for radiative-transfer effects in the line strengths. Results: We detect warm H2O emission close to or inside the wind acceleration zone of all sample stars, irrespective of their stellar or circumstellar properties. The predicted H2O abundances in carbon-rich environments are in the range of 10-6 up to 10-4 for Miras and semiregular-a objects, and cluster around 10-6 for semiregular-b objects. These predictions are up to three orders of magnitude greater than what is predicted by state-of-the-art chemical models. We find a negative correlation between the H2O/CO line-strength ratio and gas mass-loss rate for Ṁg> 5 × 10-7 M⊙ yr-1, regardless of the upper-level energy of the relevant transitions

  15. Study of the inner dust envelope and stellar photosphere of the AGB star R Doradus using SPHERE/ZIMPOL

    NASA Astrophysics Data System (ADS)

    Khouri, T.; Maercker, M.; Waters, L. B. F. M.; Vlemmings, W. H. T.; Kervella, P.; de Koter, A.; Ginski, C.; De Beck, E.; Decin, L.; Min, M.; Dominik, C.; O'Gorman, E.; Schmid, H.-M.; Lombaert, R.; Lagadec, E.

    2016-06-01

    Context. On the asymptotic giant branch (AGB) low- and intermediate-mass stars eject a large fraction of their envelope, but the mechanism driving these outflows is still poorly understood. For oxygen-rich AGB stars, the wind is thought to be driven by radiation pressure caused by scattering of radiation off dust grains. Aims: We study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We focus on investigating the spatial distribution of the dust grains that scatter light and whether these grains can be responsible for driving the outflow of this star. Methods: We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study R Dor and its inner envelope in a novel way. We present observations in filters V, cntHα, and cnt820 and investigate the surface brightness distribution of the star and of the polarised light produced in the inner envelope. Thanks to second-epoch observations in cntHα, we are able to see variability on the stellar photosphere. We study the polarised-light data using a continuum-radiative-transfer code that accounts for direction-dependent scattering of photons off dust grains. Results: We find that in the first epoch the surface brightness of R Dor is asymmetric in V and cntHα, the filters where molecular opacity is stronger, while in cnt820 the surface brightness is closer to being axisymmetric. The second-epoch observations in cntHα show that the morphology of R Dor has changed completely in a timespan of 48 days to a more axisymmetric and compact configuration. This variable morphology is probably linked to changes in the opacity provided by TiO molecules in the extended atmosphere. The observations show polarised light coming from a region around the central star. The inner radius of the region from where polarised light is seen varies only by a small amount with azimuth. The value of the polarised intensity, however, varies by between a factor of 2.3 and 3.7 with

  16. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  17. A mid-IR interferometric survey with MIDI/VLTI: resolving the second-generation protoplanetary disks around post-AGB binaries

    NASA Astrophysics Data System (ADS)

    Hillen, M.; Van Winckel, H.; Menu, J.; Manick, R.; Debosscher, J.; Min, M.; de Wit, W.-J.; Verhoelst, T.; Kamath, D.; Waters, L. B. F. M.

    2017-02-01

    Aims: We present a mid-IR interferometric survey of the circumstellar environment of a specific class of post-asymptotic giant branch (post-AGB) binaries. For this class the presence of a compact dusty disk has been postulated on the basis of various spatially unresolved measurements. The aim is to determine the angular extent of the N-band emission directly and to resolve the compact circumstellar structures. Methods: Our interferometric survey was performed with the MIDI instrument on the VLTI. In total 19 different systems were observed using variable baseline configurations. Combining all the visibilities at a single wavelength at 10.7 μm, we fitted two parametric models to the data: a uniform disk and a ring model mimicking a temperature gradient. We compared our observables of the whole sample, with synthetic data computed from a grid of radiative transfer models of passively irradiated disks in hydrostatic equilibrium. These models are computed with a Monte Carlo code that has been widely applied to describe the structure of protoplanetary disks around young stellar objects (YSO). Results: The spatially resolved observations show that the majority of our targets cluster closely together in the distance-independent size-colour diagram, and have extremely compact N-band emission regions. The typical uniform disk diameter of the N-band emission region is 40 mas, which corresponds to a typical brightness temperature of 400-600 K. The resolved objects display very similar characteristics in the interferometric observables and in the spectral energy distributions. Therefore, the physical properties of the disks around our targets must be similar. Our results are discussed in the light of recently published sample studies of YSOs to compare quantitatively the secondary discs around post-AGB stars to the ones around YSOs. Conclusions: Our high-angular-resolution survey further confirms the disk nature of the circumstellar structures present around wide post-AGB

  18. Models of AGB Stars and their Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Cristallo, S.; Piersanti, L.

    2015-08-01

    The occurrence of recursive thermonuclear runaways makes the computation of AGB evolutionary sequences and the related nucleosynthesis a challenging task for stellar modelers. In the last 20 years many efforts have been made to improve the physical description of the interiors of these stars. Nevertheless, the majority of the extant nucleosynthesis results are based on post-process calculations, in which the evolution of the nuclear network and that of the stellar structure are treated separately and, hence, decoupled. In this paper, we review the latest attempts made to obtain more reliable nucleosynthesis calculations based on the physical processes expected to be at work in AGB stars, such as the mixing induced by convection and rotation.

  19. Circumstellar water vapour in M-type AGB stars: constraints from H{2}O(1{10}-1{01}) lines obtained with Odin

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Schöier, F. L.; Olofsson, H.; Bergman, P.; Frisk, U.; . Hjalmarson, Å.; Justtanont, K.; Kwok, S.; Larsson, B.; Olberg, M.; Sandqvist, Aa.

    2009-01-01

    Context: A detailed radiative transfer code has been previously used to model circumstellar ortho-{H_2O} line emission towards six M-type asymptotic giant branch stars using Infrared Space Observatory Long Wavelength Spectrometer data. Collisional and radiative excitation, including the {ν_2=1} state, was considered. Aims: Spectrally resolved circumstellar {H_2O}(1{10}-1{01}) lines have been obtained towards three M-type AGB stars using the Odin satellite. This provides additional strong constraints on the properties of circumstellar {H_2O}, in particular on the chemistry in the stellar atmosphere, and the photodissociation in the outer envelope. Methods: Infrared Space Observatory and Odin satellite {H_2O} line data are used as constraints for radiative transfer models. Special consideration is taken to the spectrally resolved Odin line profiles, and the effect of excitation to the first excited vibrational states of the stretching modes ({ν_1=1} and {ν_3=1}) on the derived abundances is estimated. A non-local, radiative transfer code based on the accelerated lambda iteration formalism is used. A statistical analysis is performed to determine the best-fit models. Results: The {H_2O} abundance estimates are in agreement with previous estimates. The inclusion of the Odin data sets stronger constraints on the size of the {H_2O} envelope. The {H_2O}(1{10}-1{01}) line profiles require a significant reduction in expansion velocity compared to the terminal gas expansion velocity determined in models of CO radio line emission, indicating that the {H_2O} emission lines probe a region where the wind is still being accelerated. Including the {ν_3=1} state significantly lowers the estimated abundances for the low-mass-loss-rate objects. This shows the importance of detailed modelling, in particular the details of the infrared spectrum in the range 3 to 6 μm, to estimate accurate circumstellar {H_2O} abundances. Conclusions: Spectrally resolved circumstellar {H_2O

  20. Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P. R.

    2015-11-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of extra-galactic post-asymptotic giant branch (post-AGB) stars. The aim of our programme is to derive chemical abundances of stars covering a large range in luminosity and metallicity with the ultimate goal of testing, constraining, and improving our knowledge of the poorly understood AGB phase, especially the third dredge-up mixing processes and associated s-process nucleosynthesis. Aims: Post-AGB photospheres are dominated by atomic lines and indicate the effects of internal chemical enrichment processes over the entire stellar lifetime. In this paper, we study two carefully selected post-AGB stars: J051213.81-693537.1 and J051848.86-700246.9 in the Large Magellanic Cloud (LMC). Both objects show signs of s-process enhancement. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances (and hence luminosities and initial masses) make these objects ideal probes of the AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods: We use high-resolution optical UVES spectra to determine accurate stellar parameters and subsequently perform detailed elemental abundance studies of post-AGB stars. Additionally, we use available photometric data covering optical and IR bands to construct spectral energy distributions for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results: We obtained accurate atmospheric parameters for J051213.81-693537.1 (Teff = 5875 ± 125 K, log g = 1.00 ± 0.25 dex, [Fe/H] = -0.56 ± 0.16 dex) and J051848.86-700246.9 (Teff = 6000 ± 125 K, log g = 0.50 ± 0.25 dex, [Fe/H] = -1.06 ± 0.17 dex). Both stars show extreme s-process enrichment associated with relatively low C/O ratios of 1.26 ± 0.40 and 1.29 ± 0.30 for J051213-693537.1 and J051848

  1. Mass-loss on the red giant branch: the value and metallicity dependence of Reimers' η in globular clusters

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.

    2015-03-01

    The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers and Schröder and Cuntz are used to measure the efficiency of RGB mass-loss for typical stars in 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, η _R = 0.477 ± 0.070 ^{+0.050}_{-0.062} and η _SC = 0.172 ± 0.024 ^{+0.018}_{-0.023} (standard deviation and systematic uncertainties, respectively). Over a factor of 200 in iron abundance, η varies by ≲30 per cent, thus mass-loss mechanisms on the RGB have very little metallicity dependence. Any remaining dependence is within the current systematic uncertainties on cluster ages and evolution models. The low standard deviation of η among clusters (≈14 per cent) contrasts with the variety of HB morphologies. Since η incorporates cluster age, this suggests that age accounts for the majority of the `second parameter problem', and that a Reimers-like law provides a good mass-loss model. The remaining spread in η correlates with cluster mass and density, suggesting helium enrichment provides the third parameter explaining HB morphology of GCs. We close by discussing asymptotic giant branch (AGB) mass-loss, finding that the AGB tip luminosity is better reproduced and η has less metallicity dependence if GCs are more co-eval than generally thought.

  2. Cool Giant Atlases in the CRIRES-POP Library

    NASA Astrophysics Data System (ADS)

    Nicholls, C.; Lebzelter, T.; Crires-Pop Team

    2015-08-01

    The CRIRES-POP project will provide a public database of high resolution, high signal/noise near-infrared spectra of stars spanning the HR diagram. A relevant part of this library for the AGB community will be high quality reference spectra of several cool evolved giants.

  3. AGB star intershell abundances inferred from UV spectra of extremely hot post-AGB stars

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Reiff, E.; Kruk, J. W.

    2009-04-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  4. The 2014 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Hodge-Clark, Kristen

    2014-01-01

    "The 2014 AGB Survey of Higher Education Governance" is the fourth in AGB's studies of college and university governance. This report, based on survey responses from 592 public and independent boards, addresses a range of important governance topics that are receiving attention from boards and the news media, including presidential…

  5. On Potassium and Other Abundance Anomalies of Red Giants in NGC 2419

    NASA Astrophysics Data System (ADS)

    Iliadis, C.; Karakas, A. I.; Prantzos, N.; Lattanzio, J. C.; Doherty, C. L.

    2016-02-01

    Globular clusters are of paramount importance for testing theories of stellar evolution and early galaxy formation. Strong evidence for multiple populations of stars in globular clusters derives from observed abundance anomalies. A puzzling example is the recently detected Mg-K anticorrelation in NGC 2419. We perform Monte Carlo nuclear reaction network calculations to constrain the temperature-density conditions that gave rise to the elemental abundances observed in this elusive cluster. We find a correlation between stellar temperature and density values that provide a satisfactory match between simulated and observed abundances in NGC 2419 for all relevant elements (Mg, Si, K, Ca, Sc, Ti, and V). Except at the highest densities (ρ ≳ 108 g cm-3), the acceptable conditions range from ≈100 MK at ≈108 g cm-3 to ≈200 MK at ≈10-4 g cm-3. This result accounts for uncertainties in nuclear reaction rates and variations in the assumed initial composition. We review hydrogen-burning sites and find that low-mass stars, asymptotic giant branch (AGB) stars, massive stars, or supermassive stars cannot account for the observed abundance anomalies in NGC 2419. Super-AGB stars could be viable candidates for the polluter stars if stellar model parameters can be fine-tuned to produce higher temperatures. Novae, involving either CO or ONe white dwarfs, could be interesting polluter candidates, but a current lack of low-metallicity nova models precludes firmer conclusions. We also discuss whether additional constraints for the first-generation polluters can be obtained by future measurements of oxygen, or by evolving models of second-generation low-mass stars with a non-canonical initial composition.

  6. ON POTASSIUM AND OTHER ABUNDANCE ANOMALIES OF RED GIANTS IN NGC 2419

    SciTech Connect

    Iliadis, C.; Karakas, A. I.; Prantzos, N.; Lattanzio, J. C.; Doherty, C. L.

    2016-02-10

    Globular clusters are of paramount importance for testing theories of stellar evolution and early galaxy formation. Strong evidence for multiple populations of stars in globular clusters derives from observed abundance anomalies. A puzzling example is the recently detected Mg–K anticorrelation in NGC 2419. We perform Monte Carlo nuclear reaction network calculations to constrain the temperature–density conditions that gave rise to the elemental abundances observed in this elusive cluster. We find a correlation between stellar temperature and density values that provide a satisfactory match between simulated and observed abundances in NGC 2419 for all relevant elements (Mg, Si, K, Ca, Sc, Ti, and V). Except at the highest densities (ρ ≳ 10{sup 8} g cm{sup −3}), the acceptable conditions range from ≈100 MK at ≈10{sup 8} g cm{sup −3} to ≈200 MK at ≈10{sup −4} g cm{sup −3}. This result accounts for uncertainties in nuclear reaction rates and variations in the assumed initial composition. We review hydrogen-burning sites and find that low-mass stars, asymptotic giant branch (AGB) stars, massive stars, or supermassive stars cannot account for the observed abundance anomalies in NGC 2419. Super-AGB stars could be viable candidates for the polluter stars if stellar model parameters can be fine-tuned to produce higher temperatures. Novae, involving either CO or ONe white dwarfs, could be interesting polluter candidates, but a current lack of low-metallicity nova models precludes firmer conclusions. We also discuss whether additional constraints for the first-generation polluters can be obtained by future measurements of oxygen, or by evolving models of second-generation low-mass stars with a non-canonical initial composition.

  7. Using a Weak CN Spectral Feature as a Marker for Massive AGB Stars in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Kamath, Anika; Sales, Alyssa; Sarukkai, Atmika; Hays, Jon; PHAT Collaboration; SPLASH Collaboration

    2017-01-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) survey has produced six-filter photometry at near-ultraviolet, optical and nearly infrared wavelengths (F275W, F336W, F475W, F814W, F110W and F160W) for over 100 million stars in the disk of the of the Andromeda galaxy (M31). As part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey, medium resolution (R ~ 2000) spectra covering the wavelength range 4500-9500A were obtained for over 5000 relatively bright stars from the PHAT source catalog using the Keck II 10-meter telescope and DEIMOS spectrograph. While searching for carbon stars in the spectroscopic data set, we discovered a rare population of stars that show a weak CN spectral absorption feature at ~7900A (much weaker than the CN feature in typical carbon stars) along with other spectral absorption features like TiO and the Ca triplet that are generally not present/visible in carbon star spectra but that are typical for normal stars with oxygen rich atmospheres. These 150 or so "weak CN" stars appear to be fairly localized in six-filter space (i.e., in various color-color and color-magnitude diagrams) but are generally offset from carbon stars. Comparison to PARSEC model stellar tracks indicates that these weak CN stars are probably massive (5-10 Msun) asymptotic giant branch (AGB) stars in a relatively short-lived core helium burning phase of their evolution. Careful spectroscopic analysis indicates that the details of the CN spectral feature are about 3-4x weaker in weak CN stars than in carbon stars. The kinematics of weak CN stars are similar to those of other young stars (e.g., massive main sequence stars) and reflect the well ordered rotation of M31's disk.This research project is funded in part by NASA/STScI and the National Science Foundation. Much of this work was carried out by high school students and undergraduates under the auspices of the Science Internship Program and LAMAT program at the University of

  8. Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-poor Globular Cluster M4

    NASA Astrophysics Data System (ADS)

    Ivans, Inese I.; Sneden, Christopher; Kraft, Robert P.; Suntzeff, Nicholas B.; Smith, Verne V.; Langer, G. Edward; Fulbright, Jon P.

    1999-09-01

    We present a chemical composition analysis of 36 giants in the nearby mildly metal-poor (<[Fe/H]>=-1.18) ``CN-bimodal'' globular cluster M4. The stars were observed at the Lick and McDonald Observatories using high-resolution échelle spectrographs and at the Cerro Tololo Inter-American Observatory using the multiobject spectrometer. Confronted with a cluster having interstellar extinction that is large and variable across the cluster face, we combined traditional spectroscopic abundance methods with modifications to the line depth ratio technique pioneered by Gray to determine the atmospheric parameters of our stars. We derive a total-to-selective extinction ratio of 3.4+/-0.4 and an average reddening of 0.33+/-0.01, which is significantly lower than that estimated by using the dust maps made by Schlegel and coworkers. We determine abundance ratios typical of halo field and cluster stars for scandium, titanium, vanadium, nickel, and europium with star-to-star variations in these elements of less than +/-0.1. Silicon, aluminum, barium, and lanthanum are overabundant with respect to what is seen in other globular clusters of similar metallicity. These overabundances confirm the results of an earlier study by Brown & Wallerstein based on a much smaller sample of M4 giants. Superposed on the primordial abundance distribution is evidence for the existence of proton capture synthesis of carbon, oxygen, neon, and magnesium. We recover some of the C, N, O, Na, Mg, and Al abundance swings and correlations found in other more metal-poor globular clusters, but the range of variation is muted. In the case of Mg and Al, this is compatible with the idea that the Al enhancements are derived from the destruction of ^25,26Mg, not ^24Mg. We determine that the C+N+O abundance sum is constant to within the observational errors and agrees with the C+N+O total that might be expected for M4 stars at birth. The asymptotic giant branch (AGB) stars in M4 have C, N, and O

  9. Isotopic zirconium as a probe of AGB nucleosynthesis theory

    NASA Astrophysics Data System (ADS)

    Malaney, R. A.

    Nuclear reaction network calculations of the zirconium relative isotope abundances in AGB stars are presented. It is shown how these isotopic abundances depend on the AGB stellar mass and on the uncertain neutron absorption cross section for Zr-96. With regard to observations of the zirconium isotopes in S stars, it is shown how the many neutron exposure mechanisms associated with AGB thermal pulses cannot be operating in these stars. A less predictable scheme in which only a few neutron exposures take place appears to be more consistent with the reported S star observations.

  10. Spectroscopic binaries among Hipparcos M giants. III. The eccentricity - period diagram and mass-transfer signatures

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Frankowski, A.; Famaey, B.; van Eck, S.

    2009-05-01

    Context: This paper is the third one in a series devoted to studying the properties of binaries involving M giants. Aims: We use a new set of orbits to construct the first (e - log P) diagram of an extensive sample of M giant binaries, to obtain their mass-function distribution, and to derive evolutionary constraints for this class of binaries and related systems. Methods: The orbital properties of binaries involving M giants were analysed and compared with those of related families of binaries (K giants, post-AGB stars, barium stars, Tc-poor S stars). Results: The orbital elements of post-AGB stars and M giants are not very different, which may indicate that, for the considered sample of post-AGB binaries, the post-AGB star left the AGB at quite an early stage (M4 or so). Neither are the orbital elements of post-mass-transfer binaries like barium stars very different from those of M giants, suggesting that the mass transfer did not alter the orbital elements much, contrary to current belief. Finally, we show that binary systems with e < 0.4 log P - 1 (with periods expressed in days) are predominantly post-mass-transfer systems, because (i) the vast majority of barium and S systems match this condition; and (ii) these systems have companion masses peaking around 0.6 M⊙, as expected for white dwarfs. The latter property has been shown to hold as well for open-cluster binaries involving K giants, for which a lower bound on the companion mass may easily be set. Based on observations carried out at the Swiss telescope installed at the Observatoire de Haute Provence (OHP, France), and at the 1.93-m OHP telescope.

  11. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  12. The Dynamic Atmospheres of Carbon Rich Giants: Constraining Models Via Interferometry

    NASA Astrophysics Data System (ADS)

    Rau, Gioia; Hron, Josef; Paladini, Claudia; Aringer, Bernard; Eriksson, Kjell; Marigo, Paola

    2016-07-01

    Dynamic models for the atmospheres of C-rich Asymptotic Giant Branch stars are quite advanced and have been overall successful in reproducing spectroscopic and photometric observations. Interferometry provides independent information and is thus an important technique to study the atmospheric stratification and to further constrain the dynamic models. We observed a sample of six C-rich AGBs with the mid infrared interferometer VLTI/MIDI. These observations, combined with photometric and spectroscopic data from the literature, are compared with synthetic observables derived from dynamic model atmospheres (DMA, Eriksson et al. 2014). The SEDs can be reasonably well modelled and the interferometry supports the extended and multi-component structure of the atmospheres, but some differences remain. We discuss the possible reasons for these differences and we compare the stellar parameters derived from this comparison with stellar evolution models. Finally, we point out the high potential of MATISSE, the second generation VLTI instrument allowing interferometric imaging in the L, M, and N bands, for further progress in this field.

  13. Studies of mass loss and outflows from giant stars

    NASA Astrophysics Data System (ADS)

    Wang, Qian

    This thesis aims to provide better understanding of mass loss and outflows from asymptotic giant branch stars using the Bowen code. There are 3 projects involved in this thesis. The main project presented here is on the morphology of the outflow when disturbed by a super Jupiter size companion. There exists resonant modes between the pulsation period and orbital period. At different resonant modes, multiple spiral arms with different spiral arm periods form in the outflows. A simple formula gives the spiral arm period as a function of pulsation and orbital periods. Since the resonant modes appear in close orbits, the decay time scale and spiral arm morphology are also presented. These results may explain asymmetry in the outflows that form planetary nebulae. It also explains the origin of the spiral arm structure around some late AGB stars. A 3-D code will ultimately be need to resolve some questions unanswered by the current 1-D models. The paper on the outflow morphology has been submitted to ApJ. In this thesis, ongoing mass loss studies using the Bowen code are also briefly explained. I generated a large grid of models with varying mass, luminosity, metallicity, mixing length and Bowen model parameters in order to find correlations between the mass loss rate and these parameters. Since dust abundance is an important factor for mass loss, for the third project I tested dust formation in the refrigeration zone which is closer to the photosphere than normal dusty regions. In this test, I assumed that the dust temperature equals to the gas kinetic temperature which is lower than the radiative equilibrium temperature. Since dust temperature is close to the radiative temperature when the dust grain is large, this assumption brings excessive dust into the refrigeration zones. The detailed treatment of dust formation will be refined in future studies.

  14. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  15. Synthetic photometry for carbon-rich giants. IV. An extensive grid of dynamic atmosphere and wind models

    NASA Astrophysics Data System (ADS)

    Eriksson, K.; Nowotny, W.; Höfner, S.; Aringer, B.; Wachter, A.

    2014-06-01

    Context. The evolution and spectral properties of stars on the asymptotic giant branch (AGB) are significantly affected by mass loss through dusty stellar winds. Dynamic atmosphere and wind models are an essential tool for studying these evolved stars, both individually and as members of stellar populations, to understand their contribution to the integrated light and chemical evolution of galaxies. Aims: This paper is part of a series with the purpose of testing state-of-the-art atmosphere and wind models of C-type AGB stars against observations, and making them available to the community for use in various theoretical and observational studies. Methods: We have computed low-resolution spectra and photometry (in the wavelength range 0.35-25 μm) for a grid of 540 dynamic models with stellar parameters typical of solar-metallicity C-rich AGB stars and with a range of pulsation amplitudes. The models cover the dynamic atmosphere and dusty outflow (if present), assuming spherical symmetry, and taking opacities of gas-phase species and dust grains consistently into account. To characterize the time-dependent dynamic and photometric behaviour of the models in a concise way we defined a number of classes for models with and without winds. Results: Comparisons with observed data in general show a quite satisfactory agreement for example regarding mass-loss rates vs. (J - K) colours or K magnitudes vs. (J - K) colours. Some exceptions from the good overall agreement, however, are found and attributed to the range of input parameters (e.g. relatively high carbon excesses) or intrinsic model assumptions (e.g. small particle limit for grain opacities). Conclusions: While current results indicate that some changes in model assumptions and parameter ranges should be made in the future to bring certain synthetic observables into better agreement with observations, it seems unlikely that these pending improvements will significantly affect the mass-loss rates of the models

  16. Spectroscopic and photometric monitoring of southern post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pooley, D. J.; Cottrell, P. L.; Pollard, K. R.; Albrow, M. D.

    2004-05-01

    We present the results of contemporaneous photometric and spectroscopic monitoring of 20 post-AGB stars from Mt John University Observatory. Photometric measures were carried our suing Johnson BV and Cousins RI filters, and the radial velocity measurements were acquired using spectra from an echelle spectrograph. Our program spanned five years and the stars covered a range of spectral types from B to K in order to investigate the behavior of post-AGB stars as they evolve away from the AGB. A number of stars proved to be variable inways incompatible with post-AGB models and are reclassified. Periodicities are presented for a number of stars. Photometrically, HD 70379 was found to be pulsating in two modes with periods of 85 and 97 d. The radial velocities also varied, with the peak amplitude occurring when the photometry was also changing most. AI CMi presented three different types of spectra associated with photometric brightness, with varying strengths of narrow emission lines and molecular bandheads. The Hα profiles in almost all of the stars show evidence of emission which varies on time scales of days to months. The Na D line profiles are generally complex showing between 4 and 7 components due to both circumstellar and interstellar material.

  17. Winds of Binary AGB Stars as Observed by Herschel

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Mečina, M.; Paladini, C.; Cox, N. L. J.; Nowotny, W.; Aringer, B.; Pourbaix, D.; Mohamed, S.; Siopis, C.; Groenewegen, M. A. T.

    2015-08-01

    We present Herschel/PACS observations of the large-scale environments of binary AGB stars as part of the Mass-loss of Evolved StarS (MESS) sample. From the literature we found 18 of the objects to be members of physically bound multiple systems. Several show a large-scale far-IR emission which differs significantly from spherical symmetry. A probable cause is the gravitational force of the companion on the stellar AGB wind and the mass-losing star itself. A spiral pattern is thereby imprinted in the dusty stellar wind. The most remarkable structures are found around o Ceti, W Aquilæ, R Aquarii, and π1 Gruis. The environments of o Cet and W Aql show a spiral pattern while the symbiotic nature of R Aqr is revealed as two opposing arms which reflect a nova outburst. The emission around π1 Gru is dominated by two structures, a disk and an arc, which are presumably not caused by the same companion. We found evidence that π1 Gru is a hierarchical triple system in which a close companion attracts the AGB wind onto the orbital plane and the outer companion forms a spiral arm. These far-IR observations underline the role of a companion as a major external influence in creating asymmetric winds in the AGB phase, even before the star becomes a planetary nebula (PN).

  18. The Governance Committee: Independent Institutions. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Wilson, E. B.; Lanier, James L.

    2013-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimal committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices outlined in this publication support the objectives of board…

  19. Hot CNO and p-capture nucleosynthesis in intermediate-mass AGB stars.

    NASA Astrophysics Data System (ADS)

    D'Antona, F.; Ventura, P.

    When the judgement on the reliability of models for ``multiple" populations in globular clusters is based on the nucleosynthesis needed to produce the anomalous abundances of light elements, the asymptotic giant branch scenario remains the only game in town. We discuss this evidence, together with the difficulties that this model too has to face in dealing with the direct comparison between the observed abundances and predicted yields. We show that a reduction of the cross section of the 23Na(p,alpha )20Ne reaction at T∼100MK is the main requirement that could allow to ease or fully solve the problems.

  20. Asymptotically hyperbolic connections

    NASA Astrophysics Data System (ADS)

    Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2016-09-01

    General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.

  1. Asymptotic black holes

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  2. Asymptotically flat multiblack lenses

    NASA Astrophysics Data System (ADS)

    Tomizawa, Shinya; Okuda, Taika

    2017-03-01

    We present an asymptotically flat and stationary multiblack lens solution with biaxisymmetry of U (1 )×U (1 ) as a supersymmetric solution in the five-dimensional minimal ungauged supergravity. We show that the spatial cross section of each degenerate Killing horizon admits different lens space topologies of L (n ,1 )=S3/Zn as well as a sphere S3. Moreover, we show that, in contrast to the higher-dimensional Majumdar-Papapetrou multiblack hole and multi-Breckenridge-Myers-Peet-Vafa (BMPV) black hole spacetime, the metric is smooth on each horizon even if the horizon topology is spherical.

  3. Search for aluminium monoxide in the winds of oxygen-rich AGB stars

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Decin, L.; Ramstedt, S.; Olofsson, H.; Menten, K. M.; Patel, N. A.; Vlemmings, W. H. T.

    2017-01-01

    Context. Aluminium monoxide (AlO) is likely efficiently depleted from the gas around oxygen-rich evolved stars to form alumina (Al2O3) clusters and dust seeds. The presence of AlO gas in the extended atmospheres of evolved stars has been derived from optical spectroscopy. More recently, AlO gas was also detected at long wavelengths around the supergiant VY CMa and the oxygen-rich asymptotic giant branch star o Cet (Mira A). The central role aluminium might play in dust formation and wind driving, in combination with these first detections of AlO at long wavelengths, shows the need for a wider search for this molecule in the winds of evolved stars. Aims: The detection at long wavelengths of emission in rotational transitions of AlO towards asymptotic giant branch stars can help constrain the presence and location of AlO gas in the outflows and ultimately also the efficiency of the depletion process. Methods: In search of AlO, we mined data obtained with APEX, the IRAM 30 m telescope, Herschel/HIFI, SMA, and ALMA, which were primarily aimed at studying other species around asymptotic giant branch stars. We report here on observations of AlO towards a sample of eight oxygen-rich asymptotic giant branch stars in different rotational transitions, up to seven for some stars. Results: We present definite detections of one rotational transition of AlO for o Cet and R Aqr, and tentative detections of one transition for R Dor and o Cet and two transitions for IK Tau and W Hya. The presented spectra of WX Psc, R Cas, and TX Cam show no signature of AlO. For o Cet, R Aqr, and IK Tau, we find that the AlO (N = 9-8) emission likely traces the inner parts of the wind, out to only a few tens of AU, where the gas has not yet been accelerated to its terminal velocity. This is in agreement with recently published results from a detailed study on o Cet. Conclusions: The conclusive detections of AlO emission in the case of o Cet and R Aqr confirm the presence of AlO in the gas phase in

  4. Thermodynamics of Asymptotically Conical Geometries.

    PubMed

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  5. Asymptotic symmetries on Killing horizons

    NASA Astrophysics Data System (ADS)

    Koga, Jun-Ichirou

    2001-12-01

    We investigate asymptotic symmetries regularly defined on spherically symmetric Killing horizons in Einstein theory with or without the cosmological constant. These asymptotic symmetries are described by asymptotic Killing vectors, along which the Lie derivatives of perturbed metrics vanish on a Killing horizon. We derive the general form of the asymptotic Killing vectors and find that the group of asymptotic symmetries consists of rigid O(3) rotations of a horizon two-sphere and supertranslations along the null direction on the horizon, which depend arbitrarily on the null coordinate as well as the angular coordinates. By introducing the notion of asymptotic Killing horizons, we also show that local properties of Killing horizons are preserved not only under diffeomorphisms but also under nontrivial transformations generated by the asymptotic symmetry group. Although the asymptotic symmetry group contains the Diff(S1) subgroup, which results from supertranslations dependent only on the null coordinate, it is shown that the Poisson brackets algebra of the conserved charges conjugate to asymptotic Killing vectors does not acquire nontrivial central charges. Finally, by considering extended symmetries, we discuss the fact that unnatural reduction of the symmetry group is necessary in order to obtain the Virasoro algebra with nontrivial central charges, which is not justified when we respect the spherical symmetry of Killing horizons.

  6. Lithium Abundance in M3 Red Giant

    NASA Astrophysics Data System (ADS)

    Givens, Rashad; Pilachowski, Catherine A.

    2015-01-01

    We present the abundance of lithium in the red giant star vZ 1050 (SK 291) in the globular cluster M3. A previous survey of giants in the cluster showed that like IV-101, vZ 1050 displays a prominent Li I 6707 Å feature. vZ 1050 lies on the blue side of the red giant branch about 1.3 magnitudes above the level of the horizontal branch, and may be an asymptotic giant branch star. A high resolution spectrum of M3 vZ1050 was obtained with the ARC 3.5m telescope and the ARC Echelle Spectrograph (ARCES). Atmospheric parameters were determined using Fe I and Fe II lines from the spectrum using the MOOG spectral analysis program, and the lithium abundance was determined using spectrum synthesis.

  7. Predicting the fate of binary red giants using the observed sequence E star population: binary planetary nebula nuclei and post-RGB stars

    NASA Astrophysics Data System (ADS)

    Nie, J. D.; Wood, P. R.; Nicholls, C. P.

    2012-07-01

    Sequence E variables are close binary red giants that show ellipsoidal light variations. They are likely the immediate precursors of planetary nebulae (PNe) with close binary central stars as well as other binary post-asymptotic giant branch (post-AGB) and binary post-red giant branch (post-RGB) stars. We have made a Monte Carlo simulation to determine the fraction of red giant binaries that go through a common envelope event leading to the production of a close binary system or a merged star. The novel aspect of this simulation is that we use the observed frequency of sequence E binaries in the Large Magellanic Cloud (LMC) to normalize our calculations. This normalization allows us to produce predictions that are relatively independent of model assumptions. In our standard model, and assuming that the relative numbers of PNe of various types are proportional to their birth rates, we find that in the LMC today the fraction of PNe with close binary central stars is 7-9 per cent, the fraction of PNe with intermediate period binary central stars having separations capable of influencing the nebula shape (orbital periods less than 500 yr) is 23-27 per cent, the fraction of PNe containing wide binaries that are unable to influence the nebula shape (orbital period greater than 500 yr) is 46-55 per cent, the fraction of PNe derived from single stars is 3-19 per cent, and 5-6 per cent of PNe are produced by previously merged stars. We also predict that the birth rate of post-RGB stars is ˜4 per cent of the total PN birth rate, equivalent to ˜50 per cent of the production rate of PNe with close binary central stars. These post-RGB stars most likely appear initially as luminous low-mass helium white dwarf binaries. The average lifetime of sequence E ellipsoidal variability with amplitude more than 0.02 mag is predicted to be ˜0.95 Myr. We use our model and the observed number of red giant stars in the top one magnitude of the RGB in the LMC to predict the number of PNe in

  8. Asymptotically safe grand unification

    NASA Astrophysics Data System (ADS)

    Bajc, Borut; Sannino, Francesco

    2016-12-01

    Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.

  9. Post-AGB Evolution Much Faster Than Previously Phought

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2017-03-01

    For 32 central stars of PNe we present their parameters interpolated among new evolutionary sequences. The derived stellar final masses are confined between 0.53 and 0.58 M⊙ in good agreement with the peak in the white dwarf mass distribution. Consequently, the inferred star formation history of the Galactic bulge is well restricted between 3 and 11 Gyr and is compatible with other published studies. The new evolutionary tracks proved very good as a tool for analysis of late stages of stars life. The results provide a compelling confirmation of the accelerated post-AGB evolution.

  10. HIRAS images of fossil dust shells around AGB stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Kester, Do J. M.; Bontekoe, Tj. Romke; Loup, C.

    1994-01-01

    We present high resolution HIRAS 60 and 100 micron images of AGB stars surrounded by fossil dust shells. Resolving the extended emission of the circumstellar dust allows a determination of the mass loss history of the star. We show that the geometry of the 60 micron emission surrounding HR 3126 agrees well with that of the optical reflection nebula. The emission around the carbon star U Hya is resolved into a central point source and a ring of dust, and the mass loss rate in the detached shell is 70 times higher than the current mass loss rate.

  11. Leadership in Governance: The View from AGB's Current and Former Board Chairs

    ERIC Educational Resources Information Center

    Trusteeship, 2010

    2010-01-01

    The challenges with which college and university boards must grapple promise to become only more complex in the coming years, placing ever-greater demands on the leaders of those boards. This article presents a conversation between Association of Governing Boards of Universities and Colleges (AGB) President Richard D. Legon and two AGB leaders who…

  12. The dynamic atmospheres of red giant stars. Spectral synthesis in high resolution

    NASA Astrophysics Data System (ADS)

    Nowotny, W.

    2005-11-01

    Light is the only source of information we have to study distant stars. Our knowledge about the state of the matter inside stars has been gathered by analysing star light (photometry, spectroscopy, interferometry, polarimetry, etc.). Of central importance in this context are stellar atmospheres, which are the transition regions from the optically thick stellar interiors where the electromagnetic radiation is generated to the optically thin outer layers from where the photons can leave the star. However, the atmosphere of a star is not only the region where most of the observable radiation is emitted or in other words the layers which are "visible from outside". The atmosphere also leaves an imprint on the stellar spectrum as the radiation passes through, most of the line spectrum is formed there. Thus, the light serves as a probe for the physical processes within stellar atmospheres, especially spectroscopy is one of the major tools in stellar astrophysics. Applying the underlying physical principles in numerical simulations (model atmospheres, synthetic spectra) is the second -- complementary and necessary -- step towards a deeper understanding of stellar atmospheres and for deriving stellar parameters (e.g. T_eff, L, log g, chemical composition) of observed objects. This thesis is dedicated to the outer layers of Asymptotic Giant Branch (AGB) stars, which have rather remarkable properties compared to atmospheres of most other types of stars. AGB stars represent low- to intermediate mass stars at a late stage of their evolution. Forming a sub-group among all red giants, they exhibit large extensions, low effective temperatures and high luminosities. The evolutionary phase of the AGB -- complex but decisive for stellar evolution -- is characterised by several important phenomena as for example nucleo-synthesis in explosively burning shells (thermal pulses), convective processes (dredge up), large-amplitude pulsations with long periods or a pronounced mass loss. Red

  13. Asymptotic Parachute Performance Sensitivity

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.

    2006-01-01

    In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.

  14. Asymptotic dynamics of monopole walls

    NASA Astrophysics Data System (ADS)

    Cross, R.

    2015-08-01

    We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are Abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.

  15. An edge-on translucent dust disk around the nearest AGB star, L2 Puppis. VLT/NACO spectro-imaging from 1.04 to 4.05 μm and VLTI interferometry

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Ridgway, S. T.; Perrin, G.; Chesneau, O.; Lacour, S.; Chiavassa, A.; Haubois, X.; Gallenne, A.

    2014-04-01

    As the nearest known AGB star (d = 64 pc) and one of the brightest (mK ≈ -2), L2 Pup is a particularly interesting benchmark object to monitor the final stages of stellar evolution. We report new serendipitous imaging observations of this star with the VLT/NACO adaptive optics system in twelve narrow-band filters covering the 1.0-4.0 μm wavelength range. These diffraction-limited images reveal an extended circumstellar dust lane in front of the star that exhibits a high opacity in the J band and becomes translucent in the H and K bands. In the L band, extended thermal emission from the dust is detected. We reproduced these observations using Monte Carlo radiative transfer modeling of a dust disk with the RADMC-3D code. We also present new interferometric observations with the VLTI/VINCI and MIDI instruments. We measured in the K band an upper limit to the limb-darkened angular diameter of θLD = 17.9 ± 1.6 mas, converting to a maximum linear radius of R = 123 ± 14 R⊙. Considering the geometry of the extended K band emission in the NACO images, this upper limit is probably close to the actual angular diameter of the star. The position of L2 Pup in the Hertzsprung-Russell diagram indicates that this star has a mass of about 2 M⊙ and is probably experiencing an early stage of the asymptotic giant branch. We did not detect any stellar companion of L2 Pup in our adaptive optics and interferometric observations, and we attribute its apparent astrometric wobble in the Hipparcos data to variable lighting effects on its circumstellar material. However, we do not exclude the presence of a binary companion, because the large loop structure extending to more than 10 AU to the northeast of the disk in our L-band images may be the result of interaction between the stellar wind of L2 Pup and a hidden secondary object. The geometric configuration that we propose, with a large dust disk seen almost edge-on, appears particularly favorable to test and develop our

  16. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  17. Polynomial Asymptotes of the Second Kind

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  18. Binarity and Accretion: X-Ray Emission from AGB stars with FUV Excesses

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2012-10-01

    We propose a pilot survey for X-ray emission from AGB stars that are candidates for having binary companions with active accretion. These objects were identified via our innovative technique to search for FUV/NUV excesses in AGB stars using GALEX. The detection (or non-detection) of X-rays from this sample will enable us to begin testing models for the origin of the UV-excesses, leading to vital breakthroughs in our understanding of accretion-related phenomena and binarity in AGB stars. A larger survey, optimised using results fron this study, will be proposed in future cycles.

  19. Chemical evolution of fluorine in the bulge. High-resolution K-band spectra of giants in three fields

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Harper, G. M.; Cunha, K.; Schultheis, M.; Eriksson, K.; Kobayashi, C.; Smith, V. V.; Zoccali, M.

    2014-04-01

    Context. Possible main formation sites of fluorine in the Universe include asymptotic giant branch (AGB) stars, the ν-process in Type II supernova, and/or Wolf-Rayet stars. The importance of the Wolf-Rayet stars has theoretically been questioned and they are probably not needed in modeling the chemical evolution of fluorine in the solar neighborhood. It has, however, been suggested that Wolf-Rayet stars are indeed needed to explain the chemical evolution of fluorine in the bulge. The molecular spectral data, needed to determine the fluorine abundance, of the often used HF-molecule has not been presented in a complete and consistent way and has recently been debated in the literature. Aims: We intend to determine the trend of the fluorine-oxygen abundance ratio as a function of a metallicity indicator in the bulge to investigate the possible contribution from Wolf-Rayet stars. Additionally, we present here a consistent HF line list for the K- and L-bands including the often used 23 358.33 Å line. Methods: High-resolution near-infrared spectra of eight K giants were recorded using the spectrograph CRIRES mounted at the VLT. A standard setting was used that covered the HF molecular line at 23 358.33 Å. The fluorine abundances were determined using spectral fitting. We also re-analyzed five previously published bulge giants observed with the Phoenix spectrograph on Gemini using our new HF molecular data. Results: We find that the fluorine-oxygen abundance in the bulge probably cannot be explained with chemical evolution models that only include AGB stars and the ν-process in supernovae Type II, that is a significant amount of fluorine production in Wolf-Rayet stars is most likely needed to explain the fluorine abundance in the bulge. For the HF line data, we find that a possible reason for the inconsistencies in the literature, where two different excitation energies were used, is two different definitions of the zero-point energy for the HF molecule and therefore

  20. Asymptotic conditions and conserved quantities

    SciTech Connect

    Koul, R.K.

    1990-01-01

    Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C{sup 1}. In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q{sub ab}, P{sup ab}) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background.

  1. The TP-AGB phase: a new model.

    NASA Astrophysics Data System (ADS)

    Marigo, P.; Bressan, A.; Chiosi, C.

    1996-09-01

    This study deals with the TP-AGB phase of low and intermediate-mass stars (0.7<=M/Msun_<=5). To this aim, a semi-analytical model is constructed. A representative set of TP-AGB evolutionary models is calculated for two classes of initial metallicity (Z=0.02 and Z=0.008). A detailed analysis is performed to estimate the changes in the surface chemical composition caused by (1) the inter-shell nucleosynthesis and convective dredge-up; (2) nuclear burning in the deepest layers of the convective envelope; and (3) mass loss by stellar wind. The evolution of the abundances of 13 chemical elements (H, ^3^He, ^4^He, ^12^C, ^13^C, ^14^N, ^15^N, ^16^O, ^17^O,^18^O, ^20^Ne, ^22^Ne, ^25^Mg) is followed. In particular, the formation of carbon stars is investigated. We use the observed luminosity function of carbon stars in the LMC as the constraint whose fulfillment determines the values of the parameters adopted in the model, namely: the minimum core mass for dredge-up M_c_^min^ and the efficiency of the third dredge-up λ. In this way, we derive a proper calibration which the reliability of the chemical analysis stands on. We calculate the stellar yields for both metallicities to provide new data for these key-ingredients in the process of chemical enrichment of the interstellar medium. The chemical composition of PNe is derived and compared to the latest experimental data both in the Galaxy and in the LMC, which leads to a partial agreement. Observed information on the correlation between luminosity and pulsational period of Mira and OH/IR variables is used to test further our results. Finally, we predict the initial-final mass relation and we compare it to the semi-empirically determined one for the solar neighbourhood. The agreement turns out to be satisfactory.

  2. Asymptotic Rayleigh instantaneous unit hydrograph

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    1988-01-01

    The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude, N, tends asymptotically, as N grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, {Mathematical expression}, where ?? is a mean link wave travel time. ?? 1988 Springer-Verlag.

  3. Wedge locality and asymptotic commutativity

    NASA Astrophysics Data System (ADS)

    Soloviev, M. A.

    2014-05-01

    In this paper, we study twist deformed quantum field theories obtained by combining the Wightman axiomatic approach with the idea of spacetime noncommutativity. We prove that the deformed fields with deformation parameters of opposite sign satisfy the condition of mutual asymptotic commutativity, which was used earlier in nonlocal quantum field theory as a substitute for relative locality. We also present an improved proof of the wedge localization property discovered for the deformed fields by Grosse and Lechner, and we show that the deformation leaves the asymptotic behavior of the vacuum expectation values in spacelike directions substantially unchanged.

  4. Asymptotic Normality of Quadratic Estimators.

    PubMed

    Robins, James; Li, Lingling; Tchetgen, Eric; van der Vaart, Aad

    2016-12-01

    We prove conditional asymptotic normality of a class of quadratic U-statistics that are dominated by their degenerate second order part and have kernels that change with the number of observations. These statistics arise in the construction of estimators in high-dimensional semi- and non-parametric models, and in the construction of nonparametric confidence sets. This is illustrated by estimation of the integral of a square of a density or regression function, and estimation of the mean response with missing data. We show that estimators are asymptotically normal even in the case that the rate is slower than the square root of the observations.

  5. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  6. Lorentzian proper vertex amplitude: Asymptotics

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan; Vilensky, Ilya; Zipfel, Antonia

    2016-09-01

    In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semiclassical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the Engle-Pereira-Rovelli-Livine (EPRL) case by an extra "projector" term. This extra term scales linearly with spins only in the asymptotic limit, and is discontinuous on a (lower dimensional) submanifold of the integration domain in the sense that its value at each such point depends on the direction of approach. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a nondegenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.

  7. Asymptotic screened hydrogenic radial integrals

    NASA Technical Reports Server (NTRS)

    Olsgaard, D. A.; Khan, F.; Khandelwal, G. S.

    1988-01-01

    The usefulness of the screened hydrogenic model for the transitions of the helium sequence is studied. The screened hydrogenic radial dipole integral for discrete-discrete transitions from the initial state to the final state is asymptotically expanded to the lowest order such that the final quantum number n approaches infinity. The analytical expression obtained is in terms of confluent hypergeometric functions.

  8. Red giants: then and now

    NASA Astrophysics Data System (ADS)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  9. Chemical Abundance Analysis of the Symbiotic Red Giants

    NASA Astrophysics Data System (ADS)

    Galan, Cezary; Mikolajewska, Joanna; Hinkle, Kenneth H.

    2015-01-01

    The study of symbiotic stars - the long period, interacting binary systems - composed of red giant donor and a hot, compact companion is important for our understanding of binary stellar evolution in systems where mass loss or transfer take place involving RGB/AGB stars. The elemental abundances of symbiotic giants can track the mass exchange history and can determine their parent stellar population. However, the number of these objects with fairly well determined photospheric composition is insufficient for statistical considerations. Here we present the detailed chemical abundance analysis obtained for the first time for 14 M-type symbiotic giants. The analysis is based on the high resolution (R ˜ 50000), high S/N ˜ 100, near-IR spectra (at H- and K-band regions) obtained with Phoenix/Gemini South spectrometer. Spectrum synthesis employing standard LTE analysis and atmosphere models was used to obtain photospheric abundances of CNO and elements around the iron peak (Sc, Ti, Fe, and Ni). Our analysis reveals mostly slightly sub-solar or near-solar metallicities. We obtained significantly subsolar metallicities for RW Hya, RT Ser, and Hen 3-1213 and slightly super-solar metallicity in V455 Sco. The very low ^{12}C/^{13}C isotopic ratios, ˜6-11, and significant enrichment in nitrogen ^{14}N isotope in almost all giants in our sample indicate that they have experienced the first dredge-up.

  10. Asymptotic controllability and optimal control

    NASA Astrophysics Data System (ADS)

    Motta, M.; Rampazzo, F.

    We consider a control problem where the state must approach asymptotically a target C while paying an integral cost with a non-negative Lagrangian l. The dynamics f is just continuous, and no assumptions are made on the zero level set of the Lagrangian l. Through an inequality involving a positive number p and a Minimum Restraint FunctionU=U(x) - a special type of Control Lyapunov Function - we provide a condition implying that (i) the system is asymptotically controllable, and (ii) the value function is bounded by U/p. The result has significant consequences for the uniqueness issue of the corresponding Hamilton-Jacobi equation. Furthermore it may be regarded as a first step in the direction of a feedback construction.

  11. Composite operators in asymptotic safety

    NASA Astrophysics Data System (ADS)

    Pagani, Carlo; Reuter, Martin

    2017-03-01

    We study the role of composite operators in the asymptotic safety program for quantum gravity. By including in the effective average action an explicit dependence on new sources, we are able to keep track of operators which do not belong to the exact theory space and/or are normally discarded in a truncation. Typical examples are geometric operators such as volumes, lengths, or geodesic distances. We show that this setup allows us to investigate the scaling properties of various interesting operators via a suitable exact renormalization group equation. We test our framework in several settings including quantum Einstein gravity, the conformally reduced Einstein-Hilbert truncation, and two-dimensional quantum gravity. Finally, we briefly argue that our construction paves the way to approach observables in the asymptotic safety program.

  12. Asymptotic safety goes on shell

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  13. Constructing stable 3D hydrodynamical models of giant stars

    NASA Astrophysics Data System (ADS)

    Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker

    2017-02-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.

  14. On asymptotically lacunary invariant statistical equivalent set sequences

    NASA Astrophysics Data System (ADS)

    Pancaroglu, Nimet; Nuray, Fatih; Savas, Ekrem

    2013-10-01

    In this paper, we define asymptotically invariant equivalence, strongly asymptotically invariant equivalence, asymptotically invariant statistical equivalence, asymptotically lacunary invariant statistical equivalence, strongly asymptotically lacunary invariant equivalence, asymptotically lacunary invariant equivalence (Wijsman sense) for sequences of sets. Also we investigate some relations between asymptotically lacunary invariant statistical equivalence and asymptotically invariant statistical equivalence for sequences of sets. We introduce some notions and theorems as follows, asymptotically lacunary invariant statistical equivalence, strongly asymptotically lacunary invariant equivalence, asymptotically lacunary invariant equivalence (Wijsman sense) for sequences of sets.

  15. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  16. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  17. Coordinated observations of interacting peculiar red giant binaries, 1

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE Observations were begun for a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s) HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. From our earlier surveys of PRG's, they were primary candidates to test the hypothesis that Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  18. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  19. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  20. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  1. VizieR Online Data Catalog: Torun catalog of post-AGB and related objects (Szczerba+, 2007)

    NASA Astrophysics Data System (ADS)

    Szczerba, R.; Siodmiak, N.; Stasinska, G.; Borkowski, J.

    2007-09-01

    With the ongoing AKARI infrared sky survey, of much greater sensitivity than IRAS, a wealth of post-AGB objects may be discovered. It is thus time to organize our present knowledge of known post-AGB stars in the galaxy with a view to using it to search for new post-AGB objects among AKARI sources. We searched the literature available on the NASA Astrophysics Data System up to 1 October 2006, and defined criteria for classifying sources into three categories: very likely, possible and disqualified post-AGB objects. The category of very likely post-AGB objects is made up of several classes. We have created an evolutionary, on-line catalogue of Galactic post-AGB objects, to be referred to as the Torun catalogue of Galactic post-AGB and related objects. The present version of the catalogue contains 326 very likely, 107 possible and 64 disqualified objects. For the very likely post-AGB objects, the catalogue gives the available optical and infrared photometry, infrared spectroscopy and spectral types, and links to finding charts and bibliography. (3 data files).

  2. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response.

    PubMed

    Yu, Yunqing; Assmann, Sarah M

    2015-10-01

    Salinity stress includes both osmotic and ionic toxicity. Sodium homeostasis is influenced by Na(+) uptake and extrusion, vacuolar Na(+) compartmentation and root to shoot Na(+) translocation via transpiration. The knockout mutant of the Arabidopsis heterotrimeric G-protein Gβ subunit, agb1, is hypersensitive to salt, exhibiting a leaf bleaching phenotype. We show that AGB1 is mainly involved in the ionic toxicity component of salinity stress and plays roles in multiple processes of Na(+) homeostasis. agb1 mutants accumulate more Na(+) and less K(+) in both shoots and roots of hydroponically grown plants, as measured by inductively coupled plasma atomic emission spectrometry. agb1 plants have higher root to shoot translocation rates of radiolabelled (24) Na(+) under transpiring conditions, as a result of larger stomatal apertures and increased stomatal conductance. (24) Na(+) tracer experiments also show that (24) Na(+) uptake rates by excised roots of agb1 and wild type are initially equal, but that agb1 has higher net Na(+) uptake at 90 min, implicating possible involvement of AGB1 in the regulation of Na(+) efflux. Calcium alleviates the salt hypersensitivity of agb1 by reducing Na(+) accumulation to below the toxicity threshold. Our results provide new insights into the regulatory pathways underlying plant responses to salinity stress, an important agricultural problem.

  3. The maximum drag reduction asymptote

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  4. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  5. Asymptotic density and effective negligibility

    NASA Astrophysics Data System (ADS)

    Astor, Eric P.

    In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both

  6. Asymptotic safety, emergence and minimal length

    NASA Astrophysics Data System (ADS)

    Percacci, Roberto; Vacca, Gian Paolo

    2010-12-01

    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.

  7. Every composition operator is (mean) asymptotically Toeplitz

    NASA Astrophysics Data System (ADS)

    Shapiro, Joel H.

    2007-09-01

    Nazarov and Shapiro recently showed that, while composition operators on the Hardy space H2 can only trivially be Toeplitz, or even "Toeplitz plus compact," it is an interesting problem to determine which of them can be "asymptotically Toeplitz." I show here that if "asymptotically" is interpreted in, for example, the Cesaro (C,[alpha]) sense ([alpha]>0), then every composition operator on H2 becomes asymptotically Toeplitz.

  8. Asymptotic and Fredholm representations of discrete groups

    NASA Astrophysics Data System (ADS)

    Manuilov, V. M.; Mishchenko, A. S.

    1998-10-01

    A C^*-algebra servicing the theory of asymptotic representations and its embedding into the Calkin algebra that induces an isomorphism of K_1-groups is constructed. As a consequence, it is shown that all vector bundles over the classifying space B\\pi that can be obtained by means of asymptotic representations of a discrete group \\pi can also be obtained by means of representations of the group \\pi \\times {\\mathbb Z} into the Calkin algebra. A generalization of the concept of Fredholm representation is also suggested, and it is shown that an asymptotic representation can be regarded as an asymptotic Fredholm representation.

  9. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    SciTech Connect

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L.

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  10. The Electric Giant Resonances

    NASA Astrophysics Data System (ADS)

    van der Woude, A.

    The following sections are included: * Introduction * Experimental Methods to Study Giant Resonances * Introduction * The Tools * Introduction * Tools for Isoscalar Scattering * INELASTIC α-SCATTERING * INELASTIC PROTON SCATTERING * Tools for Isovector Excitations * γ-ABSORPTION AND PARTICLE CAPTURE REACTIONS * CHARGE EXCHANGE REACTIONS - THE (π+, π0) REACTION * Tools For Isoscalar And Isovector Excitations * INELASTIC ELECTRON SCATTERING * GIANT RESONANCE EXCITATION BY FAST HEAVY IONS * From Multipole Cross Section To Multipole Strength * The Electric Isoscalar Resonances * The Isoscalar Giant Monopole Resonance * Systematics on the GMR * Compressibility and the Giant Monopole Resonance * Introduction * The Compressibility of nuclear matter from the GMR energies * Discussion * The Isoscalar Giant Quadrupole Resonance * General Trends In Medium-Heavy and Heavy Nuclei * The GQR In Light Nuclei * The Isoscalar 3- Strength, LEOR and HEOR * Isoscalar 4+ Strength * Miscellaneous; Isoscalar 1- and L > 4-Strength * The Electric Isovector Giant Resonances * The Isovector Giant Dipole Resonance: GDR * The Isovector Giant Monopole Resonances: IVGMR * The Isovector Quadrupole Resonance: IVGQR * The Effect of Ground State Deformation on the Shape of Giant Resonance: Microscopic Picture * Giant Resonances Built on Excited States * Introduction * Capture Reactions on Light Nuclei * Statistical decay of GDR γ Emission in Heavy Compound Systems * Introduction * Theoretical Predictions * Some Experimental Results * Summary and Outlook * Acknowledgements * General References * References

  11. The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project. I. The Lithium-, s-, and r-enhanced Metal-poor Giant HKII 17435-00532

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Frebel, Anna; Shetrone, Matthew D.; Allende Prieto, Carlos; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Sneden, Christopher; Beers, Timothy C.; Cowan, John J.

    2008-06-01

    We present the first detailed abundance analysis of the metal-poor giant HKII 17435-00532. This star was observed as part of the University of Texas long-term project Chemical Abundances of Stars in the Halo (CASH). A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R ~ 15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = - 2.2) star has an unusually high lithium abundance [log ɛ (Li) = + 2.1], mild carbon ([C/Fe] = + 0.7) and sodium ([Na/Fe] = + 0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = + 0.8) and r-process ([Eu/Fe] = + 0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing that connects the convective envelope with the outer regions of the H-burning shell. If so, HKII 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The Na and n-capture enrichment can be explained by mass transfer from a companion that passed through the thermally pulsing AGB phase of evolution with only a small initial enrichment of r-process material present in the birth cloud. Despite the current nondetection of radial velocity variations (over ~180 days), it is possible that HKII 17435-00532 is in a long-period or highly inclined binary system, similar to other stars with similar n-capture enrichment patterns. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  12. The Hobby-Eberly Telescope "Chemical Abundances Of Stars In The Halo" (CASH) Project. I. The Lithium-, r-, and s-enhanced Metal-poor Giant HK-II 17435-00532

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Frebel, A.; Shetrone, M.; Allende Prieto, C.; Rhee, J.; Gallino, R.; Bisterzo, S.; Sneden, C.; Beers, T. C.; Cowan, J. J.

    2007-12-01

    We present the first detailed abundance analysis of the metal-poor giant HK-II 17435-00532. This star was observed as part of the University of Texas Long-Term "Chemical Abundances of Stars in the Halo" (CASH) Project. A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R 15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H]=-2.2) star has an unusually high lithium abundance (log ɛ (Li)=+2.1), mild carbon ([C/Fe]=+0.7) and sodium ([Na/Fe]=+0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe]=+0.8) and r-process ([Eu/Fe]=+0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing mechanisms that connect the convective envelope with the outer regions of the H-burning shell. If so, HK-II 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The r- and s-process material was not produced in this star but was either present in the gas from which HK-II 17435-00532 formed or was transferred to it from a more massive binary companion. Despite the current non-detection of radial velocity variations (over a time span of 180 days), it is possible that HK-II 17435-00532 is in a long-period binary system, similar to other stars with both r and s enrichment. We acknowledge support from the W.J. McDonald Fellowship of McDonald Observatory (to A.F), NASA's AAS Small Research Grant Program and the GALEX GI grant 05-GALEX05-27 (to J.R.), the Italian MIUR-PRIN06 Project "Late phases of Stellar Evolution: Nucleosynthesis in Supernovae, AGB Stars, Planetary Nebulae" (to R.G.), and the U.S. National Science Foundation (grants AST06-07708 to C.S., AST04-06784, AST07-07776 and PHY02-15783 to T.C.B., and AST 07-07447 to J.J.C.).

  13. Asymptotic expansions in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Day, William B.

    1987-01-01

    This paper is an examination of special nonlinearities of the Jeffcott equations in rotordynamics. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot-firing ground testing. Deadband, side force, and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency, is defined and used to develop the solutions of the nonlinear Jeffcott equations as singular asymptotic expansions. This nonlinear natural frequency, which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies.

  14. Asymptotic invariants of homotopy groups

    NASA Astrophysics Data System (ADS)

    Manin, Fedor

    We study the homotopy groups of a finite CW complex X via constraints on the geometry of representatives of their elements. For example, one can measure the "size" of alpha ∈ pi n (X) by the optimal Lipschitz constant or volume of a representative. By comparing the geometrical structure thus obtained with the algebraic structure of the group, one can define functions such as growth and distortion in pin(X), analogously to the way that such functions are studied in asymptotic geometric group theory. We provide a number of examples and techniques for studying these invariants, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their volume distortion functions, and hence also their Lipschitz distortion functions, are linear.

  15. Iron and Nickel Isotopic Compositions of Presolar Silicon Carbide Grains from AGB Stars Measured with CHILI

    NASA Astrophysics Data System (ADS)

    Trappitsch, R.; Stephan, T.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Gyngard, F.; Bisterzo, S.; Gallino, R.; Dauphas, N.

    2016-08-01

    Simultaneous iron and nickel isotopic studies in presolar SiC mainstream grains measured on CHILI show the expected AGB star anomalies in the neutron-rich isotopes. Neutron-poor isotopes are dominated by GCE and show clear correlations with silicon.

  16. The LF of TP-AGB stars in the LMC/SMC

    NASA Technical Reports Server (NTRS)

    Bruzual, Gustavo; Charlot, Stephane; GonzalezLopezlira, Rosa; Srinivasan, Sundar; Boyer, Martha L.

    2013-01-01

    We show that Monte Carlo simulations of the TP-AGB stellar population in the LMC and SMC galaxies using the CB. models produce LF and color distributions that are in closer agreement with observations than those obtained with the BC03 and CB07 models. This is a progress report of work that will be published elsewhere.

  17. FUV and Optical Spectroscopy of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Dixon, William V.

    2004-01-01

    The goal of this program was to determine the atmospheric parameters (effective temperature and surface gravity) and abundances of the hot, post-AGB (PAGB) stars in globular clusters observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-l and 2 missions.

  18. AGB Statement on Board Responsibility for the Oversight of Educational Quality

    ERIC Educational Resources Information Center

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This "Statement on Board Responsibility for the Oversight of Educational Quality," approved by the Board of Directors of the Association of Governing Boards (AGB) in March 2011, urges institutional administrators and governing boards to engage fully in this area of board responsibility. The seven principles in this statement offer suggestions to…

  19. An asymptotic model of the F layer

    NASA Astrophysics Data System (ADS)

    Oliver, W. L.

    2012-01-01

    A model of the F layer of the ionosphere is presented that consists of a bottomside asymptote that ignores transport and a topside asymptote that ignores chemistry. The asymptotes connect at the balance height dividing the chemistry and transport regimes. A combination of these two asymptotes produces a good approximation to the true F layer. Analogously, a model of F layer response to an applied vertical drift is presented that consists of two asymptotic responses, one that ignores transport and one that ignores chemistry. The combination of these asymptotic responses produces a good approximation to the response of the true F layer. This latter response is identical to the “servo” response of Rishbeth et al. (1978), derived from the continuity equation. The asymptotic approach bypasses the continuity equation in favor of “force balance” arguments and so replaces a differential equation with simpler algebraic equations. This new approach provides a convenient and intuitive mean for first-order estimates of the change in F layer peak height and density in terms of changes in neutral density, composition, temperature, winds, and electric fields. It is applicable at midlatitudes and at magnetically quiet times at high latitudes. Forensic inverse relations are possible but are not unique. The validity of the asymptotic relations is shown through numerical simulation.

  20. Einstein-Yang-Mills theory: Asymptotic symmetries

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Lambert, Pierre-Henry

    2013-11-01

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four-dimensional asymptotically flat case.

  1. On SLλ(I)-asymptotically statistical equivalent sequences

    NASA Astrophysics Data System (ADS)

    Gumus, Hafize; Savas, Ekrem

    2012-09-01

    This paper presents the notion of SLλ(I)-asymptotically statistical equivalence which is a natural combination of asymptotic I-equivalence and λ-statistical equivalence. We find its relation to I-asymptotically statistical convergence, strong λI-asymptotically equivalence and strong Cesàro I-asymptotically equivalence.

  2. A chemical route to the formation of water in circumstellar envelopes around carbon-rich asymptotic branch stars: Fischer-Tropsch catalysis

    NASA Technical Reports Server (NTRS)

    Willacy, K.

    2004-01-01

    Fischer-Tropsch catalysis has been suggested as a means of driving hydrocarbon chemistry in oxygen rich regions such as the protosolar nebula. In addition to producing hydrocarbons, Fischer-Tropsch catalysis also produces water, and it is therefore possible that such processes could account for the recent observations of water in the circumstellar envelope of asymptotic giant branch star IRC +10216.

  3. Detecting communities using asymptotical surprise

    NASA Astrophysics Data System (ADS)

    Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.

    2015-08-01

    Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.

  4. Asymptotics of Simple Branching Populations

    NASA Astrophysics Data System (ADS)

    Huillet, Thierry; Kłopotowski, Andrzej; Porzio, Anna

    1995-09-01

    In this paper we study a simple deterministic tree structure: an initial individual generates a finite number of offspring, each of which has given integer valued lifetime, iterating the same procedure when dying. Three asymptotic distributions of this asynchronous deterministic branching procedure are considered: the generation distribution, the ability of individuals to generate offspring and the age distribution. Thermodynamic formalism is then developped to reveal the multifractal nature of the mass splitting associated to our process. On considère l'itération d'une structure déterministe arborescente selon laquelle un ancêtre engendre un nombre fini de descendants dont la durée de vie (à valeurs entières) est donnée. Dans un premier temps on s'intéresse aux trois distributions asymptotiques suivantes : répartition des générations, aptitude à engendrer des descendants et répartition selon l'âge. Ensuite nous développons le formalisme thermodynamique pour mettre en évidence le caractère multifractal de la scission d'une masse unitaire associée à cette arborescence.

  5. Asymptotic unbounded root loci - Formulas and computation

    NASA Technical Reports Server (NTRS)

    Sastry, S. S.; Desoer, C. A.

    1983-01-01

    A new geometric way of computing the asymptotic behavior of unbounded root loci of a strictly proper linear time-invariant control system as loop gain goes to infinity is presented. Properties of certain restricted linear maps and nested restrictions of linear maps are developed, and formulas are obtained for the leading coefficient of the asymptotic values of the unbounded multivariable root loci are obtained in terms of eigenvalues of those maps. Published results and a certain simple null structure assumption are used to relate these asymptotic values to the structure at infinity of the Smith-McMillan form of the open loop transfer function. Explicit matrix formulas for the more abstract derived formulas are given and additional geometric insights are developed with orthogonal projections and singular value decomposition. Formulas for the pivots of the unbounded root loci are calculated and shown to have the same form as the coefficients of the unbounded asymptotic root loci.

  6. On asymptotically generalized statistical equivalent set sequences

    NASA Astrophysics Data System (ADS)

    Savas, Ekrem

    2013-10-01

    In this paper we shall study the asymptotically λ-statistical equivalent (Wijsman sense) of multiple L. In addition to these definition, natural inclusion theorems shall also be presented. This approach has not been considered in any context before.

  7. The Nearby AGB Star L2 Puppis: The Birth Of a Planetary Nebula?

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Lagadec, E.

    2015-12-01

    Adaptive optics observations in the infrared (VLT/NACO, Kervella et al. [6]) and visible (VLT/SPHERE, Kervella et al. [7]) domains revealed that the nearby AGB star L2 Pup (d = 64 pc) is surrounded by a dust disk seen almost edge-on. Thermal emission from a large dust "loop" is detected at 4 μm up to more than 10 AU from the star. We also detect a secondary source at a separation of 32 mas, whose nature is uncertain. L2 Pup is currently a relatively "young" AGB star, so we may witness the formation of a planetary nebula. The mechanism that breaks the spherical symmetry of mass loss is currently uncertain, but we propose that the dust disk and companion are key elements in the shaping of the bipolar structure. L2 Pup emerges as an important system to test this hypothesis.

  8. UV Excess and AGB Evolution in Elliptical-Galaxy Stellar Populations

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, R. A.; Buzzoni, A.

    2009-03-01

    The puzzling origin of the ``UV-upturn'' phenomenon, observed in some elliptical galaxies, has recently been settled by identifying hot HB stars as main contributors to galaxy ultraviolet luminosity excess. While a blue HB morphology seems a natural characteristic of metal-poor stellar populations, its appearance in metal-rich systems, often coupled with a poorer rate of planetary nebulae per unit galaxy luminosity, might be calling for an intimate connection between UV excess and AGB properties in early-type galaxies. In this work, we want to briefly assess this issue relying on infrared surface brightness fluctuations as a powerful tool to trace AGB properties in external galaxies with unresolved stellar populations.

  9. A PILOT DEEP SURVEY FOR X-RAY EMISSION FROM fuvAGB STARS

    SciTech Connect

    Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M.

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ∼(0.002–0.2) L{sub ⊙} and the X-ray-emitting plasma temperatures are ∼(35–160) × 10{sup 6} K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  10. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  11. VLT/NACO Imaging of the Nearest AGB Star, L2 Puppis

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Ridgway, S. T.; Perrin, G.; Chesneau, O.

    2015-08-01

    AGB stars are the most important contributors to the chemical enrichment of the Galaxy. During their later evolutionary stages they experience intense pulsations and eject most of their layers as they become planetary nebulae (PNe). The process leading to the formation of bipolar PNe remains poorly understood. It is assumed that the circumstellar disk of an AGB star could collimate the stellar wind to form a bipolar PN, yet very few of these disks have been observed. Using the adaptive-optics system of the VLT/NACO instrument at the Paranal Observatory and a "lucky imaging" technique, our team obtained near-infrared diffraction-limited images of the nearest AGB star, L2 Puppis. The deconvolved images reveal a dark structure in front of the star whose morphology and photometry match a dusty edge-on disk of olivine and pyroxene modeled with a Monte-Carlo radiative transfer code. The L band images also show a loop structure, possibly the signature of an interacting hidden companion.

  12. The Next Giant Step

    NASA Video Gallery

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  13. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  14. Monitoring Observatinos of H2O and SiO Masers Toward Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Kim, Jaeheon; Cho, Se-Hyung; Yoon, Dong-Hwan

    2016-12-01

    We present the results of simultaneous monitoring observations of H_2O 6_{1,6}-5_{2,3} (22 GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129 GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both H_2O and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect H_2O maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected H_2O masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the H_2O maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3 → OH13.1+5.1 → OH16.1-0.3 → OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the H_2O maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and H_2O masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the 1.2 - 160 μm spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations

  15. Asymptotic wave propagation in excitable media.

    PubMed

    Bernus, Olivier; Vigmond, Edward

    2015-07-01

    Wave shape and velocity are important issues in reaction-diffusion systems, and are often the result of competition in media with heterogeneous conduction properties. Asymptotic wave front propagation at maximal conduction velocity has been previously reported in the context of anisotropic cardiac tissue, but it is unknown whether this is a universal property of excitable tissues where conduction velocity can be locally modulated by mechanisms other than anisotropy. Here, we investigate the impact of conduction heterogeneities and boundary effects on wave propagation in excitable media. Following a theoretical analysis, we find that wave-front cusps occur where local velocity is reduced and that asymptotic wave fronts propagate at the maximal translational conduction velocity. Simulations performed in different reaction-diffusion systems, including cardiac tissue, confirm our theoretical findings. We conclude that this property can be found in a wide range of reaction-diffusion systems with excitable dynamics and that asymptotic wave-front shapes can be predicted.

  16. Charting the Giants

    NASA Astrophysics Data System (ADS)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  17. Asymptotics of a horizontal liquid bridge

    NASA Astrophysics Data System (ADS)

    Haynes, M.; O'Brien, S. B. G.; Benilov, E. S.

    2016-04-01

    This paper uses asymptotic techniques to find the shape of a two dimensional liquid bridge suspended between two vertical walls. We model the equilibrium bridge shape using the Laplace-Young equation. We use the Bond number as a small parameter to deduce an asymptotic solution which is then compared with numerical solutions. The perturbation approach demonstrates that equilibrium is only possible if the contact angle lies within a hysteresis interval and the analysis relates the width of this interval to the Bond number. This result is verified by comparison with a global force balance. In addition, we examine the quasi-static evolution of such a two dimensional bridge.

  18. Asymptotic stability of singularly perturbed differential equations

    NASA Astrophysics Data System (ADS)

    Artstein, Zvi

    2017-02-01

    Asymptotic stability is examined for singularly perturbed ordinary differential equations that may not possess a natural split into fast and slow motions. Rather, the right hand side of the equation is comprised of a singularly perturbed component and a regular one. The limit dynamics consists then of Young measures, with values being invariant measures of the fast contribution, drifted by the slow one. Relations between the asymptotic stability of the perturbed system and the limit dynamics are examined, and a Lyapunov functions criterion, based on averaging, is established.

  19. Giant congenital melanocytic nevus*

    PubMed Central

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion. PMID:24474093

  20. Giant congenital melanocytic nevus.

    PubMed

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion.

  1. Coordinated observations of interacting peculiar red giant binaries, 2

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE and H alpha observations continued on a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s), HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. They were primary candidates from earlier surveys of PRG's to test the hypothesis that the Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  2. Asymptotic theory of relativistic, magnetized jets

    SciTech Connect

    Lyubarsky, Yuri

    2011-01-15

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  3. Asymptotic theory of relativistic, magnetized jets.

    PubMed

    Lyubarsky, Yuri

    2011-01-01

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  4. Lectures on renormalization and asymptotic safety

    SciTech Connect

    Nagy, Sandor

    2014-11-15

    A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross–Neveu model, the nonlinear σ model, the sine–Gordon model, and we consider the model of quantum Einstein gravity which seems to show asymptotic safety, too. We also give a detailed analysis of infrared behavior of such scalar models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The theory spaces of these models show several similar properties, namely the models have the same phase and fixed point structure. The quantum Einstein gravity also exhibits similarities when considering the global aspects of its theory space since the appearing two phases there show analogies with the symmetric and the broken phases of the scalar models. These results be nicely uncovered by the functional renormalization group method.

  5. Layer tracking, asymptotics, and domain decomposition

    NASA Technical Reports Server (NTRS)

    Brown, D. L.; Chin, R. C. Y.; Hedstrom, G. W.; Manteuffel, T. A.

    1991-01-01

    A preliminary report is presented on the work on the tracking of internal layers in a singularly-perturbed convection-diffusion equation. It is shown why such tracking may be desirable, and it is also shown how to do it using domain decomposition based on asymptotic analysis.

  6. On asymptotic properties of biharmonic Steklov eigenvalues

    NASA Astrophysics Data System (ADS)

    Liu, Genqian

    2016-11-01

    In this paper, by explicitly calculating the principal symbols of pseudodifferential operators, we establish two Weyl-type asymptotic formulas with sharp remainder estimates for the counting functions of the two classes of biharmonic Steklov eigenvalue problems of smooth bounded domains in a Riemannian manifold.

  7. Asymptotic Distributions for Tests of Combined Significance.

    ERIC Educational Resources Information Center

    Becker, Betsy Jane

    This paper discusses distribution theory and power computations for four common "tests of combined significance." These tests are calculated using one-sided sample probabilities or p values from independent studies (or hypothesis tests), and provide an overall significance level for the series of results. Noncentral asymptotic sampling…

  8. Hydrodynamic simulations of the interaction between giant stars and planets

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; De Marco, Orsola; Wood, Peter; Galaviz, Pablo; Passy, Jean-Claude

    2016-05-01

    We present the results of hydrodynamic simulations of the interaction between a 10 Jupiter mass planet and a red or asymptotic giant branch stars, both with a zero-age main sequence mass of 3.5 M⊙. Dynamic in-spiral time-scales are of the order of few years and a few decades for the red and asymptotic giant branch stars, respectively. The planets will eventually be destroyed at a separation from the core of the giants smaller than the resolution of our simulations, either through evaporation or tidal disruption. As the planets in-spiral, the giant stars' envelopes are somewhat puffed up. Based on relatively long time-scales and even considering the fact that further in-spiral should take place before the planets are destroyed, we predict that the merger would be difficult to observe, with only a relatively small, slow brightening. Very little mass is unbound in the process. These conclusions may change if the planet's orbit enhances the star's main pulsation modes. Based on the angular momentum transfer, we also suspect that this star-planet interaction may be unable to lead to large-scale outflows via the rotation-mediated dynamo effect of Nordhaus and Blackman. Detectable pollution from the destroyed planets would only result for the lightest, lowest metallicity stars. We furthermore find that in both simulations the planets move through the outer stellar envelopes at Mach-3 to Mach-5, reaching Mach-1 towards the end of the simulations. The gravitational drag force decreases and the in-spiral slows down at the sonic transition, as predicted analytically.

  9. Tip-AGB stellar evolution in the presence of a pulsating, dust-induced ``superwind"

    NASA Astrophysics Data System (ADS)

    Schröder, K.-P.; Winters, J. M.; Sedlmayr, E.

    1999-09-01

    We present selected ``superwind" mass-loss histories and the related tip-AGB stellar evolution models, which have been computed according to the characteristics of a dust-induced, carbon-rich wind, and which include several recent improvements as compared to Schröder et al. (1998). We discuss the (initial) stellar mass-range of 1 to 2.5 Msun, with a nearly solar composition (X=0.28, Y=0.70, Z=0.02). In each time-step, mass-loss rates are used, which are consistent with the actual stellar parameters, and which are based on our pulsating, dust-induced wind models for carbon-rich stars (Fleischer et al. 1992), including a detailed and consistent treatment of dust formation, radiative transfer and radiative wind acceleration. The resulting ``superwind" mass-loss rates reach 2 to 3* 10(-5) Msun yr(-1) . For this reason, they become an influential factor of tip-AGB stellar evolution - but also vice versa, since our mass-loss rates vary strongly with effective temperature (dot {M} ~ T_eff(-8) (roughly), see Arndt et al. 1997), reflecting the temperature sensitivity of the dust formation process on a macroscopic scale. With all tip-AGB models of an initial stellar mass Mi >~ 1.3 Msun we find superwinds with a total mass outflow of 0.26 to >~ 0.55 Msun during their final 3* 10(4) yrs, just as required for PN-formation. Furthermore, a thermal pulse leads to a very short (100 to 200 yrs) interruption of the ``superwind" of these models. A critical (Eddington-like) luminosity Lc is required for the radiation driven wind models, which our evolution models fail to reach for Mi <~ 1.1 Msun. With slightly larger stellar masses, L_tAGB is near Lc and thermal pulses can trigger very short ``superwind" bursts, as already pointed out by Schröder et al. (1998). We find good agreement between our improved models and the mass-loss characteristics of the thin CO shells found by Olofsson et al. (1990, 1993, 1996, 1998) around some carbon-rich Mira stars.

  10. Compact reflection nebulae, a transit phase of evolution from post-AGB to planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hu, J. Y.; Slijkhuis, S.

    1989-01-01

    In a search of the optical counter-part of candidates of protoplanetary nebulae on the plates of UK Schmidt, ESO Schmidt, and POSS, five compact reflection nebulae associated with post-AGB stars were found. A simplified model (dust shell is spherical symmetric, expansion velocity of dust shell is constant, Q(sub sca)(lambda) is isotropic, and the dust grain properties are uniform) is used to estimate the visible condition of the dust shell due to the scattering of the core star's light. Under certain conditions the compact reflection nebulae can be seen of the POSS or ESO/SRC survey plates.

  11. An Innocent Giant

    PubMed Central

    Solanki, Lakhan Singh; Dhingra, Mandeep; Raghubanshi, Gunjan; Thami, Gurvinder Pal

    2014-01-01

    A cutaneous horn (cornu cutaneum) is a protrusion from the skin composed of a cornified material. It may be associated with a benign, premalignant, or malignant lesion at the base, masking numerous dermatoses. In a 24-year-old female, a giant cutaneous horn arising from a seborrheic keratosis located on the leg is presented. This case has been reported to emphasize that a giant cutaneous horn may also occur in young patients, even in photoprotected areas, and are not always associated with malignancy. PMID:25484426

  12. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    SciTech Connect

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienayme, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-12-20

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] < -0.5) selected from the Radial Velocity Experiment survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H] {approx}< -1.9), and have a Li abundance (in the form of {sup 7}Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) < 0.5, while two stars, with A(Li) {approx} 1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further included two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority of our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the RGB bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as {sup 7}Be (which burns to {sup 7}Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  13. Giant scrotal elephantiasis.

    PubMed

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  14. Electroluminescence of Giant Stretchability.

    PubMed

    Yang, Can Hui; Chen, Baohong; Zhou, Jinxiong; Chen, Yong Mei; Suo, Zhigang

    2016-06-01

    A new type of electroluminescent device achieves giant stretchability by integrating electronic and ionic components. The device uses phosphor powders as electroluminescent materials, and hydrogels as stretchable and transparent ionic conductors. Subject to cyclic voltage, the phosphor powders luminesce, but the ionic conductors do not electrolyze. The device produces constant luminance when stretched up to an area strain of 1500%.

  15. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  16. Pulsational variability in proto-planetary nebulae and other post-AGB objects

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.

    2016-07-01

    Light and velocity curves of several classes of pulsating stars have been successfully modeled to determine physical properties of the stars. In this observational study, we review briefly the pulsational variability of the main classes of post-AGB stars. Our attention is focused in particular on proto-planetary nebulae (PPNe), those in the short-lived phase from AGB stars to the planetary nebulae. New light curves and period analyses have been used to determine the following general properties of the PPNe variability: (a) periods range from 35 to 160 days for those of F—G spectral types, with much shorter periods (< 1 day) found for those of early-B spectral type; (b) there is a correlation between the pulsation period, maximum amplitude, and temperature of the star, with cooler stars pulsating with longer periods and larger amplitudes; (c) similar correlations are found for carbon-rich, oxygen-rich, and lower-metalicity PPNe; and (d) multiple periods are found for all of them, with P2/P1 = 1.0±0.1. New models are needed to exploit these results.

  17. Brane model with two asymptotic regions

    NASA Astrophysics Data System (ADS)

    Lubo, Musongela

    2005-02-01

    Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.

  18. Asymptotics of Determinants of Bessel Operators

    NASA Astrophysics Data System (ADS)

    Basor, Estelle L.; Ehrhardt, Torsten

    For aL∞(+)∩L1(+) the truncated Bessel operator Bτ(a) is the integral operator acting on L2[0,τ] with the kernel where Jν stands for the Bessel function with ν>-1. In this paper we determine the asymptotics of the determinant det(I+Bτ(a)) as τ-->∞ for sufficiently smooth functions a for which a(x)≠1 for all x[0,∞). The asymptotic formula is of the form det(I+Bτ(a)) GτE with certain constants G and E, and thus similar to the well-known Szegö-Akhiezer-Kac formula for truncated Wiener-Hopf determinants.

  19. The Asymptotic Safety Scenario in Quantum Gravity.

    PubMed

    Niedermaier, Max; Reuter, Martin

    2006-01-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  20. Asymptotic scaling in turbulent pipe flow.

    PubMed

    McKeon, B J; Morrison, J F

    2007-03-15

    The streamwise velocity component in turbulent pipe flow is assessed to determine whether it exhibits asymptotic behaviour that is indicative of high Reynolds numbers. The asymptotic behaviour of both the mean velocity (in the form of the log law) and that of the second moment of the streamwise component of velocity in the outer and overlap regions is consistent with the development of spectral regions which indicate inertial scaling. It is shown that an 'inertial sublayer' in physical space may be considered as a spatial analogue of the inertial subrange in the velocity spectrum and such behaviour only appears for Reynolds numbers R+>5 x 10(3), approximately, much higher than was generally thought.

  1. Brane model with two asymptotic regions

    SciTech Connect

    Lubo, Musongela

    2005-02-15

    Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.

  2. Asymptotic Dynamics of Attractive-Repulsive Swarms

    NASA Astrophysics Data System (ADS)

    Leverentz, Andrew J.; Topaz, Chad M.; Bernoff, Andrew J.

    2009-01-01

    We classify and predict the asymptotic dynamics of a class of swarming models. The model consists of a conservation equation in one dimension describing the movement of a population density field. The velocity is found by convolving the density with a kernel describing attractive-repulsive social interactions. The kernel's first moment and its limiting behavior at the origin determine whether the population asymptotically spreads, contracts, or reaches steady state. For the spreading case, the dynamics approach those of the porous medium equation. The widening, compactly supported population has edges that behave like traveling waves whose speed, density, and slope we calculate. For the contracting case, the dynamics of the cumulative density approach those of Burgers' equation. We derive an analytical upper bound for the finite blow-up time after which the solution forms one or more delta-functions.

  3. Non-asymptotic Analysis of Bandlimited Functions

    DTIC Science & Technology

    2012-01-12

    Illustration of Theorem 10 with c = 1000 and n = 670. 44 References [1] Richard K. Miller, Anthony N. Michel, Ordinary Differential Equations, Dover ...Publications, Inc., 1982. [2] Yoel Shkolnisky, Mark Tygert, Vladimir Rokhlin, Approximation of Ban - dlimited Functions. [3] Andreas Glaser, Xiangtao Liu...A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, 1964. [22] M.V. Fedoryuk, Asymptotic

  4. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1988-01-01

    Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.

  5. Asymptotic dynamics of the exceptional Bianchi cosmologies

    NASA Astrophysics Data System (ADS)

    Hewitt, C. G.; Horwood, J. T.; Wainwright, J.

    2003-05-01

    In this paper we give, for the first time, a qualitative description of the asymptotic dynamics of a class of non-tilted spatially homogeneous (SH) cosmologies, the so-called exceptional Bianchi cosmologies, which are of Bianchi type VI$_{-1/9}$. This class is of interest for two reasons. Firstly, it is generic within the class of non-tilted SH cosmologies, being of the same generality as the models of Bianchi types VIII and IX. Secondly, it is the SH limit of a generic class of spatially inhomogeneous $G_{2}$ cosmologies. Using the orthonormal frame formalism and Hubble-normalized variables, we show that the exceptional Bianchi cosmologies differ from the non-exceptional Bianchi cosmologies of type VI$_{h}$ in two significant ways. Firstly, the models exhibit an oscillatory approach to the initial singularity and hence are not asymptotically self-similar. Secondly, at late times, although the models are asymptotically self-similar, the future attractor for the vacuum-dominated models is the so-called Robinson-Trautman SH model instead of the vacuum SH plane wave models.

  6. Asymptotically flat space-times: an enigma

    NASA Astrophysics Data System (ADS)

    Newman, Ezra T.

    2016-07-01

    We begin by emphasizing that we are dealing with standard Einstein or Einstein-Maxwell theory—absolutely no new physics has been inserted. The fresh item is that the well-known asymptotically flat solutions of the Einstein-Maxwell theory are transformed to a new coordinate system with surprising and (seemingly) inexplicable results. We begin with the standard description of (Null) asymptotically flat space-times described in conventional Bondi-coordinates. After transforming the variables (mainly the asymptotic Weyl tensor components) to a very special set of Newman-Unti (NU) coordinates, we find a series of relations totally mimicking standard Newtonian classical mechanics and Maxwell theory. The surprising and troubling aspect of these relations is that the associated motion and radiation does not take place in physical space-time. Instead these relations takes place in an unusual inherited complex four-dimensional manifold referred to as H-space that has no immediate relationship with space-time. In fact these relations appear in two such spaces, H-space and its dual space \\bar{H}.

  7. Some asymptotic properties of duplication graphs

    NASA Astrophysics Data System (ADS)

    Raval, Alpan

    2003-12-01

    Duplication graphs are graphs that grow by duplication of existing vertices, and are important models of biological networks, including protein-protein interaction networks and gene regulatory networks. Three models of graph growth are studied: pure duplication growth, and two two-parameter models in which duplication forms one element of the growth dynamics. A power-law degree distribution is found to emerge in all three models. However, the parameter space of the latter two models is characterized by a range of parameter values for which duplication is the predominant mechanism of graph growth. For parameter values that lie in this “duplication-dominated” regime, it is shown that the degree distribution either approaches zero asymptotically, or approaches a nonzero power-law degree distribution very slowly. In either case, the approach to the true asymptotic degree distribution is characterized by a dependence of the scaling exponent on properties of the initial degree distribution. It is therefore conjectured that duplication-dominated, scale-free networks may contain identifiable remnants of their early structure. This feature is inherited from the idealized model of pure duplication growth, for which the exact finite-size degree distribution is found and its asymptotic properties studied.

  8. Asymptotic form of the Kohn-Sham correlation potential

    SciTech Connect

    Joubert, D. P.

    2007-07-15

    The density-functional correlation potential of a finite system is shown to asymptotically approach a nonzero constant along a nodal surface of the energetically highest occupied orbital and zero everywhere else. This nonuniform asymptotic form of the correlation potential exactly cancels the nonuniform asymptotic behavior of the exact exchange potential discussed by Della Sala and Goerling [Phys. Rev. Lett. 89, 33003 (2002)]. The sum of the exchange and correlation potentials therefore asymptotically tends to -1/r everywhere, consistent with the asymptotic form of the Kohn-Sham potential as analyzed by Almbladh and von Barth [Phys. Rev. B 31, 3231 (1985)].

  9. Massive Open Online Courses (MOOCs): A Primer for University and College Board Members. An AGB White Paper

    ERIC Educational Resources Information Center

    Voss, Brian D.

    2013-01-01

    The environment in which MOOCs and other forms of online education operate is changing virtually every day. Based upon a presentation given to the board of directors of AGB, this white paper is an effort to give board chairs, presidents, and others some context to help guide discussions on their own campuses. It provides a primer on MOOCs,…

  10. Studies of circumstellar shells in AGB stars by multifrequency (sub)mm-VLBI observations of maser emission

    NASA Astrophysics Data System (ADS)

    Colomer, F.; Desmurs, J. F.; Bujarrabal, V.; Baudry, A.; de Vicente, P.; Soria-Ruiz, R.; Alcolea, J.; Diaz-Pulido, A.; Gómez, M.

    2017-03-01

    VLBI observations of maser emission are a basic tool to study the circumstellar envelopes (CSEs) around evolved stars, mainly around AGB and post-AGB stars. The maser lines of water and silicon monoxide are particularly intense. They provide us with high spatial resolution data on the very inner CSEs around AGB stars, including the pulsating layers previous to grain formation and outer regions where the fast expansion characteristic of such envelopes is already present. The analysis of the pumping mechanism of SiO masers and of the physical conditions in the emitting clumps requires accurate maps of the various lines, which show different excitation requirements. A large observational effort is being done to obtain (quasi-)simultaneous multiline data at the highest spatial resolution, using VLBI techniques, which makes possible to compare the relative distribution of the maser lines. We present the state-of-the-art in the field, and discuss preliminary results of SiO masers observed with the Global Millimeter VLBI Array (GMVA) which provide a new view into the physics of these AGB envelopes. The participation of ALMA in these VLBI arrays will boost the study of these masers, at higher frequencies.

  11. asymptoticMK: A Web-Based Tool for the Asymptotic McDonald-Kreitman Test.

    PubMed

    Haller, Benjamin C; Messer, Philipp W

    2017-03-24

    The McDonald-Kreitman (MK) test is a widely used method for quantifying the role of positive selection in molecular evolution. One key shortcoming of this test lies in its sensitivity to the presence of slightly deleterious mutations, which can severely bias its estimates. An asymptotic version of the MK test was recently introduced that addresses this problem by evaluating polymorphism levels for different mutation frequencies separately, and then extrapolating a function fitted to that data. Here we present asymptoticMK, a web-based implementation of this asymptotic McDonald-Kreitman test. Our web service provides a simple R-based interface into which the user can upload the required data (polymorphism and divergence data for the genomic test region and a neutrally evolving reference region). The web service then analyzes the data and provides plots of the test results. This service is free to use, open-source, and available at http://benhaller.com/messerlab/asymptoticMK.html. We provide results from simulations to illustrate the performance and robustness of the asymptoticMK test under a wide range of model parameters.

  12. A collimated jet of molecular gas from a star on the asymptotic giant branch.

    PubMed

    Imai, Hiroshi; Obara, Kumiko; Diamond, Philip J; Omodaka, Toshihiro; Sasao, Tetsuo

    2002-06-20

    Evolved stars of about one solar mass are in general spherically symmetric, yet the planetary nebulae that they produce in the next phase of their evolution tend not to exhibit such symmetry. Collimated 'jets' and outflows of material have been observed up to approximately 0.3 parsec from the central stars of planetary nebulae, and precession of those jets has been proposed to explain the observed asymmetries. Moreover, it has recently been shown theoretically that magnetic fields could launch and collimate such jets. Here we report the detection of a collimated and precessing jet of molecular gas that is traced by water-vapour maser spots approximately 500 astronomical units (au) from the star W43A in Aquila. We conclude that the jet is formed in the immediate vicinity of the star, and infer that elongated planetary nebulae are formed by jets during the short period, of less than 1,000 years, when the star makes its transition through the proto-planetary nebula phase to become a planetary nebula.

  13. TRANSMISSION ELECTRON MICROSCOPY OF Al-RICH SILICATE STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Vollmer, Christian; Hoppe, Peter; Brenker, Frank E.

    2013-05-20

    We report on transmission electron microscopy (TEM) investigations of two mineralogically unusual stardust silicates to constrain their circumstellar condensation conditions. Both grains were identified by high spatial resolution nano secondary ion mass spectrometry (NanoSIMS) in the Acfer 094 meteorite, one of the most pristine carbonaceous chondrites available for study. One grain is a highly crystalline, highly refractory (Fe content < 0.5 at%), structurally undisturbed orthopyroxene (MgSiO{sub 3}) with an unusually high Al content (1.8 {+-} 0.5 at%). This is the first TEM documentation of a single crystal pyroxene within the complete stardust silicate data set. We interpret the microstructure and chemistry of this grain as being a direct condensate from a gas of locally non-solar composition (i.e., with a higher-than-solar Al content and most likely also a lower-than-solar Mg/Si ratio) at (near)-equilibrium conditions. From the overabundance of crystalline olivine (six reported grains to date) compared to crystalline pyroxene (only documented as a single crystal in this work) we infer that formation of olivine over pyroxene is favored in circumstellar environments, in agreement with expectations from condensation theory and experiments. The second stardust silicate consists of an amorphous Ca-Si rich material which lacks any crystallinity based on TEM observations in which tiny (<20 nm) hibonite nanocrystallites are embedded. This complex assemblage therefore attests to the fast cooling and rapidly changing chemical environments under which dust grains in circumstellar shells form.

  14. The case for asymmetric dust around a C-rich asymptotic giant branch star

    NASA Astrophysics Data System (ADS)

    Feast, Michael W.; Whitelock, Patricia A.; Marang, Freddy

    2003-12-01

    JHKL observations of the mass-losing carbon Mira variable IRAS 15194-5115 (II Lup) extending over about 18 yr are presented and discussed. The pulsation period is 575 d and has remained essentially constant over this time span. The star has undergone an extensive obscuration minimum during this time. This is complex and, like such minima in similar objects (e.g. R For), does not fit the model predictions of a simple long-term periodicity. Together with the high-resolution observations of Lopez et al., the results suggest that the obscuration changes are caused by the formation of dust clouds of limited extent in the line of sight. This is an R Coronae Borealis-type (RCB-type) model. The effective reddening law at J and H is similar to that found for R For.

  15. Transmission Electron Microscopy of Al-rich Silicate Stardust from Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Vollmer, Christian; Hoppe, Peter; Brenker, Frank E.

    2013-05-01

    We report on transmission electron microscopy (TEM) investigations of two mineralogically unusual stardust silicates to constrain their circumstellar condensation conditions. Both grains were identified by high spatial resolution nano secondary ion mass spectrometry (NanoSIMS) in the Acfer 094 meteorite, one of the most pristine carbonaceous chondrites available for study. One grain is a highly crystalline, highly refractory (Fe content < 0.5 at%), structurally undisturbed orthopyroxene (MgSiO3) with an unusually high Al content (1.8 ± 0.5 at%). This is the first TEM documentation of a single crystal pyroxene within the complete stardust silicate data set. We interpret the microstructure and chemistry of this grain as being a direct condensate from a gas of locally non-solar composition (i.e., with a higher-than-solar Al content and most likely also a lower-than-solar Mg/Si ratio) at (near)-equilibrium conditions. From the overabundance of crystalline olivine (six reported grains to date) compared to crystalline pyroxene (only documented as a single crystal in this work) we infer that formation of olivine over pyroxene is favored in circumstellar environments, in agreement with expectations from condensation theory and experiments. The second stardust silicate consists of an amorphous Ca-Si rich material which lacks any crystallinity based on TEM observations in which tiny (<20 nm) hibonite nanocrystallites are embedded. This complex assemblage therefore attests to the fast cooling and rapidly changing chemical environments under which dust grains in circumstellar shells form.

  16. Variable Stars and The Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2014-09-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation, and evolution of these LIMS.

  17. Variable Stars and the Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2012-06-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation and evolution of these LIMS.

  18. Theoretical spectra of circumstellar dust shells around carbon-rich asymptotic giant branch stars

    NASA Technical Reports Server (NTRS)

    Winters, J. M.; Dominik, C.; Sedlmayr, E.

    1994-01-01

    Realistic modeling of circumstellar dust shells around evolved stars has to include a physical treatment of the interaction among hydrodynamics, thermodynamics, radiative transfer, chemistry and dust formation and -growth. A self-consistent solution of this problem is presented in the case of stationary, spherical symmetric dust-driven winds. The resulting shell structure and the mass-loss rate are completely determined by the three fundamental stellar parameters stellar mass M(stellar), stellar luminosity L(stellar) and effective temperature T(sub eff) and by the element abundances epsilon(sub i). A detailed calculation of the transport coefficients of the dust component by means of the particle size distribution function and the solution of the non-grey radiative transfer problem provide realistic synthetic spectra of the dust shell models. We discuss the dependence of the resulting spectra on the stellar parameters in terms of infrared two color diagrams. Application of these model calculations to the prominent infrared object IRC +10216 yields best agreement with the observed spectrum and the visibility data at maximum light for the stellar parameters M(stellar) = 0.7 solar mass, L(stellar) = 2.4 x 10(exp 4) solar luminosity, T(stellar) = 2010K and a carbon to oxygen ratio of epsilon(sub c)/epsilon(sub o) = 1.40, which corresponds to a mass-loss rate of M-dot = 8 x 10(exp -5) solar mass/yr. In this model only amorphous carbon grains are considered as the main opacity source. From this model a distance to IRC +10216 of d = 170pc is deduced. The total mass contained in the circumstellar dust shell implies and initial main sequence mass of M(sub ZAMS) greater than or = 1.3 solar mass for IRC +10216.

  19. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    PubMed

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  20. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  1. Giant cell arteritis

    PubMed Central

    Calvo-Romero, J

    2003-01-01

    Giant cell arteritis (GCA), temporal arteritis or Horton's arteritis, is a systemic vasculitis which involves large and medium sized vessels, especially the extracranial branches of the carotid arteries, in persons usually older than 50 years. Permanent visual loss, ischaemic strokes, and thoracic and abdominal aortic aneurysms are feared complications of GCA. The treatment consists of high dose steroids. Mortality, with a correct treatment, in patients with GCA seems to be similar that of controls. PMID:13679546

  2. Giant Cell Arteritis.

    PubMed

    Hoffman, Gary S

    2016-11-01

    This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  3. Multiple Outflows in the Giant Eruption of a Massive Star

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Martin, John C.; Gordon, Michael S.; Jones, Terry J.

    2016-08-01

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈-14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of -400, -1100, and -1600 km s-1. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, dense wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of -8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  4. Using JVLA Observations of SiO Masers to Probe the Extended Atmosphere of an AGB Star: W Hydrae

    NASA Astrophysics Data System (ADS)

    Kamieneski, Patrick S.; Matthews, Lynn D.

    2015-01-01

    The Asymptotic Giant Branch star W Hydrae (W Hya) is known to be a strong source of silicon monoxide (SiO) masers in its extended atmosphere. Jansky Very Large Array imaging observations obtained in February 2014 were used to target eleven SiO J=1-0 rotational transitions near 43 GHz. The vibrational ground state (v=0) lines for the 28SiO, 29SiO, and 30SiO isotopologues were successfully detected, as were the v=1,2,3 lines for 28SiO. Non-detections included the v=1,2 transitions for 29SiO and 30SiO, and the v=4 line for 28SiO. We will summarize the relative shape, size, and intensity of the emission regions of the detected transitions. We have discovered spatially extended ground-state 28SiO emission in a region located approximately 300 to 600 milliarcseconds (projected distance of 34 to 69 AU) from the star. We will discuss a saddle-like distribution and a small gradient in the velocity field for the 28SiO v=1 line, which may help to confirm the existence of a bipolar outflow in W Hya. Additionally, our results indicate that the observed transitions have differing spatial distributions. Peak 28SiO v=1,2,3 emission primarily occupies a region 12 - 42 mas (projected distance of 1.4 - 4.8 AU) west of the star, while the 29SiO and 30SiO isotopologues are located in disparate regions around 45 - 70 mas (5.2 - 8.1 AU) to the northwest of the star.This work was sponsored by a grant from the National Science Foundation Research Experience for Undergraduate program to MIT Haystack Observatory.

  5. Testing the core of red-giant-branch stars using the period spacing of gravity modes

    NASA Astrophysics Data System (ADS)

    Lagarde, Nadège; Diego, Bossini; Miglio, Andrea

    2015-08-01

    The blooming of asteroseismology of red-giant stars with the CoRoT and Kepler space missions paves the way to a better understanding of the stellar structure and physical processes occurring in low-mass-giant stars.We investigate the effect of rotation on the asymptotic period spacing of gravity modes (DP) and on the coupling strength between acoustic and gravity modes. We focus on red-giant-branch stars (RGB) which ignite He in degenerate conditions (M<2.0Msun), and we compare standard models with those including the effects of rotation and overshooting beyond the convective core.We find that, in the case of red-giant stars below the RGB bump, additional transport processes of chemicals have an impact on DP, hence on the determination of the stellar mass when DP is used as a constraint. Moreover we show that the coupling strength gives a direct signature of rotation occuring in red-giant stars. Whether this signature can be inferred from current data needs however to be investigated further. Finally we show that, irrespective of additional transport processes occurring during the main sequence, the period spacing of red-giant stars brighter than the RGB bump is an accurate proxy for the stellar luminosity, due to the well known relation between MHecore and luminosity.

  6. VizieR Online Data Catalog: NGC 2808 AGB and RGB stars Na abundance (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-05-01

    The high-resolution spectra of our sample of AGB and RGB stars in the Galactic globular cluster NGC 2808 were obtained with the high-resolution multi-object spectrograph FLAMES, mounted on ESO/VLT-UT2. A combined mode was used where the brightest five objects was observed with UVES-fibre and the remaining targets with GIRAFFE/Medusa. The basic information of our sample stars are listed in Table 2, including the evolutionary phase, instrument used for observation, coordinates, photometry and barycentric radial velocity. Our Fe abundances were derived from the equivalent widths of Fe lines, while the Na abundances were determined with spectra synthesis. Both FeI and Na abundances have been corrected for the non-LTE effect. In Table 4 we show the derived stellar parameters of our sample stars, and the Na abundances are shown in Table 6. (3 data files).

  7. IS THE POST-AGB STAR SAO 40039 MILDLY HYDROGEN-DEFICIENT?

    SciTech Connect

    Rao, S. Sumangala; Pandey, Gajendra; Giridhar, Sunetra; Lambert, David L. E-mail: pandey@iiap.res.in E-mail: dll@astro.as.utexas.edu

    2011-08-10

    We have conducted an LTE abundance analysis for SAO 40039, a warm post-AGB star whose spectrum is known to show surprisingly strong He I lines for its effective temperature and has been suspected of being H-deficient and He-rich. High-resolution optical spectra are analyzed using a family of model atmospheres with different He/H ratios. Atmospheric parameters are estimated from the ionization equilibrium set by neutral and singly ionized species of Fe and Mg, the excitation of Fe I and Fe II lines, and the wings of the Paschen lines. On the assumption that the He I lines are of photospheric and not chromospheric origin, a He/H ratio of approximately unity is found by imposing the condition that the adopted He/H ratio of the model atmosphere must equal the ratio derived from the observed He I triplet lines at 5876, 4471, and 4713 A, and singlet lines at 4922 and 5015 A. Using the model with the best-fitting atmospheric parameters for this He/H ratio, SAO 40039 is confirmed to exhibit mild dust-gas depletion, i.e., the star has an atmosphere deficient in elements of high condensation temperature. The star appears to be moderately metal-deficient with [Fe/H] = -0.4 dex. But the star's intrinsic metallicity as estimated from Na, S, and Zn, elements of a low condensation temperature, is [Fe/H]{sub o} {approx_equal} -0.2 ([Fe/H]{sub o} refers to the star's intrinsic metallicity). The star is enriched in N and perhaps O as well, changes reflecting the star's AGB past and the event that led to He enrichment.

  8. The carbon star adventure: modelling atmospheres of a set of C-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Rau, Gioia; Paladini, Claudia; Hron, Josef; Aringer, Bernard; Erikssonn, Kjell; Groenewegen, Martin

    2015-08-01

    We study the atmospheres of a set of carbon rich AGB stars to improve our understanding of the dynamic processes happening in there.For the first time we compare in a systematic way spectrometric, photometric and mid-infrared (VLTI/MIDI) interferometric measurements with different type of model atmospheres: (1) hydrostatic models + MOD-dusty models (Groenewegen, 2012) added a posteriori; (2) self-consistent dynamic model atmospheres (Eriksson et al. 2014). These allow to interpret in a coherent way the dynamic behavior of gas and dust. In addition, the geometric model fitting tool for interferometric data GEM-FIND is applied to carry out a first interpretation of the structural environment of the stars.The results underline that the joint use of different kind of observations, as photometry, spectroscopy and interferometry, is essential for understanding and modeling the atmosphere of pulsating C-rich AGB stars. For our first target, the carbon-rich Mira star RU Vir, the dynamic model atmospheres fit well the ISO/SWS spectra in the wavelength range λ = [2.9, 13.0] μm. However, the object turned out to be “peculiar”: we notice a discrepancy in the visible part of the SED, and in the visibilities. Possible causes are intra/inter-cycle variations in the dynamic model atmospheres, and an eventual presence of a companion star and/or disk or clumps in the atmosphere of RU Vir (Rau et al. subm.). Results on further targets will also be presented.The increased sample of C-rich stars of this work provides crucial constraints for the atmospheric structure and the formation of SiC. Moreover the second generation VLTI instrument MATISSE will be a perfect tool to detect and study asymmetries, as it will allow interferometric imaging in the L, M, and N bands.

  9. A census of AGB stars in Local Group galaxies. II. NGC 185 and NGC 147

    NASA Astrophysics Data System (ADS)

    Nowotny, W.; Kerschbaum, F.; Olofsson, H.; Schwarz, H. E.

    2003-05-01

    We present results of our ongoing photometric survey of Local Group galaxies, using a four filter technique based on the method of Wing (\\cite{Wing71}) to identify and characterise the late-type stellar content. Two narrow band filters centred on spectral features of TiO and CN allow us to distinguish between AGB stars of different chemistries [M-type (O-rich) and C-type (C-rich)]. The major parts of two dwarf galaxies of the M 31 subgroup - NGC 185 and NGC 147 - were observed. From photometry in V and i we estimate the tip of the RGB, and derive distance moduli respectively. With additional photometric data in the narrow band filters TiO and CN we identify 154 new AGB carbon stars in NGC 185 and 146 in NGC 147. C/M ratios are derived, as well as mean absolute magnitudes , bolometric magnitudes M_bol, luminosity functions, and the spatial/radial distributions of the C stars in both galaxies. Based on observations made with the Nordic Optical Telescope operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strabg.fr/cgi-bin/qcat?J/A+A/403/93

  10. Galactic mass-losing AGB stars probed with the IRTS. II.

    NASA Astrophysics Data System (ADS)

    Le Bertre, T.; Tanaka, M.; Yamamura, I.; Murakami, H.

    2003-06-01

    We are using the 2002 data-release from the Japanese space experiment IRTS to investigate the spatial distribution of galactic mass-losing (>2x 10-8 Msund) AGB stars and the relative contribution of C-rich and O-rich ones to the replenishment of the ISM. Our sample contains 126 C-rich and 563 O-rich sources which are sorted on the basis of the molecular bands observed in the range 1.4-4.0 mu m, and for which we estimate distances and mass loss rates from near-infrared photometry (K and L'). There is a clear dependence on galactocentric distance, with O-rich sources outnumbering C-rich ones for rGC< 8 kpc, and the reverse for rGC> 10 kpc. The contribution to the replenishment of the ISM by O-rich AGB stars relative to C-rich ones follows the same trend. Although they are rare ( ~ 10% in our sample), sources with 10-6 Msund < dot {M} < 10-5 Msund dominate the replenishment of the ISM by contributing to ~ 50% of the total of the complete sample. We find 2 carbon stars at more than 1 kpc from the Galactic Plane, that probably belong to the halo of our Galaxy. The complete Tables \\ref{tab_C-rich} and \\ref{tab_O-rich} are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/943}

  11. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1992-01-01

    Asymptotic Modal Analysis (AMA) is a method which is used to model linear dynamical systems with many participating modes. The AMA method was originally developed to show the relationship between statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large number of modes of a vibrating system, the classical modal analysis result can be shown to be equivalent to the statistical energy analysis result. As the CMA result evolves into the SEA result, a number of systematic assumptions are made. Most of these assumptions are based upon the supposition that the number of modes approaches infinity. It is for this reason that the term 'asymptotic' is used. AMA is the asymptotic result of taking the limit of CMA as the number of modes approaches infinity. AMA refers to any of the intermediate results between CMA and SEA, as well as the SEA result which is derived from CMA. The main advantage of the AMA method is that individual modal characteristics are not required in the model or computations. By contrast, CMA requires that each modal parameter be evaluated at each frequency. In the latter, contributions from each mode are computed and the final answer is obtained by summing over all the modes in the particular band of interest. AMA evaluates modal parameters only at their center frequency and does not sum the individual contributions from each mode in order to obtain a final result. The method is similar to SEA in this respect. However, SEA is only capable of obtaining spatial averages or means, as it is a statistical method. Since AMA is systematically derived from CMA, it can obtain local spatial information as well.

  12. Singular asymptotic expansions in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Day, W. B.

    1984-01-01

    During hot firing ground testing of the Space Shuttle's Main Engine, vibrations of the liquid oxygen pump occur at frequencies which cannot be explained by the linear Jeffcott model of the rotor. The model becomes nonlinear after accounting for deadband, side forces, and rubbing. Two phenomena present in the numerical solutions of the differential equations are unexpected periodic orbits of the rotor and tracking of the nonlinear frequency. A multiple scale asymptotic expansion of the differential equations is used to give an analytic explanation of these characteristics.

  13. Singular asymptotic expansions in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Day, W. B.

    1985-01-01

    During hot firing ground testing of the Space shuttle's Main Engine, vibrations of the liquid oxygen pump occur at frequencies which cannot be explained by the linear Jeffcott model of the rotor. The model becomes nonlinear after accounting for deadband, side forces, and rubbing. Two phenomena present in the numerical solutions of the differential equations are unexpected periodic orbits of the rotor and tracking of the nonlinear frequency. A multiple scale asymptotic expansion of the differential equations is used to give an analytic explanation of these characteristics.

  14. Asymptotics of loop quantum gravity fusion coefficients

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio

    2010-05-01

    The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in loop quantum gravity. In this paper we give a simple analytic formula of the Engle-Pereira-Rovelli-Livine fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2)L × SU(2)R semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.

  15. Vacuum Potential and its Asymptotic Variation

    NASA Astrophysics Data System (ADS)

    Dahal, Pravin

    2016-09-01

    The possible form of existence of dark energy is explained and the relation for its asymptotic variation is given. This has two huge implications in the understanding of the Universe. The first is that the theory predicts that the Universe should be in negative pressure state in the very early period as required for inflation and spontaneous symmetry breaking. The second is that the theory gives the reasonable answer to the astrophysical evidence of dark energy dominating the Universe. The author is presenting his research in the nature of dark energy. Some of the work is submitted for publication in the journal and is currently under review.

  16. The Two Isotropic Asymptotes of Fiber Composites,

    DTIC Science & Technology

    1988-03-01

    Voigt and Reuss models of summed stiffness and compliance. The compliance quasi-isotropic asymptote, which >’-:’ has evidently not been discussed in the...i,j,e)de o0 The resulting pseudo -isotropic compliance (series-model) Hooke’s law matrix is similar but not identical to Eq. (3): W(1) W(4) 0 a aIE...given by 1 W( ) 14) E : - Vc Wc 4W(5) 2[W(1) - W()] (8) c W() W(14 12 Direct formulas for the pseudo -isctrcpic moduli, in terms of the ply 1s natural

  17. Asymptotic Theory for Nonparametric Confidence Intervals.

    DTIC Science & Technology

    1982-07-01

    distributions. Ann. Math Statist. 14, 56-62. 24. ROY, S.N. and POTTHOFF, R.F. (1958). Confidence bounds on vector analogues of the "ratio of the mean" and...fl c,~_________ 14L TITLE feed &MV) S. TYPE or REPORT a PeftOo COVx:REC Asympeocic Theory for Nonaparuetric Technical Report Confidence Intevals 6...S..C-0S78 UNCLASSIFIED TŗU *uuuuumuuumhhhhmhhhm_4 ASYMPTOTIC THEORY FOR NONPARAMETRIC CONFIDENCE INTERVALS by Peter W. Glynn TECHNICAL REPORT NO. 63

  18. Evolution of massive AGB stars. II. model properties at non-solar metallicity and the fate of Super-AGB stars

    NASA Astrophysics Data System (ADS)

    Siess, L.

    2007-12-01

    Context: Massive AGB (hereafter super-AGB or SAGB) stars ignite carbon off-center and have initial masses ranging between Mup, the minimum initial mass for carbon ignition, and M_mas the minimum mass for the formation of an iron core collapse supernova. In this mass interval, stars more massive than Mn will undergo an electron capture supernova (EC-SN). Aims: We study the fate and selected evolutionary properties of SAGB stars up to the end of the carbon burning phase as a function of metallicity and core overshooting. Methods: The method is based on the analysis of a large set of stellar models covering the mass range 5-13 M⊙ and calculated for 7 different metallicities between Z=10-5 and twice solar. Core overshooting was considered in two subsets for Z=10-4 and 0.02. The models are available online at http://www-astro.ulb.ac.be/ siess/database.html. The fate of SAGB stars is investigated through a parametric model which allows us to assess the role of mass loss and of the third dredge-up. Results: Our main results can be summarized as follows: a) prior to C-burning, the evolution of SAGB stars is very similar to that of intermediate-mass stars, being more luminous, b) SAGB stars suffer a large He enrichment at the end of the second dredge-up, c) the limiting masses Mup, Mn and M_mas present a nonlinear behavior with Z, characterized by a minimum around Z=10-4, d) the values of Mup, Mn and M_mas are decreased by 2 M⊙ when core overshooting is considered, e) our models predict a minimum oxygen-neon white dwarf mass of 1.05 M⊙, f) the determination of Mn is highly dependent on the mass loss and core growth rates, g) the evolutionary channel for EC-SN is limited to a very narrow mass range of ⪉1-1.5 M⊙ width and this mass window can be further decreased if some metallicity scaling factor is applied to the mass loss rate, h) the final fate of SAGB stars is connected to the second dredge-up and this property allowed us to refine the initial mass range for

  19. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    SciTech Connect

    Li, H. N.; Zhao, G.; Ludwig, H.-G.; Caffau, E.; Christlieb, N. E-mail: gzhao@nao.cas.cn E-mail: ecaffau@lsw.uni-heidelberg.de

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  20. ON ASYMPTOTIC DISTRIBUTION AND ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS OF SPATIAL VARIOGRAM PARAMETERS. (R827257)

    EPA Science Inventory

    Abstract

    In this article, we consider the least-squares approach for estimating parameters of a spatial variogram and establish consistency and asymptotic normality of these estimators under general conditions. Large-sample distributions are also established under a sp...

  1. Imaging Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

  2. High resolution spectroscopy of the high latitude rapidly evolving post-AGB star SAO 85766 (= IRAS 18062+2410)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; García-Lario, P.; Sivarani, T.; Manchado, A.; Sanz Fernández de Córdoba, L.

    2000-05-01

    SAO 85766 (b = +20o) is an IRAS source with far-infrared colours similar to planetary nebulae. According to the HDE catalogue, its spectrum in 1940 was that of an A5 star. The UV fluxes and colours derived from data obtained by the TD1 satellite in 1972 also indicate that SAO 85766 was an A-type supergiant at that epoch. However, high resolution spectra of SAO 85766 obtained in 1993 in the wavelength interval 4350Ä to 8820Ä shows that now it is similar to that of an early B type post-AGB supergiant. In addition to the absorptions lines typical of a B1I type star, the spectrum of SAO 85766 is found to show numerous permitted and forbidden emission lines of several elements, typically observed in the spectra of young high density low excitation planetary nebulae. From an analysis of the absorption lines we have estimated Teff=22000+/-500 K, log g=3.0+/-0.5, xi t=15+/-2km s-1 and [M/H]=-0.6. Carbon is found to be strongly underabundant ([C/Fe] = -1.0), similarly to what has been observed in other high galactic latitude hot post-AGB stars. The underabundance of carbon and metals, high galactic latitude, high radial velocity (46 km s-1), the presence of planetary nebula type detached cold circumstellar dust shell and also the presence of low excitation nebular emission lines in the spectrum indicate that SAO 85766 is a low mass star in the post-AGB stage of evolution. The above mentioned characteristics and the variations observed in the spectrum of SAO 85766 suggest that it has rapidly evolved during the past 50 years and it is now in the early stages of the planetary nebula phase. The central star may just have become hot enough to photoionize the circumstellar envelope ejected during the previous AGB phase. >From an analysis of the nebular emission lines we find Te=10000+/- 500K and Ne=2.5 104 cm-3. The nebula also shows an abundance pattern similar to that of the central star. The rapid post-AGB evolution of SAO 85766 appears to be similar to that observed in the

  3. A Giant Urethral Calculus.

    PubMed

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  4. Giant left ventricular pseudoaneurysm.

    PubMed

    Prakash, Sumi; Garg, Nadish; Xie, Gong-Yuan; Dellsperger, Kevin C

    2010-01-01

    Left ventricular (LV) pseudoaneurysm (PS) is an uncommon, often fatal complication associated with myocardial infarction, cardiothoracic surgery, trauma, and, rarely, infective endocarditis. A 28-year-old man with prior history of bioprosthetic mitral valve replacement presented with congestive heart failure and bacteremia with Abiotrophia granulitica. Transesophageal echocardiogram showed bioprosthesis dysfunction, large vegetations, mitral regurgitation, and probable PS. Cardiac and chest CT confirmed a PS communicating with the left ventricle Patient had pulseless electrical activity and died. Autopsy showed a giant PS with layered thrombus and pseudo-endothelialized cavity. Our case highlights the importance of multimodality imaging as an important tool in management of PS.

  5. Asymptotic behavior of a flat plate wake

    NASA Technical Reports Server (NTRS)

    Weygandt, James H.; Mehta, Rabindra D.

    1989-01-01

    An experimental study has been conducted to investigate the far-field, self-similar properties of a flat plate wake. A plane turbulent wake was generated at the trailing edge of a smooth splitter plate separating two legs of a Mixing Layer Wind Tunnel, with both initial boundary layers tripped. For the present study, both legs were operated at a free-steam velocity in the test section of 15 m/s, giving a Reynolds number based on wake momentum thickness of about 1750. Single profile measurements were obtained at five streamwise locations using a Pitot probe for the mean velocity measurements and a single cross-wire probe for the turbulence data, which included statistics up to third order. The mean flow data indicated a self-similar behavior beyond a streamwise distance equivalent to about 350 wake momentum thicknesses. However, the turbulence data show better collapse beyond a distance equivalent to about 500 momentum thicknesses, with all the measured peak Reynolds stresses achieving constant, asymptotic levels. The asymptotic mean flow behavior and peak primary stress levels agree well with theoretical predictions based on a constant eddy viscosity model. The present data also agree reasonably well with previous measurements, of which only one set extends into the self-similar region. Detailed comparisons with previous data are presented and discussed in this report.

  6. Relaxing the parity conditions of asymptotically flat gravity

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Dehouck, François

    2011-12-01

    Four-dimensional asymptotically flat spacetimes at spatial infinity are defined from first principles without imposing parity conditions or restrictions on the Weyl tensor. The Einstein-Hilbert action is shown to be a correct variational principle when it is supplemented by an anomalous counterterm which breaks asymptotic translation, supertranslation and logarithmic translation invariance. Poincaré transformations as well as supertranslations and logarithmic translations are associated with finite and conserved charges which represent the asymptotic symmetry group. Lorentz charges as well as logarithmic translations transform anomalously under a change of regulator. Lorentz charges are generally nonlinear functionals of the asymptotic fields but reduce to well-known linear expressions when parity conditions hold. We also define a covariant phase space of asymptotically flat spacetimes with parity conditions but without restrictions on the Weyl tensor. In this phase space, the anomaly plays classically no dynamical role. Supertranslations are pure gauge and the asymptotic symmetry group is the expected Poincaré group.

  7. Asymptotic behaviour of solutions of semilinear parabolic equations

    SciTech Connect

    Egorov, Yu V; Kondratiev, V A

    2008-04-30

    The asymptotic behaviour of solutions of a second-order semilinear parabolic equation is analyzed in a cylindrical domain that is bounded in the space variables. The dominant term of the asymptotic expansion of the solution as t{yields}+{infinity} is found. It is shown that the solution of this problem is asymptotically equivalent to the solution of a certain non-linear ordinary differential equation. Bibliography: 8 titles.

  8. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  9. The Asymptotic Distribution of Mortality Rates in Competing Risks Analyses,

    DTIC Science & Technology

    1979-12-01

    For a sample of individuals from an animal or human population under observation in a clinical trial or life test, mortality rates are defined for...model, these mortality rates are shown to have an asymptotic normal distribution. An expression for the asymptotic correlation between a pair of... mortality rates is thus obtained and a necessary and sufficient condition for their asymptotic independence is investigated in some general situations with

  10. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6giants and that some giants have higher [C/Fe] ratios than is typical of giants in the globular clusters M13 and M92. Several suggestions are made as to why some Draco stars may have higher [C/Fe] ratios than globular cluster red giants: deep mixing might be inhibited in these Draco stars, they may formerly have been mass-transfer binaries that acquired carbon from a more massive companion, or the Draco dwarf galaxy may have experienced relatively slow chemical evolution over a period of several billion years, allowing carbon-enhanced ejecta from intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Giant papillary conjunctivitis.

    PubMed Central

    Donshik, P C

    1994-01-01

    Giant papillary conjunctivitis is a syndrome found frequently as a complication of contact lenses. Many variables can affect the onset and severity of the presenting signs and symptoms. Rigid gas permeable contact lenses appear to result in less severe signs and symptoms, with a longer time before the development of giant papillary conjunctivitis. Nonionic, low-water-content soft contact lenses tend to produce less severe signs and symptoms than ionic, low-water-content soft contact lenses. Enzymatic treatment appears to lessen the severity of signs and symptoms. The association of an allergy appears to play a role in the onset of the severity of the signs and symptoms but does not appear to affect the final ability of the individual to wear contact lenses. Using multiple treatment options, such as changing the polymer to a glyceryl methyl methacrylate or a rigid lens, or utilizing a soft lens on a frequent-replacement basis, can result in a success rate of over 90%. In individuals who still have a return of symptoms, the use of topical mast cell stabilizers or a nonsteroidal anti-inflammatory drug as an adjunctive therapy offers the added possibility of keeping these patients in contact lenses. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 11 A FIGURE 11 B FIGURE 11 C FIGURE 11 D PMID:7886881

  12. Giant extragenital Bowen's disease.

    PubMed

    Bakardzhiev, Ilko; Chokoeva, Anastasiya Atanasova; Tchernev, Georgi

    2015-12-01

    Giant extragenital forms of Morbus Bowen are extremely rare. The already described cases in the word literature are most commonly with periungual localization, as well as located on the foot and neck area. The clinical manifestation is presented most commonly by non-specific erythematous to erythematous-squamous plaques or papules, which is confusing to the clinician. From the pathogenic point of view, it is important to be confirmed or rejected the presence of human papilloma viruses (HPVs) in each case of affected patient, as this information is mandatory in respect to the adequate selection of the subsequent regimen. If HPVs are detected, systemic antiviral therapy could be initiated to reduce the size of the lesions before subsequent surgical eradication. A postoperative prevention through vaccination could be also considered additionally. In cases of HPV-negative giant extragenital forms of Morbus Bowen (as in the described patient), the focus should be on local immunomodulation by substances such as imiquimod, which reduce the size of the lesions, thereby creating optimal opportunities for their future surgical eradication. Other possible options described in the literature include topical application of 5-fluorouracil, photodynamic therapy, cryotherapy, and laser therapy (carbon dioxide laser). The choice of the most appropriate regimen should have been an individual decision of the clinician, considering also the location and the extent of the lesion.

  13. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  14. Giant Intradiverticular Bladder Tumor

    PubMed Central

    Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd

    2017-01-01

    Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375

  15. Reinflating Giant Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  16. Allometry indicates giant eyes of giant squid are not exceptional

    PubMed Central

    2013-01-01

    Background The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. Results We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. Conclusions The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone. PMID:23418818

  17. Green's function asymptotics and sharp interpolation inequalities

    NASA Astrophysics Data System (ADS)

    Zelik, S. V.; Ilyin, A. A.

    2014-04-01

    A general method is proposed for finding sharp constants for the embeddings of the Sobolev spaces H^m(\\mathscr{M}) on an n-dimensional Riemannian manifold \\mathscr{M} into the space of bounded continuous functions, where m\\gt n/2. The method is based on an analysis of the asymptotics with respect to the spectral parameter of the Green's function of an elliptic operator of order 2m whose square root has domain determining the norm of the corresponding Sobolev space. The cases of the n-dimensional torus {T}^n and the n-dimensional sphere {S}^n are treated in detail, as well as certain manifolds with boundary. In certain cases when \\mathscr{M} is compact, multiplicative inequalities with remainder terms of various types are obtained. Inequalities with correction terms for periodic functions imply an improvement for the well-known Carlson inequalities. Bibliography: 28 titles.

  18. Loop Quantum Gravity and Asymptotically Flat Spaces

    NASA Astrophysics Data System (ADS)

    Arnsdorf, Matthias

    2002-12-01

    Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...

  19. Universality and asymptotic scaling in drilling percolation

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    2017-01-01

    We present simulations of a three-dimensional percolation model studied recently by K. J. Schrenk et al. [Phys. Rev. Lett. 116, 055701 (2016), 10.1103/PhysRevLett.116.055701], obtained with a new and more efficient algorithm. They confirm most of their results in spite of larger systems and higher statistics used in the present Rapid Communication, but we also find indications that the results do not yet represent the true asymptotic behavior. The model is obtained by replacing the isotropic holes in ordinary Bernoulli percolation by randomly placed and oriented cylinders, with the constraint that the cylinders are parallel to one of the three coordinate axes. We also speculate on possible generalizations.

  20. Asymptotic Linear Stability of Solitary Water Waves

    NASA Astrophysics Data System (ADS)

    Pego, Robert L.; Sun, Shu-Ming

    2016-12-01

    We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay at an exponential rate in an energy norm with exponential weight translated with the wave profile. This holds for all solutions with no component in (that is, symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal translational and wave-speed variation of solitary waves. We also obtain spectral stability in an unweighted energy norm.

  1. The asymptotics of large constrained graphs

    NASA Astrophysics Data System (ADS)

    Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2014-05-01

    We show, through local estimates and simulation, that if one constrains simple graphs by their densities ɛ of edges and τ of triangles, then asymptotically (in the number of vertices) for over 95% of the possible range of those densities there is a well-defined typical graph, and it has a very simple structure: the vertices are decomposed into two subsets V1 and V2 of fixed relative size c and 1 - c, and there are well-defined probabilities of edges, gjk, between vj ∈ Vj, and vk ∈ Vk. Furthermore the four parameters c, g11, g22 and g12 are smooth functions of (ɛ, τ) except at two smooth ‘phase transition’ curves.

  2. Chiral fermions in asymptotically safe quantum gravity.

    PubMed

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  3. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  4. Broad-band and multi-band polarimetric observations of post-AGB and RV Tauri stars

    NASA Astrophysics Data System (ADS)

    Akras, S.; Ramirez-Velez, J.; Hiriart, D.; Lopez, M.; Bonanos, A.

    2013-02-01

    We present optical broad-band (UBVRI) aperture polarimetry of 52 post-AGB stars, selected from De Ruyter et al. (2006) and the Torun Catalog, based on the shape of their SED and near-infrared excess. We find 10 (19%) of the stars in our sample to have high polarization (P > 5%), 30 (56%) intermediate/low polarization (1% < P < 5%) and 13 (25%) very low (or non-polarized) polarization (P < 1%). Our observations show clear evidence of asymmetric circumstellar envelopes or equatorial density enhancement around post-AGB stars, probably formed at the beginning of the AGB phase. Some stars exhibit wavelength-independent polarization suggesting scattered light by large dust grains or free electrons (Thomson scattering), while others show wavelength-dependent polarization originated from scattering by small dust grains (Rayleigh scattering). Finally, we conclude that highly polarized sources (P > 3%), show systematically [12] - [25] > 1.5, J - H > 0.5 and J - K > 0.5, clearly separated from the group of RV Tauri stars, which are found to have very low polarization (P < 3%).

  5. [Giant esophageal fibrovascular polyp].

    PubMed

    Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro

    2003-01-01

    Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.

  6. Giant resonances: Progress, new directions, new challenges

    SciTech Connect

    Bertrand, J.R.; Beene, J.R.

    1989-01-01

    A review of some recent developments in the field of giant multipole resonances is presented. Particular emphasis is placed on directions that the authors feel will be followed in this field during the next several years. In particular, the use of high-energy heavy ions to excite the giant resonances is shown to provide exciting new capabilities for giant resonance studies. Among subjects covered are: Coulomb excitation of giant resonances, photon decay of giant resonances, the recent controversy over the identity of the giant monopole resonance, the most recent value for incompressibility of nuclear matter from analysis of giant monopole data, the isospin character of the 63 A/sup /minus/1/3/ GQR, agreement between (e,e/prime/) and (hadron, hadron/prime/) excitation of the giant quadrupole resonance, prospects for multiphonon giant resonance observation, and isolation of the isovector giant quadrupole resonance. 55 refs., 23 figs., 4 tabs.

  7. Gaussian and mean curvatures for discrete asymptotic nets

    NASA Astrophysics Data System (ADS)

    Schief, W. K.

    2017-04-01

    We propose discretisations of Gaussian and mean curvatures of surfaces parametrised in terms of asymptotic coordinates and examine their relevance in the context of integrable discretisations of classical classes of surfaces and their underlying integrable systems. We also record discrete analogues of the classical relation between the Gaussian curvature of hyperbolic surfaces and the torsion of their asymptotic lines.

  8. Scattering in an external electric field asymptotically constant in time

    SciTech Connect

    Adachi, Tadayoshi; Ishida, Atsuhide

    2011-06-15

    We show the asymptotic completeness for two-body quantum systems in an external electric field asymptotically non-zero constant in time. One of the main ingredients of this paper is to give some propagation estimates for physical propagators generated by time-dependent Hamiltonians which govern the systems under consideration.

  9. Asymptotic expansions for the reciprocal of the gamma function

    NASA Astrophysics Data System (ADS)

    Withers, Christopher S.; Nadarajah, Saralees

    2014-05-01

    Asymptotic expansions are derived for the reciprocal of the gamma function. We show that the coefficients of the expansion are the same, up to a sign change, as the asymptotic expansions for the gamma function obtained by exponentiating the expansions of its logarithm due to Stirling and de Moivre. Expressions for the coefficients are given in terms of Bell polynomials.

  10. Giant Hedge-Hogs: Spikes on Giant Gravitons

    SciTech Connect

    Sadri, D

    2004-01-28

    We consider giant gravitons on the maximally supersymmetric plane-wave background of type IIB string theory. Fixing the light-cone gauge, we work out the low energy effective light-cone Hamiltonian of the three-sphere giant graviton. At first order, this is a U(1) gauge theory on R x S{sup 3}. We place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, generalizing the usual BIons to the giant gravitons, BIGGons. Our results can be used to give a two dimensional (worldsheet) description of giant gravitons, similar to Polchinski's description for the usual D-branes, in agreement with the discussions of hep-th/0204196.

  11. A giant Ordovician anomalocaridid.

    PubMed

    Van Roy, Peter; Briggs, Derek E G

    2011-05-26

    Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.

  12. Asymptotic approximations to posterior distributions via conditional moment equations

    USGS Publications Warehouse

    Yee, J.L.; Johnson, W.O.; Samaniego, F.J.

    2002-01-01

    We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.

  13. On the asymptotics of the α-Farey transfer operator

    NASA Astrophysics Data System (ADS)

    Kautzsch, J.; Kesseböhmer, M.; Samuel, T.; Stratmann, B. O.

    2015-01-01

    We study the asymptotics of iterates of the transfer operator for non-uniformly hyperbolic α-Farey maps. We provide a family of observables which are Riemann integrable, locally constant and of bounded variation, and for which the iterates of the transfer operator, when applied to one of these observables, is not asymptotic to a constant times the wandering rate on the first element of the partition α. Subsequently, sufficient conditions on observables are given under which this expected asymptotic holds. In particular, we obtain an extension theorem which establishes that, if the asymptotic behaviour of iterates of the transfer operator is known on the first element of the partition α, then the same asymptotic holds on any compact set bounded away from the indifferent fixed point.

  14. Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-06-01

    The spheroidal harmonics Slm (θ ; c) have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues {Alm (c) } of these functions have been determined by many authors. However, it should be emphasized that all the previous asymptotic analyzes were restricted either to the regime m → ∞ with a fixed value of c, or to the complementary regime | c | → ∞ with a fixed value of m. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both m and c. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit m → ∞ and | c | → ∞ with a fixed m / c ratio.

  15. Asymptotic Properties of Some Classes of Generalized Functions

    NASA Astrophysics Data System (ADS)

    Drozhzhinov, Yu N.; Zav'yalov, B. I.

    1986-02-01

    This paper studies the connection between the asymptotic and quasi-asymptotic properties at infinity of slowly increasing generalized functions with supports on the half-line and the asymptotic and quasi-asymptotic properties of the real parts of their Laplace and Fourier transforms in a neighborhood of the origin. The study is caried out in the scale of regularly varying self-similar functions. The results are applied to the study of the asymptotic properties of solutions of linear passive systems, and also to the study of the connection between Abel and Cesàro convergence (with respect to a self-similar weight) of the Fourier-Stieltjes series of nonnegative measures. Bibliography: 13 titles.

  16. Large gauge symmetries and asymptotic states in QED

    NASA Astrophysics Data System (ADS)

    Gabai, Barak; Sever, Amit

    2016-12-01

    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles' momenta and may be associated to the vacuum. The soft theorem's manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.

  17. AGB and RGB stars as tracers of the early and intermediate star-formation history.

    NASA Astrophysics Data System (ADS)

    Aparicio, A.; Gallart, C.

    The Milky Way and Andromeda galaxies are the largest members of the Local Group, and their evolution is affected by the evolution of their host as a whole. At the same time, they themselves play an important role in the evolution of the Local Group. Considerable information can be obtained for the Local Group, but little is known about the distances and the full star-formation history of its galaxies. RGB and AGB stars are the keys to trace the full star-formation history of nearby galaxies. These stars are usually the most prominent population of dwarf spheroidal galaxies, but it has been shown (Gallart et al. 1994; Aparicio & Gallart 1994) that they are also observable in dwarf irregular galaxies. This will open the door to the study of the earliest star-formation processes taking place in these galaxies. The star-formation history of the Local Group galaxies is a crucial piece of information for answering basic questions about the evolutionary history of the group.

  18. Revealing the transition from post-AGB stars to planetary nebulae

    NASA Astrophysics Data System (ADS)

    Bains, Indra; Chapman, Jessica M.; Cohen, Martin; Redman, Matt

    2009-04-01

    In 2005, we used ATCA at 3- & 6-cm to detect the onset of ionizing winds in a biased sub-sample of post-AGB stars selected from an OH maser survey. The evolutionary status of the objects was indicated by 2-colour plots of IRAS and MSX data as well as OH maser profile characteristics. We detected 7/28 sources in radio continuum and found that 2 had non-thermal spectral indices, consistent with wind shock interactions rather than photoionization by an evolving progenitor (Bains et al, 2008, MNRAS submitted). Furthermore, SED modelling of some of the radio-detected sources revealed central star temperatures << 30,000 K, the threshold for significant photoionization. To refine the diagnostic capabilities of the infrared colours and maser characteristics in predicting both the evolutionary phase of these objects and the presence of ionizing winds within them, we now propose to complete the ATCA survey of the remainder of the sample (57 targets) at 3 & 6 cm. This ATCA detection experiment provides an excellent showcase for the unprecedented sensitivity of the CABB.

  19. Is mass loss from red giant stars dust driven?

    NASA Astrophysics Data System (ADS)

    Yates, J. A.

    1992-12-01

    Long period variable stars on the Asymptotic Giant Branch are observed to be losing mass in the form of cool dusty molecular stellar winds at rates from 10-7 to 10-4 Msunyr-1. The driving force for this mass loss is thought to be radiation pressure on dust particles. The dust transfers its momentum to gas molecules via collisions. This paper discusses the existing evidence for this scenario. New results, from analysis of 22 GHz H2O maser observations made by Merlin, show that the cruical acceleration past the stellar escape velocity of the central star takes place in the inner circumstellar envelope around the central star. The analysis of the velocity fields of the circumstellar envelopes of VX Sgr and VY CMa using the model described by Chapman and Cohen (1986) are discussed.

  20. Pharma giants swap research programs.

    PubMed

    2014-07-01

    Pharmaceutical giants Novartis and GlaxoSmithKline (GSK) agreed in late April to swap some assets, with Novartis handing off its vaccine business to GSK and getting most of the British company's cancer portfolio in return.

  1. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  2. Lichens On Galapagos Giant Tortoises.

    PubMed

    Hendrickson, J R; Weber, W A

    1964-06-19

    The association of Physcia picta with the giant Galdpagos tortoise is believed to be the first reported occurrence of lichens on land animals. The habitat is restricted to specific sites on the carapace of male tortoises.

  3. Landscape of the lost giants

    NASA Astrophysics Data System (ADS)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  4. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  5. Isotopic Composition of Barium in Single Presolar Silicon Carbide Grains

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2002-01-01

    We have measured Ba isotope distributions in individual presolar SiC grains. We find that the Ba isotopic composition in mainstream SiC grains is consistent with models of nucleosynthesis in low to intermediate mass asymptotic giant branch (AGB) stars. Additional information is contained in the original extended abstract.

  6. Giants in the Local Region

    NASA Astrophysics Data System (ADS)

    Luck, R. Earle; Heiter, Ulrike

    2007-06-01

    We present parameter and abundance data for a sample of 298 nearby giants. The spectroscopic data for this work have a resolution of R~60,000, S/N>150, and spectral coverage from 475 to 685 nm. Overall trends in the Z>10 abundances are dominated by Galactic chemical evolution, while the light-element abundances are influenced by stellar evolution, as well as Galactic evolution. We find several super-Li stars in our sample and confirm that Li abundances in the first giant branch are related to mixing depths. Once astration of lithium on the main sequence along with the overall range of main-sequence lithium abundances are taken into account, the lithium abundances of the giants are not dramatically at odds with the predictions of standard stellar evolution. We find the giants to be carbon-diluted in accord with standard stellar evolution and that the carbon and oxygen abundances determined for the local giants are consistent with those found in local field dwarfs. We find that there is evidence for systematic carbon variations in the red giant clump in the sense that the blue side of the clump is carbon-poor (more diluted) than the red side.

  7. The Giant Magnetocaloric Effect

    NASA Astrophysics Data System (ADS)

    Pecharsky, Vitalij K.

    1998-03-01

    Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x <= 0.5, is associated with a first order magnetic phase transition and it reaches values of 3 to 4 K and 6 to 10 J/kg K per 1 T field change, respectively. The refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 <= x <= 1 allowed us to obtain a qualitative understanding of the basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.

  8. Scattering theory without large-distance asymptotics

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Li, Wen-Du; Dai, Wu-Sheng

    2014-06-01

    In conventional scattering theory, to obtain an explicit result, one imposes a precondition that the distance between target and observer is infinite. With the help of this precondition, one can asymptotically replace the Hankel function and the Bessel function with the sine functions so that one can achieve an explicit result. Nevertheless, after such a treatment, the information of the distance between target and observer is inevitably lost. In this paper, we show that such a precondition is not necessary: without losing any information of distance, one can still obtain an explicit result of a scattering rigorously. In other words, we give an rigorous explicit scattering result which contains the information of distance between target and observer. We show that at a finite distance, a modification factor — the Bessel polynomial — appears in the scattering amplitude, and, consequently, the cross section depends on the distance, the outgoing wave-front surface is no longer a sphere, and, besides the phase shift, there is an additional phase (the argument of the Bessel polynomial) appears in the scattering wave function.

  9. Extended Analytic Device Optimization Employing Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  10. Asymptotic methods for internal transonic flows

    NASA Technical Reports Server (NTRS)

    Adamson, T. C., Jr.; Messiter, A. F.

    1989-01-01

    For many internal transonic flows of practical interest, some of the relevant nondimensional parameters typically are small enough that a perturbation scheme can be expected to give a useful level of numerical accuracy. A variety of steady and unsteady transonic channel and cascade flows is studied with the help of systematic perturbation methods which take advantage of this fact. Asymptotic representations are constructed for small changes in channel cross-section area, small flow deflection angles, small differences between the flow velocity and the sound speed, small amplitudes of imposed oscillations, and small reduced frequencies. Inside a channel the flow is nearly one-dimensional except in thin regions immediately downstream of a shock wave, at the channel entrance and exit, and near the channel throat. A study of two-dimensional cascade flow is extended to include a description of three-dimensional compressor-rotor flow which leads to analytical results except in thin edge regions which require numerical solution. For unsteady flow the qualitative nature of the shock-wave motion in a channel depends strongly on the orders of magnitude of the frequency and amplitude of impressed wall oscillations or fluctuations in back pressure. One example of supersonic flow is considered, for a channel with length large compared to its width, including the effect of separation bubbles and the possibility of self-sustained oscillations. The effect of viscosity on a weak shock wave in a channel is discussed.

  11. Asymptotic Structure of Constrained Exponential Random Graph Models

    NASA Astrophysics Data System (ADS)

    Zhu, Lingjiong

    2017-03-01

    In this paper, we study exponential random graph models subject to certain constraints. We obtain some general results about the asymptotic structure of the model. We show that there exists non-trivial regions in the phase plane where the asymptotic structure is uniform and there also exists non-trivial regions in the phase plane where the asymptotic structure is non-uniform. We will get more refined results for the star model and in particular the two-star model for which a sharp transition from uniform to non-uniform structure, a stationary point and phase transitions will be obtained.

  12. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  13. Articular Contact Mechanics from an Asymptotic Modeling Perspective: A Review

    PubMed Central

    Argatov, Ivan; Mishuris, Gennady

    2016-01-01

    In the present paper, we review the current state-of-the-art in asymptotic modeling of articular contact. Particular attention has been given to the knee joint contact mechanics with a special emphasis on implications drawn from the asymptotic models, including average characteristics for articular cartilage layer. By listing a number of complicating effects such as transverse anisotropy, non-homogeneity, variable thickness, nonlinear deformations, shear loading, and bone deformation, which may be accounted for by asymptotic modeling, some unsolved problems and directions for future research are also discussed. PMID:27847803

  14. Asymptotic stability properties of linear Volterra integrodifferential equations.

    NASA Technical Reports Server (NTRS)

    Miller, R. K.

    1971-01-01

    The Liapunov stability properties of solution to a certain system of Volterra integrodifferential equations is studied. Various types of Liapunov stability are defined; the definitions are natural extensions of the corresponding notions for ordinary differential equations. Necessary and sufficient conditions, in general, for uniform stability and uniform asymptotic stability are obtained in the form of a theorem. Connections between the stability of the system studied and the stability properties of a related Volterra integrodifferential equation with infinite memory are examined. Sufficient conditions in order that the trivial solution to the system studied be stable, uniformly stable, asymptotically stable, or uniformly asymptotically stable are derived.

  15. Uniform Asymptotic Expansion for the Incomplete Beta Function

    NASA Astrophysics Data System (ADS)

    Nemes, Gergő; Olde Daalhuis, Adri B.

    2016-10-01

    In [Temme N.M., Special functions. An introduction to the classical functions of mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996, Section 11.3.3.1] a uniform asymptotic expansion for the incomplete beta function was derived. It was not obvious from those results that the expansion is actually an asymptotic expansion. We derive a remainder estimate that clearly shows that the result indeed has an asymptotic property, and we also give a recurrence relation for the coefficients.

  16. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil.

    PubMed

    Babu, A Giridhar; Shea, Patrick J; Sudhakar, D; Jung, Ik-Boo; Oh, Byung-Taek

    2015-03-15

    Endophytic bacteria have the potential to promote plant growth and heavy metal(loid) (HM) removal from contaminated soil. Pseudomonas koreensis AGB-1, isolated from roots of Miscanthus sinensis growing in mine-tailing soil, exhibited high tolerance to HMs and plant growth promoting traits. Transmission electron microscope (TEM) analysis revealed that AGB-1 sequestered HMs extracellularly and their accumulation was visible as dark metal complexes on bacterial surfaces and outside of the cells. DNA sequencing of HM resistance marker genes indicated high homology to the appropriate regions of the arsB, ACR3(1), aoxB, and bmtA determinants. Inoculating mining site soil with AGB-1 increased M. sinensis biomass by 54%, chlorophyll by 27%, and protein content by 28%. High superoxide dismutase and catalase activities, and the lower malondialdehyde content of plants growing in AGB-1-inoculated soil indicate reduced oxidative stress. Metal(loid) concentrations in roots and shoots of plants grown in inoculated soil were higher than those of the controls in pot trials with mine tailing soil. Results suggest that AGB-1 can be used in association with M. sinensis to promote phytostabilization and remediation of HM-contaminated sites.

  17. Characterizing uncertainties of the national-scale forest gross aboveground biomass (AGB) loss estimate: a case study of the Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Stehman, S.; Potapov, P.; Turubanova, S.; Baccini, A.; Goetz, S. J.; Laporte, N. T.; Houghton, R. A.; Hansen, M.

    2013-12-01

    Modern remote sensing techniques enable the mapping and monitoring of aboveground biomass (AGB) carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where a national forest inventory (NFI) has yet to be established due to a lack of infrastructure and political instability. We demonstrate a method for producing national-scale gross AGB loss estimates and quantifying uncertainty of the estimates using remotely sensed-derived forest cover loss and biomass carbon density data. Forest cover type and loss were characterized using published Landsat-based data sets and related to LIDAR-derived biomass data from the Geoscience Laser Altimeter System (GLAS). We produced two gross AGB loss estimates for the DRC for the last decade (2000-2010): a conservative estimate accounting for classification errors in the 60-m resolution FACET forest cover change product, and a maximal estimate that also took into consideration omitted change at the 30m spatial resolution. Omitted disturbances were largely related to smallholder agriculture, the detection of which is scale-dependent. The use of LIDAR data as a substitute for NFI data to estimate AGB loss based on Landsat-derived activity data was demonstrated. Comparisons of our forest cover loss and AGB estimates with published studies raise the issue of scale in forest cover change mapping and its impact on carbon stock change estimation using remotely sensed data.

  18. A unique advantage for giant eyes in giant squid.

    PubMed

    Nilsson, Dan-Eric; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger; Shashar, Nadav

    2012-04-24

    Giant and colossal deep-sea squid (Architeuthis and Mesonychoteuthis) have the largest eyes in the animal kingdom [1, 2], but there is no explanation for why they would need eyes that are nearly three times the diameter of those of any other extant animal. Here we develop a theory for visual detection in pelagic habitats, which predicts that such giant eyes are unlikely to evolve for detecting mates or prey at long distance but are instead uniquely suited for detecting very large predators, such as sperm whales. We also provide photographic documentation of an eyeball of about 27 cm with a 9 cm pupil in a giant squid, and we predict that, below 600 m depth, it would allow detection of sperm whales at distances exceeding 120 m. With this long range of vision, giant squid get an early warning of approaching sperm whales. Because the sonar range of sperm whales exceeds 120 m [3-5], we hypothesize that a well-prepared and powerful evasive response to hunting sperm whales may have driven the evolution of huge dimensions in both eyes and bodies of giant and colossal squid. Our theory also provides insights into the vision of Mesozoic ichthyosaurs with unusually large eyes.

  19. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  20. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  1. Radial-Velocity Analysis of the Post-AGB Star, HD101584

    NASA Astrophysics Data System (ADS)

    Díaz, F.; Hearnshaw, J.; Rosenzweig, P.; Guzman, E.; Sivarani, T.; Parthasarathy, M.

    2007-08-01

    This project concerns the analysis of the periodicity of the radial velocity of the peculiar emission-line supergiant star HD 101584 (F0 Ia), and also we propose a physical model to account for the observations. From its peculiarities, HD 101584 is a star that is in the post-AGB phase. This study is considered as a key to clarify the multiple aspects related with the evolution of the circum-stellar layer associated with this star's last phase. The star shows many lines with P Cygni profiles, including H-alpha, Na D lines in the IR Ca triplet, indicating a mass outflow. For HD 101584 we have performed a detailed study of its radial-velocity variations, using both emission and absorption lines over a wide range of wavelength. We have analyzed the variability and found a periodicity for all types of lines of 144 days, which must arise from the star's membership in a binary system. The data span a period of five consecutive years and were obtained using the 1-m telescope of Mt John Observatory, in New Zealand., with the echelle and Hercules high resolution spectrographs and CCD camera. HD101584 is known to be an IRAS source, and our model suggests it is a proto-planetary nebula, probably with a bipolar outflow and surrounded by a dusty disk as part of a binary system. We have found no evidence for HD101584 to contain a B9 star as found by Bakker et al (1996). A low resolution IUE spectrum shows the absence of any strong UV continuum that would be expected for a B star to be in this system.

  2. Tidal Distortion of the Envelope of an AGB Star IRS 3 near Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Cotton, W.; Schödel, R.; Royster, M. J.; Roberts, D. A.; Kunneriath, D.

    2017-03-01

    We present radio and millimeter continuum observations of the Galactic center taken with the Very Large Array (VLA) and ALMA at 44 and 226 GHz, respectively. We detect radio and millimeter emission from IRS 3, lying ∼4.″5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8 μm Galactic center stellar source, consists of two semicircular dust shells facing the direction of Sgr A*. The outer circumstellar shell, at a distance of 1.6 × 104 au, appears to break up into “fingers” of dust directed toward Sgr A*. These features coincide with molecular CS (5–4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE–SW asymmetric shapes of the IRS 3 shells seen at 3.8 μm and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 yr constrains the distance of IRS 3 to ∼0.7 pc in front of or ∼0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high-resolution radio continuum images can identify dust-enshrouded stellar sources embedded in an ionized medium.

  3. Exactification of the Poincaré asymptotic expansion of the Hankel integral: spectacularly accurate asymptotic expansions and non-asymptotic scales.

    PubMed

    Galapon, Eric A; Martinez, Kay Marie L

    2014-02-08

    We obtain an exactification of the Poincaré asymptotic expansion (PAE) of the Hankel integral, [Formula: see text] as [Formula: see text], using the distributional approach of McClure & Wong. We find that, for half-integer orders of the Bessel function, the exactified asymptotic series terminates, so that it gives an exact finite sum representation of the Hankel integral. For other orders, the asymptotic series does not terminate and is generally divergent, but is amenable to superasymptotic summation, i.e. by optimal truncation. For specific examples, we compare the accuracy of the optimally truncated asymptotic series owing to the McClure-Wong distributional method with owing to the Mellin-Barnes integral method. We find that the former is spectacularly more accurate than the latter, by, in some cases, more than 70 orders of magnitude for the same moderate value of b. Moreover, the exactification can lead to a resummation of the PAE when it is exact, with the resummed Poincaré series exhibiting again the same spectacular accuracy. More importantly, the distributional method may yield meaningful resummations that involve scales that are not asymptotic sequences.

  4. Dust Production and Mass Loss in Cool Evolved Stars

    NASA Technical Reports Server (NTRS)

    Boyer, M. L.

    2013-01-01

    Following the red giant branch phase and the subsequent core He-burning phase, the low- to intermediate-mass stars (0.8asymptotic giant branch (AGB). Pulsations levitate material from the stellar surface and provide density enhancements and shocks, which can encourage dust formation and re-processing. The dust composition depends on the atmospheric chemistry (abundance of carbon relative to oxygen), which is altered by dredging up newly formed carbon to the surface of the star. I will briefly review the current status of models that include AGB mass loss and relate them to recent observations of AGB stars from the Surveying the Agents of Galaxy Evolution (SAGE) Spitzer surveys of the Small and Large Magellanic Clouds, including measures of the total dust input to the interstellar medium from AGB stars.

  5. Kolmogorov turbulence by matched asymptotic expansions

    NASA Astrophysics Data System (ADS)

    Lundgren, Thomas S.

    2003-04-01

    The Kolmogorov [Dokl. Akad. Nauk. SSSR 30, 299 (1941), hereafter K41] inertial range theory is derived from first principles by analysis of the Navier-Stokes equation using the method of matched asymptotic expansions without assuming isotropy or homogeneity and the Kolmogorov (K62) [J. Fluid Mech. 13, 82 (1962)] refined theory is analyzed. This paper is an extension of Lundgren [Phys. Fluids 14, 638 (2002)], in which the second- and third-order structure functions were determined from the isotropic Karman-Howarth [Proc. R. Soc. London, Ser. A 164, 192 (1938)] equation. The starting point for the present analysis is an equation for the difference in velocity between two points, one of which is a Lagrangian fluid point and the second, slaved to the first by a fixed separation r, is not Lagrangian. The velocity difference, so defined, satisfies the Navier-Stokes equation with spatial variable r. The analysis is carried out in two parts. In the first part the physical hypothesis is made that the mean dissipation is independent of viscosity as viscosity tends to zero, as assumed in K41. This means that the mean dissipation is finite as Reynolds number tends to infinity and leads to the K41 inertial range results. In the second part this dissipation assumption is relaxed in an attempt to duplicate the K62 theory. While the K62 structure is obtained, there are restrictions, resulting from the analysis which shows that there can be no inertial range intermittency as Reynolds number tends to infinity, and therefore the mean dissipation has to be finite as Reynolds number tends to infinity, as assumed in part one. Reynolds number-dependent corrections to the K41 results are obtained in the form of compensating functions of r/λ, which tend to zero slowly like Rλ-2/3 as Rλ→∞.

  6. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  7. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  8. Asymptotically anti-de Sitter spacetimes in topologically massive gravity

    SciTech Connect

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2009-04-15

    We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter {mu} ({mu}{ne}0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |{mu}l|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.

  9. Asymptotics of 6j and 10j symbols

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Louapre, David

    2003-04-01

    It is well known that the building blocks for state sum models of quantum gravity are given by 6j and 10j symbols. In this work, we study the asymptotics of these symbols by using their expressions as group integrals. We carefully describe the measure involved in terms of invariant variables and develop new technics in order to study their asymptotics. Using these technics, we compute the asymptotics of the various Euclidean and Lorentzian 6j symbols. Finally, we compute the asymptotic expansion of the 10j symbol which is shown to be non-oscillating, in agreement with a recent result of Baez et al. We discuss the physical origin of this behaviour and a way to modify the Barrett-Crane model in order to cure this disease.

  10. Asymptotic expansions of Feynman integrals of exponentials with polynomial exponent

    NASA Astrophysics Data System (ADS)

    Kravtseva, A. K.; Smolyanov, O. G.; Shavgulidze, E. T.

    2016-10-01

    In the paper, an asymptotic expansion of path integrals of functionals having exponential form with polynomials in the exponent is constructed. The definition of the path integral in the sense of analytic continuation is considered.

  11. An asymptotic model in acoustics: acoustic drift equations.

    PubMed

    Vladimirov, Vladimir A; Ilin, Konstantin

    2013-11-01

    A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.

  12. Open questions about giant viruses.

    PubMed

    Claverie, Jean-Michel; Abergel, Chantal

    2013-01-01

    The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world.

  13. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  14. Observações espectroscópicas da candidata a pós-AGB IRAS 19386+0155

    NASA Astrophysics Data System (ADS)

    Lorenz-Martins, S.; Pereira, C. B.

    2003-08-01

    Nesse trabalho apresentamos a análise fotosférica da estrela candidata a pós-AGB IRAS 19386+0155. Com os dados obtidos no espectrógrafo FEROS foram determinados os parâmetros atmosféricos e abundâncias fotosféricas utilizando o código MOOG. A análise do espectro mostrou que IRAS 19386+0155 possui os seguintes parâmetros atmosféricos : Teff = 6800K, log g = 1.4, [M/H] = -1.5 e Vt = 8.4 km/s. O padrão de abundância obtido para os elementos mais leves (Carbono, Nitrogênio e Oxigênio) e elementos a (Magnésio, Silício e Cálcio) foi inferior ao solar (log C = 7.74, log N = 7.28, Log O = 8.43, log Mg = 7.14, log Si = 7.54 e log Ca = 5.91). Uma inspeção visual do espectro ISO deste objeto revela a presença de poeira fria na forma de silicatos cristalinos. Embora as bandas mais marcantes de silicatos amorfos (em 10 mm e 18mm) não sejam observadas, a emissão em 21 mm, presente em algumas pós-AGBs também não está presente. O espectro ISO parece revelar um meio rico em oxigênio, mas a forma da distribuição de energia no infravermelho não obedece ao padrão apresentado por outras pós-AGBs. Nossos resultados nos levam a sugerir que IRAS 19386+0155 talvez faça parte de um sistema binário, uma vez que outras pós-AGBs que são membros de sistemas binários apresentam padrão de abundância semelhante.

  15. Quick asymptotic expansion aided by a variational principle

    SciTech Connect

    Hameiri, Eliezer

    2013-02-15

    It is shown how expanding asymptotically a variational functional can yield the asymptotic expansion of its Euler equation. The procedure is simple but novel and requires taking the variation of the expanded functional with respect to the leading order of the originally unknown function, even though the leading order of this function has already been determined in a previous order. An example is worked out that of a large aspect ratio tokamak plasma equilibrium state with relatively strong flows and high plasma beta.

  16. Asymptotic-induced numerical methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Garbey, Marc; Scroggs, Jeffrey S.

    1990-01-01

    Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.

  17. Asymptotic relation between Bell-inequality violations and entanglement distillability

    SciTech Connect

    Kwon, Younghun

    2010-11-15

    We investigate the asymptotic relation between violations of the Mermin-Belinskii-Klyshko inequality and the entanglement distillability of multipartite entangled states, as the number of parties increases. We in particular consider noisy multiqubit GHZ and so-called Duer states in the Mermin-Belinskii-Klyshko inequality, and show that, in the asymptotic limit of the number of parties, the violation of the inequality implies the distillability in almost all bipartitions.

  18. Asymptotic Expansion in Enzyme Reactions with High Enzyme Concentrations

    NASA Astrophysics Data System (ADS)

    Bersani, Alberto Maria; Dell'Acqua, Guido

    2010-09-01

    In this paper we find a new asymptotic expansion valid in enzymatic reactions where the total amount of enzyme exceeds greatly the total amount of substrate. In such case it is well known that the Michelis-Menten approximation is no longer valid; therefore our asymptotic expansion is a new tool to approximate in a closed form the concentrations of the reactants in presence of an enzyme excess.

  19. Globally uniformly asymptotical stabilisation of time-delay nonlinear systems

    NASA Astrophysics Data System (ADS)

    Cai, Xiushan; Han, Zhengzhi; Zhang, Wei

    2011-07-01

    Globally uniformly asymptotical stabilisation of nonlinear systems in feedback form with a delay arbitrarily large in the input is dealt with based on the backstepping approach in this article. The design strategy depends on the construction of a Lyapunov-Krasovskii functional. A continuously differentiable control law is obtained to globally uniformly asymptotically stabilise the closed-loop system. The simulation shows the effectiveness of the method.

  20. LONG RANGE OUTWARD MIGRATION OF GIANT PLANETS, WITH APPLICATION TO FOMALHAUT b

    SciTech Connect

    Crida, Aurelien; Masset, Frederic

    2009-11-10

    Recent observations of exoplanets by direct imaging reveal that giant planets orbit at a few dozens to more than a hundred AU from their central star. The question of the origin of these planets challenges the standard theories of planet formation. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outward, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semimajor axes can increase by almost 1 order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.

  1. Polymyalgia Rheumatica and Giant Cell Arteritis

    MedlinePlus

    ... Clinical Trial Journal Articles Polymyalgia Rheumatica and Giant Cell Arteritis May 2016 Questions and Answers about Polymyalgia Rheumatica and Giant Cell Arteritis This publication contains general information about polymyalgia ...

  2. Giant lobelias exemplify convergent evolution

    PubMed Central

    2010-01-01

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution. PMID:20074322

  3. Atmospheres of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  4. CMB lensing and giant rings

    SciTech Connect

    Rathaus, Ben; Itzhaki, Nissan E-mail: ben.rathaus@gmail.com

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  5. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  6. Asymptotic proportionality (weak ergodicity) and conditional asymptotic equality of solutions to time-heterogeneous sublinear difference and differential equations

    NASA Astrophysics Data System (ADS)

    Thieme, Horst R.

    The concept of asymptotic proportionality and conditional asymptotic equality which is presented here aims at making global asymptotic stability statements for time-heterogeneous difference and differential equations. For such non-autonomous problems (apart from special cases) no prominent special solutions (equilibra, periodic solutions) exist which are natural candidates for the asymptotic behaviour of arbitrary solutions. One way out of this dilemma consists in looking for conditions under which any two solutions to the problem (with different initial conditions) behave in a similar or even the same way as time tends to infinity. We study a general sublinear difference equation in an ordered Banach space and, for illustration, time-heterogeneous versions of several well-known differential equations modelling the spread of gonorrhea in a heterogeneous population, the spread of a vector-borne infectious disease, and the dynamics of a logistically growing spatially diffusing population.

  7. Testing the cores of first ascent red giant stars using the period spacing of g modes

    NASA Astrophysics Data System (ADS)

    Lagarde, N.; Bossini, D.; Miglio, A.; Vrard, M.; Mosser, B.

    2016-03-01

    In the context of the determination of stellar properties using asteroseismology, we study the influence of rotation and convective-core overshooting on the properties of red giant stars. We used models in order to investigate the effects of these mechanisms on the asymptotic period spacing of gravity modes (ΔΠ1) of red-giant stars that ignite He burning in degenerate conditions (M ≲ 2.0 M⊙). We also compare the predictions of these models with Kepler observations. For a given Δν, ΔΠ1 depends not only on the stellar mass, but also on mixing processes that can affect the structure of the core. We find that in the case of more evolved red-giant-branch stars and regardless of the transport processes occurring in their interiors, the observed ΔΠ1 can provide information as to their stellar luminosity, within ˜10-20 per cent. In general, the trends of ΔΠ1 with respect to mass and metallicity that are observed in Kepler red-giant stars are well reproduced by the models.

  8. Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.; Silva Aguirre, V.; Kjeldsen, H.; Mosumgaard, J. R.; Sandquist, E. L.

    2017-04-01

    Using data from the NASA spacecraft Kepler, we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δν. For the four stars with lowest Δν, we determine the asymptotic period spacing of the mixed modes, ΔP, which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M ⊙ stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.

  9. Giant right atrial thrombi treated with thrombolysis.

    PubMed

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Ramos Cuadra, José Angel; Lara Toral, Juan; Lozano Cabezas, Cristobal; Fernández Guerrero, Juan Carlos

    2008-04-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery.

  10. Giant right atrial thrombi treated with thrombolysis

    PubMed Central

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Cuadra, José Ángel Ramos; Toral, Juan Lara; Cabezas, Cristobal Lozano; Guerrero, Juan Carlos Fernández

    2008-01-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery. PMID:18401474

  11. Cabergoline treatment in invasive giant prolactinoma.

    PubMed

    Alsubaie, Sadeem; Almalki, Mussa H

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically.

  12. CEN 34 - high-mass YSO in M 17 or background post-AGB star?

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Nürnberger, Dieter E. A.; Chini, Rolf; Liu, Yao; Fang, Min; Jiang, Zhibo

    2013-09-01

    We investigate the proposed high-mass young stellar object (YSO) candidate CEN 34, thought to be associated with the star-forming region M 17. Its optical to near-infrared (550-2500 nm) spectrum reveals several photospheric absorption features, such as Hα, the Ca ii triplet, and the CO bandhead, but lacks emission lines. The spectral features in the range 8375-8770 Å are used to constrain an effective temperature Teff = 5250 ± 250 K (early-/mid-G) and a log g = 2.0 ± 0.3 (supergiant). The spectral energy distribution (SED) displays a faint infrared excess that resembles that of a high-mass YSO or an evolved star of intermediate mass. Moreover, the observed temperature and surface gravity are identical for high-mass YSOs and evolved stars. The radial velocity of CEN 34 relative to the local standard of rest (VLSR) as obtained from various photospheric lines is of the order of -60 km s-1 and thus distinct from the +25 km s-1 found for several OB stars in the cluster and for the associated molecular cloud. The SED modeling yields 10-4 M⊙ of circumstellar material, which contributes only a tiny fraction to the total visual extinction (11 mag). The distance of CEN 34 is between 2.0 kpc and 4.5 kpc. In the case of a YSO, a dynamical ejection process is proposed to explain the VLSR difference between CEN 34 and M 17. Additionally, to match the temperature and luminosity, we speculate that CEN 34 had accumulated the bulk of its mass with an accretion rate >4 × 10-3M⊙/yr over a very short time span (~103 yrs), and it is currently undergoing a phase of gravitational contraction without any further mass gain. However, all the aforementioned characteristics of CEN 34 are compatible with an evolved star of 5-7 M⊙ and an age of 50-100 Myr, so it is most likely a background post-AGB star with a distance between 2.0 kpc and 4.5 kpc. We consider the latter classification as the more likely interpretation. Further discrimination of the two possible scenarios should come

  13. A second post-AGB nebula that contains gas in rotation and in expansion: ALMA maps of IW Carinae

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Van Winckel, H.; Sánchez Contreras, C.; Santander-García, M.

    2017-01-01

    Aims: We aim to study the presence of both rotation and expansion in post-AGB nebulae, in particular around IW Car, a binary post-AGB star that was suspected to be surrounded by a Keplerian disk. Methods: We obtained high-quality ALMA observations of 12CO and 13CO J = 3-2 lines in IW Car. The maps were analyzed by means of a simplified model of CO emission, based on those used for similar objects. Results: Our observations clearly show the presence of gas components in rotation, in an equatorial disk, and expansion, which shows an hourglass-like structure with a symmetry axis perpendicular to the rotation plane and is probably formed of material extracted from the disk. Our modeling can reproduce the observations and shows moderate uncertainties. The rotation velocity corresponds to a central stellar mass of approximately 1 M⊙. We also derive the total mass of the molecule-rich nebula, found to be of 4 × 10-3M⊙; the outflow is approximately eight times less massive than the disk. From the kinematical age of the outflow and the mass values derived for both components, we infer a (future) lifetime of the disk of approximately 5000-10 000 yr.

  14. Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Tamanai, A.; Mutschke, H.; Blum, J.; Posch, Th.; Koike, C.; Ferguson, J. W.

    2009-07-01

    Aims: To trace the source of the unique 13, 19.5, and 28 μm emission features in the spectra of oxygen-rich circumstellar shells around AGB stars, we have compared dust extinction spectra obtained by aerosol measurements. Methods: We have measured the extinction spectra for 19 oxide powder samples of eight different types, such as Ti-compounds (TiO, TiO2, Ti2O3, Ti3O5, Al2TiO5, CaTiO3), α-, γ-, χ-δ-κ-Al2O3, and MgAl2O4 in the infrared region (10-50 μm) paying special attention to the morphological (size, shape, and agglomeration) effects and the differences in crystal structure. Results: Anatase (TiO2) particles with rounded edges are the possible 13, 19.5 and 28 μm band carriers as the main contributor in the spectra of AGB stars, and spherically shaped nano-sized spinel and Al2TiO5 dust grains are possibly associated with the anatase, enhancing the prominence of the 13 μm feature and providing additional features at 28 μm. The extinction data sets obtained by the aerosol and CsI pellet measurements have been made available for public use at http://elbe.astro.uni-jena.de.

  15. VizieR Online Data Catalog: Water maser emission toward post-AGB and PN (Gomez+, 2015)

    NASA Astrophysics Data System (ADS)

    Gomez, J. F.; Rizzo, J. R.; Suarez, O.; Palau, A.; Miranda, L. F.; Guerrero, M. A.; Ramos-Larios, G.; Torrelles, J. M.

    2015-09-01

    The observed sources are listed in Table 1. They comprise most of the sources in Ramos-Larios et al. (2009A&A...501.1207R). They are post-AGB stars and PN candidates with the IRAS color criteria of Suarez et al. (2006A&A...458..173S) and with signs of strong optical obscuration. We have also included some optically visible post-AGB stars from Suarez et al. (2006A&A...458..173S) that were not included in our previous water maser observations of Suarez et al. (2007A&A...467.1085S, 2009A&A...505..217S) or for which those observations had poor sensitivity. We observed the 616-523 transition of H2O (rest frequency = 22235.08MHz) using three different telescopes: the DSS-63 antenna (70m diameter) at the Madrid Deep Space Communications Complex (MDSCC) near Robledo de Chavela (Spain), the 64m antenna at the Parkes Observatory of the Australia Telescope National Facility (ATNF), and the 100m Robert C. Byrd Green Bank Telescope (GBT) of the National Radio Astronomy Observatory. The observed positions, rms noise per spectral channel, and observing dates are listed in Table 1. (3 data files).

  16. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    PubMed Central

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  17. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    PubMed

    King, Richard B; Stanford, Kristin M; Jones, Peter C; Bekker, Kent

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of indi