Science.gov

Sample records for agb carbon stars

  1. The origin of fluorine: abundances in AGB carbon stars revisited

    NASA Astrophysics Data System (ADS)

    Abia, C.; Cunha, K.; Cristallo, S.; de Laverny, P.

    2015-09-01

    Context. Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 μm region have recently become available, facilitating a revision of the F content in asymptotic giant branch (AGB) stars. Aims: AGB carbon stars are the only observationally confirmed sources of fluorine. Currently, there is no consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Methods: Using new spectroscopic tools and local thermodynamical equilibrium spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J, and SC, spanning a wide range of metallicities. Results: On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling the radiative/convective interface at the base of the convective envelope in a different way. Conclusions: New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.

  2. The carbon star adventure: modelling atmospheres of a set of C-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Rau, Gioia; Paladini, Claudia; Hron, Josef; Aringer, Bernard; Erikssonn, Kjell; Groenewegen, Martin

    2015-08-01

    We study the atmospheres of a set of carbon rich AGB stars to improve our understanding of the dynamic processes happening in there.For the first time we compare in a systematic way spectrometric, photometric and mid-infrared (VLTI/MIDI) interferometric measurements with different type of model atmospheres: (1) hydrostatic models + MOD-dusty models (Groenewegen, 2012) added a posteriori; (2) self-consistent dynamic model atmospheres (Eriksson et al. 2014). These allow to interpret in a coherent way the dynamic behavior of gas and dust. In addition, the geometric model fitting tool for interferometric data GEM-FIND is applied to carry out a first interpretation of the structural environment of the stars.The results underline that the joint use of different kind of observations, as photometry, spectroscopy and interferometry, is essential for understanding and modeling the atmosphere of pulsating C-rich AGB stars. For our first target, the carbon-rich Mira star RU Vir, the dynamic model atmospheres fit well the ISO/SWS spectra in the wavelength range λ = [2.9, 13.0] μm. However, the object turned out to be “peculiar”: we notice a discrepancy in the visible part of the SED, and in the visibilities. Possible causes are intra/inter-cycle variations in the dynamic model atmospheres, and an eventual presence of a companion star and/or disk or clumps in the atmosphere of RU Vir (Rau et al. subm.). Results on further targets will also be presented.The increased sample of C-rich stars of this work provides crucial constraints for the atmospheric structure and the formation of SiC. Moreover the second generation VLTI instrument MATISSE will be a perfect tool to detect and study asymmetries, as it will allow interferometric imaging in the L, M, and N bands.

  3. Photodissociation and chemistry of N2 in the circumstellar envelope of carbon-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Walsh, Catherine; Heays, Alan N.; van Dishoeck, Ewine F.

    2014-08-01

    Context. The envelopes of asymptotic giant branch (AGB) stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N2 and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N2 has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. Aims: For the first time, we use accurate N2 and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. Methods: We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N2 photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. Results: The transition of N2→ N (also, CO → C → C+) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, CnN (n = 1, 3, 5), CnN- (n = 1, 3, 5), HCnN (n = 1, 3, 5, 7, 9), H2CN and CH2CN. Conclusions: The chemistry of many species is directly or indirectly affected by the photodissociation of N2 and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N2 and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.

  4. Carbon dust particle size distributions around mass-losing AGB stars

    NASA Astrophysics Data System (ADS)

    Jura, M.

    1997-03-01

    Solids of presolar SiC and interstellar carbon have qualitatively similar relative size distribution for particles with radii, a, in the range 0.35 μmcarbon-rich single AGB stars such as the well studied IRC+10216 seem to be smaller than the interstellar or presolar particles. The close binary system, the Red Rectangle, appears to produce much larger grains than does IRC+10216, and we suggest that many of the interstellar and presolar particles with radii >0.35 μm are produced by interacting binary systems rather than single mass-losing stars.

  5. AGB nucleosynthesis at low metallicity: What can we learn from Carbon- and s-elements-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Izzard, R. G.; Karakas, A. I.

    2013-02-01

    CEMP-s stars are very metal-poor stars with enhanced abundances of carbon and s-process elements. They form a significant proportion of the very metal-poor stars in the Galactic halo and are mostly observed in binary systems. This suggests that the observed chemical anomalies are due to mass accretion in the past from an asymptotic giant branch (AGB) star. Because CEMP-s stars have hardly evolved since their formation, the study of their observed abundances provides a way to probe our models of AGB nucleosynthesis at low metallicity. To this end we included in our binary evolution model the results of the latest models of AGB nucleosynthesis and we simulated a grid of 100 000 binary stars at metallicity Z = 0.0001 in a wide range of initial masses and separations. We compared our modelled stars with a sample of 60 CEMP-s stars from the SAGA database of metal-poor stars. For each observed CEMP-s star of the sample we found the modelled star that reproduces best the observed abundances. The result of this comparison is that we are able to reproduce simultaneously the observed abundance of the elements affected by AGB nucleosynthesis (e.g. C, Mg, s-elements) for about 60% of the stars in the sample.

  6. ALMA observations of the not-so detached shell around the carbon AGB star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Maercker, Matthias

    2016-07-01

    I present our ALMA observations of the CO emission around the carbon AGB star R Sculptoris. The data reveal the known detached shell and a previously unknown, binary induced, spiral shape. The observations confirm a formation of the shell during a thermal pulse about 2300 years ago. The full analysis of the ALMA data shows that the shell around R Scl in fact is entirely filled with molecular gas, and hence not as detached as previously thought. This has implications for the mass-loss rate evolution immediately after the pulse, indicating a much higher mass-loss rate than previously assumed. Comparing the ALMA images to our optical observations of polarised, dust scattered light, we further show that the distributions of the dust and gas coincide almost perfectly, implying a common evolution of the dust and gas, and constraining the wind-driving mechanism. The mass-loss process and amount of mass lost during the thermal pulse cycle affect the chemical evolution of the star, its lifetime on the AGB, and the return of heavy elements to the ISM. New high-resolution ALMA observations constrain the parameters of the binary system and the inner spiral, and will allow for a detailed hydrodynamical modelling of the gas and dust during and after the last thermal pulse. Our results present the only direct measurements of the thermal pulse evolution currently available. They greatly increase our understanding of this fundamental period of stellar evolution, and the implications it has for the chemical evolution of evolved stars, the ISM, and galaxie

  7. AGB stars and presolar grains

    SciTech Connect

    Busso, M.; Trippella, O.; Maiorca, E.; Palmerini, S.

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  8. Nucleosynthesis in Super-AGB Stars

    NASA Astrophysics Data System (ADS)

    Doherty, C. L.; Gil-Pons, P.; Lugaro, M.; Lau, H. H. B.; Lattanzio, J. C.; Siess, L.; Campbell, S. W.; Petermann, I.

    2015-08-01

    Super-AGB stars reside in the mass range ˜ 6.5-10 M⊙ and are characterised by off-center carbon ignition prior to a thermally pulsing super-AGB phase. These stars can undergo from many tens to even thousands of thermal pulses and experience extreme nucleosynthetic conditions, with temperatures both at the base of the convective envelope and within the helium-burning intershell regions far higher than in their lower-mass counterparts. This can result in interesting nucleosynthesis from extreme hot bottom burning and also different heavy-element distributions caused by the high neutron density generated within the thermal pulse, with this material later mixed to the surface during third dredge-up events. We discuss recent nucleosynthetic yield results for super-AGB stars over the range of metallicity Z = 0.02 × 10-5 ([Fe/H] ˜ 0 to -3.3), and present a small suite of heavy element super-AGB star yield predictions. We also apply our nucleosynthetic results to examine the possible role of super-AGB stars as polluters of the anomalous stars within globular clusters.

  9. Galactic Sodium from AGB Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; Gibson, B. K.; Stancliffe, R. J.

    2007-11-01

    Galactic chemical evolution (GCE) models which include sodium from type II supernovae (SNe) alone underestimate the abundance of sodium in the interstellar medium by a factor of 2 to 3 over about 3 ridex in metallicity and predict a flat behavior in the evolution of riNafe at super-solar metallicities. Conversely, recent observations of stars with rifeh ˜ +0.4 suggest that riNafe increases at high metallicity. We have combined stellar evolution models of asymptotic giant branch (AGB) and Wolf-Rayet (WR) stars with the latest SN yields in an attempt to resolve these problems dots and have created many more.

  10. Chemical pollution from AGB Stars

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Dominguez, I.

    Low mass AGB Stars are the main contributors to the Galactic s-process enrichment. We present new theoretical results obtained by adopting a full network from H to Bi coupled with the physical evolution of the stellar structure. We describe the formation of a 13C pocket as a consequence of H diffusion from the envelope into the He-rich intershell. Such 13C is burnt during the interpulse phase and provides the main neutron source in these stars. We computed two models with the same total mass (that is 2 M⊙) but two different initial chemical composition, namely (Y=0.269 - Z=0.015) and (Y=0.245 - Z=0.0001), representative of disk and halo stars respectively. We evaluate the differences in the final s-process surface composition and compare the results with the available observational data.

  11. The Carbon-13 Pockets in AGB Stars and Their Fingerprints in Mainstream SiC Grains

    NASA Astrophysics Data System (ADS)

    Liu, N.; Davis, A. M.; Gallino, R.; Savina, M. R.; Bisterzo, S.; Gyngard, F.; Dauphas, N.; Pellin, M. J.

    2014-09-01

    Strontium, Zr, and Ba isotopic compositions of mainstream presolar SiC grains are used to constrain the concentration and distribution of carbon-13, the main neutron source for the s-process, in the intershell region of asymptotic giant branch stars.

  12. Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T.; Groenewegen, M. A. T.; Kerschbaum, F.; Cernicharo, J.; Vandenbussche, B.; Waelkens, C.

    2016-04-01

    Context. The recent detection of warm H2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2O molecules in the intermediate wind. Aims: We aim to determine the properties of H2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2O formation pathway. Methods: Using far-infrared spectra taken with the PACS instrument onboard the Herschel telescope, we combined two methods to identify H2O emission trends and interpreted these in terms of theoretically expected patterns in the H2O abundance. Through the use of line-strength ratios, we analyzed the correlation between the strength of H2O emission and the mass-loss rate of the objects, as well as the radial dependence of the H2O abundance in the circumstellar outflow per individual source. We computed a model grid to account for radiative-transfer effects in the line strengths. Results: We detect warm H2O emission close to or inside the wind acceleration zone of all sample stars, irrespective of their stellar or circumstellar properties. The predicted H2O abundances in carbon-rich environments are in the range of 10-6 up to 10-4 for Miras and semiregular-a objects, and cluster around 10-6 for semiregular-b objects. These predictions are up to three orders of magnitude greater than what is predicted by state-of-the-art chemical models. We find a negative correlation between the H2O/CO line-strength ratio and gas mass-loss rate for Ṁg> 5 × 10-7 M⊙ yr-1, regardless of the upper-level energy of the relevant transitions

  13. Current hot questions on the s process in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; D'Orazi, V.; Karakas, A. I.; Garcia-Hernandez, D. A.; Stancliffe, R. J.; Tagliente, G.; Iliadis, C.; Rauscher, T.

    2016-01-01

    Asymptotic giant branch (AGB) stars are a main site of production of nuclei heavier than iron via the s process. In massive (>4 M⊙) AGB stars the operation of the 22Ne neutron source appears to be confirmed by observations of high Rb enhancements, while the lack of Tc in these stars rules out 13C as a main source of neutrons. The problem is that the Rb enhancements are not accompanied by Zr enhancements, as expected by s-process models. This discrepancy may be solved via a better understanding of the complex atmospheres of AGB stars. Second- generation stars in globular clusters (GCs), on the other hand, do not show enhancements in any s-process elements, not even Rb. If massive AGB stars are responsible for the composition of these GC stars, they may have evolved differently in GCs than in the field. In AGB stars of lower masses, 13C is the main source of neutrons and we can potentially constrain the effects of rotation and proton-ingestion episodes using the observed composition of post-AGB stars and of stardust SiC grains. Furthermore, independent asteroseismology observations of the rotational velocities of the cores of red giants and of white dwarves will play a fundamental role in helping us to better constrain the effect of rotation. Observations of carbon-enhanced metal-poor stars enriched in both Ba and Eu may require a neutron flux in-between the s and the r process, while the puzzling increase of Ba as function of the age in open clusters, not accompanied by increase in any other element heavier than iron, require further observational efforts. Finally, stardust SiC provides us high-precision constraints to test nuclear inputs such as neutron-capture cross sections of stable and unstable isotopes and the impact of excited nuclear states in stellar environments.

  14. HIRAS images of fossil dust shells around AGB stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Kester, Do J. M.; Bontekoe, Tj. Romke; Loup, C.

    1994-01-01

    We present high resolution HIRAS 60 and 100 micron images of AGB stars surrounded by fossil dust shells. Resolving the extended emission of the circumstellar dust allows a determination of the mass loss history of the star. We show that the geometry of the 60 micron emission surrounding HR 3126 agrees well with that of the optical reflection nebula. The emission around the carbon star U Hya is resolved into a central point source and a ring of dust, and the mass loss rate in the detached shell is 70 times higher than the current mass loss rate.

  15. AGB stars in Leo P and their use as metallicity probes

    NASA Astrophysics Data System (ADS)

    Lee ( ), Chien-Hsiu

    2016-09-01

    Leo P is the most metal-poor yet star-forming galaxy in the local volume, and has the potential to serve as a local counterpart to interpret the properties of distant galaxies in the early universe. We present a comprehensive search of asymptotic giant branch (AGB) stars in Leo P using deep infrared imaging. AGB stars are the major dust contributors; the metal poor nature of Leo P can help to shed light on the dust formation process in very low-metallicity environments, similar to the early Universe. We select and classify oxygen-rich and carbon-rich candidate AGB stars using J - K versus K colour-magnitude diagram. To filter out contaminations from background galaxies, we exploit the high-resolution Hubble Space Telescope imaging and identify 9 oxygen-rich AGBs and 13 carbon-rich AGB stars in Leo P. We then use the ratio of carbon-rich and oxygen-rich AGB stars (C/M ratio) as an indicator of on-site metallicity and derive the global metallicity [Fe/H] = -1.8 dex for Leo P, in good agreement with previous studies using isochrone fitting. Follow-up observations of these Leo P AGB stars in the mid-infrared [e.g. Spitzer, James Webb Space Telescope (JWST)] will be invaluable to measure the dust formation rates using Spectral energy distribution (SED) fitting.

  16. Spitzer Light Curves of Dusty AGB Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Meixner, Margaret; Riebel, David; Vijh, Uma; Hora, Joe; Boyer, Martha; Cook, Kem; Groenewegen, Martin; Whitelock, Patricia; Ita, Yoshifusa; Feast, Michael; Kemper, Ciska; Marengo, Massimo; Otsuka, Masaaki; Srinivasan, Sundar

    2014-12-01

    Asymptotic giant branch (AGB) variable stars are, together with supernovae, the main sources of enrichment of the interstellar medium (ISM) in processed material, particularly carbon, nitrogen and heavy s-process elements. The dustiest, extreme AGB stars contribute the largest enrichment per star. We propose to measure the first light curves for 32 of the dustiest AGB variable stars in the Small Magellanic Cloud (SMC) using the warm Spitzer mission's IRAC 3.6 and 4.5 micron imaging for monthly imaging measurements. We know most are variable based on dual-epoch observations from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) surveys of the SMC and ground-based near-infrared observations, but we have not observed these dusty SMC stars at the mid-infrared wavelengths available to Spitzer. Only Spitzer will be able to measure the light curve of this key phase of the AGB: the dustiest and indeed final stage of the AGB. Without this information, our developing picture of AGB evolution is decidedly incomplete. The observations we propose will test the validity of AGB evolution models, and, thus, their predictions of the return of mass and nucleosynthetic products to the ISM. A value-added component to this study is that we will obtain variability information on other AGB stars that lie within the fields of view of our observations. This proposal continues the studies we have begun with our Cycle 9 program (pid 90219) and our Cycle 10 program (pid 10154).

  17. Optical Spectroscopy of the Post-AGB Star HD 89353

    NASA Astrophysics Data System (ADS)

    Mohamad-Yob, S.-J.; Gopir, G. K.; Malasan, H. L.; Anwar, R.

    2009-08-01

    Using the compact spectrograph at 600 lines/mm, and the 50.8 cm telescope at the Langkawi National Observatory, we obtained moderate resolution spectra of the post-AGB star HD 89353. The objective is to measure carbon and nitrogen abundances as a test of nucleosynthesis in AGB stars. The wavelength covered is between 4800-5600, 6467-7276, and 7035-7840 Å. A preliminary analysis showed the presence of the CI lines: 4932.00, 5039.05, 6586.269, 7108.934, 7111.480, 7113.178, 7115.182, 7116.991 and 7119.656 Å, and the NI lines: 7442.28 and 7423.63 Å. There was also emission line of H-alpha. We measured the equivalent widths of the C and N lines for future abundance calculation.

  18. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; Van Winckel, H.; De Smedt, K.; Karakas, A. I.; Käppeler, F.

    2015-11-01

    Aims: We explore modifications to the current scenario for the slow neutron-capture process (the s-process) in asymptotic giant branch (AGB) stars to account for the Pb deficiency observed in post-AGB stars of low metallicity ([Fe/H] ≃-1.2) and low initial mass (≃ 1-1.5 M⊙) in the Large and Small Magellanic Clouds. Methods: We calculated the stellar evolution and nucleosynthesis for a 1.3 M⊙ star with [Fe/H] = -1.3 and tested different amounts and distributions of protons leading to the production of the main neutron source within the 13C-pocket and proton ingestion scenarios. Results: No s-process models can fully reproduce the abundance patterns observed in the post-AGB stars. When the Pb production is lowered, the abundances of the elements between Eu and Pb, such as Er, Yb, W, and Hf, are also lowered to below those observed. Conclusions: Neutron-capture processes with neutron densities intermediate between the s and the rapid neutron-capture processes may provide a solution to this problem and be a common occurrence in low-mass, low-metallicity AGB stars.

  19. Asymmetries in AGB Stars: New Results from Aperture Masking Techniques

    NASA Astrophysics Data System (ADS)

    Lykou, F.; Hron, J.; Paladini, C.; Zijlstra, A. A.; Tuthill, P. G.; Norris, B.; Lagadec, E.

    2015-08-01

    Recent studies have shown that the extended circumstellar envelopes of AGB stars are not always spherical in shape. Moreover, the majority of post-AGB stars exhibit highly aspherical shapes, such as bipolar nebulae and equatorial waists in the form of dusty and gaseous disks and/or tori. As such, one should expect that the origin of the morphological changes seen in later evolutionary stages can be traced during the AGB phase. We now present a study of AGB stars using aperture masking interferometry to resolve such aspherical structures.

  20. Optically bright Post-AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2014-04-01

    Post-AGB stars are low- to intermediate-mass stars in a rapid transition from the AGB phase to the Planetary Nebula (PN) phase. Post-AGB stars bear signatures of the structural and chemical composition changes that occur during the AGB phase of evolution and therefore can be used to constrain AGB models and also provide insight to the formation of PNes. In the Galaxy, the luminosities (and hence initial masses) of the diverse group of post-AGB candidates are badly affected by their unknown distances, making it difficult to use the observational characteristics of these interesting objects to throw light on the poorly-understood late stages of stellar evolution. In this talk, I will present the new results of a systematic search for post-AGB candidates in the Magellanic Clouds which became possible after the release of deep infrared surveys such as mid-infrared LMC and SMC Spitzer surveys. The catalog of post-AGB candidates in the Magellanic Clouds has been created firstly by selecting candidates based on the existence of a mid-infrared excess and secondly by obtaining low-resolution optical spectra. The optical spectra and broadband photometry were used to derive luminosities, effective temperatures and masses for the post-AGB candidates. Using a combination of colour criteria and SED analysis, we were able to classify between single and binary post-AGB objects. Binary post-AGB stars are likely to produce asymmetric PN (or bipolar PN). We also find that variability is displayed by several of the post-AGB candidates with the most common variability types being the Population II Cepheids (including RV-Tauri stars) and semi-regular variables. From the numbers of post-AGB candidates in the SMC and LMC, we were able to estimate evolutionary rates for the transient post-AGB phase. These catalogs of spectroscopically verified post-AGB candidates are a valuable resource for the study of late stages of single and binary star evolution as a function of initial mass and

  1. Investigation of Faint Galactic Carbon Stars from the First Byurakan Spectral sky Survey. Optical Variability. I. N-Type AGB Carbon Stars. K-band Absolute Magnitudes and Distances

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.; Sarkissian, A.; Russeil, D.; Mauron, N.; Kostandyan, G.; Vartanian, R.; Abrahamyan, H. V.; Paronyan, G. M.

    2014-12-01

    The goal of this paper is to present an optical variability study of the comparatively faint carbon (C) stars which have been discovered by searching the First Byurakan Survey (FBS) low-resolution (lr) spectral plates at high Galactic latitudes using recent wide-area variability databases. The light curves from the Catalina Sky Survey (CSS) and Northern Sky Variability Survey (NSVS) databases were exploited to study theit variability nature. In this paper, first in this series, the variability classes are presented for 54 N-type Asymptotic Giant Branch (AGB) C stars. One finds that 9 stars belongs to the group of Mira-type, 43 are Semi-Regular (SR), and 2 stars are Irregular (Irr)-type variables. The variability types of 27 objects has been established for the first time. K-band absolute magnitudes, distances, and height from the Galactic plane were estimated for all of them. We aim to better understand the nature of the selected C stars through spectroscopy, 2MASS photometric colors, and variability data. Most of the tools used in this study are developed within the framework of the Astronomical Virtual Observatory.

  2. AGB Stars in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Portman, Matthew; Sargent, Benjamin A.; Held, Leander; Kastner, Joel; SAGE Team

    2016-01-01

    Asymptotic giant branch (AGB) stars are evolved, pulsating variable stars that generate massive outflows of gas and dust, thereby enriching the interstellar medium (ISM) in the products of stellar nucleosynthesis. Recent studies find the dustiest, most extreme AGB stars contribute a disproportionately large amount of matter to their host galaxies; these extreme AGB stars are also the most variable, and they emit most of their energy at mid-infrared wavelengths. Therefore, using the Spitzer Space Telescope, we have imaged several target AGB stars identified in previous surveys of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Our aim is to obtain light curves at 3.6 and 4.5 microns wavelength for these extreme AGB stars. Using multiple epochs of data taken within the last 3 years by our survey and then further comparing this data to past surveys of the SMC and LMC with Spitzer, we were able to generate preliminary light curves for a sample of 30 extreme AGB stars, as well as for other stars found within the image fields. This research project was made possible by the Rochester Institute of Technology Center for Imaging Science Research Experience for Undergraduates program, funded by National Science Foundation grant PHY-1359361 to RIT.

  3. Spectroscopic survey of post-AGB star candidates

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Miranda, L. F.

    2007-01-01

    Aims:Our goal is to establish the true nature of post-AGB star candidates and to identify new post-AGB stars. Methods: We used low resolution optical spectroscopy and we compared the spectra of the candidate post-AGB stars with those of stars in the library specta available in the literature and with spectra of "standard" post-AGB stars, and direct imaging in narrow-band filters. Results: Spectra were obtained for 16 objects: 14 objects have not been observed previously and 2 objects are already known post-AGB stars used as "standards" for identification. From the spectra we identify: six new post-AGB stars with spectral types between G5 and F5, two H ii regions the morphology of which is revealed in the direct images for the first time, a G giant with infrared emission, a young stellar object, a probable post-AGB star with emission lines and three objects for which the classification is still unclear. As a whole, our results provide new, reliable identifications for 10 objects among listed post-AGB star candidates. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and at the Observatorio de Sierra Nevada, which is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía (Granada, Spain). Appendices A-D are only available in electronic form at http://www.aanda.org

  4. Dust in the Early Universe and the Contribution of AGB Stars

    NASA Astrophysics Data System (ADS)

    Schneider, R.; Valiante, R.; Ventura, P.; dell'Agli, F.; di Criscienzo, M.

    2015-08-01

    We review the role of AGB stars in early dust enrichment in light of new theoretical dust yields for stars with mass 1-8 M⊙ and metallicity 3×10-4≥ Z ≥0.008, obtained with models that follow stellar evolution from the pre-main sequence phase until the almost complete ejection of the stellar mantle. The models have been shown to reproduce the measured dust production rates by carbon-rich and oxygen-rich AGB stars in the Small and Large Magellanic Clouds, as well as the observed colors of the so-called extreme stars in the LMC. We discuss the relative role of AGB stars and SNe in early dust enrichment and the impact of these two classes of stellar sources on the nature and composition of the first dust.

  5. Caught in the Act: Imaging the Disk and Outflows in V Hya, a carbon-rich AGB star in transition to a Bipolar Pre-Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Rajagopal, Jayadev; Morris, Mark; Hinkle, Kenneth H.; Joyce, Richard R.

    2015-01-01

    The carbon star V Hya is experiencing heavy mass loss as it undergoes the transition from AGB star to a bipolar pre-planetary nebula (PPN). V Hya is possibly the earliest object known in this brief phase, which is so short that few nearby stars are likely to be caught in the act. Using STIS/HST we discovered a high velocity (>200 km/s) blob that was ejected very recently from near (<0.3 arcsec) the star and measured its proper motion. We found time-variable high-velocity absorption features in the CO 4.6 micron vibration-rotation lines from a multi-epoch study - modelling shows that these are produced in compact clumps of outflowing gas with significant temperature gradients. Millimeter wave interferometry with 3.5 arcsec resolution shows that the high-velocity outflow is collimated and bipolar. The STIS data and recent mid-infrared interferometry also suggest the presence of a small (<0.55 arcsec size) circumstellar disk.We report new observations to investigate V Hya's high-velocity outflow and disk with STIS (HST) and GPI (Gemini South). Our STIS data show that the high-velocity outflow emission has weakened significantly over a 12-year period. Our Y-band coronagraphic polarimetric imaging with GPI reveals the presence of an inclined disk in scattered light, aligned roughly north-south, i.e., orthogonal to the high-velocity outflow. We discuss the implications of these results for the disk/outflow system in V Hya in particular, and in nascent PPNe, in general.

  6. Rb and Zr abundances in massive Galactic AGB stars revisited

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; Zamora, O.; García-Hernández, D. A.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2016-07-01

    We report new abundances of Rb and Zr in a sample of massive Galactic asymptotic giant branch (AGB) stars that were previously studied with hydrostatic models by using more realistic dynamical model atmospheres. We use a modified version of the spectral synthesis code Turbospectrum, and consider the presence of a circumstellar envelope and a radial wind in the modelling of these Galactic AGB stars. The Rb and Zr are determined from the 7800 Å Rb I resonant line and the 6474 Å ZrO bandhead, respectively, and they are compared with the AGB nucleosynthesis theoretical predictions. The derived Rb abundances are much lower (∼⃒1-2 dex) with the new dynamical models, while the Zr abundances, however, are closer to the hydrostatic values. The new model atmospheres can help to resolve the problem of the mismatch between the observations and the nucleosynthesis theoretical predictions of massive AGB stars.

  7. Ultraviolet emission from main-sequence companions of AGB stars

    NASA Astrophysics Data System (ADS)

    Ortiz, Roberto; Guerrero, Martín A.

    2016-09-01

    Although the majority of known binary asymptotic giant branch (AGB) stars are symbiotic systems (i.e. with a white dwarf as a secondary star), main-sequence companions of AGB stars can be more numerous, even though they are more difficult to find because the primary high luminosity hampers the detection of the companion at visual wavelengths. However, in the ultraviolet the flux emitted by a secondary with Teff > 5500 ˜ 6000 K may prevail over that of the primary, and then it can be used to search for candidates to binary AGB stars. In this work, theoretical atmosphere models are used to calculate the UV excess in the GALEX near- and far-UV bands due to a main-sequence companion. After analysing a sample of confirmed binary AGB stars, we propose as a criterium for binarity: (1) the detection of the AGB star in the GALEX far-UV band and/or (2) a GALEX near-UV observed-to-predicted flux ratio >20. These criteria have been applied to a volume-limited sample of AGB stars within 500 pc of the Sun; 34 out of the sample of 58 AGB stars (˜60 per cent) fulfill them, implying to have a main-sequence companion of spectral type earlier than K0. The excess in the GALEX near- and far-UV bands cannot be attributed to a single temperature companion star, thus suggesting that the UV emission of the secondary might be absorbed by the extended atmosphere and circumstellar envelope of the primary or that UV emission is produced in accretion flows.

  8. Winds of M- and S-type AGB stars: an unorthodox suggestion for the driving mechanism

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Andersen, A. C.

    2007-04-01

    Context: Current knowledge suggests that the dust-driven wind scenario provides a realistic framework for understanding mass loss from C-rich AGB stars. For M-type objects, however, recent detailed models demonstrate that radiation pressure on silicate grains is not sufficient to drive the observed winds, contrary to previous expectations. Aims: In this paper, we suggest an alternative mechanism for the mass loss of M-type AGB stars, involving the formation of both carbon and silicate grains due to non-equilibrium effects, and we study the viability of this scenario. Methods: We model the dynamical atmospheres and winds of AGB stars by solving the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation, using a parameterized description of non-equilibrium effects in the gas phase. This approach allows us to assess under which circumstances it is possible to drive winds with small amounts of carbon dust and to get silicate grains forming in these outflows at the same time. Results: The properties of the resulting wind models, such as mass-loss rates and outflow velocities, are well within the observed limits for M-type AGB stars. Furthermore, according to our results, it is quite unlikely that significant amounts of silicate grains will condense in a wind driven by a force totally unrelated to dust formation, as the conditions in the upper atmosphere and wind acceleration region put strong constraints on grain growth. Conclusions: .The proposed scenario provides a natural explanation for the observed similarities in wind properties of M-type and C-type AGB stars and implies a smooth transition for stars with increasing carbon abundance, from solar-composition to C-rich AGB stars, possibly solving the longstanding problem of the driving mechanism for stars with a C/O close to one.

  9. High-speed Bullet Ejections during the AGB-to-Planetary Nebula Transition: HST Observations of the Carbon Star, V Hydrae

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Scibelli, S.; Morris, M. R.

    2016-08-01

    The well-studied carbon star, V Hya, showing evidence for high-speed, collimated outflows and dense equatorial structures, is a key object in the study of the poorly understood transition of AGB stars into aspherical planetary nebulae. Using the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope, we have obtained high spatial-resolution long-slit optical spectra of V Hya that show high-velocity emission in [S ii] and [Fe ii] lines. Our data set, spanning three epochs spaced apart by a year during each of two periods (in 2002–2004 and 2011–2013), shows that V Hya ejects high-speed (˜200–250 {km} {{{s}}}-1) bullets once every ˜8.5 years. The ejection axis flip–flops around a roughly eastern direction, both in and perpendicular to the sky-plane, and the radial velocities of the ejecta also vary in concert between low and high values. We propose a model in which the bullet ejection is associated with the periastron passage of a binary companion in an eccentric orbit around V Hya with an orbital period of ˜8.5 years. The flip–flop phenomenon is likely the result of collimated ejection from an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing, and/or that has a magnetic field that is misaligned with that of the companion or the primary star. We show how a previously observed 17 year period in V Hya’s light-cycle can also be explained in our model. Additionally, we describe how the model proposed here can be extended to account for multipolar nebulae.

  10. High-speed Bullet Ejections during the AGB-to-Planetary Nebula Transition: HST Observations of the Carbon Star, V Hydrae

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Scibelli, S.; Morris, M. R.

    2016-08-01

    The well-studied carbon star, V Hya, showing evidence for high-speed, collimated outflows and dense equatorial structures, is a key object in the study of the poorly understood transition of AGB stars into aspherical planetary nebulae. Using the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope, we have obtained high spatial-resolution long-slit optical spectra of V Hya that show high-velocity emission in [S ii] and [Fe ii] lines. Our data set, spanning three epochs spaced apart by a year during each of two periods (in 2002–2004 and 2011–2013), shows that V Hya ejects high-speed (∼200–250 {km} {{{s}}}-1) bullets once every ∼8.5 years. The ejection axis flip–flops around a roughly eastern direction, both in and perpendicular to the sky-plane, and the radial velocities of the ejecta also vary in concert between low and high values. We propose a model in which the bullet ejection is associated with the periastron passage of a binary companion in an eccentric orbit around V Hya with an orbital period of ∼8.5 years. The flip–flop phenomenon is likely the result of collimated ejection from an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing, and/or that has a magnetic field that is misaligned with that of the companion or the primary star. We show how a previously observed 17 year period in V Hya’s light-cycle can also be explained in our model. Additionally, we describe how the model proposed here can be extended to account for multipolar nebulae.

  11. Do Globular Clusters Care about AGB Stars? Metallicity Distribution of AGB and RGB Stars in NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.

    2015-08-01

    Galactic globular clusters are known to have multiple stellar populations with different scenarios being debated for their origin. In this context, the core of our project is to disentangle the first and second generation stars based on their chemical properties, in order to test different model predictions. Here we present a preliminary chemical analysis of a new sample of AGB stars in NGC 2808 observed at the VLT with FLAMES, in order to further investigate the recent finding that no Na-rich stars are found on the AGB.

  12. Sensitivity study for s process nucleosynthesis in AGB stars

    NASA Astrophysics Data System (ADS)

    Koloczek, A.; Thomas, B.; Glorius, J.; Plag, R.; Pignatari, M.; Reifarth, R.; Ritter, C.; Schmidt, S.; Sonnabend, K.

    2016-03-01

    In this paper we present a large-scale sensitivity study of reaction rates in the main component of the s process. The aim of this study is to identify all rates, which have a global effect on the s process abundance distribution and the three most important rates for the production of each isotope. We have performed a sensitivity study on the radiative 13C-pocket and on the convective thermal pulse, sites of the s process in AGB stars. We identified 22 rates, which have the highest impact on the s-process abundances in AGB stars.

  13. Spectroscopic and photometric monitoring of southern post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pooley, D. J.; Cottrell, P. L.; Pollard, K. R.; Albrow, M. D.

    2004-05-01

    We present the results of contemporaneous photometric and spectroscopic monitoring of 20 post-AGB stars from Mt John University Observatory. Photometric measures were carried our suing Johnson BV and Cousins RI filters, and the radial velocity measurements were acquired using spectra from an echelle spectrograph. Our program spanned five years and the stars covered a range of spectral types from B to K in order to investigate the behavior of post-AGB stars as they evolve away from the AGB. A number of stars proved to be variable inways incompatible with post-AGB models and are reclassified. Periodicities are presented for a number of stars. Photometrically, HD 70379 was found to be pulsating in two modes with periods of 85 and 97 d. The radial velocities also varied, with the peak amplitude occurring when the photometry was also changing most. AI CMi presented three different types of spectra associated with photometric brightness, with varying strengths of narrow emission lines and molecular bandheads. The Hα profiles in almost all of the stars show evidence of emission which varies on time scales of days to months. The Na D line profiles are generally complex showing between 4 and 7 components due to both circumstellar and interstellar material.

  14. Herschel and ALMA observations of AGB star envelopes

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    The stellar winds of evolved (super)giant stars are known to be the prime birthplaces for the interstellar material in our galaxy. Fusion in the stellar interiors creates carbon, nitrogen, oxygen, and for more massive stars elements such as magnesium, sulphur etc. are synthesized. Thanks to dredge-ups in the stellar atmosphere and subsequent extensive mass loss through a stellar wind this material is injected into the interstellar medium (ISM).These stellar winds are really unique chemical laboratories in which various gas-phase and gas-dust processes create and destroy gas and dust species and hence manufacture the pristine building blocks of the ISM. The efficiency and working of these various chemical processes is ultimately linked to the dynamical processes which establish the morpho-kinematical structure of the wind. Unraveling the intriguing coupling between these macro-scale dynamical and micro-scale chemical processes is a real challenge to which recent advances in instrumentation, theoretical modeling, and laboratory experiments have contributed a lot. Thanks to their unprecedented sensitivity, spatial resolution and wavelength coverage, Herschel and ALMA have proven to be two key instruments in solving some enigmas related to AGB stellar winds. In this talk, I will give a review of some of the most recent results in the field of AGB stellar winds based on Herschel and ALMA data and I will discuss some open questions that I hope will be answered in the next decade thanks to a combined effort between instrumentation and laboratory specialists and theoretical astrophysicists.

  15. Post-AGB Stars in the AKARI Survey

    NASA Astrophysics Data System (ADS)

    Siódmiak, N.; Cox, N.; Szczerba, R.; García-Lario, P.

    2009-12-01

    Obscured by their circumstellar dusty envelopes post-AGB stars emit a large fraction of their energy in the infrared and thus, infrared sky surveys like IRAS were essential for discoveries of post-AGBs in the past. Now, with the AKARI infrared sky survey we can extend our knowledge about the late stages of stellar evolution. The long-term goal of our work is to define new photometric criteria to distinguish new post-AGB candidates from the AKARI data. We have cross-correlated the Toruń catalogue of Galactic post-AGB and related objects with the AKARI/FIS All-Sky Survey Bright Source Catalogue (for simplicity, hereafter AKARI). The scientific and technical aspects of our work are presented here as well as our plans for the future. In particular, we found that only 9 post-AGB sources were detected in all four AKARI bands. The most famous objects like: Red Rectangle, Egg Nebula, Minkowski’s Footprint belong to this group. From the technical point of view we discuss positional accuracy by comparing (mostly) 2MASS coordinates of post-AGB objects with those given by AKARI; flux reliability by comparing IRAS 60 and 100 μm fluxes with those from AKARI -N65 and AKARI -90 bands, respectively; as well as completeness of the sample as a function of the IRAS fluxes.

  16. Winds of Binary AGB Stars as Observed by Herschel

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Mečina, M.; Paladini, C.; Cox, N. L. J.; Nowotny, W.; Aringer, B.; Pourbaix, D.; Mohamed, S.; Siopis, C.; Groenewegen, M. A. T.

    2015-08-01

    We present Herschel/PACS observations of the large-scale environments of binary AGB stars as part of the Mass-loss of Evolved StarS (MESS) sample. From the literature we found 18 of the objects to be members of physically bound multiple systems. Several show a large-scale far-IR emission which differs significantly from spherical symmetry. A probable cause is the gravitational force of the companion on the stellar AGB wind and the mass-losing star itself. A spiral pattern is thereby imprinted in the dusty stellar wind. The most remarkable structures are found around o Ceti, W Aquilæ, R Aquarii, and π1 Gruis. The environments of o Cet and W Aql show a spiral pattern while the symbiotic nature of R Aqr is revealed as two opposing arms which reflect a nova outburst. The emission around π1 Gru is dominated by two structures, a disk and an arc, which are presumably not caused by the same companion. We found evidence that π1 Gru is a hierarchical triple system in which a close companion attracts the AGB wind onto the orbital plane and the outer companion forms a spiral arm. These far-IR observations underline the role of a companion as a major external influence in creating asymmetric winds in the AGB phase, even before the star becomes a planetary nebula (PN).

  17. Why Galaxies Care about AGB Stars: Setting the Stage

    NASA Astrophysics Data System (ADS)

    Renzini, A.

    2015-08-01

    In this introduction to the Third Congress of Vienna on asymptotic giant branch (AGB) stars, I first try to highlight why it is so hard to cope with the AGB evolutionary phase. This phase is indeed dominated by three main physical processes concerning bulk motions of matter inside/around stars, namely envelope convection, mixing, and mass loss. They are inextricably interlaced with each other in a circular sequence of reactions and counter-reactions which has so far undermined our attempts at calibrating such processes independent of one another. The second part of this introduction is focused on globular clusters, illustrating how they came to be a new frontier for AGB evolution and a new opportunity to understand it.

  18. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Lagadec, E.; Sloan, G. C.; Boyer, M. L.; Matsuura, M.; Smith, R. J.; Smith, C. L.; Yates, J. A.; van Loon, J. Th.; Jones, O. C.; Ramstedt, S.; Avison, A.; Justtanont, K.; Olofsson, H.; Blommaert, J. A. D. L.; Goldman, S. R.; Groenewegen, M. A. T.

    2015-11-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ˜1.2-3.5 × 10-7 M⊙ yr-1. We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.

  19. On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Karakas, A. I.; Dell'Agli, F.; García-Hernández, D. A.; Boyer, M. L.; Di Criscienzo, M.

    2016-04-01

    The stars in the Magellanic Clouds with the largest degree of obscuration are used to probe the highly uncertain physics of stars in the asymptotic giant branch (AGB) phase of evolution. Carbon stars in particular provide key information on the amount of third dredge-up and mass-loss. We use two independent stellar evolution codes to test how a different treatment of the physics affects the evolution on the AGB. The output from the two codes is used to determine the rates of dust formation in the circumstellar envelope, where the method used to determine the dust is the same for each case. The stars with the largest degree of obscuration in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are identified as the progeny of objects of initial mass 2.5-3 M⊙ and ˜1.5 M⊙, respectively. This difference in mass is motivated by the difference in the star formation histories of the two galaxies, and offers a simple explanation of the redder infrared colours of C-stars in the LMC compared to their counterparts in the SMC. The comparison with the Spitzer colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass fraction X(C) ˜ 5 × 10-3 must have been reached by stars of initial mass around 1.5 M⊙. Our results confirm the necessity of adopting low-temperature opacities in stellar evolutionary models of AGB stars. These opacities allow the stars to obtain mass-loss rates high enough (≳10-4 M⊙ yr-1) to produce the amount of dust needed to reproduce the Spitzer colours.

  20. Evolved stars in the Local Group galaxies. I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-05-01

    We used models of thermally-pulsing asymptotic giant branch (AGB) stars, that also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows a nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition, and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1 - 1.25M⊙ objects of metallicity Z = 10-3 and from 1.5 - 2.5M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65%), mainly low mass stars (<2M⊙) that produce a negligible amount of dust (≤10-7M⊙/yr). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7M⊙/yr with an uncertainty of 30%. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  1. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  2. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally-pulsing asymptotic giant branch (AGB) stars, that also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows a nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition, and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25Msun objects of metallicity Z=0.001 and from 1.5-2.5Msun stars with Z=0.002. Oxygen-rich stars constitute the majority of the sample (65%), mainly low mass stars (<2Msun) that produce a negligible amount of dust (<10^{-7}Msun/yr). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be 6x10^{-7}Msun/yr with an uncertainty of 30%. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  3. Nucleosynthesis in AGB Stars Traced by Oxygen Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    De Nutte, R.; Decin, L.; Olofsson, H.; de Koter, A.; Lombaert, R.; Milam, S.; Ramstedt, S.

    2015-08-01

    Isotopic ratios are by far the best diagnostic tracers of the stellar origin of elements, as they are very sensitive to the precise conditions in the nuclear burning regions. They allow us to give direct constraints on stellar evolution models and on the progenitor mass. However, up to now different isotopic ratios have been well constrained for only a handful of Asymptotic Giant Branch (AGB) stars. We present new data on isotopologue lines of a well-selected sample of AGB stars, covering the three spectral classes of C-, S- and M-type stars. We report on the first efforts made in determining accurate isotopologue fractions, focusing on oxygen isotopes which are a crucial tracer of the poorly constrained extra mixing processes in stellar atmospheres.

  4. Magnetic fields around AGB stars and Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.

    2014-08-01

    Stars with a mass up to a few solar masses are one of the main contributors to the enrichment of the interstellar medium in dust and heavy elements. However, while significant progress has been made, the process of the mass-loss responsible for this enrichment is still not exactly known and forces beyond radiation pressure might be required. Often, the mass lost in the last phases of the stars life will become a spectacular planetary nebula. The shaping process of often strongly a-spherical PNe is equally elusive. Both binaries and magnetic fields have been suggested to be possible agents although a combination of both might also be a natural explanation. Here I review the current evidence for magnetic fields around AGB and post-AGB stars pre-Planetary Nebulae and PNe themselves. Magnetic fields appear to be ubiquitous in the envelopes of apparently single stars, challenging current ideas on its origin, although we have found that binary companions could easily be hidden from view. There are also strong indications of magnetically collimated outflows from post-AGB/pre-PNe objects supporting a significant role in shaping the circumstellar envelope.

  5. Wind Acceleration in AGB Stars: Solid Ground and Loose Ends

    NASA Astrophysics Data System (ADS)

    Höfner, S.

    2015-08-01

    The winds of cool luminous AGB stars are commonly assumed to be driven by radiative acceleration of dust grains which form in the extended atmospheres produced by pulsation-induced shock waves. The dust particles gain momentum by absorption or scattering of stellar photons, and they drag along the surrounding gas particles through collisions, triggering an outflow. This scenario, here referred to as Pulsation-Enhanced Dust-DRiven Outflow (PEDDRO), has passed a range of critical observational tests as models have developed from empirical and qualitative to increasingly self-consistent and quantitative. A reliable theory of mass loss is an essential piece in the bigger picture of stellar and galactic chemical evolution, and central for determining the contribution of AGB stars to the dust budget of galaxies. In this review, I discuss the current understanding of wind acceleration and indicate areas where further efforts by theorists and observers are needed.

  6. Probing the Mass Loss History of AGB Stars with Herschelfootnotemark

    NASA Astrophysics Data System (ADS)

    Kerschbaum, F.; Mecina, M.; Ottensamer, R.; Luntzer, A.; Groenewegen, M. A. T.; Blommaert, J. A. D. L.; Decin, L.; Royer, P.; Vandenbussche, B.; Waelkens, C.; Barlow, M.; Lim, T.

    2011-09-01

    An overview is given of AGB stars imaged with the PACS and SPIRE instruments on-board the Herschel Space Observatory in the framework of the MESS Guaranteed Time Key Programme. The objects AQ And, U Ant, W Aql, U Cam, RT Cap, Y CVn, TT Cyg, UX Dra, W Ori, AQ Sgr, and X TrA all show detached or extended circumstellar emission.

  7. Nonradial instability strips for post-AGB stars

    SciTech Connect

    Stanghellini, L. ); Cox, A.N. ); Starrfield, S.G. . Dept. of Physics and Astronomy Los Alamos National Lab., NM )

    1990-01-01

    We test several pre-degenerate (PNN and DO) and degenerate (DB) models for stability against nonradial oscillations. These models lie on the 0.6 M{sub {circle dot}} evolutionary track calculated by Iben. The post-AGB stars have a residual CO core with only a little surface hydrogen and helium. In order to match all the observed pulsators. We use three different surface compositions for the DO stars, and a pure helium surface for the DB white dwarfs. We find 3 DO and 1 DB instability strips that we compare to the available observations. 16 refs., 1 fig.

  8. The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type

    NASA Astrophysics Data System (ADS)

    Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B.

    2013-02-01

    Aims: A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of asymptotic giant branch (AGB) stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. Methods: In order to constrain the circumstellar HCN abundance distribution a detailed non-local thermodynamic equilibrium (LTE) excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. Results: The median values for the derived abundances of HCN (with respect to H2) are 3 × 10-5, 7 × 10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. Conclusions: We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars. This publication is based on data

  9. Nucleosynthesis in Low Mass Very Metal Poor AGB Stars

    NASA Astrophysics Data System (ADS)

    Serenelli, A.

    The evolution of a 1.5 M⊙, Z= 10-5 stellar model has been followed starting at the ZAMS up to the thermally pulsating asymptotic giant branch (TP-AGB) phase. Calculations were done using the LPCODE [1], to which some changes were done. The most important and relevant to this work is the incorporation of a full nuclear network from H to Po, comprising about 525 isotopes and 910 nuclear reactions, appropriate for the computation of the s-process occurring in AGB stars. Convection is treated according to the mixing length theory (λMLT = 1.7) and convective mixing as a diffusive process. Diffusive overshooting is also included according to [2] and the free parameter f adopted is 0.015. Mass loss is given by the Reimers formula, with the parameter η = 1.

  10. Testing the effect of continuum elimination methods on studies of infrared dust features from AGB star spectra

    NASA Astrophysics Data System (ADS)

    Delisle, Colby; Speck, A.

    2014-01-01

    Asymptotic Giant Branch (AGB) stars are major contributors of cosmic dust to the interstellar medium. Understanding the cosmic dust ejected from these stars is essential to understanding the broader topics of evolution and composition of stellar and interstellar objects in our universe. AGB stars produce either carbon- or oxygen (O)-rich dust. O-rich AGB stars have been classified into groups according to the shapes of their spectral features in the mid-infrared (IR). Because their spectral features are similar, stars within each group are expected to have similar dust shell parameters, especially with respect to the composition of the dust. We have selected a sample of 26 O-rich AGB stars, in a single group in order to investigate an apparently homogenous group of stars. In particular, we chose stars in group SE1. Using spectral data from the Infrared Space Observatory (ISO), and the Infrared Astronomical Satellite (IRAS) we investigated variations in the spectral parameters of these stars: i.e. continuum temperature, feature strength, peak position(s), FWHM. In this preliminary work we present a study of the effect of the methods by which we eliminate the continuum prior to measuring the feature parameters.

  11. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  12. The Case of the Missing Cyanogen-rich AGB Stars in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; Grundahl, F.; Sneden, C.

    2012-08-01

    The handful of available observations of AGB stars in Galactic Globular Clusters suggest that the GC AGB populations are dominated by cyanogen-weak stars (eg. Norris et al. 1981; Sneden et al. 2000). This contrasts strongly with the distributions on the RGB (and other) populations, which generally show a 50:50 bimodality in CN band strength. If this is a real difference then it presents a serious problem for low metallicity stellar evolution theory - since such a surface abundance change going from the RGB to AGB is not predicted by stellar models. However this is only a tentative conclusion, since it is based on very small AGB sample sizes. To test whether this problem really exists we have carried out an observational campaign targeting AGB stars in GCs. Our preliminary results indicate there is indeed a lack of CN-strong AGB stars.

  13. Post-AGB Stars in the Halos of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    1999-02-01

    The visually brightest members of Population II are post-AGB (PAGB) stars evolving through spectral types F and A. The aim of this proposal is to find such PAGB stars in the halos of three galaxies that lie just outside the Local Group: Sextans A, NGC 3109, and NGC 5237. The importance of PAGB stars is: (1) they can probe the structure of galactic halos, in the form of test particles much more numerous than planetary nebulae or globular clusters, with which we can look for features such as clumps or tidal streams; (2) the number counts will tell us the theoretically poorly known transition time from AGB to planetary nebula; and (3) we believe that PAGB stars will prove to be a superb new PRIMARY distance indicator, comparable to or better than Cepheids. PAGB stars of types F and A are easily recognized because of their large Balmer jumps. Our uBVI photometric system is optimal for revealing them in galactic halos, due to their unique u-B colors, and the method is extremely efficient in its telescope time requirements. Sextans A and NGC 3109 have Cepheid and TRGB distances, so they are excellent test beds for a confrontation with our proposed Pop II primary standard candles. NGC 5237 has an uncertain distance, which PAGB stars should considerably improve. The 0.9-m telescope will be used (1) to obtain uBVI calibrations of our fields, thus saving the 4-m BTC mosaic for the deep observations; and (2) to complete our survey of Milky Way globular clusters for PAGB stars to used as Galactic calibrators of their luminosities and metallicity dependence.

  14. Phase-lag Distances of OH Masing AGB Stars

    NASA Astrophysics Data System (ADS)

    Engels, D.; Etoka, S.; Gérard, E.; Richards, A.

    2015-08-01

    Distances to AGB stars with optically thick circumstellar shells cannot be determined using optical parallaxes. However, for stars with OH 1612 MHz maser emission emanating from their circumstellar shells, distances can be determined by the phase-lag method. This method combines a linear diameter obtained from a phase-lag measurement with an angular diameter obtained from interferometry. The phase-lag of the variable emission from the back and front sides of the shells has been determined for 20 OH/IR stars in the galactic disk. These measurements are based on a monitoring program with the Nançay radio telescope ongoing for more than 6 years. The interferometric observations are continuing. We estimate that the uncertainties of the distance determination will be ˜20%.

  15. SMA Spectral Line Imaging Survey at 279 - 355 GHz of the Oxygen-rich AGB Star IK Tau

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Kamiński, T.; Menten, K. M.; Patel, N. A.; Young, K. H.; Gottlieb, C. A.

    2015-08-01

    Dedicated, unbiased spectral scans of asymptotic giant branch stars have so far been published only for a few carbon-rich stars, with a strong focus on the nearby and bright IRC +10216. We present results from a spectral survey of the circumstellar envelope of the oxygen-rich AGB star IK Tau obtained with the Submillimeter Array (SMA) at ~ 0'.9 angular resolution in the frequency range 279-355 GHz, expanding the molecular inventory for M-type evolved stars and filling an observational gap. The survey shows over 140 emission lines, belonging to more than 30 species. The emission of AlO and of several vibrationally excited species traces the acceleration of the wind. Isotopic ratios for carbon, silicon, and sulfur will be derived from the observed emission of isotopologues of CO, SiO, SiS, HCN, SO, and SO2. This will allow us to constrain the AGB nucleosynthesis of IK Tau. We highlight the first detection of PO and PN around an oxygen-rich AGB star, detected at unexpectedly high abundances, and emphasise the importance of unbiased spectral surveys of AGB stars and the need for updated chemical models.

  16. Post-AGB Stars in the Halos of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    1999-02-01

    The visually brightest members of Population II are post-AGB (PAGB) stars evolving through spectral types F and A. The aim of this proposal is to find such PAGB stars in the halos of Sextans A and B (two galaxies just outside the Local Group) and of NGC 4236 (a nearly edge-on spiral in the M81 Group). The importance of these stars is: (1) they will serve as probes of the structure of galactic halos, in the form of test particles much more numerous than planetary nebulae or globular clusters, with which we can look for features such as clumps or tidal streams; (2) the number counts will tell us the theoretically poorly known transition time from AGB to planetary nebula; and (3) we believe that PAGB stars will prove to be a superb new PRIMARY distance indicator, comparable to or better than Cepheids. PAGB stars of types F and A are easily recognized because of their large Balmer jumps. Our uBVI photometric system is optimal for revealing them in galactic halos, due to their unique u-B colors, and the method is extremely efficient in its telescope time requirements. In Sextans A and B PAGB stars will appear at V~eq22.3, and in NGC 4236 at V~eq24. Sextans A and B have Cepheid and TRGB distances, and NGC 4236 is a Tully-Fisher calibrator, so they are excellent test beds for a confrontation with our proposed Pop II primary standard candles. We will use the 0.9-m telescope for uBVI calibrations of our fields, saving the 4-m for the deep observations.

  17. Out on a Limb: Updates on the Search for X-ray Emission from AGB Stars

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Ramstedt, Sofia; Santiago-Boyd, Andrea; Kastner, Joel; Vlemmings, Wouter

    2016-01-01

    X-rays from asymptotic giant branch (AGB) stars are rarely detected, however, few modern X-ray observatories have targeted AGB stars. In 2012, we searched a list of 480 galactic AGB stars and found a total of 13 targeted or serendipitous observations with few detections (Ramstedt et al. 2012). Since this initial search new programs have successfully targeted and detected X-ray emission from a handful of AGB stars. The X-ray emission, when detected, reveals high temperature plasma (>= 10 MK). This plasma might be heated by a large-scale magnetic field or indicate the presence of accretion onto a compact companion. In this poster, we update our search for X-ray emission from AGB stars with a review of their characteristics, potential origins, and impact of X-ray emission in this late stage of stellar evolution.

  18. Integrated Properties of AGB Stars in Resolved and Unresolved Stellar Populations: Simple Stellar Populations and Star Clusters

    NASA Astrophysics Data System (ADS)

    Lançon, A.

    2011-09-01

    The evolution of AGB stars is notoriously complex. The confrontation of AGB population models with observed stellar populations is a useful alternative to the detailed study of individual stars in efforts to converge towards a reliable evolution theory. I review here the impact of studies of star clusters on AGB models and AGB population synthesis, deliberately leaving out any more complex stellar populations. Over the last 10 years, despite much effort, the absolute uncertainties in the predictions of the light emitted by intermediate-age populations have not been reduced to a satisfactory level. Observational sample definitions, as well as the combination of the natural variance in AGB properties with small number statistics, are largely responsible for this situation. There is hope that the constraints may soon become strong enough, thanks to large unbiased surveys of star clusters, resolved colour-magnitude diagrams, and new analysis methods that can account for the stochastic nature of AGB populations in clusters.

  19. A Photometric and Spectroscopic Survey of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Brewer, James P.

    1996-04-01

    Asymptotic giant-branch (AGB) stars are identified and classified in five 7' X 7' fields spaced along M31's SW semi-major axis using a four band photometric system. An investigation of the AGB luminosity functions and red giant-branch widths reveals significant differences between the star forming histories of the five fields. The distance modulus of M31 is derived using carbon stars (C-stars) and found to be consistent with both a value obtained from Cepheids and with values in the literature. The ratio of AGB C- to M-stars (C/M ratio) in the five fields is found to increase with galactocentric distance and it is shown that photometric incompleteness is not responsible for this effect. This is the first clear demonstration of a varying C/M ratio in an external galaxy. The C/M ratios appear to be insensitive to star-forming history differences but sensitive to metallicity differences between the fields. Previous observations are used to define a relationship between the C/M ratio and metallicity, and this is used to obtain estimates of the field metallicities. These estimates are found to be consistent with a previous measurement of M31's metallicity gradient. The C/M ratios measured in M31 indicate that the composition of M31's interstellar medium may be position dependent, and evidence is cited in favour of this. Follow up spectroscopy was obtained in two of the five fields, and is used to show that the photometric system did an excellent job of discriminating between M-, S- and C-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced 13C bands (J-stars), 2 have strong H-alpha emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colours of the H-alpha stars suggest they may be in the terminal phases of their evolution. The C_2 and CN bandstrengths of the C-stars are measured, and no correlation between these bandstrengths

  20. A Photometric and Spectroscopic Survey of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Brewer, James Philip

    1996-01-01

    Asymptotic giant-branch (AGB) stars are identified and classified in five 7^'times7 ^' fields spaced along M31's SW semi-major axis using a four band photometric system. An investigation of the AGB luminosity functions and red giant -branch widths reveals significant differences between the star forming histories of the five fields. The distance modulus of M31 is derived using carbon stars (C-stars) and found to be consistent with both a value obtained from Cepheids and with values in the literature. The ratio of AGB C- to M-stars (C/M ratio) in the five fields is found to increase with galactocentric distance and it is shown that photometric incompleteness is not responsible for this effect. This is the first clear demonstration of a varying C/M ratio in an external galaxy. The C/M ratios appear to be insensitive to star -forming history differences but sensitive to metallicity differences between the fields. Previous observations are used to define a relationship between the C/M ratio and metallicity, and this is used to obtain estimates of the field metallicities. These estimates are found to be consistent with a previous measurement of M31's metallicity gradient. The C/M ratios measured in M31 indicate that the composition of M31's interstellar medium may be position dependent, and evidence is cited in favour of this. Follow up spectroscopy was obtained in two of the five fields, and is used to show that the photometric system did an excellent job of discriminating between M -, S- and C-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced ^ {13}C bands (J-stars), 2 have strong H alpha emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colours of the Hα stars suggest they may be in the terminal phase of their evolution. The C_2 and CN bandstrengths of the C-stars are measured, and no correlation between these

  1. Characterizing AGB stars in Wide-field Infrared Survey Explorer (WISE) bands

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Zhu, Qingfeng; Kong, Xu; He, Jinhua

    2014-04-01

    Aims: Since asymptotic giant branch (AGB) stars are bright and extended infrared objects, most Galactic AGB stars saturate the Wide-field Infrared Survey Explorer (WISE) detectors and therefore the WISE magnitudes that are restored by applying point-spread-function fitting need to be verified. Statistical properties of circumstellar envelopes around AGB stars are discussed on the basis of a WISE AGB catalog verified in this way. Methods: We cross-matched an AGB star sample with the WISE All-Sky Source Catalog and the Two Mircon All Sky Survey catalog. Infrared Space Observatory (ISO) spectra of a subsample of WISE AGB stars were also exploited. The dust radiation transfer code DUSTY was used to help predict the magnitudes in the W1 and W2 bands, the two WISE bands most affected by saturation, for calibration purpose, and to provide physical parameters of the AGB sample stars for analysis. Results: DUSTY is verified against the ISO spectra to be a good tool to reproduce the spectral energy distributions of these AGB stars. Systematic magnitude-dependent offsets have been identified in WISE W1 and W2 magnitudes of the saturated AGB stars, and empirical calibration formulas are obtained for them on the basis of 1877 (W1) and 1558 (W2) AGB stars that are successfully fit with DUSTY. According to the calibration formulas, the corrections for W1 at 5 mag and W2 at 4 mag are -0.383 and 0.217 mag, respectively. In total, we calibrated the W1/W2 magnitudes of 2390/2021 AGB stars. The model parameters from the DUSTY and the calibrated WISE W1 and W2 magnitudes are used to discuss the behavior of the WISE color-color diagrams of AGB stars. The model parameters also reveal that O-rich AGB stars with opaque circumstellar envelopes are much rarer than opaque C-rich AGB stars toward the anti-Galactic center direction, which we attribute to the metallicity gradient of our Galaxy. The synthetic photometry and input parameters for the model grid are only available at the CDS via

  2. The Effects of Stellar Chemistry on the Broad 9-15 Micron Spectral Feature of O-rich AGB Stars

    NASA Astrophysics Data System (ADS)

    Arrant, David J.; Speck, A.

    2013-01-01

    Dust plays an important role in many astrophysical processes. Asymptotic giant branch (AGB) stars expel gas from their surfaces; as it moves away from the star, it cools and condenses to produce dust. Carbon monoxide (CO) is extremely stable and will trap most of the oxygen and carbon. The lesser abundant of carbon and oxygen will be entirely trapped in CO, while the more abundant will have excess atoms available to form dust. AGB stars are divided into carbon-rich (C-rich) stars or oxygen-rich (O-rich) stars. O-rich AGB stars with low mass-loss rates show a 9-15 micron feature, which is attributed to various dust species, such as silicates and oxides. This broad feature is fitted with two overlapping Gaussian functions. The parameters of the Gaussian fits are compared to stellar chemistry properties, such as the elemental abundances (C, N, O, Fe, Ti, Ni, Y, Zr, and Nd) and ratios (C/N, C/O, C/Fe…) in order to assess the effect of chemistry on dust formation.

  3. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  4. Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Cernicharo, J.; Engels, D.; Perea-Calderón, J. V.

    2016-07-01

    Spitzer/IRS spectra of eleven heavily obscured C-rich sources rapidly evolving from asymptotic giant branch (AGB) stars to Planetary Nebulae are presented. IRAM 30m observations for three of these post-AGBs are also reported. A few (3) of these sources are known to exhibit strongly variable maser emission of O-bearing molecules such as OH and H2 O, suggesting a transitory O-rich chemistry because of the quickly changing physical and chemical conditions in this short evolutionary phase. Interestingly, the Spitzer/IRS spectra show a rich circumstellar carbon chemistry, as revealed by the detection of small hydrocarbon molecules such as C2H2, C4H2, C6H2, C6H6, and HCN. Benzene is detected towards two sources, bringing up to three the total number of Galactic post-AGBs where this molecule has been detected. In addition, we report evidence for the possible detection of other hydrocarbon molecules like HC3N, CH3C2H, and CH3 in several of these sources. The available IRAM 30m data confirm that the central stars are C-rich - in despite of the presence of O-rich masers - and the presence of high velocity molecular outflows together with extreme AGB mass-loss rates (∼⃒10-4 Mʘ /yr). Our observations confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of small C-rich molecules and a transitory O-rich chemistry.

  5. S-process nucleosynthesis in AGB stars with the full spectrum of turbulence scheme for convection.

    NASA Astrophysics Data System (ADS)

    Yagüe, A.; García-Hernández, D. A.; Ventura, P.; Lugaro, M.

    2016-07-01

    The chemical evolution of asymptotic giant branch (AGB) stars models depends greatly on the input physics (e.g. convective model, mass loss recipe). Variations of hot bottom burning (HBB) strength, or third dredge-up (TDU) efficiency are among the main consequences of adopting different input physics in the AGB models. The ATON evolutionary code stands apart from others in that it uses the Full Spectrum of Turbulence convective model. Here we present the first results of a newly developed s-process nucleosynthesis module for ATON AGB models. Our results are compared also with observations and theoretical predictions of present AGB nucleosynthesis models using different input physics.

  6. The detection of heavy metals in the circumstellar envelopes of post-AGB stars

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Panchuk, V. E.

    2016-03-01

    A new kind of peculiarity is discussed: splitting or asymmetry of strong absorption lines in the optical spectra of selected post-AGB stars with carbon envelopes and atmospheres enriched in carbon and s-process heavy metals. This effect is strongest for BaII ions, whose lines can be split into two or three components. Infrared and radio spectroscopy data are used to demonstrate that the individual components of split absorption lines are formed in structured circumstellar envelopes. Thus, this effect reveals efficient enrichment of the envelope in heavy metals synthesized during the star's earlier evolution. The nature of the strong absorption profile (split or asymmetric, number of components) could be related to the morphology and kinematical and chemical properties of the enenvelope.

  7. Detection of CI line emission from the detached CO shell of the AGB star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Bergman, P.; Lindqvist, M.

    2015-10-01

    Context. Stars on the asymptotic giant branch (AGB) lose substantial amounts of matter, to the extent that they are important for the chemical evolution of, and dust production in, the Universe. The mass loss is believed to increase gradually with age on the AGB, but it may also occur in the form of bursts, possibly related to the thermal pulsing phenomenon. Detached, geometrically thin, CO shells around carbon stars are good signposts of brief and intense mass ejection. Aims: We aim to put further constraints on the physical properties of detached CO shells around AGB stars. Methods: The photodissociation of CO and other carbon-bearing species in the shells leads to the possibility of detecting lines from neutral carbon. We have therefore searched for the CI(3P1-3P0) line at 492 GHz towards two carbon stars, S Sct and R Scl, with detached CO shells of different ages, ≈8000 and 2300 years, respectively. Results: The CI(3P1-3P0) line was detected towards R Scl. The line intensity is dominated by emission from the detached shell. The detection is at a level consistent with the neutral carbon coming from the full photodissociation of all species except CO, and with only limited photoionisation of carbon. The best fit to the observed 12CO and 13CO line intensities, assuming a homogeneous shell, is obtained for a shell mass of ≈0.002 M⊙, a temperature of ≈100 K, and a CO abundance with respect to H2 of 10-3. The estimated CI/CO abundance ratio is ≈0.3 for the best-fit model. However, a number of arguments point in the direction of a clumpy medium, and a viable interpretation of the data within such a context is provided. Based on observations with the Atacama Pathfinder EXperiment (APEX) telescope. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.

  8. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  9. VizieR Online Data Catalog: Optical spectra of post-AGB stars (Bakker+ 1997)

    NASA Astrophysics Data System (ADS)

    Bakker, E. J.; van Dishoeck, E. F.; Waters, L. B. F. M.; Schoenmaker, T.

    1996-10-01

    We present optical high-resolution spectra of a sample of sixteen post-AGB stars and IRC +10216. Of the post-AGB stars, ten show C2 Phillips (A1{PI}u- X1{SIGMA}+g) and Swan (d3{PI}g-a3{PI}u) and CN Red System (A2{PI}-X2{SIGMA}+) absorption, one CH+ (A1{PI}-X1{SIGMA}+) emission, one CH+ absorption, and four without any molecules. We find typically Trot ~43-399, 155-202, and 18-50K, logN~14.90-15.57, 14.35, and 15.03-16.47cm-2 for C2, CH+, and CN respectively, and 0.6<=N(CN)/N(C2)<=11.2. We did not detect isotopic lines, which places a lower limit on the isotope ratio of 12C/13C>20. The presence of C2 and CN absorption is correlated with cold dust (Tdust<=300K) and the presence of CH+ with hot dust (Tdust>=300K). All objects with the unidentified 21μm emission feature exhibit C2 and CN absorption, but not all objects with C2 and CN detections exhibit a 21μm feature. The derived expansion velocity, ranging from 5 to 44km/s, is the same as that derived from CO millimeter line emission. This unambiguously proves that these lines are of circumstellar origin and are formed in the AGB ejecta (circumstellar shell expelled during the preceding AGB phase). Furthermore there seems to be a relation between the C2 molecular column density and the expansion velocity, which is attributed to the fact that a higher carbon abundance of the dust leads to a more efficient acceleration of the AGB wind. Using simple assumptions for the location of the molecular lines and molecular abundances, mass-loss rates have been derived from the molecular absorption lines and are comparable to those obtained from CO emission lines and the infrared excess. (6 data files).

  10. An extreme paucity of second population AGB stars in the `normal' globular cluster M4

    NASA Astrophysics Data System (ADS)

    MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Simpson, J. D.; Momany, Y.

    2016-07-01

    Galactic globular clusters (GCs) are now known to harbour multiple stellar populations, which are chemically distinct in many light element abundances. It is becoming increasingly clear that asymptotic giant branch (AGB) stars in GCs show different abundance distributions in light elements compared to those in the red giant branch (RGB) and other phases, skewing towards more primordial, field-star-like abundances, which we refer to as subpopulation one (SP1). As part of a larger programme targeting giants in GCs, we obtained high-resolution spectra for a sample of 106 RGB and 15 AGB stars in Messier 4 (NGC 6121) using the 2dF+HERMES facility on the Anglo-Australian Telescope. In this Letter, we report an extreme paucity of AGB stars with [Na/O] >-0.17 in M4, which contrasts with the RGB that has abundances up to [Na/O] =0.55. The AGB abundance distribution is consistent with all AGB stars being from SP1. This result appears to imply that all subpopulation two stars (SP2; Na-rich, O-poor) avoid the AGB phase. This is an unexpected result given M4's horizontal branch morphology - it does not have an extended blue horizontal branch. This is the first abundance study to be performed utilizing the HERMES spectrograph.

  11. An extreme paucity of second population AGB stars in the `normal' globular cluster M4

    NASA Astrophysics Data System (ADS)

    MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Simpson, J. D.; Momany, Y.

    2016-04-01

    Galactic Globular clusters (GCs) are now known to harbour multiple stellar populations, which are chemically distinct in many light element abundances. It is becoming increasingly clear that asymptotic giant branch (AGB) stars in GCs show different abundance distributions in light elements compared to those in the red giant branch (RGB) and other phases, skewing toward more primordial, field-star-like abundances, which we refer to as subpopulation one (SP1). As part of a larger program targeting giants in GCs, we obtained high-resolution spectra for a sample of 106 RGB and 15 AGB stars in Messier 4 (NGC 6121) using the 2dF+HERMES facility on the Anglo-Australian Telescope. In this Letter we report an extreme paucity of AGB stars with [Na/O] >-0.17 in M4, which contrasts with the RGB that has abundances up to [Na/O] =0.55. The AGB abundance distribution is consistent with all AGB stars being from SP1. This result appears to imply that all subpopulation two stars (SP2; Na-rich, O-poor) avoid the AGB phase. This is an unexpected result given M4's horizontal branch morphology - it does not have an extended blue horizontal branch. This is the first abundance study to be performed utilising the HERMES spectrograph.

  12. The nebula around the post-AGB star 89 Herculis

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.

    2007-06-01

    Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  13. Constraining Mass Loss and Lifetimes of Low Mass, Low Metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, P.; Marigo, P.; Girardi, L.; Dalcanton, J. J.; Bressan, A.; Gullieuszik, M.; Weisz, D. R.; Williams, B. F.; Dolphin, A.; Aringer, B.

    2015-08-01

    The evolution and lifetimes of thermally pulsing asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. We present a detailed framework for constraining model luminosity functions of TP-AGB stars using resolved stellar populations. We show an example of this method that compares various TP-AGB mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). We find that models with more efficient pre-dust driven mass loss produce results consistent with observations, as opposed to more canonical mass-loss models. Efficient pre-dust driven mass-loss predicts, for [Fe/H] ≲ -1.2, that lower mass TP-AGB stars (M≲ 1 M⊙) must have lifetimes less than about 1.2 Myr.

  14. High resolution spectroscopy of the high latitude rapidly evolving post-AGB star SAO 85766 (= IRAS 18062+2410)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; García-Lario, P.; Sivarani, T.; Manchado, A.; Sanz Fernández de Córdoba, L.

    2000-05-01

    SAO 85766 (b = +20o) is an IRAS source with far-infrared colours similar to planetary nebulae. According to the HDE catalogue, its spectrum in 1940 was that of an A5 star. The UV fluxes and colours derived from data obtained by the TD1 satellite in 1972 also indicate that SAO 85766 was an A-type supergiant at that epoch. However, high resolution spectra of SAO 85766 obtained in 1993 in the wavelength interval 4350Ä to 8820Ä shows that now it is similar to that of an early B type post-AGB supergiant. In addition to the absorptions lines typical of a B1I type star, the spectrum of SAO 85766 is found to show numerous permitted and forbidden emission lines of several elements, typically observed in the spectra of young high density low excitation planetary nebulae. From an analysis of the absorption lines we have estimated Teff=22000+/-500 K, log g=3.0+/-0.5, xi t=15+/-2km s-1 and [M/H]=-0.6. Carbon is found to be strongly underabundant ([C/Fe] = -1.0), similarly to what has been observed in other high galactic latitude hot post-AGB stars. The underabundance of carbon and metals, high galactic latitude, high radial velocity (46 km s-1), the presence of planetary nebula type detached cold circumstellar dust shell and also the presence of low excitation nebular emission lines in the spectrum indicate that SAO 85766 is a low mass star in the post-AGB stage of evolution. The above mentioned characteristics and the variations observed in the spectrum of SAO 85766 suggest that it has rapidly evolved during the past 50 years and it is now in the early stages of the planetary nebula phase. The central star may just have become hot enough to photoionize the circumstellar envelope ejected during the previous AGB phase. >From an analysis of the nebular emission lines we find Te=10000+/- 500K and Ne=2.5 104 cm-3. The nebula also shows an abundance pattern similar to that of the central star. The rapid post-AGB evolution of SAO 85766 appears to be similar to that observed in the

  15. AKARI All-Sky Survey: Contribution from AGB Stars to the Far Infrared Flux of the Milky Way

    NASA Astrophysics Data System (ADS)

    Pollo, A.; Rybka, P.; Takeuchi, T. T.

    2011-09-01

    Using the data from the AKARI FIS All-Sky Survey, we estimate the contribution from AGB stars to the far-infrared (FIR) flux from the Milky Way. We check the positions of different types of AGB stars in FIR color-color diagrams. Our conclusion is a large contribution from AGB stars, and particularly post-AGB stars, to the FIR flux in the outer regions of the Milky Way, and possibly other similar galaxies. FIR colors of different types of AGB stars are similar, with a large scatter, but post-AGB stars seem to be significantly redder and, as a result, contribute more to the total Galaxy flux at longer FIR wavelengths.

  16. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; McDonald, Iain; Zijlstra, Albert; Sloan, G. C.; Van Loon, Jacco Th.

    2015-02-10

    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  17. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.; Soszyński, I.; Petersen, E. A.

    2009-11-01

    Context: Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims: To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Methods: Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 μm Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. Results: We derive (dust) mass-loss rates and luminosities for the entire sample. Based on luminosities, periods and amplitudes and colours, the O-rich stars are classified as foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to “astronomical silicates”. Overall, the grain type by Volk & Kwok (1988, ApJ, 331, 435) fits the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. A computationally convenient method that seems to describe the observed properties in the 10 μm window are a distribution of hollow spheres with a large vacuum fraction (typically 70%), and grain size of about 1 μm. Relations between mass-loss rates and luminosity and pulsation

  18. High rotational CO lines in post-AGB stars and PNe

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Tielens, Alexander G. G. M.; Skinner, C. J.; Haas, Michael R.

    1995-01-01

    A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.

  19. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  20. Presolar Graphite from AGB Stars: Microstructure and s-Process Enrichment

    NASA Astrophysics Data System (ADS)

    Croat, Thomas K.; Stadermann, Frank J.; Bernatowicz, Thomas J.

    2005-10-01

    Correlated transmission electron microscopy and secondary ion mass spectrometry with submicron spatial resolution (NanoSIMS) investigations of the same presolar graphites spherules from the Murchison meteorite were conducted, to link the isotopic anomalies with the mineralogy and chemical composition of the graphite and its internal grains. Refractory carbide grains (especially titanium carbide) are commonly found within the graphite spherules, and most have significant concentrations of Zr, Mo, and Ru in solid solution, elements primarily produced by s-process nucleosynthesis. The effect of chemical fractionation on the Mo/Ti ratio in these carbides is limited, and therefore from this ratio one can infer the degree of s-process enrichment in the gas from which the graphite condensed. The resulting s-process enrichments within carbides are large (~200 times solar on average), showing that most of the carbide-containing graphites formed in the mass outflows of asymptotic giant branch (AGB) stars. NanoSIMS measurements of these graphites also show isotopically light carbon (mostly in the 100<12C/13C<400 range). The enrichment of these presolar graphites in both s-process elements and 12C considerably exceeds that astronomically observed around carbon stars. However, a natural correlation exists between 12C and s-process elements, as both form in the He intershell region of thermally pulsing AGB stars and are dredged up together to the surface. Their observation together suggests that these graphites may have formed in chemically and isotopically inhomogeneous regions around AGB stars, such as high-density knots or jets. As shown in the companion paper, a gas density exceeding that expected for smooth mass outflows is required for graphite of the observed size to condense at all in circumstellar environments, and the spatially inhomogeneous, high-density regions from which they condense may also be incompletely mixed with the surrounding gas. We have greatly expanded

  1. AKARI All Sky Survey: contribution from AGB stars to the far infrared flux from the Milky Way related to point sources outside the Galactic plane

    NASA Astrophysics Data System (ADS)

    Pollo, A.; Takeuchi, T. T.; Rybka, P.

    2011-10-01

    Using data from the FIS AKARI All-Sky Survey, we make a first step towards the estimation of the contribution from Asymptotic Giant Branch (AGB) stars to the far-infrared (FIR) flux from the Milky Way. We estimate the contribution from the AGB, and post-AGB, stars to the total flux generated by point sources outside the Galactic plane. Additionally, we present the positions of different types of AGB, and post-AGB, stars in the FIR color-color diagrams. Our main conclusion is that there is a high contribution from AGB stars, and particularly post-AGB stars, to the FIR flux coming from point sources in the outer parts of the Milky Way and possibly other Milky Way-type galaxies. FIR colors of different types of AGB stars remain similar but post-AGB stars are redder in the FIR and, as a result, contribute more to the total Galaxy flux density at longer FIR wavelengths.

  2. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Bergman, P.; Justtanont, K.; Lombaert, R.; Maercker, M.; Olofsson, H.; Ramstedt, S.; Royer, P.

    2014-09-01

    Context. S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. Aims: We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. Methods: We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. Results: We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0 × 10-6 M⊙ yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5 × 10-5, which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3 × 10-6, and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6 × 10-6, and distribution of CN in W Aql's circumstellar envelopeusing ground-based data. We find an SiO abundance of 3 × 10-6, and an NH3 abundance of 1.7 × 10-5, confined to a small envelope. If we include uncertainties

  3. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  4. AKARI All-Sky Far-Infrared Survey: Where to Look for AGB Stars?

    NASA Astrophysics Data System (ADS)

    Rybka, P.; Pollo, A.; Takeuchi, T. T.

    2011-09-01

    We selected a sample of 5,176 far-infrared sources from the FIS AKARI All-Sky Survey. Searching public databases, we identified their counterparts observed at other wavelengths and derived a method to separate stars from galaxies. The sample of stars is dominated by AGB-related objects.

  5. AGB Stars in Galactic Globular Clusters: Are They Really Chemically Distinct from Their Fellow RGB and HB Stars?

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; Grundahl, F.; Sneden, C.

    2011-09-01

    The handful of available observations of asymptotic giant branch (AGB) stars in Galactic globular clusters (GCs) suggest that the globular cluster AGB populations are dominated by cyanogen-weak (CN-weak) stars. This contrasts strongly with the distributions on the red giant branch (RGB) and other populations, which often show a 50:50 bimodality in CN band strength. If this is true then it presents a serious problem for low metallicity stellar evolution theory, since such a surface abundance change going from the RGB to AGB is not predicted by stellar models. However this is only a tentative conclusion, since it is based on very small AGB sample sizes. To test whether this problem really exists we have carried out an observational campaign targeting AGB stars in globular clusters. We have obtained medium resolution spectra for about 250 AGB stars across 9 Galactic globular clusters (NGC 1851, NGC 288, NGC 362, NGC 6752, M2, M4, M5, M10, and 47 Tuc) using the multi-object spectrograph on the Anglo-Australian Telescope (2df/AAOmega). In this contribution we present some preliminary findings of the study, in particular for the second-parameter pair NGC 288 and NGC 362.

  6. Optical Properties of Amorphous Alumina Dust in the Envelopes around O-Rich AGB Stars

    NASA Astrophysics Data System (ADS)

    Suh, Kyung-Won

    2016-08-01

    We investigate optical properties of amorphous alumina (Al_2O_3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars using laboratory measured optical data. We derive the optical constants of amorphous alumina over a wide wavelength range that satisfy the Kramers-Kronig relation and reproduce the laboratory data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with observations on various IR two-color diagrams for a large sample of O-rich AGB stars, we find that the amorphous alumina dust (about 10-40%) mixed with amorphous silicate better models the observed points for the O-rich AGB stars with thin dust envelopes.

  7. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2015-12-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M stars, C stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-red giant branch (post-RGB) stars, discovered previously in our Small Magellanic Cloud survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 L⊙), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show spectral energy distribution properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.

  8. Hiding in plain sight - red supergiant imposters? Super-AGB stars - bridging the divide between low/intermediate-mass and high-mass stars

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn Louise; Gil-Pons, Pilar; Lattanzio, John; Siess, Lionel

    2015-08-01

    Super Asymptotic Giant Branch (Super-AGB) stars reside in the mass range ~ 6.5-10 M⊙ and bridge the divide between low/intermediate-mass and massive stars. They are characterised by off-centre carbon ignition prior to a thermally pulsing phase which can consist of many tens to even thousands of thermal pulses. With their high luminosities and very large, cool, red stellar envelopes, these stars appear seemingly identical to their slightly more massive red supergiant counterparts. Due to their similarities, super-AGB stars may therefore act as stellar imposters and contaminate red supergiant surveys. Super-AGB stars undergo relatively extreme nucleosynthetic conditions, with very efficient proton-capture nucleosynthesis occurring at the base of the convective envelope and also heavy element (s-process) production during the thermal pulse to be later mixed to the surface during third dredge-up events. The surface enrichment from these two processes may result in a clear nucleosynthetic signature to differentiate these two classes of star.The final fate of super-AGB stars is also quite uncertain and depends primarily on the competition between the core growth and mass-loss rates. If the stellar envelope is removed prior to the core reaching the Chandrasekhar mass, an O-Ne white dwarf will remain, otherwise the star will undergo an electron-capture supernova leaving behind a neutron star. We describe the factors which influence these different final fate channels, such as the efficiency of convection, the mass-loss rates, the third dredge-up efficiency and the Fe-peak opacity instability which may lead to expulsion of the entire remaining stellar envelope. We determine the relative fraction of super-AGB stars that end life as either an O-Ne white dwarf or as a neutron star, and provide a mass limit for the lowest mass supernova over a broad range of metallicities from the earliest time (Z=0) right through until today (Z~0.04).

  9. Infrared photometry and evolution of mass-losing AGB stars. III. Mass loss rates of MS and S stars

    NASA Astrophysics Data System (ADS)

    Guandalini, R.

    2010-04-01

    Context. The asymptotic giant branch (AGB) phase marks the end of the evolution for low- and intermediate-mass stars, which are fundamental contributors to the mass return to the interstellar medium and to the chemical evolution of galaxies. The detailed understanding of mass loss processes is hampered by the poor knowledge of the luminosities and distances of AGB stars. Aims: In a series of papers we are trying to establish criteria permitting a more quantitative determination of luminosities for the various types of AGB stars, using the infrared (IR) fluxes as a basis. An updated compilation of the mass loss rates is also required, as it is crucial in our studies of the evolutionary properties of these stars. In this paper we concentrate our analysis on the study of the mass loss rates for a sample of galactic S stars. Methods: We reanalyze the properties of the stellar winds for a sample of galactic MS, S, SC stars with reliable estimates of the distance on the basis of criteria previously determined. We then compare the resulting mass loss rates with those previously obtained for a sample of C-rich AGB stars. Results: Stellar winds in S stars are on average less efficient than those of C-rich AGB stars of the same luminosity. Near-to-mid infrared colors appear to be crucial in our analysis. They show a good correlation with mass loss rates in particular for the Mira stars. We suggest that the relations between the rates of the stellar winds and both the near-to-mid infrared colors and the periods of variability improve the understanding of the late evolutionary stages of low mass stars and could be the origin of the relation between the rates of the stellar winds and the bolometric magnitudes.

  10. Sodium abundances of AGB and RGB stars in Galactic globular clusters. I. Analysis and results of NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-07-01

    Context. Galactic globular clusters (GC) are known to have multiple stellar populations and be characterised by similar chemical features, e.g. O-Na anti-correlation. While second-population stars, identified by their Na overabundance, have been found from the main sequence turn-off up to the tip of the red giant branch (RGB) in various Galactic GCs, asymptotic giant branch (AGB) stars have rarely been targeted. The recent finding that NGC 6752 lacks an Na-rich AGB star has thus triggered new studies on AGB stars in GCs, since this result questions our basic understanding of GC formation and stellar evolution theory. Aims: We aim to compare the Na abundance distributions of AGB and RGB stars in Galactic GCs and investigate whether the presence of Na-rich stars on the AGB is metallicity-dependent. Methods: With high-resolution spectra obtained with the multi-object high-resolution spectrograph FLAMES on ESO/VLT, we derived accurate Na abundances for 31 AGB and 40 RGB stars in the Galactic GC NGC 2808. Results: We find that NGC 2808 has a mean metallicity of -1.11 ± 0.08 dex, in good agreement with earlier analyses. Comparable Na abundance dispersions are derived for our AGB and RGB samples, with the AGB stars being slightly more concentrated than the RGB stars. The ratios of Na-poor first-population to Na-rich second-population stars are 45:55 in the AGB sample and 48:52 in the RGB sample. Conclusions: NGC 2808 has Na-rich second-population AGB stars, which turn out to be even more numerous - in relative terms - than their Na-poor AGB counterparts and the Na-rich stars on the RGB. Our findings are well reproduced by the fast rotating massive stars scenario and they do not contradict the recent results that there is not an Na-rich AGB star in NGC 6752. NGC 2808 thus joins the larger group of Galactic GCs for which Na-rich second-population stars on the AGB have recently been found. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  11. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  12. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    SciTech Connect

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  13. FUV and Optical Spectroscopy of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Dixon, William V.

    2004-01-01

    The goal of this program was to determine the atmospheric parameters (effective temperature and surface gravity) and abundances of the hot, post-AGB (PAGB) stars in globular clusters observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-l and 2 missions.

  14. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  15. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  16. Evolution of oxygen-rich and carbon stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Kwok, Sun; Chan, S. Josephine; Volk, Kevine M.

    1989-01-01

    The transition from oxygen-rich (M) stars to S stars and then to C stars is examined using data on the chemical properties of the stars. The photospheric and circumstellar spectral characteristics of M and C stars are summarized. Consideration is given to the color distributions of carbon stars, visual carbon stars as transition objects, and radio observations of visual carbon stars. The chemical characteristics of S stars, the evolution of oxygen-rich stars on the AGB, and the transition between AGB stars and planetary nebulae are discussed. IRAS data are used to construct an evolutionary scenario for AGB stars, in which some mass-losing M stars remain oxygen rich, while others become carbon rich.

  17. A chemically peculiar post-AGB star in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Van Winckel, H.; De Smedt, K.; Wood, P. R.

    2016-07-01

    Post-Asymptotic Giant Branch (post-AGB) stars bear signatures of the entire chemical and morphological changes that occur prior to and during the AGB phase of evolution. These objects also provide vital clues on the ultimate fate of the star. Detailed chemical abundance studies of some of these objects have shown that they are chemically much more diverse than anticipated. As expected, some are the most s-process enriched objects known to date while others are not s-process enriched. Our recent study has revealed a star in the Small Magellanic Cloud, J005252.87-722842.9, which displays a peculiar chemical signature that does not correspond to the expected chemical diversity observed in these objects. This unique object reveals the possibility of a new stellar evolutionary channel where the star evolves without any third dredge-up episodes or during its evolution becomes devoid of its nucleosynthetic history.

  18. Relics of Ancient Post-AGB Stars in a Primitive Meteorite

    NASA Astrophysics Data System (ADS)

    Jadhav, M.; Pignatari, M.; Herwig, F.; Zinner, E.; Gallino, R.; Huss, G. R.

    2013-11-01

    Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca, and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low 12C/13C isotopic ratios in these grains are a result of abundant 12C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of ~1015 cm-3, typical of the i-process, are achieved during this phase in post-AGB stars. The large 42, 43, 44Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from 46, 48Ca, which cannot be resolved from the isobars 46, 48Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a VLTP.

  19. X-ray Observations of AGB Stars with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Kastner, J. H.; Soker, N.

    2003-12-01

    We report the preliminary results of an XMM-Newton observing program to determine the X-ray emission properties of a sample of well-studied AGB stars. Our goal is to set constraints on magnetic (dynamo) activity during mass-losing AGB evolutionary stages, and thereby test models wherein AGB star magnetic fields influence mass loss geometry and shape planetary nebulae. We detected X-ray emission from the Mira system, with a total EPIC count rate of ˜0.11 s-1. This emission may be due to accretion or magnetic activity associated with Mira B, a companion of uncertain nature located only 0.6" from the mass-losing AGB star. The X-ray spectrum of the Mira system displays emission from highly ionized Ne, and initial (single-component) spectral fits suggest a characteristic emission region temperature ˜10 MK, intervening absorbing column ˜3×1021 cm-2, and an intrinsic X-ray luminosity of ˜2×1029 ergs s-1. The (apparently single) star T Cas is undetected in X-rays. At the meeting, we will also report on results from observations of TX Cam, an AGB star for which the presence of relatively strong (5-10 G at ˜3 R⋆ ) magnetic fields has been inferred from maser polarization measurements in the radio. This research is partly supported via NASA/GSFC grant NAG5--13158 (XMM-Newton Guest Observer program) to the Center for Imaging Science at Rochester Institute of Technology.

  20. RELICS OF ANCIENT POST-AGB STARS IN A PRIMITIVE METEORITE

    SciTech Connect

    Jadhav, M.; Huss, G. R.; Pignatari, M.; Herwig, F.; Zinner, E.; Gallino, R.

    2013-11-10

    Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca, and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low {sup 12}C/{sup 13}C isotopic ratios in these grains are a result of abundant {sup 12}C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of ∼10{sup 15} cm{sup –3}, typical of the i-process, are achieved during this phase in post-AGB stars. The large {sup 42,43,44}Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from {sup 46,48}Ca, which cannot be resolved from the isobars {sup 46,48}Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a VLTP.

  1. Yields from low metallicity, intermediate mass AGB stars:. Their role for the CNO and lithium abundances in Globular Cluster stars

    NASA Astrophysics Data System (ADS)

    Ventura, P.; D'Antona, F.; Mazzitelli, I.

    2002-10-01

    We present the results of extensive computation of the Thermal Pulse phase AGB evolution of stars of metallicities in mass fraction 2 x 10-4 <= Z <= 0.01, for those masses in the range 2.5 <= M/Msun <= 6, which suffer the Hot Bottom Burning (HBB) phase. The evolution is fully computed, by assuming a mass loss rate consistent with the observations of the Magellanic Clouds lithium-rich stars, and modelling convection with the Full Spectrum of Turbulence model by Canuto and Mazzitelli. The results are discussed in the framework of their importance for the evolution of proto-Globular Clusters, whose spectra show that the stars are very probably formed from matter contaminated by the ejecta of these stars, or have accreted it after formation. The main results we find are the following: 1) for metallicities Z <= 10-3, masses above ~ 4 Msun suffer complete CNO cycling in HBB, so that they show at the surface the result of this process, and the oxygen abundance is reduced; 2) most models suffer the third dredge up. Although carbon is processed to nitrogen by HBB, the oxygen burning is so strong in the lowest metallicities (2 x 10-4) that carbon becomes more abundant than oxygen: in other words, low-metallicity intermediate mass stars may show up as carbon stars due to the drastic oxygen burning; 3) if Globular Cluster stars are contaminated by matter processed through these phases, we must expect a non negligible helium enhancement in their composition: from a Big Bang abundance Y=0.24, e.g., we might expect an abundance Y=0.28. This may have no practical consequences if pollution concerns only the external parts of the stars, but is very important if the stars formed as a whole from a helium rich environment. 4) The lithium yields, although not important for galactic chemical evolution, are very interestingly close to the initial Big Bang abundance: processing by HBB is the only way in which we can obtain substantial amounts of gas which have gone through full CNO burning

  2. Modelling a set of C-rich AGB stars: the cases of RU Vir and R Lep

    NASA Astrophysics Data System (ADS)

    Rau, G.; Paladini, C.; Hron, J.; Aringer, B.; Groenewegen, M. A. T.; Nowotny, W.

    We study the atmospheres of a set of carbon-rich asymptotic giant branch AGB stars to improve our understanding of the dynamic processes happening there. We compare in a systematic way spectrometric, photometric and mid-infrared (VLTI/MIDI) interferometric measurements with different types of model atmospheres: (1) hydrostatic models + MOD-dusty models added a posteriori; (2) self-consistent dynamic model atmospheres. These allow us to interpret in a coherent way the dynamic behavior of gas and dust. The results underline that the joint use of different kinds of observations, as photometry, spectroscopy and interferometry, is essential for understanding the atmospheres of pulsating C-rich AGB stars. For our first target, the carbon-rich Mira star RU Vir, the dynamic model atmospheres fit well the ISO/SWS spectrum in the wavelength range lambda = [2.9, 13.0] mu m. However, the object turned out to be somehow ''peculiar''. The other target we present is R Lep. Here the agreement between models and observations is much better although the MIDI data at 11.4 mu m cannot be properly modelled.

  3. Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite

    SciTech Connect

    Amari, Sachiko; Zinner, Ernst; Gallino, Roberto

    2014-05-02

    Pesolar graphite grains exhibit a range of densities (1.65 – 2.20 g/cm{sup 3}). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractions KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with {sup 86}Kr/{sup 82}Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of

  4. Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Amari, Sachiko; Zinner, Ernst; Gallino, Roberto

    2014-05-01

    Pesolar graphite grains exhibit a range of densities (1.65 - 2.20 g/cm3). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractions KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with 86Kr/82Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of the parent AGB stars of

  5. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  6. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna; Beers, Timothy C.; Karakas, Amanda I.; Kennedy, Catherine R.; Christlieb, Norbert; Stancliffe, Richard J.

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  7. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M.

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ˜(0.002-0.2) L⊙ and the X-ray-emitting plasma temperatures are ˜(35-160) × 106 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  8. Lithium and zirconium abundances in massive Galactic O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Plez, B.; Manchado, A.; D'Antona, F.; Lub, J.; Habing, H.

    2007-02-01

    Lithium and zirconium abundances (the latter taken as representative of s-process enrichment) are determined for a large sample of massive Galactic O-rich AGB stars, for which high-resolution optical spectroscopy has been obtained (R˜ 40 000{-}50 000). This was done by computing synthetic spectra based on classical hydrostatic model atmospheres for cool stars and using extensive line lists. The results are discussed in the framework of "hot bottom burning" (HBB) and nucleosynthesis models. The complete sample is studied for various observational properties such as the position of the stars in the IRAS two-colour diagram ([ 12] - [25] vs. [ 25] - [60] ), Galactic distribution, expansion velocity (derived from the OH maser emission), and period of variability (when available). We conclude that a considerable fraction of these sources are actually massive AGB stars (M>3{-}4 M⊙) experiencing HBB, as deduced from the strong Li overabundances we found. A comparison of our results with similar studies carried out in the past for the Magellanic Clouds (MCs) reveals that, in contrast to MC AGB stars, our Galactic sample does not show any indication of s-process element enrichment. The differences observed are explained as a consequence of metallicity effects. Finally, we discuss the results obtained in the framework of stellar evolution by comparing our results with the data available in the literature for Galactic post-AGB stars and PNe. Based on observations at the 4.2 m William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias. Also based on observations with the ESO 3.6 m telescope at La Silla Observatory (Chile). Tables [see full text]-[see full text] are only available in electronic form at http://www.aanda.org

  9. VLT/NACO Imaging of the Nearest AGB Star, L2 Puppis

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Ridgway, S. T.; Perrin, G.; Chesneau, O.

    2015-08-01

    AGB stars are the most important contributors to the chemical enrichment of the Galaxy. During their later evolutionary stages they experience intense pulsations and eject most of their layers as they become planetary nebulae (PNe). The process leading to the formation of bipolar PNe remains poorly understood. It is assumed that the circumstellar disk of an AGB star could collimate the stellar wind to form a bipolar PN, yet very few of these disks have been observed. Using the adaptive-optics system of the VLT/NACO instrument at the Paranal Observatory and a "lucky imaging" technique, our team obtained near-infrared diffraction-limited images of the nearest AGB star, L2 Puppis. The deconvolved images reveal a dark structure in front of the star whose morphology and photometry match a dusty edge-on disk of olivine and pyroxene modeled with a Monte-Carlo radiative transfer code. The L band images also show a loop structure, possibly the signature of an interacting hidden companion.

  10. VizieR Online Data Catalog: Galactic and MC O-AGBs and RSGs stars (Jones+, 2012)

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, P. M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2015-11-01

    Our sample contains 69 oxygen-rich AGB stars (O-AGB) and 76 RSG stars in the Magellanic Clouds which were observed spectroscopically with Spitzer, and 131 Galactic field O-AGBs and RSGs observed with either Spitzer or ISO. The Spitzer spectra cover a wavelength range of 5.2-37.2um, while ISO spectra cover the 2.38-45.2um part of the spectrum. We combine this sample with 39 spectra from 14 GGCs to extend the low end of the metallicity range. (5 data files).

  11. Detailed Modelling of the Circumstellar Envelope of the S-type AGB Star W Aquilae

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Bergman, P.; Justtanont, K.; Lombaert, R.; Maercker, M.; Olofsson, H.; Ramstedt, S.; Royer, P.

    2015-08-01

    We present new Herschel HIFI (de Graauw et al. 2010) and PACS (Poglitsch et al. 2010) sub-millimeter and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances.

  12. Lithium formation in massive AGB stars: new models

    NASA Astrophysics Data System (ADS)

    Mazzitelli, I.; D'Antona, F.; Ventura, P.

    We present new AGB models including full coupling of nuclear evolution and turbulent transport in a diffusive scheme (Ventura et al. 1998). The novelty of these computations resides in the use of a Full Spectrum of Turbulence (FST) convective model, which allows to compute not only the appropriate convective flux distribution of billions of eddy scales (opposed to the one-eddy Mixing Length approximation), but also the self consistent average turbulent velocity and convective scale length which enter in the computation of the diffusion coefficient. Thus this new model contains a smaller number of free parameters with respect to previous MLT based computations. The coupled diffusion scheme treats independently 14 elements from ^1H to 18O, and in particular treats the production and destruction of ^7Li in the Hot Bottom Burning phase, which the FST convective models naturally achieve for masses approximately greater than 4.5M_odot (D'Antona and Mazzitelli 1996). The dependence of Lithium production on the evolving stellar mass, on the mass loss rate and on the chemical composition is presented. Predictions are given on the role of this lithium production for the galactic chemical evolution (e.g. D'Antona and Matteucci 1991), and the complete project for the computations is outlined.

  13. Stellar Dust Production in Chemically Primitive Environments: Infrared Lightcurves and Mass Loss in Extremely Metal-poor AGB Stars

    NASA Astrophysics Data System (ADS)

    Sonneborn, George

    In their final stage of evolution, asymptotic giant branch (AGB) stars inject a substantial amount of dust into the surrounding interstellar medium, potentially dominating the total stellar dust budgets of their host galaxies. However, stellar models conflict over whether metal-poor AGB stars can condense enough dust to drive a strong stellar wind, so it is unclear what role AGB stars play in the early Universe compared to other dust sources, e.g., in high-redshift quasars that show evidence for massive dust reservoirs. Empirically, AGB stars that are massive enough to contribute in the early Universe are only well studied in the Milky Way and the nearby Magellanic Clouds; all three environments are relatively metal-rich and thus unlikely to be representative of high-redshift AGB stars. This lack of observations of metal-poor AGB stars motivated the survey of DUST in Nearby Galaxies with Spitzer (DUSTiNGS), which imaged 50 nearby dwarf galaxies in the infrared and identified 526 dusty "extreme" AGB stars. The DUSTiNGS stars confirm that dust can form at metallicities as low as 0.008 solar, more than an order of magnitude lower than had been previously observed. However, very little is known about the DUSTiNGS stars; among the unknowns are the photospheric chemistries, stellar masses, temperatures, luminosities, pulsation periods and amplitudes, dust-production rates, and even their statuses as bona fide AGB stars. To eliminate these unknowns, we were awarded 56 hours of Priority 1 observing time in Spitzer's cycle 11 to obtain 6 new epochs of imaging for a subset of the DUSTiNGS variables over an 18 month baseline. These will be the first infrared light curves of metal-poor, dust-producing AGB stars, allowing us to study the influence of metallicity on pulsation and dust production. Combined with additional archival data, our cycle-11 Spitzer program will allow estimates of all of the parameters listed above, enabling the first direct comparisons to models of AGB

  14. detached_shells_carbon_stars

    NASA Astrophysics Data System (ADS)

    Hony, Sacha; Bouwman, Jeroen; Waters, Laurens

    2004-09-01

    We propose to obtain 19-37 micrometer IRS spectra of the detached shells around nearby carbon-stars. We have selected a small (11) sample of bright, well studied, carbon-stars with known detached shells. The sample covers a range of angular diameters of the detached shells from 8-200" and stellar effective temperatures between 800-2600 K. With the spectra of the dust in the detached shell we aim to establish: i) The location of the shell. ii) The chemistry of the shell in order to constrain it's origin. iii) Test the MgS identification for the ``30'' micrometer emission feature. iv) Determine observationally the relationship between the ``30'' micrometer feature peak-position and the distance to the star. These observations will contribute greatly to the understanding AGB-star mass loss, in general, and the phenomenon of detached shells around carbon-stars, in particular. They will also be used to develop a diagnostic tool that allows to study detached shell properties of distant carbon-stars, that cannot be spatially resolved, based on their IR spectrum alone. The total requested time is 2.5h.

  15. From C-Enhanced, Metal Poor Stars to AGB Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Lucatello, S.; Gratton, R.; Beers, T.; Carretta, E.

    The largest to date surveys for metal poor stars (i.e. HK survey Beers et al. 1992 and HES Christlieb et al. 2001) find that as many as ~25% of stars with [Fe/H]≤ -2.5 dex are have [C/Fe]>1 dex (CEMP stars). High resolution studies have revealed that the C-enhancements is accompanied by different abundance patterns, s and/or r-process enrichment, but there are also cases with no ncapture elements overabundance,and with or without extraordinary α elements enhancements. The mechanisms that originate the range of phenomena observed are far from being fully understood.

  16. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    SciTech Connect

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F.; Marigo, Paola; Girardi, Léo; Gullieuszik, Marco; Bressan, Alessandro; Dolphin, Andrew; Aringer, Bernhard

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  17. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  18. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    NASA Astrophysics Data System (ADS)

    Gielen, C.; van Winckel, H.; Min, M.; Waters, L. B. F. M.; Lloyd Evans, T.

    2008-11-01

    Aims: We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust species. This allows for the identification of the carriers of the different emission bands. Our fits also constrain the physical properties of different dust species and grain sizes responsible for the observed emission features. Results: In all stars the dust is oxygen-rich: amorphous and crystalline silicate dust species prevail and no features of a carbon-rich component can be found, the exception being EP Lyr, where a mixed chemistry of both oxygen- and carbon-rich species is found. Our full spectral fitting indicates a high degree of dust grain processing. The mineralogy of our sample stars shows that the dust is constituted of irregularly shaped and relatively large grains, with typical grain sizes larger than 2 μm. The spectra of nearly all stars show a high degree of crystallinity, where magnesium-rich end members of olivine and pyroxene silicates dominate. Other dust features of e.g. silica or alumina are not present at detectable levels. Temperature estimates from our fitting routine show that a significant fraction of grains must be cool, significantly cooler than the glass temperature. This shows that radial mixing is very efficient is these discs and/or indicates different thermal conditions at grain formation. Our results show that strong grain processing is not limited to young stellar objects and that the physical processes occurring in the discs are very similar to those in protoplanetary discs. Based on observations obtained at the European Southern Observatory (ESO), La Silla, observing program 072.D-0263, on observations made with the 1.2 m Flemish Mercator telescope at Roque de los Muchachos, Spain, the 1.2 m Swiss Euler telescope at La Silla

  19. The Transformation of an AGB Star to a Planetary Nebula: How the Journey Begins

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Blumenfeld, C.; Morris, M.; S'anchez Contreras, C.; Claussen, M.

    2010-01-01

    We report the results from an HST imaging survey of a sample of late AGB stars with a detected history of extensive past mass-loss, i.e., those in which this process has now come to an end. The goal of this survey is to identify and characterise the earliest stages of the process that transforms these objects, first into bipolar or multipolar pre-planetary nebulae (PPNe), and then into similarly-shaped planetary nebulae. Since the cessation of mass-loss leads to the lack of hot dust close to the star, their thermal emission at short ( 25 micron) wavelengths, is expected to be lower than that for typical AGB stars. We have therefore used the IRAS 25 to 12 micron flux ratio, F25/F12 > 0.33 (but < 0.67 in order to exclude PPNe), to select a list of 60 such ``nascent pre-planetary nebulae" (or nPPNe); 48 were imaged in our SNAPshot imaging program. We found compact, but non-stellar, morphologies in about a quarter of our observed sample. The remaining objects are either unresolved, or only marginally resolved. Aspherical structure is seen in the resolved objects. The aspherical structure in nPPNe is different from that observed in PPNe, which generally show limb-brightened, roughly equal-sized lobes on both sides of the center. In contrast, only one-sided structures are seen in our survey nPPNe. In some objects, a diffuse, round, halo is also seen, representing the undisturbed AGB mass-loss envelope. A few sources show discrete circular (partial) arc-like features. The discovery of the one-side collimated features, together with detailed earlier studies of a few nPPNe (e.g. V Hya, IRC+10216), supports the hypothesis that the mechanism for creating the large-scale density inhomogeneties are high velocity outflows carving the AGB mass-loss envelope from the inside out.

  20. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  1. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging ‑1.59 ≲ {{[Fe/H]}} ≲ ‑0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  2. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging ‑1.59 ≲ {{[Fe/H]}} ≲ ‑0.56 and initial TP-AGB masses up to ∼4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  3. New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A.

    2015-09-01

    Context. Asymptotic giant branch (AGB) stars are in one of the latest evolutionary stages of low to intermediate-mass stars. Their vigorous mass loss has a significant effect on the stellar evolution, and is a significant source of heavy elements and dust grains for the interstellar medium. The mass-loss rate can be well traced by carbon monoxide (CO) line emission. Aims: We present new Herschel/HIFI and IRAM 30 m telescope CO line data for a sample of 53 galactic AGB stars. The lines cover a fairly large range of excitation energy from the J = 1 → 0 line to the J = 9 → 8 line, and even the J = 14 → 13 line in a few cases. We perform radiative transfer modelling for 38 of these sources to estimate their mass-loss rates. Methods: We used a radiative transfer code based on the Monte Carlo method to model the CO line emission. We assume spherically symmetric circumstellar envelopes that are formed by a constant mass-loss rate through a smoothly accelerating wind. Results: We find models that are consistent across a broad range of CO lines for most of the stars in our sample, i.e., a large number of the circumstellar envelopes can be described with a constant mass-loss rate. We also find that an accelerating wind is required to fit, in particular, the higher-J lines and that a velocity law will have a significant effect on the model line intensities. The results cover a wide range of mass-loss rates (~10-8 to 2 × 10-5 M⊙ yr-1) and gas expansion velocities (2 to 21.5 km s-1) , and include M-, S-, and C-type AGB stars. Our results generally agree with those of earlier studies, although we tend to find slightly lower mass-loss rates by about 40%, on average. We also present "bonus" lines detected during our CO observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based on observations carried out with the IRAM 30 m Telescope. IRAM is

  4. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  5. IS THE POST-AGB STAR SAO 40039 MILDLY HYDROGEN-DEFICIENT?

    SciTech Connect

    Rao, S. Sumangala; Pandey, Gajendra; Giridhar, Sunetra; Lambert, David L. E-mail: pandey@iiap.res.in E-mail: dll@astro.as.utexas.edu

    2011-08-10

    We have conducted an LTE abundance analysis for SAO 40039, a warm post-AGB star whose spectrum is known to show surprisingly strong He I lines for its effective temperature and has been suspected of being H-deficient and He-rich. High-resolution optical spectra are analyzed using a family of model atmospheres with different He/H ratios. Atmospheric parameters are estimated from the ionization equilibrium set by neutral and singly ionized species of Fe and Mg, the excitation of Fe I and Fe II lines, and the wings of the Paschen lines. On the assumption that the He I lines are of photospheric and not chromospheric origin, a He/H ratio of approximately unity is found by imposing the condition that the adopted He/H ratio of the model atmosphere must equal the ratio derived from the observed He I triplet lines at 5876, 4471, and 4713 A, and singlet lines at 4922 and 5015 A. Using the model with the best-fitting atmospheric parameters for this He/H ratio, SAO 40039 is confirmed to exhibit mild dust-gas depletion, i.e., the star has an atmosphere deficient in elements of high condensation temperature. The star appears to be moderately metal-deficient with [Fe/H] = -0.4 dex. But the star's intrinsic metallicity as estimated from Na, S, and Zn, elements of a low condensation temperature, is [Fe/H]{sub o} {approx_equal} -0.2 ([Fe/H]{sub o} refers to the star's intrinsic metallicity). The star is enriched in N and perhaps O as well, changes reflecting the star's AGB past and the event that led to He enrichment.

  6. An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Blake, Adam C.

    2011-01-01

    The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.

  7. VizieR Online Data Catalog: NGC 2808 AGB and RGB stars Na abundance (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-05-01

    The high-resolution spectra of our sample of AGB and RGB stars in the Galactic globular cluster NGC 2808 were obtained with the high-resolution multi-object spectrograph FLAMES, mounted on ESO/VLT-UT2. A combined mode was used where the brightest five objects was observed with UVES-fibre and the remaining targets with GIRAFFE/Medusa. The basic information of our sample stars are listed in Table 2, including the evolutionary phase, instrument used for observation, coordinates, photometry and barycentric radial velocity. Our Fe abundances were derived from the equivalent widths of Fe lines, while the Na abundances were determined with spectra synthesis. Both FeI and Na abundances have been corrected for the non-LTE effect. In Table 4 we show the derived stellar parameters of our sample stars, and the Na abundances are shown in Table 6. (3 data files).

  8. Characteristics of convection and overshooting in RGB and AGB stars

    NASA Astrophysics Data System (ADS)

    Lai, Xiang-Jun; Li, Yan

    2011-10-01

    Based on the turbulent convection model (TCM) of Li & Yang, we have studied the characteristics of turbulent convection in the envelopes of 2 and 5Modot stars at the red giant branch and asymptotic giant branch phases. The TCM has been successfully applied over the entire convective envelopes, including the convective unstable zone and the overshooting regions. We find that the convective motions become progressively stronger when the stellar models are located farther up along the Hayashi line. In the convective unstable zone, we find that the turbulent correlations are proportional to functions of a common factor (∇ - ∇ad)T¯, which explains similar distributions in those correlations. For the TCM we find that if the obtained stellar temperature structure is close to that of the mixing length theory (MLT), the convective motion will have a much larger velocity and thus be more violent. However, if the turbulent velocity is adjusted to be close to that of the MLT, the superadiabatic convection zone would be much more extended inward, which would lead to a lower effective temperature of the stellar model. For the overshooting distance, we find that the e-folding lengths of the turbulent kinetic energy k in both the top and bottom overshooting regions decrease as the stellar model is progressively located farther up along the Hayashi line, but both the extents of the decrease are not obvious. The overshooting distances of the turbulent correlation are almost the same for the different stellar models with the same set of TCM parameters. For the decay modes of the kinetic energy k, we find that they are very similar for different stellar models based on the same set of TCM parameters, and there is a nearly linear relationship between lg k and ln P for different stellar models. When Cs or α increases while the other parameters are fixed, the obtained linearly decaying distance will become longer.

  9. Post-AGB Stars in Nearby Galaxies as Calibrators for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    2003-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as

  10. Near-infrared and Brγ observations of post-AGB stars

    NASA Astrophysics Data System (ADS)

    Van de Steene, G. C.; van Hoof, P. A. M.; Wood, P. R.

    2000-10-01

    Brgamma emission originates in the post-Asymptotic Giant Branch (post-AGB) wind, and that the central star is not yet hot enough to ionize the AGB shell. We measured the J H K L magnitudes of the objects and present their infrared spectral energy distributions. They are typical for post-AGB stars according to the scheme of van der Veen et al. (\\cite{vdVeen89}). We also constructed various color-color diagrams using the near-infrared and IRAS magnitudes. No distinction can be made between the objects showing Brgamma in emission, absorption, or a flat spectrum in the near and far-infrared color-color diagrams. The near-infrared color-color diagrams show evidence for a very large range of extinction, which in part is of circumstellar origin. Near-infrared versus far-infrared color-color diagrams show trends that are consistent with the expected evolution of the circumstellar shell. This sample of post-AGB stars show a larger range in color and are generally redder and closer to the galactic plane than the ones known so far. The properties of most of these objects are fully consistent with the assumption that they are post-AGB stars that have not evolved far enough yet to ionize a significant fraction of their circumstellar material. Based on observations made at the European Southern Observatory, La Silla, Chile; the Australia Telescope Compact Array, which is funded by the Commonwealth of Australia for operations as a National Facility managed by CSIRO; Siding Spring Observatory.

  11. The production of low mass carbon stars - Carbon-rich dredge up or oxygen-rich mass loss?

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.; Pesce, J. E.; Macgregor, K. M.

    1989-01-01

    Conventional theory explains the origin of carbon stars as due to dredge up of carbon enriched material from the stellar core during helium flash events late in the life of solar mass AGB stars. This relatively efficient process, however, seems to produce a larger C/O ratio than observed (Lambert et al., 1987). A secondary effect which could contribute to the appearance of carbon stars, is the selective removal of oxygen from the atmosphere by radiative force expulsion of oxygen-rich dust grains. Calculations for this scenario are presented, which evaluate the degree of momentum coupling between the grains and gas under the thermodynamical conditions of AGB star atmospheres.

  12. A Luminous Yellow Post-AGB Star in the Galactic Globular Cluster M79

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Ciardullo, Robin; Siegel, Michael H.

    2016-02-01

    We report the discovery of a luminous F-type post-asymptotic-giant-branch (PAGB) star in the Galactic globular cluster (GC) M79 (NGC 1904). At visual apparent and absolute magnitudes of V=12.20 and {M}V=-3.46, this “yellow” PAGB star is by a small margin the visually brightest star known in any GC. It was identified using CCD observations in the uBVI photometric system, which is optimized to detect stars with large Balmer discontinuities, indicative of very low surface gravities. Follow-up observations with the SMARTS 1.3 and 1.5 m telescopes show that the star is not variable in light or radial velocity, and that its velocity is consistent with cluster membership. Near- and mid-infrared observations with 2MASS and WISE show no evidence for circumstellar dust. We argue that a sharp upper limit to the luminosity function exists for yellow PAGB stars in old populations, making them excellent candidates for Population II standard candles, which are four magnitudes brighter than RR Lyrae variables. Their luminosities are consistent with the stars being in a PAGB evolutionary phase, with core masses of ˜ 0.53 {M}⊙ . We also detected four very hot stars lying above the horizontal branch (“AGB-manqué” stars); along with the PAGB star, they are the brightest objects in M79 in the near-ultraviolet. In the Appendix, we give periods and light curves for five variables in M79: three RR Lyrae stars, a Type II Cepheid, and a semiregular variable. Based in part on observations with the 1.3 and 1.5 m telescopes operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  13. The effects of rotation on the surface composition and yields of low mass AGB stars.

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Piersanti, L.; Straniero, O.

    Over the past 20 years, stellar evolutionary models have been strongly improved in order to reproduce with reasonable accuracy both photometric and spectroscopic observations. Notwithstanding, the majority of these models do not take into account macroscopic phenomena, like rotation and/or magnetic fields. Their explicit treatment could modify stellar physical and chemical properties. One of the most interesting problems related to stellar nucleosynthesis is the behavior of the s-process spectroscopic indexes ([hs/ls] and [Pb/hs]) in Asymptotic Giant Branch (AGB) stars. In this contribution we show that, for a fixed metallicity, rotation can lead to a spread in the [hs/ls] and [Pb/hs] in low-mass AGB stars. In particular, we demonstrate that the Eddington-Sweet and the Goldreich-Schubert-Fricke instabilities may have enough time to smear the 13C-pocket (the major neutron source) and the 14N-pocket (the major neutron poison). In fact, a different overlap between these pockets leads to a different neutrons-to-seeds ratio, with important consequences on the corresponding s-process distributions. Possible consequences on the chemical evolution of Galactic globular clusters are discussed.

  14. Radial velocity variable, hot post-AGB stars from the MUCHFUSS project. Classification, atmospheric parameters, formation scenarios

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Geier, S.; Kupfer, T.; Bloemen, S.; Schaffenroth, V.; Heber, U.; Barlow, B. N.; Østensen, R. H.

    2016-03-01

    In the course of the MUCHFUSS project we recently discovered four radial velocity (RV) variable, hot (Teff≈ 80 000-110 000 K) post-asymptotic giant branch (AGB) stars. Among them, we found the first known RV variable O(He) star, the only second known RV variable PG 1159 close binary candidate, as well as the first two naked (i.e., without planetary nebula (PN)) H-rich post-AGB stars of spectral type O(H) that show significant RV variations. We present a non-LTE spectral analysis of these stars along with one further O(H)-type star whose RV variations were found to be not significant. We also report the discovery of a far-infrared excess in the case of the PG 1159 star. None of the stars in our sample displays nebular emission lines, which can be explained well in terms of a very late thermal pulse evolution in the case of the PG 1159 star. The "missing" PNe around the O(H)-type stars seems strange, since we find that several central stars of PNe have much longer post-AGB times. Besides the non-ejection of a PN, the occurrence of a late thermal pulse, or the re-accretion of the PN in the previous post-AGB evolution offer possible explanations for those stars not harbouring a PN (anymore). In the case of the O(He) star J0757, we speculate that it might have been previously part of a compact He transferring binary system. In this scenario, the mass transfer must have stopped after a certain time, leaving behind a low-mass close companion that may be responsible for the extreme RV shift of 107.0 ± 22.0 km s-1 that was measured within only 31 min.

  15. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  16. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  17. The mass-loss evolution of oxygen-rich AGB stars and its consequences for stellar evolution

    NASA Astrophysics Data System (ADS)

    van der Veen, W. E. C. J.

    1989-02-01

    A semiempirical mass loss equation (MLE) for Asymptotic Giant Branch (AGB) stars with oxygen-rich circumstellar shells is presented. The MLE is a function of stellar luminosity, expansion velocity of the circumstellar shell, and the ratio between the IRAS 25 and 12 micron flux densities. The results are compared with previously derived MLEs. The IRAS Point Source Catalog is used to find the mass loss as a function of time. The MLE is tested by estimating the total mass lost on the AGB. A simple expression is found relating the initial main sequence mass and the maximum AGB luminosity. The time-dependent properties of the MLE are tested using a sample of Miras and OH/IR stars. A relation between period, luminosity, and stellar envelope mass is found and compared with the observed period-luminosity relations for globular cluster Miras and Miras in the LMC. Good agreement is found.

  18. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; De Beck, E.; Black, J. H.; Olofsson, H.; Justtanont, K.

    2016-04-01

    Aims: The sulphur compounds SO and SO2 have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO2 lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. Methods: We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO2 line emission. We use molecular data files for both SO and SO2 that are more extensive than those previously available. Results: Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of (6.7 ± 0.9) × 10-6 and an SO2 abundance of 5 × 10-6 with both species having high abundances close to the star. We also modelled 34SO and found an abundance of (3.1 ± 0.8) × 10-7, giving an 32SO/34SO ratio of 21.6 ± 8.5. We derive similar results for the circumstellar SO and SO2 abundances and their distributions for the low mass-loss rate object W Hya. For the higher mass-loss rate stars, we find shell-like SO distributions with peak abundances that decrease and peak abundance radii that increase with increasing mass-loss rate. The positions of the peak SO abundance agree very well with the photodissociation radii of H2O. We also modelled SO2 in two higher mass-loss rate stars but our models for these were less conclusive. Conclusions: We conclude that for the low mass-loss rate stars, the circumstellar SO and SO2 abundances are much higher than predicted by chemical models of the extended stellar atmosphere. These two species may also account for all the available sulphur. For the higher mass-loss rate stars we find evidence that SO is most efficiently formed in the circumstellar envelope, most likely through the photodissociation of H2O and the subsequent reaction between S and OH. The S

  19. A search for water maser emission toward obscured post-AGB star and planetary nebula candidates

    NASA Astrophysics Data System (ADS)

    Gómez, J. F.; Rizzo, J. R.; Suárez, O.; Palau, A.; Miranda, L. F.; Guerrero, M. A.; Ramos-Larios, G.; Torrelles, J. M.

    2015-06-01

    Context. Water maser emission at 22 GHz is a useful probe for studying the transition between the nearly spherical mass loss in the asymptotic giant branch (AGB) to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of planetary nebulae once photoionization starts. Aims: We intend to find new cases of post-AGB stars and planetary nebulae (PNe) with water maser emission, including some especially interesting and rare types: water fountains (evolved objects with high velocity collimated jets traced by water masers) or water-maser-emitting PNe. Since previous studies have shown a higher detection rate of water maser emission in evolved objects that are optically obscured, we selected a sample that contains a significant fraction of post-AGB and young PN candidate sources showing signs of strong obscuration. Methods: We searched for water maser emission in 133 evolved objects using the radio telescopes in Robledo de Chavela, Parkes, and Green Bank. Results: We detected water maser emission in 15 sources of our sample, of which seven are reported here for the first time (IRAS 13483-5905, IRAS 14249-5310, IRAS 15408-5413, IRAS 17021-3109, IRAS 17348-2906, IRAS 17393-2727, and IRAS 18361-1203). We identified three water fountain candidates: IRAS 17291-2147, with a total velocity spread of ≃96 km s-1 in its water maser components and two sources (IRAS 17021-3109 and IRAS 17348-2906) that show water maser emission whose velocity lies outside the velocity range covered by OH masers. We have also identified IRAS 17393-2727 as a possible new water-maser-emitting PN. Conclusions: The detection rate is higher in obscured objects (14%) than in those with optical counterparts (7%), which is consistent with previous results. Water maser emission seems to be common in objects that are bipolar in the near-IR (43% detection rate in such sources). The water maser spectra of water fountain candidates like IRAS 17291

  20. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  1. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    SciTech Connect

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-08-10

    Fluorine ({sup 19}F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 {mu}m in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  2. Radial-Velocity Analysis of the Post-AGB Star, HD101584

    NASA Astrophysics Data System (ADS)

    Díaz, F.; Hearnshaw, J.; Rosenzweig, P.; Guzman, E.; Sivarani, T.; Parthasarathy, M.

    2007-08-01

    This project concerns the analysis of the periodicity of the radial velocity of the peculiar emission-line supergiant star HD 101584 (F0 Ia), and also we propose a physical model to account for the observations. From its peculiarities, HD 101584 is a star that is in the post-AGB phase. This study is considered as a key to clarify the multiple aspects related with the evolution of the circum-stellar layer associated with this star's last phase. The star shows many lines with P Cygni profiles, including H-alpha, Na D lines in the IR Ca triplet, indicating a mass outflow. For HD 101584 we have performed a detailed study of its radial-velocity variations, using both emission and absorption lines over a wide range of wavelength. We have analyzed the variability and found a periodicity for all types of lines of 144 days, which must arise from the star's membership in a binary system. The data span a period of five consecutive years and were obtained using the 1-m telescope of Mt John Observatory, in New Zealand., with the echelle and Hercules high resolution spectrographs and CCD camera. HD101584 is known to be an IRAS source, and our model suggests it is a proto-planetary nebula, probably with a bipolar outflow and surrounded by a dusty disk as part of a binary system. We have found no evidence for HD101584 to contain a B9 star as found by Bakker et al (1996). A low resolution IUE spectrum shows the absence of any strong UV continuum that would be expected for a B star to be in this system.

  3. New insights into the dust formation of oxygen-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Karovicova, I.; Wittkowski, M.; Ohnaka, K.; Boboltz, D. A.; Fossat, E.; Scholz, M.

    2013-12-01

    Context. Asymptotic giant branch (AGB) stars are one of the major sources of dust in the universe. The formation of molecules and dust grains and their subsequent expulsion into the interstellar medium via strong stellar winds is under intense investigation. This is in particular true for oxygen-rich stars, for which the path of dust formation has remained unclear. Aims: We conducted spatially and spectrally resolved mid-infrared multi-epoch interferometric observations to investigate the dust formation process in the extended atmospheres of oxygen-rich AGB stars. Methods: We observed the Mira variable AGB stars S Ori, GX Mon, and R Cnc between February 2006 and March 2009 with the MIDI instrument at the VLT interferometer. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmospheres. We used Al2O3 and warm silicate grains, following earlier studies in the literature. Results: Our S Ori and R Cnc data could be well described by an Al2O3 dust shell alone, and our GX Mon data by a mix of an Al2O3 and a silicate shell. The best-fit parameters for S Ori and R Cnc included photospheric angular diameters ΘPhot of 9.7 ± 1.0 mas and 12.3 ± 1.0 mas, optical depths τV(Al2O3) of 1.5 ± 0.5 and 1.35 ± 0.2, and inner radii Rin of 1.9 ± 0.3 RPhot and 2.2 ± 0.3 RPhot, respectively. Best-fit parameters for GX Mon were ΘPhot = 8.7 ± 1.3 mas, τV(Al2O3) = 1.9 ± 0.6, Rin(Al2O3) = 2.1 ± 0.3 RPhot, τV(silicate)= 3.2 ± 0.5, and Rin(silicate)= 4.6 ± 0.2 RPhot. Our data did not show evidence of intra-cycle and cycle-to-cycle variability or of asymmetries within the error-bars and within the limits of our baseline and phase coverage. Conclusions: Our model fits constrain the chemical composition and the inner boundary radii of the dust shells, as well as the photospheric angular diameters. Our interferometric results are consistent with Al2O3 grains condensing close to

  4. Are there carbon stars in the Bulge?

    NASA Astrophysics Data System (ADS)

    Ng, Y. K.

    The Bulge carbon stars have been a mystery since their discovery by Azzopardi et al. (1991), because they are about 2 mag5 too faint to be regarded as genuine AGB stars, if located inside the metal-rich (Bulge m to M muspc = 14 mag5). Part of the mystery can be solved if these carbon stars are related to the Sagittarius dwarf galaxy (SDG; m to M muspc ≍ muspc 17 mag0). They are in that case not old and metal-rich, but young, ~0.1 Gyr, with SMC-like metallicity (Ng 1998). The σRV = 113 +/- 14 km s-1 (Tyson & Rich 1991) radial velocity dispersion of the stars appears to be consistent with Bulge membership. On the other hand, a similar velocity dispersion could be the result from an induced star formation event when the SDG crosses the galactic midplane. It is suggested that the carbon stars are tracers of such an event and that they therefore are located at distances related to the SDG. However, the majority of the carbon stars are not member of the SDG, nor are they similar to the C-stars which are member of the SDG. The radial velocities can be used to determine a possible membership to the SDG. However, they do not give information about the distance of the stars. In particular, if the stars are located at a distance comparable to the SDG. This implies that only the period-luminosity relation (Groenewegen & Whitelock 1996) can be used to distinguish unambiguously if the carbon stars are located at Bulge-like or SDG-like distances. Thus far only carbon stars with reliable periods have been identified at a SDG related distance (Ng & Schultheis 1997; Whitelock 1998).

  5. Super and massive AGB stars - III. Nucleosynthesis in metal-poor and very metal-poor stars - Z = 0.001 and 0.0001

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Lau, Herbert H. B.; Lattanzio, John C.; Siess, Lionel; Campbell, Simon W.

    2014-06-01

    We present a new grid of stellar models and nucleosynthetic yields for super-AGB stars with metallicities Z = 0.001 and 0.0001, applicable for use within galactic chemical evolution models. Contrary to more metal-rich stars where hot bottom burning is the main driver of the surface composition, in these lower metallicity models the effect of third dredge-up and corrosive second dredge-up also have a strong impact on the yields. These metal-poor and very metal-poor super-AGB stars create large amounts of 4He, 13C, 14N and 27Al as well as the heavy magnesium isotopes 25Mg and 26Mg. There is a transition in yield trends at metallicity Z ≈ 0.001, below which we find positive yields of 12C, 16O, 15N and 28Si, which is not the case for higher metallicities. We explore the large uncertainties derived from wind prescriptions in super-AGB stars, finding ≈2 orders of magnitude difference in yields of 22Ne, 23Na, 24, 25, 26Mg, 27Al and our s-process proxy isotope g. We find inclusion of variable composition low-temperature molecular opacities is only critical for super-AGB stars of metallicities below Z ≈ 0.001. We analyse our results, and those in the literature, to address the question: Are super-AGB stars the polluters responsible for extreme population in the globular cluster NGC 2808? Our results, as well as those from previous studies, seem unable to satisfactorily match the extreme population in this globular cluster.

  6. Exploring the Onset of the Contribution of the First AGB Stars to the Galactic Chemical Enrichment using Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Goswami, A.

    2015-08-01

    There is uncertainty over the time at which the first intermediate and low-mass stars reach the AGB phase and begin to influence their environments with the products of nucleosynthesis. While some studies have indicated that enrichment from AGB stars sets in at a time corresponding to -2.4 < [Fe/H] < -2.1, others suggest a time as early as [Fe/H] ≍ -2.75. These suggestions come from observations of s-process heavy elements in old metal-poor stars. Measurements of stellar isotopic ratios, such as the Mg isotope ratios, can also be a useful probe to explore the contribution of AGB stars to the Galactic chemical inventory. However, measurements of isotopic ratios require spectra with high resolution (R > 90 000) and high S/N ratios (> 200) which require very long exposure times with the existing observing facilities. Upcoming large telescopes of 25 to 42-m size equipped with high resolution spectrographs will provide the resolution and sensitivity required for measurements of isotopic ratios that are fundamental indicators of nucleosynthesis.

  7. Is There a Metallicity Ceiling to Form Carbon Stars? - A Novel Technique Reveals a Scarcity of C-Stars in the Inner M31 Disk

    NASA Technical Reports Server (NTRS)

    Boyer, Martha L.; Girardi, L.; Marigo, P.; Williams, B. F.; Aringer, B.; Nowotny, W.; Rosenfield, P.; Dorman, C. E.; Guhathakurta, P.; Dalcanton, J. J.; Melbourne, J. L.; Olsen, K. A. G.; Weisz, D. R.

    2013-01-01

    We use medium-band near-infrared (NIR) Hubble Space Telescope WFC3 photometry with model NIR spectra of Asymptotic Giant Branch (AGB) stars to develop a new tool for efficiently distinguish- ing carbon-rich (C-type) AGB stars from oxygen-rich (M-type) AGB stars in galaxies at the edge of and outside the Local Group. We present the results of a test of this method on a region of the inner disk of M31, where we nd a surprising lack of C stars, contrary to the ndings of previous C star searches in other regions of M31. We nd only 1 candidate C star (plus up to 6 additional, less certain C stars candidates), resulting in an extremely low ratio of C to M stars (C=M = (3.3(sup +20)(sub - 0.1) x 10(sup -4)) that is 1-2 orders of magnitude lower than other C/M estimates in M31. The low C/M ratio is likely due to the high metallicity in this region which impedes stars from achieving C/O > 1 in their atmospheres. These observations provide stringent constraints to evolutionary models of metal-rich AGB stars and suggest that there is a metallicity threshold above which M stars are unable to make the transition to C stars, dramatically affecting AGB mass loss and dust production and, consequently, the observed global properties of metal-rich galaxies.

  8. Analysis of the infrared spectra of the peculiar post-AGB stars EP Lyrae and HD 52961

    NASA Astrophysics Data System (ADS)

    Gielen, C.; van Winckel, H.; Matsuura, M.; Min, M.; Deroo, P.; Waters, L. B. F. M.; Dominik, C.

    2009-09-01

    Aims: We aim to study in detail the peculiar mineralogy and structure of the circumstellar environment of two binary post-AGB stars, EP Lyr and HD 52961. Both stars were selected from a larger sample of evolved disc sources observed with Spitzer and show unique solid-state and gas features in their infrared spectra. Moreover, they show a very small infrared excess in comparison with the other sample stars. Methods: The different dust and gas species are identified on the basis of high-resolution Spitzer-IRS spectra. We fit the full spectrum to constrain grain sizes and temperature distributions in the discs. This, combined with our broad-band spectral energy distribution and interferometric measurements, allows us to study the physical structure of the disc, using a self-consistent 2D radiative-transfer disc model. Results: We find that both stars have strong emission features due to CO2 gas, dominated by 12C16O2, but with clear 13C16O2 and even 16O12C18O isotopic signatures. Crystalline silicates are apparent in both sources but proved very hard to model. EP Lyr also shows evidence of mixed chemistry, with emission features of the rare class-C PAHs. Whether these PAHs reside in the oxygen-rich disc or in a carbon-rich outflow is still unclear. With the strongly processed silicates, the mixed chemistry and the low 12C/13C ratio, EP Lyr resembles some silicate J-type stars, although the depleted photosphere makes nucleosynthetic signatures difficult to probe. We find that the disc environment of both sources is, to a first approximation, well modelled with a passive disc, but additional physics such as grain settling, radial dust distributions, and an outflow component must be included to explain the details of the observed spectral energy distributions in both stars. Based on observations made with the 1.2 m Flemish Mercator telescope at Roque de los Muchachos, Spain, the 1.2 m Swiss Euler telescope at La Silla, Chile and on observations made with the Spitzer Space

  9. Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    NASA Astrophysics Data System (ADS)

    Liljegren, S.; Höfner, S.; Nowotny, W.; Eriksson, K.

    2016-04-01

    Context. Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. Aims: We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. This will also give an indication of how robust the wind properties derived from the dynamic atmosphere models are. Methods: Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. Results: The first model with dust and stellar wind is very sensitive to moderate changes in the luminosity variation. There is a complex relationship between the luminosity minimum, and dust condensation: changing the phase corresponding to minimum luminosity can either increase or decrease mass-loss rate and wind velocity. The luminosity maximum dominates the radiative pressure on the dust, which in turn, is important for driving the wind. An earlier occurrence of the maximum, with respect to the propagation of the pulsation-induced shock wave, then increases the wind velocity, while a later occurrence leads to a decrease. These effects of changed luminosity variation are coupled with the dust formation. In contrast there is very little change to the structure of the model without dust. Conclusions: Changing the luminosity variation, both by introducing a phase shift

  10. Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    NASA Astrophysics Data System (ADS)

    Liljegren, S.; Höfner, S.; Nowotny, W.; Eriksson, K.

    2016-05-01

    Context. Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. Aims: We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. This will also give an indication of how robust the wind properties derived from the dynamic atmosphere models are. Methods: Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. Results: The first model with dust and stellar wind is very sensitive to moderate changes in the luminosity variation. There is a complex relationship between the luminosity minimum, and dust condensation: changing the phase corresponding to minimum luminosity can either increase or decrease mass-loss rate and wind velocity. The luminosity maximum dominates the radiative pressure on the dust, which in turn, is important for driving the wind. An earlier occurrence of the maximum, with respect to the propagation of the pulsation-induced shock wave, then increases the wind velocity, while a later occurrence leads to a decrease. These effects of changed luminosity variation are coupled with the dust formation. In contrast there is very little change to the structure of the model without dust. Conclusions: Changing the luminosity variation, both by introducing a phase shift

  11. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  12. CEN 34 - high-mass YSO in M 17 or background post-AGB star?

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Nürnberger, Dieter E. A.; Chini, Rolf; Liu, Yao; Fang, Min; Jiang, Zhibo

    2013-09-01

    We investigate the proposed high-mass young stellar object (YSO) candidate CEN 34, thought to be associated with the star-forming region M 17. Its optical to near-infrared (550-2500 nm) spectrum reveals several photospheric absorption features, such as Hα, the Ca ii triplet, and the CO bandhead, but lacks emission lines. The spectral features in the range 8375-8770 Å are used to constrain an effective temperature Teff = 5250 ± 250 K (early-/mid-G) and a log g = 2.0 ± 0.3 (supergiant). The spectral energy distribution (SED) displays a faint infrared excess that resembles that of a high-mass YSO or an evolved star of intermediate mass. Moreover, the observed temperature and surface gravity are identical for high-mass YSOs and evolved stars. The radial velocity of CEN 34 relative to the local standard of rest (VLSR) as obtained from various photospheric lines is of the order of -60 km s-1 and thus distinct from the +25 km s-1 found for several OB stars in the cluster and for the associated molecular cloud. The SED modeling yields 10-4 M⊙ of circumstellar material, which contributes only a tiny fraction to the total visual extinction (11 mag). The distance of CEN 34 is between 2.0 kpc and 4.5 kpc. In the case of a YSO, a dynamical ejection process is proposed to explain the VLSR difference between CEN 34 and M 17. Additionally, to match the temperature and luminosity, we speculate that CEN 34 had accumulated the bulk of its mass with an accretion rate >4 × 10-3M⊙/yr over a very short time span (~103 yrs), and it is currently undergoing a phase of gravitational contraction without any further mass gain. However, all the aforementioned characteristics of CEN 34 are compatible with an evolved star of 5-7 M⊙ and an age of 50-100 Myr, so it is most likely a background post-AGB star with a distance between 2.0 kpc and 4.5 kpc. We consider the latter classification as the more likely interpretation. Further discrimination of the two possible scenarios should come

  13. Searching for heavily obscured post-AGB stars and planetary nebulae. II. Near-IR observations of IRAS sources

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Guerrero, M. A.; Suárez, O.; Miranda, L. F.; Gómez, J. F.

    2012-09-01

    The most massive AGB stars are expected to result in heavily obscured post-AGB stars, proto-PNe and PNe with highly axisymmetric morphologies. To investigate this evolutionary connection, we have selected a sample of 165 presumably obscured IRAS post-AGB star and PN candidates and obtained near-IR JHK images for 164 of them. These images, in conjunction with DSS, 2MASS, Spitzer GLIMPSE, MSX, AKARI, and IRAS archival data, have allowed us to identify the near-IR counterparts of 154 of these sources, providing reliable finding charts and coordinates. Near-IR narrow-band Brγ, H2, and K continuum images were acquired for 6 of these sources that were found to be resolved in near-IR JHK images. Among the extended post-AGB source and PN candidates, three are round and seven have bipolar morphologies. Five of the extended sources are ionized and may have thus entered the PN stage. We note that all extended sources with water maser emission have bipolar morphology. We have investigated the Galactic distribution of sources with the largest flux drop from the 9 μm AKARI band to the near-IR J band and found that the width of the distribution in Galactic latitude is consistent with those of bipolar PNe and DUPLEX (DUst-Prominent Longitudinally EXtended) sources. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (081.D-0812), observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations with AKARI, a JAXA project with the participation of ESA.

  14. Dust formation in the oxygen-rich AGB star IK Tauri

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cherchneff, I.; Sarangi, A.; Plane, J. M. C.; Bromley, S. T.

    2016-01-01

    interferometric observations. The derived dust-to-gas mass ratio for IK Tau is in the range 1-6 × 10-3 and agrees with values derived from observations of O-rich Mira-type stars. Conclusions: Our results confirm the importance of periodic shocks in chemically shaping the inner wind of AGB stars and providing gas conditions conducive to the efficient synthesis of molecules and dust by non-equilibrium processes. They indicate that the wind acceleration will possibly develop in the radius range 4-8 R⋆ in IK Tau.

  15. Hydrodynamic simulations of the interaction between an AGB star and a main-sequence companion in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; De Marco, Orsola; Macdonald, Daniel; Galaviz, Pablo; Passy, Jean-Claude; Iaconi, Roberto; Low, Mordecai-Mark Mac

    2016-02-01

    The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ˜800 yr ago. We have performed hydrodynamic simulations of an asymptotic giant branch (AGB) star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are ≪100 yr. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and time-scale of the simulated disc formed around the companion before the common envelope phase, we analytically estimate the properties of jets that could be launched. Allowing for super-Eddington accretion rates, we find that jets similar to those observed are plausible, provided that the putative lost companion was relatively massive.

  16. Populations of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Lloyd Evans, T.

    2011-09-01

    Carbon stars in the Galaxy do not constitute a single family, but may be divided over several types with distinctive spectroscopic and photometric properties. A subtype of the N stars, characterised by high velocities and weak CN bands, may have been captured by the Milky Way from a cannibalised dwarf galaxy.

  17. IRAS colors of carbon stars - An optical spectroscopic test

    SciTech Connect

    Cohen, M.; Wainscoat, R.J.; Walker, H.J.; Volk, K.; Schwartz, D.E.; Search for Extraterrestrial Intelligence Institute, Los Altos, CA )

    1989-06-01

    Optical spectra are obtained of 57 photographic counterparts to IRAS sources not previously studied spectroscopically, and expected on the basis of their IRAS colors to be M or C type stars. Confirmed carbon stars are found only in a restricted range of 12-25 index, and constitute a striking vertical sequence in the 12-25-60 micron color-color diagram. This sequence is in accord with evolutionary models for AGB stars that convert M into C stars by dredge-up, and follow loops in the color-color plane. Optically visible and optically invisible carbon stars occupy different color-color locations consistent with their representations of different evolutionary states in the life of relatively low-mass stars. 16 refs.

  18. THE SPECTRAL ENERGY DISTRIBUTION OF POST-STARBURST GALAXIES IN THE NEWFIRM MEDIUM-BAND SURVEY: A LOW CONTRIBUTION FROM TP-AGB STARS

    SciTech Connect

    Kriek, Mariska; Conroy, Charlie; Labbe, Ivo; Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel B.; Muzzin, Adam; Franx, Marijn; Quadri, Ryan F.; Illingworth, Garth D.; Rudnick, Gregory

    2010-10-10

    Stellar population synthesis (SPS) models are a key ingredient of many galaxy evolution studies. Unfortunately, the models are still poorly calibrated for certain stellar evolution stages. Of particular concern is the treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, as different implementations lead to systematic differences in derived galaxy properties. Post-starburst galaxies are a promising calibration sample, as TP-AGB stars are thought to be most prominently visible during this phase. Here, we use post-starburst galaxies in the NEWFIRM medium-band survey to assess different SPS models. The available photometry allows the selection of a homogeneous and well-defined sample of 62 post-starburst galaxies at 0.7 {approx_lt} z {approx_lt} 2.0, from which we construct a well-sampled composite spectral energy distribution (SED) over the range 1200-40000 A. The SED is well fit by the Bruzual and Charlot SPS models, while the Maraston models do not reproduce the rest-frame optical and near-infrared parts of the SED simultaneously. When the fitting is restricted to {lambda} < 6000 A, the Maraston models overpredict the near-infrared luminosity, implying that these models give too much weight to TP-AGB stars. Using the flexible SPS models by Conroy et al. and assuming solar metallicity, we find that the contribution of TP-AGB stars to the integrated SED is a factor of {approx}3 lower than predicted by the latest Padova TP-AGB models. Whether this is due to lower bolometric luminosities, shorter lifetimes, and/or heavy dust obscuration of TP-AGB stars remains to be addressed. Altogether, our data demand a low contribution from TP-AGB stars to the SED of post-starburst galaxies.

  19. A molecular line survey of a sample of AGB stars and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Smith, C. L.; Zijlstra, A. A.; Fuller, G. A.

    2015-11-01

    A millimeter molecular line survey of three carbon-rich asymptotic giant branch stars and two oxygen-rich planetary nebulae has been carried out over the frequency range 80.5-115.5 GHz. 68 different transitions were detected in the data from 27 different molecular species. The hyperfine structure of C2H and C13CH has been fitted to constrain the optical depth of their transitions. All other transitions have been constrained on the basis of their line profile shapes. Rotation temperatures and column densities have been calculated for all possible species, with adaptations to the methods applied in order to account for the hyperfine structure of various transitions. From the column densities, carbon, silicon and sulphur isotopic ratios have been determined. The results corroborate IRAS 15194-5115 as a J-type star, whilst excluding IRAS 15082-4808 and IRAS 07454-7112 as such.

  20. NanoSIMS studies of Ba isotopic compositions in single presolar silicon carbide grains from AGB stars and supernovae

    NASA Astrophysics Data System (ADS)

    Marhas, K. K.; Hoppe, P.; Ott, U.

    2007-08-01

    We have studied 74 single presolar silicon carbide grains with sizes between 0.2 and 2.6 μm from the Murchison and Murray meteorites for Ba isotopic compositions using NanoSIMS. We also analyzed 7 SiC particles either consisting of sub-micron-size SiC grains or representing a morphologically and isotopically distinct subgroup. Of the 55 (likely) mainstream grains, originating from asymptotic giant branch (AGB) stars, 32 had high enough Ba contents for isotopic analysis. For 26 of them, CsHx interferences were either negligible or could be corrected with confidence. They exhibit typical s-process Ba isotopic patterns with slightly higher than solar 134Ba/136Ba and lower than solar 135,137,138Ba/136Ba ratios. Results are generally well explained in the context of neutron capture nucleosynthesis in low mass (1-3 M⊙) AGB stars and provide constraints on AGB models, by reducing the needed 13C spread from factor of ˜20 down to 2. Out of the 19 supernova X grains, three had sufficient concentrations for isotopic analysis. They tend to exhibit higher than solar 134Ba/136Ba and 138Ba/136Ba ratios, close to solar 137Ba/136Ba, and 135Ba/136Ba lower than solar but higher than in mainstream grains. This signature could indicate a mixture of n-burst type Ba with either "normal Ba" more s-process-rich than solar, or normal Ba plus weak s-process Ba. In the n-burst component Cs may have to be separated from Ba at ˜10 years after the SN explosion. Depending on predictions for its composition, another possibility is early separation (at ˜1 year) coupled with addition of some unfractionated n-burst matter. Abundances of trace elements (Sr, Zr, Cs, La, and Ce) analyzed along with Ba signify that implantation may have been an important process for their introduction.

  1. Infrared Spectral Energy Distributions of Nearby Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Lowrance, Patrick

    2014-06-01

    The discovery of G77-61 (Dahn et al. 1977) -- a star with a carbon-rich spectrum a mere 58 pc away and therefore of relatively low luminosity -- led to the recognition that _dwarf_ carbon (dC) stars exist. As more dCs are now known, the accepted paradigm of the presence of atmospheric carbon is that dCs must contain a white dwarf secondary. While the white dwarf companion was going through an AGB stage, it deposited carbon-rich material in the atmosphere of the lower-mass (and now brighter) dwarf star. Indeed, a handful of the dC's have exhibited radial velocity signatures consistent with this picture. To allow for the carbon to still be present in the atmosphere past the AGB stage, a replenishing outer shell or disk has been proposed. Current understanding of the formation and evolution of a dC is, however, limited by the small number of objects and observations. We present a full range of fluxes and flux limits from 1 - 160 um including 2MASS, WISE, Spitzer, and Herschel observations for a list of the nearest carbon dwarfs. We reconstruct the spectral energy distribution exploring the mid-infrared region where any residual debris disks would be detectable. The carbon dwarfs have been historically studied in the visible, and these new infrared observations provide a picture of the circumstellar dust.

  2. The LF of TP-AGB stars in the LMC/SMC

    NASA Technical Reports Server (NTRS)

    Bruzual, Gustavo; Charlot, Stephane; GonzalezLopezlira, Rosa; Srinivasan, Sundar; Boyer, Martha L.

    2013-01-01

    We show that Monte Carlo simulations of the TP-AGB stellar population in the LMC and SMC galaxies using the CB. models produce LF and color distributions that are in closer agreement with observations than those obtained with the BC03 and CB07 models. This is a progress report of work that will be published elsewhere.

  3. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  4. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: candidate selection, spectral energy distributions and spectroscopic examination

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2014-04-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) candidates in the Small Magellanic Cloud (SMC). First, we used mid-IR observations from the Spitzer Space Telescope to select optically visible candidates with excess mid-IR flux and then we obtained low-resolution optical spectra for 801 of the candidates. After removing poor-quality spectra and contaminants, such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies, we ended up with a final sample of 63 high-probability post-AGB/RGB candidates of A-F spectral type. From the spectral observations, we estimated the stellar parameters: effective temperature (Teff), surface gravity (log g) and metallicity ([Fe/H]). We also estimated the reddening and deduced the luminosity using the stellar parameters combined with photometry. For the post-AGB/RGB candidates, we found that the metallicity distribution peaks at [Fe/H] ≈ -1.00 dex. Based on a luminosity criterion, 42 of these 63 sources were classified as post-red giant branch (post-RGB) candidates and the remaining 21 as post-AGB candidates. From the spectral energy distributions, we were able to infer that 6 of the 63 post-AGB/RGB candidates have a surrounding circumstellar shell suggesting that they are single stars, while 27 of the post-AGB/RGB candidates have a surrounding disc, suggesting that they lie in binary systems. For the remaining 30 post-AGB/RGB candidates the nature of the circumstellar environment was unclear. Variability is displayed by 38 of the 63 post-AGB/RGB candidates with the most common variability types being the Population II Cepheids (including RV-Tauri stars) and semiregular variables. This study has also revealed a new RV Tauri star in the SMC, J005107.19-734133.3, which shows signs of s-process enrichment. From the numbers of post-AGB/RGB stars in the SMC, we were able to estimate evolutionary rates. We find that the number of post-AGB and post-RGB candidates that

  5. SAO 244567 - A post-AGB star which has turned into a planetary nebula within the last 40 years

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Garcia-Lario, P.; Pottasch, S. R.; Manchado, A.; Clavel, J.; de Martino, D.; van de Steene, G. C. M.; Sahu, K. C.

    1993-01-01

    SAO 244567 (Hen 1357 = CPD -59 deg 6926 = IRAS 17119-5926) is an IRAS source with far infrared colors and flux distribution similar to those of planetary nebulae. The IUE ultraviolet spectra obtained in July 1988 and April 1992 show nebular emission lines, and also the changes in the spectra suggest the formation of the planetary nebula and the rapid evolution of the central star. The optical spectrum of this star obtained by Henize around 1950 shows only the H-alpha line in emission, while the most recent one, obtained in 1990 shows strong forbidden emission lines corresponding to a low excitation and young planetary nebula. The IUE ultraviolet spectra show evidence for the presence of stellar wind and mass loss. The stellar lines show P-Cygni type profiles and the terminal velocity of the stellar wind is about - 3000 km/s. The spectral type of the central star is O8 V. The presence of a detached cold dust shell (125 K), high galactic latitude and abundances suggest that SAO 244567 has recently evolved from a low or intermediate mass progenitor star which has ejected its outer envelope during the AGB stage of evolution and is rapidly evolving towards hotter spectral types.

  6. Constraining {sup 13}C amounts in AGB stars through isotopic analysis of trace elements in presolar SiC.

    SciTech Connect

    Barzyk, J. G.; Savina, M. R.; Davis, A. M.; Gallino, R.; Gyngard, F.; Amari, S.; Zinner, E.; Pelliln, M. J.; Lewis, R. S.; Clayton, R. N.; Materials Science Division; Univ. Chicago; Chicago Ctr Cosmochem.; Universita di Torino; Washington Univ.

    2007-07-01

    Analyses of the isotopic compositions of multiple elements (Mo, Zr, and Ba) in individual mainstream presolar SiC grains were done by resonant ionization mass spectrometry (RIMS). While most heavy element compositions were consistent with model predictions for the slow neutron capture process (s-process) in low-mass (1.5-3 M{sub {circle_dot}}) asymptotic giant branch stars of solar metallicity when viewed on single-element three-isotope plots, grains with compositions deviating from model predictions were identified on multi-element plots. These grains have compositions that cannot result from any neutron capture process but can be explained by contamination in some elements with solar system material. Previous work in which only one heavy element per grain was examined has been unable to identify contaminated grains. The multi-element analyses of this study detected contaminated grains which were subsequently eliminated from consideration. The uncontaminated grains form a data set with a greatly reduced spread on the three-isotope plots of each element measured, corresponding to a smaller range of {sup 13}C pocket efficiencies in parent AGB stars. Furthermore, due to this reduced spread, the nature of the stellar starting material, previously interpreted as having solar isotopic composition, is uncertain. The constraint on {sup 13}C pocket efficiencies in parent stars of these grains may help uncover the mechanism responsible for formation of {sup 13}C, the primary neutron source for s-process nucleosynthesis in low-mass stars.

  7. VizieR Online Data Catalog: Linelist of 14 Galactic post-AGB stars (De Smedt+, 2016)

    NASA Astrophysics Data System (ADS)

    de Smedt, K.; van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2015-11-01

    We used the UVES spectrograph mounted on the Very Large Telescope (VLT) at the European Southern Observatory (ESO), and the HERMES spectrograph mounted on the 1.2m Mercator telescope to obtain high-resolution spectra with high signal-to-noise (S/N) of 14 Galactic post-AGB stars of the Large Magellanic Cloud. We perform an extensive detailed abundance analysis on the basis of these spectra. Here we provide the linelists of all objects with the same layour: the identification is given by the proton-number of the chemical element. For lines coming from ionised lines, we add 0.1 to the proton number; the wavelength is given in rest in air in Angstrom units; the excitation potential (eV); the used oscillator strength and finally the measured equivalent width (mÅ). We also provide the normalised spectra obtained with UVES and with HERMES in fits format. (17 data files).

  8. Near-IR Observations Of Carbon-Enhanced Metal-Poor Stars With SOAR/OSIRIS

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine R.; Sivarani, T.; Beers, T.; Lee, Y.; Rossi, S.; Placco, V.

    2007-12-01

    We report on medium-resolution near-IR spectroscopy, obtained with SOAR/OSIRIS, of a sample of over 50 Carbon-Enhanced Metal-Poor (CEMP) stars selected from the HK survey of Beers and colleagues and the Hamburg/ESO Survey of Christlieb and colleagues. These stars are primarily cool (4000 K < Teff < 5000 K), metal-poor objects with previous optical observations that indicate carbon enhancement [C/Fe] > +1.0. The observations are used, in combination with information available from optical spectra, to derive estimates of the O abundance and 12C/13C ratios from the molecular lines of CO, which are very sensitive to oxygen abundances in such stars. The results are compared with abundances determined from high-resolution observations for a subset of these stars. Based the O abundances from CO lines, we revisit the estimation of C and N abundances from optical observations. The origin of the elemental abundance pattern for CEMP stars with s-process enhancement (CEMP-s stars) is very likely to be mass transfer from (now extinct) AGB companions. However, the [C/N] and 12C/13C ratios of CEMP-s stars are very different from solar-metallicity AGB stars. The [O/Fe] measurements provide additional constraints on the mass of these AGB companions. Another class, the CEMP-no stars (CEMP stars with no n-capture enhancement), could have either been polluted by AGB mass-transfer, winds from massive stars, or early supernovae. The 12C/13C and [O/Fe] abundances are crucial to distinguish their origin, and they are not easily available through optical observations due to the weakness of the [OI] 6300 A lines. TCB, YSL, CK, and TS acknowledge support from grant PHY 02-16783; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation.

  9. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J. W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; Paxton, B.

    2016-08-01

    The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the {}13{{C}} pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M = 2 and M=3 {M}ȯ , and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of {}12{{C}} and {}16{{O}} are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the {}22{Ne}(α, n){}25{Mg} activation and the s-process efficiency in the {}13{{C}}-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the {}13{{C}}-pocket with a mass of ≈ {10}-4 {M}ȯ . The final s-process abundances are characterized by 0.36\\lt [{{s}}/{Fe}]\\lt 0.78 and the heavy-to-light s-process ratio is -0.23\\lt [{hs}/{ls}]\\lt 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work.

  10. Study of the inner dust envelope and stellar photosphere of the AGB star R Doradus using SPHERE/ZIMPOL

    NASA Astrophysics Data System (ADS)

    Khouri, T.; Maercker, M.; Waters, L. B. F. M.; Vlemmings, W. H. T.; Kervella, P.; de Koter, A.; Ginski, C.; De Beck, E.; Decin, L.; Min, M.; Dominik, C.; O'Gorman, E.; Schmid, H.-M.; Lombaert, R.; Lagadec, E.

    2016-06-01

    Context. On the asymptotic giant branch (AGB) low- and intermediate-mass stars eject a large fraction of their envelope, but the mechanism driving these outflows is still poorly understood. For oxygen-rich AGB stars, the wind is thought to be driven by radiation pressure caused by scattering of radiation off dust grains. Aims: We study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We focus on investigating the spatial distribution of the dust grains that scatter light and whether these grains can be responsible for driving the outflow of this star. Methods: We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study R Dor and its inner envelope in a novel way. We present observations in filters V, cntHα, and cnt820 and investigate the surface brightness distribution of the star and of the polarised light produced in the inner envelope. Thanks to second-epoch observations in cntHα, we are able to see variability on the stellar photosphere. We study the polarised-light data using a continuum-radiative-transfer code that accounts for direction-dependent scattering of photons off dust grains. Results: We find that in the first epoch the surface brightness of R Dor is asymmetric in V and cntHα, the filters where molecular opacity is stronger, while in cnt820 the surface brightness is closer to being axisymmetric. The second-epoch observations in cntHα show that the morphology of R Dor has changed completely in a timespan of 48 days to a more axisymmetric and compact configuration. This variable morphology is probably linked to changes in the opacity provided by TiO molecules in the extended atmosphere. The observations show polarised light coming from a region around the central star. The inner radius of the region from where polarised light is seen varies only by a small amount with azimuth. The value of the polarised intensity, however, varies by between a factor of 2.3 and 3.7 with

  11. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  12. The AGB star nucleosynthesis in the light of the recent 17O ( p ,α)14N and 18O ( p ,α)15N reaction rate determinations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-02-01

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O ( p ,α)14N and 18O ( p ,α)15N reactions. Moreover, the strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of "presolar" grains to determine their impact on astrophysical environments.

  13. INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Green, Paul

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, {approx}5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while {approx}7% are giants. The dCs likely span absolute magnitudes M{sub i} from {approx}6.5 to 10.5. 'G-type' dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C{sub 2} bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these 'smoking guns' for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be 'N'-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at {approx}40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  14. Starlight and Sandstorms: Mass Loss Mechanisms on the AGB

    NASA Astrophysics Data System (ADS)

    Höfner, S.

    2011-09-01

    There are strong observational indications that the dense slow winds of cool luminous AGB stars are driven by radiative pressure on dust grains which form in the extended atmospheres resulting from pulsation-induced shocks. For carbon stars, detailed models of outflows driven by amorphous carbon grains show good agreement with observations. Some still existing discrepancies may be due to a simplified treatment of cooling in shocks, drift of the grains relative to the gas, or effects of giant convection cells or dust-induced pattern formation. For stars with C/O < 1, recent models indicate that absorption by silicate dust is probably insufficient to drive their winds. A possible alternative is scattering by Fe-free silicate grains with radii of a few tenths of a micron. In this scenario one should expect less circumstellar reddening for M- and S-type AGB stars than for C-stars with comparable stellar parameters and mass loss rates.

  15. Optically Visible Post-AGB and Post-RGB Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2015-08-01

    We have performed an extensive low-resolution (R ≍ 1300) optical spectral survey with the AAOmega multi-fiber spectrograph mounted on the 3.9-m Anglo Australian telescope, resulting in a clean and complete census of well-characterised post-AGB objects with spectroscopically determined stellar parameters - Teff, log g, [Fe/H] and E(B-V) - spanning a wide range in luminosity in the Small Magellanic Cloud (SMC) and Large Magellanic Cloud (LMC). The known distances to the Magellanic clouds enabled luminosity estimations for all the objects and led to one of the most important results of this survey: the serendipitous discovery of a group of new, low-luminosity, evolved, dusty post-RGB objects in both Clouds. In this paper, we present an overview of this survey and a few important results.

  16. VizieR Online Data Catalog: Galactic post-AGB stars distances (Vickers+, 2015)

    NASA Astrophysics Data System (ADS)

    Vickers, S. B.; Frew, D. J.; Parker, Q. A.; Bojicic, I. S.

    2015-07-01

    The Torun catalogue provides easy online access to processed photometric and spectroscopic data for the currently identified Galactic population of PAGB stars and related objects. The catalogue is divided into five categories: (i) very-likely PAGB stars, (ii) RV Tauri stars, (iii) R Coronae Borealis/extreme helium/late thermal pulse stars, (iv) possible PAGB stars and (v) unlikely PAGB objects. Hereafter, likely PAGB stars will be referred to simply as PAGB, R Coronae Borealis/extreme helium/late thermal pulse as R CrB/eHe/LTP, while the possible PAGB objects will be simply referred to as possible. We will present a distance catalogue of the R Tau and R CrB/eHe/LTP stars in a second paper (Vickers et al., in preparation), concentrating on the likely and possible PAGB objects in this work. (3 data files).

  17. Optical spectrum of the post-AGB Star HD56126 in the wavelength interval 4010-8790 Å Å

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Chentsov, E. L.; Tavolganskaya, N. S.; Shapovalov, M. V.

    2007-06-01

    The optical spectrum of the post-AGB star HD56126 identified with the infrared source IRAS07134+1005 is studied in detail using high spectral resolution observations (R = 25000 and 60000) performed with the echelle spectrographs of the 6-m telescope. A total of about one and a half thousand absorptions of neutral atoms and ions, absorption bands of C2, CN, and CH molecules, and interstellar bands (DIBs) are identified in the 4012 to 8790 Å Å wavelength interval, and the depths and radial velocities of these spectral features are measured. Differences are revealed between the variations of the radial velocities measured from spectral features of different excitation. In addition to the well-known variability of the H α profile, we found variations in the profiles of a number of FeII, YII, and BaII lines. We also produce an atlas of the spectrum of HD56126 and its comparison star α Per. The full version of the Atlas is available in electronic form from: http://www.sao.ru/hq/ssl/Atlas/Atlas.html.

  18. Evolution and mixing on the AGB

    SciTech Connect

    Lattanzio, J.C.

    1988-07-27

    It is now well known that Nature can make Carbon stars at lower luminosities than can (human) theorists. A number of workers, stimulated by this challenge, have been attracted to the problem. In this paper I review recent evolutionary models of relatively low mass AGB stars, with emphasis placed on the mixing of carbon to the stellar surface. In particular I discuss some recent improvements in the physics used to construct stellar models. These topics include: breathing pulses of the convective core found during exhaustion of the core helium supply; the effects of carbon recombination; the occurrence of semiconvection in the region between the two nuclear burning shells, and the importance of mass loss. It appears that different effects may operate at different stellar masses and abundances. Recent calculations have successfully produced models of low luminosity Carbon stars. The strengths and weaknesses of these models will be contrasted. 60 refs., 5 figs.

  19. The dust disk and companion of the nearby AGB star L2 Puppis. SPHERE/ZIMPOL polarimetric imaging at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Lagadec, E.; Ridgway, S. T.; Haubois, X.; Girard, J. H.; Ohnaka, K.; Perrin, G.; Gallenne, A.

    2015-06-01

    The bright southern star L2 Pup is a particularly prominent asymptotic giant branch (AGB) star, located at a distance of only 64 pc. We report new adaptive optics observations of L2 Pup at visible wavelengths with the SPHERE/ZIMPOL instrument of the VLT that confirm the presence of the circumstellar dust disk discovered recently. This disk is seen almost almost edge-on at an inclination of 82◦. The signature of its three-dimensional structure is clearly observed in the map of the degree of linear polarization pL. We identify the inner rim of the disk through its polarimetric signature at a radius of 6 AU from the AGB star. The ZIMPOL intensity images in the V and R bands also reveal a close-in secondary source at a projected separation of 2 AU from the primary. Identification of the spectral type of this companion is uncertain due to the strong reddening from the disk, but its photometry suggests that it is a late K giant with comparable mass to the AGB star. We present refined physical parameters for the dust disk derived using the RADMC-3D radiative transfer code. We also interpret the pL map using a simple polarization model to infer the three-dimensional structure of the envelope. Interactions between the inner binary system and the disk apparently form spiral structures that propagate along the orthogonal axis to the disk to form streamers. Two dust plumes propagating orthogonally to the disk are also detected. They originate in the inner stellar system and are possibly related to the interaction of the wind of the two stars with the material in the disk. Based on the morphology of the envelope of L2 Pup, we propose that this star is at an early stage in the formation of a bipolar planetary nebula. Based on observations made with ESO telescopes at Paranal Observatory, under ESO Science Verification program 60.A-9367(A).

  20. Pulsation-triggered Mass Loss from AGB Stars: The 60 Day Critical Period

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.

    2016-06-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  1. Pulsation-triggered Mass Loss from AGB Stars: The 60 Day Critical Period

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.

    2016-06-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ˜10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ˜300 days.

  2. Carbon Enhanced Stars in the Sloan Digital Sky Survery

    NASA Astrophysics Data System (ADS)

    Keeling, Chloe; Wilhelm, R. J.

    2014-01-01

    Carbon-enhanced stars are excellent probes of the nucleosynthesis history of the universe. The existence of carbon-enhanced stars that also show enhancement of s-process elements, such as barium, suggest that enhancements are initially produced in asymptotic giant branch stars which overflow their Roche lobes and deposit processed elements on to a lower mass binary companion. This process is also one mechanism for producing binary mass transfer, blue stragglers (BS). A second is mass transfer from a first ascent red giant companion. It is therefore expected that some percentage of BS stars (those produced from AGB companions) will show both carbon and barium enhancements. For this study we have chosen SDSS stars in the temperature range of 6000 K ≤ T_eff ≤7000 K. This range samples the halo main-sequence turn-off (MSTO) and BS stars just blueward of MSTO. We make use of measurements of the CH G-band strength, located at ~4330 Å, to estimate the stellar carbon abundance. To measure the G-band strength we use the S magnitude index, optimized by Martell et al. (2008). We run the same index measurements on a grid of synthetic spectra with Teff, Log(g), [Fe/H] and various carbon enhancements. Using the observed S-index and spectral parameters from Segue Stellar Parameter Pipeline, we compare to our calibration grid and determine the carbon abundance. We will present our carbon abundance results along with a rough estimate of barium from our index method and a classification into three broad groups, 1) No enhancement in Ba or C, 2) C enhancement and no Ba enhancement, and 3) C and Ba enhancement. We will present preliminary results on the percentages of each category for both the MSTO and BS stars.

  3. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing

    NASA Astrophysics Data System (ADS)

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. C.

    2016-02-01

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M⊙ ≲ 3), where the main neutron source is the 13C(α, n)16O reaction. This last reaction is activated from locally produced 13C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the 13C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing 13C reservoirs of several 10-3 M⊙. The ensuing 13C-enriched zone has an almost flat profile, while only a limited production of 14N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large 13C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  4. Nucleosynthesis in AGB stars: Observation of Mg-25 and Mg-26 in IRC+10216 and possible detection of Al-26

    NASA Technical Reports Server (NTRS)

    Guelin, M.; Forestini, M.; Valiron, P.; Ziurys, L. M.; Anderson, M. A.; Cernicharo, J.; Kahane, C.

    1995-01-01

    We report the detection in the circumstellar envelope IRC+10216 of millimeter lines of the rare isotopomers (25)MgNC and (26)MgNC, as well as of a line at 234433 MHz, which could be the J= 7-6 transition of (26)AlF (an alternate, although less likely identified would be the J= 9-8 transition of NaF). The derived Mg-24:Mg-25:Mg-26 isotopic abundance ratios (78 : 11+/- 1 : 11 +/-1) are consistent with the solar system values (79.0:10.0:11.0), following Anders & Grevesse 1989). According to new calculations of evolutionary models of 3 solar mass and 5 solar mass asymptotic giant branch (AGB) stars, these ratios and the previously measured N, O and Si isotopic ratios imply that the central star had an initial mass 3 solar mass (less than or equal to M(sub *, ini) less than 5 solar mass and has already experienced many 3rd dredge-up events. From this, it can be predicted that the Al-26/Al-27 isotopics ratio lies between 0.01 and 0.08; in fact, the value derived in the case that U234433 arises from (26)AlF is Al-26/Al-27 = 0.04. The identification of the (25)MgNC and (26)MgNC lines was made possible by ab-initio quantum mechanical calculations of the molecule geometrical structure. It was confirmed through millimeter-wave laboratory measurements. The quantum mechanical calculations are briefly described and the laboratory results presented in some detail. The rotation constants B, D, H and the spin-rotation constant gamma of (25)MgNC and (26)MgNC are determined from a fit of laboratory and astronomical data.

  5. Seven new carbon-enhanced metal-poor RR Lyrae stars

    SciTech Connect

    Kennedy, Catherine R.; Stancliffe, Richard J.; Kuehn, Charles; Beers, Timothy C.; Kinman, T. D.; Placco, Vinicius M.; Reggiani, Henrique; Rossi, Silvia; Lee, Young Sun

    2014-05-20

    We report estimated carbon-abundance ratios, [C/Fe], for seven newly discovered carbon-enhanced metal-poor (CEMP) RR Lyrae stars. These are well-studied RRab stars that had previously been selected as CEMP candidates based on low-resolution spectra. For this pilot study, we observed eight of these CEMP RR Lyrae candidates with the Wide Field Spectrograph on the ANU 2.3 m telescope. Prior to this study, only two CEMP RR Lyrae stars had been discovered: TY Gru and SDSS J1707+58. We compare our abundances to new theoretical models of the evolution of low-mass stars in binary systems. These simulations evolve the secondary stars, post accretion from an asymptotic giant-branch (AGB) donor, all the way to the RR Lyrae stage. The abundances of CEMP RR Lyrae stars can be used as direct probes of the nature of the donor star, such as its mass, and the amount of material accreted onto the secondary. We find that the majority of the sample of CEMP RR Lyrae stars is consistent with AGB donor masses of around 1.5-2.0 M {sub ☉} and accretion masses of a few hundredths of a solar mass. Future high-resolution studies of these newly discovered CEMP RR Lyrae stars will help disentangle the effects of the proposed mixing processes that occur in such objects.

  6. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  7. Constraints on Grain Formation Around Carbon Stars from Laboratory Studies of Presolar Graphite

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Akande, O. W.; Croat, T. K.; Cowsik, R.

    2005-01-01

    We report the results of an investigation into the physical conditions in the mass outflows of asymptotic giant branch (AGB) carbon stars that are required for the formation of micron-sized presolar graphite grains, either with or without internal crystals of titanium carbide (TiC). In addition to providing detailed information about stellar nucleosynthesis, the structure and composition of presolar grains give unique information about the conditions of grain formation. In the present work we use laboratory observations of presolar graphite to gain insight into the physical conditions in circumstellar outflows from carbon AGB stars. The periodic pulsation of AGB stars enhances the gas density through shocks in the stellar atmosphere above the photosphere, promoting the condensation of dust grains. Copious mass outflow occurs largely because grains are coupled to the radiation field of the star, which accelerates them by radiation pressure; momentum is in turn transferred to gas molecules by collisions with grains. The dust/gas mixture is effectively a two-component fluid whose motion depends on atmospheric structure and which, in turn, influences that structure. In particular, the radiation pressure on the grains determines the velocity field of the outflow and thus the density distribution, while the density distribution itself determines the conditions of radiative transfer within the outflow and thus the effective radiation pressure.

  8. New Determination of the 13C(α, n)16O Reaction Rate and its Influence on the s-process Nucleosynthesis in AGB Stars

    NASA Astrophysics Data System (ADS)

    Guo, B.; Li, Z. H.; Lugaro, M.; Buntain, J.; Pang, D. Y.; Li, Y. J.; Su, J.; Yan, S. Q.; Bai, X. X.; Chen, Y. S.; Fan, Q. W.; Jin, S. J.; Karakas, A. I.; Li, E. T.; Li, Z. C.; Lian, G.; Liu, J. C.; Liu, X.; Shi, J. R.; Shu, N. C.; Wang, B. X.; Wang, Y. B.; Zeng, S.; Liu, W. P.

    2012-09-01

    We present a new measurement of the α-spectroscopic factor (S α) and the asymptotic normalization coefficient for the 6.356 MeV 1/2+ subthreshold state of 17O through the 13C(11B, 7Li)17O transfer reaction and we determine the α-width of this state. This is believed to have a strong effect on the rate of the 13C(α, n)16O reaction, the main neutron source for slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the 13C(α, n)16O reaction. At a temperature of 100 MK, our rate is roughly two times larger than that by Caughlan & Fowler and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected s-process elements and isotopic ratios. There are no changes in the final results using the different rates for the 13C(α, n)16O reaction when the 13C burns completely in radiative conditions. When the 13C burns in convective conditions, as in stars of initial mass lower than ~2 M ⊙ and in post-AGB stars, some changes are to be expected, e.g., of up to 25% for Pb in our models. These variations will have to be carefully analyzed when more accurate stellar mixing models and more precise observational constraints are available.

  9. Near-infrared Observations of SiO Maser-emitting Asymptotic Giant Branch (AGB) Stars

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Miyahara, Takeshi; Omodaka, Toshihiro; Ohta, Takashi; Fujii, Takahiro; Tanaka, Masuo; Motohara, Kentaro; Makoto, Miyoshi

    2016-02-01

    Near-infrared (NIR) monitoring observations of asymptotic giant branch stars exciting bright SiO masers have been made with the 1 m telescope of Kagoshima University. In order to investigate the properties of these stars and their envelopes, we combined our NIR photometric data with mid- and far-infrared flux data obtained by the IRAS satellite, SiO maser flux data provided by the Nobeyama Radio Observatory, visual magnitude data provided by the AAVSO, and the reported data on the expansion velocities of the circumstellar envelopes. The absolute magnitudes at the K-band and the distances are estimated using the period-luminosity relation of Mira variables determined by Feast et al. Then, mass-loss rates and isotropic luminosities of an SiO maser are estimated. The mass-loss rates range from approximately 10-8 {M}⊙ \\{{yr}}-1 to over 10-5 {M}⊙ {{yr}}-1. We found that the NIR pulsation amplitudes are correlated with the pulsation periods and the observed wavelengths. We also found correlations of the isotropic luminosities of SiO masers with the mass-loss rates and absolute magnitudes at the K-band. These results will help us to understand the pumping mechanism of SiO masers. We measured, for the first time, the periods and/or NIR magnitudes of TX Cam, BW Cam, IRAS 06297+4045, IRAS 18387-0423, and RT Cep.

  10. Carbon Abundance Plateaus among Carbon-Enhanced Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Yoon, Jinmi; He, Siyu; Placco, Vinicius; Carollo, Daniela; Beers, Timothy C.

    2016-01-01

    A substantial fraction of low-metallicity stars in the Milky Way, the Carbon-Enhanced Metal-Poor (CEMP) stars, exhibit enhancements of their carbon-to-iron relative to the solar value ([C/Fe] > +0.7). They can be divided into several sub-classes, depending on the nature and degree of the observed enhancements of their neutron-capture elements, providing information on their likely progenitors. CEMP-s stars (which exhibit enhanced s-process elements) are thought to be enhanced by mass transfer from an evolved AGB companion, while CEMP-no stars (which exhibit no over-abundances of neutron-capture elements) appear to be associated with explosions of the very first generations of stars. High-resolution spectroscopic analyses are generally required in order to make these sub-classifications.Several recent studies have suggested the existence of bimodality in the distribution of absolute carbon abundances among CEMP stars -- most CEMP-no stars belong to a low-C band ((A(C) ˜ 6.5), while most CEMP-s stars reside on a high-C band (A(C) ˜ 8.25). The number of CEMP stars considered by individual studies is, however, quite small, so we have compiled all available high-resolution spectroscopic data for CEMP stars, in order to further investigate the existence of the claimed carbon bi-modality, and to consider what can be learned about the progenitors of CEMP-s and CEMP-no stars based on the observed distribution of A(C) on the individual plateaus.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.

  11. Morphology and kinematics of the gas envelope of the variable AGB star π1 Gruis

    NASA Astrophysics Data System (ADS)

    Tuyet Nhung, Pham; Thi Hoai, Do; Diep, Pham Ngoc; Thi Phuong, Nguyen; Thi Thao, Nguyen; Anh, Pham Tuan; Darriulat, Pierre

    2016-07-01

    Observations of the 12CO(3–2) emission from the circumstellar envelope (CSE) of the variable star π1 Gru using the compact array of the ALMA observatory have been recently made accessible to the public. An analysis of the morphology and kinematics of the CSE is presented with a result very similar to that obtained earlier for 12CO(2–1) emission using the Submillimeter Array. A quantitative comparison is made using their flared disk model. A new model is presented that provides a significantly better description of the data, using radial winds and smooth evolutions of the radio emission and wind velocity from the stellar equator to the poles. ) operated by the NAOJ.

  12. Exploring wind-driving dust species in cool luminous giants. III. Wind models for M-type AGB stars: dynamic and photometric properties

    NASA Astrophysics Data System (ADS)

    Bladh, S.; Höfner, S.; Aringer, B.; Eriksson, K.

    2015-03-01

    Context. Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions which creates favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg2SiO4 and MgSiO3). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. Aims: The purpose of this study is to investigate if photon scattering on Mg2SiO4 grains can produce realistic outflows for a wide range of stellar parameters in M-type AGB stars. Methods: We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg2SiO4 grains to calculate the first extensive set of time-dependent wind models for M-type AGB stars. This set includes 139 solar-mass models, with three different luminosities (5000 L⊙, 7000 L⊙, and 10 000 L⊙) and effective temperatures ranging from 2600 K to 3200 K. The resulting wind properties, visual and near-IR photometry and mid-IR spectra are compared with observations. Results: We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they reproduce observed mass-loss rates and wind velocities, as well as visual and near-IR photometry. However, the current models do not show the characteristic silicate features at 10 and 18 μm as a result of the cool temperature of Mg2SiO4 grains in the wind. Including a small amount of Fe in the grains further out in the circumstellar envelope will

  13. High resolution spectroscopy of the hot post-AGB stars IRAS 13266-5551 (CPD-55 5588) and IRAS 17311-4924 (Hen3-1428)

    NASA Astrophysics Data System (ADS)

    Sarkar, G.; Parthasarathy, M.; Reddy, B. E.

    2005-03-01

    High resolution spectra covering the wavelength range 4900 Å to 8250 Å of the hot post-AGB stars IRAS 13266-5551 (CPD-55 5588) and IRAS 17311-4924 (Hen3-1428) reveal absorption lines of C II, N II, O II, Al III, Si III and Fe III and a rich emission line spectrum consisting of H I, He I, C II, N I, O I, Mg II, Al II, Si II, V I, Mn I, Fe III, [Fe II] and [Cr II]. The presence of [N II] and [O I] lines and absence of [O III] indicate low excitation nebulae around these stars. The components of Na I absorption lines indicate the presence of neutral circumstellar envelopes in addition to the low excitation nebulae around these two hot post-AGB stars. The Hα lines show P-Cygni profiles indicating ongoing post-AGB mass loss. From the absorption lines we derived heliocentric radial velocities of 65.31 ± 0.34 km s-1 and 27.55 ± 0.74 km s-1 for IRAS 13266-5551 and IRAS 17311-4924 respectively. The high Galactic latitude and large radial velocity of IRAS 13266-5551 indicate that it belongs to the old disk population. Preliminary estimates for the CNO abundances in IRAS 13266-5551 are obtained. Based on observations made with the Victor M. Blanco 4m telescope of the Cerro Tololo Inter-American Observatory, Chile. Appendices and Tables [see full text], [see full text], [see full text] and [see full text] are only available in electronic form at http://www.edpsciences.org

  14. Indirect Measurement of {sup 15}N(p,{alpha}){sup 12}C and {sup 18}O(p,{alpha}){sup 15}N. Applications to the AGB Star Nucleosynthesis

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Tribble, R.; Al-Abdullah, T.; Banu, A.; Fu, C.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-04-06

    The Trojan Horse Method has been recently applied to the study of reactions involved in fluorine nucleosynthesis inside AGB stars. Fluorine abundance is important since it allows to constrain mixing models from the comparison of the observed fluorine abundances with the ones predicted by models. Anyway direct measurements of the cross section do not extend down to the Gamow peak, which is the astrophysically relevant energy region. In particular the study focuses on the {sup 15}N(p,{alpha}){sup 12}C and the {sup 18}O(p,{alpha}){sup 15}N reactions which can influence fluorine yield as they are part of {sup 19}F production/destruction network.

  15. Effects of Metallicity on the Chemical Composition of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Leisenring, J. M.; Kemper, F.; Sloan, G. C.

    2008-07-01

    We present Spitzer IRS data on 19 asymptotic giant branch (AGB) stars in the Large Magellanic Cloud, complementing existing published data sets of carbon stars in both Magellanic Clouds and the Milky Way, to investigate the effects of metallicity on dust and molecular spectral features arising from the circumstellar envelope. We find that the C2H2 P- and R-branches at 7.5 μm are affected by dust dilution at higher mass-loss rates—albeit to a lesser extent for sources in the Magellanic Clouds, compared to the Milky Way—while the narrow 13.7 μm C2H2 Q-branch only shows the effect of dust dilution at low mass-loss rates. A strong metallicity dependence is not observed for the Q-branch. Independent of metallicity, we also provide an explanation for the observed shifts in the central wavelength of the SiC emission feature, as we show that these are largely caused by molecular band absorption on either side of the dust emission feature, dominating over shifts in the central wavelength caused by self-absorption. We have devised a method to study the dust condensation history in carbon-rich AGB stars in different metallicity environments, by measuring the strength of the 11.3 μm SiC and 30 μm MgS features with respect to the continuum, as a function of mass-loss rate. With this method, it is possible to distinguish in what order SiC and graphite condense, which is believed to be sensitive to the metallicity, prior to the eventual deposit of the MgS layer.

  16. Carbon-enhanced metal-poor stars in SDSS/Segue. II. Comparison of CEMP-star frequencies with binary population-synthesis models

    SciTech Connect

    Lee, Young Sun; Suda, Takuma; Beers, Timothy C.; Stancliffe, Richard J.

    2014-06-20

    We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff (MSTO) stars with predictions from binary population-synthesis models involving asymptotic giant-branch (AGB) mass transfer. The giant and MSTO stars are selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration. We consider two initial mass functions (IMFs)—a Salpeter IMF, and a mass function with a characteristic mass of 10 M {sub ☉}. For giant stars, the comparison indicates a good agreement between the observed CEMP frequencies and the AGB binary model using a Salpeter IMF for [Fe/H] > – 1.5, and a characteristic mass of 10 M {sub ☉} for [Fe/H] < – 2.5. This result suggests that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a 'chemical time' between [Fe/H] =–2.5 and [Fe/H] =–1.5. The CEMP frequency for the turnoff stars with [Fe/H] < – 3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] =–3.0. We also discuss possible effects of first dredge-up and extra mixing in red giants and internal mixing in turnoff stars on the derived CEMP frequencies.

  17. Variability and possible rapid evolution of the hot post-AGB stars Hen 3-1347, Hen 3-1428, and LSS 4634

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Burlak, M. A.; Esipov, V. F.; Ikonnikova, N. P.; Kniazev, A. Yu.; Komissarova, G. V.; Tekola, A.

    2014-08-01

    We present the results of spectroscopic and photometric observations for three hot southern-hemisphere post-AGB objects, Hen 3-1347 = IRAS 17074-1845, Hen 3-1428 = IRAS 17311-4924, and LSS 4634 = IRAS 18023-3409. In the spectrograms taken with the 1.9-m telescope of the South African Astronomical Observatory (SAAO) in 2012, we have measured the equivalent widths of the most prominent spectral lines. Comparison of the new data with those published previously points to a change in the spectra of Hen 3-1428 and LSS 4634 in the last 20 years. Based on ASAS data, we have detected rapid photometric variability in all three stars with an amplitude up to 0{·/ m }3-0{·/ m }4 in the V band. A similarity between the patterns of variability for the sample stars and other hot protoplanetary nebulae is pointed out. We present the results of UBV observations for Hen 3-1347, according to which the star undergoes rapid irregular brightness variations with maximum amplitudes Δ V = 0{·/ m }25, Δ B = 0{·/ m }25, and Δ U = 0{·/ m }30 and shows color-magnitude correlations. Based on archival data, we have traced the photometric history of the stars over more than 100 years. Hen 3-1347 and LSS 4634 have exhibited a significant fading on a long time scale. The revealed brightness and spectrum variations in the stars, along with evidence for their enhanced mass, may be indicative of their rapid post-AGB evolution.

  18. Large-scale environments of binary AGB stars probed by Herschel. I. Morphology statistics and case studies of R Aquarii and W Aquilae

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Nowotny, W.; Cox, N. L. J.; Aringer, B.; Blommaert, J. A. D. L.; Decin, L.; van Eck, S.; Gail, H.-P.; Groenewegen, M. A. T.; Kornfeld, K.; Mecina, M.; Posch, Thomas; Vandenbussche, B.; Waelkens, C.

    2013-01-01

    The Mass loss of Evolved StarS (MESS) sample offers a selection of 78 asymptotic giant branch (AGB) stars and red supergiants (RSGs) observed with the PACS photometer on-board Herschel at 70 μm and 160 μm. For most of these objects, the dusty AGB wind is not spherically symmetric and the wind shape can be subdivided into four classes. In the present paper we concentrate on the influence of a companion on the morphology of the stellar wind. Literature was searched to find binaries in the MESS sample, which were subsequently linked to their wind-morphology class to assert that the binaries are not distributed equally among the classes. In the second part of the paper we concentrate on the circumstellar environment of the two prominent objects R Aqr and W Aql. Each shows a characteristic signature of a companion interaction with the stellar wind. For the symbiotic star R Aqr, PACS revealed two perfectly opposing arms that in part reflect the previously observed ring-shaped nebula in the optical. However, from the far-IR there is evidence that the emitting region is elliptical rather than circular. The outline of the wind of W Aql seems to follow a large Archimedean spiral formed by the orbit of the companion but also shows strong indications of an interaction with the interstellar medium. We investigated the nature of the companion of W Aql and found that the magnitude of the orbital period supports the size of the spiral outline. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. Stable Carbon Isotope Ratios for Giant Stars in the Globular Cluster M13

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon; Pilachowski, C. A.

    2013-01-01

    Recently, our paradigm for the formation and evolution of globular clusters has shifted. We now understand that the majority of present-day stars in globular clusters formed as second-generation stars, primarily from the ejecta of first-generation AGB stars, while the majority of first generation, less centrally concentrated stars, have been dynamically lost to the cluster (D'Ercole et al. 2011). This paradigm explains the observed star-to-star variations in the abundances of light element observed in globular clusters, and suggests that the carbon isotope ratio should be similarly differentiated between first and second generation stars. In an effort to verify this scenario, we have recently utilized the Gemini/NIFS to determine carbon isotope abundances (12C and 13C) for 18 giant stars in the globular clusters M13 through medium-resolution (R ˜ 5300) infrared spectroscopy of the first-overtone CO bands near 2.3 μm. Our program stars are distributed from the tip of the RGB to the BLF (the bump in the luminosity function) of M13, and their Na, Mg, and Al abundances are already known from homogeneous data set analysis. Therefore, adding reliable abundances of the stable carbon isotopes to this homogeneous spectroscopic sample permits systematic tests of cluster chemical evolution models. We report preliminary results of the carbon abundance analysis for our NIFS K-band spectra and present an overview of our ongoing effort with other globular clusters.

  20. s-processing in AGB stars revisited. I. Does the main component constrain the neutron source in the {sup 13}C pocket?

    SciTech Connect

    Trippella, O.; Busso, M.; Maiorca, E.; Käppeler, F.; Palmerini, S. E-mail: maurizio.busso@fisica.unipg.it

    2014-05-20

    Slow neutron captures at A ≳ 85 are mainly guaranteed by the reaction {sup 13}C(α,n){sup 16}O in asymptotic giant branch (AGB) stars, requiring proton injections from the envelope. These were so far assumed to involve a small mass (≲ 10{sup –3} M {sub ☉}), but models with rotation suggest that in such tiny layers excessive {sup 14}N hampers s-processing. Furthermore, s-element abundances in galaxies require {sup 13}C-rich layers substantially extended in mass (≳ 4 × 10{sup –3} M {sub ☉}). We therefore present new calculations aimed at clarifying those issues and at understanding whether the solar composition helps to constrain the {sup 13}C 'pocket' extension. We show that: (1) mixing 'from bottom to top' (as in magnetic buoyancy or other forced mechanisms) can form a {sup 13}C reservoir substantially larger than assumed so far, covering most of the He-rich layers; (2) on the basis of this idea, stellar models at a fixed metallicity reproduce the main s-component as accurately as before; and (3) they make nuclear contributions from unknown nucleosynthesis processes (LEPP) unnecessary, against common assumptions. These models also avoid problems of mixing at the envelope border and fulfil requirements from C-star luminosities. They yield a large production of nuclei below A = 100, so that {sup 86,} {sup 87}Sr may be fully synthesized by AGB stars, while {sup 88}Sr, {sup 89}Y, and {sup 94}Zr are contributed more efficiently than before. Finally, we suggest tests suitable for providing a final answer regarding the extension of the {sup 13}C pocket.

  1. Spectral Analysis of the O(He)-Type Central Stars of the Planetary Nebulae K 1-27 and LoTr 4

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Ringat, E.; Rauch, T.; Werner, K.; Kruk, J. W.

    2011-01-01

    The four known O(He) stars are the only amongst the hottest post-AGB stars whose atmospheres are composed of almost pure helium. Thus, their evolution deviates from the hydrogen-defiCient post-AGB evolutionary sequence of carbon-dominated stars like e.g. PG 1159 stars. The origin of the O(He) stars is still not explained. They might be either post-early AGB stars or the progeny of R Coronae Borealis stars. We present preliminary results of a non-LTE spectral analysis based on FUSE and HST/COS observations.

  2. A HIFI view on circumstellar H2O in M-type AGB stars: radiative transfer, velocity profiles, and H2O line cooling

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Danilovich, T.; Olofsson, H.; De Beck, E.; Justtanont, K.; Lombaert, R.; Royer, P.

    2016-06-01

    Aims: We aim to constrain the temperature and velocity structures, and H2O abundances in the winds of a sample of M-type asymptotic giant branch (AGB) stars. We further aim to determine the effect of H2O line cooling on the energy balance in the inner circumstellar envelope. Methods: We use two radiative-transfer codes to model molecular emission lines of CO and H2O towards four M-type AGB stars. We focus on spectrally resolved observations of CO and H2O from HIFI aboard the Herschel Space Observatory. The observations are complemented by ground-based CO observations, and spectrally unresolved CO and H2O observations with PACS aboard Herschel. The observed line profiles constrain the velocity structure throughout the circumstellar envelopes (CSEs), while the CO intensities constrain the temperature structure in the CSEs. The H2O observations constrain the o-H2O and p-H2O abundances relative to H2. Finally, the radiative-transfer modelling allows to solve the energy balance in the CSE, in principle including also H2O line cooling. Results: The fits to the line profiles only set moderate constraints on the velocity profile, indicating shallower acceleration profiles in the winds of M-type AGB stars than predicted by dynamical models, while the CO observations effectively constrain the temperature structure. Including H2O line cooling in the energy balance was only possible for the low-mass-loss-rate objects in the sample, and required an ad hoc adjustment of the dust velocity profile in order to counteract extreme cooling in the inner CSE. H2O line cooling was therefore excluded from the models. The constraints set on the temperature profile by the CO lines nevertheless allowed us to derive H2O abundances. The derived H2O abundances confirm previous estimates and are consistent with chemical models. However, the uncertainties in the derived abundances are relatively large, in particular for p-H2O, and consequently the derived o/p-H2O ratios are not well constrained.

  3. Dust and metallicity in carbon stars

    NASA Astrophysics Data System (ADS)

    Sloan, Gregory C.; Groenewegen, Martin; Srinivasan, Sundar; Lagadec, Eric; Kraemer, Kathleen E.; McDonald, Iain; Boyer, Martha L.; Zijlstra, Albert; Kemper, Ciska

    2015-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope observed over 200 carbon stars in nearby metal-poor dwarf galaxies. These spectra probe how the quantity and composition of dust produced by carbon stars depend on initial metallicity, initial mass, and pulsational properties. For stars to produce significant quantities of dust, they must be pulsating in the fundamental mode with strong amplitudes. The spectra confirm that carbon stars with longer pulsation periods produce more dust and that the amount of dust shows no strong dependence on metallicity. This sample includes more carbon stars with low mass and reveals that for a given pulsation period, higher-mass stars produce less dust. Evidence is building for the layering of dust grains, with SiC cores in grains produced by metal-rich carbon stars, and mantles of MgS around grains in all embedded stars.

  4. [O/Fe] ESTIMATES FOR CARBON-ENHANCED METAL-POOR STARS FROM NEAR-INFRARED SPECTROSCOPY

    SciTech Connect

    Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Sivarani, Thirupathi; Placco, Vinicius M.; Rossi, Silvia; Christlieb, Norbert; Herwig, Falk; Plez, Bertrand E-mail: beers@pa.msu.edu E-mail: sivarani@iiap.res.in E-mail: rossi@astro.iag.usp.br E-mail: fherwig@uvic.ca

    2011-03-15

    We report on oxygen abundances determined from medium-resolution near-infrared spectroscopy for a sample of 57 carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/ESO Survey. The majority of our program stars exhibit oxygen-to-iron ratios in the range +0.5< [O/Fe]<+2.0. The [O/Fe] values for this sample are statistically compared to available high-resolution estimates for known CEMP stars as well as to high-resolution estimates for a set of carbon-normal metal-poor stars. Carbon, nitrogen, and oxygen abundance patterns for a sub-sample of these stars are compared to yield predictions for very metal-poor asymptotic giant branch (AGB) abundances in the recent literature. We find that the majority of our sample exhibit patterns that are consistent with previously studied CEMP stars having s-process-element enhancements and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion.

  5. Chemical analysis of carbon stars in the Local Group. II. The Carina dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Abia, C.; de Laverny, P.; Wahlin, R.

    2008-04-01

    Aims:We present new results of our ongoing chemical study of carbon stars in Local Group galaxies to test the critical dependence of s-process nucleosynthesis on the stellar metallicity. Methods: We collected optical spectra with the VLT/UVES instrument of two carbon stars found in the Carina Dwarf Spheroidal (dSph) galaxy, namely ALW-C6 and ALW-C7. We performed a full chemical analysis using the new generation of hydrostatic, spherically symmetric carbon-rich model atmospheres and the spectral synthesis method in LTE. Results: The luminosities, atmosphere parameters and chemical composition of ALW-C6 and ALW-C7 are compatible with these stars being in the TP-AGB phase undergoing third dredge-up episodes, although their extrinsic nature (external pollution in a binary stellar system) cannot be definitively excluded. Our chemical analysis shows that the metallicity of both stars agree with the average metallicity ([Fe/H] -1.8 dex) previously derived for this satellite galaxy from the analysis of both low resolution spectra of RGB stars and the observed colour magnitude diagrams. ALW-C6 and ALW-C7 present strong s-element enhancements, [ s/Fe] = +1.6, +1.5, respectively. These enhancements and the derived s-process indexes [ ls/Fe] , [ hs/Fe] and [ hs/ls] are compatible with theoretical s-process nucleosynthesis predictions in low mass AGB stars ( 1.5 M_⊙) on the basis that the 13C(α,n)16O is the main source of neutrons. Furthermore, the analysis of C2 and CN bands reveals a large carbon enhancement (C/O 7 and 5, respectively), much larger than the values typically found in galactic AGB carbon stars (C/O 1{-}2). This is also in agreement with the theoretical prediction that AGB carbon stars are formed more easily through third dredge-up episodes as the initial stellar metallicity drops. However, theoretical low-mass AGB models apparently fail to simultaneously fit the observed s-element and carbon enhancements. On the other hand, Zr is found to be less enhanced in

  6. First Detection of Ultraviolet Emission from a Detached Dust Shell: Galaxy Evolution Explorer Observations of the Carbon Asymptotic Giant Branch Star U Hya

    NASA Astrophysics Data System (ADS)

    Sanchez, Enmanuel; Montez, Rodolfo, Jr.; Ramstedt, Sofia; Stassun, Keivan G.

    2015-01-01

    We present the discovery of an extended ring of ultraviolet (UV) emission surrounding the asymptotic giant branch (AGB) star U Hya in archival observations performed by the Galaxy Evolution Explorer. This is the third discovery of extended UV emission from a carbon AGB star and the first from an AGB star with a detached shell. From imaging and photometric analysis of the FUV and NUV images, we determined that the UV ring has a radius of ~110'', thus indicating that the emitting material is likely associated with the detached shell seen in the infrared. We find that scattering of the central point source of NUV and FUV emission by the dust shell is negligible. Moreover, we find that scattering of the interstellar radiation field by the dust shell can contribute at most ~10% of the FUV flux. Morphological and photometric evidence suggests that shocks caused by the star's motion through space and, possibly, shock-excited H2 molecules are the most likely origins of the UV flux. In contrast to previous examples of extended UV emission from AGB stars, the extended UV emission from U Hya does not show a bow-shock-like structure, which is consistent with a lower space velocity and lower interstellar medium density. This suggests the detached dust shell is the source of the UV-emitting material and can be used to better understand the formation of detached shells.

  7. FIRST DETECTION OF ULTRAVIOLET EMISSION FROM A DETACHED DUST SHELL: GALAXY EVOLUTION EXPLORER OBSERVATIONS OF THE CARBON ASYMPTOTIC GIANT BRANCH STAR U Hya

    SciTech Connect

    Sanchez, Enmanuel; Montez, Rodolfo Jr.; Stassun, Keivan G.; Ramstedt, Sofia

    2015-01-10

    We present the discovery of an extended ring of ultraviolet (UV) emission surrounding the asymptotic giant branch (AGB) star U Hya in archival observations performed by the Galaxy Evolution Explorer. This is the third discovery of extended UV emission from a carbon AGB star and the first from an AGB star with a detached shell. From imaging and photometric analysis of the FUV and NUV images, we determined that the UV ring has a radius of ∼110'', thus indicating that the emitting material is likely associated with the detached shell seen in the infrared. We find that scattering of the central point source of NUV and FUV emission by the dust shell is negligible. Moreover, we find that scattering of the interstellar radiation field by the dust shell can contribute at most ∼10% of the FUV flux. Morphological and photometric evidence suggests that shocks caused by the star's motion through space and, possibly, shock-excited H{sub 2} molecules are the most likely origins of the UV flux. In contrast to previous examples of extended UV emission from AGB stars, the extended UV emission from U Hya does not show a bow-shock-like structure, which is consistent with a lower space velocity and lower interstellar medium density. This suggests the detached dust shell is the source of the UV-emitting material and can be used to better understand the formation of detached shells.

  8. Searches for Ring Organics in Carbon-Rich Evolved Stars and Hot Molecular Cores

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Huang, H.-C.; Charnley, S. B.; Butner, H. M.; Lee, Y.-Y.; Despois, D.; Botta, O.; Kisiel, Z.; Ehrenfreund, P.; Markwick, A. J.

    It has been proposed that polycyclic aromatic hydrocarbons (PAHs) are ubiquitously distributed in the interstellar medium. PAHs are also known widespread in meteorites. AGBs and post-AGBs are copious producers of carbonaceous dust particles. Interstellar PAHs, and those found in meteorites, probably originated in the cool circumstellar envelopes (CSEs) of carbon stars. Current astrochemical theories of PAH formation around C-rich red giant stars are based on acetylene (C_2H_2) polymerization. Nitrogen-heterocycles are known to be present in meteoritic material, and there is growing evidence that N-heterocycles could be an important component of the interstellar PAH population. In particular, as hydrogen cyanide (HCN) is abundant in CSEs of C-stars, an HCN addition in the sequence that leads to benzene (C_6H_6) can instead lead to Pyridine (c-C_5H_5N). Substitution of nitrogen atoms for two carbon atoms in a benzene ring yields Pyrimidine c-C_4H_4N_2. Acetylene polymerization of Pyridine, or HCN addition to the phenyl radical (C_6H_5), can likewise lead to Quinoline and Isoquinoline, C_9H_7N. We have thus conducted an extensive astronomical search for N-bearing interstellar rings Quinoline, Isoquinoline and Pyridine toward carbon-rich CSEs, and Pyrimidine in hot molecular cores. In this report, we will briefly summarize the status of our searches.

  9. Uncertainties on near-core mixing in red-clump stars: effects on the period spacing and on the luminosity of the AGB bump

    NASA Astrophysics Data System (ADS)

    Bossini, Diego; Miglio, Andrea; Salaris, Maurizio; Pietrinferni, Adriano; Montalbán, Josefina; Bressan, Alessandro; Noels, Arlette; Cassisi, Santi; Girardi, Léo; Marigo, Paola

    2015-11-01

    Low-mass stars in the He-core-burning (HeCB) phase play a major role in stellar, galactic, and extragalactic astrophysics. The ability to predict accurately the properties of these stars, however, depends on our understanding of convection, which remains one of the key open questions in stellar modelling. We argue that the combination of the luminosity of the AGB bump (AGBb) and the period spacing of gravity modes (ΔΠ1) during the HeCB phase provides us with a decisive test to discriminate between competing models of these stars. We use the Modules for Experiments in Stellar Astrophysics (MESA), a Bag of Stellar Tracks and Isochrones (BaSTI), and PAdova & TRieste Stellar Evolution Code (PARSEC) stellar evolution codes to model a typical giant star observed by Kepler. We explore how various near-core-mixing scenarios affect the predictions of the above-mentioned constraints, and we find that ΔΠ1 depends strongly on the prescription adopted. Moreover we show that the detailed behaviour of ΔΠ1 shows the signature of sharp variations in the Brunt-Väisälä frequency, which could potentially give additional information about near-core features. We find evidence for the AGBb among Kepler targets, and a first comparison with observations shows that, even if standard models are able to reproduce the luminosity distribution, no standard model can account for satisfactorily the period spacing of HeCB stars. Our analysis allows us to outline a candidate model to describe simultaneously the two observed distributions: a model with a moderate overshooting region characterized by an adiabatic thermal stratification. This prescription will be tested in the future on cluster stars, to limit possible observational biases.

  10. Clumpy dust clouds and extended atmosphere of the AGB star W Hydrae revealed with VLT/SPHERE-ZIMPOL and VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Weigelt, G.; Hofmann, K.-H.

    2016-05-01

    Context. Dust formation is thought to play an important role in the mass loss from stars at the asymptotic giant branch (AGB); however, where and how dust forms is still open to debate. Aims: We present visible polarimetric imaging observations of the well-studied AGB star W Hya taken with VLT/SPHERE-ZIMPOL as well as high spectral resolution long-baseline interferometric observations taken with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). Our goal is to spatially resolve the dust and molecule formation region within a few stellar radii. Methods: We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Hα line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 μm with a spectral resolution of 12000. Results: Taking advantage of the polarimetric imaging capability of SPHERE-ZIMPOL combined with the superb adaptive optics performance, we succeeded in spatially resolving three clumpy dust clouds located at ~50 mas (~2 R⋆) from the central star, revealing dust formation very close to the star. The AMBER data in the individual CO lines suggest a molecular outer atmosphere extending to ~3 R⋆. Furthermore, the SPHERE-ZIMPOL image taken over the Hα line shows emission with a radius of up to ~160 mas (~7 R⋆). We found that dust, molecular gas, and Hα-emitting hot gas coexist within 2-3 R⋆. Our modeling suggests that the observed polarized intensity maps can reasonably be explained by large (0.4-0.5 μm) grains of Al2O3, Mg2SiO4, or MgSiO3 in an optically thin shell (τ550nm = 0.1 ± 0.02) with an inner and outer boundary radius of 1.9-2.0 R⋆ and 3 ± 0.5R⋆, respectively. The observed clumpy structure can be reproduced by a density enhancement of a factor of 4 ± 1. Conclusions: The grain size derived from our modeling of the SPHERE-ZIMPOL polarimetric images is consistent with

  11. The transition from carbon dust to silicate production in low-metallicity asymptotic giant branch and super-asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Ventura, P.; di Criscienzo, M.; Schneider, R.; Carini, R.; Valiante, R.; D'Antona, F.; Gallerani, S.; Maiolino, R.; Tornambé, A.

    2012-02-01

    We compute the mass and composition of dust produced by stars with masses in the range ? and with a metallicity of Z= 0.001 during their asymptotic giant branch (AGB) and super-AGB phases. Stellar evolution is followed from the pre-main-sequence phase using the code ATON which provides, at each time-step, the thermodynamics and the chemical structure of the wind. We use a simple model to describe the growth of the dust grains under the hypothesis of a time-independent, spherically symmetric stellar wind. Although part of the modelling which describes the stellar outflow is not completely realistic, this approach allows a straight comparison with results based on similar assumptions present in the literature, and thus can be used as an indication of the uncertainties affecting the theoretical investigations focused on the dust formation process in the surroundings of AGB stars. We find that the total mass of dust injected by AGB stars in the interstellar medium does not increase monotonically with stellar mass and ranges between a minimum of ? for the 1.5-? stellar model up to ?, for the 6-? case. Dust composition depends on the stellar mass: low-mass stars (?) produce carbon-rich dust, whereas more massive stars, experiencing Hot Bottom Burning, never reach the C-star stage, and produce silicates and iron. This is in partial disagreement with previous investigations in the literature, which are based on synthetic AGB models and predict that, when the initial metallicity is Z= 0.001, carbon-rich dust is formed at all stellar masses. The differences are due to the different modelling of turbulent convection in the super-adiabaticity regime. Also in this case, like for other physical features of the AGB, the treatment of super-adiabatic convection shows up as the most relevant issue affecting the dust formation process. We also investigate super-AGB stars with masses in the range ? that evolve over an ONe core. Due to a favourable combination of mass-loss and Hot

  12. The composition of freshly-formed dust in recent (post-)AGB thermal pulses

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak

    2013-01-01

    We recently discovered a candidate Asymptotic Giant Branch (AGB) star undergoing a thermal pulse (TP). WISE J1810--3305 is one of only two sources in the WISE sky survey which show very red WISE colors but a very blue 2MASS [K] vs. WISE [W1 (3.4 mu m)] color, and drastic brightening at 12 mu m since IRAS observation. This favours a scenario in which we have caught a massive dust ejection event during a TP that began only ~15 years ago. The other source is Sakurai's object, which also underwent a massive dust expulsion around the same time, but is in a later evolutionary (post-AGB) phase. Few firm constraints exist on the TP stage because of its brevity. These objects provide a unique opportunity for understanding TP evolution and dust production in real-time. Here we propose COMICS spectroscopy of WISE J1810--3305 in order to study the composition of the circumstellar dust. We will search for molecular bands, and identify whether the central object is an Oxygen or Carbon rich AGB star. We also propose identical spectroscopy of Sakurai's object in order to compare AGB with post-AGB evolution. These objects are presently brightest in the mid-IR, and COMICS is the only ground-based mid-IR camera with the requisite capability for observation.

  13. Do C/O > 1 main-sequence stars build carbon planets?

    NASA Astrophysics Data System (ADS)

    Bergfors, Carolina; Farihi, Jay

    2015-12-01

    The existence of rocky yet carbon-dominated planets is predicated on a C-dominated (rather than O-dominated) nebular birthplace. Planet-forming stars with unusually high C/O > 0.8 could provide such a favourable environment. Therefore the highest C/O ratios in potential host stars is of interest, as it has a direct impact on the frequency of C-dominated planetary systems.Interestingly, C/O > 1 main-sequence stars are relatively common, and have distinctive optical spectra dominated by strong molecular carbon features. These dwarf carbon (dC) stars are even more numerous than carbon giants, but their origins may be fundamentally tied to binarity -- where the C/O ratio is increased by C-rich material accreted from an AGB star (now a white dwarf). We are undertaking a survey of dC stars to measure their binary fraction, and to ascertain if any C/O > 1 stars are single and thus favourable to C-rich planet formation.We present first results from our ongoing search for radial velocity companions to dC stars. Multi-epoch observations of 22 systems show clear RV variability for > 70% of targets, suggesting that most, if not all, dC stars are in binary systems. The presence of a formerly more massive companion suggests their C/O > 1 is an enhancement via mass transfer, and not primordial. If correct, C/O > 1 stars may host oxygen-dominated (possibly circumbinary) planets, significantly reducing the Galactic real estate available for carbon planets.

  14. Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Nordström, B.; Hansen, T. T.; Kennedy, C. R.; Placco, V. M.; Beers, T. C.; Andersen, J.; Cescutti, G.; Chiappini, C.

    2016-04-01

    Context. An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] =-2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). Abundance determinations of CNO offer clues to their formation sites. Aims: Our aim is to use the medium-resolution spectrograph X-Shooter/VLT to determine stellar parameters and abundances for C, N, Sr, and Ba in several classes of CEMP stars in order to further classify and constrain the astrophysical formation sites of these stars. Methods: Atmospheric parameters for our programme stars were estimated from a combination of V-K photometry, model isochrone fits, and estimates from a modified version of the SDSS/SEGUE spectroscopic pipeline. We then used X-Shooter spectra in conjunction with the 1D local thermodynamic equilibrium spectrum synthesis code MOOG, 1D ATLAS9 atmosphere models to derive stellar abundances, and, where possible, isotopic 12C/13C ratios. Results: Abundances (or limits) of C, N, Sr, and Ba are derived for a sample of 27 faint metal-poor stars for which the X-Shooter spectra have sufficient signal-to-noise ratios (S/N). These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP subclasses (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and 3 are CEMP-no, while the remaining 7 are carbon-normal. For four CEMP stars, the subclassification remains uncertain, and two of them may be pulsating AGB stars. Conclusions: The derived stellar abundances trace the formation

  15. Studies of Extreme Carbon Stars. 2; Periods From Optical Spectral Characteristics

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Hitchon, Keith; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Rocket and satellite IR sky surveys have revealed vast populations of extreme AGB stars with substantial circumstellar dust shells. It is normally assumed that these shells permit essentially no light to escape. However, using the Lick 3 meter reflector we have been able to secure and analyze a large number of spectra of a well-defined sample of these extreme evolved stars. From this archive we have determined that these objects are all long period Mira variables and have estimated their periods, correlated these with IR photometric variations, and deduced distances to the stars. The data reveal a population of disk carbon-giants, typically of 1-2 yr periods, mostly within 2 kpc of the sun. We have also been able to quantify the thickness of their dust shells.

  16. Dust Production and Mass Loss in Cool Evolved Stars

    NASA Technical Reports Server (NTRS)

    Boyer, M. L.

    2013-01-01

    Following the red giant branch phase and the subsequent core He-burning phase, the low- to intermediate-mass stars (0.8AGB). Pulsations levitate material from the stellar surface and provide density enhancements and shocks, which can encourage dust formation and re-processing. The dust composition depends on the atmospheric chemistry (abundance of carbon relative to oxygen), which is altered by dredging up newly formed carbon to the surface of the star. I will briefly review the current status of models that include AGB mass loss and relate them to recent observations of AGB stars from the Surveying the Agents of Galaxy Evolution (SAGE) Spitzer surveys of the Small and Large Magellanic Clouds, including measures of the total dust input to the interstellar medium from AGB stars.

  17. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-04-01

    Context. Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Aims: Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Methods: We have systematically monitored the radial velocities of a sample of 22 CEMP-s stars for several years with ~monthly, high-resolution, low S/N échelle spectra obtained at the Nordic Optical Telescope (NOT) at La Palma, Spain. From these spectra, radial velocities with an accuracy of ≈100 m s-1 were determined by cross-correlation with optimised templates. Results: Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82 ± 10%, while four stars appear to be single (18 ± 10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for eleven of the binaries and provisional orbits for six long-period systems (P > 3000 days), and orbital circularisation timescales are discussed. Conclusions: The conventional scenario of local mass transfer from a former asymptotic giant branch (AGB) binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their

  18. Luminosity and carbon enhancement in N-type carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1978-01-01

    Recent observational data indicate the likelihood of a relation between luminosity and carbon enhancement in N-type irregularly variable carbon stars in the sense that the more luminous carbon stars appear to have smaller enhancements of carbon. No relation appears between carbon enhancement and red colors. The observational data are the luminosities of Peery (1975), the colors and CN band indices of Baumert (1972), the CO indices of Fay and Ridgway (1976), and the C2 indices of Gow (1977).

  19. The Chemistry of Extragalactic Carbon Stars

    NASA Technical Reports Server (NTRS)

    Woods, Paul; Walsh, C.; Cordiner, M. A.; Kemper, F.

    2013-01-01

    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations.

  20. Grain formation around carbon stars. 1: Stationary outflow models

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1995-01-01

    Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in

  1. OT1_dneufeld_2: The puzzle of water vapour in carbon-rich stars

    NASA Astrophysics Data System (ADS)

    Neufeld, D.

    2010-07-01

    Using the HIFI instrument, we will address the puzzling - but widespread - appearance of water vapour in carbon-rich stars. Following up on detections of water in ALL SIX carbon-rich AGB stars observed to date in a pilot study performed in the HIFISTARS Key Program, we will target additional water transitions in four stars already observed or expected to show the most luminous water emissions. The target stars are CIT6, IRAC 15194-5155, V Cygni, and S Cep, and the additional transitions are the 4(22)-3(31) and 3(12) - 2(21) transitions at 916 GHz and 1153 GHz. Combined with spectra already obtained for the low-lying water transitions, and interpreted in the context of water excitation models, the proposed observations will place strong constraints upon the location of the emitting water. We will therefore be able to distinguish between various hypotheses that have been proposed for the origin of the observed water: the vaporization of orbiting comets or dwarf planets; catalytic formation on dust grains; or chemical processes initiated by the photodissociation of CO. In addition, we will carry out deep integrations to observe the lowest 1(11) - 0(00) transition of para-water at 1113 GHz in two carbon-rich AGB stars: IRAS+40540 and V Hya; here, ortho-water has been securely detected but existing observations of the 1113 GHz para-water line yield weak detections that lack the signal-to-noise ratio needed to constrain the ortho-to-para ratio.

  2. Are All Dwarf Carbon Stars Binary?

    NASA Astrophysics Data System (ADS)

    Farihi, Jay; Harris, Hugh; Subasavage, John; Bergfors, Carolina; Green, Paul; Gansicke, Boris

    2014-08-01

    The origin of dwarf carbon stars is a persistent astrophysical curiosity dating back to 1977. Only giant stars dredge up interior carbon, and hence the discovery of an unevolved dwarf star with C/O >1 was a big surprise. Astronomers are no closer to understanding these rare and spectrally peculiar stars 37 years later(!). The bulk of dwarf carbon stars show no sign of an evolved companion necessary to account for their externally polluted atmospheres. These stars are sensitive tracers of Galactic chemical evolution and star formation, and provide strong constraints on the potential for carbon-dominated (single star) planetary systems. We propose to conclusively validate or refute the hypothetical binary nature of dwarf carbon stars, and hence their chemical and physical formation channel(s). For all binaries, we will initially constrain and eventually measure orbital periods. By determining their physical separation during the previous epoch of mass transfer, we will distinguish between the Roche lobe overflow and wind capture models for the creation of carbon dwarfs.

  3. Carbon Stars from LAMOST DR2 Data

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Cui, Wenyuan; Liu, Chao; Luo, Ali; Zhao, Gang; Zhang, Bo

    2016-09-01

    In this work, we present the new catalog of carbon stars from the LAMOST DR2 catalog. In total, 894 carbon stars are identified from multiple line indices measured from the stellar spectra. We are able to identify the carbon stars by combining the CN bands in the red end with C2 and other lines. Moreover, we also classify the carbon stars into spectral sub-types of C–H, C–R, and C–N. These sub-types show distinct features in the multi-dimensional line indices, implying that in the future they can be used to identify carbon stars from larger spectroscopic data sets. While the C–N stars are clearly separated from the others in the line index space, we find no clear separation between the C–R and C–H sub-types. The C–R and C–H stars seem to smoothly transition from one to another. This may hint that the C–R and C–H stars may not be different in their origins, instead their spectra look different because of different metallicities. Due to the relatively low spectral resolution and lower signal-to-noise ratio, the ratio of 12C/13C is not measured and thus the C–J stars are not identified.

  4. A cost effective and operational methodology for wall to wall Above Ground Biomass (AGB) and carbon stocks estimation and mapping: Nepal REDD+

    NASA Astrophysics Data System (ADS)

    Gilani, H., Sr.; Ganguly, S.; Zhang, G.; Koju, U. A.; Murthy, M. S. R.; Nemani, R. R.; Manandhar, U.; Thapa, G. J.

    2015-12-01

    Nepal is a landlocked country with 39% forest cover of the total land area (147,181 km2). Under the Forest Carbon Partnership Facility (FCPF) and implemented by the World Bank (WB), Nepal chosen as one of four countries best suitable for results-based payment system for Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) scheme. At the national level Landsat based, from 1990 to 2000 the forest area has declined by 2%, i.e. by 1467 km2, whereas from 2000 to 2010 it has declined only by 0.12% i.e. 176 km2. A cost effective monitoring and evaluation system for REDD+ requires a balanced approach of remote sensing and ground measurements. This paper provides, for Nepal a cost effective and operational 30 m Above Ground Biomass (AGB) estimation and mapping methodology using freely available satellite data integrated with field inventory. Leaf Area Index (LAI) generated based on propose methodology by Ganguly et al. (2012) using Landsat-8 the OLI cloud free images. To generate tree canopy height map, a density scatter graph between the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) estimated maximum height and Landsat LAI nearest to the center coordinates of the GLAS shots show a moderate but significant exponential correlation (31.211*LAI0.4593, R2= 0.33, RMSE=13.25 m). From the field well distributed circular (750m2 and 500m2), 1124 field plots (0.001% representation of forest cover) measured which were used for estimation AGB (ton/ha) using Sharma et al. (1990) proposed equations for all tree species of Nepal. A satisfactory linear relationship (AGB = 8.7018*Hmax-101.24, R2=0.67, RMSE=7.2 ton/ha) achieved between maximum canopy height (Hmax) and AGB (ton/ha). This cost effective and operational methodology is replicable, over 5-10 years with minimum ground samples through integration of satellite images. Developed AGB used to produce optimum fuel wood scenarios using population and road

  5. Radiative levitation in carbon-enhanced metal-poor stars with s-process enrichment

    NASA Astrophysics Data System (ADS)

    Matrozis, E.; Stancliffe, R. J.

    2016-07-01

    A significant fraction of all metal-poor stars are carbon-rich. Most of these carbon-enhanced metal-poor (CEMP) stars also show enhancement in elements produced mainly by the s-process (CEMP-s stars), and evidence suggests that the origin of these non-standard abundances can be traced to mass transfer from a binary asymptotic giant branch (AGB) companion. Thus, observations of CEMP-s stars are commonly used to infer the nucleosynthesis output of low-metallicity AGB stars. A crucial step in this exercise is understanding what happens to the accreted material after mass transfer ceases. Here we present models of the post-mass-transfer evolution of CEMP-s stars considering the physics of thermohaline mixing and atomic diffusion, including radiative levitation. We find that stars with typical CEMP-s star masses, M ≈ 0.85 M⊙, have very shallow convective envelopes (Menv ≲ 10-7 M⊙). Hence, the surface abundance variations arising from the competition between gravitational settling and radiative levitation should be orders of magnitude larger than observed (e.g. [C/Fe] < -1 or [C/Fe] > +4). Lower-mass stars (M ≈ 0.80 M⊙) retain thicker convective envelopes and thus show variations more in line with observations, but are generally too unevolved (log g > 4) when they reach the age of the Universe. We are therefore unable to reproduce the spread in the observed abundances with these models and conclude that some other physical process must largely suppress atomic diffusion in the outer layers of CEMP-s stars. We demonstrate that this could be achieved by some additional (turbulent) mixing process operating at the base of the convective envelope, as found by other authors. Alternatively, mass-loss rates around 10-13 M⊙yr-1 could also negate most of the abundance variations by eroding the surface layers and forcing the base of the convective envelope to move inwards in mass. Since atomic diffusion cannot have a substantial effect on the surface abundances of CEMP

  6. First detection of surface magnetic fields in post-AGB stars: the cases of U Monocerotis and R Scuti

    NASA Astrophysics Data System (ADS)

    Sabin, L.; Wade, G. A.; Lèbre, A.

    2015-01-01

    While several observational investigations have revealed the presence of magnetic fields in the circumstellar envelopes, jets and outflows of post-asymptotic giant branch stars (PAGBs) and planetary nebulae, none has clearly demonstrated their presence at the stellar surface. The lack of information on the strength of the surface magnetic fields prevents us from performing any thorough assessment of their dynamic capability (i.e. material mixing, envelope shaping, etc). We present new high-resolution spectropolarimetric (Stokes V) observations of a sample of PAGB stars, realized with the instruments ESPaDOnS and Narval, where we searched for the presence of photospheric magnetic fields. Out of the seven targets investigated, the RV Tauri stars U Mon and R Sct display a clear Zeeman signature and return a definite detection after performing a least squares deconvolution analysis. The remaining five PAGBs show no significant detection. We derived longitudinal magnetic fields of 10.2 ± 1.7 G for U Mon and 0.6 ± 0.6 G for R Sct. In both cases, the Stokes profiles point towards an interaction of the magnetic field with the atmosphere dynamics. This first discovery of weak magnetic fields (e.g. ˜10 G level) at the stellar surface of PAGB stars opens the door to a better understanding of magnetism in evolved stars.

  7. Approaching a Physical Calibration of the AGB Phase

    NASA Astrophysics Data System (ADS)

    Marigo, Paola

    2015-08-01

    The widespread impact of Asymptotic Giant Branch (AGB) stars on the observed properties of galaxies is universally accepted. Despite their importance, severe uncertainties plague AGB models and propagate through to current population synthesis studies of galaxies, undermining the interpretation of a galaxy's basic properties (mass, age, chemical evolution, dust budget). The only reliable path forward is to apply a physically-sound calibration of AGB stellar models in which all main physical processes and their interplay are taken into account (e.g., mixing, mass loss, nucleosynthesis, pulsation, molecular chemistry, dust formation). In this context, I will review recent and ongoing efforts to calibrate the evolution of AGB stars, which combine an all-round theoretical approach anchored by stellar physics with exceptionally high quality data of resolved AGB stars in the Milky Way and nearby galaxies.

  8. The dusty AGB star RS CrB: first mid-infrared interferometric observations with the Keck telescopes

    NASA Technical Reports Server (NTRS)

    Mennesson, B.; Koresko, C.; Creech-Eakman, M. J.; Serabyn, E.; Colavita, M. M; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Crawford, S.; Dahl, W.; Fanson, J.; Felizardo, C.; Garcia, J.; Gathright, J.; Herstein, J.; Hovland, E.; Hrynevych, M.; Johansson, E.; Le Mignant, D.; Ligon, R.; Millan-Gabet, R.; Moore, J.; Neyman, C.; Palmer, D.

    2005-01-01

    We report interferometric observations of the semiregular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long-baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner.

  9. Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P. R.

    2015-11-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of extra-galactic post-asymptotic giant branch (post-AGB) stars. The aim of our programme is to derive chemical abundances of stars covering a large range in luminosity and metallicity with the ultimate goal of testing, constraining, and improving our knowledge of the poorly understood AGB phase, especially the third dredge-up mixing processes and associated s-process nucleosynthesis. Aims: Post-AGB photospheres are dominated by atomic lines and indicate the effects of internal chemical enrichment processes over the entire stellar lifetime. In this paper, we study two carefully selected post-AGB stars: J051213.81-693537.1 and J051848.86-700246.9 in the Large Magellanic Cloud (LMC). Both objects show signs of s-process enhancement. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances (and hence luminosities and initial masses) make these objects ideal probes of the AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods: We use high-resolution optical UVES spectra to determine accurate stellar parameters and subsequently perform detailed elemental abundance studies of post-AGB stars. Additionally, we use available photometric data covering optical and IR bands to construct spectral energy distributions for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results: We obtained accurate atmospheric parameters for J051213.81-693537.1 (Teff = 5875 ± 125 K, log g = 1.00 ± 0.25 dex, [Fe/H] = -0.56 ± 0.16 dex) and J051848.86-700246.9 (Teff = 6000 ± 125 K, log g = 0.50 ± 0.25 dex, [Fe/H] = -1.06 ± 0.17 dex). Both stars show extreme s-process enrichment associated with relatively low C/O ratios of 1.26 ± 0.40 and 1.29 ± 0.30 for J051213-693537.1 and J051848

  10. Using JVLA Observations of SiO Masers to Probe the Extended Atmosphere of an AGB Star: W Hydrae

    NASA Astrophysics Data System (ADS)

    Kamieneski, Patrick S.; Matthews, Lynn D.

    2015-01-01

    The Asymptotic Giant Branch star W Hydrae (W Hya) is known to be a strong source of silicon monoxide (SiO) masers in its extended atmosphere. Jansky Very Large Array imaging observations obtained in February 2014 were used to target eleven SiO J=1-0 rotational transitions near 43 GHz. The vibrational ground state (v=0) lines for the 28SiO, 29SiO, and 30SiO isotopologues were successfully detected, as were the v=1,2,3 lines for 28SiO. Non-detections included the v=1,2 transitions for 29SiO and 30SiO, and the v=4 line for 28SiO. We will summarize the relative shape, size, and intensity of the emission regions of the detected transitions. We have discovered spatially extended ground-state 28SiO emission in a region located approximately 300 to 600 milliarcseconds (projected distance of 34 to 69 AU) from the star. We will discuss a saddle-like distribution and a small gradient in the velocity field for the 28SiO v=1 line, which may help to confirm the existence of a bipolar outflow in W Hya. Additionally, our results indicate that the observed transitions have differing spatial distributions. Peak 28SiO v=1,2,3 emission primarily occupies a region 12 - 42 mas (projected distance of 1.4 - 4.8 AU) west of the star, while the 29SiO and 30SiO isotopologues are located in disparate regions around 45 - 70 mas (5.2 - 8.1 AU) to the northwest of the star.This work was sponsored by a grant from the National Science Foundation Research Experience for Undergraduate program to MIT Haystack Observatory.

  11. The complex environment of the bright carbon star TX Piscium as probed by spectro-astrometry

    NASA Astrophysics Data System (ADS)

    Hron, J.; Uttenthaler, S.; Aringer, B.; Klotz, D.; Lebzelter, T.; Paladini, C.; Wiedemann, G.

    2015-12-01

    Context. Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods: We obtained CRIRES observations of several CO Δv = 1 lines near 4.6 μm and HCN lines near 3 μm in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0°) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture. Based on observations made with ESO telescopes at La Silla Paranal Observatory under programme IDs 386.D-0091 and 091.D-0094.Appendix A is available in electronic form at http://www.aanda.org

  12. The Chemical Abundances of Stars in the Halo (CASH) Project. III. A New Classification Scheme for Carbon-enhanced Metal-poor Stars with s-process Element Enhancement

    NASA Astrophysics Data System (ADS)

    Hollek, Julie K.; Frebel, Anna; Placco, Vinicius M.; Karakas, Amanda I.; Shetrone, Matthew; Sneden, Christopher; Christlieb, Norbert

    2015-12-01

    We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo Project. Its spectroscopic stellar parameters are Teff = 4863 K, {log}g=1.25,\\ξ = 2.20 km s-1, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has {{[C/Fe]}}=1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as a “CEMP-r/s” star. Based on abundance comparisons with asymptotic giant branch (AGB) star nucleosynthesis models, we suggest a new physically motivated origin and classification scheme for CEMP-s stars and the still poorly understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of thermal pulses the AGB companion underwent, the effect of different AGB star masses on their nucleosynthetic yields, and physics that is not well approximated in 1D stellar models such as proton ingestion episodes and rotation. Based on a set of detailed AGB models, we suggest the abundance signature of HE 0414-0343 to have arisen from a >1.3 M⊙ mass AGB star and a late-time mass transfer that transformed HE 0414-0343 into a CEMP-sC star. We also find that the [Y/Ba] ratio well parametrizes the classification and can thus be used to easily classify any future such stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  13. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  14. Probing the Long-Term Variability of Evolved Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Meixner, Margaret; Vijh, Uma; Hora, Joe; Boyer, Martha; Cook, Kem; Riebel, David; Groenewegen, Martin; Whitelock, Patricia; Ita, Yoshifusa; Feast, Michael; Kemper, Ciska; Marengo, Massimo; Otsuka, Masaaki; Srinivasan, Sundar; Jones, Olivia

    2015-10-01

    Asymptotic giant branch (AGB) variable stars are, together with supernovae, the main sources of enrichment of the interstellar medium (ISM) in processed material, particularly carbon, nitrogen and heavy s-process elements. The dustiest, extreme AGB stars contribute the largest enrichment per star. We propose to measure the first light curves for 23 and 9 of the dustiest, most extreme AGB variable stars in the bar regions of Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), respectively, and we propose to continue our measurements of 28 and 5 extreme AGB variable stars from the LMC and SMC, respectively, from Cycles 9 and 10, using the warm Spitzer mission's IRAC 3.6 and 4.5 micron imaging for monthly imaging measurements. Though we know they are variable based on dual-epoch observations from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) surveys of the LMC and SMC, the periods of these extreme AGB stars have NOT been measured before because they are too faint in the optical and near-infrared to have been captured in the ground based synoptic surveys such as MACHO, OGLE and IRSF. Only Spitzer will be able to measure the light curve of this key phase of the AGB: the dustiest and indeed final stage of the AGB. Without this information, our developing picture of AGB evolution is decidedly incomplete. The observations we propose will test the validity of AGB evolution models, and, thus, their predictions of the return of mass and nucleosynthetic products to the ISM. A value-added component to this study is that we will obtain variability information on other AGB stars that lie within the fields of view of our observations. This proposal follows up on the Cycle 9 proposal pid 90219 and on the Cycle 10 proposal pid 10154.

  15. Stellar Properties of Asymptotic Giant Branch Stars in the Dwarf Irregular Galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Chun, S.-H.; Jung, M. Y.; Kang, M.; Jung, D.; Sohn, Y.-J.

    2015-08-01

    Broadband near-infrared images obtained with the WIRCam array of the Canada-France-Hawaii Telescope are used to investigate the properties of resolved asymptotic giant branch (AGB) stars in the dwarf irregular galaxy IC 1613. Combining our JHKs data with optical photometric data, AGB stars were selected in color-magnitude diagrams covering a wide range of wavelength. We examined the distribution of AGB stars in the (J-Ks, H-Ks) color-color diagram, and distinguished 140 carbon-rich and 306 oxygen-rich M giant AGB stars. The number ratio of C stars to M giants (C/M) was estimated, and the metallicity of IC 1613 was derived using the C/M ratio. We also examined the local C/M ratio as a function of radial distance from the center of the galaxy, and found a small negative gradient.

  16. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  17. Probing the outer atmosphere of carbon stars - C2H2, HCN and C3 features in the SWS range

    NASA Astrophysics Data System (ADS)

    Loidl, R.; Hron, J.; Jorgensen, U. G.; Höfner, S.

    2000-11-01

    We have obtained ISO-SWS spectra of a number of carbon-rich AGB stars in the wavelength range 2.4 - 44 μm with a resolution of about 400. We compare these spectra with results of hydrostatic and dynamic model atmospheres. Of special interest are the features which are formed far out in the atmosphere like the C2H2, HCN and C3 features. For these outer regions of the atmosphere deviations from hydrostatic structures are to be expected.

  18. H2O maser emission in circumstellar envelopes around AGB stars: Physical conditions in gas-dust clouds

    NASA Astrophysics Data System (ADS)

    Nesterenok, A. V.

    2013-10-01

    The pumping of 22.2-GHz H2O masers in the circumstellar envelopes of asymptotic giant branch stars has been simulated numerically. The physical parameters adopted in the calculations correspond to those of the circumstellar envelope around IK Tau. The one-dimensional plane-parallel structure of the gas-dust cloud is considered. The statistical equilibrium equations for the H2O level populations and the thermal balance equations for the gas-dust cloud are solved self-consistently. The calculations take into account 410 rotational levels belonging to the five lowest vibrational levels of H2O. The stellar radiation field is shown to play an important role in the thermal balance of the gas-dust cloud due to the absorption of emission in rotational-vibrational H2O lines. The dependence of the gain in the 22.2-GHz maser line on the gas density and H2O number density in the gas-dust cloud is investigated. Gas densities close to the mean density of the stellar wind, 107-108 cm-3, and a high relative H2O abundance, more than 10-4, have been found to be the most likely physical conditions in maser sources.

  19. The AGB star nucleosynthesis in the light of the recent {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reaction rate determinations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2015-02-24

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reactions. Moreover, the strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of 'presolar' grains to determine their impact on astrophysical environments.

  20. The effect of the recent 17O(p,α)14N and 18O(p,α)15N fusion cross section measurements in the nucleosynthesis of AGB stars

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-01-01

    The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O(p,α)14N and 18O(p,α)15N fusion reactions and to extract the strengths of the resonances that more contribute to the reaction rates at astrophysical energies. Moreover, the strength of the 65 keV resonance in the 17O(p,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. Since, proton-induced fusion reactions on 17O and 18O belong to the CNO cycle network for H-burning in stars, the new estimates of the cross sections have been introduced into calculations of Asymptotic giant branch (AGB) star nucleosynthesis to determine their impact on astrophysical environments. Results of nucleosynthesis calculations have been compared with geochemical analysis of "presolar" grains. These solids form in the cold and dusty envelopes that surround AGB stars and once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of fusion reactions in astrophysical environments.

  1. Carbon Star Survey in the Local Group. V. The Outer Disk of M31

    NASA Astrophysics Data System (ADS)

    Battinelli, Paolo; Demers, Serge; Letarte, Bruno

    2003-03-01

    We employ the CFH12K mosaic to identify carbon stars, using the R, I, CN, and TiO photometric technique, in a 2240 arcmin2 area, ranging from 17 to 30 kpc of the southwest disk of M31, barely reaching the edge of the observed H I disk. We found 945 C stars with =19.94 and σ=0.47. The surface density of C stars along the major axis of M31 follows an exponential profile with a scale length of 4.85+/-0.35 kpc, in agreement with adopted values for the scale length of the disk population. Our survey partially overlaps with the recently discovered G1 density enhancement by Ferguson et al. We confirm that no AGB star excess is detectable in the surveyed part of the clump. The C/M ratio, along the major axis, is derived over a distance range of 7 kpc. The strong C/M gradient seen contrasts with results of previous studies of the C stars in M31.

  2. The creation of AGB fallback shells

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason

    2016-04-01

    The possibility that mass ejected during Asymptotic Giant Branch (AGB) stellar evolution phases falls back towards the star has been suggested in applications ranging from the formation of accretion discs to the powering of late-thermal pulses. In this paper, we seek to explicate the properties of fallback flow trajectories from mass-loss events. We focus on a transient phase of mass ejection with sub-escape speeds, followed by a phase of a typical AGB wind. We solve the problem using both hydrodynamic simulations and a simplified one-dimensional analytic model that matches the simulations. For a given set of initial wind characteristics, we find a critical shell velocity that distinguishes between `shell fallback' and `shell escape'. We discuss the relevance of our results for both single and binary AGB stars. In particular, we discuss how our results help to frame further studies of fallback as a mechanism for forming the substantial population of observed post-AGB stars with dusty discs.

  3. Nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    El Eid, Mounib F.

    2014-05-09

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  4. Studying the Effect of C/O Ratio on Dust around Carbon Star

    NASA Astrophysics Data System (ADS)

    Knoll, Harrison; Speck, A.

    2011-01-01

    In order to study the effect of chemistry on the formation of dust around carbon-rich AGB stars, we have selected a sample of C-rich stars of known C/O ratio. Using radiative transfer (RT) modeling we determine the parameters of the dust shells of 8 carbon stars. In particular we focus on modeling the 11 micron SiC feature, and the overall shape of the spectral energy distribution (SED) while keeping other parameters (i.e. grain size distribution, relative shell thickness and dust density distribution) constant. This is done to ameliorate the problem of degeneracy within model parameters. In order to determine whether the relative abundances of SiC and carbon are related to the C/O ratio, we sought correlations between various physical, stellar and spectral parameters including effective stellar temperature, C/O ratio, modeled SiC abundance, pulsation period etc. We present our RT models and discuss the correlations between parameters or lack thereof.

  5. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model

  6. Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150-3224. Searching for clues to the mysterious evolution of massive AGB stars

    NASA Astrophysics Data System (ADS)

    de Vries, B. L.; Maaskant, K. M.; Min, M.; Lombaert, R.; Waters, L. B. F. M.; Blommaert, J. A. D. L.

    2015-04-01

    Aims: We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150-3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. Methods: We use the best-fit model for IRAS 17150-3224 of Meixner et al. (2002, ApJ, 571, 936) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 μm in radiative transport models to those in ISO-SWS and Herschel/ PACS observations. Results: We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 μm feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three models, the forsterite crystals need to be dominated by a grain size population of 2 μm up to 6 μm. We also tested models where the forsterite is located in a torus region or where it is concentrated in the equatorial plane, in a disk-like fashion. These models show either absorption features that are too strong or a 69 μm band that is too weak, respectively, so we exclude these cases. We observe a blue shoulder on the 69 μm band that cannot be explained by forsterite and we suggest a possible population of micron-sized ortho-enstatite grains. We hypothesise that the large forsterite crystals were formed after the superwind phase of IRAS 17150-3224, where the star developed an as yet unknown hyperwind with an extremely high mass-loss rate (≳10-3M⊙/yr). The high densities of such a hyperwind could be responsible for the efficient grain growth of both amorphous and crystalline dust in the outflow. Several mechanisms are discussed

  7. White dwarf stars with carbon atmospheres.

    PubMed

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch. PMID:18033290

  8. Extended Dust Shell of the Carbon Star U Hya Revealed by AKARI

    NASA Astrophysics Data System (ADS)

    Ueta, T.; Izumiura, H.; Yamamura, I.; Matsunaga, N.; Ita, Y.; Matsuura, M.; Nakada, Y.; Fukushi, H.; Mito, H.; Tanabé, T.; Hashimoto, O.

    2011-09-01

    We have observed the carbon-rich AGB star U Hya in the far-infrared (FIR) at 65, 90, 140, and 160 μm simultaneously, using the slow-scan observing mode of the Far-Infrared Surveyor (FIS) aboard the Japanese infrared astronomical satellite AKARI. Our aim is to probe the mass-loss history of U Hya in the last ˜104 years by investigating the distribution of cold dust in the extended circumstellar envelope using FIR maps at high spatial resolution. The observed hollow shell and model calculations suggest that the shell was formed as a direct consequence of a thermal pulse, two-wind interactions, a termination shock, or some combination of these processes.

  9. A CATALOG OF GALACTIC INFRARED CARBON STARS

    SciTech Connect

    Chen, P. S.

    2012-02-15

    We collected almost all of the Galactic infrared carbon stars (IRCSs) from literature published up to the present to organize a catalog of 974 Galactic IRCSs in this paper. Some of their photometric properties in the near-, mid-, and far-infrared are discussed.

  10. Trace Element Condensation in Circumstellar Envelopes of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Lodders, K.; Fegley, B., Jr.

    1992-07-01

    It is now well established that meteorites contain reduced presolar grains, such as graphite and silicon carbide (SiC), which are probably formed by condensation of dust in the circumstellar envelopes of carbon-rich AGB stars. Here we model condensation in envelopes of carbon stars, with an emphasis on trace elements. Since absolute elemental abundances in stellar atmospheres are generally not known, we assume solar abundances (Anders and Grevesse 1989), except for carbon. A C/O ratio of 2, consistent with the mean and median values of 2.1 and 1.8 respectively, for 61 carbon stars (Gow 1977) was used. The C/O ratio was increased by adding carbon because astrophysicists believe that carbon produced in helium-burning zones may be mixed to the surfaces of C stars (e.g. Lucy 1976). We used physical parameters for the circumstellar shell of the high mass-loss rate, prototypical carbon star IRC +10216 (e.g. Keady et al. 1988, Dominik et al. 1990) and theoretical considerations by Salpeter (1974a,b) to construct a P-T-model of the envelope (see Fig. 1). Thermodynamic equilibrium condensation calculations for a reduced gas include ~600 gaseous and solid compounds of the elements H, C, N, O, S, P, F, Cl, Fe, Mg, Al, Ti, Si, Ca, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and REE. Refractory oxides, sulfides, nitrides, and carbides were considered as condensates. The calculations were done from T = 800 to 2500 K, and P= 10^-5 to 10^-13 bars. The effects of nucleation on condensation temperatures were calculated using the nucleation model discussed by Salpeter (1974a,b) and Cameron and Fegley (1982). The temperature drop required for condensation depends on (P,T, density) in the expanding envelope and also on the abundance, density, and surface energy (Es) of the nucleating compound. The range of E(sub)s values for NaCl-type carbides are about 800-1700 erg/cm^2 (Livey & Murray 1956); however, these data are generally poorly known. Another important variable is the sticking coefficient (s

  11. Pulsational variability in proto-planetary nebulae and other post-AGB objects

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.

    2016-07-01

    Light and velocity curves of several classes of pulsating stars have been successfully modeled to determine physical properties of the stars. In this observational study, we review briefly the pulsational variability of the main classes of post-AGB stars. Our attention is focused in particular on proto-planetary nebulae (PPNe), those in the short-lived phase from AGB stars to the planetary nebulae. New light curves and period analyses have been used to determine the following general properties of the PPNe variability: (a) periods range from 35 to 160 days for those of F—G spectral types, with much shorter periods (< 1 day) found for those of early-B spectral type; (b) there is a correlation between the pulsation period, maximum amplitude, and temperature of the star, with cooler stars pulsating with longer periods and larger amplitudes; (c) similar correlations are found for carbon-rich, oxygen-rich, and lower-metalicity PPNe; and (d) multiple periods are found for all of them, with P2/P1 = 1.0±0.1. New models are needed to exploit these results.

  12. The 11 Micron Emissions of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Goebel, J. H.; Cheeseman, P.; Gerbault, F.

    1995-08-01

    A new classification scheme of the IRAS LRS carbon stars is presented. It comprises the separation of 718 probable carbon stars into 12 distinct self-similar spectral groupings. Continuum temperatures are assigned and range from 470 to 5000 K. Three distinct dust species are identifiable: SiC, α: C-H, and MgS. In addition to the narrow 11+ microns emission feature that is commonly attributed to SiC, a broad 11+ microns emission feature, that is correlated with the 8.5 and 7.7 microns features, is found and attributed to α:C-H. SiC and α:C-H band strengths are found to correlate with the temperature progression among the Classes. We find a spectral sequence of Classes that reflects the carbon star evolutionary sequence of spectral types, or alternatively developmental sequences of grain condensation in carbon-rich circumstellar shells. If decreasing temperature corresponds to increasing evolution, then decreasing temperature corresponds to increasing C/O resulting in increasing amounts of carbon rich dust, namely α: C-H. If decreasing the temperature corresponds to a grain condensation sequence, then heterogeneous, or induced nucleation scenarios are supported. SiC grains precede α: C-H and form the nuclei for the condensation of the latter material. At still lower temperatures, MgS appears to be quite prevalent. No 11.3 microns PAH features are identified in any of the 718 carbon stars. However, one of the coldest objects, IRAS 15048-5702, and a few others, displays an 11.9 microns emission feature characteristic of laboratory samples of coronene. That feature corresponds to the C-H out of plane deformation mode of aromatic hydrocarbon. This band indicates the presence of unsaturated, sp3, hydrocarbon bonds that may subsequently evolve into saturated bonds, sp2, if, and when, the star enters the planetary nebulae phase of stellar evolution. The effusion of hydrogen from the hydrocarbon grain results in the evolution in wavelength of this 11.9 microns emission

  13. The 11 Micron Emissions of Carbon Stars

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Cheeseman, P.; Gerbault, F.

    1995-01-01

    A new classification scheme of the IRAS LRS carbon stars is presented. It comprises the separation of 718 probable carbon stars into 12 distinct self-similar spectral groupings. Continuum temperatures are assigned and range from 470 to 5000 K. Three distinct dust species are identifiable: SiC, alpha:C-H, and MgS. In addition to the narrow 11 + micron emission feature that is commonly attributed to SiC, a broad 11 + micron emission feature, that is correlated with the 8.5 and 7.7 micron features, is found and attributed to alpha:C-H. SiC and alpha:C-H band strengths are found to correlate with the temperature progression among the Classes. We find a spectral sequence of Classes that reflects the carbon star evolutionary sequence of spectral types, or alternatively developmental sequences of grain condensation in carbon-rich circumstellar shells. If decreasing temperature corresponds to increasing evolution, then decreasing temperature corresponds to increasing C/O resulting in increasing amounts of carbon rich dust, namely alpha:C-H. If decreasing the temperature corresponds to a grain condensation sequence, then heterogeneous, or induced nucleation scenarios are supported. SiC grains precede alpha:C-H and form the nuclei for the condensation of the latter material. At still lower temperatures, MgS appears to be quite prevalent. No 11.3 micron PAH features are identified in any of the 718 carbon stars. However, one of the coldest objects, IRAS 15048-5702, and a few others, displays an 11.9 micron emission feature characteristic of laboratory samples of coronene. That feature corresponds to the C-H out of plane deformation mode of aromatic hydrocarbon. This band indicates the presence of unsaturated, sp(sup 3), hydrocarbon bonds that may subsequently evolve into saturated bonds, sp(sup 2), if, and when, the star enters the planetary nebulae phase of stellar evolution. The effusion of hydrogen from the hydrocarbon grain results in the evolution in wavelength of this

  14. The Infrared Spectral Properties of Magellanic Carbon Stars

    NASA Astrophysics Data System (ADS)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Groenewegen, M. A. T.; Wood, P. R.; Zijlstra, A. A.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Srinivasan, S.; van Loon, J. Th.; Volk, K.

    2016-07-01

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C2H2 at 7.5 μm. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  15. Stardust from Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-06-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ≈ 0.008 (0.6 × solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ≈ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  16. Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Stancliffe, R. J.; Izzard, R. G.; Karakas, A. I.; Beers, T. C.; Lee, Y. S.

    2015-09-01

    The stellar population in the Galactic halo is characterised by a large fraction of carbon-enhanced metal-poor (CEMP) stars. Most CEMP stars have enhanced abundances of s-process elements (CEMP-s stars), and some of these are also enriched in r-process elements (CEMP-s/r stars). In one formation scenario proposed for CEMP stars, the observed carbon excess is explained by invoking wind mass transfer in the past from a more massive thermally-pulsing asymptotic giant branch (AGB) primary star in a binary system.In this work we generate synthetic populations of binary stars at metallicity Z = 0.0001 ([Fe/H] ≈ - 2.3), with the aim of reproducing the observed fraction of CEMP stars in the halo. In addition, we aim to constrain our model of the wind mass-transfer process, in particular the wind-accretion efficiency and angular-momentum loss, and investigate under which conditions our model populations reproduce observed distributions of element abundances.We compare the CEMP fractions determined from our synthetic populations and the abundance distributions of many elements with observations. Several physical parameters of the binary stellar population of the halo are uncertain, in particular the initial mass function, the mass-ratio distribution, the orbital-period distribution, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population.The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The resulting fractions are more than a factor of three higher than those determined with default assumptions in previous population-synthesis studies, which typically underestimated the observed CEMP fraction. We find that most CEMP stars in our simulations are formed in binary systems with periods

  17. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    SciTech Connect

    Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A. E-mail: iain.mcdonald-2@manchester.ac.uk; and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will

  18. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Decin, L.; de Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M.

    2010-11-01

    Context. The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. Aims: We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. Methods: The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. Results: We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4 × 10-8 M⊙ yr-1 up to 8 × 10-5 M⊙ yr-1. For red supergiants they reach

  19. Investigations of carbon stars with Baldone Schmidt telescope

    NASA Astrophysics Data System (ADS)

    Eglitis, I.; Kazina, E.

    2012-05-01

    Comparing star positions from the 2MASS catalog to those for all carbon stars from the CGCS, 6620 common objects (96%) have been found. Taking into account the results of research of C stars in the Large Magellanic Cloud, absolute magnitudes of R- and N- type stars, extinctions and distances for the sample stars have been calculated relying on a three-dimensional model of interstellar dust distribution. In a projection on the Galactic plane, the sample covers a region with 30 kpc radius around the Sun and demonstrates a large deficiency of carbon stars in the 50° sector towards the Galactic center and a moderate deficiency in the anticenter direction beyond 5 kpc. The two nearest spiral arms are evident as well as apparent voids at Galactic longitudes 65°, 80°, 260°, 280° beyond 1 kpc caused by dense dust clouds. The distribution of C-star color indices was investigated. A list of potential carbon stars was created. Spectral investigations of potential carbon stars with the Baldone Schmidt telescope equipped with a 4° objective prism was completed for δ>60° and now continues in the 55°<δ<60° zone. Our analysis of low-resolution spectra of 191 carbon stars shows that it is possible to determine effective temperatures of C stars with an accuracy of ± 350 K.

  20. An Exploration of the Dust Spectral Features of the Carbon-Rich Star V Cyg Through Time and Space

    NASA Astrophysics Data System (ADS)

    Reel, Matthew; Speck, A.; Sloan, G. C.; Volk, K.

    2014-01-01

    Carbon-rich AGB stars are surrounded by circumstellar shells of gas and dust. The dust is dominated by carbon (probably graphitic) and silicon carbide (SiC), which is the source of the observed 11μm spectral feature. We investigate the nearby carbon star V Cyg which has been observed numerous times over the past few decades. By analyzing the temporal spectral variations associated with the stellar pulsation cycle we study how the pulsation cycle affects the circumstellar dust. The Infrared spectrum of the star also shows many prominent molecular absorption bands, as well as the “30μm” emission feature which has previously been attributed to magnesium sulfide (MgS). In addition to the temporal data, we have also obtained spatially-resolved spectroscopic data for the dust shell(s) around V Cyg. Combining these various spectral observations with AAVSO data on variations in the visual magnitude we investigate temporal variations in both the 11μm and 30μm spectral features and sought to correlate these temporal variations with the spatial variations in the 11μm feature. Our results indicate many spatial correlations within the 11μm feature parameters, as well as correlations which may suggest a carrier of the 30μm feature other than pure MgS.

  1. Obscured Asymptotic Giant Branch Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    van Loon, J. T.

    The most drastic change in the life of an intermediate mass star occurs when it approaches the tip of the Asymptotic Giant Branch (AGB). Large amplitude pulsation of the stellar photosphere and favourable conditions for dust formation cause these stars to develop heavy mass loss, leading to the star's death. The dusty circumstellar envelope (CSE) obscures the optical light from the star and re-emits at longer wavelengths, making it a very bright infrared (IR) object. The physical mechanism of the mass loss and its temporal behaviour are not understood. AGB stars can be best studied in either of the Magellanic Clouds, as these stars are all at nearly the same, well known distance to us, and suffer relatively little interstellar extinction. The Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) have metallicities a factor ~ 2 and 5 lower than the Milky Way, hence the metallicity dependence of the evolution and mass loss of AGB stars can be studied. A significant number of obscured AGB stars have been found in the Magellanic Clouds only very recently (Loup et al. 1997; Zijlstra et al. 1996; van Loon et al. 1997, 1998a; Groenewegen and Blommaert 1998). I first briefly describe our searches for AGB stars as counterparts of IRAS point sources in the Magellanic Clouds, using near-IR photometers and arrays. IR spectrophotometry and spectroscopy from the ground and from space (IRAS and ISO) are used to classify the stars as oxygen or carbon rich AGB stars. Both oxygen and carbon stars can be found at all luminosities from 6,000 to 40,000 Lo. Luminous carbon stars are the result of a reduced envelope mass due to mass loss, switching off Hot Bottom Burning. Near-IR monitoring has resulted in known periods and amplitudes for the obscured AGB stars in the Large Magellanic Cloud. The period-luminosity diagram of these Long Period Variables (LPVs) indicates the occurrence of thermal pulses. I show that the reddest stars, with the optically thickest CSEs, are not the

  2. Evolution and CNO yields of Z = 10-5 stars and possible effects on carbon-enhanced metal-poor production

    NASA Astrophysics Data System (ADS)

    Gil-Pons, P.; Doherty, C. L.; Lau, H.; Campbell, S. W.; Suda, T.; Guilani, S.; Gutiérrez, J.; Lattanzio, J. C.

    2013-09-01

    Aims: Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate the C, N, and O yields of these stars. Methods: Using the Monash University Stellar Evolution code MONSTAR we computed and analysed the evolution of stars of metallicity Z = 10-5 and masses between 4 and 9 M⊙, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Results: Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up process, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars are able to lose most of their envelopes before their cores reach the Chandrasekhar mass (mCh), so our standard models do not predict the occurrence of SNI1/2 for Z = 10-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M⊙ for our 4 M⊙ model and 1.5 M⊙ for our 9 M⊙ model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Conclusions: Our results have implications for the early chemical evolution of the Universe and might provide another piece for the puzzle of the carbon

  3. SUPER-AGB-AGB EVOLUTION AND THE CHEMICAL INVENTORY IN NGC 2419

    SciTech Connect

    Ventura, Paolo; D'Antona, Francesca; Carini, Roberta; Di Criscienzo, Marcella; D'Ercole, Annibale; Vesperini, Enrico

    2012-12-20

    We follow the scenario of formation of second-generation stars in globular clusters by matter processed by hot bottom burning (HBB) in massive asymptotic giant branch (AGB) stars and super-AGB stars (SAGB). In the cluster NGC 2419 we assume the presence of an extreme population directly formed from the AGB and SAGB ejecta, so we can directly compare the yields for a metallicity Z = 0.0003 with the chemical inventory of the cluster NGC 2419. At such a low metallicity, the HBB temperatures (well above 10{sup 8} K) allow a very advanced nucleosynthesis. Masses {approx}6 M{sub Sun} deplete Mg and synthesize Si, going beyond Al, so this latter element is only moderately enhanced; sodium cannot be enhanced. The models are consistent with the observations, although the predicted Mg depletion is not as strong as in the observed stars. We predict that the oxygen abundance must be depleted by a huge factor (>50) in the Mg-poor stars. The HBB temperatures are close to the region where other p-capture reactions on heavier nuclei become possible. We show that high potassium abundance found in Mg-poor stars can be achieved during HBB by p-captures on the argon nuclei, if the relevant cross section(s) are larger than listed in the literature or if the HBB temperature is higher. Finally, we speculate that some calcium production is occurring owing to proton capture on potassium. We emphasize the importance of a strong effort to measure a larger sample of abundances in this cluster.

  4. The violet and ultraviolet opacity problem for carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, Hollis R.; Luttermoser, Donald G.; Faulkner, Danny R.

    1988-01-01

    The paper considers the longstanding problem of the 'violet opacity' in cool carbon stars by testing, through synthetic spectra, many new and previously suggested opacity sources, based on currently available model atmospheres for carbon stars and M giant stars. While several bound-free edges of neutral metals are important opacity sources, those of Na I at at 2413 A, Mg I at 2514 A, and particularly Ca I at 2940 A are especially significant. Collectively, thousands of atomic lines are important, and the enormous line of Mg I at 2852 A influences the spectrum well into the visible. The pseudocontinuum of C3 and the photoionization continuum of CH both play noticeable but secondary roles. Synthetic spectra form the carbon star models with and without polyatomic molecules fit nicely the collected observations of the well-observed carbon star TX Psc.

  5. The history of chemical enrichment and the sites of early nucleosynthesis: CNO abundances of galactic carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine R.

    This dissertation focuses on abundance analyses of carbon-enhanced metal-poor (CEMP) Galactic halo stars. Different methods for determining carbon, nitrogen, oxygen, and also some barium abundances are described. The study of these abundances in such stars serves to investigate the means by which the Universe became enriched in metals. Due to the different kinds of CEMP stars observed in the Milky Way, it can only be assumed that there is certainly more than one method of carbon-enhancement at early times. Complete abundance analyses for as many of these archaeological relics as possible are needed in order to constrain the astrophysical sites of early carbon production. There are three main parts of this dissertation. The first part describes new techniques to determine oxygen abundances from spectra of the near-infrared molecular CO bands. With the near-IR OSIRIS spectrograph on the SOAR 4.1-m telescope, 57 CEMP stars were observed. A wide range of oxygen abundances were estimated, and the results were statistically compared to high-resolution estimates for both carbon-enhanced and carbon-normal metal-poor stars. Abundance patterns of the sample stars were compared to yield predictions for very metal-poor asymptotic giant branch (AGB) stars. The majority of the sample exhibit patterns consistent with CEMP stars having s-process-element enhancements, and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion. The second part delineates a new survey effort implemented in order to identify new CEMP stars. For the initial pilot study, a new selection technique was developed based solely on the strength of the CH G band at 4300 A. This technique eliminated previous temperature and metallicity biases present in other CEMP surveys. Observations of the pilot sample were carried out with the Goodman HTS spectrograph on the SOAR 4.1-m telescope. Of the over 120 candidate stars observed, over 35% were found to

  6. THE WIDESPREAD OCCURRENCE OF WATER VAPOR IN THE CIRCUMSTELLAR ENVELOPES OF CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS: FIRST RESULTS FROM A SURVEY WITH HERSCHEL /HIFI

    SciTech Connect

    Neufeld, D. A.; Gonzalez-Alfonso, E.; Melnick, G.; Szczerba, R.; Schmidt, M.; Decin, L.; Alcolea, J.; De Koter, A.; Dominik, C.; Waters, L. B. F. M.; Schoeier, F. L.; Justtanont, K.; Olofsson, H.; Bujarrabal, V.; Planesas, P.; Cernicharo, J.; Teyssier, D.; Marston, A. P.; Menten, K.

    2011-02-01

    We report the preliminary results of a survey for water vapor in a sample of eight C stars with large mid-IR continuum fluxes: V384 Per, CIT 6, V Hya, Y CVn, IRAS 15194-5115, V Cyg, S Cep, and IRC+40540. This survey, performed using the HIFI instrument on board the Herschel Space Observatory, entailed observations of the lowest transitions of both ortho- and para-water: the 556.936 GHz 1{sub 10}-1{sub 01} and 1113.343 GHz 1{sub 11}-0{sub 00} transitions, respectively. Water vapor was unequivocally detected in all eight of the target stars. Prior to this survey, IRC+10216 was the only carbon-rich asymptotic giant branch (AGB) star from which thermal water emissions had been discovered, in that case with the use of the Submillimeter Wave Astronomy Satellite (SWAS). Our results indicate that IRC+10216 is not unusual, except insofar as its proximity to Earth leads to a large line flux that was detectable with SWAS. The water spectral line widths are typically similar to those of CO rotational lines, arguing against the vaporization of a Kuiper Belt analog being the general explanation for water vapor in carbon-rich AGB stars. There is no apparent correlation between the ratio of the integrated water line fluxes to the 6.3 {mu}m continuum flux-a ratio which measures the water outflow rate-and the total mass-loss rate for the stars in our sample.

  7. Induced nucleation of carbon dust in red giant stars

    NASA Technical Reports Server (NTRS)

    Cadwell, Brian J.; Wang, Hai; Feigelson, Eric D.; Frenklach, Michael

    1994-01-01

    This study quantitatively tests the proposed model of induced nucleation of carbonaceous grains in carbon-rich red giant stars. Induced nucleation is the process of grain growth initiated by the presence of reactive surfaces provided by seed particles. The numerical study was performed using a deailed chemical kinetic model of carbon deposition, grain coagulation, and homogeneous nucleation of polycyclic aromatic hydrocarbons (PAHs). The model uses a method of moments to keep track of developing grain population in the forming dust shell. We test the efficiency of grain formation for large ranges of dust shell parameters typical for carbon stars. Our model is capable of producing a range of optically thick and thin dust shells in carbon stars. Results are in accord with (IRAS) spectral classes of carbon stars. The resulting composite grains produced are consistent with those recently found in ancient meteorites. This model also provides a realistic explanation for high abundances of (PAHs) in the interstellar medium and some planetary nebulae.

  8. LX Cygni: A carbon star is born

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Meingast, S.; Lebzelter, T.; Aringer, B.; Joyce, R. R.; Hinkle, K.; Guzman-Ramirez, L.; Greimel, R.

    2016-01-01

    Context. The Mira variable LX Cygni (LX Cyg) has shown a dramatic increase of its pulsation period in the recent decades and is appearing to undergo an important transition in its evolution. Aims: We aim to investigate the spectral type evolution of this star over recent decades as well as during one pulsation cycle in more detail and discuss it in connection with the period evolution. Methods: We present optical, near- and mid-infrared low-resolution as well as optical high-resolution spectra to determine the current spectral type. The optical spectrum of LX Cyg has been followed for more than one pulsation cycle. We compare recent spectra to archival spectra to trace the spectral type evolution, and we analyse a Spitzer mid-IR spectrum for the presence of molecular and dust features. Furthermore, the current pulsation period is derived from AAVSO data. Results: We found that the spectral type of LX Cyg changed from S to C sometime between 1975 and 2008. Currently, the spectral type C is stable during a pulsation cycle. We show that spectral features typical of C-type stars are present in its spectrum from ~0.5 to 14 μm, and attribute an emission feature at 10.7 μm to SiC grains. Within only 20 yr, the pulsation period of LX Cyg has increased from ~460 d to ~580 d and is stable now. Conclusions: We conclude that the change in spectral type and increase in pulsation period happened simultaneously and are causally connected. Both a recent thermal pulse and a simple surface temperature decrease appear unlikely to explain the observations. We therefore suggest that the underlying mechanism is related to a recent third dredge-up mixing event that brought up carbon from the interior of the star, i.e. that a genuine abundance change happened. We propose that LX Cyg is a rare transition type object that is uniquely suited to study the transformation from oxygen- to carbon-rich stars in detail. Based on observations made with the Mercator Telescope, operated on the

  9. An edge-on translucent dust disk around the nearest AGB star, L2 Puppis. VLT/NACO spectro-imaging from 1.04 to 4.05 μm and VLTI interferometry

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Ridgway, S. T.; Perrin, G.; Chesneau, O.; Lacour, S.; Chiavassa, A.; Haubois, X.; Gallenne, A.

    2014-04-01

    As the nearest known AGB star (d = 64 pc) and one of the brightest (mK ≈ -2), L2 Pup is a particularly interesting benchmark object to monitor the final stages of stellar evolution. We report new serendipitous imaging observations of this star with the VLT/NACO adaptive optics system in twelve narrow-band filters covering the 1.0-4.0 μm wavelength range. These diffraction-limited images reveal an extended circumstellar dust lane in front of the star that exhibits a high opacity in the J band and becomes translucent in the H and K bands. In the L band, extended thermal emission from the dust is detected. We reproduced these observations using Monte Carlo radiative transfer modeling of a dust disk with the RADMC-3D code. We also present new interferometric observations with the VLTI/VINCI and MIDI instruments. We measured in the K band an upper limit to the limb-darkened angular diameter of θLD = 17.9 ± 1.6 mas, converting to a maximum linear radius of R = 123 ± 14 R⊙. Considering the geometry of the extended K band emission in the NACO images, this upper limit is probably close to the actual angular diameter of the star. The position of L2 Pup in the Hertzsprung-Russell diagram indicates that this star has a mass of about 2 M⊙ and is probably experiencing an early stage of the asymptotic giant branch. We did not detect any stellar companion of L2 Pup in our adaptive optics and interferometric observations, and we attribute its apparent astrometric wobble in the Hipparcos data to variable lighting effects on its circumstellar material. However, we do not exclude the presence of a binary companion, because the large loop structure extending to more than 10 AU to the northeast of the disk in our L-band images may be the result of interaction between the stellar wind of L2 Pup and a hidden secondary object. The geometric configuration that we propose, with a large dust disk seen almost edge-on, appears particularly favorable to test and develop our

  10. Carbon stars with alpha-C:H emission

    NASA Technical Reports Server (NTRS)

    Gerbault, Florence; Goebel, John H.

    1989-01-01

    Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.

  11. Understanding S Stars by C/O Ratios and s-Process Element Abundances

    NASA Astrophysics Data System (ADS)

    Arrant, David J.; Speck, A.

    2011-01-01

    The chemical evolution of dust expelled from Asymptotic Giant Branch (AGB) stars is influenced by the Carbon to Oxygen (C/O) ratio, because of the high stability of Carbon Monoxide (CO). S Stars are thought to be "in between” Carbon-rich AGB stars and Oxygen-rich AGB stars, having a C/O ratio of near unity and thus are expected to have interesting dust properties. However, there is not a precise definition for S Stars. S Stars are currently defined by the molecular bands in their spectra; they have reasonably strong zirconium oxide (ZrO) bands, which are believed to be indicative of dredge-up of s-process nucleosynthesis products. However, production and dredge-up of s-process elements may not scale with the production and dredge up of s-process elements such as Zirconium (Zr), especially when we consider destruction of carbon through hot bottom burning. If we are to understand the effect of chemistry, either in terms of s-process enhancements or C/O ratios, we must be able to characterize our sample stars and thus a more precise definition of S Stars is needed. Preliminary studies are presented to understand the properties of S Stars by determining what relationships exist between C/O ratios and s-process elements abundances.

  12. Modeling the Carbon Dust Around Evolved Carbon Stars

    NASA Astrophysics Data System (ADS)

    Derby, John; Chiar, Jean E.; Povich, Matthew S.; Egan, Michael P.; Jones, Anthony P.; Tielens, Xander

    2015-01-01

    We used a 3D Monte Carlo radiative transfer code to model the dust emission around the evolved carbon star, IRAS 07134+1005. We assume the axially symmetric superwind dust shell model as defined by Meixner et al. 1997 (ApJ, 482, 897). IRAS 07134+1005 is a '21 mm' object and is, thus, a carbon-rich, low metallicity star with a large infrared excess. In order to determine the characteristics of the circumstellar carbonaceous dust, we use a set of optical constants for carbonaceous materials computed over a range of H/C and band-gaps. This is the first study to use a set of known hydrocarbon types that covered a range of hydrogen atom fractions and thus a span of aromatic rich (low hydrogen atom fraction) to aliphatic rich (high hydrogen atom fraction) hydrocarbon materials. Our observational data (photometry and spectroscopy from the literature) cover the wavelength range from 0.352-100 mm. We compare our model spectrum and simulated mid-IR images to the observed spectral energy distribution and images to draw conclusions about the nature of the hydrocarbon dust around IRAS 07134+1005.Support for this work came from National Science Foundation under Award No. AST-1322432, a PAARE Grant for the California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) and AST-1359346, an REU Site Grant at the SETI Institute, and by the John Templeton Foundation through its New Frontiers in Astronomy and Cosmology, administered by Don York of the University of Chicago.

  13. AGB yields and Galactic Chemical Evolution: last updated

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Travaglio, C.; Wiescher, M.; Gallino, R.; Köppeler, F.; Straniero, O.; Cristallo, S.; Imbriani, G.; Görres, J.; deBoer, R. J.

    2016-01-01

    We study the s-process abundances at the epoch of the Solar-system formation as the outcome of nucleosynthesis occurring in AGB stars of various masses and metallicities. The calculations have been performed with the Galactic chemical evolution (GCE) model presented by [1, 2]. With respect to previous works, we used updated solar meteoritic abundances, a neutron capture cross section network that includes the most recent measurements, and we implemented the s-process yields with an extended range of AGB initial masses. The new set of AGB yields includes a new evaluation of the 22Ne(α, n)25Mg rate, which takes into account the most recent experimental information.

  14. New input data for synthetic AGB evolution

    NASA Astrophysics Data System (ADS)

    Wagenhuber, J.; Groenewegen, M. A. T.

    1998-12-01

    Analytic formulae are presented to construct detailed secular lightcurves of both early asymptotic giant branch (AGB) and thermally pulsing AGB stars. They are based on an extensive grid of evolutionary calculations, performed with an updated stellar evolution code. Basic input parameters are the initial mass MI i, 0.8 <= MI i/Msun <= 7, metallicity ZI i =0.0001, 0.008, 0.02, and the mixing length theory (MLT) parameter. The formulae allow for two important effects, namely that the first pulses do not reach the full amplitude, and hot bottom burning (HBB) in massive stars, which are both not accounted for by core mass - luminosity relations of the usual type. Furthermore, the dependence of the effective temperature and a few other quantities characterizing the conditions at the base of the convective envelope, which are relevant for HBB, are investigated as functions of luminosity, total and core mass for different formulations of the convection theory applied, MLT or Canuto & Mazzitelli's (\\cite{can:maz}) theory.

  15. The {sup 13}C(α,n){sup 16}O reaction as a neutron source for the s-process in AGB low-mass stars

    SciTech Connect

    Trippella, O.; Busso, M.; La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R.; Kiss, G. G.; Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D.; Mukhamedzhanov, A. M.; Maiorca, E.; Palmerini, S.

    2014-05-09

    The {sup 13}C(α,n){sup 16}O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the {sup 13}C(α,n){sup 16}O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the {sup 13}C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements.

  16. The 13C(α,n)16O reaction as a neutron source for the s-process in AGB low-mass stars

    NASA Astrophysics Data System (ADS)

    Trippella, O.; Busso, M.; La Cognata, M.; Spitaleri, C.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Maiorca, E.; Palmerini, S.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2014-05-01

    The 13C(α,n)16O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the 13C(α,n)16O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the 13C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements.

  17. Carbon abundances of sdO stars from SPY

    NASA Astrophysics Data System (ADS)

    Hirsch, Heiko; Heber, Uli

    2009-06-01

    Ströer et al. (2007) recently suggested a classification of sdOs according to supersolar and subsolar helium abundances, with only the helium-enriched stars showing signes of carbon and/or nitrogen in their optical spectra. We aim to derive reliable carbon and nitrogen abundances by fitting synthetic spectra to data obtained with the UVES spectrograph at ESO. Here we present our first results of the analysis of carbon abundances in hot subdwarf O stars. By constructing a grid of model atmospheres consisting of hydrogen, helium and carbon we were able to derive atmospheric parameters of nine carbon rich sdOs. We find log(NC/Ntotal) up to ten times higher than the solar value, while the mean value for the effective temperature and the surface gravity is slightly lower than derived by helium-hydrogen models only. Surprisingly, we also find three fast rotators among our program stars.

  18. LITHIUM ABUNDANCES IN CARBON-ENHANCED METAL-POOR STARS

    SciTech Connect

    Masseron, Thomas; Johnson, Jennifer A.; Lucatello, Sara; Karakas, Amanda; Plez, Bertrand; Beers, Timothy C.; Christlieb, Norbert E-mail: jaj@astronomy.ohio-state.edu

    2012-05-20

    Carbon-enhanced metal-poor (CEMP) stars are believed to show the chemical imprints of more massive stars (M {approx}> 0.8 M{sub Sun }) that are now extinct. In particular, it is expected that the observed abundance of Li should deviate in these stars from the standard Spite lithium plateau. We study here a sample of 11 metal-poor stars and a double-lined spectroscopic binary with -1.8 < [Fe/H] < -3.3 observed with the Very Large Telescope/UVES spectrograph. Among these 12 metal-poor stars, there are 8 CEMP stars for which we measure or constrain the Li abundance. In contrast to previous arguments, we demonstrate that an appropriate regime of dilution permits the existence of 'Li-Spite plateau and C-rich' stars, whereas some of the 'Li-depleted and C-rich' stars call for an unidentified additional depletion mechanism that cannot be explained by dilution alone. We find evidence that rotation is related to the Li depletion in some CEMP stars. Additionally, we report on a newly recognized double-lined spectroscopic binary star in our sample. For this star, we develop a new technique from which estimates of stellar parameters and luminosity ratios can be derived based on a high-resolution spectrum alone, without the need for input from evolutionary models.

  19. From Nuclei to Dust Grains: How the AGB Machinery Works

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cristallo, S.; Piersanti, L.

    2015-12-01

    With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.

  20. Binarity in carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Shetrone, Matthew D.; McConnachie, Alan W.; Venn, Kim A.

    2014-06-01

    A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars' birth composition, or if their atmospheres were subsequently polluted, most likely by accretion from an asymptotic giant branch binary companion. Here we investigate and compare the binary properties of three carbon-enhanced subclasses: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ˜100 per cent binary fraction with a shorter period distribution of at maximum ˜20 000 d. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no data set is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the solar neighbourhood.

  1. Carbon Stars in the Satellites and Halo of M31

    NASA Astrophysics Data System (ADS)

    Hamren, Katherine; Beaton, Rachael L.; Guhathakurta, Puragra; Gilbert, Karoline M.; Tollerud, Erik J.; Boyer, Martha L.; Rockosi, Constance M.; Smith, Graeme H.; Majewski, Steven R.; Howley, Kirsten

    2016-09-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color–color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample’s eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.

  2. Multi-epoch optical velocities of bright carbon stars

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia

    1992-10-01

    Cross-correlated optical radial velocities are presented of 87 bright carbon stars, 67 with multiple epochs, as well as the velocities of atomic transitions of K I, Li I, and Mg I. The mean optical velocity variation is about 3 km/s for SR and Lb variables and 8.7 km/s for Miras. The spread in velocities among atomic lines at a given epoch is significantly greater in Miras than in SR and Lb variables. Although Li I shows significant velocity variation in Miras, K I is more stable. Thirteen of 33 carbon stars with H-alpha emission also show bright Mg I emission in a type of inverse P-Cygni profile, and each of these 13 stars shows a clear splitting of the K I resonance line. Only two stars, R For and CL Mon, show K I as P-Cygni profile. J-type carbon stars have deeper Li absorption profiles than other carbon stars in the sample.

  3. The CH fraction of carbon stars at high Galactic latitudes

    NASA Astrophysics Data System (ADS)

    Goswami, Aruna; Karinkuzhi, Drisya; Shantikumar, N. S.

    2010-02-01

    CH stars form a distinct class of objects with characteristic properties like iron deficiency, enrichment of carbon and overabundance of heavy elements. These properties can provide strong observational constraints for the theoretical computation of nucleosynthesis at low metallicity. An important issue is the relative surface density of CH stars, which can provide valuable input to our understanding of the role of low- to intermediate-mass stars in early Galactic chemical evolution. Spectroscopic characterization provides an effective way of identifying CH stars. The present analysis aims at a quantitative assessment of the fraction of CH stars in a sample using a set of spectral classification criteria. The sample consists of 92 objects selected from a collection of candidate faint high-latitude carbon stars from the Hamburg/ESO survey. Medium-resolution (λ/δλ ~ 1300) spectra for these objects were obtained using the Optomechanics Research (OMR) spectrograph at the Vainu Bappu Observatory (VBO), Kavalur and the Himalaya Faint Object Spectrograph (HFOSC) at the Himalayan Chandra Telescope (HCT), Indian Astronomical Observatory, Hanle, during 2007-2009, spanning a wavelength range 3800-6800Å. Spectral analysis shows 36 of the 92 objects to be potential CH stars; combined with our earlier studies this implies ~37 per cent (of 243 objects) as the CH fraction. We present spectral descriptions of the newly identified CH star candidates. Estimated effective temperatures, 12C/13C isotopic ratios and their locations on the two-colour J - H versus H - K plot are used to support their identification.

  4. THE C-FLAME QUENCHING BY CONVECTIVE BOUNDARY MIXING IN SUPER-AGB STARS AND THE FORMATION OF HYBRID C/O/Ne WHITE DWARFS AND SN PROGENITORS

    SciTech Connect

    Denissenkov, P. A.; Herwig, F.; Truran, J. W.; Paxton, B. E-mail: fherwig@uvic.ca

    2013-07-20

    After off-center C ignition in the cores of super asymptotic giant branch (SAGB) stars, the C flame propagates all the way down to the center, trailing behind it the C-shell convective zone, and thus building a degenerate ONe core. This standard picture is obtained in stellar evolution simulations if the bottom C-shell convection boundary is assumed to be a discontinuity associated with a strict interpretation of the Schwarzschild condition for convective instability. However, this boundary is prone to additional mixing processes, such as thermohaline convection and convective boundary mixing. Using hydrodynamic simulations, we show that contrary to previous results, thermohaline mixing is too inefficient to interfere with the C-flame propagation. However, even a small amount of convective boundary mixing removes the physical conditions required for the C-flame propagation all the way to the center. This result holds even if we allow for some turbulent heat transport in the CBM region. As a result, SAGB stars build in their interiors hybrid C-O-Ne degenerate cores composed of a relatively large CO core (M{sub CO} Almost-Equal-To 0.2 M{sub Sun }) surrounded by a thick ONe zone ({Delta}M{sub ONe} {approx}> 0.85 M{sub Sun }) with another thin CO layer above. If exposed by mass loss, these cores will become hybrid C-O-Ne white dwarfs. Otherwise, the ignition of C-rich material in the central core, surrounded by the thick ONe zone, may trigger a thermonuclear supernova (SN) explosion. The quenching of the C-flame may have implications for the ignition mechanism of SN Ia in the double-degenerate merger scenario.

  5. The physics of carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Stancliffe, Richard

    2014-09-01

    A surprising fraction of metal-poor stars turn out to be rich in carbon. Of these, many show enhanced levels of heavy elements, particularly those formed by the slow neutron capture process. The proposed formation scenario for these objects involves mass transfer from an asymptotic giant branch star in a binary system. I will discuss (some) of the important (and uncertain!) physical processes that we must understand if we wish to learn the origin of these enigmatic, ancient objects.

  6. Interferometric observations of non-maser SiO emission from circumstellar envelopes of AGB stars - Acceleration regions and SiO depletion

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Bieging, John H.

    1993-01-01

    High- and medium-resolution images of SiO J = 2-1(V = 0) from the circumstellar envelopes (CSEs) of three oxygen-rich stars, Chi Cyg, RX Boo, and IK Tau, were obtained. The SIO images were found to be roughly circular, implying that the CSEs are spherically symmetric on angular-size scales of about 3-9 arcsec. The observed angular half-maximum intensity source radius is nearly independent of the LSR velocity for all three CSEs. Chi Cyg and RX Boo are argued to be less than 450 pc distant, and have mass-loss rates larger than about 10 exp -6 solar mass/yr. In Chi Cyg and RX Boo, the line profiles at the peak of the brightness distribution are rounded, typical of optically-thick emission from a spherical envelope expanding with a constant velocity. In the IK Tau line profiles, an additional narrower central component is present, probably a result of emission from an inner circumstellar shell with a significantly smaller expansion velocity than the extended envelope.

  7. Hot Bottom Burning in Asymptotic Giant Branch Stars and the Turbulent Convection Model

    NASA Astrophysics Data System (ADS)

    D'Antona, Francesca; Mazzitelli, Italo

    1996-10-01

    We investigate the effect of two different local turbulent convection models on the structure of intermediate-mass stars (IMSs, 3.5 Msun ≤ M ≤7 Msun) in the asymptotic giant branch (AGB) phase where, according to observations, they should experience hot bottom burning (HBB). Evolutionary models adopting either the mixing length theory (MLT) or the Canuto & Mazzitelli (CM) description of stellar convection are discussed. It is found that, while the MLT structures require some degree of tuning to achieve, at the bottom of the convective envelope, the large temperatures required for HBB, the CM structures spontaneously achieve these conditions. Since the observational evidence for HBB (existence of a class of very luminous, lithium-rich AGB stars in the Magellanic Clouds showing low 12C/13C ratios) is quite compelling, the above result provides a further, successful test for the CM convective model, in stellar conditions far from solar. With the aid of the CM model, we then explore a number of problems related to the late evolution of this class of objects, and give first results for (1) the luminosity evolution of IMSs in the AGB phase (core mass-luminosity relation and luminosity range in which HBB occurs) for Population I and Population II structures, (2) the minimum core mass for semidegenerate carbon ignition (˜1.05 Msun), (3) the relation between initial mass and final white dwarf (WD) mass (also based on some observational evidences about the upper AGB stars), and (4) the expected mass function of massive WDs. Confirmation of the theoretical framework could arise from an observational test: the luminosity function of AGB stars is expected to show a gap at Mbol ˜ -6, which would distinguish between the low-luminosity regime, in which AGBs become carbon stars, and the upper luminosities, at which they undergo HBB, have very low 12C/13C ratios, and become lithium rich.

  8. High-resolution CO Observation of the Carbon Star CIT 6 Revealing the Spiral Structure and a Nascent Bipolar Outflow

    NASA Astrophysics Data System (ADS)

    Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E.; Kemper, Francisca; Kim, Jongsoo; Byun, Do-Young; Liu, Tie

    2015-11-01

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPNs). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC3N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB-pPN transition. We have carried out high-resolution 12CO J = 2-1 and 13CO J = 2-1 observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescope (single-dish) data. The 12CO channel maps reveal a spiral-shell pattern connecting the HC3N segments in a continuous form and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the 12CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presence of an anisotropic mass loss to the west and a double spiral pattern. The lack of interarm emission to the west may indicate a feature corresponding to the periastron passage of a highly eccentric orbit of the binary. Spatially averaged radial and spectral profiles of 12CO J = 2-1 and 13CO J = 2-1 are compared with simple spherical radiative transfer models, suggesting a change of 12CO/13CO abundance ratio from ˜30 to ˜50 inward in the CSE of CIT 6. The millimeter continuum emission is decomposed into extended dust thermal emission (spectral index ˜ -2.4) and compact emission from radio photosphere (spectral index ˜ -2.0).

  9. Near-infrared photometry of carbon stars

    NASA Astrophysics Data System (ADS)

    Whitelock, Patricia A.; Feast, Michael W.; Marang, Freddy; Groenewegen, M. A. T.

    2006-06-01

    Near-infrared, JHKL, photometry of 239 Galactic C-rich variable stars is presented and discussed. From these and published data, the stars were classified as Mira or non-Mira variables, and amplitudes and pulsation periods, ranging from 222 to 948 d for the Miras, were determined for most of them. A comparison of the colour and period relations with those of similar stars in the Large Magellanic Cloud indicates minor differences, which may be the consequence of sample selection effects. Apparent bolometric magnitudes were determined by combining the mean JHKL fluxes with mid-infrared photometry from IRAS and MSX. Then, using the Mira period luminosity relation to set the absolute magnitudes, distances were determined - to greater accuracy than has hitherto been possible for this type of star. Bolometric corrections to the K magnitude were calculated and prescriptions derived for calculating these from various colours. Mass-loss rates were also calculated and compared to values in the literature. Approximately one-third of the C-rich Miras and an unknown fraction of the non-Miras exhibit apparently random obscuration events that are reminiscent of the phenomena exhibited by the hydrogen-deficient R Coronae Borealis stars. The underlying cause of this is unclear, but it may be that mass loss, and consequently dust formation, is very easily triggered from these very extended atmospheres. Based on observations made at the South African Astronomical Observatory. E-mail: paw@saao.ac.za

  10. A Search for Carbon Stars in the AFGL Catalogue

    NASA Astrophysics Data System (ADS)

    Altamore, A.; Smriglio, F.; Bussoletti, E.; Corsi, C. E.; Rossi, L.

    1980-09-01

    A comparison between theGeneral Catalogue of Cool Carbon Stars (CCS) and theAFGL Catalogue has been performed. Eighty-five stars have been found in common between the two lists. Eighty-four stars which were present in Baumert's comparison between CCS and the 2 μ Sky Survey have no counterpart in the AFGL. Four new tentative identifications are given. The analysis of the two colours diagrams K-[4.2 μ] vs. I-K and I-[4.2 μ] vs. [4.2 μ]-[11 μ] led to the conclusion that all the infrared emission from the sources seems to come from a single circumstellar shell.

  11. A CCD survey for faint high-latitude carbon stars

    NASA Technical Reports Server (NTRS)

    Green, Paul J.; Margon, Bruce; Anderson, Scott F.; Cook, Kem H.

    1994-01-01

    We describe a wide-area CCD survey to search for faint high-latitude carbon (FHLC) stars. Carbon giants provide excellent probes of the structure and kinematics of the outer Galactic halo. We use two-color photometric selection with large-format CCDs to cover 52 sq deg of sky to a depth of about V = 18. Of 94 faint C star candidates from our own CCD survey, one highly ranked V = 17 candidate was found to have a strong carbon and CN bands. We estimate that, to a depth of V = 18, the surface density of FHLC stars is 0.02 deg(exp -2). An updated FHLC sample is used to constrain halo kinematic and structural parameters. Although larger samples are needed, the effective radius of FHLC giants, assuming a de Vancouleurs law distribution, is larger than that for Galactic globular clusters.

  12. Are the Bulge C-Stars Related to the Sagittarius Dwarf Galaxy?

    NASA Astrophysics Data System (ADS)

    Ng, Y. K.

    If the Sagittarius dwarf galaxy (SDG) is crossing the Galactic disc once per Gyr (Ibata et al., 1997, AJ 113, 635) a star formation burst could be the signature of each passage. Carbon stars are due to their brightness ideal tracers for such a burst. Ng & Schultheis (1997, A&AS in press) suggested that the bulge carbon stars from Azzopardi et al. (1991, A&AS 88, 265) might be located in the SDG. This possibility is analyzed together with the (candidate) carbon stars found in the SDG (Whitelock et al., 1996, New Astronomy 1, 57). It might shed some light on the star formation history of the SDG in the last 4 Gyr. The results indicate that the carbon stars are not metal-rich as previously thought. They have a metallicity comparable to the LMC with an age between 0.1--1 Gyr. A significant fraction of the carbon stars have a luminosity fainter than the lower LMC and SMC limit of respectively Mbol ~ = -3.5 and Mbol ~ = -3.0. At present, the TP-AGB models cannot explain this, even if carbon stars form immediately after they enter the TP-AGB phase. Mass transfer through binary evolution is suggested as a possible scenario to explain the origin of these low luminosity carbon stars.

  13. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  14. On the Relation between the Mysterious 21 μm Emission Feature of Post-asymptotic Giant Branch Stars and Their Mass-loss Rates

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, Aigen; Jiang, B. W.

    2016-07-01

    Over two decades ago, a prominent, mysterious emission band peaking at ˜20.1 μm was serendipitously detected in four preplanetary nebulae (PPNe; also known as “protoplanetary nebulae”). To date, this spectral feature, designated as the “21 μm” feature, has been seen in 27 carbon-rich PPNe in the Milky Way and the Magellanic Clouds. The nature of its carriers remains unknown although many candidate materials have been proposed. The 21 μm sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 μm. While the 21 μm feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 μm feature is more commonly observed in all stages of stellar evolution from the AGB through PPN to PN phases. We derive the stellar mass-loss rates (\\dot{M}) of these sources from their infrared (IR) emission, using the “2-DUST” radiative transfer code for axisymmetric dusty systems which allows one to distinguish the mass-loss rates of the AGB phase ({\\dot{M}}{AGB}) from that of the superwind ({\\dot{M}}{SW}) phase. We examine the correlation between {\\dot{M}}{AGB} or {\\dot{M}}{SW} and the fluxes emitted from the 21 and 30 μm features. We find that both features tend to correlate with {\\dot{M}}{AGB}, suggesting that their carriers are probably formed in the AGB phase. The nondetection of the 21 μm feature in AGB stars suggests that, unlike the 30 μm feature, the excitation of the carriers of the 21 μm feature may require ultraviolet photons which are available in PPNe but not in AGB stars.

  15. Low Temperature Carbon Stars in the Vilnius Photometric System - Part Two

    NASA Astrophysics Data System (ADS)

    Sleivyte, J.

    The results of photoelectric photometry of 27 low-temperature (T < 3500K in the Baumert's scale) carbon stars in the Vilnius photometric system are presented. Color temperatures corrected for interstellar reddening are determined for 30 carbon stars.

  16. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    SciTech Connect

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-10-15

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 {mu}m). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute {approx}20% of the global SMC flux (extended + point-source) at 3.6 {mu}m, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  17. The bipolar outflow from the rotating carbon star, V Hydrae

    NASA Technical Reports Server (NTRS)

    Kahane, C.; Maizels, C.; Jura, M.

    1988-01-01

    A high-resolution optical spectrum of the mass-losing red giant carbon star, V Hya, has been obtained, and the (C-12)O (J = 1-0) millimeter emission in the circumstellar envelope around this star has been mapped. It is found that the CO emission is extended, clearly anisotropic and can be interpreted as the superposition of an isotropic emission with that of a bipolar flow. The optical spectrum of the photosphere suggests that this star is rotating with v sin i between 10 and 20 km/s. These data are interpreted, together, to suggest that the bipolar nature of the outflow results from the flattening of the star induced by its rapid rotation.

  18. Violet spectra of carbon stars associated with silicate features

    NASA Astrophysics Data System (ADS)

    Izumiura, Hideyuki

    2003-04-01

    We have observed the violet spectra of three carbon stars, BM Gem, V778 Cyg, and EU And, that are associated with silicate dust emission features as well as that of a proto-typical J-type carbon star, Y CVn, with the high dispersion spectrograph (HDS) on SUBARU telescope. The spectrum of BM Gem has revealed the presence of Balmer lines up to H23, all of which are found to have P-Cyg type line profile, as well as the Paschen and Balmer continuum emission. The blue-shifted absorption gives the gas outflow velocity of about 400 km s-1, that is very unusual for a cool carbon star. Our results strongly suggest the existence of a low luminosity companion surrounded by an accretion disk in BM Gem system, which have long been postulated but has never been confirmed. We have not detected either continuum or line emission in the violet region shortward of 4000Å in the other two silicate carbon stars.

  19. Barium Isotopic Composition of Mainstream Silicon Carbides from Murchison: Constraints for s-process Nucleosynthesis in Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Savina, Michael R.; Davis, Andrew M.; Gallino, Roberto; Straniero, Oscar; Gyngard, Frank; Pellin, Michael J.; Willingham, David G.; Dauphas, Nicolas; Pignatari, Marco; Bisterzo, Sara; Cristallo, Sergio; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ(138Ba/136Ba) values are found, down to -400‰, which can only be modeled with a flatter 13C profile within the 13C pocket than is normally used. The dependence of δ(138Ba/136Ba) predictions on the distribution of 13C within the pocket in asymptotic giant branch (AGB) models allows us to probe the 13C profile within the 13C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the 22Ne(α, n)25Mg rate in the stellar temperature regime relevant to AGB stars, based on δ(134Ba/136Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ(134Ba/136Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, 130Ba and 132Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of 135Ba, we conclude that there is no measurable decay of 135Cs (t 1/2 = 2.3 Ma) to 135Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before 135Cs decayed.

  20. The superwind mass-loss rate of the metal-poor carbon star LI-LMC 1813 in the LMC cluster KMHK 1603

    NASA Astrophysics Data System (ADS)

    van Loon, Jacco Th.; Marshall, Jonathan R.; Matsuura, Mikako; Zijlstra, Albert A.

    2003-06-01

    LI-LMC 1813 is a dust-enshrouded asymptotic giant branch (AGB) star, located in the small open cluster KMHK 1603 near the rim of the Large Magellanic Cloud (LMC). Optical and infrared photometry between 0.5 and 60 μm is obtained to constrain the spectral energy distribution of LI-LMC 1813. Near-infrared spectra unambiguously show it to be a carbon star. Modelling with the radiation transfer code DUSTY yields accurate values for the bolometric luminosity, L= 1.5 × 104 Lsolar, and mass-loss rate, . On the basis of colour-magnitude diagrams, the age of the cluster KMHK 1603 is estimated to be t= 0.9-1.0 Gyr, which implies a zero-age main-sequence mass for LI-LMC 1813 of MZAMS= 2.2 +/- 0.1 Msolar. This makes LI-LMC 1813 arguably the object with the most accurately and reliably determined (circum)stellar parameters amongst all carbon stars in the superwind phase.

  1. Carbon Dioxide in Star-forming Regions.

    PubMed

    Charnley; Kaufman

    2000-02-01

    We consider the gas-phase chemistry of CO2 molecules in active regions. We show that CO2 molecules evaporated from dust in hot cores cannot be efficiently destroyed and are in fact copiously produced in cooler gas. When CO2-rich ices are sputtered in strong MHD shock waves, the increase in atomic hydrogen, due to H2 dissociation by ion-neutral streaming, means that CO2 can be depleted by factors of approximately 500 from its injected abundance. We find that a critical shock speed exists at higher preshock densities below which CO2 molecules can be efficiently sputtered but survive in the postshock gas. These calculations offer an explanation for the low gas/solid CO2 ratios detected by the Infrared Space Observatory in star-forming cores as being due to shock destruction followed by partial reformation in warm gas. The presence of high abundances of CO2 in the strongly shocked Galactic center clouds Sgr B2 and Sgr A also find a tentative explanation in this scenario. Shock activity plays an important role in determining the chemistry of star-forming regions, and we suggest that most hot cores are in fact shocked cores. PMID:10622767

  2. Identification of Be and carbon stars in the Magellanic Clouds as a by-product of a symbiotic star search

    NASA Astrophysics Data System (ADS)

    Cieslinski, Deonisio; Diaz, Marcos P.; Mennickent, Ronald E.; KoLaczkowski, Zbigniew; Pereira, Claudio B.

    2013-12-01

    We present the spectra of 29 carbon stars, 25 Be stars and 6 Be or Ce candidates which were serendipitously found in a survey aiming to identify new symbiotic stars in the Magellanic Clouds. A short description of the spectral characteristics of each individual object is given, indicating the ones which are suitable for posterior follow-up.

  3. Hydrogen-deficient atmospheres for cool carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Bower, C. D.; Lemke, D. A.; Luttermoser, D. G.; Petrakis, J. P.; Reinhart, M. D.; Welch, K. A.; Alexander, D. R.; Goebel, J. H.

    1985-01-01

    Motivated by recent work which hints at a possible deficiency of hydrogen in non-Mira N-type carbon stars and to further explore the parameter space of chemical composition, computations have been made of a series of hydrogen-deficient models for carbon stars. For these models Teff = 3000 K, and log g = 0.0. Solar abundances are used for all elements except for carbon (which is enhanced to give C/O = 1.05), hydrogen, and helium. As the fractional abundance of hydrogen is decreased, being replaced by helium, the temperature-optical depth relation is affected only slightly, but the temperature-pressure relation is changed. The most striking change in the emergent flux is the decrease of the H(-) peak at 1.65 micron compared with the blackbody peak at 1.00 micron.

  4. THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 {mu}m

    SciTech Connect

    Srinivasan, Sundar; Meixner, Margaret; Leitherer, Claus; Vijh, Uma; Gordon, Karl D.; Sewilo, Marta; Volk, Kevin; Blum, Robert D.; Harris, Jason; Babler, Brian L.; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl A.; Cohen, Martin; Hora, Joseph L.; Indebetouw, Remy; Markwick-Kemper, Francisca

    2009-06-15

    We present empirical relations describing excess emission from evolved stars in the Large Magellanic Cloud (LMC) using data from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution (SAGE) survey which includes the Infrared Array Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 {mu}m and Multiband Imaging Photometer (MIPS) 24, 70, and 160 {mu}m bands. We combine the SAGE data with the Two Micron All Sky Survey (2MASS; J, H, and K {sub s}) and the optical Magellanic Cloud Photometric Survey (MCPS; U, B, V, and I) point source catalogs in order to create complete spectral energy distributions (SEDs) of the asymptotic giant branch (AGB) star candidates in the LMC. AGB star outflows are among the main producers of dust in a galaxy, and this mass loss results in an excess in the fluxes observed in the 8 and 24 {mu}m bands. The aim of this work is to investigate the mass loss return by AGB stars to the interstellar medium of the LMC by studying the dependence of the infrared excess flux on the total luminosity. We identify oxygen-rich, carbon-rich, and extreme AGB star populations in our sample based on their 2MASS and IRAC colors. The SEDs of oxygen- and carbon-rich AGB stars are compared with appropriate stellar photosphere models to obtain the excess flux in all the IRAC bands and the MIPS 24 {mu}m band. Extreme AGB stars are dominated by circumstellar emission at 8 and 24 {mu}m; thus we approximate their excesses with the flux observed in these bands. We find about 16,000 O-rich, 6300 C-rich, and 1000 extreme sources with reliable 8 {mu}m excesses, and about 4500 O-rich, 5300 C-rich, and 960 extreme sources with reliable 24 {mu}m excesses. The excesses are in the range 0.1 mJy to 5 Jy. The 8 and 24 {mu}m excesses for all three types of AGB candidates show a general increasing trend with luminosity. The color temperature of the circumstellar dust derived from the ratio of the 8 and 24 {mu}m excesses decreases with an increase in excess, while the 24 {mu

  5. Luminous asymptotic giant branch stars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Reid, Neill; Tinney, Chris; Mould, Jeremy

    1990-01-01

    A search has been conducted for optically obscured asymptotic giant branch (AGB) stars in the LMC. The results obtained are noted to rule out the presence of sufficient high-luminosity 'cocoon' stars to explain the observed deficit of several hundred luminous AGB stars between the predictions of standard AGB evolution models and the observed luminosity function. Bolometric magnitudes as low as -5 are inferred for these sources; it is suggested that this phase can be triggered at low luminosities, truncating AGB evolution and leading to the observed scarcity of AGBs with M(bol) greater than -6.0 mag.

  6. Detached Shells of Dust and Gas around Carbon Stars

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Olofsson, H.; Eriksson, K.; Gustafsson, B.; Schöier, F. L.

    2011-09-01

    We present observations of dust-scattered light of the carbon stars U Ant, R Scl, and U Cam taken with the EFOSC2 camera on the ESO 3.6-m telescope and the ACS on the Hubble Space Telescope. The observations show the detached shells around these stars in unprecedented detail, revealing a distinctively clumpy structure in the HST images of R Scl, and a separation of the dust and gas in the ground-based data for U Ant. This allows us to investigate the detached shells and their origin with exceptional precision.

  7. Carbon stars with oxygen-rich circumstellar material

    NASA Technical Reports Server (NTRS)

    Jura, Michael; Hawkins, I.

    1991-01-01

    The IUE satellite was used to search for companions to two carbon-rich stars with oxygen-rich circumstellar envelopes, EU And and V778 Cyg. Depending upon the amount of interstellar extinction and distances (probably between 1 and 2 kpc from the Sun) to these two stars, upper limits were placed between approx. 1.5 and 6 solar mass to the mass of any main sequence companions. For the 'near' distance of 1 kpc, it seems unlikely that there are white dwarf companions because the detection would be expected of ultraviolet emission from accretion of red giant wind material onto the white dwarf. A new model is proposed to explain the oxygen-rich envelopes. If these stars have a high nitrogen abundance, the carbon that is in excess of the oxygen may be carried in the circumstellar envelopes in HCN rather than C2H2 which is a likely key seed molecule for the formation of carbon grains. Consequently, carbon particles may not form; instead, oxygen-rich silicate dust may nucleate from the SiO present in the outflow.

  8. VizieR Online Data Catalog: Obscured AGB in Magellanic Clouds. I. (Loup+ 1997)

    NASA Astrophysics Data System (ADS)

    Loup, C.; Zijlstra, A. A.; Waters, L. B. F. M.; Groenewegen, M. A. T.

    1997-02-01

    We have selected 198 IRAS sources in the Large Magellanic Cloud, and 11 in the Small Magellanic Cloud, which are the best candidates to be mass-loosing AGB stars (or possibly post-AGB stars). We used the catalogues of Schwering & Israel (1990, Cat. ) and Reid et al. (1990, Cat. ). They are based on the IRAS pointed observations and have lower detection limits than the Point Source Catalogue. We also made cross-identifications between IRAS sources and optical catalogues. (8 data files).

  9. On the Evolution of O(He)-Type Stars

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.; Reindl, N.; Rauch, T.; Werner, K.

    2012-01-01

    O(He) stars represent a small group of four very hot post-AGB stars whose atmospheres are composed of almost pure helium. Their evolution deviates from the hydrogen-deficient post-AGO evolutionary sequence of carbon-dominated stars like e.g. PG 1159 or Wolf- Rayet stars. While (very) late thermal pulse evolutionary models can explain the observed He/C/O abundances in these objects, they do not reproduce He-dominated surface abundances. Currently it seems most likely that the O(He) stars originate from a double helium white dwarf merger and so they could be the successors of the luminous helium-rich sdO-stars. An other possibility is that O(He)-stars could be successors of RCB or EHe stars.

  10. On Carbon Burning in Super Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Farmer, R.; Fields, C. E.; Timmes, F. X.

    2015-07-01

    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon-burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the zero-age main sequence (ZAMS) mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline, and angular momentum transport. In general terms, we find that these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, ρign ≈ 2.1 × 106 g cm-3, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of ΔMZAMS/Δfov ≈ 1.6 {M}⊙ . For zero overshoot, fov = 0.0, our models in the ZAMS mass range ≈8.9-11 {M}⊙ show off-center carbon ignition. For canonical amounts of overshooting, fov = 0.016, the off-center carbon ignition range shifts to ≈7.2-8.8 {M}⊙ . Only systems with fov ≥ 0.01 and ZAMS mass ≈7.2-8.0 {M}⊙ show carbon burning is quenched a significant distance from the center. These results suggest a careful assessment of overshoot modeling approximations on claims that carbon burning quenches an appreciable distance from the center of the carbon core.

  11. VizieR Online Data Catalog: Torun catalog of post-AGB and related objects (Szczerba+, 2007)

    NASA Astrophysics Data System (ADS)

    Szczerba, R.; Siodmiak, N.; Stasinska, G.; Borkowski, J.

    2007-09-01

    With the ongoing AKARI infrared sky survey, of much greater sensitivity than IRAS, a wealth of post-AGB objects may be discovered. It is thus time to organize our present knowledge of known post-AGB stars in the galaxy with a view to using it to search for new post-AGB objects among AKARI sources. We searched the literature available on the NASA Astrophysics Data System up to 1 October 2006, and defined criteria for classifying sources into three categories: very likely, possible and disqualified post-AGB objects. The category of very likely post-AGB objects is made up of several classes. We have created an evolutionary, on-line catalogue of Galactic post-AGB objects, to be referred to as the Torun catalogue of Galactic post-AGB and related objects. The present version of the catalogue contains 326 very likely, 107 possible and 64 disqualified objects. For the very likely post-AGB objects, the catalogue gives the available optical and infrared photometry, infrared spectroscopy and spectral types, and links to finding charts and bibliography. (3 data files).

  12. CARBON-ENHANCED METAL-POOR STARS IN SDSS/SEGUE. I. CARBON ABUNDANCE ESTIMATION AND FREQUENCY OF CEMP STARS

    SciTech Connect

    Lee, Young Sun; Beers, Timothy C.; Placco, Vinicius M.; Masseron, Thomas; Plez, Bertrand; Rockosi, Constance M.; Yanny, Brian; Lucatello, Sara; Sivarani, Thirupathi; Carollo, Daniela

    2013-11-01

    We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the Sloan Digital Sky Survey (SDSS) and its Galactic sub-survey, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N ≥ 15 Å{sup –1} to a precision better than 0.35 dex for stars with atmospheric parameters in the range T {sub eff} = [4400, 6700] K, log g = [1.0, 5.0], [Fe/H] = [–4.0, +0.5], and [C/Fe] = [–0.25, +3.5]. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] ≥ +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ∼ –2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ∼ –2.4 to [Fe/H] ∼ –3.7. Although the number of stars known with [Fe/H] < –4.0 remains small, the frequency of carbon-enhanced metal-poor (CEMP) stars below this value is around 75%. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] ≤ –2.5, 31% for [Fe/H] ≤ –3.0, and 33% for [Fe/H] ≤ –3.5; a roughly constant value. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] ≤ –2.5, presumably due to the difficulty of identifying CEMP stars among warmer turnoff stars with weak CH G-bands. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = –2.5, jumping from 15% for [Fe/H] ≤ –2.5 to about 75% for [Fe/H] ≤ –3

  13. Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars

    NASA Astrophysics Data System (ADS)

    Lee, Young Sun; Beers, Timothy C.; Masseron, Thomas; Plez, Bertrand; Rockosi, Constance M.; Sobeck, Jennifer; Yanny, Brian; Lucatello, Sara; Sivarani, Thirupathi; Placco, Vinicius M.; Carollo, Daniela

    2013-11-01

    We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the Sloan Digital Sky Survey (SDSS) and its Galactic sub-survey, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N >= 15 Å-1 to a precision better than 0.35 dex for stars with atmospheric parameters in the range T eff = [4400, 6700] K, log g = [1.0, 5.0], [Fe/H] = [-4.0, +0.5], and [C/Fe] = [-0.25, +3.5]. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] >= +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. Although the number of stars known with [Fe/H] < -4.0 remains small, the frequency of carbon-enhanced metal-poor (CEMP) stars below this value is around 75%. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] <= -2.5, 31% for [Fe/H] <= -3.0, and 33% for [Fe/H] <= -3.5 a roughly constant value. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] <= -2.5, presumably due to the difficulty of identifying CEMP stars among warmer turnoff stars with weak CH G-bands. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] <= -2.5 to about 75% for [Fe/H] <= -3.0. When we impose a restriction with respect to

  14. Crystallization of carbon-oxygen mixtures in white dwarf stars.

    PubMed

    Horowitz, C J; Schneider, A S; Berry, D K

    2010-06-11

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170  keV b. PMID:20867223

  15. The unusual carbon star HD 59643 - Alternative models

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Eaton, J. A.; Querci, F. R.; Querci, M.; Baumert, J. H.

    1988-01-01

    A binary model for the carbon star HD 59643 is discussed in which the secondary spectrum is formed in an accretion disk. If this hot, ultraviolet-emitting disk radiates like a 20,000 K black-body, it must be 0.03 solar radii or less across at minimum emission. Large widths of C IV multiplet UV1 on high-resolution spectra indicate its formation in the inner parts of a disk. The semiforbidden C III and Si III lines, however, are much narrower and could be formed in the outer parts of a disk or in the carbon star's chromosphere. The electron density in the region of formation of C III is about 10 to the 10th/cu cm.

  16. Crystallization of Carbon-Oxygen Mixtures in White Dwarf Stars

    SciTech Connect

    Horowitz, C. J.; Schneider, A. S.; Berry, D. K.

    2010-06-11

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the {sup 12}C({alpha},{gamma}){sup 16}O reaction to S{sub 300{<=}}170 keV b.

  17. Crystallization of Carbon-Oxygen Mixtures in White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Schneider, A. S.; Berry, D. K.

    2010-06-01

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the C12(α,γ)O16 reaction to S300≤170keVb.

  18. Help, my star is on fire - Carbon burning flames in SAGB stars.

    NASA Astrophysics Data System (ADS)

    Farmer, Robert; Fields, Carl; Timmes, Francis

    2016-01-01

    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with a comprehensive grid of MESA models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. We find the properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the strength of overshoot mixing. Increasing the amount of overshoot decreases the initial mass needed for off center and center carbon ignitions. Carbon burning flames show a range of morphologies, which vary as a function of initial mass and convective overshoot strength, with either a series of flashes or a flame which propagates inwards towards the core. We find that only systems with overshoot values ≥0.01 and zero age main sequence (ZAMS) masses ≈7.2-8.0 M⊙ is carbon burning quenched at a significant distance from the center. These results have implications for the formation rate of hybrid C-O-Ne WDs, postulated as supernova Type 1a progenitors.

  19. The 11 micron Silicon Carbide Feature in Carbon Star Shells

    NASA Technical Reports Server (NTRS)

    Speck, A. K.; Barlow, M. J.; Skinner, C. J.

    1996-01-01

    Silicon carbide (SiC) is known to form in circumstellar shells around carbon stars. SiC can come in two basic types - hexagonal alpha-SiC or cubic beta-SiC. Laboratory studies have shown that both types of SiC exhibit an emission feature in the 11-11.5 micron region, the size and shape of the feature varying with type, size and shape of the SiC grains. Such a feature can be seen in the spectra of carbon stars. Silicon carbide grains have also been found in meteorites. The aim of the current work is to identity the type(s) of SiC found in circumstellar shells and how they might relate to meteoritic SiC samples. We have used the CGS3 spectrometer at the 3.8 m UKIRT to obtain 7.5-13.5 micron spectra of 31 definite or proposed carbon stars. After flux-calibration, each spectrum was fitted using a chi(exp 2)-minimisation routine equipped with the published laboratory optical constants of six different samples of small SiC particles, together with the ability to fit the underlying continuum using a range of grain emissivity laws. It was found that the majority of observed SiC emission features could only be fitted by alpha-SiC grains. The lack of beta-SiC is surprising, as this is the form most commonly found in meteorites. Included in the sample were four sources, all of which have been proposed to be carbon stars, that appear to show the SiC feature in absorption.

  20. Time Dependent Models of Grain Formation Around Carbon Stars

    NASA Technical Reports Server (NTRS)

    Egan, M. P.; Shipman, R. F.

    1996-01-01

    Carbon-rich Asymptotic Giant Branch stars are sites of dust formation and undergo mass loss at rates ranging from 10(exp -7) to 10(exp -4) solar mass/yr. The state-of-the-art in modeling these processes is time-dependent models which simultaneously solve the grain formation and gas dynamics problem. We present results from such a model, which also includes an exact solution of the radiative transfer within the system.

  1. High-luminosity single carbon stars in stellar and galactic evolution

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1991-01-01

    In the solar neighborhood, approximately half of all intermediate mass main sequence stars with initially between 1 solar mass and about 5 solar masses become carbon stars with luminosities near 10,000 lunar luminosities for typically less than 1 million years. These high luminosity carbon stars lose mass at rates nearly always in excess of 10 to the -7th solar mass/yr and sometimes in excess of 0.00001 solar mass/yr. Locally, close to half of the mass returned into the interstellar medium by intermediate mass stars before they become white dwarfs is during the carbon star phase. A much greater fraction of lower metallicity stars become carbon-rich before they evolve into planetary nebulae, than do higher-metallicity stars; therefore, carbon stars are much more important in the outer than in the inner Galaxy.

  2. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    SciTech Connect

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-03-20

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  3. Identifying Carbon stars from the LAMOST pilot survey with the efficient manifold ranking algorithm

    NASA Astrophysics Data System (ADS)

    Si, Jian-Min; Li, Yin-Bi; Luo, A.-Li; Tu, Liang-Ping; Shi, Zhi-Xin; Zhang, Jian-Nan; Wei, Peng; Zhao, Gang; Wu, Yi-Hong; Wu, Fu-Chao; Zhao, Yong-Heng

    2015-10-01

    Carbon stars are excellent kinematic tracers of galaxies and can serve as a viable standard candle, so it is worthwhile to automatically search for them in a large amount of spectra. In this paper, we apply the efficient manifold ranking algorithm to search for carbon stars from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) pilot survey, whose performance and robustness are verified comprehensively with four test experiments. Using this algorithm, we find a total of 183 carbon stars, and 158 of them are new findings. According to different spectral features, our carbon stars are classified as 58 C-H stars, 11 C-H star candidates, 56 C-R stars, ten C-R star candidates, 30 C-N stars, three C-N star candidates, and four C-J stars. There are also ten objects which have no spectral type because of low spectral quality, and a composite spectrum consisting of a white dwarf and a carbon star. Applying the support vector machine algorithm, we obtain the linear optimum classification plane in the J - H versus H - Ks color diagram which can be used to distinguish C-H from C-N stars with their J - H and H - Ks colors. In addition, we identify 18 dwarf carbon stars with their relatively high proper motions, and find three carbon stars with FUV detections likely have optical invisible companions by cross matching with data from the Galaxy Evolution Explorer. In the end, we detect four variable carbon stars with the Northern Sky Variability Survey, the Catalina Sky Survey and the LINEAR variability databases. According to their periods and amplitudes derived by fitting light curves with a sinusoidal function, three of them are likely semiregular variable stars and one is likely a Mira variable star.

  4. CARBON STARS WITH INFRARED SPECTRA IN GROUP P OF THE IRAS/LRS DATABASE

    SciTech Connect

    Chen, P. S.

    2012-10-01

    Sources with infrared spectra in Group P of the IRAS/LRS database all show polycyclic aromatic hydrocarbon features. They are often planetary nebulae, H II regions, reflection/dark nebulae, Wolf-Rayet stars, or external galaxies. However, we noted that some carbon stars are also included in this group. We searched for and investigated all infrared spectra in Group P of the IRAS/LRS database. Finally, we found 11 previously known carbon stars and identified 8 new candidate carbon stars in Group P. Infrared spectra of these stars may present the 11.2 {mu}m SiC emission features indicative of their carbon-rich properties.

  5. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES

    SciTech Connect

    Riebel, D.; Meixner, M.; Srinivasan, S.; Sargent, B.

    2012-07-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to {approx}30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, equivalent to a total mass injection rate (including the gas) into the ISM of {approx}6 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K{sub s} band as a function of J - K{sub s} color, BC{sub K{sub s}}= -0.40(J-K{sub s}){sup 2} + 1.83(J-K{sub s}) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot{sub d}) from C-rich AGB stars, such as log M-dot{sub d} = (-18.90/((K{sub s}-[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.

  6. The carbon-to-oxygen ratio in stars with planets

    NASA Astrophysics Data System (ADS)

    Nissen, P. E.

    2013-04-01

    Context. In some recent works, the C/O abundance ratio in high-metallicity stars with planets is found to vary by more than a factor of two, i.e. from ~0.4 to C/O ≳ 1. This has led to discussions about the existence of terrestrial planets with a carbon-dominated composition that is very different from the composition of the Earth. Aims: The mentioned C/O values were obtained by determining carbon abundances from high-excitation C I lines and oxygen abundances from the forbidden [O i] line at 6300 Å. This weak line is, however, strongly affected by a nickel blend at high metallicities. Aiming for more precise C/O ratios, oxygen abundances in this paper are derived from the high-excitation O I triplet at 7774 Å. Methods: The C I lines at 5052 and 5380 Å in HARPS spectra were applied to determine carbon abundances of 33 solar-type stars for which FEROS spectra are available for determining oxygen abundances from the O iλ7774 triplet. Differential abundances with respect to the Sun were derived from equivalent widths using MARCS model atmospheres. Non-LTE corrections were included, and the analysis was carried out with both spectroscopic and photometric estimates of stellar effective temperatures and surface gravities. Results: The results do not confirm the high C/O ratios previously found. C/O shows a tight, slightly increasing dependence on metallicity, i.e. from C/O ≃ 0.58 at [Fe/H] = 0.0 to C/O ≃ 0.70 at [Fe/H] = 0.4 with an rms scatter of only 0.06. Conclusions: Recent findings of C/O ratios higher than 0.8 in high-metallicity stars seem to be spurious due to statistical errors in estimating the strength of the weak [O i] line in the Ni I blended λ6300 feature. Assuming that the composition of a proto-planetary disk is the same as that of the host star, the C/O values found in this paper lend no support to the existence of carbon-rich planets. The small scatter of C/O among thin-disk stars suggests that the nucleosynthesis products of Type II

  7. Stellar Yields of Rotating First Stars: Yields of Weak Supernovae and Abundances of Carbon-enhanced Hyper Metal Poor Stars

    NASA Astrophysics Data System (ADS)

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi

    2015-01-01

    The three most iron-poor stars known until now are also known to have peculiar enhancements of intermediate mass elements. Under the assumption that these iron-deficient stars reveal the nucleosynthesis result of Pop III stars, we show that a weak supernova model successfully reproduces the observed abundance patterns. Moreover, we show that the initial parameters of the progenitor, such as the initial masses and the rotational property, can be constrained by the model, since the stellar yields result from the nucleosynthesis in the outer region of the star, which is significantly affected by the initial parameters. The initial parameter of Pop III stars is of prime importance for the theoretical study of the early universe. Future observation will increase the number of such carbon enhanced iron-deficient stars, and the same analysis on the stars may give valuable information for the Pop III stars that existed in our universe.

  8. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected

  9. Detection of carbonates in dust shells around evolved stars.

    PubMed

    Kemper, F; Jäger, C; Waters, L B F M; Henning, Th; Molster, F J; Barlow, M J; Lim, T; de Koter, A

    2002-01-17

    Carbonates on large Solar System bodies like Earth and Mars (the latter represented by the meteorite ALH84001) form through the weathering of silicates in a watery (CO3)2- solution. The presence of carbonates in interplanetary dust particles and asteroids (again, represented by meteorites) is not completely understood, but has been attributed to aqueous alteration on a large parent body, which was subsequently shattered into smaller pieces. Despite efforts, the presence of carbonates outside the Solar System has hitherto not been established. Here we report the discovery of the carbonates calcite and dolomite in the dust shells of evolved stars, where the conditions are too primitive for the formation of large parent bodies with liquid water. These carbonates, therefore, are not formed by aqueous alteration, but perhaps through processes on the surfaces of dust or ice grains or gas phase condensation. The presence of carbonates which did not form by aqueous alteration suggests that some of the carbonates found in Solar System bodies no longer provide direct evidence that liquid water was present on large parent bodies early in the history of the Solar System. PMID:11797000

  10. A Spitzer study of the mass-loss and infrared variability properties of Asymptotic Giant Branch stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Riebel, David

    The Asymptotic Giant Branch (AGB) is one of the most interesting, and least understood, phases of stellar evolution. The fate of approximately solar mass stars as they exhaust their nuclear fuel for the final time, these stars are also one of the universe's primary sources for many heavy elements, such as carbon and oxygen. We have assembled a sample of ˜30,000 AGB stars in the Large Magellanic Cloud (LMC) with multi-wavelength data ranging from the ultraviolet to the mid-infrared, and multi-epoch data spanning 5 years. This dataset allows us to probe the variability and mass-loss properties of AGB stars at population scales, a valuable contribution to studies of stellar evolution and the mass budget of the interstellar medium (ISM). We combine variability information from the MAssive Compact Halo Objects (MACHO; Alcock et al. 1997) microlensing survey with infrared photometry from the Spitzer Space Telescope legacy program Surveying the Agents of Galaxy Evolution (SAGE; Meixner et al. 2006) to determine the infrared period-magnitude relationships for three evolutionary classes of AGB stars at 8 different wavelengths. We find that the most evolved AGB stars are pulsating in the fundamental and first overtone, while less evolved stars are concentrated in higher-overtone modes. We show that the slope of the period-magnitude relationship becomes steeper for more evolved stars, at all wavelengths. Using a grid of radiative transfer models of circumstellar dust shells (GRAMS; Sargent et al. 2011; Srinivasan et al. 2011) and photometry in 12 bands ranging from the ultraviolet to the infrared, we calculated individual bolometric luminosities and dust mass-loss rates for each AGB star in the LMC. This allowed us to calculate the total dust injection to the interstellar medium from these stars via direct summation. We find that the total mass injection rate (gas and dust) from AGB stars into the ISM of the LMC is ˜5x10 --3 M⊙ yr--1, and that carbon-rich AGB stars and

  11. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  12. Formation of SiC Grains in Pulsation-enhanced Dust-driven Wind around Carbon-rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Yasuda, Yuki; Kozasa, Takashi

    2012-02-01

    We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich asymptotic giant branch (C-rich AGB) stars to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process: one is the local thermal equilibrium (LTE) case where the vibration temperature of SiC clusters T v is equal to the gas temperature as usual, and another is the non-LTE case in which T v is assumed to be the same as the temperature of small SiC grains. The results of the hydrodynamical calculations for a model with stellar parameters of mass M * = 1.0 M ⊙, luminosity L * = 104 L ⊙, effective temperature T eff = 2600 K, C/O ratio = 1.4, and pulsation period P = 650 days show the following: in the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains, and the resulting averaged mass ratio of SiC to carbon grains of ~10-8 is too small to reproduce the value of 0.01-0.3, which is inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of the SiC grains is more internal and/or almost identical to that of the carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability αs = 0.1-1.0. The size distributions with the peak at ~0.2-0.3 μm in radius cover the range of size derived from the analysis of the presolar SiC grains. Thus, the difference between the temperatures of the small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.

  13. UBVR POLARIMETRY OF EVOLVED CARBON STARS NEAR THE GALACTIC EQUATOR

    SciTech Connect

    Lopez, J. M.; Hiriart, D. E-mail: hiriart@astrosen.unam.mx

    2011-07-15

    We present polarimetry and photometry in the UBVR bands of nine low Galactic latitude carbon stars (|b{sup II} | {<=} 15{sup 0}) over a period of one year: V384 Per, ST Cam, S Aur, CL Mon, HV Cas, Y Tau, TT Cyg, U Cyg, and V1426 Cyg. We have corrected the observed values for the effects of extinction and polarization by the interstellar medium to obtain the intrinsic polarization and photometry of the stars. All the observed objects present polarization in at least two bands. There is a statistical correlation between the temporal mean polarization (p) at each filter band and the IR color K - [12] with the redder stars tending to be more polarized. A related trend is found between polarization and mass-loss rate in gas. The degree of polarization increases with the mass-loss rate at around M-dot{sub gas}{approx}3.6x10{sup -7} M{sub sun} yr{sup -1}. We found two stars-TT Cyg and ST Cam-that increase polarization with decreasing mass-loss rate below this value. Multiple observations of TT Cyg, U Cyg, and V1426 Cyg during the campaign show no correlation between polarization and luminosity in any of the UBVR bands. Therefore, the distribution of the scatterers shall vary with time in a very irregular way.

  14. THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1-24 {mu}m

    SciTech Connect

    Melbourne, J.; Boyer, Martha L. E-mail: martha.l.boyer@nasa.gov

    2013-02-10

    We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at {approx}3-4 {mu}m, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at {approx}3-4 {mu}m and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 {mu}m, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1-4 {mu}m. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8-1 {mu}m). At longer wavelengths ({>=}8 {mu}m), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 {mu}m, TP-AGB and RSG contribute less than 4% of the 8 {mu}m flux. However, 19% of the SMC 8 {mu}m flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 {mu}m flux (e.g., observed-frame 24 {mu}m at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

  15. Carbon stars in the X-Shooter Spectral Library

    NASA Astrophysics Data System (ADS)

    Gonneau, A.; Lançon, A.; Trager, S. C.; Aringer, B.; Lyubenova, M.; Nowotny, W.; Peletier, R. F.; Prugniel, P.; Chen, Y.-P.; Dries, M.; Choudhury, O. S.; Falcón-Barroso, J.; Koleva, M.; Meneses-Goytia, S.; Sánchez-Blázquez, P.; Vazdekis, A.

    2016-05-01

    We provide a new collection of spectra of 35 carbon stars obtained with the ESO/VLT X-Shooter instrument as part of the X-Shooter Spectral Library project. The spectra extend from 0.3 μm to 2.4 μm with a resolving power above ~8000. The sample contains stars with a broad range of (J - K) color and pulsation properties located in the Milky Way and the Magellanic Clouds. We show that the distribution of spectral properties of carbon stars at a given (J - K) color becomes bimodal (in our sample) when (J - K) is larger than about 1.5. We describe the two families of spectra that emerge, characterized by the presence or absence of the absorption feature at 1.53 μm, generally associated with HCN and C2H2. This feature appears essentially only in large-amplitude variables, though not in all observations. Associated spectral signatures that we interpret as the result of veiling by circumstellar matter, indicate that the 1.53 μm feature might point to episodes of dust production in carbon-rich Miras. Based on observations collected at the European Southern Observatory, Paranal, Chile, Prog. ID 084.B-0869(A/B), 085.B-0751(A/B), 189.B-0925(A/B/C/D).Tables 1, B.1, E.1, E.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A36The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A36

  16. Variability of ultraviolet emission in the carbon star TX Piscium

    NASA Technical Reports Server (NTRS)

    Johnson, Hollis R.; Baumert, John H.; Querci, Francois; Querci, Monique

    1986-01-01

    Multiple low-resolution IUE observations of the cool carbon star TX Psc (N0; C6, 2) permit an analysis of the variations in strength of the strongest emission lines - the Mg II line at 2800 A, the C II line at 2330 A, and certain Fe II lines. The integrated flux of the Mg II line varied by at least a factor of eight, while that of the C II line varies by at least a factor of five. The variations in Fe II may be considerably larger. The lines appear to vary together. The continuous flux in the best observed range from 2800 to 3200 A does not vary noticeably.

  17. The Impact of FUSE on our Understanding of Stellar Post-AGB Evolution

    SciTech Connect

    Rauch, T.; Werner, K.; Ziegler, M.; Koesterke, L.; Kruk, J. W.; Oliveira, C. M.

    2009-05-24

    State-of-the-art non-LTE spectral analysis requires high-resolution and high-S/N observations of strategic metal lines in order to achieve reliable photospheric parameters like, e.g., effective temperature, surface gravity, and element abundances.Hot stars with effective temperatures higher than about 40 000 K exhibit their metal-line spectrum arising from highly ionized species predominantly in the (far) ultraviolet wavelength range.FUSE observations of hot, compact stars provided the necessary data. With these, it has been, e.g., possible to identify fluorine for the first time in observations of post-AGB stars. The evaluation of ionization equilibria of highly ionized neon, phosphorus, sulfur, and argon provides a new sensitive tool to determine effective temperatures of the hottest stars precisely. Moreover, abundance determinations have put constraints on stellar evolutionary models which, in turn, have improved greatly our picture of post-AGB evolution.

  18. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  19. TOPoS . II. On the bimodality of carbon abundance in CEMP stars Implications on the early chemical evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Spite, M.; Limongi, M.; Chieffi, A.; Klessen, R. S.; François, P.; Molaro, P.; Ludwig, H.-G.; Zaggia, S.; Spite, F.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark, P. C.; Glover, S. C. O.; Hammer, F.; Koch, A.; Monaco, L.; Sbordone, L.; Steffen, M.

    2015-07-01

    Context. In the course of the Turn Off Primordial Stars (TOPoS) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. These stars are very common among the stars of extremely low metallicity and provide important clues to the star formation processes. We here present our analysis of six CEMP stars. Aims: We want to provide the most complete chemical inventory for these six stars in order to constrain the nucleosynthesis processes responsible for the abundance patterns. Methods: We analyse both X-Shooter and UVES spectra acquired at the VLT. We used a traditional abundance analysis based on OSMARCS 1D local thermodynamic equilibrium (LTE) model atmospheres and the turbospectrum line formation code. Results: Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0 ≤ [Ca/H] <-2.1 and 7.12 ≤ A(C) ≤ 8.65. For star SDSS J1742+2531 we were able to detect three Fe i lines from which we deduced [Fe/H] = -4.80, from four Ca ii lines we derived [Ca/H] = -4.56, and from synthesis of the G-band we derived A(C) = 7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3σ) upper limit of [Fe/H] < -5.0 and measure the Ca abundance, with [Ca/H] = -5.0, and carbon, A(C) = 6.90, suggesting that this star could be even more metal-poor than SDSS J1742+2531. This makes these two stars the seventh and eighth stars known so far with [Fe/H] < -4.5, usually termed ultra-iron-poor (UIP) stars. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li) < 1.8 for both stars. Conclusions: Our measured carbon abundances confirm the bimodal distribution of carbon in CEMP stars, identifying a high-carbon band and a low-carbon band. We propose an interpretation of this bimodality according to which the stars on the high-carbon band are the result of mass transfer from an AGB

  20. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    NASA Astrophysics Data System (ADS)

    Boeltzig, A.; Bruno, C. G.; Cavanna, F.; Cristallo, S.; Davinson, T.; Depalo, R.; deBoer, R. J.; Di Leva, A.; Ferraro, F.; Imbriani, G.; Marigo, P.; Terrasi, F.; Wiescher, M.

    2016-04-01

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions.

  1. A spectral atlas of post-main-sequence stars in ωCentauri: kinematics, evolution, enrichment and interstellar medium

    NASA Astrophysics Data System (ADS)

    van Loon, Jacco Th.; van Leeuwen, Floor; Smalley, Barry; Smith, Andrew W.; Lyons, Nicola A.; McDonald, Iain; Boyer, Martha L.

    2007-12-01

    We present a spectral atlas of the post-main-sequence population of the most massive Galactic globular cluster, ωCentauri. Spectra were obtained of more than 1500 stars selected as uniformly as possible from across the (B, B - V) colour-magnitude diagram of the proper motion cluster member candidates of van Leeuwen et al. The spectra were obtained with the 2dF multifibre spectrograph at the Anglo-Australian Telescope, and cover the approximate range λ ~ 3840-4940 Å at a resolving power of λ/Δλ ~= 2000. This constitutes the most comprehensible spectroscopic survey of a globular cluster. We measure the radial velocities, effective temperatures, metallicities and surface gravities by fitting ATLAS9 stellar atmosphere models. We analyse the cluster membership and stellar kinematics, interstellar absorption in the CaII K line at 3933 Å, the RR Lyrae instability strip and the extreme horizontal branch, the metallicity spread and bimodal CN abundance distribution of red giants, nitrogen and s-process enrichment, carbon stars, pulsation-induced Balmer line emission on the asymptotic giant branch (AGB), and the nature of the post-AGB and UV-bright stars. Membership is confirmed for the vast majority of stars, and the radial velocities clearly show the rotation of the cluster core. We identify long-period RRLyrae-type variables with low gravity, and low-amplitude variables coinciding with warm RRLyrae stars. A barium enhancement in the coolest red giants indicates that third dredge-up operates in AGB stars in ωCen. This is distinguished from the pre-enrichment by more massive AGB stars, which is also seen in our data. The properties of the AGB, post-AGB and UV-bright stars suggest that red giant branch (RGB) mass loss may be less efficient at very low metallicity, [Fe/H] << -1, increasing the importance of mass loss on the AGB. The catalogue and spectra are made available via Centre Données de Strasbourg (CDS).

  2. R Coronae Borealis Stars Are Viable Factories of Pre-solar Grains

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie

    2015-08-01

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon-oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10-3 yr-1) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180-540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, we calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains.

  3. A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Christlieb, Norbert; Sivarani, Thirupathi; Reimers, Dieter; Wisotzki, Lutz

    2010-03-15

    We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 {<=} [Fe/H] {<=} -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B< 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 A. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.

  4. HERSCHEL /HIFI OBSERVATIONS OF IRC+10216: WATER VAPOR IN THE INNER ENVELOPE OF A CARBON-RICH ASYMPTOTIC GIANT BRANCH STAR

    SciTech Connect

    Neufeld, David A.; Gonzalez-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; De Koter, Alex; Schoeier, Fredrik; Cernicharo, Jose

    2011-02-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances ({<=}few x 10{sup 14} cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H{sup 17}{sub 2}O/H{sup 16}{sub 2}O and H{sup 18}{sub 2}O/H{sup 16}{sub 2}O isotopic abundance ratios of {approx}5 x 10{sup -3} (3{sigma}), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  5. Herschel/HIFI Observations of IRC+10216: Water Vapor in the Inner Envelope of a Carbon-rich Asymptotic Giant Branch Star

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.; González-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; de Koter, Alex; Schöier, Fredrik; Cernicharo, José

    2011-02-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (<=few × 1014 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H17 2O/H16 2O and H18 2O/H16 2O isotopic abundance ratios of ~5 × 10-3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    SciTech Connect

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewiło, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  7. Examining the Infrared Variable Star Population Discovered in the Small Magellanic Cloud Using the SAGE-SMC Survey

    NASA Astrophysics Data System (ADS)

    Polsdofer, Elizabeth; Seale, J.; Sewiło, M.; Vijh, U. P.; Meixner, M.; Marengo, M.; Terrazas, M.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S3MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ˜2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  8. Improving the distances of post-AGB objects in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vickers, Shane B.; Frew, David J.; Owers, Matt S.; Parker, Quentin A.; Bojičič, Ivan S.

    2016-07-01

    Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. RV Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment.

  9. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  10. The Carbon-Rich Dust Sequence: Infrared Spectral Classification of Carbon Stars

    NASA Technical Reports Server (NTRS)

    Solan, G. C.; Little-Marenin, I. R.; Price, S. D.; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    We have developed a classification system for the infrared spectral emission from carbon stars, using a sample of 96 bright carbon-rich variables associated with the asymptotic giant branch. In addition to the stellar contribution, most spectra include the 11.2 micron emission feature from SiC and either a smooth cool continuum from amorphous carbon or a secondary emission feature at 9.0 microns. We have identified a carbon-rich dust sequence along which the amorphous carbon component grows while the 9.0 micron feature declines in strength. Along this spectral sequence, the fraction of Miras increases, as does the period of variability, the mass-loss rate, and the thickness of the circumstellar shell. Thus the carbon-rich dust sequence appears to be an evolutionary sequence. One class of spectra shows a particularly strong 9.0 micron feature, Enhanced C/O ratio, and several other unusual properties that suggest a different sequence, perhaps related to J stars.

  11. OT2_jalcolea_2: Additional Hpoint observations of large post-AGB sources from HIFIStars

    NASA Astrophysics Data System (ADS)

    Alcolea, J.

    2011-09-01

    One of the most spectacular phases in the evolution of intermediate mass stars takes place at the end of their lives. At the end of the AGB, the central star dashes across the HR diagram from the red giant to the blue dwarf region. At the same time, the spherically symmetric and slowly expanding circumstellar envelopes around AGB stars become planetary nebulae (PNe), displaying a large variety of shapes and structures far more complex. This transformation takes place at the very end of the AGB, and it is due to the interaction of fast and bipolar molecular winds with the fossil AGB circumstellar envelope. The origin of these post-AGB winds is still unclear, but we know that the resulting two-wind interactions are only active during a very short period of time, ~ 100 yr, but still they are able to strongly modify the kinematics of the nebulae and re-shape them. To better understand these processes we must study the warm molecular gas component of early post-AGB sources, both pre-planetary nebulae (pPNe) and young PNe. Herschel/HIFI is very well suited at this, because its spectral coverage, high velocity resolution, and superb sensitivity. For these reasons, 10 pPNe and young PNe were included in the KPGT HIFISTARS, were a large number of spectral lines are observed in a moderate number of frequency setups, but just at the central point. In many cases this is simply enough, since most post-AGB sources in HIFIStars are compact. However there are three cases in which the non spherically symmetric structures seen in the warm gas are larger than the telescope beam: OH231.8+4.2, NGC7027 and NGC6302. Therefore we propose to perform some additional points in these three sources in a selected sample of HIFISTARS frequency setups, were we have detected strong lines of CO, H2O, NH3 and OH. These observations are crucial to understand the kinematics and interactions traced by these warm gas probes, and gain insight in the intricate problem of the post-AGB dynamics.

  12. How plausible are the proposed formation scenarios of CEMP-r/s stars?

    NASA Astrophysics Data System (ADS)

    Abate, Carlo; Stancliffe, Richard J.; Liu, Zheng-Wei

    2016-03-01

    CEMP-r/s stars are metal-poor stars with enhanced abundances of carbon and heavy elements associated with the slow and rapid neutron-capture process (s- and r-elements, respectively). It is believed that carbon and s-elements were accreted in the past from the wind of a primary star in the asymptotic giant branch (AGB) phase of evolution, a scenario that is generally accepted to explain the formation of CEMP stars that are only enhanced in s-elements (CEMP-s stars). The origin of r-element-enrichment in CEMP-r/s stars is currently debated and many formation scenarios have been put forward.We aim to determine the likelihood of the scenarios proposed to explain the formation of CEMP-r/s stars.We calculate the frequency of CEMP-r/s stars among CEMP-s stars for a variety of formation scenarios, and we compare it with that determined from an observed sample of CEMP-r/s stars collected from the literature.The theoretical frequency of CEMP-r/s stars predicted in most formation scenarios underestimates the observed ratio by at least a factor of five. If the enrichments in s- and r-elements are independent, the model ratio of CEMP-r/s to CEMP-s stars is about 22%, that is approximately consistent with the lowest estimate of the observed ratio. However, this model predicts that about one third of all carbon-normal stars have [Ba/Fe] and [Eu/Fe] higher than one, and that 40% of all CEMP stars have [Ba/Eu] ≤ 0. Stars with these properties are at least ten times rarer in our observed sample.The intermediate or i-process, which is supposedly active in some circumstances during the AGB phase, could provide an explanation of the origin of CEMP-r/s stars, similar to that of CEMP-s stars, in the context of wind mass accretion in binary systems. Further calculations of the nucleosynthesis of the i-process and of the detailed evolution of late AGB stars are needed to investigate if this scenario predicts a CEMP-r/s star frequency consistent with the observations.

  13. Late-Type Stars in M31. II. C-, S-, and M-Star Spectra

    NASA Astrophysics Data System (ADS)

    Brewer, James P.; Richer, Harvey B.; Crabtree, Dennis R.

    1996-08-01

    We present spectra of AGB stars in M31 for which observations had been previously secured using a four-band photometric system (FBPS). The FBPS had been used to identify M-, S-, and carbon-star (C-star) candidates, and we use the spectra to show that the FBPS did an excellent job at identifying C- and M-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced ^13^C bands (J-stars), 2 have strong Hα emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colors of the Hα stars suggest they may be in the terminal phases of their evolution. The C_2_ and CN bandstrengths of the C-stars are measured, and no correlation between these bandstrengths and either M_bol_ or (V-I) is found. It is suggested that this lack of correlation is due to an age spread. The spectra of the first confirmed S-star in M31 is presented, and two evolutionary pathways are suggested to account for this star's high luminosity.

  14. The outer layers of cool, non-Mira carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1991-01-01

    The outer layers and near circumstellar envelope (CSE) of a typical carbon star have been studied using available data from theoretical and empirical models. An attempt is made to match the density-velocity structure of the photosphere-chromosphere region to values from the radio CO observations, which arise from the outer CSE. It is concluded that the stellar atmosphere includes a relatively thin high-temperature region close to hydrostatic equilibrium and a much more extended cooler region of outflowing gas and dust. To extend the outer photosphere and chromosphere to match the mass loss density appears to require an injection of energy and momentum by some mechanism rather close to the stellar surface.

  15. THE RGB AND AGB STAR NUCLEOSYNTHESIS IN LIGHT OF THE RECENT {sup 17}O(p, {alpha}){sup 14}N AND {sup 18}O(p, {alpha}){sup 15}N REACTION-RATE DETERMINATIONS

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Lamia, L.

    2013-02-20

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on A = 17 and A = 18 oxygen isotopes, overcoming extrapolation procedures and enhancement effects due to electron screening. In particular, the strengths of the 20 keV and 65 keV resonances in the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N reactions, respectively, have been extracted, as well as the contribution of the tail of the broad 656 keV resonance in the {sup 18}O(p, {alpha}){sup 15}N reaction inside the Gamow window. The strength of the 65 keV resonance in the {sup 17}O(p, {alpha}){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O + p radiative capture channel. As a result, more accurate reaction rates for the {sup 18}O(p, {alpha}){sup 15}N, {sup 17}O(p, {alpha}){sup 14}N, and {sup 17}O(p, {gamma}){sup 18}F processes have been deduced, devoid of systematic errors due to extrapolation or the electron screening effect. Such rates have been introduced into state-of-the-art red giant branch and asymptotic giant branch (AGB) models for proton-capture nucleosynthesis coupled with extra-mixing episodes. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis. The low {sup 14}N/{sup 15}N found in SiC grains cannot be explained by the revised nuclear reaction rates and remains a serious problem that has not been satisfactorily addressed.

  16. GALACTIC S STARS: INVESTIGATIONS OF COLOR, MOTION, AND SPECTRAL FEATURES

    SciTech Connect

    Otto, Elizabeth; Green, Paul J.; Gray, Richard O.

    2011-09-01

    Known bright S stars, recognized as such by their enhanced s-process abundances and C/O ratio, are typically members of the asymptotic giant branch (AGB) or the red giant branch. Few modern digital spectra for these objects have been published, from which intermediate resolution spectral indices and classifications could be derived. For published S stars, we find accurate positions using the Two-Micron All Sky Survey (2MASS), and use the FAST spectrograph of the Tillinghast reflector on Mt. Hopkins to obtain the spectra of 57 objects. We make available a digital S star spectral atlas consisting of 14 spectra of S stars with diverse spectral features. We define and derive basic spectral indices that can help distinguish S stars from late-type (M) giants and carbon stars. We convolve all our spectra with the Sloan Digital Sky Survey bandpasses, and employ the resulting gri magnitudes together with 2MASS JHK{sub s} mags to investigate S star colors. These objects have colors similar to carbon and M stars, and are therefore difficult to distinguish by color alone. Using near- and mid-infrared colors from IRAS and Akari, we identify some of the stars as intrinsic (AGB) or extrinsic (with abundances enhanced by past mass transfer). We also use V band and 2MASS magnitudes to calculate a temperature index for stars in the sample. We analyze the proper motions and parallaxes of our sample stars to determine upper and lower limit absolute magnitudes and distances, and confirm that most are probably giants.

  17. Dust formation by stars and evolution in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Zhukovska, Svitlana

    2008-12-01

    The main goal of this thesis is the study of the origin and evolution of interstellar dust in the Milky Way. We develop a model for the chemical evolution of the galactic disk as a basis for our new model of dust evolution, which considers for the first time the individual evolutions of stardust and of dust condensed in molecular clouds of the Galactic disk. We include dust production by AGB stars in detail, using the results of synthetic AGB models combined with models of dust condensation in stellar outflows, and estimate the efficiency of dust condensation in supernovae by matching model results for the Solar neighbourhood with observed abundances of presolar dust grains of supernova origin. Our results indicate that supernovae produce mainly carbon dust, with only small amounts of silicates, iron and silicon carbonate. We show that the interstellar dust population is dominated by dust grown in the interstellar medium across the Galactic history; moreover, dust formed in AGB stars and supernovae is a dominant source of dust only at metallicities lower than the minimal value for efficient dust growth in molecular clouds.

  18. The mass-loss return from evolved stars to the Large Magellanic Cloud. III. Dust properties for carbon-rich asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Matsuura, M.; Meixner, M.; Kemper, F.; Tielens, A. G. G. M.; Volk, K.; Speck, A. K.; Woods, P. M.; Gordon, K.; Marengo, M.; Sloan, G. C.

    2010-12-01

    We present a radiative transfer model for the circumstellar dust shell around a Large Magellanic Cloud (LMC) long-period variable (LPV) previously studied as part of the Optical Gravitational Lensing Experiment (OGLE) survey of the LMC. OGLE LMC LPV 28579 (SAGE J051306.40-690946.3) is a carbon-rich asymptotic giant branch (AGB) star for which we have Spitzer broadband photometry and spectra from the SAGE and SAGE-Spec programs along with broadband UBVIJHKs photometry. By modeling this source, we obtain a baseline set of dust properties to be used in the construction of a grid of models for carbon stars. We reproduce the spectral energy distribution of the source using a mixture of amorphous carbon and silicon carbide with 15% SiC by mass. The grain sizes are distributed according to the KMH model, with γ = 3.5, amin = 0.01 μm and a0 = 1.0 μm. The best-fit model produces an optical depth of 0.28 for the dust shell at the peak of the SiC feature (11.3 μm), with an inner radius of about 1430 R_⊙ or 4.4 times the stellar radius. The temperature at this inner radius is 1310 K. Assuming an expansion velocity of 10 km s-1, we obtain a dust mass-loss rate of 2.5 × 10-9 M_⊙ yr-1. We calculate a 15% variation in this mass-loss rate by testing the sensitivity of the fit to variation in the input parameters. We also present a simple model for the molecular gas in the extended atmosphere that could give rise to the 13.7 μm feature seen in the spectrum. We find that a combination of CO and C2H2 gas at an excitation temperature of about 1000 K and column densities of 3 × 1021 cm-2 and 1019 cm-2 respectively are able to reproduce the observations. Given that the excitation temperature is close to the temperature of the dust at the inner radius, most of the molecular contribution probably arises from this region. The luminosity corresponding to the first epoch of SAGE observations is 6580 L_⊙. For an effective temperature of about 3000 K, this implies a stellar mass of

  19. CEMP stars: possible hosts to carbon planets in the early universe

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham

    2016-05-01

    We explore the possibility of planet formation in the carbon-rich protoplanetary disks of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Universe. The chemically anomalous abundance patterns ([C/Fe] ≥ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae (SNe) ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling timescale in the protoplanetary disks of CEMP stars to the expected disk lifetime (assuming dissipation via photoevaporation), we determine the maximum distance rmax from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host star's [C/H] abundance. We then use our linear relation between rmax and [C/H], along with the theoretical mass-radius relation derived for a solid, pure carbon planet, to characterize potential planetary transits across host CEMP stars. Given that the related transits are detectable with current and upcoming space-based transit surveys, we suggest initiating an observational program to search for carbon planets around CEMP stars in hopes of shedding light on the question of how early planetary systems may have formed after the Big Bang.

  20. CEMP stars: possible hosts to carbon planets in the early Universe

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham

    2016-08-01

    We explore the possibility of planet formation in the carbon-rich protoplanetary discs of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Universe. The chemically anomalous abundance patterns ([C/Fe] ≥ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling time-scale in the protoplanetary discs of CEMP stars to the expected disc lifetime (assuming dissipation via photoevaporation), we determine the maximum distance rmax from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host star's [C/H] abundance. We then use our linear relation between rmax and [C/H], along with the theoretical mass-radius relation derived for a solid, pure carbon planet, to characterize potential planetary transits across host CEMP stars. Given that the related transits are detectable with current and upcoming space-based transit surveys, we suggest initiating an observational programme to search for carbon planets around CEMP stars in hopes of shedding light on the question of how early planetary systems may have formed after the big bang.

  1. CEMP stars: possible hosts to carbon planets in the early Universe

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham

    2016-08-01

    We explore the possibility of planet formation in the carbon-rich protoplanetary disks of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Universe. The chemically anomalous abundance patterns ([C/Fe] $\\geq$ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae (SNe) ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling timescale in the protoplanetary disks of CEMP stars to the expected disk lifetime (assuming dissipation via photoevaporation), we determine the maximum distance $r_{max}$ from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host star's [C/H] abundance. We then use our linear relation between $r_{max}$ and [C/H], along with the theoretical mass-radius relation derived for a solid, pure carbon planet, to characterize potential planetary transits across host CEMP stars. Given that the related transits are detectable with current and upcoming space-based transit surveys, we suggest initiating an observational program to search for carbon planets around CEMP stars in hopes of shedding light on the question of how early planetary systems may have formed after the Big Bang.

  2. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    in the halo; 32. Baade-Wesselink analyses of field vs. cluster RR lyrae variables; 33. The rotation of population II A stars; 34. Horizontal branch stars and possibly related objects; 35. A new group of post-AGB objects - the hot carbon-poor stars; 36. MK classifications of hot stars in the halo 37. Photometry of XX Virginis and V716 Ophiuchi and the period luminosity relations of type II cepheids; 38. Rotation and oxygen line strengths in blue horizontal branch stars; Part V. Miscellaneous: 39. UBV CCd photometry of the halo of M31; 40. Can stars still form in the galactic halo?; 41. The ultraviolet imaging telescope on the Astro -1 and Astro -2 missions; 42. Are analogues of hot subdwarf stars responsible for the UVX phenomenon in galaxy nucleli; 43. A survey for field BHB stars outside the solar circle; 44. Post-AGB A and F supergiants as standard candles; 45. The extended horizontal-branch: a challenge for stellar evolution theory; 46. Astronomical patterns in fractals: the work of A. G. Davis Philip on the Mandelbrot Set; Part VI. Summary: 47. Final remarks; Author index; Subject index.

  3. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    in the halo; 32. Baade-Wesselink analyses of field vs. cluster RR lyrae variables; 33. The rotation of population II A stars; 34. Horizontal branch stars and possibly related objects; 35. A new group of post-AGB objects - the hot carbon-poor stars; 36. MK classifications of hot stars in the halo 37. Photometry of XX Virginis and V716 Ophiuchi and the period luminosity relations of type II cepheids; 38. Rotation and oxygen line strengths in blue horizontal branch stars; Part V. Miscellaneous: 39. UBV CCd photometry of the halo of M31; 40. Can stars still form in the galactic halo?; 41. The ultraviolet imaging telescope on the Astro -1 and Astro -2 missions; 42. Are analogues of hot subdwarf stars responsible for the UVX phenomenon in galaxy nucleli; 43. A survey for field BHB stars outside the solar circle; 44. Post-AGB A and F supergiants as standard candles; 45. The extended horizontal-branch: a challenge for stellar evolution theory; 46. Astronomical patterns in fractals: the work of A. G. Davis Philip on the Mandelbrot Set; Part VI. Summary: 47. Final remarks; Author index; Subject index.

  4. Star-like superalkali cations featuring planar pentacoordinate carbon

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-01

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5+ (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5+ (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5+ range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically unstable and

  5. Star-like superalkali cations featuring planar pentacoordinate carbon.

    PubMed

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5 (+) range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically

  6. Mass return to the interstellar medium from highly-evolved carbon stars

    NASA Technical Reports Server (NTRS)

    Latter, W. B.; Thronson, H. A., Jr.; Hacking, P.; Bally, J.; Black, J.

    1986-01-01

    Data produced by the Infrared Astronomy Satellite (IRAS) was surveyed at the mid- and far-infrared wavelengths. Visually-identified carbon stars in the 12/25/60 micron color-color diagram were plotted, along with the location of a number of mass-losing stars that lie near the location of the carbon stars, but are not carbon rich. The final sample consisted of 619 objects, which were estimated to be contaminated by 7 % noncarbon-rich objects. The mass return rate was estimated for all evolved circumstellar envelopes. The IRAS Point Source Catalog (PSC) was also searched for the entire class of stars with excess emission. Mass-loss rates, lifetimes, and birthrates for evolved stars were also estimated.

  7. An ALMA View of the Complex Circumstellar Environment of the Post-AGB Object HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W.; Maercker, M.; Humphreys, E.; Lindqvist, M.; Nyman, L.; Ramstedt, S.

    2015-12-01

    We use 12CO, 13CO, and C18O J = 2-1 lines and 1.3 mm continuum ALMA observations to study the circumstellar evolution of the binary HD 101584, a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. It is inferred that the circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic, ≍ 150 km s-1, jet. Significant amount of material resides in an unresolved central region. It is proposed that the circumstellar morphology is related to an event which took place ≍ 500 yr ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy. Hence, the observed phenomenon does not match current common-envelope scenarios, and another process must augment, or even dominate, the ejection process.

  8. An ALMA view of the post-AGB object HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W.; Maercker, M.; Humphreys, E.; Lindqvist, M.; Nyman, L.; Ramstedt, S.

    2016-07-01

    ALMA cycles 1 and 3 observations of CO isotopologues and 1.3mm continuum are used in a study of the circumstellar environment of the binary HD 101584, a post-AGB star and a low-mass companion that is most likely a post-common-envelope-evolution system. These data are supplemented with new information from OH maser emission. It is inferred that the large- scale circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic, ≥⃒ 150 km s-1, jet. Significant amount of material still resides in the central region. It is proposed that the circumstellar morphology is related to an event which took place ≤⃒ 500 yr ago, possibly a capture event where the companion spiralled in towards the AGB star. Several observed features remain to be explained, and may hint to a more complicated scenario.

  9. A study of extreme carbon stars. I - Silicon carbide emission features

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1984-01-01

    10-micron spectra of many extreme carbon stars reveal a prominent emission feature near 11 microns. This is compared with laboratory spectra of SiC grains. Two distinct types of features are found, perhaps indicative of different mechanisms of grain formation in different stars. Estimates are made of probable column densities and total masses of SiC in the circumstellar shells.

  10. A far-infrared emission feature in carbon-rich stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Houck, J. R.; Mccarthy, J. F.

    1981-01-01

    The 16-30 micron spectra of several carbon stars and the planetary nebulae IC 418 and NGC 6572 have been obtained using the NASA C-141 Kuiper Airborne Observatory. A newly observed emission feature appears in the spectrum of IRC +10216 and several other carbon stars at wavelengths greater than 24 microns. The feature is interpreted as resulting from a solid-state resonance in the dust grains which have condensed around these stars. A similar feature appears in the spectra of IC 418 and NGC 6572, implying that the same type of dust is present. Since the dust probably condensed from a carbon-rich gas, this indicates an evolutionary link between carbon stars and these planetary nebulae. No identification for the grain material has been found, but some clues are apparent which could aid in the identification.

  11. The carbon chemistry in interstellar clouds toward moderately reddened stars

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Lambert, D. L.

    1988-01-01

    New data for C2 toward X Per, HD 206267, HD 207198, and Gamma Cep, for CH and CN toward X Per, and for CO toward HD 207198 have been obtained. The column densities of CH, C2, CN, and CO toward the stars in the Cepheus OB2 association are similar to reddened directions in Perseus and in Ophiuchus, indicating a similarity in physical conditions for the foreground clouds. The available data for other directions have been analyzed and the resulting data applied to study the transition from a photochemical regime to a chemical regime. The data for N(CN), N(C2), and N(CO) have been plotted against N(CH) to elucidate the chemistry of carbon-bearing molecules more clearly. The observed trends for CN and C2 suggest a change in slope at N(CH) of roughly 5 x 10 to the 13th/sq cm. Below this value, photodestruction is predicted to dominate and the slope is determined by the photochemistry. For directions with more N(CH), a linear correlation consistent with destruction by chemical reactions is expected.

  12. THE PTI CARBON STAR ANGULAR SIZE SURVEY: EFFECTIVE TEMPERATURES AND NON-SPHERICITY

    SciTech Connect

    Van Belle, Gerard T.; Paladini, Claudia; Hron, Josef; Aringer, Bernhard; Ciardi, David E-mail: claudia.paladini@univie.ac.at E-mail: bernhard.aringer@oapd.inaf.it

    2013-09-20

    We report new interferometric angular diameter observations of 41 carbon stars observed with the Palomar Testbed Interferometer. Two of these stars are CH carbon stars and represent the first such measurements of this subtype. Of these, 39 have Yamashita spectral classes and are of sufficiently high quality that we can determine the dependence of effective temperature on spectral type. We find that there is a tendency for the effective temperature to increase with increasing temperature index by ∼120 K per step, starting at T{sub EFF} ≅ 2500 K for C3, y, although there is a large amount of scatter in this relationship. Overall, the median effective temperature of the carbon star sample is 2800 ± 270 K and the median linear radius is 360 ± 100 R{sub ☉}. We also find agreement, on average within 15 K, with the T{sub EFF} determinations of Bergeat et al. and a refinement of the carbon star angular size prediction based on V and K magnitudes is presented that is good to an rms of 12%. A subsample of our stars have sufficient (u, v) coverage to permit non-spherical modeling of their photospheres, and a general tendency for detection of statistically significant departures from sphericity with increasing interferometric signal-to-noise is seen. The implications of most—and potentially all—carbon stars being non-spherical is considered in the context of surface inhomogeneities and a rotation-mass-loss connection.

  13. The Binary Nature of CH-Like Stars

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Začs, L.; Schuster, W. J.; Deveikis, V.

    2016-07-01

    Yamashita has described a group of early carbon stars with enhanced lines of barium that resemble the CH stars but have low radial velocities. It is not clear whether they represent a class of stars separate from early R stars. Radial-velocity measurements and abundance analyses are applied in order to clarify the evolutionary status of CH-like stars. Radial-velocity monitoring was performed over a time interval of about 10 years. Abundance analysis was carried out using high-resolution spectra and the method of atmospheric models for three CH-like candidate stars. The radial-velocity monitoring confirmed regular variations for all of the classified CH-like stars, except for two, in support of their binary nature. The calculated orbital parameters are similar to those observed for barium stars in the disk of the Galaxy and their counterparts in the halo, that is, the CH stars. The relatively low luminosity of CH-like stars and the overabundance of s-process elements in the atmospheres are in agreement with a mass-transfer scenario from the secondary—an AGB star in the past. The kinematic data and metallicities support the idea that CH-like stars are thin/thick-disk population objects.

  14. On Helium-Dominated Stellar Evolution: The Mysterious Role of the O(He)-Type Stars

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.

    2014-01-01

    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs.

  15. On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.

    2014-06-01

    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims: A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods: We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results: We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions: A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs. Based on observations with the NASA

  16. Spectroscopy of Carbon Stars in the Draco and Ursa Minor Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Abia, C.

    2008-07-01

    With the ISIS spectrograph on the William Herschel Telescope, we obtained intermediate-resolution optical spectra in three and five carbon stars belonging to the dwarf spheroidal (dSph) galaxies Draco and Ursa Minor, respectively. The metallicity, carbon isotopic ratios, and high-mass s-element abundances were determined by spectral synthesis in LTE using appropriate spherically symmetric, carbon-rich atmosphere models. The infrared colors and derived luminosities suggest that these stars are equivalent to the classical CH-type stars found in the halo of the Milky Way, although the evidence of luminosity variations in the stars Draco 461 and Draco 20733 may be compatible with these being carbon-rich low-mass asymptotic giant branch stars. The derived overall metallicity in the stellar sample ([M/H] ~-2.0) agrees with the average metallicity of the main stellar component in these dSphs obtained by previous studies. The C/O and 12C/13C ratios, and the average large heavy-element (Ba, La, Nd, Sm) enhancements derived ([hs/M] >=1) are also similar to the values found in galactic CH-type stars at the same stellar metallicity. Although this average excess in heavy elements can be explained by standard s-process nucleosynthesis models, in two stars of Ursa Minor there is a suggestion that their heavy-element abundance pattern bears a closer resemblance to the scaled solar system r-process than the s-process abundance curve. If this is confirmed, these stars would represent an extragalactic example of the s + r carbon-rich (binary) stars found in the galactic halo. This r-process like abundance pattern has been found previously in other red giant stars belonging to Ursa Minor, suggesting a peculiar chemical evolution history in this dSph galaxy.

  17. Variability Studies in Two Hypergiants and a Post-AGB Object

    NASA Astrophysics Data System (ADS)

    Freund, Stephen; Hrivnak, Bruce J.; Lu, Wenxian

    2016-01-01

    In the course of long-term photometric monitoring of post-AGB stars at the Valparaiso University campus observatory, we have also observed some objects of uncertain evolutionary state. This includes two objects that have some of the characteristics of post-AGB stars, such as large IR excesses and F-G spectral types. The weight of recent evidence suggests that two of these, IRAS 19114+0002 (AFGL 2343) and IRAS 19244+1115 (IRC+10 420), are instead hypergiants, objects of very high luminosity arising from evolved high-mass progenitors. A third object, IRAS 20004+2955 (V1027 Cyg), appears to be a cool post-AGB star evolving from a low or intermediate-mass progenitor. We have light and color curves from 1994-2007, along with some radial velocity data from 1991-1995. These three objects display complex light and color curves with evidence of periodicity in the range of 100 to 300 days. We will present the results of these studies. This research is supported by grants from the National Science Foundation (most recently AST 1413660), the Indiana Space Grant Consortium, and Valparaiso University.

  18. Outer layers of a carbon star: The view from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Ensman, Lisa M.; Alexander, D. R.; Avrett, E. H.; Brown, A.; Carpenter, K. G.; Eriksson, K.; Gustafsson, B.; Jorgensen, U. G.; Judge, Philip D.

    1995-01-01

    To advance our understanding of the relationship between stellar chromospheres and mass loss, which is a common property of carbon stars and other asymptotic giant branch stars, we have obtained ultraviolet spectra of the nearby N-type carbon star UU Aur using the Hubble Space Telescope (HST). In this paper we describe the HST observations, identify spectral features in both absorption and emission, and attempt to infer the velocity field in the chromosphere, upper troposphere, and circumstellar envelope from spectral line shifts. A mechanism for producing fluoresced emission to explain a previously unobserved emission line is proposed. Some related ground-based observations are also described.

  19. Binary properties of CH and carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Van Eck, S.; Van Winckel, H.; Merle, T.; Boffin, H. M. J.; Andersen, J.; Nordström, B.; Udry, S.; Masseron, T.; Lenaerts, L.; Waelkens, C.

    2016-02-01

    The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which seven carbon-enhanced metal-poor (CEMP) stars and six CH stars (including HIP 53522, a new member of the family, as revealed by a detailed abundance study). All stars but one show clear evidence for binarity. New orbits are obtained for eight systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH, and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very low-mass companion or of regular envelope pulsations. The period - eccentricity (P - e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5-0.7 M⊙, indicative of white-dwarf companions, adopting 0.8-0.9 M⊙ for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their higher-metallicity analogues, barium stars. The P - e diagrams of barium, CH, and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P< 1000 d) and mostly circular or almost circular orbits, and another with longer period and eccentric (e> 0.1) orbits. These two groups either

  20. High-resolution analysis of carbon-enhanced metal-poor stars with Magellan

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine R.; Placco, Vinicius M.; Beers, Timothy C.

    2016-01-01

    We report chemical abundances for carbon-enhanced metal-poor stars observed with Magellan/MIKE. The various subclasses of CEMP stars are presented in the context of the astrophysical sites of production of the elements. Of particular importance are the new discoveries and analysis of CEMP-no stars with [Fe/H] < -3.5, which exhibit no neutron-capture-element enhancements. We find that the abundance patterns of the lowest-metallicity stars in the sample reveal new clues regarding the origin(s) of early CNO production in the Universe.

  1. The Compensation Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Hyatt, Thomas K.

    2013-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  2. The Facilities Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  3. 2011 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This report, the second of AGB's studies of higher education governance, documents the extent to which college and university boards are following good-governance practices. In addition, it takes a focused look at board engagement to determine the degree to which governing boards are actively, intellectually, and strategically involved with their…

  4. The Executive Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Legon, Richard D.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  5. The Audit Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Staisloff, Richard L.

    2011-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  6. The Investment Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Yoder, Jay A.

    2011-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices included in this text support the objectives of board committees:…

  7. The low Sr/Ba ratio on some extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; François, P.; Sbordone, L.

    2014-11-01

    Context. It has been noted that, in classical extremely metal-poor (EMP) stars, the abundance ratio of two well-observed neutron-capture elements, Sr and Ba, is always higher than [Sr/Ba] = -0.5, which is the value of the solar r-only process; however, a handful of EMP stars have recently been found with a very low Sr/Ba ratio. Aims: We try to understand the origin of this anomaly by comparing the abundance pattern of the elements in these stars and in the classical EMP stars. Methods: For a rigorous comparison with previous data, four stars with very low Sr/Ba ratios were observed and analyzed in the same way as in the First Stars program: analysis within LTE approximation through 1D (hydrostatic) model atmosphere, providing homogeneous abundances of nine neutron-capture elements. Results: In CS 22950-173, the only turnoff star of the sample, the Sr/Ba ratio is, in fact, found to be higher than the r-only solar ratio, so the star is discarded. The remaining stars (CS 29493-090, CS 30322-023, HE 305-4520) are cool evolved giants. They do not present a clear carbon enrichment, but in evolved giants C is partly burned into N, and owing to their high N abundance, they could still have initially been carbon-rich EMP stars (CEMP). The abundances of Na to Mg present similar anomalies to those in CEMP stars. The abundance patterns of the neutron-capture elements in the three stars are strikingly similar to a theoretical s-process pattern. This pattern could at first be attributed to pollution by a nearby AGB, but none of the stars presents a clear variation in the radial velocity indicating the presence of a companion. The stellar parameters seem to exclude any internal pollution in a TP-AGB phase for at least two of these stars. The possibility that the stars are early-AGB stars polluted during the core He flash does not seem compatible with the theory. Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 077.D-0299(A) PI

  8. An Explosive End to Intermediate-Mass Zero-Metallicity Stars and Early Universe Nucleosynthesis

    SciTech Connect

    Lau, Herbert H.B.; Stancliffe, Richard J.; Tout, Christopher A.

    2008-03-11

    We use the Cambridge stellar evolution code STARS to model the evolution of 5 M{sub {center_dot}} and 7 M{sub {center_dot}} zero-metallicity stars. With enhanced resolution at the hydrogen and helium burning shell in the AGB phases, we are able to model the entire thermally pulsing asymptotic giant branch (TP-AGB) phase. The helium luminosities of the thermal pulses are significantly lower than in higher metallicity stars so there is no third dredge-up. The envelope is enriched in nitrogen by hot-bottom burning of carbon that was previously mixed in during second dredge-up. There is no s-process enrichment owing to the lack of third dredge up. The thermal pulses grow weaker as the core mass increases and they eventually cease. From then on the star enters a quiescent burning phase which lasts until carbon ignites at the centre of the star when the CO core mass is 1.36 M{sub {center_dot}}. With such a high degeneracy and a core mass so close to the Chandrasekhar mass, we expect these stars to explode as type 1.5 supernovae, very similar to Type Ia supernovae but inside a hydrogen rich envelope.

  9. M dwarfs and the fraction of high carbon-to-oxygen stars in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Gizis, John E.; Marks, Zachary; Hauschildt, Peter H.

    2016-02-01

    We investigate the frequency of high carbon-to-oxygen (C/O = 0.9) M dwarf stars in the solar neighbourhood. Using synthetic spectra, we find that such M dwarfs would have weaker TiO bands relative to hydride features. Similar weakening has already been detected in M-subdwarf (sdM) stars. By comparing to existing spectroscopic surveys of nearby stars, we show that less than one per cent of nearby stars have high carbon-to-oxygen ratios. This limit does not include stars with C/O = 0.9, [m/H] > 0.3, and [C/Fe] > 0.1, which we predict to have low-resolution optical spectra similar to solar metallicity M dwarfs.

  10. Binarity among C-enriched and Related Stars

    NASA Astrophysics Data System (ADS)

    Van Eck, S.; Merle, T.; Jorissen, A.; Van Winckel, H.; Gorlova, N.; Vos, J.; Exter, K.; Oestensen, R.; Van de Steene, G.

    2015-08-01

    Long-term radial-velocity monitoring of different families of evolved stars is being carried out with the high-resolution HERMES spectrograph mounted on the MERCATOR telescope (La Palma, Spain). Here we report on new binary AGB star candidates as well as new binary CH stars. The AGB-manqué channel is also discussed and is needed to explain binary systems with helium white dwarfs. Determining the orbital parameters of these families of binary stars is essential to constrain not only the mass-transfer mechanisms, but also RGB and AGB evolution.

  11. Accurate abundance determinations in S stars

    NASA Astrophysics Data System (ADS)

    Neyskens, P.; Van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.

    2011-12-01

    S-type stars are thought to be the first objects, during their evolution on the asymptotic giant branch (AGB), to experience s-process nucleosynthesis and third dredge-ups, and therefore to exhibit s-process signatures in their atmospheres. Until present, the modeling of these processes is subject to large uncertainties. Precise abundance determinations in S stars are of extreme importance for constraining e.g., the depth and the formation of the 13C pocket. In this paper a large grid of MARCS model atmospheres for S stars is used to derive precise abundances of key s-process elements and iron. A first estimation of the atmospheric parameters is obtained using a set of well-chosen photometric and spectroscopic indices for selecting the best model atmosphere of each S star. Abundances are derived from spectral line synthesis, using the selected model atmosphere. Special interest is paid to technetium, an element without stable isotopes. Its detection in stars is considered as the best possible signature that the star effectively populates the thermally-pulsing AGB (TP-AGB) phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The computed [Zr/Fe] overabundances are in good agreement with the AGB stellar evolution model predictions, while the Tc/Zr abundances are slightly over-predicted. This discrepancy can help to set stronger constraints on nucleosynthesis and mixing mechanisms in AGB stars.

  12. Oxygen- and carbon-rich variable red giant populations in the Magellanic Clouds from EROS, OGLE, MACHO, and 2MASS photometry

    NASA Astrophysics Data System (ADS)

    Wiśniewski, M.; Marquette, J. B.; Beaulieu, J. P.; Schwarzenberg-Czerny, A.; Tisserand, P.; Lesquoy, É.

    2011-06-01

    Context. The carbon-to-oxygen (C/O) ratio of asymptotic giant branch (AGB) stars constitutes an important index of evolutionary and environment/metallicity factor. Aims: We develop a method for mass C/O classification of AGBs in photometric surveys without using periods. Methods: For this purpose we rely on the slopes in the tracks of individual stars in the colour-magnitude diagram. Results: We demonstrate that our method enables the separation of C-rich and O-rich AGB stars with little confusion. For the Magellanic Clouds we demonstrate that this method works for several photometric surveys and filter combinations. As we rely on no period identification, our results are relatively insensitive to the phase coverage, aliasing, and time-sampling problems that plague period analyses. For a subsample of our stars, we verify our C/O classification against published C/O catalogues. With our method we are able to produce C/O maps of the entire Magellanic Clouds. Conclusions: Our purely photometric method for classification of C- and O-rich AGBs constitutes a method of choice for large, near-infrared photometric surveys. Because our method depends on the slope of colour-magnitude variation but not on magnitude zero point, it remains applicable to objects with unknown distances.

  13. Barium isotopic composition of mainstream silicon carbides from Murchison: Constraints for s-process nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio; Gyngard, Frank; Willingham, David G.; Pignatari, Marco; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.

  14. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    PubMed

    Ho, Wynn C G; Heinke, Craig O

    2009-11-01

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star. PMID:19890325

  15. Calibration of Post-AGB Supergiants as Standard Extragalactic Candles for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1998-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic-giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The reason for this belief is that in old populations, the stars that are evolving through the PAGB region of the HR (Hertzsprung-Russell) diagram arise from only a single main-sequence turnoff mass. In addition, the theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, the PAGB stars of these spectral types are very easily identified, due to their large Balmer jumps, which are due to their very low surface gravities.

  16. Evolution models from the AGB to the PNe and the rapid evolution of SAO 244567

    NASA Astrophysics Data System (ADS)

    Lawlor, Timothy M.; Sebzda, Steven; Peterson, Zach

    2015-08-01

    We present evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PNe) phase for models of mass 1 M⊙ over a range of metallicities from primordial, Z = 10-14, through near solar, Z = 0.02. Using our grid of models, we determine a central star mass dependence on initial metallicity. We also present a range of low masses for our low to very low metal models. The understanding of these objects is an important part of galactic evolution and the evolution of the composition of the universe over a broad range of red shits. For our low Z models, we find key differences in how they cross the HR diagram to the PNe phase, compared with models with higher initial Z. Some of our models experience the so called AGB Final Thermal Pulse (AFTP), which is a helium pulse that occurs while leaving the AGB and causes a rapid looping evolution while evolving between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, SAO 244567. This object has been observed to be rapidly evolving (heating) over more than the last 50 years and is the central star of the youngest known planetary nebula. These two characteristics are similar to what is expected for AFTP models. It is a short lived phase that is related to, but different than, very late thermal pulse objects such as Sakurai’s Object, FG Sge, and V605 Aql. These objects experienced a similar thermal pulse, but later on the white dwarf cooling track.

  17. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    particular to "resolve" it among the many absorption lines from other elements, present in the stellar spectrum in this wavelength region. Moreover, a fairly large telescope is needed as the stars to be observed are relatively rare, hence distant and faint for this kind of demanding observations. The Belgian and French astronomers decided to use the Coude Echelle Spectrometer (CES) at the ESO 3.6-m telescope on La Silla, a telescope/instrument combination offering some hope of success for these difficult observations. Spectra of three southern stars, HD 187861, HD 196944 and HD 224959 , were obtained during two nights in September 2000 and found to be of excellent quality. The scientists were very pleased to find that the Lead absorption line was clearly present and very strong in the spectra of all three stars . A subsequent, detailed analysis demonstrated that the three stars all have a substantial overabundance of Lead. Moreover, from the measured abundances of other elements in these spectra, it is also clear that this Lead has been formed in the s-process . The astronomers were able to prove that the Lead cannot originate from the competing "r-process" that occurs in other environments like supernova explosions. " This is the first detection of a Lead-star ", explains Sophie Van Eck from the Institut d'Astronomie et d'Astrophysique of the Université Libre de Bruxelles (Belgium). " These stars are almost exclusively enriched with Lead. Moreover, the abundances in all three stars show a remarkable similarity ." How does the s-process operate? The high abundance of Lead in these otherwise low-metallicity stars also provides detailed clues on how the s-process operates inside the AGB stars. When a Carbon-13 nucleus (i.e. a nucleus with 6 protons and 7 neutrons [2]) is hit by a Helium-4 nucleus (2 protons and 2 neutrons), they fuse to form Oxygen-16 (8 protons and 8 neutrons). In this process - as can be seen by adding the numbers - one neutron is released. It is exactly

  18. The inner wind of IRC+10216 revisited: new exotic chemistry and diagnostic for dust condensation in carbon stars

    NASA Astrophysics Data System (ADS)

    Cherchneff, I.

    2012-09-01

    Aims: We model the chemistry of the inner wind of the carbon star IRC+10216 and consider the effects of periodic shocks induced by the stellar pulsation on the gas to follow the non-equilibrium chemistry in the shocked gas layers. We consider a very complete set of chemical families, including hydrocarbons and aromatics, hydrides, halogens, and phosphorous-bearing species. Our derived abundances are compared to those for the latest observational data from large surveys and the Herschel telescope. Methods: A semi-analytical formalism based on parameterised fluid equations is used to describe the gas density, velocity, and temperature from 1 R⋆ to 5 R⋆. The chemistry is described using a chemical kinetic network of reactions and a set of stiff, ordinary, coupled differential equations is solved. Results: The shocks induce an active non-equilibrium chemistry in the dust formation zone of IRC+10216 where the collision destruction of CO in the post-shock gas triggers the formation of O-bearing species such as H2O and SiO. Most of the modelled molecular abundances agree very well with the latest values derived from Herschel data on IRC+10216. The hydrides form a family of abundant species that are expelled into the intermediate envelope. In particular, HF traps all the atomic fluorine in the dust formation zone. The halogens are also abundant and their chemistry is independent of the C/O ratio of the star. Therefore, HCl and other Cl-bearing species should also be present in the inner wind of O-rich AGB or supergiant stars. We identify a specific region ranging from 2.5 R⋆ to 4 R⋆, where polycyclic aromatic hydrocarbons form and grow. The estimated carbon dust-to-gas mass ratio derived from the mass of aromatics formed ranges from 1.2 × 10-3 to 5.8 × 10-3 and agrees well with existing values deduced from observations. This aromatic formation region is situated outside hot layers where SiC2 is produced as a bi-product of silicon carbide dust synthesis. The Mg

  19. Observational Evidence for Presolar Grains around Oxygen-rich Evolved Stars

    NASA Astrophysics Data System (ADS)

    Speck, A. K.; Hofmeister, A. M.

    2003-12-01

    Many presolar grain types have been found in meteorites since the discovery of presolar silicon carbide (SiC) grains in the Murray meteorite. Initially these were mostly limited to carbon-rich grains. However, more recently, oxygen-rich presolar grains have been isolated: corundum (Al2O3), spinel (MgAl2O4), hibonite(CaAl12O19) and rutile (TiO2). The majority of these O-rich grains, like the SiC grains, have isotopic compositions indicative of formation around asymptotic giant branch (AGB) stars. There is very little observational evidence for most of these presolar grains around AGB stars, and what little evidence does exist is generally misinterpreted. We present the observational evidence (or lack thereof) for these oxide grains, and discuss the discrepancies between meteoritic and astronomical results, as well as the problems of interpreting dust features in astronomical spectra. At present, the only O-rich presolar grain type for which the observational evidence is not (currently) disputed is (amorphous) Al2O3. In order to progress further in matching these presolar grains and the grains currently forming around AGBs stars we need to know more details about these grains: e.g. polytypes, the level of crystallinity/amorphousness in the grains, the size distributions, etc. With this information we place more constraints on the IR spectral feature we should be looking for. Further observational constraints are also required, such as spatial correlations between related IR spectral features.

  20. A VLA 3.6 centimeter survey of N-type carbon stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Brown, Alexander

    1992-01-01

    The results are presented of a VLA-continuum survey of 7 N-type carbon stars at 3.6 cm. Evidence exists for hot plasma around such stars; the IUE satellite detected emission lines of singly ionized metals in the optically brightest carbon stars, which in solar-type stars indicate the existence of a chromosphere. In the past, these emission lines were used to constrain the lower portion of the archetypical chromospheric model of N-type carbon stars, that of TX Psc. Five of the survey stars are semiregular (1 SRa and 4 SRb) variables and two are irregular (Lb) variables. Upper limits of about 0.07 mJy are set of the SRb and Lb variables and the lone SRa (V Hya) was detected with a flux of 0.22 mJy. The upper limits for the six stars that are not detected indicate that the temperature in their winds is less than 10,000 K. Various scenarios for the emission from V Hya are proposed, and it is suggested that the radio continuum is shock-related (either due to pulsation or the suspected bipolar jet) and not due to a supposed accretion disk around an unseen companion.

  1. Compact reflection nebulae, a transit phase of evolution from post-AGB to planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hu, J. Y.; Slijkhuis, S.

    1989-01-01

    In a search of the optical counter-part of candidates of protoplanetary nebulae on the plates of UK Schmidt, ESO Schmidt, and POSS, five compact reflection nebulae associated with post-AGB stars were found. A simplified model (dust shell is spherical symmetric, expansion velocity of dust shell is constant, Q(sub sca)(lambda) is isotropic, and the dust grain properties are uniform) is used to estimate the visible condition of the dust shell due to the scattering of the core star's light. Under certain conditions the compact reflection nebulae can be seen of the POSS or ESO/SRC survey plates.

  2. Estimation of carbon abundances in metal-deficient stars. Application to the “strong G-Band” stars of Beers, Preston, & Schectman

    NASA Astrophysics Data System (ADS)

    Rossi, Silvia; Beers, Timothy C.; Sneden, Chris

    We develop and test a method for the estimation of carbon abundance ratios, [C/Fe], and metallicities, [Fe/H], in metal-deficient stars, based on application of artificial neural networks and synthesis models to medium-resolution (1-2 Å) spectra in the region of the CH G-band feature at λ 4300 Å. We calibrate this method by comparison to modern carbon abundance determinations for N ≃ 125 stars reported in the recent literature. As a first application, we estimate the abundance of carbon and [Fe/H] for the sample of 56 stars identified as carbon-rich, relative to stars of similar metal abundance, in the sample of "strong G-band" stars discussed by Beers, Preston, & Shectman.

  3. Winds, Bubbles, ...but Magnetized: Solutions for High Speed Post-AGB Winds and Their Extreme Collimation

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; López, J. A.; Franco, J.

    2003-01-01

    This paper provides solutions for the origin of post-AGB winds, their acceleration up to high speed, and the subsequent formation of extremely collimated proto-planetary nebulae. Several wind models with terminal velocities from a few tens of km/s up to 10^3km/s are calculated, which produce proto-planetary nebulae with linear momenta in the range 10^36 to 10^40gcm/s and with kinetic energies in the range 10^42 to 10^47 erg. These results match available observations of proto-planetary nebulae. In the present simplistic scheme, the driver of the wind is just the magnetic pressure at the stellar surface. Other forces are not taken into account in this study, except gravity. We conclude that mass-loss rates of post-AGB stars and transition times from late AGB up to planetary nebula central stars could be directly linked with the production of magnetic field at the stellar core. As an example, mass-loss rates as large as 8×10^-5 M[ sun ]/yr and transition times as short as 5000 years are predicted.

  4. Detection of C-13O radio emission from C-13-rich carbon stars

    NASA Technical Reports Server (NTRS)

    Jura, M.; Kahane, C.; Omont, A.

    1988-01-01

    A high ratio of C-13O radio emission in the J = 1-0 rotational line has been detected from three mass-losing carbon stars which optical data indicate have high C-13/C12 ratios. Since chemical fractionation, isotope-dependent photodissociation and opacity in the rotational and vibrational lines may not raise significantly the C-13O ratio above the actual C-13/C-12 ratio in these circumstellar envelopes, the relative abundance of C-13 in these stars might be even greater by perhaps a factor of two than previously believed. About 15 percent of all luminous carbon stars are C-13-rich, and these stars may play a significant role in the enhancement in the C-13/C12 ratio that has occurred during the past 4.6 billion years since the formation of the sun.

  5. A Continued Search for CEMP RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Reggiani, H. M.; Kennedy, C. R.; Rossi, S.; Beers, T. C.

    2014-10-01

    Among the stellar populations of the Galactic halo there is a class of stars known as carbon-enhanced metal-poor (CEMP) stars. These are metal-poor ([Fe/H] < 1.0) stars whose atmospheres exhibit large overabundances of carbon ([C/Fe] ≥ +0.7). The frequency of these stars increases with decreasing metallicity, and so by studying their abundance patterns, one can begin to uncover details of the origins of the elements. There exist a number of different classes of CEMP stars (Beers & Christlieb 2005) with specific abundance characteristics; one of them is the CEMP-s class, which exhibit evidence of s-process element enrichment, widely believed to be resultant of mass transfer from a companion low-metallicity asymptotic giant branch (AGB) star, where the production of carbon and s-process elements occurs. Recent spectroscopic observations of metal-poor RR Lyrae stars have revealed that their typical abundance patterns are consistent with very metal-poor (VMP) and extremely metal-poor (EMP) giants and dwarfs studied in the halo system of the Milky Way. Of particular interest is the recent discovery of a VMP RR Lyrae that has large overabundances of carbon and the s-process elements. In this work, we showed results obtained with WiFeS observations 2.3m Siding Spring Observatory telescope of a set of newly-identified CEMP stars that are known RR Lyr stars. We confirmed theses stars as CEMP stars (Kennedy et. al., in prep) and will, eventually, test their abundances against new stellar evolution simulations of CEMP stars.

  6. Spectra from the IRS of Bright Oxygen-Rich Evolved Stars in the SMC

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, Greg; Wood, Peter

    2016-06-01

    We have used Spitzer's Infrared Spectrograph (IRS) to obtain spectra of stars in the Small Magellanic Cloud (SMC). The targets were chosen from the Point Source Catalog of the Mid-Course Space Experiment (MSX), which detected the 243 brightest infrared sources in the SMC. Our SMC sample of oxygen-rich evolved stars shows more dust than found in previous samples, and the dust tends to be dominated by silicates, with little contribution from alumina. Both results may arise from the selection bias in the MSX sample and our sample toward more massive stars. Additionally, several sources show peculiar spectral features such as PAHs, crystalline silicates, or both carbon-rich and silicate features. The spectrum of one source, MSX SMC 145, is a combination of an ordinary AGB star and a background galaxy at z~0.16, rather than an OH/IR star as previously suggested.

  7. Macromolecule loading into spherical, elliptical, star-like and cubic calcium carbonate carriers.

    PubMed

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Donatan, Senem; Volodkin, Dmitry V; Tessarolo, Francesco; Antolini, Renzo; Möhwald, Helmuth; Skirtach, Andre G

    2014-09-15

    We fabricated calcium carbonate particles with spherical, elliptical, star-like and cubical morphologies by varying relative salt concentrations and adding ethylene glycol as a solvent to slow down the rate of particle formation. The loading capacity of particles of different isotropic (spherical and cubical) and anisotropic (elliptical and star-like) geometries is investigated, and the surface area of such carriers is analysed. Potential applications of such drug delivery carriers are highlighted. PMID:25044943

  8. Search for carbon stars and DZ white dwarfs in SDSS spectra survey through machine learning

    NASA Astrophysics Data System (ADS)

    Si, JianMin; Luo, ALi; Li, YinBi; Zhang, JianNan; Wei, Peng; Wu, YiHong; Wu, FuChao; Zhao, YongHeng

    2014-01-01

    Carbon stars and DZ white dwarfs are two types of rare objects in the Galaxy. In this paper, we have applied the label propagation algorithm to search for these two types of stars from Data Release Eight (DR8) of the Sloan Digital Sky Survey (SDSS), which is verified to be efficient by calculating precision and recall. From nearly two million spectra including stars, galaxies and QSOs, we have found 260 new carbon stars in which 96 stars have been identified as dwarfs and 7 identified as giants, and 11 composition spectrum systems (each of them consists of a white dwarf and a carbon star). Similarly, using the label propagation method, we have obtained 29 new DZ white dwarfs from SDSS DR8. Compared with PCA reconstructed spectra, the 29 findings are typical DZ white dwarfs. We have also investigated their proper motions by comparing them with proper motion distribution of 9,374 white dwarfs, and found that they satisfy the current observed white dwarfs by SDSS generally have large proper motions. In addition, we have estimated their effective temperatures by fitting the polynomial relationship between effective temperature and g-r color of known DZ white dwarfs, and found 12 of the 29 new DZ white dwarfs are cool, in which nine are between 6,000 K and 6,600 K, and three are below 6,000 K.

  9. A Catalog of GALEX Ultraviolet Emission from Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Ramstedt, Sofia; Kastner, Joel H.; Vlemmings, Wouter

    2016-06-01

    We present the results of a search for ultraviolet emission from stars on the asymptotic giant branch (AGB). Our input sample of nearly 500 AGB stars were selected from existing catalogs, as detailed in the our earlier search for X-ray emission from AGB stars (Ramstedt et al. 2012). We determined that 67% of the input sample were observed in the imaging surveys of the Galaxy Evolution Explorer (GALEX). More than half of the individual AGB stars observed by GALEX were detected in at least one of the NUV or FUV bandpasses. The sample of NUV- and FUV-detected AGB stars includes a range of chemical types (M-, C-, and S-types) that when combined with multiwavelength photometry indicate the influence of the distinct circumstellar environments. We analyze multiwavelength photometry for both the detections and non-detections to maximize the return from this emerging UV view of cool, evolved, mass losing giants.

  10. Molecular processes from the AGB to the PN stage

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. Anibal

    2012-08-01

    Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.

  11. The s-process in low-metallicity stars - II. Interpretation of high-resolution spectroscopic observations with asymptotic giant branch models

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F.

    2011-11-01

    High-resolution spectroscopic observations of 100 metal-poor carbon and s-rich stars (CEMP-s) collected from the literature are compared with the theoretical nucleosynthesis models of the asymptotic giant branch (AGB) presented in Paper I (MAGBini= 1.3, 1.4, 1.5, 2 M⊙, - 3.6 ≲ [ Fe/H ] ≲- 1.5). The s-process enhancement detected in these objects is associated with binary systems: the more massive companion evolved faster through the thermally pulsing AGB phase (TP-AGB), synthesizing s-elements in the inner He intershell, which are partly dredged up to the surface during the third dredge-up (TDU) episode. The secondary observed low-mass companion became CEMP-s by the mass transfer of C- and s-rich material from the primary AGB. We analyse the light elements C, N, O, Na and Mg, as well as the two s-process indicators, [hs/ls] (where ls = is the the light-s peak at N = 50 and hs = the heavy-s peak at N = 82) and [Pb/hs]. We distinguish between CEMP-s with high s-process enhancement, [hs/Fe] >rsim 1.5 (CEMP-sII), and mild s-process enhanced stars, [hs/Fe] < 1.5 (CEMP-sI). To interpret the observations, a range of s-process efficiencies at any given metallicity is necessary. This is confirmed by the high spread observed in [Pb/hs] (˜2 dex). A degeneration of solutions is found with some exceptions: most main-sequence CEMP-sII stars with low [Na/Fe] can only be interpreted with MAGBini= 1.3-1.4 M⊙. Giants having suffered the first dredge-up (FDU) need a dilution >rsim1 dex (dil is defined as the mass of the convective envelope of the observed star, Mobs★, over the material transferred from the AGB to the companion, MtransAGB). Then AGB models with higher AGB initial masses (MAGBini= 1.5-2 M⊙) are adopted to interpret CEMP-sII giants. In general, solutions with AGB models in the mass range MAGBini= 1.3-2 M⊙ and different dilution factors are found for CEMP-sI stars. About half of the CEMP-s stars with europium measurements show a high r

  12. Hot bottom burning in asymptotic giant branch stars and its effect on oxygen isotopic abundances

    NASA Technical Reports Server (NTRS)

    Boothroyd, Arnold I.; Sackmann, I.-JULIANA; Wasserburg, G. J.

    1995-01-01

    A self-consistent calculation of asymptotic giant branch (AGB) evolution was carried out, including nucleosynthesis at the base of the convective envelope (hot bottom burning). Hot bottom burning was found to occur for stars between approximately 4.5 and approximately 7 solar mass, producing envelopes with O-18/O-16 less than or equal to 10(exp -6) and 10(exp -3) approximately less than or equal O-17/O-16 approximately less than or equal to 10(exp -1). The O-17 abundance depends sensitively on the nuclear O-17-destruction rate; this rate is only loosely constrained by the requirement that first and second dredge-up models match O-isotope observations of red giant branch (RGB) stars (Boothroyd, Sackmann, & Wasserburg 1994). In some cases, high mass-loss rates can terminate hot bottom burning before further O-17 enrichment takes place or even before all O-18 is destroyed. These predictions are in accord with the very limited stellar observations of J type carbon stars on the AGB and with some of the circumstellar Al2O3 grains from meteorites. In contrast, precise data from a number of grains and data from most low-mass S and C AGB stars (approximately less than 1.7 solar mass) lie in a region of the O-18/O-16 versus O-17/O-16 diagram that is not accessible by first and second dredge-up or by hot bottom burning. We conclude that for AGB stars, the standard models of stellar evolution are not in accord with these observations. We surmise that an additional mixing mechanism must exist that transports material from the cool bottom of the stellar convective envelope to a depth at which O-18 is destroyed. This 'cool bottom processing' mechanism on the AGB is similar to extra mixing mechanisms proposed to explain the excess C-13 (and depleted C-12) observed in the earlier RGB stage of evolution and the large Li-7 depletion observed in low-mass main-sequence stars.

  13. The frequency of carbon-enhanced metal-poor stars and the origin of carbon in the universe

    NASA Astrophysics Data System (ADS)

    Marsteller, Brian Elliott

    In recent large surveys of metal-poor stars, such as the HK survey (Beers et al., 1985, 1992), the Hamburg/ESO survey (HES, Christlieb et al., 2001), and recently the stellar component of the Sloan Digital Sky Survey (SDSS, Stoughton et al., 2002), a curiously large fraction of stars which show enhanced carbon abundances have been observed. In fact, this fraction seems to increase as metallicity decreases. Since these stars, the Carbon-Enhanced Metal-Poor (CEMP) stars, then play a significant role in the formation and evolution of the earliest stellar generations, and thus all following generations, it is of vital importance to fully understand their true fraction, so that they can be properly understood, and properly accounted for in models of galactic and nucleosynthetic evolution. In order to obtain this quantity, the frequency of carbon enhancement as a function of metallicity, a large quantity of metal-poor stars need to be analyzed to determine these important abundances. For this to occur from these large, pre-existing databases of low to medium resolution spectroscopy, an accurate method of quickly determining the metallicity and carbon abundance for a star is needed. Due to the limited data currently available in some of these extreme regions of parameter space, currently existing methods which rely on calibration samples do not prove sufficient. Thus, a new method, based solely on the physical properties of the stars and the information contained in their spectra, which is both relatively fast and accurate is needed. Here we outline the development of such a technique which generates synthetic spectra using the line index code MOOG, and automatically determines the required abundances. After verifying the validity of this technique using several samples, abundances are then determined for a large, unbiased sample of stars taken from SDSS. From these abundances, the frequency of carbon enhancement is derived. Although a true frequency cannot be determined

  14. Carbon-enhanced metal-poor stars: relics from the dark ages

    SciTech Connect

    Cooke, Ryan J.; Madau, Piero

    2014-08-20

    We use detailed nucleosynthesis calculations and a realistic prescription for the environment of the first stars to explore the first episodes of chemical enrichment that occurred during the dark ages. Based on these calculations, we propose a novel explanation for the increased prevalence of carbon-enhanced metal-poor (CEMP) stars with decreasing Fe abundance: the observed chemistry for the most metal-poor Galactic halo stars is the result of an intimate link between the explosions of the first stars and their host minihalo's ability to retain its gas. Specifically, high-energy supernovae produce a near solar ratio of C/Fe, but are effective in evacuating the gas from their host minihalo, thereby suppressing the formation of a second generation of stars. On the other hand, minihalos that host low-energy supernovae are able to retain their gas and form a second stellar generation, but, as a result, the second stars are born with a supersolar ratio of C/Fe. Our models are able to accurately reproduce the observed distributions of [C/Fe] and [Fe/H], as well as the fraction of CEMP stars relative to non-CEMP stars as a function of [Fe/H] without any free parameters. We propose that the present lack of chemical evidence for very massive stars (≳ 140 M {sub ☉}) that ended their lives as a highly energetic pair-instability supernova does not imply that such stars were rare or did not exist; the chemical products of these very massive first stars may have been evacuated from their host minihalos and were never incorporated into subsequent generations of stars. Finally, our models suggest that the most Fe-poor stars currently known may have seen the enrichment from a small multiple of metal-free stars, and need not have been exclusively enriched by a solitary first star. These calculations also add further support to the possibility that some of the surviving dwarf satellite galaxies of the Milky Way are the relics of the first galaxies.

  15. Warm water vapour in the sooty outflow from a luminous carbon star.

    PubMed

    Decin, L; Agúndez, M; Barlow, M J; Daniel, F; Cernicharo, J; Lombaert, R; De Beck, E; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; Blommaert, J A D L; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Guélin, M; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kahane, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Yates, J A; Waelkens, C

    2010-09-01

    The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted. PMID:20811453

  16. Asymptotic giant branch stars in the Large Magellanic Cloud: evolution of dust in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Ventura, P.; Schneider, R.; Di Criscienzo, M.; García-Hernández, D. A.; Rossi, C.; Brocato, E.

    2015-03-01

    We calculated theoretical evolutionary sequences of asymptotic giant branch (AGB) stars, including the formation and evolution of dust grains in their circumstellar envelopes. By considering stellar populations of the Large Magellanic Cloud (LMC), we calculate synthetic colour-colour and colour-magnitude diagrams, which are compared with those obtained by the Spitzer Space Telescope. The comparison between observations and theoretical predictions outlines that extremely obscured carbon stars and oxygen-rich sources experiencing hot bottom burning (HBB) occupy well-defined, distinct regions in the colour-colour ([3.6] - [4.5], [5.8] - [8.0]) diagram. The C-rich stars are distributed along a diagonal strip that we interpret as an evolutionary sequence, becoming progressively more obscured as the stellar surface layers enrich in carbon. Their circumstellar envelopes host solid carbon dust grains with size in the range 0.05 < a < 0.2 μm. The presence of silicon carbide (SiC) particles is expected only in the more metal-rich stars. The reddest sources, with [3.6] - [4.5] > 2, are the descendants of stars with initial mass Min ˜ 2.5-3 M⊙ in the very latest phases of AGB life. The oxygen-rich stars with the reddest colours ([5.8] - [8.0] > 0.6) are those experiencing HBB, the descendants of ˜5 M⊙ objects formed 108 yr ago; alumina and silicate dust starts forming at different distances from the central star. The overall dust production rate in the LMC is ˜4.5 × 10-5 M⊙ yr-1, the relative percentages due to C and M stars being 85 and 15 per cent, respectively.

  17. A high-resolution spectral analysis of three carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Goswami, Aruna; Aoki, Wako; Beers, Timothy C.; Christlieb, Norbert; Norris, John E.; Ryan, Sean G.; Tsangarides, Stelios

    2006-10-01

    We present results of an analysis of high-resolution spectra (R ~ 50000), obtained with the Subaru Telescope High Dispersion Spectrograph, of two carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/European Southern Observatory prism survey, HE 1305+0007 and HE 1152-0355, and of the classical CH star HD 5223. All these stars have relatively low effective temperatures (4000-4750K) and high carbon abundances, which result in the presence of very strong molecular carbon bands in their spectra. The stellar atmospheric parameters for these stars indicate that they all have surface gravities consistent with a present location on the red giant branch, and metallicities of [Fe/H] = -2.0 (HE 1305+0007, HD 5223) and [Fe/H] = -1.3 (HE 1152-0355). In addition to their large enhancements of carbon ([C/Fe] = +1.8, +1.6 and +0.6, respectively), all three stars exhibit strong enhancements of the s-process elements relative to iron. HE 1305+0007 exhibits a large enhancement of the third-peak s-process element, lead, with [Pb/Fe] = +2.37, as well as a high abundance of the r-process element europium, [Eu/Fe] = +1.97. The second-peak s-process elements, Ba, La, Ce, Nd and Sm, are found to be more enhanced than the first-peak s-process elements Zr, Sr and Y. Thus, HE 1305+0007 joins the growing class of the so-called `Lead stars', and also the class of objects that exhibit the presence of both r- and s-process elements, the CEMP-r/s stars. The large enhancements of neutron-capture (n-capture) elements exhibited by HE 1152-0355 and HD 5223 are more consistent with the abundance patterns generally noticed in CH stars, essentially arising from pure s-process nucleosynthesis. The elemental abundance distributions observed in these stars are discussed in light of existing theories of CH star formation, as well as the suggested formation scenarios of the CEMP-r/s group. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory

  18. Carbon-enhanced metal-poor star frequencies in the galaxy: corrections for the effect of evolutionary status on carbon abundances

    SciTech Connect

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Stancliffe, Richard J.

    2014-12-10

    We revisit the observed frequencies of carbon-enhanced metal-poor (CEMP) stars as a function of the metallicity in the Galaxy, using data from the literature with available high-resolution spectroscopy. Our analysis excludes stars exhibiting clear overabundances of neutron-capture elements and takes into account the expected depletion of surface carbon abundance that occurs due to CN processing on the upper red giant branch. This allows for the recovery of the initial carbon abundance of these stars, and thus for an accurate assessment of the frequencies of carbon-enhanced stars. The correction procedure we develop is based on stellar-evolution models and depends on the surface gravity, log g, of a given star. Our analysis indicates that for stars with [Fe/H] ≤–2.0, 20% exhibit [C/Fe] ≥+0.7. This fraction increases to 43% for [Fe/H] ≤–3.0 and 81% for [Fe/H] ≤–4.0, which is higher than have been previously inferred without taking the carbon abundance correction into account. These CEMP star frequencies provide important inputs for Galactic and stellar chemical evolution models, as they constrain the evolution of carbon at early times and the possible formation channels for the CEMP-no stars. We also have developed a public online tool with which carbon corrections using our procedure can be easily obtained.

  19. VizieR Online Data Catalog: Cool Galactic Carbon Stars, 2nd Edition (Stephenson 1989)

    NASA Astrophysics Data System (ADS)

    Stephenson, C. B.

    1996-06-01

    The catalog is intended to list all 5987 cool carbon stars having known positions of at least roughly the precision of The Henry Draper Catalogue. Cool carbon stars are defined as stars whose spectra at low dispersion (say a resolution no better than 1-2 angstroms) are known to show bands of the Swan system of the C2 molecule; or, if the spectral region of the Swan system is inadequately observed, they show the red or infrared bands of CN in strength adequate to infer that the Swan bands almost certainly would be seen if their presence could be tested. The closing date for literature search was 1989 June 30, defined by literature received in the author's library by that date. The catalog includes equatorial coordinates (B1900.0); photographic, visual, and infrared magnitudes; spectral types, galactic coordinates, and cross identifications to various other designation systems. (4 data files).

  20. VizieR Online Data Catalog: s-process in low-metallicity stars (Bisterzo+, 2010)

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Kappeler, F.

    2010-11-01

    A large sample of carbon-enhanced metal-poor stars enriched in s-process elements (CEMP-s) have been observed in the Galactic halo. These stars of low mass (M~0.9M⊙) are located on the main-sequence or the red-giant phase, and do not undergo third dredge-up (TDU) episodes. The s-process enhancement is most plausibly due to accretion in a binary system from a more massive companion when on the asymptotic giant branch (AGB) phase (now a white dwarf). In order to interpret the spectroscopic observations, updated AGB models are needed to follow in detail the s-process nucleosynthesis. We present nucleosynthesis calculations based on AGB stellar models obtained with Frascati Raphson-Newton Evolutionary Code (FRANEC) for low initial stellar masses and low metallicities. For a given metallicity, a wide spread in the abundance of the s-process elements is obtained by varying the amount of 13C and its profile in the pocket, where the 13C(α, n)16O reaction is the major neutron source, releasing neutrons in radiative conditions during the interpulse phase. We also account for the second neutron source 22Ne(α,n)25Mg, partially activated during convective thermal pulses. (7 data files).

  1. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  2. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-15

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor. PMID:22170680

  3. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star

    NASA Astrophysics Data System (ADS)

    Nugent, Peter E.; Sullivan, Mark; Cenko, S. Bradley; Thomas, Rollin C.; Kasen, Daniel; Howell, D. Andrew; Bersier, David; Bloom, Joshua S.; Kulkarni, S. R.; Kandrashoff, Michael T.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard T.; Maguire, Kate; Suzuki, Nao; Tarlton, James E.; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J.; Parrent, Jerod T.; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B.; Dilday, Benjamin; Graham, Melissa L.; Lyman, Joe; James, Phil; Kasliwal, Mansi M.; Law, Nicholas M.; Quimby, Robert M.; Hook, Isobel M.; Walker, Emma S.; Mazzali, Paolo; Pian, Elena; Ofek, Eran O.; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-01

    Type Ia supernovae have been used empirically as `standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  4. The 2014 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Hodge-Clark, Kristen

    2014-01-01

    "The 2014 AGB Survey of Higher Education Governance" is the fourth in AGB's studies of college and university governance. This report, based on survey responses from 592 public and independent boards, addresses a range of important governance topics that are receiving attention from boards and the news media, including presidential…

  5. The role of binaries in the enrichment of the early Galactic halo. II. Carbon-enhanced metal-poor stars: CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-02-01

    Context. The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon; these are the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Aims: Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Methods: High-resolution, low S/N spectra of the stars were obtained at roughly monthly intervals over a time span of up to eight years with the FIES spectrograph at the Nordic Optical Telescope. Radial velocities of ~100 m s-1 precision were determined by cross-correlation after each observing night, allowing immediate, systematic follow-up of any variable object. Results: Most programme stars exhibit no statistically significant radial-velocity variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2000 days and normal eccentricity; the binary frequency for the sample is 17 ± 9%. The single stars mostly belong to the recently identified low-C band, while the binaries have higher absolute carbon abundances. Conclusions: We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic interstellar

  6. Exploring the origin of lithium, carbon, strontium, and barium with four new ultra metal-poor stars

    SciTech Connect

    Hansen, T.; Hansen, C. J.; Christlieb, N. E-mail: cjhansen@lsw.uni-heidelberg.de; and others

    2014-06-01

    We present an elemental abundance analysis for four newly discovered ultra metal-poor stars from the Hamburg/ESO survey, with [Fe/H] ≤ –4. Based on high-resolution, high signal-to-noise spectra, we derive abundances for 17 elements in the range from Li to Ba. Three of the four stars exhibit moderate to large overabundances of carbon, but have no enhancements in their neutron-capture elements. The most metal-poor star in the sample, HE 0233–0343 ([Fe/H] = –4.68), is a subgiant with a carbon enhancement of [C/Fe] = +3.5, slightly above the carbon-enhancement plateau suggested by Spite et al. No carbon is detected in the spectrum of the fourth star, but the quality of its spectrum only allows for the determination of an upper limit on the carbon abundance ratio of [C/Fe] < +1.7. We detect lithium in the spectra of two of the carbon-enhanced stars, including HE 0233–0343. Both stars with Li detections are Li-depleted, with respect to the Li plateau for metal-poor dwarfs found by Spite and Spite. This suggests that whatever site(s) produced C either do not completely destroy lithium, or that Li has been astrated by early-generation stars and mixed with primordial Li in the gas that formed the stars observed at present. The derived abundances for the α elements and iron-peak elements of the four stars are similar to those found in previous large samples of extremely and ultra metal-poor stars. Finally, a large spread is found in the abundances of Sr and Ba for these stars, possibly influenced by enrichment from fast rotating stars in the early universe.

  7. Mass loss and dust formation around oxygen-rich evolved stars

    NASA Astrophysics Data System (ADS)

    Kemper, F.

    2002-09-01

    This work is a study of the formation of dust around oxygen-rich evolved stars, in correlation with the physical conditions in this environment. ISO SWS and LWS spectroscopy has been analysed, and several mineral and molecular species are identified. For two evolved stars: OH/IR star OH 127.8+0.0 and planetary nebula NGC 6302, the spectral energy distribution has been fitted. Metallic iron and carbonates are identified as new dust components. In addition, the degree of crystallinity of silicates has been studied as a function of mass-loss rate. Finally, submm observations of rotational transitions of CO have been analysed to study the mass-loss history of oxygen-rich AGB stars.

  8. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, Marcelo Miguel

    2016-04-01

    Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at

  9. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  10. Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Battaglia, G.; Pancino, E.; Romano, D.; de Boer, T. J. L.; Starkenburg, E.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Tosi, M.

    2016-01-01

    We present [C/Fe] and [N/Fe] abundance ratios and CH(λ4300) and S(λ3883) index measurements for 94 red giant branch (RGB) stars in the Sculptor dwarf spheroidal galaxy from VLT/VIMOS MOS observations at a resolving power R = 1150 at 4020 Å. This is the first time that [N/Fe] abundances are derived for a large number of stars in a dwarf spheroidal. We found a trend for the [C/Fe] abundance to decrease with increasing luminosity on the RGB across the whole metallicity range, a phenomenon observed in both field and globular cluster giants, which can be interpreted in the framework of evolutionary mixing of partially processed CNO material. Both our measurements of [C/Fe] and [N/Fe] are in good agreement with the theoretical predictions for stars at similar luminosity and metallicity. We detected a dispersion in the carbon abundance at a given [Fe/H], which cannot be ascribed to measurement uncertainties alone. We interpret this observational evidence as the result of the contribution of different nucleosynthesis sources over time to a not well-mixed interstellar medium. We report the discovery of two new carbon-enhanced, metal-poor stars. These are likely the result of pollution from material enriched by asymptotic giant branch stars, as indicated by our estimates of [Ba/Fe] >+1. We also attempted a search for dissolved globular clusters in the field of the galaxy by looking for the distinctive C-N pattern of second population globular clusters stars in a previously detected, very metal-poor, chemodynamical substructure. We do not detect chemical anomalies among this group of stars. However, small number statistics and limited spatial coverage do not allow us to exclude the hypotheses that this substructure forms part of a tidally shredded globular cluster. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 091.D-0089

  11. EVIDENCE OF V-BAND POLARIMETRIC SEPARATION OF CARBON STARS AT HIGH GALACTIC LATITUDE

    SciTech Connect

    Goswami, Aruna; Kartha, Sreeja S.; Sen, Asoke K.

    2010-10-10

    Polarization is an important indicator of stellar evolution, especially for stars evolving from red giant stage to planetary nebulae. However, not much is known about the polarimetric properties of the carbon-enhanced metal-poor (CEMP) stars, although they have been well studied in terms of photometric as well as low- and high-resolution spectroscopy. We report here first-ever estimates of V-band polarimetry of a group of CEMP stars. V-band polarimetry was planned, as the V band is known to show maximum polarization among BVRI polarimetry for any scattering of light caused due to dust. Based on these estimates the program stars show a distinct classification into two: one with p% < 0.4 and the other with p% > 1. Stars with circumstellar material exhibit a certain amount of polarization that may be caused by scattering of starlight due to circumstellar dust distribution into non-spherically symmetric envelopes. The degree of polarization increases with asymmetries present in the geometry of the circumstellar dust distribution. Our results reflect upon these properties. While the sample size is relatively small, the polarimetric separation of the two groups (p% < 0.4 and p% > 1) is very distinct; this finding, therefore, opens up an avenue of exploration with regard to CEMP stars.

  12. Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of Beers, Preston, and Shectman

    NASA Astrophysics Data System (ADS)

    Rossi, Silvia; Beers, Timothy C.; Sneden, Chris; Sevastyanenko, Tatiana; Rhee, Jaehyon; Marsteller, Brian

    2005-12-01

    We develop and test a method for the estimation of metallicities ([Fe/H]) and carbon abundance ratios ([C/Fe]) for carbon-enhanced metal-poor (CEMP) stars based on the application of artificial neural networks, regressions, and synthesis models to medium-resolution (1-2 Å) spectra and J-K colors. We calibrate this method by comparison with metallicities and carbon abundance determinations for 118 stars with available high-resolution analyses reported in the recent literature. The neural network and regression approaches make use of a previously defined set of line-strength indices quantifying the strength of the Ca II K line and the CH G band, in conjunction with J-K colors from the Two Micron All Sky Survey Point Source Catalog. The use of near-IR colors, as opposed to broadband B-V colors, is required because of the potentially large affect of strong molecular carbon bands on bluer color indices. We also explore the practicality of obtaining estimates of carbon abundances for metal-poor stars from the spectral information alone, i.e., without the additional information provided by photometry, as many future samples of CEMP stars may lack such data. We find that although photometric information is required for the estimation of [Fe/H], it provides little improvement in our derived estimates of [C/Fe], and hence, estimates of carbon-to-iron ratios based solely on line indices appear sufficiently accurate for most purposes. Although we find that the spectral synthesis approach yields the most accurate estimates of [C/Fe], in particular for the stars with the strongest molecular bands, it is only marginally better than is obtained from the line index approaches. Using these methods we are able to reproduce the previously measured [Fe/H] and [C/Fe] determinations with an accuracy of ~0.25 dex for stars in the metallicity interval -5.5<=[Fe/H]<=-1.0 and with 0.2<=(J-K)0<=0.8. At higher metallicity, the Ca II K line begins to saturate, especially for the cool stars in

  13. Characterizing uncertainties of the national-scale forest gross aboveground biomass (AGB) loss estimate: a case study of the Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Stehman, S.; Potapov, P.; Turubanova, S.; Baccini, A.; Goetz, S. J.; Laporte, N. T.; Houghton, R. A.; Hansen, M.

    2013-12-01

    Modern remote sensing techniques enable the mapping and monitoring of aboveground biomass (AGB) carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where a national forest inventory (NFI) has yet to be established due to a lack of infrastructure and political instability. We demonstrate a method for producing national-scale gross AGB loss estimates and quantifying uncertainty of the estimates using remotely sensed-derived forest cover loss and biomass carbon density data. Forest cover type and loss were characterized using published Landsat-based data sets and related to LIDAR-derived biomass data from the Geoscience Laser Altimeter System (GLAS). We produced two gross AGB loss estimates for the DRC for the last decade (2000-2010): a conservative estimate accounting for classification errors in the 60-m resolution FACET forest cover change product, and a maximal estimate that also took into consideration omitted change at the 30m spatial resolution. Omitted disturbances were largely related to smallholder agriculture, the detection of which is scale-dependent. The use of LIDAR data as a substitute for NFI data to estimate AGB loss based on Landsat-derived activity data was demonstrated. Comparisons of our forest cover loss and AGB estimates with published studies raise the issue of scale in forest cover change mapping and its impact on carbon stock change estimation using remotely sensed data.

  14. Examining the Impact of Early AGB Nucleosynthesis on the Apparent Cosmological Variation in the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Ashenfelter, Timothy; Mathews, Grant; Olive, Keith

    2004-10-01

    Evidence from a large sample of quasar absorption-line spectra in damped Lyman-α systems has shown potential cosmological variation of the fine structure constant α. The most statistically significant portion of this sample involves the comparison of Mg and Fe wavelength shifts using the many-multiplet (MM) method. However, this method is sensitive to the heavy isotopes, especially in Mg. We implement recent yields of intermediate mass (IM) stars, which evolve beyond the CNO cycle, to show that the ensuing isotope distribution of Mg can account for the observed variation in α provided early star-formation was particularly rich in IM stars. During the Asymptotic Giant Branch (AGB) phase of IM stars, heavy Mg isotopes are robustly produced via hot-bottom burning and thermal pulsing in helium burning shell. We incorporate these recently appreciated processes in the galactic chemical evolution models of these damped Lyman-α systems (early galaxies) and delve into the consequences of this chemical evolution alternative to an α variation. We find that this analysis adds to the mounting evidence that the low-metallicity Universe was strongly influenced by IM stars beyond the standard power law distribution of stellar masses. Because these AGB stars have a significant influence on other abundances, especially nitrogen, we use measurements of N, Si Fe, C, and O to constrain our models. In this way, we obtain an alternative explanation of the α variation that is consistent with observations.

  15. Abundances in red giant stars - Nitrogen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Andersson, B.-G.; Olofsson, H.; Ukita, N.; Young, K.

    1991-01-01

    Results are presented of millimeter- and submillimeter-wave observations of HCN and HCCCN that were made of the circmustellar envelopes of eight carbon stars, including the two protoplanetary nebulae CRL 618 and CRL 2688. The observations yield a measure of the double ratio (N-14)(C-13)/(N-15)(C-12). Measured C-12/C-13 ratios are used to estimate the N-14/N-15 abundance ratio, with the resulting lower limits in all eight envelopes and possible direct determinations in two envelopes. The two determinations and four of the remaining six lower limits are found to be in excess of the terrestrial value of N-14/N-15 = 272, indicating an evolution of the nitrogen isotope ratio, which is consistent with stellar CNO processing. Observations of thermal SiO (v = 0, J = 2-1) emission show that the Si-29/Si-28 ratio can be determined in carbon stars, and further observations are indicated.

  16. EFFECT OF HIGH-ENERGY RESONANCES ON THE {sup 18}O(p, {alpha}){sup 15}N REACTION RATE AT AGB AND POST-AGB RELEVANT TEMPERATURES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Mukhamedzhanov, A. M.

    2010-11-10

    The {sup 18}O(p, {alpha}){sup 15}N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as {sup 19}F, {sup 18}O, and {sup 15}N. Fluorine is synthesized in the intershell region of asymptotic giant branch (AGB) stars, together with s-elements, by {alpha} radiative capture on {sup 15}N, which in turn is produced in the {sup 18}O proton-induced destruction. Peculiar {sup 18}O abundances are observed in R-Coronae Borealis stars, having {sup 16}O/{sup 18}O {approx}< 1, hundreds of times smaller than the galactic value. Finally, there is no definite explanation of the {sup 14}N/{sup 15}N ratio in pre-solar grains formed in the outer layers of AGB stars. Again, such an isotopic ratio is influenced by the {sup 18}O(p, {alpha}){sup 15}N reaction. In this work, a high accuracy {sup 18}O(p, {alpha}){sup 15}N reaction rate is proposed, based on the simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. Indeed, current determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of {sup 19}F. In particular, we have focused on the study of the broad 660 keV 1/2{sup +} resonance corresponding to the 8.65 MeV level of {sup 19}F. Since {Gamma} {approx} 100-300 keV, it determines the low-energy tail of the resonant contribution to the cross section and dominates the cross section at higher energies. Here, we provide a reaction rate that is a factor of two larger above T {approx} 0.5 10{sup 9} K based on our new improved determination of its resonance parameters, which could strongly influence present-day astrophysical model predictions.

  17. High-resolution mapping of mass loss from highly evolved carbon stars

    NASA Technical Reports Server (NTRS)

    Ball, R.

    1986-01-01

    The molecular component of the mass outflow at high resolution was mapped with the Owens Valley Millimeter-Wave Interferometer in two well-known objects, CRL 2688 and CIT 6. Interferometric observations of a pair of carbon stars which are evolving toward the planetary nebula stage have revealed evidence of episodic, nonspherically symmetric mass loss, and may lead to a fuller understanding of shielding properties of the dust grains involved in these flows.

  18. An Abundance Analysis of Two Carbon-Rich Proto-Planetary Nebulae: IRAS Z02229+6208 And IRAS 07430+1115

    NASA Technical Reports Server (NTRS)

    Reddy, Bacham E.; Bakker, Eric J.; Hrivnak, Bruce J.

    1999-01-01

    idea that all 21 micron emission stars are carbon-rich post-AGB stars.

  19. Phase diagram of carbon-oxygen plasma mixtures in white dwarf stars

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2012-12-01

    The liquid-solid phase-diagram of dense carbon-oxygen plasma mixtures found in white dwarf stars interiors is determined from molecular dynamics (MD) simulations. Our MD simulations consist of boxes with 55296 ions with different carbon to oxygen ratios. Finite size effects are estimated comparing the new MD simulations results to previous smaller simulations. We use bond angle metric to identify whether an ion is in the solid, liquid or interface and study non-equilibrium effects by obtaining the diffusion coefficients in the different phases. Our phase diagram agrees with predictions from Medin and Cumming obtained by an independent method.

  20. Imaging the oxygen-rich disk toward the silicate carbon star EU Andromedae

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Boboltz, D. A.

    2008-02-01

    Context: Silicate carbon stars are characterized by oxygen-rich circumstellar environments as revealed by prominent silicate emission, despite their carbon-rich photospheres. While the presence of a circumbinary disk or a disk around an unseen, low-luminosity companion has been suggested to explain the peculiar dust chemistry, the origin of silicate carbon stars is still a puzzle to date. Aims: We present multi-epoch, high-angular resolution observations of 22 GHz H2O masers toward the silicate carbon star EU And to probe the spatio-kinematic distribution of oxygen-rich material. Methods: EU And was observed at three epochs (maximum time interval of 14 months) with the Very Long Baseline Array (VLBA). Results: Our VLBA observations of the 22 GHz H2O masers have revealed that the maser spots are distributed along a straight line across ~20 mas, with a slight hint of an S-shaped structure. The observed spectra show three prominent velocity components at V_LSR= -42, -38, and -34 km s-1, with the masers in SW redshifted and those in NE blueshifted. The maser spots located in the middle of the overall distribution correspond to the component at V_LSR = -38 km s-1, which approximately coincides with the systemic velocity. These observations can be interpreted as either an emerging helical jet or a disk viewed almost edge-on (a circumbinary or circum-companion disk). However, the outward motion measured in the VLBA images taken 14 months apart is much smaller than what is expected from the jet scenario. Furthermore, the mid-infrared spectrum obtained with the Spitzer Space Telescope indicates that the 10 μm silicate emission is optically thin and the silicate grains are of sub-micron size. This lends support to the presence of a circum-companion disk, because an optically thin circumbinary disk consisting of such small grains would be blown away by the intense radiation pressure of the primary (carbon-rich) star. If we assume Keplerian rotation for the circum

  1. On the nature of the excess 100 micron flux associated with carbon stars

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun M.

    1991-01-01

    The emission from carbon stars with circumstellar dust shells of different structure, composition, opacity, and age was modeled with the purpose of determining the origin of the excess flux in the FIR and testing the detached shell hypotheses of Willems (1987) and Olofsson et al. (1990). Three possible sources for the excess flux were identified: (1) cool dust in a single extended shell; (2) emission from dust in the intervening interstellar medium; or (3) emission from a two-shell system in which the additional shell is a remnant from an earlier mass-loss episode. It was found that only the two-shell model with a remnant shell which is at least 1 pc thick could explain the 60- and 100-micron flux excesses seen in carbon stars with dust shells of a given opacity. Calculations of time scales for the production of the detached shells and of the carbon star lifetime were found to be consistent with the evolutionary scenario proposed by Willems.

  2. Parameters and Kinematics of Carbon Enhanced Metal Poor (CEMP) Stars from the Hamburg/ESO Survey

    NASA Astrophysics Data System (ADS)

    Thirupathi, Sivarani; Beers, T. C.; Lee, Y. S.; Kennedy, C.; Carollo, D.; Masseron, T.; Plez, B.; Norris, J. E.; Bessell, M.; Rossi, S.

    2007-12-01

    Several hundred CEMP stars have been selected from the Christlieb et al (2001, A&A 375, 366) catalog of carbon-rich stars, which is based on the Hamburg/ESO objective prism survey. Medium resolution (R = 2000) optical spectra were obtained for these stars covering a wavelength range of 3800-4800 A. The estimates of Teff, [Fe/H], and [C/Fe] for this sample is already available, based on application of the Rossi et al. (2005, AJ 130, 2804 ), which uses the strength of the CaII K line, the CH G-band, and J-K colors. Here we present an automated method to estimate the full set of atmospheric parameters for these data (including logg) based on synthetic spectra and photometry. For this purpose, we have generated a set of synthetic grids with carbon enhanced atmospheres with the MARCS code (Plez et al. 1992, A&A 256,551; Asplund et al. 1997, A&A 318, 521; Gustafsson et al. 2003, ASP Conf. Ser. 288, 331), which is particularly important for cool CEMP stars (for which the atmospheric structure changes with increasing carbon abundance (Masseron et al. 2006 A&A 455, 1059). More than one hundred stars of our prpogram stars have already been observed at high spectral resolution (R = 20000-25000), during the course of the HERES survey (Barklem et al. 2005, A&A 439,129; Lucatello et al. 2006 ApJ 652, 37L), which allow us to calibrate our methods. Here we describe our new methods for estimation and validation of Teff, logg, [Fe/H], [C/Fe]. We also comment on the possible origin of CEMP stars in this sample based on these derived parameters and on the inferred kinematics. TS, TCB, YSL, and CK acknowledge support from grant PHY 02-16783; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation and NSF grant AST 07-07776

  3. CHEMICAL ANALYSIS OF THE NINTH MAGNITUDE CARBON-ENHANCED METAL-POOR STAR BD+44 Degree-Sign 493

    SciTech Connect

    Ito, Hiroko; Aoki, Wako; Beers, Timothy C.; Tominaga, Nozomu; Honda, Satoshi; Carollo, Daniela E-mail: beers@noao.edu E-mail: honda@kwasan.kyoto-u.ac.jp

    2013-08-10

    We present detailed chemical abundances for the bright carbon-enhanced metal-poor (CEMP) star BD+44 Degree-Sign 493, previously reported on by Ito et al. Our measurements confirm that BD+44 Degree-Sign 493 is an extremely metal-poor ([Fe/H] =-3.8) subgiant star with excesses of carbon and oxygen. No significant excesses are found for nitrogen and neutron-capture elements (the latter of which place it in the CEMP-no class of stars). Other elements that we measure exhibit abundance patterns that are typical for non-CEMP extremely metal-poor stars. No evidence for variations of radial velocity has been found for this star. These results strongly suggest that the carbon enhancement in BD+44 Degree-Sign 493 is unlikely to have been produced by a companion asymptotic giant-branch star and transferred to the presently observed star, nor by pollution of its natal molecular cloud by rapidly-rotating, massive, mega metal-poor ([Fe/H] < - 6.0) stars. A more likely possibility is that this star formed from gas polluted by the elements produced in a ''faint'' supernova, which underwent mixing and fallback, and only ejected small amounts of elements of metals beyond the lighter elements. The Li abundance of BD+44 Degree-Sign 493 (A(Li) = log (Li/H)+12 =1.0) is lower than the Spite plateau value, as found in other metal-poor subgiants. The upper limit on Be abundance (A(Be) = log (Be/H)+12 < - 1.8) is as low as those found for stars with similarly extremely-low metallicity, indicating that the progenitors of carbon- (and oxygen-) enhanced stars are not significant sources of Be, or that Be is depleted in metal-poor subgiants with effective temperatures of {approx}5400 K.

  4. CXOGBS J173620.2-293338: A candidate symbiotic X-ray binary associated with a bulge carbon star

    SciTech Connect

    Hynes, Robert I.; Britt, C. T.; Johnson, C. B.; Torres, M. A. P.; Jonker, P. G.; Heinke, C. O.; Maccarone, T. J.; Mikles, V. J.; Knigge, C.; Greiss, S.; Steeghs, D.; Nelemans, G.; Bandyopadhyay, R. M.

    2014-01-01

    The Galactic Bulge Survey (GBS) is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatory's ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries (SyXBs) in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a very red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties are overall consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any GBS source with a carbon star to be ≲ 10{sup –3}, suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9 × 10{sup 32} erg s{sup –1}. Its characteristics are consistent with a low luminosity SyXB, or possibly a low accretion rate white dwarf symbiotic.

  5. CXOGBS J173620.2-293338: A Candidate Symbiotic X-Ray Binary Associated with a Bulge Carbon Star

    NASA Astrophysics Data System (ADS)

    Hynes, Robert I.; Torres, M. A. P.; Heinke, C. O.; Maccarone, T. J.; Mikles, V. J.; Britt, C. T.; Knigge, C.; Greiss, S.; Jonker, P. G.; Steeghs, D.; Nelemans, G.; Bandyopadhyay, R. M.; Johnson, C. B.

    2014-01-01

    The Galactic Bulge Survey (GBS) is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatory's ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries (SyXBs) in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a very red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties are overall consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any GBS source with a carbon star to be <~ 10-3, suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9 × 1032 erg s-1. Its characteristics are consistent with a low luminosity SyXB, or possibly a low accretion rate white dwarf symbiotic.

  6. PRODUCTION OF CARBON-RICH PRESOLAR GRAINS FROM MASSIVE STARS

    SciTech Connect

    Pignatari, M.; Thielemann, F.-K.; Wiescher, M.; De Boer, R. J.; Timmes, F. X.; Herwig, F.; Fryer, C.; Heger, A.; Hirschi, R.

    2013-04-20

    About a year after core-collapse supernova, dust starts to condense in the ejecta. In meteorites, a fraction of C-rich presolar grains (e.g., silicon carbide (SiC) grains of Type-X and low density graphites) are identified as relics of these events, according to the anomalous isotopic abundances. Several features of these abundances remain unexplained and challenge the understanding of core-collapse supernovae explosions and nucleosynthesis. We show, for the first time, that most of the measured C-rich grain abundances can be accounted for in the C-rich material from explosive He burning in core-collapse supernovae with high shock velocities and consequent high temperatures. The inefficiency of the {sup 12}C({alpha}, {gamma}){sup 16}O reaction relative to the rest of the {alpha}-capture chain at T > 3.5 Multiplication-Sign 10{sup 8} K causes the deepest He-shell material to be carbon-rich and silicon-rich, and depleted in oxygen. The isotopic ratio predictions in part of this material, defined here as the C/Si zone, are in agreement with the grain data. The high-temperature explosive conditions that our models reach at the bottom of the He shell can also be representative of the nucleosynthesis in hypernovae or in the high-temperature tail of a distribution of conditions in asymmetric supernovae. Finally, our predictions are consistent with the observation of large {sup 44}Ca/{sup 40}Ca observed in the grains. This is due to the production of {sup 44}Ti together with {sup 40}Ca in the C/Si zone and/or to the strong depletion of {sup 40}Ca by neutron captures.

  7. Luminosities of carbon-rich asymptotic giant branch stars in the Milky Way

    NASA Astrophysics Data System (ADS)

    Guandalini, R.; Cristallo, S.

    2013-07-01

    Context. Stars evolving along the asymptotic giant branch can become carbon-rich in the final part of their evolution. They replenish the inter-stellar medium with nuclear processed material via strong radiative stellar winds. The determination of the luminosity function of these stars, even if far from being conclusive, is extremely important for testing the reliability of theoretical models. In particular, strong constraints on the mixing treatment and the mass-loss rate can be derived. Aims: We present an updated luminosity function of Galactic carbon stars (LFGCS) obtained from a re-analysis of available data already published in previous papers. Methods: Starting from available near- and mid-infrared photometric data, we re-determined the selection criteria. Moreover, we took advantage of updated distance estimates and period-luminosity relations and we adopted a new formulation for the computation of bolometric corrections (BCs). This led us to collect an improved sample of carbon-rich sources from which we constructed an updated luminosity function. Results: The LFGCS peaks at magnitudes around -4.9, confirming the results obtained in a previous work. Nevertheless, the luminosity function presents two symmetrical tails instead of the larger high-luminosity tail characterizing the former luminosity function. Conclusions: The derived LFCGS matches the indications from recent theoretical evolutionary asymptotic giant branch models, thus confirming the validity of the choices of mixing treatment and mass-loss history. Moreover, we compare our new luminosity function with its counterpart in the Large Magellanic Cloud finding that the two distributions are very similar for dust-enshrouded sources, as expected from stellar evolutionary models. Finally, we derive a new fitting formula aimed to better determine BCs for C-stars. Table 1 is available in electronic form at http://www.aanda.org

  8. The s-process in low-metallicity stars - III. Individual analysis of CEMP-s and CEMP-s/r with asymptotic giant branch models

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F.

    2012-05-01

    We provide an individual analysis of 94 carbon-enhanced metal-poor stars showing an s-process enrichment (CEMP-s) collected from the literature. The s-process enhancement observed in these stars is ascribed to mass transfer by stellar winds in a binary system from a more massive companion evolving faster towards the asymptotic giant branch (AGB) phase. The theoretical AGB nucleosynthesis models have been presented in Bisterzo et al. (Paper I of this series). Several CEMP-s show an enhancement in both s- and r-process elements (CEMP-s/r). In order to explain the peculiar abundances observed in CEMP-s/r, we assume that the molecular cloud from which CEMP-s formed was previously enriched in r-elements by supernova pollution. A general discussion and the method adopted in order to interpret the observations have been provided in Bisterzo et al. (Paper II of this series). We present in this paper a detailed study of spectroscopic observations of individual stars. We consider all elements from carbon to bismuth, with particular attention to the three s-process peaks, ls (Y, Zr), hs (La, Nd, Sm) and Pb, and their ratios [hs/ls] and [Pb/hs]. The presence of an initial r-process contribution may be typically evaluated by [La/Eu]. We found possible agreements between theoretical predictions and spectroscopic data. In general, the observed [Na/Fe] (and [Mg/Fe]) provides information on the AGB initial mass, while [hs/ls] and [Pb/hs] are mainly indicators of the s-process efficiency. A range of 13C-pocket strengths are required to interpret the observations. However, major discrepancies between models and observations exist. We highlight star by star the agreements and the main problems encountered and, when possible, we suggest potential indications for further studies. These discrepancies provide starting points of debate for unsolved problems in which spectroscopic and theoretical studies may intervene.

  9. EUROPIUM s-PROCESS SIGNATURE AT CLOSE-TO-SOLAR METALLICITY IN STARDUST SiC GRAINS FROM ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Avila, Janaina N.; Ireland, Trevor R.; Holden, Peter; Lugaro, Maria; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Rauscher, Thomas

    2013-05-01

    Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of {approx}1.5-3 M{sub Sun} carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The {sup 151}Eu fractions [fr({sup 151}Eu) = {sup 151}Eu/({sup 151}Eu+{sup 153}Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr({sup 151}Eu) values derived from our measurements agree well with fr({sup 151}Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr({sup 151}Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr({sup 151}Eu) values. The SiC aggregate yields a fr({sup 151}Eu) value within the range observed in the single grains and provides a more precise result (fr({sup 151}Eu) = 0.54 {+-} 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the {sup 151}Sm(n, {gamma}) stellar reaction rate.

  10. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    NASA Astrophysics Data System (ADS)

    Keek, L.; Heger, A.

    2016-02-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10 per cent of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can ensue.

  11. Carbon Shell or Core Ignitions in White Dwarfs Accreting from Helium Stars

    NASA Astrophysics Data System (ADS)

    Brooks, Jared; Bildsten, Lars; Schwab, Josiah; Paxton, Bill

    2016-04-01

    White dwarfs accreting from helium stars can stably burn at the accreted rate and avoid the challenge of mass loss associated with unstable helium burning that is a concern for many SNe Ia scenarios. We study binaries with helium stars of mass 1.25{M}ȯ ≤slant {M}{{He}}≤slant 1.8{M}ȯ , which have lost their hydrogen rich envelopes in an earlier common envelope event and now orbit with periods ({P}{{orb}}) of several hours with non-rotating 0.84 and 1.0{M}ȯ C/O WDs. The helium stars fill their Roche lobes after exhaustion of central helium and donate helium on their thermal timescales (∼ {10}5 years). As shown by others, these mass transfer rates coincide with the steady helium burning range for WDs, and grow the WD core up to near the Chandrasekhar mass ({M}{{Ch}}) and a core carbon ignition. We show here, however, that many of these scenarios lead to an ignition of hot carbon ashes near the outer edge of the WD and an inward going carbon flame that does not cause an explosive outcome. For {P}{{orb}}=3 hr, 1.0{M}ȯ C/O WDs with donor masses {M}{{He}}≳ 1.8{M}ȯ experience a shell carbon ignition, while {M}{{He}}≲ 1.3{M}ȯ will fall below the steady helium burning range and undergo helium flashes before reaching core C ignition. Those with 1.3{M}ȯ ≲ {M}{{He}}≲ 1.7{M}ȯ will experience a core C ignition. We also calculate the retention fraction of accreted helium when the accretion rate leads to recurrent weak helium flashes.

  12. K-band Spectroscopy of (Pre-)Cataclysmic Variables: Are Some Donor Stars Really Carbon Poor?

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Harrison, Thomas E.; Szkody, Paula; Silvestri, Nicole M.

    2010-05-01

    We present a new sample of K-band spectral observations for cataclysmic variables (CVs): non-magnetic and magnetic as well as present-day and pre-CVs. The purpose of this diverse sample is to address the recent claim that the secondary stars in dwarf novae are carbon deficient, having become so through a far more evolved evolution than the current paradigm predicts. Our new observations, along with previous literature results, span a wide range of orbital period and CV type. In general, dwarf novae in which the secondary star is seen show weak to no CO absorption while polar and pre-CV donor stars appear to have normal CO absorption for their spectral type. However, this is not universal. The presence of normal looking CO absorption in the dwarf nova SS Aur and the hibernating CV QS Vir and a complete lack of CO absorption in the long-period polar V1309 Ori cloud the issue. A summary of the literature pointing to non-solar abundances including enhanced N V/C IV ratios is presented. It appears that some CVs have non-solar abundance material accreting onto the white dwarf suggesting an evolved secondary star while for others CO emission in the accretion disk may play a role. However, the exact mechanism or combination of factors causing the CO absorption anomaly in CVs is not yet clear.

  13. K-BAND SPECTROSCOPY OF (PRE-)CATACLYSMIC VARIABLES: ARE SOME DONOR STARS REALLY CARBON POOR?

    SciTech Connect

    Howell, Steve B.; Harrison, Thomas E.; Szkody, Paula; Silvestri, Nicole M. E-mail: tharriso@nmsu.edu E-mail: nms@washington.astro.edu

    2010-05-15

    We present a new sample of K-band spectral observations for cataclysmic variables (CVs): non-magnetic and magnetic as well as present-day and pre-CVs. The purpose of this diverse sample is to address the recent claim that the secondary stars in dwarf novae are carbon deficient, having become so through a far more evolved evolution than the current paradigm predicts. Our new observations, along with previous literature results, span a wide range of orbital period and CV type. In general, dwarf novae in which the secondary star is seen show weak to no CO absorption while polar and pre-CV donor stars appear to have normal CO absorption for their spectral type. However, this is not universal. The presence of normal looking CO absorption in the dwarf nova SS Aur and the hibernating CV QS Vir and a complete lack of CO absorption in the long-period polar V1309 Ori cloud the issue. A summary of the literature pointing to non-solar abundances including enhanced N V/C IV ratios is presented. It appears that some CVs have non-solar abundance material accreting onto the white dwarf suggesting an evolved secondary star while for others CO emission in the accretion disk may play a role. However, the exact mechanism or combination of factors causing the CO absorption anomaly in CVs is not yet clear.

  14. Silicate features in Galactic and extragalactic post-AGB discs

    NASA Astrophysics Data System (ADS)

    Gielen, C.; Bouwman, J.; van Winckel, H.; Lloyd Evans, T.; Woods, P. M.; Kemper, F.; Marengo, M.; Meixner, M.; Sloan, G. C.; Tielens, A. G. G. M.

    2011-09-01

    Aims: In this paper we study the Spitzer and TIMMI2 infrared spectra of post-AGB disc sources, both in the Galaxy and the LMC. Using the observed infrared spectra we determine the mineralogy and dust parameters of the discs, and look for possible differences between the Galactic and extragalactic sources. Methods: Modelling the full spectral range observed allows us to determine the dust species present in the disc and different physical parameters such as grain sizes, dust abundance ratios, and the dust and continuum temperatures. Results: We find that all the discs are dominated by emission features of crystalline and amorphous silicate dust. Only a few sample sources show features due to CO2 gas or carbonaceous molecules such as PAHs and C60 fullerenes. Our analysis shows that dust grain processing