Science.gov

Sample records for agb mass loss

  1. Is CO radio line emission a reliable mass-loss-rate estimator for AGB stars?

    NASA Astrophysics Data System (ADS)

    Ramstedt, Sofia; Scḧier, Frederik; Olofsson, Hans

    The final evolutionary stage of low- to intermediate-mass stars, as they evolve along the asymptotic giant branch (AGB), is characterized by mass loss so intense (10-8-10-4 Msol yr-1) that eventually the AGB life time is determined by it. The material lost by the star is enriched in nucleo-synthesized material and thus AGB stars play an important role in the chemical evolution of galaxies. A reliable mass-loss-rate estimator is of utmost importance in order to increase our understanding of late stellar evolution and to reach conclusions about the amount of enriched material recycled by AGB stars. For low-mass-loss-rate AGB stars, modelling of observed rotational CO radio line emission has proven to be a good tool for estimating mass-loss rates [Olofsson et al. (2002) for M-type stars and Schöier & Olofsson (2001) for carbon stars], but several lines are needed to get good constraints. For high-mass-loss-rate objects the situation is more complicated, the main reason being saturation of the optically thick CO lines. Moreover, Kemper et al. (2003) introduced temporal changes in the mass-loss rate, or alternatively, spatially varying turbulent motions, in order to explain observed line-intensity ratios. This puts into question whether it is possible to model the circumstellar envelope using a constant mass-loss rate, or whether the physical structure of the outflow is more complex than normally assumed. We present observations of CO radio line emission for a sample of intermediate- to high-mass-loss-rate AGB stars. The lowest rotational transition line (J =1-0) was observed at OSO and the higher-frequency lines (J =2-1, 3-2, 4-3 and in some cases 6-5) were observed at the JCMT. Using a detailed, non-LTE, radiative transfer model we are able to reproduce observed line ratios (Figure 1) and constrain the mass-loss rates for the whole sample, using a constant mass-loss rate and a "standard" circumstellar envelope model. However, for some objects only a lower limit to

  2. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.; Soszyński, I.; Petersen, E. A.

    2009-11-01

    Context: Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims: To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Methods: Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 μm Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. Results: We derive (dust) mass-loss rates and luminosities for the entire sample. Based on luminosities, periods and amplitudes and colours, the O-rich stars are classified as foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to “astronomical silicates”. Overall, the grain type by Volk & Kwok (1988, ApJ, 331, 435) fits the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. A computationally convenient method that seems to describe the observed properties in the 10 μm window are a distribution of hollow spheres with a large vacuum fraction (typically 70%), and grain size of about 1 μm. Relations between mass-loss rates and luminosity and pulsation

  3. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    SciTech Connect

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F.; Marigo, Paola; Girardi, Léo; Gullieuszik, Marco; Bressan, Alessandro; Dolphin, Andrew; Aringer, Bernhard

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  4. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 ≲ {{[Fe/H]}} ≲ -0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity

    NASA Astrophysics Data System (ADS)

    Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F.

    2017-02-01

    We present the results of our survey of 1612-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC). We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from infrared (IR) stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust-driven winds: vexp ∝ ZL0.4. We compare the subsolar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic bulge. We derive pulsation periods for eight of the bulge stars for the first time by using near-IR photometry from the Vista Variables in the Via Lactea survey. We have modelled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass-loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and bulge and derived a new mass-loss prescription which includes luminosity, pulsation period, and gas-to-dust ratio dot{M} = 1.06^{+3.5}_{-0.8} × }10^{-5 (L/10^4 L_{⊙})^{0.9± 0.1}(P/500 {d})^{0.75± 0.3} (r_gd/200)^{-0.03± 0.07} M⊙ yr-1. The tightest correlation is found between mass-loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass-loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that the mass-loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.

  6. (Re)Solving Mysteries Of Convection And Mass Loss Of AGB Stars: What New Models And Observations Tell Us About Long-Standing Problems

    NASA Astrophysics Data System (ADS)

    Höfner, Susanne

    2016-09-01

    The recent progress in high-spatial-resolution techniques, spanning wavelengths from the visual to the radio regime, is leading to new valuable insights into the complex dynamical atmospheres of Asymptotic Giant Branch (AGB) stars and their wind forming regions. Striking examples are images of asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months. These features are probably related to large-scale convective flows predicted by 3D 'star-in-a-box' models. Furthermore, high-resolution observations make it possible to measure dust condensation distances, and they give information about the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models.

  7. Dust formation and mass loss around intermediate-mass AGB stars with initial metallicity Zini ≤ 10-4 in the early Universe - I. Effect of surface opacity on stellar evolution and the dust-driven wind

    NASA Astrophysics Data System (ADS)

    Tashibu, Shohei; Yasuda, Yuki; Kozasa, Takashi

    2017-04-01

    Dust formation and the resulting mass loss around asymptotic giant branch (AGB) stars with initial metallicity in the range 0 ≤ Zini ≤ 10-4 and initial mass 2 ≤ Mini/M⊙ ≤ 5 are explored by hydrodynamical calculations of the dust-driven wind (DDW) along the AGB evolutionary tracks. We employ the MESA code to simulate the evolution of stars, assuming an empirical mass-loss rate in the post-main-sequence phase and considering three types of low-temperature opacity (scaled-solar, CO-enhanced and CNO-enhanced opacity) to elucidate the effect on stellar evolution and the DDW. We find that the treatment of low-temperature opacity strongly affects dust formation and the resulting DDW; in the carbon-rich AGB phase, the maximum dot{M} of Mini ≥ 3 M⊙ stars with the CO-enhanced opacity is at least one order of magnitude smaller than that with the CNO-enhanced opacity. A wide range of stellar parameters being covered, the necessary condition for driving efficient DDW with dot{M} ≥ 10^{-6} M⊙ yr-1 is expressed as effective temperature Teff ≲ 3850 K and log (δCL/κRM) ≳ 10.43log Teff - 32.33, with the carbon excess δC defined as εC - εO, the Rosseland mean opacity κR in units of cm2 g-1 in the surface layer and the stellar mass (luminosity) M(L) in solar units. The fitting formulae derived for gas and dust mass-loss rates in terms of input stellar parameters could be useful for investigating the dust yield from AGB stars in the early Universe being consistent with stellar evolution calculations.

  8. Mass loss

    NASA Technical Reports Server (NTRS)

    Goldberg, Leo

    1987-01-01

    Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.

  9. Mass Loss from Low- and Intermediate-mass Stars

    NASA Astrophysics Data System (ADS)

    Wood, P. R.

    2007-11-01

    Low- and intermediate-mass single stars (LIMS) have initial masses M<~6-7 Msolar. They end up as white dwarfs of ~0.6-1.4 Msolar, the rest of their mass being lost during their nuclear-burning lifetimes. Stellar pulsation theory can be used to estimate current (as opposed to initial) stellar masses and can be used to trace accumulated mass loss when the initial mass is known. Some examples are given for RR Lyrae stars, first giant branch (FGB) and asymptotic giant branch (AGB) stars, and Cepheid variables. Most of the mass loss from LIMS is thought to occur on the FGB and AGB, although it has been argued that pulsation masses derived for Cepheids suggest that there is significant mass loss in earlier evolutionary phases. Direct estimates of mass loss rates can also be used to estimate the amounts of mass lost from LIMS. Some recent Spitzer-based estimates of mass loss rates for AGB stars in the Magellanic Clouds are discussed. Finally, binary and variable AGB stars that may be related to asymmetic mass loss such as that seen in elliptical and bipolar planetary nebulae are discussed.

  10. Dust Production and Mass Loss in Cool Evolved Stars

    NASA Technical Reports Server (NTRS)

    Boyer, M. L.

    2013-01-01

    Following the red giant branch phase and the subsequent core He-burning phase, the low- to intermediate-mass stars (0.8mass <8) begin to ascend the asymptotic giant branch (AGB). Pulsations levitate material from the stellar surface and provide density enhancements and shocks, which can encourage dust formation and re-processing. The dust composition depends on the atmospheric chemistry (abundance of carbon relative to oxygen), which is altered by dredging up newly formed carbon to the surface of the star. I will briefly review the current status of models that include AGB mass loss and relate them to recent observations of AGB stars from the Surveying the Agents of Galaxy Evolution (SAGE) Spitzer surveys of the Small and Large Magellanic Clouds, including measures of the total dust input to the interstellar medium from AGB stars.

  11. Galactic mass-losing AGB stars probed with the IRTS. II.

    NASA Astrophysics Data System (ADS)

    Le Bertre, T.; Tanaka, M.; Yamamura, I.; Murakami, H.

    2003-06-01

    We are using the 2002 data-release from the Japanese space experiment IRTS to investigate the spatial distribution of galactic mass-losing (>2x 10-8 Msund) AGB stars and the relative contribution of C-rich and O-rich ones to the replenishment of the ISM. Our sample contains 126 C-rich and 563 O-rich sources which are sorted on the basis of the molecular bands observed in the range 1.4-4.0 mu m, and for which we estimate distances and mass loss rates from near-infrared photometry (K and L'). There is a clear dependence on galactocentric distance, with O-rich sources outnumbering C-rich ones for rGC< 8 kpc, and the reverse for rGC> 10 kpc. The contribution to the replenishment of the ISM by O-rich AGB stars relative to C-rich ones follows the same trend. Although they are rare ( ~ 10% in our sample), sources with 10-6 Msund < dot {M} < 10-5 Msund dominate the replenishment of the ISM by contributing to ~ 50% of the total of the complete sample. We find 2 carbon stars at more than 1 kpc from the Galactic Plane, that probably belong to the halo of our Galaxy. The complete Tables \\ref{tab_C-rich} and \\ref{tab_O-rich} are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/943}

  12. Constraints of the Physics of Low-mass AGB Stars from CH and CEMP Stars

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Karinkuzhi, D.; Goswami, A.; Piersanti, L.; Gobrecht, D.

    2016-12-01

    We analyze a set of published elemental abundances from a sample of CH stars which are based on high resolution spectral analysis of ELODIE and SUBARU/HDS spectra. All the elemental abundances were derived from local thermodynamic equilibrium analysis using model atmospheres, and thus they represent the largest homogeneous abundance data available for CH stars to date. For this reason, we can use the set to constrain the physics and the nucleosynthesis occurring in low mass asymptotic giant branch (AGB) s.tars. CH stars have been polluted in the past from an already extinct AGB companion and thus show s-process enriched surfaces. We discuss the effects induced on the surface AGB s-process distributions by different prescriptions for convection and rotation. Our reference theoretical FRUITY set fits only part of the observations. Moreover, the s-process observational spread for a fixed metallicity cannot be reproduced. At [Fe/H] > -1, a good fit is found when rotation and a different treatment of the inner border of the convective envelope are simultaneously taken into account. In order to increase the statistics at low metallicities, we include in our analysis a selected number of CEMP stars and, therefore, we compute additional AGB models down to [Fe/H] = -2.85. Our theoretical models are unable to attain the large [hs/ls] ratios characterizing the surfaces of those objects. We speculate on the reasons for such a discrepancy, discussing the possibility that the observed distribution is a result of a proton mixing episode leading to a very high neutron density (the so-called i-process).

  13. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  14. Mass loss from red giants: its development, dust properties, and dependence on the stellar parameters mass, luminosity and metallicity

    NASA Astrophysics Data System (ADS)

    Wood, Peter; Blommaert, Joris; Cioni, Maria-Rosa; Feast, Michael; Groenewegen, Martin; Habing, Harm; Hony, Sacha; Loup, Cecile; Matsuura, Mikako; Omont, Alain; Waters, Rens; Whitelock, Patricia; Zijlstra, Albert; van Loon, Jacco

    2004-09-01

    We wish to obtain low resolution IRS spectra of highly evolved, low and intermediate mass stars in the Large and Small Magellanic Clouds. Our sample of stars consists of asymptotic giant branch (AGB) stars in both the general field of the Clouds and in clusters, and it complements the GTO samples of Houck and Kemper. The stars range from lower luminosity stars with small mass loss rates in the two clusters NGC419 and NGC1978 to dust-enshrouded stars in the "superwind" phase. The stars have been studied from the ground (mostly by members of this team) in order to determine spectral types, pulsation periods and amplitudes, and optical and near-infrared fluxes. Our aim is to use the IRS spectra to empirically determine the dependence of mass loss rate on stellar mass, luminosity, pulsation period and amplitude, and metallicity. We will also examine the dust properties as a function of mass loss rate, luminosity and photospheric chemical type. The AGB mass loss law resulting from this study will allow accurate AGB stellar evolution calculations to be made, meaning that reliable estimates can be made of the total mass loss from an AGB star, the stellar remnant mass, and the amounts of nucleosynthetic products ejected. Since the rate of mass return to, and enrichment of, the interstellar medium by low and intermediate mass stars depends critically on the mass loss rate and surface enrichment during the AGB phase, an accurate mass loss law will greatly enhance the reliability of galactic enrichment models. Our total request is for 31.4 hours.

  15. Approaching a Physical Calibration of the AGB Phase

    NASA Astrophysics Data System (ADS)

    Marigo, Paola

    2015-08-01

    The widespread impact of Asymptotic Giant Branch (AGB) stars on the observed properties of galaxies is universally accepted. Despite their importance, severe uncertainties plague AGB models and propagate through to current population synthesis studies of galaxies, undermining the interpretation of a galaxy's basic properties (mass, age, chemical evolution, dust budget). The only reliable path forward is to apply a physically-sound calibration of AGB stellar models in which all main physical processes and their interplay are taken into account (e.g., mixing, mass loss, nucleosynthesis, pulsation, molecular chemistry, dust formation). In this context, I will review recent and ongoing efforts to calibrate the evolution of AGB stars, which combine an all-round theoretical approach anchored by stellar physics with exceptionally high quality data of resolved AGB stars in the Milky Way and nearby galaxies.

  16. DDT_yamamura_1: Herschel photometry of WISE J180956.27-330500.2; a newly discovered AGB star undergoing episodic mass ejection

    NASA Astrophysics Data System (ADS)

    Yamamura, I.

    2012-05-01

    We propose to carry out imaging photometry of WISE J180956.27-330500.2 (hereafter WISE J1810) using PACS (at 70, 110, 160 micron) and SPIRE (at 250, 350, 500 micron) in order to obtain the latest far-IR and sub-mm fluxes of the object and constrain the nature of its mass-loss history. WISE J1810 was discovered very recently by us (Gandhi et al. 2012) as an object with a peculiar 2MASS--WISE spectral energy distribution (SED). We propose that the object is an asymptotic giant branch (AGB) star presently experiencing an episodic mass-loss event following a thermal pulse. If this is the case, it is the first opportunity of real-time observation of AGB mass ejection at thermal pulse. The infrared SED of this object is rapidly evolving over the past 15 years and updated observations over a broad wavelength range are essential. Herschel is the only available facility with the capability of high-sensitivity, high-spatial resolution observations at far-infrared and sub-mm wavelengths, and can provide indispensable information of the rapidly expanding dust shell of this object. The unique nature of this source, its recent bright appearance and rapid evolution prompt us to request a DDT observation while Herschel is still operating. The requested observing time is 1414 sec, which is the minimum operation time for the observing modes that will be used.

  17. The Rb problem in massive AGB stars.

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} < M < 8 M_{⊙}) in their last nuclear-burning phase, when they develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  18. Duplicity: Its Part in the AGB's Downfall

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; Keller, D.

    2015-08-01

    Half or more of stars more massive than our Sun are orbited by a companion star in a binary system. Many binaries have short enough orbits that the evolution of both stars is greatly altered by an exchange of mass and angular momentum between the stars. Such mass transfer is highly likely on the asymptotic giant branch (AGB) because this is when a star is both very large and has strong wind mass loss. Direct mass transfer truncates the AGB, and its associated nucleosynthesis, prematurely compared to the case of a single star. In wide binaries we can probe nucleosynthesis in the long-dead AGB primary star by today observing its initially lower-mass companion. The star we see now may be polluted by ejecta from the primary either through a wind or Roche-lobe overflow. We highlight recent quantitative work on nucleosynthesis in (ex-)AGB mass-transfer systems, such as carbon and barium stars, and the link between binary stars and planetary nebulae; finally, we suggest AGB stars as a possible source of the enigmatic element, lithium.

  19. Characterizing uncertainties of the national-scale forest gross aboveground biomass (AGB) loss estimate: a case study of the Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Stehman, S.; Potapov, P.; Turubanova, S.; Baccini, A.; Goetz, S. J.; Laporte, N. T.; Houghton, R. A.; Hansen, M.

    2013-12-01

    Modern remote sensing techniques enable the mapping and monitoring of aboveground biomass (AGB) carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where a national forest inventory (NFI) has yet to be established due to a lack of infrastructure and political instability. We demonstrate a method for producing national-scale gross AGB loss estimates and quantifying uncertainty of the estimates using remotely sensed-derived forest cover loss and biomass carbon density data. Forest cover type and loss were characterized using published Landsat-based data sets and related to LIDAR-derived biomass data from the Geoscience Laser Altimeter System (GLAS). We produced two gross AGB loss estimates for the DRC for the last decade (2000-2010): a conservative estimate accounting for classification errors in the 60-m resolution FACET forest cover change product, and a maximal estimate that also took into consideration omitted change at the 30m spatial resolution. Omitted disturbances were largely related to smallholder agriculture, the detection of which is scale-dependent. The use of LIDAR data as a substitute for NFI data to estimate AGB loss based on Landsat-derived activity data was demonstrated. Comparisons of our forest cover loss and AGB estimates with published studies raise the issue of scale in forest cover change mapping and its impact on carbon stock change estimation using remotely sensed data.

  20. CEN 34 - high-mass YSO in M 17 or background post-AGB star?

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Nürnberger, Dieter E. A.; Chini, Rolf; Liu, Yao; Fang, Min; Jiang, Zhibo

    2013-09-01

    We investigate the proposed high-mass young stellar object (YSO) candidate CEN 34, thought to be associated with the star-forming region M 17. Its optical to near-infrared (550-2500 nm) spectrum reveals several photospheric absorption features, such as Hα, the Ca ii triplet, and the CO bandhead, but lacks emission lines. The spectral features in the range 8375-8770 Å are used to constrain an effective temperature Teff = 5250 ± 250 K (early-/mid-G) and a log g = 2.0 ± 0.3 (supergiant). The spectral energy distribution (SED) displays a faint infrared excess that resembles that of a high-mass YSO or an evolved star of intermediate mass. Moreover, the observed temperature and surface gravity are identical for high-mass YSOs and evolved stars. The radial velocity of CEN 34 relative to the local standard of rest (VLSR) as obtained from various photospheric lines is of the order of -60 km s-1 and thus distinct from the +25 km s-1 found for several OB stars in the cluster and for the associated molecular cloud. The SED modeling yields 10-4 M⊙ of circumstellar material, which contributes only a tiny fraction to the total visual extinction (11 mag). The distance of CEN 34 is between 2.0 kpc and 4.5 kpc. In the case of a YSO, a dynamical ejection process is proposed to explain the VLSR difference between CEN 34 and M 17. Additionally, to match the temperature and luminosity, we speculate that CEN 34 had accumulated the bulk of its mass with an accretion rate >4 × 10-3M⊙/yr over a very short time span (~103 yrs), and it is currently undergoing a phase of gravitational contraction without any further mass gain. However, all the aforementioned characteristics of CEN 34 are compatible with an evolved star of 5-7 M⊙ and an age of 50-100 Myr, so it is most likely a background post-AGB star with a distance between 2.0 kpc and 4.5 kpc. We consider the latter classification as the more likely interpretation. Further discrimination of the two possible scenarios should come

  1. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE

    SciTech Connect

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-15

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M{sub ⊙}) at different metallicities (−2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M{sub ⊙} ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the {sup 22}Ne(α,n){sup 25}Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY)

  2. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  3. Hot Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Gauba, G.; Fujii, T.; Nakada, Y.

    2001-08-01

    From the study of IRAS sources with far-IR colors similar to planetary nebulae (PNe), several proto-planetary nebulae with hot (OB) post-AGB central stars have been detected. These stars form an evolutionary link between the cooler G,F,A supergiant stars that have evolved off the Asymptotic Giant Branch (AGB) and the hot (OB) central stars of PNe. The optical spectra of these objects show strong Balmer emission lines and in some cases low excitation nebular emission lines such as [NII] and [SII] superposed on the OB stellar continuum. The absence of of [OIII] 5007Å line and the presence of low excitation nebular emission lines indicate that photoionisation has just started. The UV(IUE) spectra of some of these objects revealed violet shifted stellar wind P-Cygni profiles of CIV, SiIV and NV, indicating hot and fast stellar wind and post-AGB mass loss. These objects appear to be rapildy evolving into the early stages of PNe similar to that observed in the case of Hen1357 IRAS 17119-5926 (Stingray Nebula) and IRAS 18062+2410 SAO85766.

  4. The creation of AGB fallback shells

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason

    2016-04-01

    The possibility that mass ejected during Asymptotic Giant Branch (AGB) stellar evolution phases falls back towards the star has been suggested in applications ranging from the formation of accretion discs to the powering of late-thermal pulses. In this paper, we seek to explicate the properties of fallback flow trajectories from mass-loss events. We focus on a transient phase of mass ejection with sub-escape speeds, followed by a phase of a typical AGB wind. We solve the problem using both hydrodynamic simulations and a simplified one-dimensional analytic model that matches the simulations. For a given set of initial wind characteristics, we find a critical shell velocity that distinguishes between `shell fallback' and `shell escape'. We discuss the relevance of our results for both single and binary AGB stars. In particular, we discuss how our results help to frame further studies of fallback as a mechanism for forming the substantial population of observed post-AGB stars with dusty discs.

  5. Cool Dust and the Mass Loss Histories of the Hypergiants

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta

    2015-10-01

    A few highly unstable, very massive, evolved stars lie on or near the empirical upper luminosity boundary in the HR diagram. They represent a short-lived evolutionary stage, characterized by high mass loss and eruptive events. Many of them are strong infrared sources and powerful OH masers. Space and groundbased visual and near-IR imaging has revealed evidence for asymmetric ejections and multiple high mass loss events in the circumstellar ejecta of VY CMa and IRC+10420, for example. In this proposal, we turn our attention to the cool dust that may have formed due to the recent mass loss episodes or be a fossil record of earlier mass loss. Measuring the cold dust will provide a more complete estimate of the total mass lost and the mass loss histories of these evolved stars. The proposed imaging and spectroscopy of the peculiar warm hypergiant HR 5171A will provide seriously missing information on the role of dust formation and circumstellar extinction on its peculiar variability. The controversial post-RSG or post-AGB star, HD 179821, is an ideal target for FORCAST's unique imaging at 20 - 40 microns which is the wavelength range where the SED of its resolved dust shell peaks. Long wavelength imaging from 20 to 37 microns is also proposed for the highly obscured OH/IR hypergiant NML Cyg and two red supergiants with reported evidence for surface asymmetries. The total telescope time requested is 7.24 hours (including overheads).

  6. History of the mass ejection in K4-37: from the AGB to the evolved planetary nebula phase

    NASA Astrophysics Data System (ADS)

    Miranda, L. F.; Guillén, P. F.; Olguín, L.; Vázquez, R.

    2017-04-01

    We present narrow-band, broad-band and Wide-field Infrared Survey Explorer (WISE) archive images, and high- and intermediate-resolution long-slit spectra of K4-37, a planetary nebula that has never been analysed in detail. Although K4-37 appears bipolar, the morphokinematical analysis discloses the existence of three distinct axes and additional particular directions in the object, indicating that K4-37 is a multi-axis planetary nebula that has probably been shaped by several bipolar outflows at different directions. A 4-6 M⊙ main-sequence progenitor is estimated from the derived high nebular He and N abundances, and very high N/O abundance ratio (∼2.32). The general properties are compatible with K4-37 being a highly evolved planetary nebula located at ∼14 kpc. The WISE image at 22 μm reveals K4-37 to be surrounded by a large (∼13 × 8 pc2) elliptical detached shell probably related to material ejected from the asymptotic giant branch (AGB) progenitor. The observed elliptical morphology suggests deformation of an originally spherical AGB shell by the interstellar medium magnetic field or by the influence of a companion. We compare K4-37 and NGC 6309 and found remarkable similarities in their physical structure but noticeably different chemical abundances that indicate very different progenitor mass. This strongly suggests that, irrespective of the initial mass, their (presumably binary) central stars have shared a very similar mass ejection history.

  7. Mass Loss and Dust Injection rates from Evolved Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.

    2010-01-01

    The Spitzer Space Telescope is continuing to contribute greatly to our understanding of the mass return from evolved stars in the Magellanic Clouds (MCs). I first review a number of smaller early Spitzer studies of evolved stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). These studies often built upon earlier such studies using data from prior missions, like the Midcourse Space Experiment. I discuss various Spitzer spectroscopic studies that have investigated the dust compositions of evolved stars in the lower metallicity environments of the MCs. Also, I review studies of the MCs' massive evolved stars, which have been given somewhat less attention than other populations. Excitingly, using Spitzer data, for the first time the mass-loss from the diverse evolved star MC populations is being quantified. With the advent of the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Legacy program, tens of thousands of stars in the LMC have been classified as evolved stars using SAGE Spitzer data. I briefly review how evolved stars are classified (e.g., by using color-magnitude and color-color diagrams) using data from the SAGE surveys. Finally, I discuss work on radiative transfer (RT) modeling of evolved stars, which follows earlier work estimating their mass-loss using colors or emission in excess of stellar photosphere emission. This RT work starts by seeking acceptable dust properties for RT models of both SAGE Spectral Energy Distributions (SEDs) and SAGE-Spectroscopy (Spitzer Legacy program; PI: F. Kemper) spectra of asymptotic giant branch (AGB) stars. Afterwards, large grids of RT models are constructed to determine mass-loss rates for AGB stars and red supergiants in the SAGE samples of the LMC and, eventually, the SMC.

  8. The Mass Loss Return from Evolved Stars to the Large Magellanic Cloud: Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.; Kemper, F.; Tielens, X.; Speck, A.; Matsuura, M.; Bernard, J.; Hony, S.; Gordon, K.; Indebetouw, R.; Marengo, M.; Sloan, G.; Woods, P.; Vijh, U. P.

    2010-01-01

    The Spitzer Space Telescope Legacy program Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) has observed over 6 million stars in the Large Magellanic Cloud with both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) instruments to explore the life-cycle of matter in a galaxy. Over 17000 of these stars were found to be candidate Oxygen-rich Asymptotic Giant Branch (O-rich AGB) stars. We combine photometry from Spitzer and elsewhere in constructing Spectral Energy Distributions (SEDs) for the SAGE candidate O-rich AGB stars. These SEDs are then modeled using the radiative transfer program 2Dust, with the goal of determining the O-rich AGB star candidates' mass-loss rates. Spitzer Infrared Spectrograph (IRS) spectra are available as part of the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) for a number of SAGE O-rich AGB star candidates; for two of these, IRS spectra in addition to the photometry are modeled with 2Dust to determine reasonable dust grain parameters to use for the candidate O-rich AGB stars in the rest of the SAGE sample. Using these dust grain properties, a grid of radiative transfer models was computed using 2Dust, varying stellar effective temperature and luminosity, dust shell inner radius, and dust shell optical depth at 10 microns wavelength. Synthetic photometry from models and observed photometry are plotted on color-color and color-magnitude diagrams, and model SEDs are directly compared to observed SEDs. The mass-loss rates from all O-rich AGB stars, especially those with the highest mass-loss rates, in the LMC are estimated and compared to its mass budget. Dust composition is also discussed in light of the results of the model grids.

  9. On the Relation between the Mysterious 21 μm Emission Feature of Post-asymptotic Giant Branch Stars and Their Mass-loss Rates

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, Aigen; Jiang, B. W.

    2016-07-01

    Over two decades ago, a prominent, mysterious emission band peaking at ˜20.1 μm was serendipitously detected in four preplanetary nebulae (PPNe; also known as “protoplanetary nebulae”). To date, this spectral feature, designated as the “21 μm” feature, has been seen in 27 carbon-rich PPNe in the Milky Way and the Magellanic Clouds. The nature of its carriers remains unknown although many candidate materials have been proposed. The 21 μm sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 μm. While the 21 μm feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 μm feature is more commonly observed in all stages of stellar evolution from the AGB through PPN to PN phases. We derive the stellar mass-loss rates (\\dot{M}) of these sources from their infrared (IR) emission, using the “2-DUST” radiative transfer code for axisymmetric dusty systems which allows one to distinguish the mass-loss rates of the AGB phase ({\\dot{M}}{AGB}) from that of the superwind ({\\dot{M}}{SW}) phase. We examine the correlation between {\\dot{M}}{AGB} or {\\dot{M}}{SW} and the fluxes emitted from the 21 and 30 μm features. We find that both features tend to correlate with {\\dot{M}}{AGB}, suggesting that their carriers are probably formed in the AGB phase. The nondetection of the 21 μm feature in AGB stars suggests that, unlike the 30 μm feature, the excitation of the carriers of the 21 μm feature may require ultraviolet photons which are available in PPNe but not in AGB stars.

  10. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    SciTech Connect

    Suh, Kyung-Won

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  11. THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 {mu}m

    SciTech Connect

    Srinivasan, Sundar; Meixner, Margaret; Leitherer, Claus; Vijh, Uma; Gordon, Karl D.; Sewilo, Marta; Volk, Kevin; Blum, Robert D.; Harris, Jason; Babler, Brian L.; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl A.; Cohen, Martin; Hora, Joseph L.; Indebetouw, Remy; Markwick-Kemper, Francisca

    2009-06-15

    We present empirical relations describing excess emission from evolved stars in the Large Magellanic Cloud (LMC) using data from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution (SAGE) survey which includes the Infrared Array Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 {mu}m and Multiband Imaging Photometer (MIPS) 24, 70, and 160 {mu}m bands. We combine the SAGE data with the Two Micron All Sky Survey (2MASS; J, H, and K {sub s}) and the optical Magellanic Cloud Photometric Survey (MCPS; U, B, V, and I) point source catalogs in order to create complete spectral energy distributions (SEDs) of the asymptotic giant branch (AGB) star candidates in the LMC. AGB star outflows are among the main producers of dust in a galaxy, and this mass loss results in an excess in the fluxes observed in the 8 and 24 {mu}m bands. The aim of this work is to investigate the mass loss return by AGB stars to the interstellar medium of the LMC by studying the dependence of the infrared excess flux on the total luminosity. We identify oxygen-rich, carbon-rich, and extreme AGB star populations in our sample based on their 2MASS and IRAC colors. The SEDs of oxygen- and carbon-rich AGB stars are compared with appropriate stellar photosphere models to obtain the excess flux in all the IRAC bands and the MIPS 24 {mu}m band. Extreme AGB stars are dominated by circumstellar emission at 8 and 24 {mu}m; thus we approximate their excesses with the flux observed in these bands. We find about 16,000 O-rich, 6300 C-rich, and 1000 extreme sources with reliable 8 {mu}m excesses, and about 4500 O-rich, 5300 C-rich, and 960 extreme sources with reliable 24 {mu}m excesses. The excesses are in the range 0.1 mJy to 5 Jy. The 8 and 24 {mu}m excesses for all three types of AGB candidates show a general increasing trend with luminosity. The color temperature of the circumstellar dust derived from the ratio of the 8 and 24 {mu}m excesses decreases with an increase in excess, while the 24 {mu

  12. HIRAS images of fossil dust shells around AGB stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Kester, Do J. M.; Bontekoe, Tj. Romke; Loup, C.

    1994-01-01

    We present high resolution HIRAS 60 and 100 micron images of AGB stars surrounded by fossil dust shells. Resolving the extended emission of the circumstellar dust allows a determination of the mass loss history of the star. We show that the geometry of the 60 micron emission surrounding HR 3126 agrees well with that of the optical reflection nebula. The emission around the carbon star U Hya is resolved into a central point source and a ring of dust, and the mass loss rate in the detached shell is 70 times higher than the current mass loss rate.

  13. ÔøºA VLTI survey of dusty envelopes of AGB stars

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Hron, J.; Jorissen, A.; Groenewegen, M.; Kerschbaum, F.; Verhoelst, T.; Richichi, A.; Olofsson, H.

    2014-04-01

    Taking advantage of the results from the Herschel Mass-Loss of Evolved StarS (MESS) program we initiated a coordinated effort to study the same sample of Asymptotic Giant Branch (AGB) stars with different techniques. The aim is to characterise the geometry of the mass-loss process in AGB stars at different spatial scales. Being able to understand the shaping-mechanism on this evolutionary stage is crucial also for the successors. In this contribution we present the results of the VLTI/MIDI Large Program on AGB stars. While MESS probes the interface between the stellar atmosphere and the interstellar medium with MIDI we probe the onset of the stellar wind and of the dust formation. Our sample of 15 AGB stars cover different chemistry and variability type, spanning ideally the all AGB evolution. In our study we report spectral variability but not interferometric variability. This fact has implications on the size of the structures involved in the dust formation process. We detect asymmetric structures and elongation in a few cases, and we make an attempt to connect this with the evolution on the AGB.

  14. Studies of mass loss and outflows from giant stars

    NASA Astrophysics Data System (ADS)

    Wang, Qian

    This thesis aims to provide better understanding of mass loss and outflows from asymptotic giant branch stars using the Bowen code. There are 3 projects involved in this thesis. The main project presented here is on the morphology of the outflow when disturbed by a super Jupiter size companion. There exists resonant modes between the pulsation period and orbital period. At different resonant modes, multiple spiral arms with different spiral arm periods form in the outflows. A simple formula gives the spiral arm period as a function of pulsation and orbital periods. Since the resonant modes appear in close orbits, the decay time scale and spiral arm morphology are also presented. These results may explain asymmetry in the outflows that form planetary nebulae. It also explains the origin of the spiral arm structure around some late AGB stars. A 3-D code will ultimately be need to resolve some questions unanswered by the current 1-D models. The paper on the outflow morphology has been submitted to ApJ. In this thesis, ongoing mass loss studies using the Bowen code are also briefly explained. I generated a large grid of models with varying mass, luminosity, metallicity, mixing length and Bowen model parameters in order to find correlations between the mass loss rate and these parameters. Since dust abundance is an important factor for mass loss, for the third project I tested dust formation in the refrigeration zone which is closer to the photosphere than normal dusty regions. In this test, I assumed that the dust temperature equals to the gas kinetic temperature which is lower than the radiative equilibrium temperature. Since dust temperature is close to the radiative temperature when the dust grain is large, this assumption brings excessive dust into the refrigeration zones. The detailed treatment of dust formation will be refined in future studies.

  15. ALMA observations of the nearby AGB star L2 Puppis. I. Mass of the central star and detection of a candidate planet

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Homan, W.; Richards, A. M. S.; Decin, L.; McDonald, I.; Montargès, M.; Ohnaka, K.

    2016-12-01

    Six billion years from now, while evolving on the asymptotic giant branch (AGB), the Sun will metamorphose from a red giant into a beautiful planetary nebula. This spectacular evolution will impact the solar system planets, but observational confirmations of the predictions of evolution models are still elusive as no planet orbiting an AGB star has yet been discovered. The nearby AGB red giant L2 Puppis (d = 64 pc) is surrounded by an almost edge-on circumstellar dust disk. We report new observations with ALMA at very high angular resolution (18 × 15 mas) in band 7 (ν ≈ 350 GHz) that allow us to resolve the velocity profile of the molecular disk. We establish that the gas velocity profile is Keplerian within the central cavity of the dust disk, allowing us to derive the mass of the central star L2 Pup A, mA = 0.659 ± 0.011 ± 0.041 M⊙ (± 6.6%). From evolutionary models, we determine that L2 Pup A had a near-solar main-sequence mass, and is therefore a close analog of the future Sun in 5 to 6 Gyr. The continuum map reveals a secondary source (B) at a radius of 2 AU contributing fB/fA = 1.3 ± 0.1% of the flux of the AGB star. L2 Pup B is also detected in CO emission lines at a radial velocity of vB = 12.2 ± 1.0 km s-1. The close coincidence of the center of rotation of the gaseous disk with the position of the continuum emission from the AGB star allows us to constrain the mass of the companion to mB = 12 ± 16 MJup. L2 Pup B is most likely a planet or low-mass brown dwarf with an orbital period of about five years. Its continuum brightness and molecular emission suggest that it may be surrounded by an extended molecular atmosphere or an accretion disk. L2 Pup therefore emerges as a promising vantage point on the distant future of our solar system.

  16. Winds of Binary AGB Stars as Observed by Herschel

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Mečina, M.; Paladini, C.; Cox, N. L. J.; Nowotny, W.; Aringer, B.; Pourbaix, D.; Mohamed, S.; Siopis, C.; Groenewegen, M. A. T.

    2015-08-01

    We present Herschel/PACS observations of the large-scale environments of binary AGB stars as part of the Mass-loss of Evolved StarS (MESS) sample. From the literature we found 18 of the objects to be members of physically bound multiple systems. Several show a large-scale far-IR emission which differs significantly from spherical symmetry. A probable cause is the gravitational force of the companion on the stellar AGB wind and the mass-losing star itself. A spiral pattern is thereby imprinted in the dusty stellar wind. The most remarkable structures are found around o Ceti, W Aquilæ, R Aquarii, and π1 Gruis. The environments of o Cet and W Aql show a spiral pattern while the symbiotic nature of R Aqr is revealed as two opposing arms which reflect a nova outburst. The emission around π1 Gru is dominated by two structures, a disk and an arc, which are presumably not caused by the same companion. We found evidence that π1 Gru is a hierarchical triple system in which a close companion attracts the AGB wind onto the orbital plane and the outer companion forms a spiral arm. These far-IR observations underline the role of a companion as a major external influence in creating asymmetric winds in the AGB phase, even before the star becomes a planetary nebula (PN).

  17. Molecular shells in IRC+10216: tracing the mass loss history(,.)

    PubMed

    Cernicharo, J; Marcelino, N; Agúndez, M; Guélin, M

    2015-03-01

    Thermally-pulsating AGB stars provide three-fourths of the matter returned to the interstellar medium. The mass and chemical composition of their ejecta largely control the chemical evolution of galaxies. Yet, both the mass loss process and the gas chemical composition remain poorly understood. We present maps of the extended (12)CO and (13)CO emissions in IRC+10216, the envelope of CW Leo, the high mass loss star the closest to the Sun. IRC+10216 is nearly spherical and expands radially with a velocity of 14.5 km s(-1). The observations were made On-the-Fly with the IRAM 30 m telescope; their sensibility, calibration, and angular resolution are far higher than all previous studies. The telescope resolution at λ = 1.3 mm (11″ HPBW) corresponds to an expansion time of 500 yr. The CO emission consists of a centrally peaked pedestal and a series of bright, nearly spherical shells. It peaks on CW Leo and remains relatively strong up to rphot = 180″. Further out the emission becomes very weak and vanishes as CO gets photodissociated. As CO is the best tracer of the gas up to rphot, the maps show the mass loss history in the last 8000 yr. The bright CO shells denote over-dense regions. They show that the mass loss process is highly variable on timescales of hundreds of years. The new data, however, do not support previous claims of a strong decrease of the average mass loss in the last few thousand years. The over-dense shells are not perfectly concentric and extend farther to the N-NW. The typical shell separation is 800-1000 yr in the middle of the envelope, but seems to increase outwards. The shell-intershell brightness contrast is ≥3. All those key features can be accounted for if CW Leo has a companion star with a period ≃800 yr that increases the mass loss rate when it comes close to periastron. Higher angular resolution observations are needed to fully resolve the dense shells and measure the density contrast. The latter plays an essential role in our

  18. Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Riebel, David

    2012-01-01

    I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.

  19. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna; Beers, Timothy C.; Karakas, Amanda I.; Kennedy, Catherine R.; Christlieb, Norbert; Stancliffe, Richard J.

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  20. Nucleosynthesis in AGB stars traced by oxygen isotopic ratios. I. Determining the stellar initial mass by means of the 17O/18O ratio

    NASA Astrophysics Data System (ADS)

    De Nutte, R.; Decin, L.; Olofsson, H.; Lombaert, R.; de Koter, A.; Karakas, A.; Milam, S.; Ramstedt, S.; Stancliffe, R. J.; Homan, W.; Van de Sande, M.

    2017-03-01

    Aims: We seek to investigate the 17O/18O ratio for a sample of AGB stars containing M-, S-, and C-type stars. These ratios are evaluated in relation to fundamental stellar evolution parameters: the stellar initial mass and pulsation period. Methods: Circumstellar 13C16O, 12C17O, and 12C18O line observations were obtained for a sample of nine stars with various single-dish long-wavelength facilities. Line intensity ratios are shown to relate directly to the surface 17O/18O abundance ratio. Results: Stellar evolution models predict the 17O/18O ratio to be a sensitive function of initial mass and to remain constant throughout the entire TP-AGB phase for stars initially less massive than 5 M⊙. This makes the measured ratio a probe of the initial stellar mass. Conclusions: Observed 17O/18O ratios are found to be well in the range predicted by stellar evolution models that do not consider convective overshooting. From this, accurate initial mass estimates are calculated for seven sources. For the remaining two sources, there are two mass solutions, although there is a larger probability that the low-mass solution is correct. Finally, we present hints at a possible separation between M/S- and C-type stars when comparing the 17O/18O ratio to the stellar pulsation period. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A71

  1. A Spitzer/IRAC characterization of Galactic AGB and RSG stars

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Marengo, Massimo; Hora, Joseph L.; Fazio, Giovanni G.

    2015-03-01

    We present new Spitzer/InfraRed Array Camera (IRAC) observations of 55 dusty long-period variables (48 asymptotic giant branch, AGB, and 6 red supergiant stars) in the Galaxy that have different chemistry, variability type, and mass-loss rate. O-rich AGB stars (including intrinsic S-type) tend to have redder [3.6]-[8.0] colours than carbon stars for a given [3.6]-[4.5] colour due to silicate features increasing the flux in the 8.0-μm IRAC band. For colours including the 5.8 μm band, carbon stars separate into two distinct sequences, likely due to a variable photospheric C3 feature that is only visible in relatively unobscured, low mass-loss rate sources. Semiregular variables tend to have smaller infrared (IR) excess in [3.6]-[8.0] colour than Miras, consistent with the hypothesis that semiregular variables lose mass discontinuously. Miras have redder colours for longer periods while semiregular variables do not. Galactic AGB stars follow the period-luminosity sequences found for the Magellanic Clouds. Mira variables fall along the fundamental pulsation sequence, while semiregular variables are mostly on overtone sequences. We also derive a relationship between mass-loss rate and [3.6]-[8.0] colour. The fits are similar in shape to those found by other authors for AGBs in the Large Magellanic Cloud, but discrepant in overall normalization, likely due to different assumptions in the models used to derive mass-loss rates. We find that IR colours are not unique discriminators of chemical type, suggesting caution when using colour selection techniques to infer the chemical composition of AGB dust returned to the interstellar medium.

  2. Mass loss from warm giants: Magnetic effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1980-01-01

    Among warm giant stars, rapid mass loss sets in along a well defined velocity dividing line (VDL). Hot corona also disappear close to the VDL and thermal pressure cannot drive the observed rapid mass loss in these stars. The VDL may be associated with magnetic fields changing from closed to open. Such a change is consistent with the lack of X-rays from late-type giants. A magnetic transition locus based on Pneuman's work on helmet streamer stability agrees well with the empirical VDL. The change from closed to open fields not only makes rapid mass loss possible, but also contributes to energizing the mass loss in the form of discrete bubbles.

  3. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1975-01-01

    The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.

  4. Mass loss from very young massive stars

    NASA Astrophysics Data System (ADS)

    Henning, Th.

    The physics of mass loss from very young massive stars is reviewed, and mass-loss rates are determined for several objects on the basis of published observational data. The observational evidence for mass loss of 0.0001-0.001 solar mass/yr with velocity 10-60 km/s, dynamical timescale 1000-100,000 yr, and kinetic energy (1-100) x 10 to the 38th W from these objects is chracterized; techniques for estimating mass-loss rates from H recombination lines, CO line profiles maser data, and IR-continuum observations are described; rates for molecular outflows and ionized winds are presented in tabels; and theoretical models developed to explain the mechanism driving bipolar mass loss are examined critically. It is found that neither radiation pressure on dust grins nor the ionized winds can drive the molecular outflow. The models considered most probable are those involving production of holes by original spherical stellar winds (Canto, 1980, rotationally driven magnetic pressure (Draine, 1983), and infall from an accretion disk (Torbett, 1984).

  5. S-process nucleosynthesis in AGB models with the FST prescription for convection

    NASA Astrophysics Data System (ADS)

    Yagüe, A.; García-Hernández, D. A.; Ventura, P.; Lugaro, M.

    The chemical evolution of asymptotic giant branch (AGB) stars depends greatly on the input physics (e.g., mass loss recipe, convective model). Variations in the hot bottom burning (HBB) strength, third dredge-up (TDU) efficiency and AGB evolutionary timescale are among the main consequences of adopting different input physics. The ATON evolutionary code stands apart from others in that it uses the Blöcker mass loss prescription and the Full Spectrum of Turbulence (FST) convective model. We have developed an s-process module for ATON by extending the element network from 30 to 320 elements, which uses the physical inputs (such as temperature or density) calculated by ATON. Here we present the first preliminary results of s-process nucleosynthesis for ATON AGB models with different progenitor masses. These preliminary results are compared with predictions from other AGB nucleosynthesis models that use different input physics. We also outline our future tasks to improve the current s-process ATON simulations.

  6. Physics of Mass Loss in Massive Stars

    NASA Astrophysics Data System (ADS)

    Puls, Joachim; Sundqvist, Jon O.; Markova, Nevena

    2015-01-01

    We review potential mass-loss mechanisms in the various evolutionary stages of massive stars, from the well-known line-driven winds of O-stars and BA-supergiants to the less-understood winds of Red Supergiants. We discuss optically thick winds from Wolf-Rayet stars and Very Massive Stars, and the hypothesis of porosity-moderated, continuum-driven mass loss from stars formally exceeding the Eddington limit, which might explain the giant outbursts from Luminous Blue Variables. We finish this review with a glance on the impact of rapid rotation, magnetic fields and small-scale inhomogeneities in line-driven winds.

  7. Instability & Mass Loss near the Eddington Limit

    NASA Astrophysics Data System (ADS)

    Owocki, S. P.; Shaviv, N. J.

    We review the physics of continuum-driven mass loss and its likely role in η Carinae and LBVs. Unlike a line-driven wind, which is inherently limited by self-shadowing, continuum driving can in principle lead to mass-loss rates up to the "photon-tiring" limit, for which the entire luminosity is expended in lifting the outflow. We discuss how instabilities near the Eddington limit give rise to a clumped atmosphere, and how the associated "porosity" can regulate a continuum-driven flow. We also summarize recent time-dependent simulations in which a mass flow stagnates because it exceeds the tiring limit, leading to complex time-dependent inflow and outflow regions. Porosity-regulated continuum driving in super-Eddington epochs can probably explain the large, near tiring-limit mass loss inferred for LBV giant eruptions. However, while these extreme flows can persist over dynamically long periods, they cannot be sustained for an evolutionary timescale; so ultimately it is stellar structure and evolution that sets the overall mass loss.

  8. Parametric study on mass loss of penetrators

    NASA Astrophysics Data System (ADS)

    He, Li-Ling; Chen, Xiao-Wei; He, Xiang

    2010-08-01

    Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which significantly decreases the penetration efficiency due to the change of nose shape. The abrasion may induce instability of the penetrator, and lead to failure of its structure. A common disadvantage, i.e. dependence on corresponding experimental results, exists in all the available formulae, which limits their ranges of application in estimating the mass loss of penetrator. In this paper, we conduct a parametric study on the mass loss of penetrator, and indicate that the mass loss of penetrator can be determined by seven variables, i.e., the initial impact velocity, initial nose shape, melting heat, shank diameter of projectile and density and strength of target as well as the aggregate hardness of target. Further discussion on factors dominant in the mass abrasion of penetrator are given, which may be helpful for optimizing the target or the projectile for defensive or offensive objectives, respectively.

  9. An Analytical Approach to the Evolution and Death of AGB Stars

    NASA Astrophysics Data System (ADS)

    Prager, Henry Alexander; Willson, Lee Anne M.; Marengo, Massimo; Creech-Eakman, Michelle J.

    2017-01-01

    Pop. I and II stars have a significant amount of metals throughout their structure, In the final stages of their evolution, intermediate mass stars (between 0.7 and 2 solar masses) ascend the Asymptotic Giant Branch (AGB). During their last few hundred thousand years on the AGB, these stars quickly lose their envelopes, recycling their metals as dust into the interstellar medium. The rate at which this happens consequently impacts the formation rate of stars, stellar systems, and the wider distribution of s-process isotopes.At the end of their life cycles, AGB stars experience a steep increase in mass loss rate. We can define the death line in two steps. First we define the critical mass loss rate to be where the mass loss rate equals the initial mass divided by the evolution time. Then the death line is where the rate of change of logMdot equals the rate of change of logL. Most of the stars we observe to be rapidly losing mass appear in the death zone between 0.1 and 10 times the critical mass loss rate.Assuming the mass loss rate increases exponentially with time, or, equivalently, the luminosity increases as a power of a characteristic exponent b, then the width of the death zone is the change in logL. This directly implies time is inversely proportional to b. This can be found for any mass-loss rate formula near the death line. By combining this with what we know about the initial-final mass relation and the core mass-luminosity relation, we can test for b with three observables — duration (width) of the death zone, the amplitude of mass loss variations (when L varies on an observable time scale such as a shell flash), and distributions of luminosity and pulsation period.By applying the initial mass function (IMF) and star formation rate (SFR) of an observed region, we can relate these observables to the characteristic exponent. We will need to look at nearby regions where we can see large numbers of AGB stars, such as the Magellanic clouds. We will show that

  10. Mass-loss on the red giant branch: the value and metallicity dependence of Reimers' η in globular clusters

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.

    2015-03-01

    The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers and Schröder and Cuntz are used to measure the efficiency of RGB mass-loss for typical stars in 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, η _R = 0.477 ± 0.070 ^{+0.050}_{-0.062} and η _SC = 0.172 ± 0.024 ^{+0.018}_{-0.023} (standard deviation and systematic uncertainties, respectively). Over a factor of 200 in iron abundance, η varies by ≲30 per cent, thus mass-loss mechanisms on the RGB have very little metallicity dependence. Any remaining dependence is within the current systematic uncertainties on cluster ages and evolution models. The low standard deviation of η among clusters (≈14 per cent) contrasts with the variety of HB morphologies. Since η incorporates cluster age, this suggests that age accounts for the majority of the `second parameter problem', and that a Reimers-like law provides a good mass-loss model. The remaining spread in η correlates with cluster mass and density, suggesting helium enrichment provides the third parameter explaining HB morphology of GCs. We close by discussing asymptotic giant branch (AGB) mass-loss, finding that the AGB tip luminosity is better reproduced and η has less metallicity dependence if GCs are more co-eval than generally thought.

  11. Mass Loss Rates of Fasting Polar Bears.

    PubMed

    Pilfold, Nicholas W; Hedman, Daryll; Stirling, Ian; Derocher, Andrew E; Lunn, Nicholas J; Richardson, Evan

    2016-01-01

    Polar bears (Ursus maritimus) have adapted to an annual cyclic regime of feeding and fasting, which is extreme in seasonal sea ice regions of the Arctic. As a consequence of climate change, sea ice breakup has become earlier and the duration of the open-water period through which polar bears must rely on fat reserves has increased. To date, there is limited empirical data with which to evaluate the potential energetic capacity of polar bears to withstand longer fasts. We measured the incoming and outgoing mass of inactive polar bears (n = 142) that were temporarily detained by Manitoba Conservation and Water Stewardship during the open-water period near the town of Churchill, Manitoba, Canada, in 2009-2014. Polar bears were given access to water but not food and held for a median length of 17 d. Median mass loss rates were 1.0 kg/d, while median mass-specific loss rates were 0.5%/d, similar to other species with high adiposity and prolonged fasting capacities. Mass loss by unfed captive adult males was identical to that lost by free-ranging individuals, suggesting that terrestrial feeding contributes little to offset mass loss. The inferred metabolic rate was comparable to a basal mammalian rate, suggesting that while on land, polar bears can maintain a depressed metabolic rate to conserve energy. Finally, we estimated time to starvation for subadults and adult males for the on-land period. Results suggest that at 180 d of fasting, 56%-63% of subadults and 18%-24% of adult males in this study would die of starvation. Results corroborate previous assessments on the limits of polar bear capacity to withstand lengthening ice-free seasons and emphasize the greater sensitivity of subadults to changes in sea ice phenology.

  12. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Marengo, M.; Sloan, G. C.

    2010-06-10

    {approx}52 times the stellar radius, respectively, with dust temperatures there of 900 K and 430 K, respectively, and with optical depths at 10 {mu}m through the shells of 0.095 and 0.012, respectively. The models compute the dust mass-loss rates for the two stars to be 2.0 x 10{sup -9} M{sub sun} yr{sup -1} and 2.3 x 10{sup -9} M{sub sun} yr{sup -1}, respectively. When a dust-to-gas mass ratio of 0.002 is assumed for SSTSAGE052206 and HV 5715, the dust mass-loss rates imply total mass-loss rates of 1.0 x 10{sup -6} M{sub sun} yr{sup -1} and 1.2 x 10{sup -6} M{sub sun} yr{sup -1}, respectively. These properties of the dust shells and stars, as inferred from our models of the two stars, are found to be consistent with properties observed or assumed by detailed studies of other O-rich AGB stars in the LMC and elsewhere.

  13. AGB stars and presolar grains

    SciTech Connect

    Busso, M.; Trippella, O.; Maiorca, E.; Palmerini, S.

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  14. On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Karakas, A. I.; Dell'Agli, F.; García-Hernández, D. A.; Boyer, M. L.; Di Criscienzo, M.

    2016-04-01

    The stars in the Magellanic Clouds with the largest degree of obscuration are used to probe the highly uncertain physics of stars in the asymptotic giant branch (AGB) phase of evolution. Carbon stars in particular provide key information on the amount of third dredge-up and mass-loss. We use two independent stellar evolution codes to test how a different treatment of the physics affects the evolution on the AGB. The output from the two codes is used to determine the rates of dust formation in the circumstellar envelope, where the method used to determine the dust is the same for each case. The stars with the largest degree of obscuration in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are identified as the progeny of objects of initial mass 2.5-3 M⊙ and ˜1.5 M⊙, respectively. This difference in mass is motivated by the difference in the star formation histories of the two galaxies, and offers a simple explanation of the redder infrared colours of C-stars in the LMC compared to their counterparts in the SMC. The comparison with the Spitzer colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass fraction X(C) ˜ 5 × 10-3 must have been reached by stars of initial mass around 1.5 M⊙. Our results confirm the necessity of adopting low-temperature opacities in stellar evolutionary models of AGB stars. These opacities allow the stars to obtain mass-loss rates high enough (≳10-4 M⊙ yr-1) to produce the amount of dust needed to reproduce the Spitzer colours.

  15. Pulsation, Mass Loss and the Upper Mass Limit

    NASA Astrophysics Data System (ADS)

    Klapp, J.; Corona-Galindo, M. G.

    1990-11-01

    RESUMEN. La existencia de estrellas con masas en exceso de 100 M0 ha sido cuestionada por mucho tiempo. Lfmites superiores para la masa de 100 M0 han sido obtenidos de teorfas de pulsaci6n y formaci6n estelar. En este trabajo nosotros primero investigamos la estabilidad radial de estrellas masivas utilizando la aproximaci6n clasica cuasiadiabatica de Ledoux, la aproximaci6n cuasiadiabatica de Castor y un calculo completamente no-adiabatico. Hemos encontrado que los tres metodos de calculo dan resultados similares siempre y cuando una pequefia regi6n de las capas externas de la estrella sea despreciada para la aproximaci6n clasica. La masa crftica para estabilidad de estrellas masivas ha sido encontrada en acuerdo a trabajos anteriores. Explicamos Ia discrepancia entre este y trabajos anteriores por uno de los autores. Discunmos calculos no-lineales y perdida de masa con respecto a) lfmite superior de masa. The existence of stars with masses in excess of 100 M0 has been questioned for a very long time. Upper mass limits of 100 Me have been obtained from pulsation and star formation theories. In this work we first investigate the radial stability of massive stars using the classical Ledoux's quasiadiabatic approximation. the Castor quasiadiabatic approximation and a fully nonadiabatic calculation. We have found that the three methods of calculation give similar results provided that a small region in outer layers of the star be neglected for the classical approximation. The critical mass for stability of massive stars is found to be in agreement with previous work. We explain the reason for the discrepancy between this and previous work by one of the authors. We discuss non-linear calculations and mass loss with regard to the upper mass limit. Key words: STARS-MASS FUNCTION - STARS-MASS LOSS - STARS-PULSATION

  16. [Age-related muscle mass loss].

    PubMed

    Czarkowska-Paczek, Bozena; Milczarczyk, Sylwia

    2006-01-01

    One of the signs of advancing age in humans is sarcopenia. The term is used to define the loss of muscle mass and strength that occurs with ageing. Sarcopenia contributes to the decreased capacity of independent living and increased amounts of traumas. Numbers of mechanisms are proposed as a cause of sarcopenia, including changes in protein metabolism, alterations in hormonal and neural functions, impaired regeneration after contraction-induced injuries, mitochondrial abnormalities, oxidative stress and apoptosis in skeletal muscle fibres. Further studies on the mechanisms leading to sarcopenia could provide the basis for prevention and establishment of therapeutic methods that would contribute to an increase in the standard of living among elderly people.

  17. Mass loss from UW Canis Majoris

    NASA Technical Reports Server (NTRS)

    Drechsel, H.; Rahe, J.; Kondo, Y.; Mccluskey, G. E., Jr.

    1980-01-01

    The present analysis is an application of the theory described by Lucy (1971) for the calculation of P Cygni resonance line profiles formed by isotropic and coherent scattering in spherically symmetric expanding circumstellar envelopes. Copernicus satellite measurements of resonance features in the FUV spectrum of the O 7 supergiant UW Canis Majoris (= HD 57060) are compared with theoretical P Cygni profiles. Grids of line profiles are computed using four free parameters which contain information about the velocity law, ionization equilibrium, temperature, and envelope density. Thus, with the assumption of a spherically symmetric steady flow, and of solar element abundances, the stellar mass loss rate and the electron temperature of the expanding shell can be derived. The mass flow is treated in a fully transonic way, i.e., the Sobolev approximation is applied.

  18. Detecting Mass Loss in Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Sandberg, Erik; Rajagopal, Jayadev; Ridgway, Susan E.; Kotulla, Ralf C.; Valdes, Francisco; Allen, Lori

    2016-01-01

    Sandberg, E., Rajagopal, J., Ridgway, S.E, Kotulla, R., Valdes, F., Allen, L.The Dark Energy Camera (DECam) on the 4m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) is being used for a survey of Near Earth Objects (NEOs). Here we attempt to identify mass loss in main belt asteroids (MBAs) from these data. A primary motivation is to understand the role that asteroids may play in supplying dust and gas for debris disks. This work focuses on finding methods to automatically pick out asteroids that have qualities indicating possible mass loss. Two methods were chosen: looking for flux above a certain threshold in the asteroid's radial profile, and comparing its PSF to that of a point source. After sifting through 490 asteroids, several have passed these tests and should be followed up with a more rigorous analysis.Sandberg was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829)

  19. Isotopic zirconium as a probe of AGB nucleosynthesis theory

    NASA Astrophysics Data System (ADS)

    Malaney, R. A.

    Nuclear reaction network calculations of the zirconium relative isotope abundances in AGB stars are presented. It is shown how these isotopic abundances depend on the AGB stellar mass and on the uncertain neutron absorption cross section for Zr-96. With regard to observations of the zirconium isotopes in S stars, it is shown how the many neutron exposure mechanisms associated with AGB thermal pulses cannot be operating in these stars. A less predictable scheme in which only a few neutron exposures take place appears to be more consistent with the reported S star observations.

  20. A Spitzer survey of asymptotic giant branch stars: Dust production and mass loss at low metallicity

    NASA Astrophysics Data System (ADS)

    Boyer, Martha L.

    We conducted infrared (IR) surveys of ten Galactic globular clusters (GCs) and eight Local Group dwarf irregular galaxies using the Spitzer Space Telescope . The main objective of these surveys is to further the understanding of dust production in low metallicity environments akin to the early Universe. In GCs, we investigate the stars with IR excesses, attributed to dust, and the intracluster medium (ICM). The GC M15 is the most metal-poor Galactic GC, and is ideal for studying dust production at metallicity less than 1% solar. The most massive Galactic GC, o Centauri, harbors three distinct populations of differing metallicities, providing the opportunity to study dust production at three metallicities within the same environment. The large population of dusty Asymptotic Giant Branch (AGB) stars present in the eight observed Local Group dwarf galaxies allows a statistically significant study of dusty stellar mass loss at a broad range of metallicities (2%-19% solar). In all observed systems, we find large populations of dust enshrouded stars and, in some cases, dusty interstellar medium. The surplus of both interstellar dust and the dust producing stars in M15 is surprising, given its extremely low metal-content. No significant amount of ICM dust is detected in any other GC observed, suggesting that ICM dust does not survive long compared to its production rate and is thus a part of a stochastic process. In oCen, we see no difference in dust production between the three populations, and overall, we see that dust is not formed in larger quantities than seen in M15. In dwarf galaxies, we see that circumstellar dust is prolific enough to create at least a small population of completely optically obscured AGB stars in each galaxy, regardless of the galaxy's metallicity, but higher metallicity galaxies tend to harbor more stars with slight IR excesses. These results suggest that dust production is not prohibited at very low metallicity, although it may be produced in

  1. Tip-AGB stellar evolution in the presence of a pulsating, dust-induced ``superwind"

    NASA Astrophysics Data System (ADS)

    Schröder, K.-P.; Winters, J. M.; Sedlmayr, E.

    1999-09-01

    We present selected ``superwind" mass-loss histories and the related tip-AGB stellar evolution models, which have been computed according to the characteristics of a dust-induced, carbon-rich wind, and which include several recent improvements as compared to Schröder et al. (1998). We discuss the (initial) stellar mass-range of 1 to 2.5 Msun, with a nearly solar composition (X=0.28, Y=0.70, Z=0.02). In each time-step, mass-loss rates are used, which are consistent with the actual stellar parameters, and which are based on our pulsating, dust-induced wind models for carbon-rich stars (Fleischer et al. 1992), including a detailed and consistent treatment of dust formation, radiative transfer and radiative wind acceleration. The resulting ``superwind" mass-loss rates reach 2 to 3* 10(-5) Msun yr(-1) . For this reason, they become an influential factor of tip-AGB stellar evolution - but also vice versa, since our mass-loss rates vary strongly with effective temperature (dot {M} ~ T_eff(-8) (roughly), see Arndt et al. 1997), reflecting the temperature sensitivity of the dust formation process on a macroscopic scale. With all tip-AGB models of an initial stellar mass Mi >~ 1.3 Msun we find superwinds with a total mass outflow of 0.26 to >~ 0.55 Msun during their final 3* 10(4) yrs, just as required for PN-formation. Furthermore, a thermal pulse leads to a very short (100 to 200 yrs) interruption of the ``superwind" of these models. A critical (Eddington-like) luminosity Lc is required for the radiation driven wind models, which our evolution models fail to reach for Mi <~ 1.1 Msun. With slightly larger stellar masses, L_tAGB is near Lc and thermal pulses can trigger very short ``superwind" bursts, as already pointed out by Schröder et al. (1998). We find good agreement between our improved models and the mass-loss characteristics of the thin CO shells found by Olofsson et al. (1990, 1993, 1996, 1998) around some carbon-rich Mira stars.

  2. Molecular shells in IRC+10216: tracing the mass loss history⋆,⋆⋆,⋆⋆⋆

    PubMed Central

    Cernicharo, J.; Marcelino, N.; Agúndez, M.; Guélin, M.

    2015-01-01

    Thermally-pulsating AGB stars provide three-fourths of the matter returned to the interstellar medium. The mass and chemical composition of their ejecta largely control the chemical evolution of galaxies. Yet, both the mass loss process and the gas chemical composition remain poorly understood. We present maps of the extended 12CO and 13CO emissions in IRC+10216, the envelope of CW Leo, the high mass loss star the closest to the Sun. IRC+10216 is nearly spherical and expands radially with a velocity of 14.5 km s−1. The observations were made On-the-Fly with the IRAM 30 m telescope; their sensibility, calibration, and angular resolution are far higher than all previous studies. The telescope resolution at λ = 1.3 mm (11″ HPBW) corresponds to an expansion time of 500 yr. The CO emission consists of a centrally peaked pedestal and a series of bright, nearly spherical shells. It peaks on CW Leo and remains relatively strong up to rphot = 180″. Further out the emission becomes very weak and vanishes as CO gets photodissociated. As CO is the best tracer of the gas up to rphot, the maps show the mass loss history in the last 8000 yr. The bright CO shells denote over-dense regions. They show that the mass loss process is highly variable on timescales of hundreds of years. The new data, however, do not support previous claims of a strong decrease of the average mass loss in the last few thousand years. The over-dense shells are not perfectly concentric and extend farther to the N-NW. The typical shell separation is 800–1000 yr in the middle of the envelope, but seems to increase outwards. The shell-intershell brightness contrast is ≥3. All those key features can be accounted for if CW Leo has a companion star with a period ≃800 yr that increases the mass loss rate when it comes close to periastron. Higher angular resolution observations are needed to fully resolve the dense shells and measure the density contrast. The latter plays an essential role in our

  3. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  4. The Nearby AGB Star L2 Puppis: The Birth Of a Planetary Nebula?

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Lagadec, E.

    2015-12-01

    Adaptive optics observations in the infrared (VLT/NACO, Kervella et al. [6]) and visible (VLT/SPHERE, Kervella et al. [7]) domains revealed that the nearby AGB star L2 Pup (d = 64 pc) is surrounded by a dust disk seen almost edge-on. Thermal emission from a large dust "loop" is detected at 4 μm up to more than 10 AU from the star. We also detect a secondary source at a separation of 32 mas, whose nature is uncertain. L2 Pup is currently a relatively "young" AGB star, so we may witness the formation of a planetary nebula. The mechanism that breaks the spherical symmetry of mass loss is currently uncertain, but we propose that the dust disk and companion are key elements in the shaping of the bipolar structure. L2 Pup emerges as an important system to test this hypothesis.

  5. Mass loss from red giants - Infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.

  6. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  7. CEMP-s Stars: AGB Yield Predictions and Thermohaline Mixing

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Ivans, I. I.; Preston, G. W.; Aoki, W.

    2008-03-01

    CS 29497-030 and CS 31062-050 belong to a sample of C-rich, s-process rich and extremely metal-poor stars (CEMP-s+r). To explain the s-process enrichment, we considered these stars to be extrinsic asymptotic giant branch (AGB) stars, belonging to binary systems where the more massive AGB companion polluted the observed star (of ~0.8 Msolar) with efficient stellar winds. To explain the r-process enrichment, we assumed that the parental cloud was already enriched in r-process elements. For the main sequence CS 29497-030 we hypothesize that the primary AGB had an initial mass of ~1.3 Msolar and underwent a very limited number of third dredge up episodes. A very small dilution between AGB winds and envelope mass of the observed star is derived by comparing AGB nucleosynthesis yields and observed abundances, consistent with the fact that dwarf stars of ~0.8 Msolar are characterized by a limited subphotospheric convective zone. This is compatible with moderate thermohaline mixing (e.g., [l]). AGB models of higher initial mass undergo an increasing number of third dredge up (TDU) episodes and produce larger carbon and s-process abundances at the surface. For AGB models of 1.5 Msolar and 2 Msolar a good match with the observed s-process abundance distribution can still be found, provided a dilution factor of 0.5 dex or 0.8 dex is applied. The predicted yields of Na and Mg, which are extremely sensitive to the number of thermal pulses, however, would be much higher than observed. CS 31062-050 is a red subgiant that has likely undergone the first dredge up episode, where the convective envelope extends over about 80% of the stellar mass, erasing any effect of thermohaline mixing. The ~1.3 Msolar AGB model will fit the observed elemental distribution, but will only be compatible with a quite large amount of mass accreted by the AGB donor. For this star, AGB models of 1.5 Msolar to 2 Msolar and dilution factors of 1.0 dex to 1.3 dex may be more appropriate, including the

  8. The TP-AGB phase: a new model.

    NASA Astrophysics Data System (ADS)

    Marigo, P.; Bressan, A.; Chiosi, C.

    1996-09-01

    This study deals with the TP-AGB phase of low and intermediate-mass stars (0.7<=M/Msun_<=5). To this aim, a semi-analytical model is constructed. A representative set of TP-AGB evolutionary models is calculated for two classes of initial metallicity (Z=0.02 and Z=0.008). A detailed analysis is performed to estimate the changes in the surface chemical composition caused by (1) the inter-shell nucleosynthesis and convective dredge-up; (2) nuclear burning in the deepest layers of the convective envelope; and (3) mass loss by stellar wind. The evolution of the abundances of 13 chemical elements (H, ^3^He, ^4^He, ^12^C, ^13^C, ^14^N, ^15^N, ^16^O, ^17^O,^18^O, ^20^Ne, ^22^Ne, ^25^Mg) is followed. In particular, the formation of carbon stars is investigated. We use the observed luminosity function of carbon stars in the LMC as the constraint whose fulfillment determines the values of the parameters adopted in the model, namely: the minimum core mass for dredge-up M_c_^min^ and the efficiency of the third dredge-up λ. In this way, we derive a proper calibration which the reliability of the chemical analysis stands on. We calculate the stellar yields for both metallicities to provide new data for these key-ingredients in the process of chemical enrichment of the interstellar medium. The chemical composition of PNe is derived and compared to the latest experimental data both in the Galaxy and in the LMC, which leads to a partial agreement. Observed information on the correlation between luminosity and pulsational period of Mira and OH/IR variables is used to test further our results. Finally, we predict the initial-final mass relation and we compare it to the semi-empirically determined one for the solar neighbourhood. The agreement turns out to be satisfactory.

  9. Early solar mass loss, element diffusion, and solar oscillation frequencies

    SciTech Connect

    Guzik, J.A.; Cox, A.N.

    1994-07-01

    Swenson and Faulkner, and Boothroyd et al. investigated the possibility that early main-sequence mass loss via a stronger early solar wind could be responsible for the observed solar lithium and beryllium depiction. This depletion requires a total mass loss of {approximately}0.1 M{circle_dot}, nearly independent of the mass loss timescale. We have calculated the evolution and oscillation frequencies of solar models including helium and element diffusion, and such early solar mass loss. We show that extreme mass loss of 1 M{circle_dot} is easily ruled out by the low-degree p-modes that probe the solar center and sense the steeper molecular weight gradient produced by the early phase of more rapid hydrogen burning. The effects on central structure are much smaller for models with an initial mass of 1.1 M{circle_dot} and exponentially-decreasing mass loss irate with e-folding timescale 0.45 Gyr. While such mass loss slightly worsens the agreement between observed and calculated low-degree modes, the observational uncertainties of several tenths of a microhertz weaken this conclusion. Surprisingly, the intermediate-degree modes with much smaller observational uncertainties that probe the convection zone bottom prove to be the key to discriminating between models: The early mass loss phase decreases the total amount of helium and heavier elements diffused from the convection zone, and the extent of the diffusion produced composition gradient just below the convection zone, deteriorating the agreement with observed frequencies for these modes. Thus it appears that oscillations can also rule out this smaller amount of gradual early main-sequence mass loss in the young Sun. The mass loss phase must be confined to substantially under a billion years, probably 0.5 Gyr or less, to simultaneously solve the solar Li/Be problem and avoid discrepancies with solar oscillation frequencies.

  10. Mass loss and a possible Population II lithium dip

    SciTech Connect

    Dearborn, D.S.P.; Schramm, D.N.; Hobbs, L.M. Chicago, Universita Fermi National Accelerator Laboratory, Batavia, IL Yerkes Observatory, Williams Bay, WI )

    1992-08-01

    It is shown that the recent observation of a subplateau lithium abundance for a high-surface-temperature Population II star relative to the Population II lithium plateau can be explained by main-sequence mass loss. This explanation is identical to a previously proposed explanation for the Population I lithium dip and predicts a similar dip for Population II. It is assumed that the main-sequence mass loss in both cases is associated with the instability strip intersecting the main sequence. This mass-loss process can also decrease globular cluster ages by about 1 Gyr. 21 refs.

  11. Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Cernicharo, J.; Engels, D.; Perea-Calderón, J. V.

    2016-07-01

    Spitzer/IRS spectra of eleven heavily obscured C-rich sources rapidly evolving from asymptotic giant branch (AGB) stars to Planetary Nebulae are presented. IRAM 30m observations for three of these post-AGBs are also reported. A few (3) of these sources are known to exhibit strongly variable maser emission of O-bearing molecules such as OH and H2 O, suggesting a transitory O-rich chemistry because of the quickly changing physical and chemical conditions in this short evolutionary phase. Interestingly, the Spitzer/IRS spectra show a rich circumstellar carbon chemistry, as revealed by the detection of small hydrocarbon molecules such as C2H2, C4H2, C6H2, C6H6, and HCN. Benzene is detected towards two sources, bringing up to three the total number of Galactic post-AGBs where this molecule has been detected. In addition, we report evidence for the possible detection of other hydrocarbon molecules like HC3N, CH3C2H, and CH3 in several of these sources. The available IRAM 30m data confirm that the central stars are C-rich - in despite of the presence of O-rich masers - and the presence of high velocity molecular outflows together with extreme AGB mass-loss rates (∼⃒10-4 Mʘ /yr). Our observations confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of small C-rich molecules and a transitory O-rich chemistry.

  12. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  13. Mapping Greenland's mass loss in space and time.

    PubMed

    Harig, Christopher; Simons, Frederik J

    2012-12-04

    The melting of polar ice sheets is a major contributor to global sea-level rise. Early estimates of the mass lost from the Greenland ice cap, based on satellite gravity data collected by the Gravity Recovery and Climate Experiment, have widely varied. Although the continentally and decadally averaged estimated trends have now more or less converged, to this date, there has been little clarity on the detailed spatial distribution of Greenland's mass loss and how the geographical pattern has varied on relatively shorter time scales. Here, we present a spatially and temporally resolved estimation of the ice mass change over Greenland between April of 2002 and August of 2011. Although the total mass loss trend has remained linear, actively changing areas of mass loss were concentrated on the southeastern and northwestern coasts, with ice mass in the center of Greenland steadily increasing over the decade.

  14. Mapping Greenland’s mass loss in space and time

    PubMed Central

    Harig, Christopher; Simons, Frederik J.

    2012-01-01

    The melting of polar ice sheets is a major contributor to global sea-level rise. Early estimates of the mass lost from the Greenland ice cap, based on satellite gravity data collected by the Gravity Recovery and Climate Experiment, have widely varied. Although the continentally and decadally averaged estimated trends have now more or less converged, to this date, there has been little clarity on the detailed spatial distribution of Greenland’s mass loss and how the geographical pattern has varied on relatively shorter time scales. Here, we present a spatially and temporally resolved estimation of the ice mass change over Greenland between April of 2002 and August of 2011. Although the total mass loss trend has remained linear, actively changing areas of mass loss were concentrated on the southeastern and northwestern coasts, with ice mass in the center of Greenland steadily increasing over the decade. PMID:23169646

  15. Search for systemic mass loss in Algols with bow shocks

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Deschamps, R.; Jorissen, A.

    2016-03-01

    Aims: Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detections of systemic mass loss in Algols have been scarce so far. We study the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods: In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the astrosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 12 μm and WISE W4 22 μm data of Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass-loss rate of the binary system. Results: Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks present in two systems, namely π Aqr, and ϕ Per; a third system, CX Dra, shows a more irregular circumstellar environment morphology which might somehow be related to systemic mass loss. The properties of the two bow shocks point to mass-loss rates and wind velocities typical of single B stars, which do not support an enhanced systemic mass loss.

  16. Monitoring Observatinos of H2O and SiO Masers Toward Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Kim, Jaeheon; Cho, Se-Hyung; Yoon, Dong-Hwan

    2016-12-01

    depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.

  17. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  18. Thermohaline Mixing and Isotopic Ratios in AGB Stars

    NASA Astrophysics Data System (ADS)

    Stancliffe, R. J.

    2015-08-01

    I investigate the effects of thermohaline mixing on the isotopic ratios of asymptotic giant branch (AGB) stars. While thermohaline mixing has been shown to be an effective means of changing the surface composition of low-mass stars while they ascend the upper part of the giant branch, the effect of this mechanism on the AGB is almost negligible. The carbon isotopic ratio is barely affected during the earliest pulses, and as the 12C content increases due to third dredge-up this effect becomes seriously curtailed. This is because structural changes affect the relative locations of 3He-burning and the CNO cycle. While the isotopic ratios are barely affected by thermohaline mixing on the AGB, there is a substantial increase in the surface lithium abundance due to the action of this mechanism.

  19. Secular dynamics in hierarchical three-body systems with mass loss and mass transfer

    SciTech Connect

    Michaely, Erez; Perets, Hagai B.

    2014-10-20

    Recent studies have shown that secular evolution of triple systems can play a major role in the evolution and interaction of their inner binaries. Very few studies explored the stellar evolution of triple systems, and in particular the mass-loss phase of the evolving stellar components. Here we study the dynamical secular evolution of hierarchical triple systems undergoing mass loss. We use the secular evolution equations and include the effects of mass loss and mass transfer, as well as general relativistic effects. We present various evolutionary channels taking place in such evolving triples, and discuss both the effects of mass loss and mass transfer in the inner binary system, as well as the effects of mass loss/transfer from an outer third companion. We discuss several distinct types/regimes of triple secular evolution, where the specific behavior of a triple system can sensitively depend on its hierarchy and the relative importance of classical and general relativistic effects. We show that the orbital changes due to mass-loss and/or mass-transfer processes can effectively transfer a triple system from one dynamical regime to another. In particular, mass loss/transfer can both induce and quench high-amplitude (Lidov-Kozai) variations in the eccentricity and inclination of the inner binaries of evolving triples. They can also change the system dynamics from an orderly periodic behavior to a chaotic one, and vice versa.

  20. On the missing second generation AGB stars in NGC 6752

    NASA Astrophysics Data System (ADS)

    Cassisi, Santi; Salaris, Maurizio; Pietrinferni, Adriano; Vink, Jorick S.; Monelli, Matteo

    2014-11-01

    In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, it is now thought that basically all globular clusters host multiple stellar populations, each with its own chemical abundance pattern and colour-magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the globular cluster NGC 6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first generation stars, and that all second generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second generation horizontal branch stars - all located at the hot side of the blue and extended horizontal branch of this cluster - possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the asymptotic giant branch phase, thus explaining at the same time the low value of the ratio between horizontal branch and asymptotic giant branch stars (the R2 parameter) observed in NGC 6752. We have critically discussed this mass-loss scenario, finding that the required mass-loss rates are of the order of 10-9 M⊙ yr-1, significantly higher than current theoretical and empirical constraints. By making use of synthetic horizontal branch simulations, we demonstrate that our modelling correctly predicts the R2 parameter for NGC 6752, without the need to invoke very efficient mass loss during the core He-burning stage. As a test of our stellar models we show that we can reproduce the observed value of R2 for both M 3, a cluster of approximately the same metallicity and with a redder horizontal branch morphology, and M 13, a cluster with a horizontal branch very similar to NGC 6752. However, our simulations for the NGC 6752 horizontal branch predict however the presence of a significant fraction of second generation stars (about 50%) along

  1. Mass Gains of the Antarctic Ice Sheet Exceed Losses

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui; Brenner, Anita; Bromwich, David

    2012-01-01

    During 2003 to 2008, the mass gain of the Antarctic ice sheet from snow accumulation exceeded the mass loss from ice discharge by 49 Gt/yr (2.5% of input), as derived from ICESat laser measurements of elevation change. The net gain (86 Gt/yr) over the West Antarctic (WA) and East Antarctic ice sheets (WA and EA) is essentially unchanged from revised results for 1992 to 2001 from ERS radar altimetry. Imbalances in individual drainage systems (DS) are large (-68% to +103% of input), as are temporal changes (-39% to +44%). The recent 90 Gt/yr loss from three DS (Pine Island, Thwaites-Smith, and Marie-Bryd Coast) of WA exceeds the earlier 61 Gt/yr loss, consistent with reports of accelerating ice flow and dynamic thinning. Similarly, the recent 24 Gt/yr loss from three DS in the Antarctic Peninsula (AP) is consistent with glacier accelerations following breakup of the Larsen B and other ice shelves. In contrast, net increases in the five other DS of WA and AP and three of the 16 DS in East Antarctica (EA) exceed the increased losses. Alternate interpretations of the mass changes driven by accumulation variations are given using results from atmospheric-model re-analysis and a parameterization based on 5% change in accumulation per degree of observed surface temperature change. A slow increase in snowfall with climate waRMing, consistent with model predictions, may be offsetting increased dynamic losses.

  2. High Resolution Studies of Mass Loss from Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  3. Mass Loss and Pre-SN Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Smith, N.

    2010-06-01

    I review the role that mass loss plays in the pre-SN evolution of massive stars in a variety of different scenarios, and what observable effect it may have on the resulting SN. The amount of mass lost, its speed, and how soon before core collapse the material is removed can have a dramatic effect on the resulting SN light curve and spectrum. Massive stars trek across the HR diagram as they evolve, and the SN can look very different depending on where along this path core collapse occurs; it may not depend solely on initial mass. The most extreme pre-SN mass ejections in massive luminous blue variables (LBVs) have recently (and surprisingly) been linked to the very luminous Type IIn supernovae with circumstellar interaction that dominates the spectrum and enhances the visual luminosity. In some cases these objects require strong LBV-like shell ejections in the decades immediately before a SN. Strong winds or episodic mass loss of luminous red supergiants (RSGs) and yellow hypergiants may also lead to less extreme Type IIn events. Post-RSG blue supergiants like SN 1987A's progenitor and lower-luminosity LBVs like HD 168625 are also candidates for Type II SNe with visible circumstellar material. Finally, progenitors that successfully shed their H envelopes (either through LBV eruptions, strong winds, or binary mass transfer) die as Type Ib or Ic supernovae, and some of these also show evidence for immediate pre-SN shell ejections. Many of the potential progenitors of Types Ib, Ic, IIn, IIb, and II-L overlap in their range of probable initial mass, and I will point to some open questions about how they fit together in the context of stellar evolution, and the roles of mass loss and initial mass in determining their relative rates.

  4. Effects of mass loss for highly-irradiated giant planets

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.; Hattori, M. F.; Burrows, A.; Hubeny, I.; Sudarsky, D.

    2007-04-01

    We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. [Baraffe, I., Selsis, F., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H., Lammer, H., 2004. Astron. Astrophys. 419, L13-L16] predict the highest rate, based on the theory of Lammer et al. [Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W., 2003. Astrophys. J. 598, L121-L124]. Scaling the theory of Watson et al. [Watson, A.J., Donahue, T.M., Walker, J.C.G., 1981. Icarus 48, 150-166] to parameters for a highly-irradiated exoplanet, we find an escape rate ˜10 lower than Baraffe's. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes ⩾0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.

  5. AGB Connection and Ultraviolet Luminosity Excess in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, Alberto; González-Lópezlira, Rosa A.

    2008-10-01

    Relying on infrared surface brightness fluctuactions to trace AGB properties in a sample of elliptical galaxies in the Virgo and Fornax Clusters, we assess the puzzling origin of the ``UV upturn'' phenomenon, recently traced to the presence of a hot horizontal branch (HB) stellar component. The UV upturn actually signals a profound change in the galaxy stellar populations, involving both the hot stellar component and red giant evolution. In particular, the strengthening of the UV rising branch is always seen to correspond to a shortening in AGB deployment; this trend can be readily interpreted as an age effect, perhaps mildly modulated by metal abundance. Brightest stars in ellipticals are all found to be genuine AGB members, all the way, and with the AGB tip exceeding the RGB tip by some 0.5-1.5 mag. The inferred core mass of these stars is found to be lesssim0.57 M⊙ among giant ellipticals. This value accounts for the recognized deficiency of planetary nebulae in these galaxies, as a result of a lengthy transition time for the post-AGB stellar core to become a hard UV emitter and eventually ``fire up'' the nebula. The combined study of galaxy (1550 - V)0 color and integrated Hβ index points to a a bimodal temperature distribution for the HB with both a red clump and an extremely blue component, in a relative proportion [N(RHB) : N(BHB)] ~ [80 : 20]. For the BHB stellar population, [Fe/H] values of either simeq-0.7 or gtrsim+0.5 dex may provide the optimum ranges to feed the needed low-mass stars (M*ll 0.58 M⊙) that at some stage begin to join the standard red clump stars.

  6. Stikine Icefield Mass Loss Between 2000 and 2013/2014

    NASA Astrophysics Data System (ADS)

    Melkonian, Andrew; Willis, Michael; Pritchard, Matt

    2016-10-01

    We calculate thinning rates (dh/dt) at the 5,800 km2 Stikine Icefield of southeast Alaska from stacked digital elevation models (DEMs) acquired between 2000 and 2013/2014, and glacier velocities between 1985 and 2014 from feature tracking on optical image pairs. We find a mass change rate of -3.3 ± 1.1 Gt yr-1 between 2000&and 2014, equivalent to an area-averaged elevation change rate of -0.57 ± 0.18 m w.e. yr-1. In 2014, land-terminating glaciers are 50% of the Stikine Icefield's glaciated area and contribute -0.9 ± 0.4 Gt yr-1 of mass change (27% of the total), while marine-terminating glaciers are only 30% of the total glaciated area, but contribute -1.5 ± 0.3 Gt yr-1 (or 45% of total mass change, with the remaining mass loss from lacustrine-terminating glaciers). We estimate the frontal ablation flux between 2000 and 2014 at the four largest marine-terminating glaciers on the Stikine Icefield (covering 90 to 95% of the marine-terminating glaciated area) using our glacier velocities and maps of fjord bathymetry to estimate terminus cross sections and glacier thicknesses. The combined 2014 frontal ablation flux of these four glaciers is 1.18 ± 0.14 Gt yr-1, which may account for the difference in average mass loss between marine- and land-terminating glaciers on the Stikine Icefield. The Stikine and adjacent Juneau Icefields have very different mass loss contributions from marine-terminating glaciers (45% vs. effectively 0%), but both have area-averaged elevation change rates that are less negative than Alaska-wide estimates, which is surprising for these southernmost icefields in Alaska.

  7. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; De Beck, E.; Black, J. H.; Olofsson, H.; Justtanont, K.

    2016-04-01

    Aims: The sulphur compounds SO and SO2 have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO2 lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. Methods: We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO2 line emission. We use molecular data files for both SO and SO2 that are more extensive than those previously available. Results: Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of (6.7 ± 0.9) × 10-6 and an SO2 abundance of 5 × 10-6 with both species having high abundances close to the star. We also modelled 34SO and found an abundance of (3.1 ± 0.8) × 10-7, giving an 32SO/34SO ratio of 21.6 ± 8.5. We derive similar results for the circumstellar SO and SO2 abundances and their distributions for the low mass-loss rate object W Hya. For the higher mass-loss rate stars, we find shell-like SO distributions with peak abundances that decrease and peak abundance radii that increase with increasing mass-loss rate. The positions of the peak SO abundance agree very well with the photodissociation radii of H2O. We also modelled SO2 in two higher mass-loss rate stars but our models for these were less conclusive. Conclusions: We conclude that for the low mass-loss rate stars, the circumstellar SO and SO2 abundances are much higher than predicted by chemical models of the extended stellar atmosphere. These two species may also account for all the available sulphur. For the higher mass-loss rate stars we find evidence that SO is most efficiently formed in the circumstellar envelope, most likely through the photodissociation of H2O and the subsequent reaction between S and OH. The S

  8. Planetological implications of mass loss from the early Sun

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, J. J.; Doyle, L. R.; Reynolds, R. T.

    1991-01-01

    The element lithium is observed to be underabundant in the Sun by a factor of approx. equal to 100. To account for this depletion, Boothroyd et al. (Ap. J., in press 1991) proposed a model in which the Sun's zero-age-main-sequence mass was approx. 1.1 solar magnitude. If this is the explanation for the lithium depletion, then astronomical observations of F/G dwarfs in clusters suggest that the timescale for mass loss is approx. equal to 0.6 Gyr. Assuming this approximate timescale, the authors investigated several planetological implications of the astrophysical model.

  9. Main sequence mass loss and the ages of stars

    NASA Technical Reports Server (NTRS)

    Willson, L. A.

    1989-01-01

    The potentially observable consequences of the pulsation/rotation-induced mass loss from main-sequence A and F stars proposed by Willson et al. (1987) are discussed, reviewing the results of recent investigations. Particular attention is given to (1) evidence for a deficiency in A stars and an excess of F and G stars, as predicted by the theory, (2) cluster HR diagrams and age estimates, and (3) modifications to standard models of solar-system evolution. It is pointed out that the time scales and mass-loss rates required to explain the observed properties of clusters and field stars in this theory are the same as those needed to account for the early development of the solar system.

  10. The 1981 mass-loss phase of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Bidelman, William P.; Galen, Tamara A.; Wallerstein, George

    1993-07-01

    A visual-region coude spectrogram of Eta Carinae taken in 1981 May is described, and the portion of the spectrum containing H-alpha is reproduced. This was taken during one of Eta Car's 'abnormal' stages, which have been suggested by Zanella et al. (1984) to be times of large mass loss from this unique object. The 1981 spectrum is compared with the 'normal' spectrum as observed in 1985.

  11. Mass loss from red giants - Results from ultraviolet spectroscopy

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1985-01-01

    New instrumentation in space, primarily the IUE spacecraft, has enabled the application of ultraviolet spectroscopic techniques to the determination of physical properties and reliable mass loss rates for red giant winds. One important result is the determination of where in the H-R diagram are found stars with hot outer atmospheres and with cool winds. So far it appears that single cool stars, except perhaps the so-called hybrid stars, have either hot outer atmospheres or cool winds but not both. The C II resonance (1335 A) and intersystem (2325 A) multiplets have been used to derive temperatures, densities, and geometrical extents for the chromospheric portions of red giant winds, with the result that the red giants and the earlier giants with hot coronae have qualitatively different chromospheres. Mass loss rates can now be derived accurately from the analysis of asymmetric emission lines, such as the Mg II resonance lines, and from P Cygni profile lines of atoms in the dominant ionization stage when a hot star is available to probe the wind of a red giant. The Zeta Aur systems, consisting of a K-M supergiant and a main sequence B star are important systems for reliable mass loss rates for the red supergiant components are becoming available.

  12. The role of AGB stars feedback in sustaining galaxy evolution

    NASA Astrophysics Data System (ADS)

    Javadi, A.; van Loon, J. Th.; Khosroshahi, H.

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M 33. The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In first instance, only the central square kiloparsec were monitored and analysed, with the UIST camera. Photometry was obtained for 18,398 stars; of these 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. We constructed the birth mass function and hence derived the star formation history. These stars are also important dust factories. We measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. The mass loss rates are seen to increase with increasing strength of pulsation and with increasing bolometric luminosity. We construct a 2D map of the mass return rate, showing a radial decline but also local enhancements due to the concentration of red supergiants. We conclude that star formation in the central region of M 33 can only be sustained if gas is accreted from further out in the disc or from circum-galactic regions. By using data of the wide-field camera (WFCAM), the campaign was expanded to cover two orders of magnitude larger area, comprising the disc of M 33 and its spiral arms. Photometry was obtained for 403,734 stars; of these 4643 stars were found to be variable. We here present the star formation history across the disc of M 33.

  13. SUPER-AGB-AGB EVOLUTION AND THE CHEMICAL INVENTORY IN NGC 2419

    SciTech Connect

    Ventura, Paolo; D'Antona, Francesca; Carini, Roberta; Di Criscienzo, Marcella; D'Ercole, Annibale; Vesperini, Enrico

    2012-12-20

    We follow the scenario of formation of second-generation stars in globular clusters by matter processed by hot bottom burning (HBB) in massive asymptotic giant branch (AGB) stars and super-AGB stars (SAGB). In the cluster NGC 2419 we assume the presence of an extreme population directly formed from the AGB and SAGB ejecta, so we can directly compare the yields for a metallicity Z = 0.0003 with the chemical inventory of the cluster NGC 2419. At such a low metallicity, the HBB temperatures (well above 10{sup 8} K) allow a very advanced nucleosynthesis. Masses {approx}6 M{sub Sun} deplete Mg and synthesize Si, going beyond Al, so this latter element is only moderately enhanced; sodium cannot be enhanced. The models are consistent with the observations, although the predicted Mg depletion is not as strong as in the observed stars. We predict that the oxygen abundance must be depleted by a huge factor (>50) in the Mg-poor stars. The HBB temperatures are close to the region where other p-capture reactions on heavier nuclei become possible. We show that high potassium abundance found in Mg-poor stars can be achieved during HBB by p-captures on the argon nuclei, if the relevant cross section(s) are larger than listed in the literature or if the HBB temperature is higher. Finally, we speculate that some calcium production is occurring owing to proton capture on potassium. We emphasize the importance of a strong effort to measure a larger sample of abundances in this cluster.

  14. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  15. THE FATE OF STELLAR MASS LOSS IN CENTRAL CLUSTER GALAXIES

    SciTech Connect

    Voit, G. Mark; Donahue, Megan

    2011-09-10

    Star formation within the central galaxies of galaxy clusters is often interpreted as being fueled by cooling of the hot intracluster medium. However, the star-forming gas is dusty, and Spitzer spectra show that the dust properties are similar to those in more normal star-forming environments, in which the dust has come from the winds of dying stars. Here we consider whether the primary source of the star-forming gas in central cluster galaxies could be normal stellar mass loss. We show that the overall stellar mass-loss rate in a large central galaxy ({approx}4-8 M{sub sun} yr{sup -1}) is at least as large as the observed star formation rates in all but the most extreme cases and must be included in any assessment of the gas-mass budget of a central cluster galaxy. We also present arguments suggesting that the gas shed by stars in galaxy clusters with high core pressures and short central cooling times may remain cool and distinct from its hot surroundings, thereby preserving the dust within it.

  16. Very low energy supernovae from neutrino mass loss

    SciTech Connect

    Lovegrove, Elizabeth; Woosley, S. E.

    2013-06-01

    It now seems likely that some percentage of more massive supernova progenitors do not explode by any of the currently discussed explosion mechanisms. This has led to speculation concerning the observable transients that might be produced if such a supernova fails. Even if a prompt outgoing shock fails to form in a collapsing presupernova star, one must still consider the hydrodynamic response of the star to the abrupt loss of mass via neutrinos as the core forms a protoneutron star. Following a suggestion by Nadezhin, we calculate the hydrodynamical responses of typical supernova progenitor stars to the rapid loss of approximately 0.2-0.5 M {sub ☉} of gravitational mass from their centers. In a red supergiant star, a very weak supernova with total kinetic energy ∼10{sup 47} erg results. The binding energy of a large fraction of the hydrogen envelope before the explosion is of the same order and, depending upon assumptions regarding the maximum mass of a neutron star, most of it is ejected. Ejection speeds are ∼100 km s{sup –1} and luminosities ∼10{sup 39} erg s{sup –1} are maintained for about a year. A significant part of the energy comes from the recombination of hydrogen. The color of the explosion is extremely red and the events bear some similarity to 'luminous red novae', but have much lower speeds.

  17. The 13C(α,n)16O reaction as a neutron source for the s-process in AGB low-mass stars

    NASA Astrophysics Data System (ADS)

    Trippella, O.; Busso, M.; La Cognata, M.; Spitaleri, C.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Maiorca, E.; Palmerini, S.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2014-05-01

    The 13C(α,n)16O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the 13C(α,n)16O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the 13C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements.

  18. The optically bright post-AGB population of the LMC

    NASA Astrophysics Data System (ADS)

    van Aarle, E.; van Winckel, H.; Lloyd Evans, T.; Ueta, T.; Wood, P. R.; Ginsburg, A. G.

    2011-06-01

    Context. The detected variety in chemistry and circumstellar shell morphology of the limited sample of Galactic post-asymptotic giant branch (AGB) stars is so large that there is no consensus yet on how the different objects are linked by evolutionary channels. The evaluation is complicated by the fact that their distances and hence luminosities remain largely unknown. Aims: We construct a catalogue of the optically bright post-AGB stars in the Large Magellanic Cloud (LMC). The sample forms an ideal testbed for stellar evolution theory predictions of the final phase of low- and intermediate-mass stars, because the distance and hence luminosity and also the current and initial mass of these objects is well constrained. Methods: Via cross-correlation of the Spitzer SAGE catalogue with optical catalogues we selected a sample of LMC post-AGB candidates based on their [8] - [24] colour index and estimated luminosity. We determined the fundamental properties of the central stars of 105 of these objects using low-resolution, optical spectra that we obtained at Siding Spring Observatory and SAAO. Results: We constructed a catalogue of 70 high probability and 1337 candidate post-AGB stars that is available at the CDS. About half of the objects in our sample of post-AGB candidates show a spectral energy distribution (SED) that is indicative of a disc rather than an expanding and cooling AGB remnant. Like in the Galaxy, the disc sources are likely associated with binary evolution. Important side products of this research are catalogues of candidate young stellar objects, candidate supergiants with circumstellar dust, and discarded objects for which a spectrum was obtained. These too are available at the CDS. Appendices A-D are available in electronic form at http://www.aanda.orgCatalogues are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A90

  19. Is mass loss from red giant stars dust driven?

    NASA Astrophysics Data System (ADS)

    Yates, J. A.

    1992-12-01

    Long period variable stars on the Asymptotic Giant Branch are observed to be losing mass in the form of cool dusty molecular stellar winds at rates from 10-7 to 10-4 Msunyr-1. The driving force for this mass loss is thought to be radiation pressure on dust particles. The dust transfers its momentum to gas molecules via collisions. This paper discusses the existing evidence for this scenario. New results, from analysis of 22 GHz H2O maser observations made by Merlin, show that the cruical acceleration past the stellar escape velocity of the central star takes place in the inner circumstellar envelope around the central star. The analysis of the velocity fields of the circumstellar envelopes of VX Sgr and VY CMa using the model described by Chapman and Cohen (1986) are discussed.

  20. Evolution of massive AGB stars. II. model properties at non-solar metallicity and the fate of Super-AGB stars

    NASA Astrophysics Data System (ADS)

    Siess, L.

    2007-12-01

    Context: Massive AGB (hereafter super-AGB or SAGB) stars ignite carbon off-center and have initial masses ranging between Mup, the minimum initial mass for carbon ignition, and M_mas the minimum mass for the formation of an iron core collapse supernova. In this mass interval, stars more massive than Mn will undergo an electron capture supernova (EC-SN). Aims: We study the fate and selected evolutionary properties of SAGB stars up to the end of the carbon burning phase as a function of metallicity and core overshooting. Methods: The method is based on the analysis of a large set of stellar models covering the mass range 5-13 M⊙ and calculated for 7 different metallicities between Z=10-5 and twice solar. Core overshooting was considered in two subsets for Z=10-4 and 0.02. The models are available online at http://www-astro.ulb.ac.be/ siess/database.html. The fate of SAGB stars is investigated through a parametric model which allows us to assess the role of mass loss and of the third dredge-up. Results: Our main results can be summarized as follows: a) prior to C-burning, the evolution of SAGB stars is very similar to that of intermediate-mass stars, being more luminous, b) SAGB stars suffer a large He enrichment at the end of the second dredge-up, c) the limiting masses Mup, Mn and M_mas present a nonlinear behavior with Z, characterized by a minimum around Z=10-4, d) the values of Mup, Mn and M_mas are decreased by 2 M⊙ when core overshooting is considered, e) our models predict a minimum oxygen-neon white dwarf mass of 1.05 M⊙, f) the determination of Mn is highly dependent on the mass loss and core growth rates, g) the evolutionary channel for EC-SN is limited to a very narrow mass range of ⪉1-1.5 M⊙ width and this mass window can be further decreased if some metallicity scaling factor is applied to the mass loss rate, h) the final fate of SAGB stars is connected to the second dredge-up and this property allowed us to refine the initial mass range for

  1. Corotation lag limit on mass-loss rate from Io

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Siscoe, G. L.

    1987-01-01

    Considering rapid escape of H2O from Io during an early hot evolutionary epoch, an H2O plasma torus is constructed by balancing dissociation and ionization products against centrifugally driven diffusion, including for the first time the effects of corotation lag resulting from mass loading. Two fundamental limits are found as the mass injection rate increases: (1) an 'ignition' limit of 1.1 x 10 to the 6th kg/s, beyond which the torus cannot ionize itself and photoionization dominates; and (2) the ultimate mass loading limit of 1.3 x 10 to the 7th kg/s, which occurs when neutrals newly created by charge exchange and recombination cannot leave the torus, thereby bringing magnetospherically driven transport to a halt. Connecting this limit with the variations of Io's temperature in its early evolution epoch gives an estimate of the upper limit on the total mass loss from Io, about 3.0 x 10 to the 20th kg (for high-opacity nebula) and about 8.9 x 10 to the 20th kg (for low-opacity nebula). These limits correspond to eroding 8 km and 22 km of H2O from the surface. It is concluded that compared to the other Galilean satellites, Io was created basically dry.

  2. Mass Loss and Surface Displacement Estimates in Greenland from GRACE

    NASA Astrophysics Data System (ADS)

    Jensen, Tim; Forsberg, Rene

    2015-04-01

    The estimation of ice sheet mass changes from GRACE is basically an inverse problem, the solution is non-unique and several procedures for determining the mass distribution exists. We present Greenland mass loss results from two such procedures, namely a direct spherical harmonic inversion procedure possible through a thin layer assumption, and a generalized inverse masscon procedure. These results are updated to the end of 2014, including the unusual 2013 mass gain anomaly, and show a good agreement when taking into account leakage from the Canadian Icecaps. The GRACE mass changes are further compared to GPS uplift data on the bedrock along the edge of the ice sheet. The solid Earth deformation is assumed to consist of an elastic deformation of the crust and an anelastic deformation of the underlying mantle (GIA). The crustal deformation is due to current surface loading effects and therefore contains a strong seasonal component of variation, superimposed on a secular trend. The majority of the anelastic GIA deformation of the mantle is believed to be approximately constant. An accelerating secular trend and seasonal changes, as seen in Greenland, is therefore assumed to be due to elastic deformation from changes in surface mass loading from the ice sheet. The GRACE and GPS comparison is only valid by assuring that the signal content of the two observables are consistent. The GPS receivers are measuring movement at a single point on the bedrock surface, and therefore sensitive to a limited loading footprint, while the GRACE satellites on the other hand measures a filtered, attenuated gravitational field, at an altitude of approximately 500 km, making it sensitive to a much larger area. Despite this, the seasonal loading signal in the two observables show a reasonably good agreement.

  3. Shock waves, atmospheric structure and mass loss in Miras

    NASA Technical Reports Server (NTRS)

    Willson, L. A.; Pierce, J. N.

    1981-01-01

    Large amplitude shock waves are observed to be present in the atmospheres of the Mira variables: spectral line doubling with Delta v 30 km/s is present in infrared spectra. Even the visible spectra contain some evidence for such shocks. These shocks are sufficiently large to clearly dominate the energy balance of the atmosphere. Mira variables also show symptoms of substantial mass loss rates: they are strong maser and infrared continuum sources and have strong circumstellar absorption features. The pulsation induced shocks which are seen to be present are obvious suspects for causing or enhancing the mass loss from these stars. The Miras thus present an ideal case for the study of dynamical effects on atmospheric structure, since both the dynamics and the results are clearly observable. The results are given of calculations of the thermalization and cooling of the shock heated material passing through shock fronts whose properties were selected to be consistent with both the isothermal models and the spectroscopic observations.

  4. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr(2). Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr(2). However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr(2). Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr(2).

  5. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  6. Boron as a Probe of Stellar Structure and Mass Loss

    NASA Astrophysics Data System (ADS)

    Duncan, Douglas

    1991-07-01

    Observations of Boron, an easily destroyed element, will be used to probe processes which circulate or remove and destroy material in cool stars. These include mass loss, diffusion, meridional circulation, convective overshoot, and turbulence and rotationially-driven mixing. 1. The destruction of light elements in the sun is not understood but is a key to understanding internal mixing in cool stars. Alpha Centauri A and B will be measured to study mixing in stars respectively slightly more and less massive than the sun. Beta Hyi will be studied as an example of a 1.0 solar mass, partially evolved star. 2. The rates of mixing processes, especialy those which are expected to operate only on long timescales, will be studied by observing two stars in the intermediate age cluster NGC 752. One star will be from inside the "Lithium Gap" region in the F stars, and one star from outside the gap. 3. Two red giants and subgiants will be observed to help measure the amount of mass lost on the giant branch. . . . . . . . . . . . . . . . . . . . . . . NOTE: THIS PROPOSAL ONLY USES SIDE 2 OF THE GHRS. We are aware of the GHRS condition (as the P.I. is GHRS Instrument Scientist.)

  7. SPUF - a simple polyurethane foam mass loss and response model.

    SciTech Connect

    Hobbs, Michael L.; Lemmon, Gordon H.

    2003-07-01

    A Simple PolyUrethane Foam (SPUF) mass loss and response model has been developed to predict the behavior of unconfined, rigid, closed-cell, polyurethane foam-filled systems exposed to fire-like heat fluxes. The model, developed for the B61 and W80-0/1 fireset foam, is based on a simple two-step mass loss mechanism using distributed reaction rates. The initial reaction step assumes that the foam degrades into a primary gas and a reactive solid. The reactive solid subsequently degrades into a secondary gas. The SPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE [1] and CALORE [2], which support chemical kinetics and dynamic enclosure radiation using 'element death.' A discretization bias correction model was parameterized using elements with characteristic lengths ranging from 1-mm to 1-cm. Bias corrected solutions using the SPUF response model with large elements gave essentially the same results as grid independent solutions using 100-{micro}m elements. The SPUF discretization bias correction model can be used with 2D regular quadrilateral elements, 2D paved quadrilateral elements, 2D triangular elements, 3D regular hexahedral elements, 3D paved hexahedral elements, and 3D tetrahedron elements. Various effects to efficiently recalculate view factors were studied -- the element aspect ratio, the element death criterion, and a 'zombie' criterion. Most of the solutions using irregular, large elements were in agreement with the 100-{micro}m grid-independent solutions. The discretization bias correction model did not perform as well when the element aspect ratio exceeded 5:1 and the heated surface was on the shorter side of the element. For validation, SPUF predictions using various sizes and types of elements were compared to component-scale experiments of foam cylinders that were heated with lamps. The SPUF predictions of the decomposition front locations were compared to the front locations determined from real-time X

  8. Mass Loss from the Central Star of NGC 7009

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Iping, Rosina; Massa, Derck; Chu, You-Hua; Gruendl, Robert

    2006-01-01

    Observations of NGC 7009, including its central star HD 200516, have been obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, providing spectra covering 905-1187 A with spectral resolution of 15 kilometers per second. One observation was made with the 30x30 arcsec aperture and includes the star plus the entire nebula. A second series of observations used the 1.25x20 arcsec slit, significantly reducing the nebular 'contamination' of the stellar spectrum. This paper discusses the spectrum of the central star. A strong FUV continuum, as expected for Teff=82,000K, dominates the spectrum. The most prominent spectral feature is a very strong P-Cygni profile of O VI 1032-1038. This paper presents models of the stellar spectrum and the wind features to further refine the stellar parameters and mass loss rate.

  9. Post-AGB Evolution Much Faster Than Previously Phought

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2017-03-01

    For 32 central stars of PNe we present their parameters interpolated among new evolutionary sequences. The derived stellar final masses are confined between 0.53 and 0.58 M⊙ in good agreement with the peak in the white dwarf mass distribution. Consequently, the inferred star formation history of the Galactic bulge is well restricted between 3 and 11 Gyr and is compatible with other published studies. The new evolutionary tracks proved very good as a tool for analysis of late stages of stars life. The results provide a compelling confirmation of the accelerated post-AGB evolution.

  10. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

  11. Gravitational mass of positron from LEP synchrotron losses

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2016-07-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  12. Gravitational mass of positron from LEP synchrotron losses

    PubMed Central

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  13. Gravitational mass of positron from LEP synchrotron losses

    SciTech Connect

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). As a result, this serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  14. Gravitational mass of positron from LEP synchrotron losses

    DOE PAGES

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen domore » not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). As a result, this serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.« less

  15. Numerical Studies of Ablative Mass Loss from Wind Accelerated Clouds.

    NASA Astrophysics Data System (ADS)

    Knerr, Jeffrey Matthew

    1993-01-01

    We have used numerical hydrodynamics to study the acceleration of dense gas clouds via wind ram pressure. Our goal has been to examine a model for the explanation of broad absorption lines (BALs) seen in the spectra of a certain fraction of observed QSOs. This model postulates cool dense clouds moving at very high speeds as the source of the BALs. Furthermore, it invokes simple wind ram pressure as the acceleration mechanism for the clouds. A crucial question is whether the clouds can survive potentially disruptive fluid instabilities, allowing time for acceleration to speeds comparable to the wind velocity. Linear stability arguments imply Rayleigh-Taylor (RT) instability growth occurs on time scales much shorter than the acceleration time scale. These arguments conclude acceleration via ram pressure cannot produce bulk cloud velocities in excess of the cloud's internal sound speed. Our simulations show this is simply not true. We present two-dimensional slab-symmetric simulations where clouds are accelerated to speeds close to an order of magnitude greater than their internal sound speed. Ablative mass loss by the flow of shocked wind gas around the periphery of the clouds acts to limit the growth of potentially disruptive instabilities. Simulations run at different computational grid resolutions clearly show the stabilizing effect ablation has on the evolution of the clouds. Simplified models for line profiles have been developed using mass-velocity histograms generated from the numerical simulations. There is good qualitative agreement between the simulated line profiles and observed BAL profiles.

  16. Reducing uncertainties in projections of Antarctic ice mass loss

    NASA Astrophysics Data System (ADS)

    Durand, G.; Pattyn, F.

    2015-04-01

    Climate model projections are often aggregated into multi-model averages of all models participating in an Intercomparison Project, such as the Coupled Model Intercomparison Project (CMIP). A first initiative of the ice-sheet modeling community, SeaRISE, to provide multi-model average projections of polar ice sheets' contribution to sea-level rise recently emerged. SeaRISE Antarctic numerical experiments aggregate results from all models willing to participate without any selection of the models regarding the processes implemented in. Here, using the experimental set-up proposed in SeaRISE we confirm that the representation of grounding line dynamics is essential to infer future Antarctic mass change. We further illustrate the significant impact on the ensemble mean and deviation of adding one model with a known biais in its ability of modeling grounding line dynamics. We show that this biased model can hardly be discriminated from the ensemble only based on its estimation of volume change. However, tools are available to test parts of the response of marine ice sheet models to perturbations of climatic and/or oceanic origin (MISMIP, MISMIP3d). Based on recent projections of the Pine Island Glacier mass loss, we further show that excluding ice sheet models that do not pass the MISMIP benchmarks decreases by an order of magnitude the mean contribution and standard deviation of the multi-model ensemble projection for that particular drainage basin.

  17. Intense accretion and mass loss of a very low mass young stellar object

    NASA Astrophysics Data System (ADS)

    Fernández, M.; Comerón, F.

    2001-12-01

    We present visible and near-infrared photometry and spectroscopy of LS-RCrA 1, a faint, very late-type object (M 6.5-M 7) seen in the direction of the R Coronae Australis star forming complex. While its emission spectrum shows prominent features of accretion and mass loss typical of young stellar objects, its underlying continuum and photometric properties are puzzling when trying to derive a mass and age based on pre-main sequence evolutionary tracks: the object appears to be far too faint for a young member of the R Coronae Australis complex of its spectral type. We speculate that this may be due to either its evolution along pre-main sequence tracks being substantially altered by the intense accretion, or to a combination of partial blocking and scattering of the light of the object by a nearly edge-on circumstellar disk. The rich emission line spectrum superimposed on the stellar continuum is well explained by an intense accretion process: the Halpha , CaII infrared triplet, and HeI 6678 lines show equivalent widths typical of very active classical T Tauri stars. The near-infrared observations show anomalously weak spectral features and no significant excess emission in the K band, which we tentatively interpret as indicating line filling due to emission in a magnetic accretion funnel flow. At the same time, numerous, strong forbidden optical lines ([OI], [NII] and [SII]) and H2 emission at 2.12 mu m suggest that the object is simultaneously undergoing mass loss, providing another example that shows that mass loss and accretion are closely related processes. Such an intense accretion and mass loss activity is observed for the first time in a young stellar object in the transition region between low mass stars and brown dwarfs, and provides a valuable observational test on the effects of accretion on the evolution of objects with such low masses. Based on observations collected at the European Southern Observatory in La Silla and Cerro Paranal (Chile), in

  18. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  19. Enanas blancas post-AGB deficientes en Hidrógeno: su evolución espectral PG1159-DB-DQ

    NASA Astrophysics Data System (ADS)

    Panei, J. A.; Althaus, L. G.; Córsico, A. H.; Serenelli, A. M.; Scóccola, C. G.; García-Berro, E.

    This work explore the formation and evolution of hydrogen-deficient post-AGB white dwarfs. To this end, we compute the complete evolution of an initially 2.7 M sun star from the ZAMS through the thermally pulsing and mass-loss phases to the white dwarf stage. Particular attention is given to the chemical abundance changes during the whole evolution. The evolution is extended to the domain of the helium-rich, carbon-contaminated DQ white dwarfs to exploring the possible evolutionary connection PG1159-DB-DQ.

  20. The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Vlemmings, W. H. T.; Marigo, P.; Sloan, G. C.; Decin, L.; Feast, M. W.; Goldman, S. R.; Justtanont, K.; Kerschbaum, F.; Matsuura, M.; McDonald, I.; Olofsson, H.; Sahai, R.; van Loon, J. Th.; Wood, P. R.; Zijlstra, A. A.; Bernard-Salas, J.; Boyer, M. L.; Guzman-Ramirez, L.; Jones, O. C.; Lagadec, E.; Meixner, M.; Rawlings, M. G.; Srinivasan, S.

    2016-11-01

    Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC). Methods: The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models.

  1. Mass loss as a driving mechanism of tectonics of Enceladus

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2015-04-01

    Summary We suggest that the mass loss from South Polar Terrain (SPT) is the main driving force of the following tectonic processes on Enceladus: subsidence of SPT, flow in the mantle and motion of plates. 1. Introduction Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic activity is observed. Every second, the mass of ~200 kg is ejected into space from the South Polar Terrain (SPT) - [1, 2, 3]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic model that could explain this paradox. 2. Subsidence of SPT and tectonics The volatiles escape from the hot region through the fractures forming plumes in the space. The loss of the volatiles results in a void, an instability, and motion of solid matter into the hot region to fill the void. The motion includes : Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ~0.05 mm-yr-1. However, all three types of motion are probably important, so the subsidence is slower but mantle flow and plates' motion also play a role in filling the void. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. 3. Models of subsidence The numerical model of suggested process of subsidence is developed. It is based on the typical set of equation: Navier-Stokes equation for incompressible viscous liquid, equation of continuity and equation of heat conduction. The Newtonian and non-Newtonian rheologies are used. The preliminary results of the model indicate that the subsidence rate of

  2. Reducing uncertainties in projections of Antarctic ice mass loss

    NASA Astrophysics Data System (ADS)

    Durand, G.; Pattyn, F.

    2015-11-01

    Climate model projections are often aggregated into multi-model averages of all models participating in an intercomparison project, such as the Coupled Model Intercomparison Project (CMIP). The "multi-model" approach provides a sensitivity test to the models' structural choices and implicitly assumes that multiple models provide additional and more reliable information than a single model, with higher confidence being placed on results that are common to an ensemble. A first initiative of the ice sheet modeling community, SeaRISE, provided such multi-model average projections of polar ice sheets' contribution to sea-level rise. The SeaRISE Antarctic numerical experiments aggregated results from all models devoid of a priori selection, based on the capacity of such models to represent key ice-dynamical processes. Here, using the experimental setup proposed in SeaRISE, we demonstrate that correctly representing grounding line dynamics is essential to infer future Antarctic mass change. We further illustrate the significant impact on the ensemble mean and deviation of adding one model with a known bias in its ability of modeling grounding line dynamics. We show that this biased model can hardly be identified from the ensemble only based on its estimation of volume change, as ad hoc and untrustworthy parametrizations can force any modeled grounding line to retreat. However, tools are available to test parts of the response of marine ice sheet models to perturbations of climatic and/or oceanic origin (MISMIP, MISMIP3d). Based on recent projections of Pine Island Glacier mass loss, we further show that excluding ice sheet models that do not pass the MISMIP benchmarks decreases the mean contribution and standard deviation of the multi-model ensemble projection by an order of magnitude for that particular drainage basin.

  3. Mass Loss From The Central Star of Ngc 7009

    NASA Technical Reports Server (NTRS)

    Sonneborn, Block George; Iping, R. C.; Massa, D. L.; Chu, Y.; Gruendel, R.

    2006-01-01

    Observations of the hot central star (HD 200516) of the planetary nebula NGC 7009 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, providing spectra covering 905-1187 A with spectral resolution of 15 km/sec. One observation was made with the 30x30 arcsec aperture and includes the star plus the entire nebula. A second series of observations used the 1.25x20 arcsec slit, significantly reducing the nebular 'contamination' of the stellar spectrum. A strong FUV continuum, as expected for T(sub eff) = 82,000 K, dominates the spectrum. The most prominent spectral feature is a very strong P-Cygni profile of O VI 1032-1038. The wind terminal velocity is 2550 km/sec. The only other wind lines in the FUSE spectrum are S VI 944,933. These line, plus N V 1240 and O V 1371 from IUE spectra, were modeled with an SEI code. Models of the wind lines and stellar spectrum are presented that further refine the stellar parameters and mass loss rate.

  4. A model on CME/Flare initiation: Loss of Equilibrium caused by mass loss of quiescent prominences

    NASA Astrophysics Data System (ADS)

    Miley, George; Chon Nam, Sok; Kim, Mun Song; Kim, Jik Su

    2015-08-01

    Coronal Mass Ejections (CMEs) model should give an answer to enough energy storage for giant bulk plasma into interplanetary space to escape against the sun’s gravitation and its explosive eruption. Advocates of ‘Mass Loading’ model (e.g. Low, B. 1996, SP, 167, 217) suggested a simple mechanism of CME initiation, the loss of mass from a prominence anchoring magnetic flux rope, but they did not associate the mass loss with the loss of equilibrium. The catastrophic loss of equilibrium model is considered as to be a prospective CME/Flare model to explain sudden eruption of magnetic flux systems. Isenberg, P. A., et al (1993, ApJ, 417, 368)developed ideal magnetohydrodynamic theory of the magnetic flux rope to show occurrence of catastrophic loss of equilibrium according to increasing magnetic flux transported into corona.We begin with extending their study including gravity on prominence’s material to obtain equilibrium curves in case of given mass parameters, which are the strengths of the gravitational force compared with the characteristic magnetic force. Furthermore, we study quasi-static evolution of the system including massive prominence flux rope and current sheet below it to obtain equilibrium curves of prominence’s height according to decreasing mass parameter in a properly fixed magnetic environment. The curves show equilibrium loss behaviors to imply that mass loss result in equilibrium loss. Released fractions of magnetic energy are greater than corresponding zero-mass case. This eruption mechanism is expected to be able to apply to the eruptions of quiescent prominences, which is located in relatively weak magnetic environment with 105 km of scale length and 10G of photospheric magnetic field.

  5. Variation in body mass dynamics among sites in Black Brant Branta bernicla nigricans supports adaptivity of mass loss during moult

    USGS Publications Warehouse

    Fondell, Thomas F.; Flint, Paul L.; Schmutz, Joel A.; Schamber, Jason L.; Nicolai, Christopher A.

    2013-01-01

    Birds employ varying strategies to accommodate the energetic demands of moult, one important example being changes in body mass. To understand better their physiological and ecological significance, we tested three hypotheses concerning body mass dynamics during moult. We studied Black Brant in 2006 and 2007 moulting at three sites in Alaska which varied in food availability, breeding status and whether geese undertook a moult migration. First we predicted that if mass loss during moult were simply the result of inadequate food resources then mass loss would be highest where food was least available. Secondly, we predicted that if mass loss during moult were adaptive, allowing birds to reduce activity during moult, then birds would gain mass prior to moult where feeding conditions allowed and mass loss would be positively related to mass at moult initiation. Thirdly, we predicted that if mass loss during moult were adaptive, allowing birds to regain flight sooner, then across sites and groups, mass at the end of the flightless period would converge on a theoretical optimum, i.e. the mass that permits the earliest possible return to flight. Mass loss was greatest where food was most available and thus our results did not support the prediction that mass loss resulted from inadequate food availability. Mass at moult initiation was positively related to both food availability and mass loss. In addition, among sites and years, variation in mass was high at moult initiation but greatly reduced at the end of the flightless period, appearing to converge. Thus, our results supported multiple predictions that mass loss during moult was adaptive and that the optimal moulting strategy was to gain mass prior to the flightless period, then through behavioural modifications use these body reserves to reduce activity and in so doing also reduce wing loading. Geese that undertook a moult migration initiated moult at the highest mass, indicating that they were more than able to

  6. SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE

    SciTech Connect

    Chevalier, Roger A.; Irwin, Christopher M.

    2011-03-01

    We examine the case where a circumstellar medium around a supernova is sufficiently opaque that a radiation-dominated shock propagates in the circumstellar region. The initial propagation of the shock front into the circumstellar region can be approximated by a self-similar solution that determines the radiative energy in a shocked shell; the eventual escape of this energy gives the maximum luminosity of the supernova. If the circumstellar density is described by {rho} = Dr {sup -2} out to a radius R{sub w} , where D is a constant, the properties of the shock breakout radiation depend on R{sub w} and R{sub d} {identical_to} {kappa}Dv{sub sh}/c, where {kappa} is the opacity and v{sub sh} is the shock velocity. If R{sub w} >R{sub d} , the rise to maximum light begins at {approx}R{sub d} /v{sub sh}; the duration of the rise is also {approx}R{sub d} /v{sub sh}; the outer parts of the opaque medium are extended and at low velocity at the time of peak luminosity; and a dense shell forms whose continued interaction with the dense mass loss gives a characteristic flatter portion of the declining light curve. If R{sub w} < R{sub d} , the rise to maximum light begins at R{sub w} /v{sub sh}; the duration of the rise is R {sup 2}{sub w}/v{sub sh} R{sub d} ; the outer parts of the opaque medium are not extended and are accelerated to high velocity by radiation pressure at the time of maximum luminosity; and a dense shell forms but does not affect the light curve near maximum. We argue that SN 2006gy is an example of the first kind of event, while SN 2010gx and related supernovae are examples of the second.

  7. The composition of freshly-formed dust in recent (post-)AGB thermal pulses

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak

    2013-01-01

    We recently discovered a candidate Asymptotic Giant Branch (AGB) star undergoing a thermal pulse (TP). WISE J1810--3305 is one of only two sources in the WISE sky survey which show very red WISE colors but a very blue 2MASS [K] vs. WISE [W1 (3.4 mu m)] color, and drastic brightening at 12 mu m since IRAS observation. This favours a scenario in which we have caught a massive dust ejection event during a TP that began only ~15 years ago. The other source is Sakurai's object, which also underwent a massive dust expulsion around the same time, but is in a later evolutionary (post-AGB) phase. Few firm constraints exist on the TP stage because of its brevity. These objects provide a unique opportunity for understanding TP evolution and dust production in real-time. Here we propose COMICS spectroscopy of WISE J1810--3305 in order to study the composition of the circumstellar dust. We will search for molecular bands, and identify whether the central object is an Oxygen or Carbon rich AGB star. We also propose identical spectroscopy of Sakurai's object in order to compare AGB with post-AGB evolution. These objects are presently brightest in the mid-IR, and COMICS is the only ground-based mid-IR camera with the requisite capability for observation.

  8. VLTI/MIDI Large Program: AGB Stars at Different Spatial Scales

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Klotz, D.; Wittkowski, M.; Hron, J.; Richichi, A.; Lagadec, E.; Verhoelst, T.; Rau, G.; Sacuto, S.; Jorissen, A.; Groenewegen, M. A. T.; Olofsson, H.; Kerschbaum, F.

    2015-08-01

    We have observed a sample of Asymptotic Giant Branch (AGB) stars from the Herschel Mass-loss of Evolved StarS (MESS) program with the VLTI MID-infrared Interferometric instrument (MIDI). The program aims at providing insight to the atmospheres of those stars, to be able to understand the role of the mass-loss process at different spatial scales. We obtained visibilities and spectra of fourteen objects with different chemistries and variability classes. These observations, together with data we retrieved from the archive, allow us to characterize not only the geometry of the dust-forming region, but in some cases also the time variability in the N band. As previously reported in the literature, we confirm the detection of spectroscopic but not interferometric variability. This result has implications on the size of the structures involved in the dust-formation process. We also report two cases of asymmetric structures; the nature of these structures will be clearly identified only with the second generation VLTI instrument MATISSE.

  9. Molecular outflows and mass loss in the pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Levreault, Russell M.

    1988-07-01

    Molecular outflows are used here to probe mass loss in premain sequence (PMS) stars. Mass-loss rates are determined for 26 objects ranging in luminosity from four to about 100,000 solar, in mass from 0.5 to 30 solar, and in age from about 10,000 to about a million years. The derived mass-loss rates range from 9 x 10 to the -9th to 9 x 10 to the -4th solar mass/yr, with a typical value of 3 x 10 to the -7th solar mass/yr. PMS objects showing mass loss fall in a clearly demarcated region of the H-R diagram. The mass loss is proportional to bolometric luminosity to the 0.6 power and to stellar mass to the 1.8 power. The implications of these findings for the nature of the PMS mass-loss mechanism, for self-regulated low-mass star formation, and for planetary formation are discussed.

  10. A stellar evolution paradigm based on specific mass loss and feedback modes

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred; Stencel, Robert E.

    1992-01-01

    We present a new paradigm for stellar evolution which deals with a detailed treatment of mass loss and feedback modes. The paradigm is presented as a logical diagram which describes the respective dependencies of atmospheric properties relevant to mass loss generation.

  11. The Investment Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Yoder, Jay A.

    2011-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices included in this text support the objectives of board committees:…

  12. The Compensation Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Hyatt, Thomas K.

    2013-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  13. The Audit Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Staisloff, Richard L.

    2011-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  14. The Executive Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Legon, Richard D.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  15. 2011 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This report, the second of AGB's studies of higher education governance, documents the extent to which college and university boards are following good-governance practices. In addition, it takes a focused look at board engagement to determine the degree to which governing boards are actively, intellectually, and strategically involved with their…

  16. The Facilities Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  17. EVOLUTIONARY MODELS OF SUPER-EARTHS AND MINI-NEPTUNES INCORPORATING COOLING AND MASS LOSS

    SciTech Connect

    Howe, Alex R.; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2015-08-01

    We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with H{sub 2}–He envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and the initial envelope mass fraction are the most important factors determining planetary evolution, particularly radius evolution. Initial mass also becomes important below a “turnoff mass,” which varies with orbital distance, with mass–radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass loss fail to produce results consistent with observations, but a plausible range of mass-loss scenarios is allowed. In addition, we present scenarios for the formation of the Kepler-11 planets. Our best fit to observations of Kepler-11b and Kepler-11c involves formation beyond the snow line, after which they moved inward, circularized, and underwent a reduced degree of mass loss.

  18. Stellar Evolution with Rotation: Mixing Processes in AGB Stars

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Blöcker, T.

    We included diffusive angular momentum transport and rotationally induced mixing processes in our stellar evolution code and studied the influence of rotation on the evolution of intermediate mass stars (M*=2dots6 Msolar) towards and along the asymptotic giant branch (AGB). The calculations start in the fully convective pre-main sequence phase and the initial angular momentu m was adjusted such that on the zero-age main sequence vrot=200 km/ s is achieved. The diffusion coefficients for the five rotational instabilities considered (dynamical shear, secular shear, Eddington-Sweet (ES) circulation, Solberg-Høiland-instability and Goldreich-Schubert-Fricke (GSF) instability) were adopted from Heger et al. (2000, ApJ 528, 368). Mixing efficiency and sensitivity of these processes against molecular weight gradients have been determined by calibration of the main sequence width. In this study we focus on the abundance evolution of carbon. On the one hand, the surface abundance ratios of 12C/13C a nd 12C/16O at the base of the AGB were found to be ≈ 7dots 10 and ≈ 0.1, resp., being a factor of two lower than in non-rotating models. This results from the slow but continuously operating rotationally induced mixing due to the ES-circulation and the GSF-instability during the long main sequence phase. On the other hand, 13C serves as neutron source for interior s-process nucleosynthesis in AGB stars vi a 13C(α,n)16O. Herwig et al. (1997, A&A 324, L81) found that a 13C pocket is forme d in the intershell region of 3 Msolar AGB star if diffusive overshoot is considered. Our calculations show, that mixing processes due to rotation open an alternative channel for the formation of a 13C pocket as found by Langer et al. (1999, A&A 346, L37). Again, ES-circulation and GSF-instability are the predominant rotational mixing processes.

  19. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  20. Research opportunities in loss of red blood cell mass in space flight

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.; Fisher, K. D.

    1985-01-01

    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.

  1. The evolution of massive stars including mass loss - Presupernova models and explosion

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.

    1993-01-01

    The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.

  2. Probing the collimation of pristine post-AGB jets with STIS

    NASA Astrophysics Data System (ADS)

    Sanchez Contreras, Carmen

    2009-07-01

    The shaping of planetary and protoplanetary nebulae {PNe and PPNe} is probably the most exciting yet least understood problem in the late evolution of 1-8 solar mass stars. An increasing number of astronomers believe that fast jet-like winds ejected in the PPN phase are responsible for carving out the diverse shapes in the dense envelopes of the Asymptotic Giant Branch {AGB} stars. To date, the properties of these post-AGB jets have not been characterized and, indeed, their launching/collimation mechanism is still subject to controversial debate. This is due to the lack of the direct observations probing the spatio-kinematic structure of post-AGB winds in the stellar vicinity { 10e16cm}, which is only possible with HST+STIS. Recently, STIS observations have allowed us for the first time the DIRECT study of the structure and kinematics of the elusive post-AGB winds in one PPN, He3-1475 {Sanchez Contreras & Sahai 2001}. Those winds have been discovered through H-alpha blue-shifted absorption features in the inner 0.3"-0.7" of the nebula. These STIS observations have revealed an ultra-fast collimated outflow relatively unaffected by the interaction with the AGB wind that is totally hidden in ground-based spectroscopic observations and HST images. The discovery of the pristine ultra-fast { 2300km/s} jet in He3-1475 is the first observational confirmation of the presence of collimated outflows as close as 10e16cm from the central star. Most importantly, the spatio-kinematic structure of the ultra-fast jet clearly rules out hydrodynamical collimation alone and favors magnetic wind collimation. Therefore, STIS observations provide a unique method of probing the structure, kinematics, and collimation mechanism of the elusive post-AGB winds. We now propose similar observations for a sample of bipolar PPNe with ongoing post-AGB ejections in order to investigate the frequency of jets like those in He3-1475 in other PPNe and elucidate their nature and collimation mechanism

  3. Exploring wind-driving dust species in cool luminous giants. III. Wind models for M-type AGB stars: dynamic and photometric properties

    NASA Astrophysics Data System (ADS)

    Bladh, S.; Höfner, S.; Aringer, B.; Eriksson, K.

    2015-03-01

    Context. Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions which creates favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg2SiO4 and MgSiO3). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. Aims: The purpose of this study is to investigate if photon scattering on Mg2SiO4 grains can produce realistic outflows for a wide range of stellar parameters in M-type AGB stars. Methods: We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg2SiO4 grains to calculate the first extensive set of time-dependent wind models for M-type AGB stars. This set includes 139 solar-mass models, with three different luminosities (5000 L⊙, 7000 L⊙, and 10 000 L⊙) and effective temperatures ranging from 2600 K to 3200 K. The resulting wind properties, visual and near-IR photometry and mid-IR spectra are compared with observations. Results: We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they reproduce observed mass-loss rates and wind velocities, as well as visual and near-IR photometry. However, the current models do not show the characteristic silicate features at 10 and 18 μm as a result of the cool temperature of Mg2SiO4 grains in the wind. Including a small amount of Fe in the grains further out in the circumstellar envelope will

  4. Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest

    SciTech Connect

    Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E; Trumbore, S E

    2005-06-27

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  5. Reconciling Change in Oi-Horizon Carbon-14 with Mass Loss for an Oak Forest

    SciTech Connect

    Hanson, Paul J; Swanston, Christopher W.; Garten Jr, Charles T; Todd Jr, Donald E; Trumbore, Susan E.

    2005-01-01

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the 14C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the 14C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies (~35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the 14C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the 14C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures reflect C immobilization and recycling in the microbial pool, and do not necessarily replicate results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent 14C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  6. The lead discrepancy in intrinsically s-process enriched post-AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Karakas, A. I.; Siess, L.; Goriely, S.; Wood, P.

    2014-03-01

    Context. Our understanding of the s-process nucleosynthesis in asymptotic giant branch (AGB) stars is incomplete. AGB models predict, for example, large overabundances of lead (Pb) compared to other s-process elements in metal-poor low-mass AGB stars. This is indeed observed in some extrinsically enhanced metal-poor stars, but not in all. An extensive study of intrinsically s-process enriched objects is essential for improving our knowledge of the AGB third dredge-up and associated s-process nucleosynthesis. Aims: We compare the spectral abundance analysis of the SMC post-AGB star J004441.04-732136.4 with state-of-the-art AGB model predictions with a main focus on Pb. The low signal-to-noise (S/N) in the Pb line region made the result of our previous study inconclusive. We acquired additional data covering the region of the strongest Pb line. Methods: By carefully complementing re-reduced previous data, with newly acquired UVES optical spectra, we improve the S/N of the spectrum around the strongest Pb line. Therefore, an upper limit for the Pb abundance is estimated from a merged weighted mean spectrum using synthetic spectral modeling. We then compare the abundance results from the combined spectra to predictions of tailored AGB evolutionary models from two independent evolution codes. In addition, we determine upper limits for Pb abundances for three previously studied LMC post-AGB objects. Results: Although theoretical predictions for J004441.04-732136.4 match the s-process distribution up to tungsten (W), the predicted very high Pb abundance is clearly not detected. The three additional LMC post-AGB stars show a similar lack of a very high Pb abundance. Conclusions: From our study, we conclude that none of these low-mass, low-metallicity post-AGB stars of the LMC and SMC are strong Pb producers. This conflicts with current theoretical predictions. Based on observations collected with the Very Large Telescope at the ESO Paranal Observatory (Chili) of programme

  7. Limits on detectability of mass loss from cool dwarfs

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Doyle, J. G.; Redman, R. O.; Mathioudakis, M.

    1992-01-01

    Recent spectroscopic evidence supports the theoretical expectation that certain cool dwarfs may have stellar winds with M-dot values several orders of magnitude larger than the solar rate. For large enough values of M-dot, the emission from the wind is expected to have a spectrum which, at low enough frequencies, becomes a power law, S(v) about v exp alpha with alpha about 0.7. Data from IRAS and VLA suggest that such a spectrum may in fact occur in certain M dwarfs: a key test of the wind spectrum would be provided if the stars could be detected at lambda about 1 mm. We show that the M-dot required to ensure power-law emission is a few times 10 exp -10 solar mass/yr. With M-dot of this order, fluxes at lambda about 1 mm would be tens of mJy. Using the James Clerk Maxwell Telescope, we have tested this prediction on several stars: the data are suggestive but are near the limits of detection. Confirmation of our estimates will be important for evolution and for interstellar medium (ISM) physics: if even a few percent of all M dwarfs are losing mass at the above rates, the mass balance of the ISM will be dominated by M dwarfs.

  8. Dust Formation in CCSNe with Extensive Mass Loss Histories

    NASA Astrophysics Data System (ADS)

    Andrews, Jennifer; Clayton, Geoffrey; Krafton, Kelsie; Sugerman, Ben; Barlow, Michael; Wesson, Roger; Gallagher, Joseph; Otsuka, Masaaki; Matsuura, Mikako; Meixner, Margaret

    2014-02-01

    The systematics of dust formation in core collapse supernovae (CCSNe), such as the timing, location, and amount of newly formed dust and the effects of progenitor mass and circumstellar environment, are still vague and unclear. Recent discoveries of massive amounts of cool dust in SN 1987A and the Crab nebula have once again brought this debate to the forefront. We are currently undertaking an ambitious program to better understand how the various dust formation indicators are related, and more importantly how to correctly interpret these indicators to make accurate estimates of the amount of dust formed in a typical CCSNe explosion. Our planned observations of SNe 2010jl and 2011ja, with Gemini/GMOS as part of our multi-wavelength and multi-;epoch campaign, will not only allow us to classify and quantify newly condensing dust in the cool dense shell and the ejecta, but will also allow us to accurately map out pre-existing circumstellar dust in light echoes. Measuring the location and mass of the dust around a SN, while the dust is still warm, is essential in deciphering the origin of the large masses of cold dust that have been discovered in SN 1987A and the Crab nebula. This increased understanding of dust formation from massive stars may then be applied to understanding the presence of large amounts of dust in primordial galaxies seen at high redshift.

  9. Effects of main-sequence mass loss on the turnoff ages of population 1 clusters

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce A.

    Willson, Bowen, and Struck-Marcell have proposed that stars of spectral types A through early-G lose a significant portion of their mass during the early main-sequence phase. The proposed mass loss is driven by pulsation, and facilitated by rapid rotation. One implication of this hypothesis is that the main-sequence turnoff is an invalid indicator of cluster age, as present turnoff stars may have had higher projenitor masses; hence clusters appear older than they actually are. This paper presents examples of cluster HR diagrams synthesized with mass-losing stars of solar metallicity, initial masses 1-2 M, and exponentially-decreasing mass-loss rates with e-folding times 1 to 2 Gyr. The increases in apparent turnoff age of Pop. I clusters, and the potential of the hypothesis to account for blue stragglers as normal stars that have not lost mass (or lost mass more slowly) are discussed.

  10. Models of AGB Stars and their Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Cristallo, S.; Piersanti, L.

    2015-08-01

    The occurrence of recursive thermonuclear runaways makes the computation of AGB evolutionary sequences and the related nucleosynthesis a challenging task for stellar modelers. In the last 20 years many efforts have been made to improve the physical description of the interiors of these stars. Nevertheless, the majority of the extant nucleosynthesis results are based on post-process calculations, in which the evolution of the nuclear network and that of the stellar structure are treated separately and, hence, decoupled. In this paper, we review the latest attempts made to obtain more reliable nucleosynthesis calculations based on the physical processes expected to be at work in AGB stars, such as the mixing induced by convection and rotation.

  11. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-01-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/z resolution that often occurs with megadalton ions.

  12. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-03-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/ z resolution that often occurs with megadalton ions.

  13. Evolved Late-Type Star FUV Spectra: Mass Loss and Fluorescence

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2005-01-01

    This proposal was for a detailed analysis of the far ultraviolet (FUV) photoionizing radiation that provides crucial input physics for mass loss studies, e.g., observations of the flux below 10448, allow us to constrain the Ca II/Ca III balance and make significant progress beyond previous optical studies on stellar mass loss and circumstellar photochemistry. Our targets selection provided good spectral-type coverage required to help unravel the Ca II/Ca III balance as the mass-loss rates increase by over three orders of magnitude from K5 III to M5 III. We also explored the relationship between the FUV radiation field and other UV diagnostics to allow us to empirically estimate the FUV radiation field for the vast majority of stars which are too faint to be observed with FUSE, and to improve upon their uncertain mass-loss rates.

  14. Trajectory Simulation of Meteors Assuming Mass Loss and Fragmentation

    NASA Technical Reports Server (NTRS)

    Allen, Gary A., Jr.; Prabhu, Dinesh K.; Saunders, David A

    2015-01-01

    Program used to simulate atmospheric flight trajectories of entry capsules [1] Includes models of atmospheres of different planetary destinations - Earth, Mars, Venus, Jupiter, Saturn, Uranus, Titan, ... Solves 3-­-degrees of freedom (3DoF) equations for a single body treated as a point mass. Also supports 6-DoF trajectory simula4on and Monte Carlo analyses. Uses Fehlberg-­-Runge-­-Kuna (4th-5th order) time integraion with automaic step size control. Includes rotating spheroidal planet with gravitational field having a J2 harmonic. Includes a variety of engineering aerodynamic and heat flux models. Capable of specifying events - heatshield jettison, parachute deployment, etc. - at predefined altitudes or Mach number. Has material thermal response models of typical aerospace materials integrated.

  15. Atmospheric mass loss during planet formation: The importance of planetesimal impacts

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke E.; Sari, Re'em; Yalinewich, Almog

    2015-02-01

    Quantifying the atmospheric mass loss during planet formation is crucial for understanding the origin and evolution of planetary atmospheres. We examine the contributions to atmospheric loss from both giant impacts and planetesimal accretion. Giant impacts cause global motion of the ground. Using analytic self-similar solutions and full numerical integrations we find (for isothermal atmospheres with adiabatic index γ=5/3) that the local atmospheric mass loss fraction for ground velocities vg≲0.25vesc is given by χloss=(1.71, where vesc is the escape velocity from the target. Yet, the global atmospheric mass loss is a weaker function of the impactor velocity vImp and mass mImp and given by Xloss≃0.4x+1.4x2-0.8x3 (isothermal atmosphere) and Xloss≃0.4x+1.8x2-1.2x3 (adiabatic atmosphere), where x=(vImpm/vescM). Atmospheric mass loss due to planetesimal impacts proceeds in two different regimes: (1) large enough impactors m≳√{2}ρ0( (25 km for the current Earth), are able to eject all the atmosphere above the tangent plane of the impact site, which is h/2R of the whole atmosphere, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. (2) Smaller impactors, but above m>4πρ0h3 (1 km for the current Earth) are only able to eject a fraction of the atmospheric mass above the tangent plane. We find that the most efficient impactors (per unit impactor mass) for atmospheric loss are planetesimals just above that lower limit (2 km for the current Earth). For impactor flux size distributions parametrized by a single power law, N(>r)∝r, with differential power law index q, we find that for 1mass loss proceeds in regime (1) whereas for q>3 the mass loss is dominated by regime (2). Impactors with m≲4πρ0h3 are not able to eject any atmosphere. Despite being bombarded by the same planetesimal population, we find that the current differences in Earth's and Venus' atmospheric masses

  16. Effect of rotational mixing and metallicity on the hot star wind mass-loss rates

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Kubát, J.

    2014-07-01

    Hot star wind mass-loss rates depend on the abundance of individual elements. This dependence is usually accounted for assuming scaled solar chemical composition. However, this approach may not be justified in evolved rotating stars. The rotational mixing brings CNO-processed material to the stellar surface, increasing the abundance of nitrogen at the expense of carbon and oxygen, which potentially influences the mass-loss rates. We study the influence of the modified chemical composition resulting from the rotational mixing on the wind parameters, particularly the wind mass-loss rates. We use our non-local thermodynamic equilibrium wind code to predict the wind structure and compare the calculated wind mass-loss rate for the case of scaled solar chemical composition and the composition affected by the CNO cycle. We show that for a higher mass-fraction of heavier elements Z/Z⊙ ≳ 0.1 the change of chemical composition from the scaled solar to the CNO-processed scaled solar composition does not significantly affect the wind mass-loss rates. The missing line force caused by carbon and oxygen is compensated for by nitrogen line force. However, for a very low-mass fraction of heavier elements Z/Z⊙ ≲ 0.1 the rotational mixing significantly affects the wind mass-loss rates. Moreover, the decrease of the mass-loss rate with metallicity is stronger at such low metallicities. We study the relevance of the wind momentum-luminosity relationship for different metallicities and show that for a metallicity Z/Z⊙ ≲ 0.1 the relationship displays a large scatter, which depreciates the use of this relationship at the lowest metallicities. Appendix A is available in electronic form at http://www.aanda.org

  17. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains

    NASA Astrophysics Data System (ADS)

    Harig, Christopher; Simons, Frederik J.

    2015-04-01

    While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.

  18. Equation of Motion of an Interstellar Bussard Ramjet with Radiation and Mass Losses

    ERIC Educational Resources Information Center

    Semay, Claude; Silvestre-Brac, Bernard

    2008-01-01

    An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly…

  19. Overwinter mass loss of snowshoe hares in the Yukon: starvation, stress, adaptation or artefact?

    PubMed

    Hodges, Karen E; Boonstra, Rudy; Krebs, Charles J

    2006-01-01

    1. Overwinter mass loss can reduce energetic requirements in mammals (Dehnel's phenomenon). Alternatively, mass loss can result from food limitation or high predation risk. 2. We use data from fertilizer, food-supplementation and predator-exclusion experiments in the Yukon during a population cycle from 1986 to 1996 to test the causes of overwinter mass loss by snowshoe hares (Lepus americanus). In all years, some hares on control sites gained mass overwinter. During the increase phase the majority gained mass, but in all other phases the majority lost mass. 3. Snowshoe hares weighing <1000 g in autumn always gained mass overwinter, as did the majority that weighed 1000-1400 g. Hares weighing >1800 g in autumn usually lost mass. 4. Snowshoe hares on the predator-exclosure + food site gained mass overwinter in all years. Hares on the food-supplementation sites lost mass during the decline but gained mass in all other phases. Fertilization had little effect on mass dynamics. 5. Snowshoe hares were more likely to lose mass during winters with low survival rates. Snowshoe hares on the predator-exclosure treatments were more likely to gain mass than were hares on control sites. 6. Overwinter mass loss was correlated with maximum snow depth. At equivalent snow depths, hares on food-supplemented areas lost 98 g (+/- 14.6 SE) less on average than hares on the controls and predator-exclosure treatment. 7. Bone-marrow fat was related to body mass and cause of death. Small hares had the lowest marrow fat. Hares killed by humans had higher marrow fat than those killed by predators; hares that simply died had the lowest marrow fat. Hares on food-supplemented sites had the highest kidney and marrow fat. 8. Overwinter-mass loss for snowshoe hares is explained interactively by winter conditions, food supply, predation risk and autumn mass. Some snowshoe hares lost mass overwinter in all years and on all treatments, suggesting that reducing body mass may facilitate survival

  20. On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates

    NASA Astrophysics Data System (ADS)

    Liu, Jiaming; Jiang, B. W.; Li, Aigen; Gao, Jian

    2017-04-01

    For decades ever since the early detection in the 1990s of the emission spectral features of crystalline silicates in oxygen-rich evolved stars, there is a long-standing debate on whether the crystallinity of the silicate dust correlates with the stellar mass-loss rate. To investigate the relation between the silicate crystallinities and the mass-loss rates of evolved stars, we carry out a detailed analysis of 28 nearby oxygen-rich stars. We derive the mass-loss rates of these sources by modelling their spectral energy distributions from the optical to the far-infrared. Unlike previous studies in which the silicate crystallinity was often measured in terms of the crystalline-to-amorphous silicate mass ratio, we characterize the silicate crystallinities of these sources with the flux ratios of the emission features of crystalline silicates to that of amorphous silicates. This does not require the knowledge of the silicate dust temperatures, which are the major source of uncertainties in estimating the crystalline-to-amorphous silicate mass ratio. With a Pearson correlation coefficient of ∼-0.24, we find that the silicate crystallinities and the mass-loss rates of these sources are not correlated. This supports the earlier findings that the dust shells of low mass-loss rate stars can contain a significant fraction of crystalline silicates without showing the characteristic features in their emission spectra.

  1. The effect of stellar radiation on exoplanet atmospheric heating and mass loss

    NASA Astrophysics Data System (ADS)

    Ojanen, Winonah; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2017-01-01

    Our project aims to investigate the influence of stellar activity and high-energy radiation on short-period transiting exoplanet atmospheric heating and mass loss. Mass loss in closely orbiting gaseous exoplanets could be significant enough to evaporate a significant portion of the atmosphere over the total system lifetime. A current question of interest is how Neptune-class gas giants might change over time from being exposed to intense X-ray and UV flux radiated from the star. Our research aims to estimate current and total mass loss for four Neptune-class exoplanets that have both measured radii and masses. We use computer software to reduce and analyze Chandra X-ray observations of Neptune-class exoplanets, including HAT-P-11b and archival data of GJ 436b, to calculate the high-energy incident flux for each planet. We then estimate the current-epoch mass-loss rate and construct integrated mass-loss histories. We test whether planets receiving the greatest dose of high-energy radiation also tend to be the lowest mass and the most dense, suggestive of evaporation. These observations provide essential empirical input for understanding and modeling the potential evolutionary transformation of hot gas giants into less massive and more dense remnants.

  2. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    NASA Astrophysics Data System (ADS)

    Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P.

    2015-03-01

    Context. The post-main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate, and the effect of a close companion. Aims: We study the change in the red supergiant (RSG) lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor and the structure of the stars at that time for various mass-loss rates during the RSG phase and for two different initial rotation velocities. Methods: Stellar models were computed with the Geneva code for initial masses between 9 and 25 M⊙ at solar metallicity (Z = 0.014) with 10 times and 25 times the standard mass-loss rates during the RSG phase, with and without rotation. Results: The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and in turn on the luminosity function of RSGs. An observed RSG is associated with a model of higher initial mass when models with an enhanced RSG mass-loss rate are used to deduce that mass. At solar metallicity, models with an enhanced mass-loss rate produce significant changes in the populations of blue, yellow, and RSGs. When extended blue loops or blueward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post-RSG objects. These post-RSG stars are predicted to show much lower surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. Enhanced mass-loss rates during the RSG phase have little impact on the Wolf-Rayet populations. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever at the pre-supernova stage the H-rich envelope contains more than about 5% of the initial mass, the star is a RSG, and whenever

  3. Large-scale asymmetries in the winds of (binary) AGB stars

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Nowotny, W.; Aringer, B.; Paladini, C.; Mecina, M.; Pourbaix, D.; Groenewegen, M.; Mohamed, S.

    2014-04-01

    Observations of 78 Asymptotic Giant Branch (AGB) stars and Red Supergiants were carried out with the PACS photometer on-board Herschel as part of the MESS (Mass loss of Evolved StarS) program. For about 60% of these objects, the dusty wind differs from spherically symmetric and reveals a complex morphology. The majority of these asymmetries are caused by a rather simple incident, the interaction of the stellar wind with the interstellar medium. A bow shock is formed in direction of the stellar motion where the two media interact. However, also much more irregular shapes are encountered in the sample. These structures are often related to the binarity of the stellar system. Accreted material by the companion can cause nova outbursts or bipolar outflows which are relatively common. A rather rare encounter are Archimedean spirals that are imprinted in the wind which are now found for a handful of objects, among W Aquilae observed with Herschel and R Sculptoris with ALMA. The most complicated structures in the MESS sample indicate the interplay of multiple interacting influences. A prominent case is o Ceti (Mira). Its exceptionally high space motion produces a strong bow shock and its white dwarf companion drags an Archimedean spiral into the deformed stellar wind bubble and pierces it with a fast bipolar outflow.

  4. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Osten, Rachel A.; Wolk, Scott J.

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  5. Variable Stars and The Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2014-09-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation, and evolution of these LIMS.

  6. Variable Stars and the Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2012-06-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation and evolution of these LIMS.

  7. THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET

    SciTech Connect

    Guo, J. H.

    2010-04-01

    By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass loss could interfere with tidal evolution. In an upper limit case (beta = 3), a significant portion of mass may be evaporated in a long evolution timescale. Evidence of greater modification of the planets with an initial separation of about 0.1 AU than those with a = 0.15 AU can be found in this model. With the assumption of a large initial eccentricity, the planets with initial mass <=1 M{sub J} and initial distance of about 0.1 AU could not survive. With the supposition of beta = 1.1, we find that the loss process has an effect on the planets with low mass at a {approx} 0.05 AU. In both cases, the effect of evaporation on massive planets can be neglected. Also, heating efficiency and initial eccentricity have significant influence on tidal evolution. We find that even low heating efficiency and initial eccentricity have a significant effect on tidal evolution. Our analysis shows that evaporation on planets with different initial masses can accelerate (decelerate) the tidal evolution due to the increase (decrease) in tide of the planet (star). Consequently, the effect of evaporation cannot be neglected in evolutionary calculations of close-in planets. The physical parameters of HD 209458b can be fitted by our model.

  8. Mass Loss of Larsen B Tributary Glaciers (Antarctic Peninsula) Unabated Since 2002

    NASA Technical Reports Server (NTRS)

    Berthier, Etienne; Scambos, Ted; Shuman, Christopher A.

    2012-01-01

    Ice mass loss continues at a high rate among the large glacier tributaries of the Larsen B Ice Shelf following its disintegration in 2002. We evaluate recent mass loss by mapping elevation changes between 2006 and 201011 using differencing of digital elevation models (DEMs). The measurement accuracy of these elevation changes is confirmed by a null test, subtracting DEMs acquired within a few weeks. The overall 2006201011 mass loss rate (9.0 2.1 Gt a-1) is similar to the 2001022006 rate (8.8 1.6 Gt a-1), derived using DEM differencing and laser altimetry. This unchanged overall loss masks a varying pattern of thinning and ice loss for individual glacier basins. On Crane Glacier, the thinning pulse, initially greatest near the calving front, is now broadening and migrating upstream. The largest losses are now observed for the HektoriaGreen glacier basin, having increased by 33 since 2006. Our method has enabled us to resolve large residual uncertainties in the Larsen B sector and confirm its state of ongoing rapid mass loss.

  9. The effect of pair-instability mass loss on black-hole mergers

    NASA Astrophysics Data System (ADS)

    Belczynski, K.; Heger, A.; Gladysz, W.; Ruiter, A. J.; Woosley, S.; Wiktorowicz, G.; Chen, H.-Y.; Bulik, T.; O'Shaughnessy, R.; Holz, D. E.; Fryer, C. L.; Berti, E.

    2016-10-01

    Context. Mergers of two stellar-origin black holes are a prime source of gravitational waves and are under intensive investigation. One crucial ingredient in their modeling has been neglected: pair-instability pulsation supernovae with associated severe mass loss may suppress the formation of massive black holes, decreasing black-hole-merger rates for the highest black-hole masses. Aims: We demonstrate the effects of pair-instability pulsation supernovae on merger rate and mass using populations of double black-hole binaries formed through the isolated binary classical evolution channel. Methods: The mass loss from pair-instability pulsation supernova is estimated based on existing hydrodynamical calculations. This mass loss is incorporated into the StarTrack population synthesis code. StarTrack is used to generate double black-hole populations with and without pair-instability pulsation supernova mass loss. Results: The mass loss associated with pair-instability pulsation supernovae limits the Population I/II stellar-origin black-hole mass to 50 M⊙, in tension with earlier predictions that the maximum black-hole mass could be as high as 100 M⊙. In our model, neutron stars form with mass 1-2 M⊙. We then encounter the first mass gap at 2-5 M⊙ with the compact object absence due to rapid supernova explosions, followed by the formation of black holes with mass 5-50 M⊙, with a second mass gap at 50-135 M⊙ created by pair-instability pulsation supernovae and by pair-instability supernovae. Finally, black holes with masses above 135 M⊙ may potentially form to arbitrarily high mass limited only by the extent of the initial mass function and the strength of stellar winds. Suppression of double black-hole-merger rates by pair-instability pulsation supernovae is negligible for our evolutionary channel. Our standard evolutionary model, with the inclusion of pair-instability pulsation supernovae and pair-instability supernovae, is fully consistent with the Laser

  10. Mass and Angular Momentum Loss of B[e] Stars via Decretion Disks

    NASA Astrophysics Data System (ADS)

    Krtička, J. K.; Owocki, S. P.; Kurfürst, P.

    2017-02-01

    We study the disks of B[e] stars assuming that the disks stem from the angular momentum loss from the central object. The angular momentum loss may be induced either by evolution of the stellar interior of critically rotating star or by merger event in a binary. In contrast to the usual stellar wind mass loss set by driving from the stellar luminosity, such decretion-disk mass loss is determined by the angular momentum loss needed to keep the central object in equilibrium. The angular momentum loss is given either by the interior evolution and decline in the star's moment of inertia, or by excess angular momentum present in a merging binary. Because the specific angular momentum in a Keplerian disk increases with the square root of the radius, the decretion mass loss associated with a required level of angular momentum loss depends crucially on the outer radius for viscous coupling of the disk. The magnetorotational instability can be the source of anomalous viscosity in decretion disks. The instability operates close to the star and disappears in the region where the disk orbital velocity is roughly equal to the sound speed. We study the differences between Be and B[e] star disks and discuss the reasons why stars of the stellar type B have disks, while other stars do not.

  11. AGB star intershell abundances inferred from UV spectra of extremely hot post-AGB stars

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Reiff, E.; Kruk, J. W.

    2009-04-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  12. Mass Loss of Glaciers and Ice Caps From GRACE During 2002-2015

    NASA Astrophysics Data System (ADS)

    Ciraci, E.; Velicogna, I.; Wahr, J. M.; Swenson, S. C.

    2015-12-01

    We use time series of time-variable gravity from the NASA/DLR GRACE mission using a mascon approach to estimate the ice mass balance of the Earth's Mountain Glaciers and Ice Caps (GICs), excluding the Antarctic and the Greenland peripheral glaciers, between January 2003 and October 2014. We estimate a total ice mass loss equal to -217 ± 33 Gt/yr, equivalent to a sea level rise of 0.6±0.09 mm/yr. The global signal is driven by a few regions, contributing to almost of 75% of the total ice mass loss. Among these areas, the main contributor is the Canadian Arctic Archipelago with a total mass loss of -75 ± 9 Gt/yr, followed by Alaska (-51 ± 10 Gt/yr), Patagonia (-26 ± 10 Gt/yr) and the High Mountains of Asia (-25 ± 13 Gt/yr). The mass loss for most of the arctic regions is not constant, but accelerates with time. The Canadian Archipelago, in particular, undergoes a strong acceleration in mass waste (-7±1 Gt/yr2). The signal acceleration is mainly driven by the northern located Queen Elisabeth Islands (-4.5 ± 0.6 Gt/yr2). A similar behavior is observed for Svalbard and the Russian Arctic. In this second case, however, we observe an enhanced mass loss starting from the second decade of the 21st century after a period of nearly stable mass balance. The observed acceleration helps reconcile regional ice mass estimates obtained for different time periods.

  13. Short-lived radioactivity in the early solar system: The Super-AGB star hypothesis

    NASA Astrophysics Data System (ADS)

    Lugaro, Maria; Doherty, Carolyn L.; Karakas, Amanda I.; Maddison, Sarah T.; Liffman, Kurt; García-Hernández, D. A.; Siess, Lionel; Lattanzio, John C.

    2012-12-01

    The composition of the most primitive solar system condensates, such as calcium-aluminum-rich inclusions (CAIs) and micron-sized corundum grains, show that short-lived radionuclides (SLR), e.g., 26Al, were present in the early solar system. Their abundances require a local or stellar origin, which, however, is far from being understood. We present for the first time the abundances of several SLR up to 60Fe predicted from stars with initial mass in the range approximately 7-11 M⊙. These stars evolve through core H, He, and C burning. After core C burning they go through a "Super"-asymptotic giant branch (Super-AGB) phase, with the H and He shells activated alternately, episodic thermal pulses in the He shell, a very hot temperature at the base of the convective envelope (approximately 108 K), and strong stellar winds driving the H-rich envelope into the surrounding interstellar medium. The final remnants of the evolution of Super-AGB stars are mostly O-Ne white dwarfs. Our Super-AGB models produce 26Al/27Al yield ratios approximately 0.02-0.26. These models can account for the canonical value of the 26Al/27Al ratio using dilutions with the solar nebula of the order of 1 part of Super-AGB mass per several 102 to several 103 of solar nebula mass, resulting in associated changes in the O-isotope composition in the range Δ17O from 3 to 20‰. This is in agreement with observations of the O isotopic ratios in primitive solar system condensates, which do not carry the signature of a stellar polluter. The radionuclides 41Ca and 60Fe are produced by neutron captures in Super-AGB stars and their meteoritic abundances are also matched by some of our models, depending on the nuclear and stellar physics uncertainties as well as the meteoritic experimental data. We also expect and are currently investigating Super-AGB production of SLR heavier than iron, such as 107Pd.

  14. ON THE BIRTH MASSES OF THE ANCIENT GLOBULAR CLUSTERS

    SciTech Connect

    Conroy, Charlie

    2012-10-10

    All globular clusters (GCs) studied to date show evidence for internal (star-to-star) variation in their light-element abundances (including Li, C, N, O, F, Na, Mg, Al, and probably He). These variations have been interpreted as evidence for multiple star formation episodes within GCs, with secondary episodes fueled, at least in part, by the ejecta of asymptotic giant branch (AGB) stars from a first generation of stars. A major puzzle emerging from this otherwise plausible scenario is that the fraction of stars associated with the second episode of star formation is observed to be much larger than expected for a standard initial mass function. The present work investigates this tension by modeling the observed anti-correlation between [Na/Fe] and [O/Fe] for 20 Galactic GCs. If the abundance pattern of the retained AGB ejecta does not depend on GC mass at fixed [Fe/H], then a strong correlation is found between the fraction of current GC stellar mass composed of pure AGB ejecta, f{sub p} , and GC mass. This fraction varies from 0.20 at low masses (10{sup 4.5} M{sub Sun }) to 0.45 at high masses (10{sup 6.5} M{sub Sun }). The fraction of mass associated with pure AGB ejecta is directly related to the total mass of the cluster at birth; the ratio between the initial and present mass in stars can therefore be derived. Assuming a star formation efficiency of 50%, the observed Na-O anti-correlations imply that GCs were at least 10-20 times more massive at birth, a conclusion that is in qualitative agreement with previous work. These factors are lower limits because any mass-loss mechanism that removes first- and second-generation stars equally will leave f{sub p} unchanged. The mass dependence of f{sub p} probably arises because lower mass GCs are unable to retain all of the AGB ejecta from the first stellar generation. Recent observations of elemental abundances in intermediate-age Large Magellanic Cloud clusters are re-interpreted and shown to be consistent with this

  15. The 2014 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Hodge-Clark, Kristen

    2014-01-01

    "The 2014 AGB Survey of Higher Education Governance" is the fourth in AGB's studies of college and university governance. This report, based on survey responses from 592 public and independent boards, addresses a range of important governance topics that are receiving attention from boards and the news media, including presidential…

  16. Presenting Optical Spectra of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Hamren, K.; Guhathakurta, P.; Toloba, E.; Dorman, C. E.; Seth, A. C.; Splash Collaboration; Phat Collaboration

    2015-08-01

    We present optical spectra of oxygen- and carbon-rich AGB stars in the disk of the Andromeda spiral galaxy (M31). Our AGB sample is drawn from the ˜10 000 stars covered by both the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey and the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This dual coverage means that we have moderate resolution optical spectra taken with the DEIMOS spectrograph on the Keck II 10-m telescope, as well as six-filter HST photometry spanning the ultraviolet, optical and infrared. Our full AGB sample contains 143 carbon-rich AGB stars (C stars) and ˜1700 oxygen-rich AGB stars (M giants). We explore the spatial and kinematic distribution of these stars, the C/M ratio, spectral trends as a function of physical properties, and the fit to synthetic photometry.

  17. Large-scale environments of binary AGB stars probed by Herschel. II. Two companions interacting with the wind of π1 Gruis

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Paladini, C.; Kerschbaum, F.; Pourbaix, D.; Siopis, C.; Ottensamer, R.; Mečina, M.; Cox, N. L. J.; Groenewegen, M. A. T.; Klotz, D.; Sadowski, G.; Spang, A.; Cruzalèbes, P.; Waelkens, C.

    2014-10-01

    Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology is most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebulæ (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims: We probe the environment of the very evolved AGB star π1 Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods: Observations made with Herschel/PACS at 70 μm and 160 μm picture the large-scale environment of π1 Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results: The Herschel/PACS images of π1 Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of 38″ from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation

  18. Miras, Mass Loss, and the Ultimate Fate of the Earth (Abstract)

    NASA Astrophysics Data System (ADS)

    Willson, L. A.

    2016-12-01

    (Abstract only) The broad category of pulsating red giants includes semi-regular variables and Mira variables. The Miras are distinguished by their large amplitude variation in visible light, late spectral types (cool atmospheres), and the presence of emission lines during part of the cycle. The emission lines result from shock waves generated by pulsation that traverse their atmospheres. These stars' atmosphere are often dusty, an indication of mass loss. Based on decades of detailed modeling we can recognize that the Mira stage corresponds to the onset of devastating mass loss, a process that removes most of the remaining envelope and reveals the degenerate core, a new white dwarf star. I'll review the evidence for this claim, and then examine the effects of Mira stage mass loss on the future solar system. Finally, I shall draw some very general conclusions about the ultimate fate of the Earth.

  19. Mass loss from very luminous OB stars and the Cygnus superbubble

    NASA Astrophysics Data System (ADS)

    Abbott, D. C.; Bieging, J. H.; Churchwell, E.

    1981-11-01

    A description is presented of radio continuum measurements of mass loss from OB stars made at a wavelength of 6 cm with the Very Large Array (VLA). Five of the six most luminous members of the stellar association Cyg OB2 were detected. The considered investigation concentrates on the most luminous stars known in the Galaxy. The stars were selected because they would exhibit the most extreme consequences of mass loss and because they tend to be the brightest radio sources. The new mass loss rates are used to predict the properties of the interstellar bubble produced by the stellar winds of Cyg OB2. The results support the interpretation of Cash et al. (1980) that X-ray emission in the direction of Cygnus indicates a superbubble whose hot interior cavity contains the Cyg OB2 association.

  20. Evolution models from the AGB to the PNe and the rapid evolution of SAO 244567

    NASA Astrophysics Data System (ADS)

    Lawlor, Timothy M.; Sebzda, Steven; Peterson, Zach

    2015-08-01

    We present evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PNe) phase for models of mass 1 M⊙ over a range of metallicities from primordial, Z = 10-14, through near solar, Z = 0.02. Using our grid of models, we determine a central star mass dependence on initial metallicity. We also present a range of low masses for our low to very low metal models. The understanding of these objects is an important part of galactic evolution and the evolution of the composition of the universe over a broad range of red shits. For our low Z models, we find key differences in how they cross the HR diagram to the PNe phase, compared with models with higher initial Z. Some of our models experience the so called AGB Final Thermal Pulse (AFTP), which is a helium pulse that occurs while leaving the AGB and causes a rapid looping evolution while evolving between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, SAO 244567. This object has been observed to be rapidly evolving (heating) over more than the last 50 years and is the central star of the youngest known planetary nebula. These two characteristics are similar to what is expected for AFTP models. It is a short lived phase that is related to, but different than, very late thermal pulse objects such as Sakurai’s Object, FG Sge, and V605 Aql. These objects experienced a similar thermal pulse, but later on the white dwarf cooling track.

  1. Effects of main-sequence mass loss on the turnoff ages of globular clusters

    SciTech Connect

    Guzik, J.A.

    1989-01-01

    Willson, Bowen, and Struck-Marcell have proposed that globular cluster main-sequence turnoff ages can be reconciled with the lower ages of the Galaxy and universe deduced from other methods by incorporating an epoch of early main-sequence mass-loss by stars of spectral types A through early-F. The proposed mass loss is pulsation-driven, and facilitated by rapid rotation. This paper presents stellar evolution calculations of Pop. II (Z = 0.001) mass-losing stars of initial mass 0.8 to 1.6 M/sub /circle dot//, with exponentially-decreasing mass loss rates of e-folding times 0.5 to 2.0 Gyr, evolving to a final mass of 0.7 M/sub /circle dot//. The calculations indicate that a globular cluster with apparent turnoff age 18 Gyr could have an actual age as low as /approximately/12 Gyr. Observational implications that may help to verify the hypothesis, e.g. low C/N abundance ratios among red giants following first dredge-up, blue stragglers, red giant deficiencies, and signatures in cluster mass/luminosity functions, are also discussed.25 refs., 4 figs., 3 tabs.

  2. Massive nitrogen loss in critical surgical illness: effect on cardiac mass and function.

    PubMed Central

    Hill, A A; Plank, L D; Finn, P J; Whalley, G A; Sharpe, N; Clark, M A; Hill, G L

    1997-01-01

    OBJECTIVE: The authors measured cardiac mass and function to determine whether these changed in patients who were critically ill who were losing large amounts of nitrogen from the body. SUMMARY BACKGROUND DATA: The large losses of body nitrogen that occur in patients with protein-energy malnutrition are associated with a loss of cardiac mass and function. It is not known if this also occurs in patients who were critically ill who are losing massive amounts of nitrogen. METHODS: Once hemodynamically stable, 13 patients who were critically ill underwent sequential measurements of left ventricular mass (LVM) and function, total body nitrogen (TBN), total body potassium, body weight, fat-free mass, and limb muscle mass. RESULTS: Over a 21-day study period, there was no change in LVM or function despite falls of 14% and 21% in TBN and total body potassium, respectively, a 21% fall in limb muscle mass, and a deterioration in skeletal muscle function by approximately 40%. CONCLUSIONS: In patients who were critically ill, cardiac mass does not decrease and function does not deteriorate after hemodynamic stability has been achieved despite massive losses of protein from the body. PMID:9296513

  3. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    NASA Astrophysics Data System (ADS)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  4. A New Prescription for the Mass-loss Rates of WC and WO Stars

    NASA Astrophysics Data System (ADS)

    Tramper, F.; Sana, H.; de Koter, A.

    2016-12-01

    We present a new empirical prescription for the mass-loss rates of carbon- and oxygen-sequence Wolf-Rayet stars as a function of their luminosity, surface chemical composition, and initial metallicity. The new prescription is based on results of detailed spectral analyses of WC and WO stars and improves the often applied Nugis and Lamers relation. We find that the mass-loss rates of WC and WO stars (with X = 0 and Y ≲ 0.98) can be expressed as {log} \\dot{M}=-9.20+0.85{log}(L/L ⊙) + 0.44 log Y + 0.25 log (Z Fe/Z Fe,⊙). This relation is based on mass-loss determinations that assume a volume-filling factor of 0.1, but the prescription can easily be scaled to account for other volume-filling factors. The residual of the fit is σ = 0.06 dex. We investigated whether the relation can also describe the mass loss of hydrogen-free WN stars and showed that it can when an adjustment of the metallicity dependence ({log} \\dot{M}\\propto 1.3{log}({Z}{Fe}/{Z}{Fe,⊙ })) is applied. Compared to that of Nugis and Lamers, \\dot{M} is less sensitive to the luminosity and the surface abundance, implying a stronger mass loss of massive stars in their late stages of evolution. The modest metallicity dependence implies that if WC or WO stars are formed in metal-deficient environments, their mass-loss rates are higher than currently anticipated. These effects may result in the formation of a larger number of SNe Ic and fewer black holes and may favor the production of superluminous SNe Ic through interaction with C- and O-rich circumstellar material or dense stellar wind.

  5. Synchrotron-Based in Situ Characterization of the Scaffold Mass Loss from Erosion Degradation

    PubMed Central

    Bawolin, Nahshon K.; Chen, Xiongbaio

    2016-01-01

    The mass loss behavior of degradable tissue scaffolds is critical to their lifespan and other degradation-related properties including mechanical strength and mass transport characteristics. This paper presents a novel method based on synchrotron imaging to characterize the scaffold mass loss from erosion degradation in situ, or without the need of extracting scaffolds once implanted. Specifically, the surface-eroding degradation of scaffolds in a degrading medium was monitored in situ by synchrotron-based imaging; and the time-dependent geometry of scaffolds captured by images was then employed to estimate their mass loss with time, based on the mathematical model that was adopted from the literature of surface erosion with the experimentally-identified model parameters. Acceptable agreement between experimental results and model predictions was observed for scaffolds in a cylindrical shape, made from poly(lactic-co-glycolic) acid (PLGA) and polycaprolactone (PCL). This study illustrates that geometry evaluation by synchrotron-based imaging is an effective means to in situ characterize the scaffold mass loss as well as possibly other degradation-related properties. PMID:27399789

  6. A consistent solution for the velocity field and mass-loss rate of massive stars

    NASA Astrophysics Data System (ADS)

    Müller, P. E.; Vink, J. S.

    2008-12-01

    Stellar winds are an important aspect of our understanding of the evolution of massive stars and their input into the interstellar medium. Here we present solutions for the velocity field and mass-loss rates for stellar outflows as well as for the case of mass accretion through the use of the so-called Lambert W-function. For the case of a radiation-driven wind, the velocity field is obtained analytically using a parameterised description for the line acceleration that only depends on radius, which we obtain from Monte-Carlo multi-line radiative transfer calculations. In our form of the equation of motion the critical point is the sonic point. We also derive an approximate analytical solution for the supersonic flow which closely resembles our exact solution. For the simultaneous solution of the mass-loss rate and velocity field, we describe a new iterative method. We apply our theoretical expressions and our iterative method to the stellar wind from a typical O5-V main sequence star, and find good agreement with empirical values. Our computations represent a self-consistent mass-loss calculation including the effect of multi-line scattering for an O-type star, opening up the possibility of applying Monte Carlo mass-loss calculations in regions of the Universe for which empirical constraints cannot be readily obtained.

  7. Determining the Nature and Origin of Mass Loss from Active Asteroid P/2013 P5

    NASA Astrophysics Data System (ADS)

    Jewitt, David

    2014-10-01

    We propose a program of WFC3 images of active asteroid P/2013 P5 in order to determine the nature and origin of mass loss from this object. P5 ejects dust episodically, creating a multi-tailed appearance unlike that of any other known asteroid or comet. The ejection is thought to result from surface rotational instabilities (a process called "mass-shedding" by modelers). We will test the role of rotation by measuring the lightcurve of the nucleus and we will study the evolution of continued mass loss through Cycle 22. Rotational breakup and rotational mass-shedding are suspected to be the main mechanisms of destruction for sub-kilometer asteroids. Neither has been observed before but, between P/2013 P5 and P/2013 R3 (subject of another proposal) we have the first, potentially ground-breaking opportunities to observe both.

  8. The adventure of carbon stars. Observations and modeling of a set of C-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Rau, G.; Hron, J.; Paladini, C.; Aringer, B.; Eriksson, K.; Marigo, P.; Nowotny, W.; Grellmann, R.

    2017-04-01

    Context. Modeling stellar atmospheres is a complex and intriguing task in modern astronomy. A systematic comparison of models with multi-technique observations is the only efficient way to constrain the models. Aims: We intend to perform self-consistent modeling of the atmospheres of six carbon-rich AGB stars (R Lep, R Vol, Y Pav, AQ Sgr, U Hya, and X TrA) with the aim of enlarging the knowledge of the dynamic processes occurring in their atmospheres. Methods: We used VLTI/MIDI interferometric observations, in combination with spectro-photometric data, and compared them with self-consistent, dynamic model atmospheres. Results: We found that the models can reproduce spectral energy distribution (SED) data well at wavelengths longer than 1 μm, and the interferometric observations between 8 μm and 10 μm. Discrepancies observed at wavelengths shorter than 1 μm in the SED, and longer than 10 μm in the visibilities, could be due to a combination of data- and model-related effects. The models best fitting the Miras are significantly extended, and have a prominent shell-like structure. On the contrary, the models best fitting the non-Miras are more compact, showing lower average mass loss. The mass loss is of episodic or multi-periodic nature but causes the visual amplitudes to be notably larger than the observed ones. A number of stellar parameters were derived from the model fitting: TRoss, LRoss, M, C/O, and Ṁ. Our findings agree well with literature values within the uncertainties. TRoss, and LRoss are also in good agreement with the temperature derived from the angular diameter T(θ(V-K)) and the bolometric luminosity from the SED fitting Lbol, except for AQ Sgr. The possible reasons are discussed in the text. Finally, θRoss and θ(V-K) agree with one another better for the Miras than for the non-Miras targets, which is probably connected to the episodic nature of the latter models. We also located the stars in the H-R diagram, comparing them with evolutionary

  9. Improving the distances of post-AGB objects in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vickers, Shane B.; Frew, David J.; Owers, Matt S.; Parker, Quentin A.; Bojičič, Ivan S.

    2016-07-01

    Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. RV Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment.

  10. On the formation of SMC X-1: The effect of mass and orbital angular momentum loss

    SciTech Connect

    Li, Tao; Li, X.-D. E-mail: lixd@nju.edu.cn

    2014-01-01

    SMC X-1 is a high-mass X-ray binary with an orbital period of 3.9 days. The mass of the neutron star is as low as ∼1M {sub ☉}, suggesting that it was likely formed through an electron-capture supernova rather than an iron-core collapse supernova. From the present system configurations, we argue that the orbital period at the supernova was ≲ 10 days. Since the mass transfer process between the neutron star's progenitor and the companion star before the supernova should have increased the orbital period to tens of days, a mechanism with efficient orbit angular momentum loss and relatively small mass loss is required to account for its current orbital period. We have calculated the evolution of the progenitor binary systems from zero-age main sequence to the pre-supernova stage with different initial parameters and various mass and angular momentum loss mechanisms. Our results show that the outflow from the outer Lagrangian point or a circumbinary disk formed during the mass transfer phase may be qualified for this purpose. We point out that these mechanisms may be popular in binary evolution and significantly affect the formation of compact star binaries.

  11. Mass Balance of the Northern Antarctic Peninsula and its Ongoing Response to Ice Shelf Loss

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Berthier, E.; Haran, T. M.; Shuman, C. A.; Cook, A. J.; Bohlander, J. A.

    2012-12-01

    An assessment of the most rapidly changing areas of the Antarctic Peninsula (north of 66°S) shows that ice mass loss for the region is dominated by areas affected by eastern-Peninsula ice shelf losses in the past 20 years. Little if any of the mass loss is compensated by increased snowfall in the northwestern or far northern areas. We combined satellite stereo-image DEM differencing and ICESat-derived along-track elevation changes to measure ice mass loss for the Antarctic Peninsula north of 66°S between 2001-2010, focusing on the ICESat-1 period of operation (2003-2009). This mapping includes all ice drainages affected by recent ice shelf loss in the northeastern Peninsula (Prince Gustav, Larsen Inlet, Larsen A, and Larsen B) as well as James Ross Island, Vega Island, Anvers Island, Brabant Island and the adjacent west-flowing glaciers. Polaris Glacier (feeding the Larsen Inlet, which collapsed in 1986) is an exception, and may have stabilized. Our method uses ASTER and SPOT-5 stereo-image DEMs to determine dh/dt for elevations below 800 m; at higher elevations ICESat along-track elevation differencing is used. To adjust along-track path offsets between its 2003-2009 campaigns, we use a recent DEM of the Peninsula to establish and correct for cross-track slope (Cook et al., 2012, doi:10.5194/essdd-5-365-2012; http://nsidc.org/data/nsidc-0516.html) . We reduce the effect of possible seasonal variations in elevation by using only integer-year repeats of the ICESat tracks for comparison. Mass losses are dominated by the major glaciers that had flowed into the Prince Gustav (Boydell, Sjorgren, Röhss), Larsen A (Edgeworth, Bombardier, Dinsmoor, Drygalski), and Larsen B (Hektoria, Jorum, and Crane) embayments. The pattern of mass loss emphasizes the significant and multi-decadal response to ice shelf loss. Areas with shelf losses occurring 30 to 100s of years ago seem to be relatively stable or losing mass only slowly (western glaciers, northernmost areas). The

  12. Radio emission and mass loss rate limits of four young solar-type stars

    NASA Astrophysics Data System (ADS)

    Fichtinger, Bibiana; Güdel, Manuel; Mutel, Robert L.; Hallinan, Gregg; Gaidos, Eric; Skinner, Stephen L.; Lynch, Christene; Gayley, Kenneth G.

    2017-03-01

    Aims: Observations of free-free continuum radio emission of four young main-sequence solar-type stars (EK Dra, π1 UMa, χ1 Ori, and κ1 Cet) are studied to detect stellar winds or at least to place upper limits on their thermal radio emission, which is dominated by the ionized wind. The stars in our sample are members of The Sun in Time programme and cover ages of 0.1-0.65 Gyr on the main-sequence. They are similar in magnetic activity to the Sun and thus are excellent proxies for representing the young Sun. Upper limits on mass loss rates for this sample of stars are calculated using their observational radio emission. Our aim is to re-examine the faint young Sun paradox by assuming that the young Sun was more massive in its past, and hence to find a possible solution for this famous problem. Methods: The observations of our sample are performed with the Karl G. Jansky Very Large Array (VLA) with excellent sensitivity, using the C-band receiver from 4-8 GHz and the Ku-band from 12-18 GHz. Atacama Large Millimeter/Submillitmeter Array (ALMA) observations are performed at 100 GHz. The Common Astronomy Software Application (CASA) package is used for the data preparation, reduction, calibration, and imaging. For the estimation of the mass loss limits, spherically symmetric winds and stationary, anisotropic, ionized winds are assumed. We compare our results to 1) mass loss rate estimates of theoretical rotational evolution models; and 2) to results of the indirect technique of determining mass loss rates: Lyman-α absorption. Results: We are able to derive the most stringent direct upper limits on mass loss so far from radio observations. Two objects, EK Dra and χ1 Ori, are detected at 6 and 14 GHz down to an excellent noise level. These stars are very active and additional radio emission identified as non-thermal emission was detected, but limits for the mass loss rates of these objects are still derived. The emission of χ1 Ori does not come from the main target

  13. The mass-loss return from evolved stars to the Large Magellanic Cloud. III. Dust properties for carbon-rich asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Matsuura, M.; Meixner, M.; Kemper, F.; Tielens, A. G. G. M.; Volk, K.; Speck, A. K.; Woods, P. M.; Gordon, K.; Marengo, M.; Sloan, G. C.

    2010-12-01

    We present a radiative transfer model for the circumstellar dust shell around a Large Magellanic Cloud (LMC) long-period variable (LPV) previously studied as part of the Optical Gravitational Lensing Experiment (OGLE) survey of the LMC. OGLE LMC LPV 28579 (SAGE J051306.40-690946.3) is a carbon-rich asymptotic giant branch (AGB) star for which we have Spitzer broadband photometry and spectra from the SAGE and SAGE-Spec programs along with broadband UBVIJHKs photometry. By modeling this source, we obtain a baseline set of dust properties to be used in the construction of a grid of models for carbon stars. We reproduce the spectral energy distribution of the source using a mixture of amorphous carbon and silicon carbide with 15% SiC by mass. The grain sizes are distributed according to the KMH model, with γ = 3.5, amin = 0.01 μm and a0 = 1.0 μm. The best-fit model produces an optical depth of 0.28 for the dust shell at the peak of the SiC feature (11.3 μm), with an inner radius of about 1430 R_⊙ or 4.4 times the stellar radius. The temperature at this inner radius is 1310 K. Assuming an expansion velocity of 10 km s-1, we obtain a dust mass-loss rate of 2.5 × 10-9 M_⊙ yr-1. We calculate a 15% variation in this mass-loss rate by testing the sensitivity of the fit to variation in the input parameters. We also present a simple model for the molecular gas in the extended atmosphere that could give rise to the 13.7 μm feature seen in the spectrum. We find that a combination of CO and C2H2 gas at an excitation temperature of about 1000 K and column densities of 3 × 1021 cm-2 and 1019 cm-2 respectively are able to reproduce the observations. Given that the excitation temperature is close to the temperature of the dust at the inner radius, most of the molecular contribution probably arises from this region. The luminosity corresponding to the first epoch of SAGE observations is 6580 L_⊙. For an effective temperature of about 3000 K, this implies a stellar mass of

  14. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  15. Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T.; Groenewegen, M. A. T.; Kerschbaum, F.; Cernicharo, J.; Vandenbussche, B.; Waelkens, C.

    2016-04-01

    Context. The recent detection of warm H2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2O molecules in the intermediate wind. Aims: We aim to determine the properties of H2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2O formation pathway. Methods: Using far-infrared spectra taken with the PACS instrument onboard the Herschel telescope, we combined two methods to identify H2O emission trends and interpreted these in terms of theoretically expected patterns in the H2O abundance. Through the use of line-strength ratios, we analyzed the correlation between the strength of H2O emission and the mass-loss rate of the objects, as well as the radial dependence of the H2O abundance in the circumstellar outflow per individual source. We computed a model grid to account for radiative-transfer effects in the line strengths. Results: We detect warm H2O emission close to or inside the wind acceleration zone of all sample stars, irrespective of their stellar or circumstellar properties. The predicted H2O abundances in carbon-rich environments are in the range of 10-6 up to 10-4 for Miras and semiregular-a objects, and cluster around 10-6 for semiregular-b objects. These predictions are up to three orders of magnitude greater than what is predicted by state-of-the-art chemical models. We find a negative correlation between the H2O/CO line-strength ratio and gas mass-loss rate for Ṁg> 5 × 10-7 M⊙ yr-1, regardless of the upper-level energy of the relevant transitions

  16. New Evidence for Mass Loss from δ Cephei from H I 21 cm Line Observations

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Marengo, M.; Evans, N. R.; Bono, G.

    2012-01-01

    Recently published Spitzer Space Telescope observations of the classical Cepheid archetype δ Cephei revealed an extended dusty nebula surrounding this star and its hot companion HD 213307. At far-infrared wavelengths, the emission resembles a bow shock aligned with the direction of space motion of the star, indicating that δ Cephei is undergoing mass loss through a stellar wind. Here we report H I 21 cm line observations with the Very Large Array (VLA) to search for neutral atomic hydrogen associated with this wind. Our VLA data reveal a spatially extended H I nebula (~13' or 1 pc across) surrounding the position of δ Cephei. The nebula has a head-tail morphology, consistent with circumstellar ejecta shaped by the interaction between a stellar wind and the interstellar medium (ISM). We directly measure a mass of circumstellar atomic hydrogen M_H I ≈ 0.07 M_{⊙}, although the total H I mass may be larger, depending on the fraction of circumstellar material that is hidden by Galactic contamination within our band or that is present on angular scales too large to be detected by the VLA. It appears that the bulk of the circumstellar gas has originated directly from the star, although it may be augmented by material swept from the surrounding ISM. The H I data are consistent with a stellar wind with an outflow velocity V o = 35.6 ± 1.2 km s-1 and a mass-loss rate of {\\dot{M}}≈ (1.0+/- 0.8)× 10^{-6} M_{⊙} yr-1. We have computed theoretical evolutionary tracks that include mass loss across the instability strip and show that a mass-loss rate of this magnitude, sustained over the preceding Cepheid lifetime of δ Cephei, could be sufficient to resolve a significant fraction of the discrepancy between the pulsation and evolutionary masses for this star.

  17. Support loss and Q factor enhancement for a rocking mass microgyroscope.

    PubMed

    Wang, Xiong; Xiao, Dingbang; Zhou, Zelong; Wu, Xuezhong; Chen, Zhihua; Li, Shengyi

    2011-01-01

    A rocking mass gyroscope (RMG) is a kind of vibrating mass gyroscope with high sensitivity, whose driving mode and sensing mode are completely uniform. MEMS RMG devices are a research hotspot now because they have the potential to be used in space applications. Support loss is the dominant energy loss mechanism influencing their high sensitivity. An accurate analytical model of support loss for RMGs is presented to enhance their Q factors. The anchor type and support loss mechanism of an RMG are analyzed. Firstly, the support loads, powers flowing into support structure, and vibration energy of an RMG are all developed. Then the analytical model of support loss for the RMG is developed, and its sensitivities to the main structural parameters are also analyzed. High-Q design guidelines for rocking mass microgyroscopes are deduced. Finally, the analytical model is validated by the experimental data and the data from the existing literature. The thicknesses of the prototypes are reduced from 240 μm to 60 μm, while Q factors increase from less than 150 to more than 800. The derived model is general and applicable to various beam resonators, providing significant insight to the design of high-Q MEMS devices.

  18. BOREAS: Mass Loss Rate of a Cool, Late-type Star

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Saar, Steven H.

    2011-08-01

    The basic mechanisms responsible for producing winds from cool, late-type stars are still largely unknown. We take inspiration from recent progress in understanding solar wind acceleration to develop a physically motivated model of the time-steady mass loss rates of cool main-sequence stars and evolved giants. This model follows the energy flux of magnetohydrodynamic turbulence from a subsurface convection zone to its eventual dissipation and escape through open magnetic flux tubes. We show how Alfven waves and turbulence can produce winds in either a hot corona or a cool extended chromosphere, and we specify the conditions that determine whether or not coronal heating occurs. These models do not utilize arbitrary normalization factors, but instead predict the mass loss rate directly from a star's fundamental properties. We take account of stellar magnetic activity by extending standard age-activity-rotation indicators to include the evolution of the filling factor of strong photospheric magnetic fields. We compared the predicted mass loss rates with observed values for 47 stars and found significantly better agreement than was obtained from the popular scaling laws of Reimers, Schroeder, and Cuntz. The algorithm used to compute cool-star mass loss rates is provided as a self-contained and efficient IDL computer code. We anticipate that the results from this kind of model can be incorporated straightforwardly into stellar evolution calculations and population synthesis techniques.

  19. Testing a Predictive Theoretical Model for the Mass Loss Rates of Cool Stars

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Saar, Steven H.

    2011-11-01

    The basic mechanisms responsible for producing winds from cool, late-type stars are still largely unknown. We take inspiration from recent progress in understanding solar wind acceleration to develop a physically motivated model of the time-steady mass loss rates of cool main-sequence stars and evolved giants. This model follows the energy flux of magnetohydrodynamic turbulence from a subsurface convection zone to its eventual dissipation and escape through open magnetic flux tubes. We show how Alfvén waves and turbulence can produce winds in either a hot corona or a cool extended chromosphere, and we specify the conditions that determine whether or not coronal heating occurs. These models do not utilize arbitrary normalization factors, but instead predict the mass loss rate directly from a star's fundamental properties. We take account of stellar magnetic activity by extending standard age-activity-rotation indicators to include the evolution of the filling factor of strong photospheric magnetic fields. We compared the predicted mass loss rates with observed values for 47 stars and found significantly better agreement than was obtained from the popular scaling laws of Reimers, Schröder, and Cuntz. The algorithm used to compute cool-star mass loss rates is provided as a self-contained and efficient computer code. We anticipate that the results from this kind of model can be incorporated straightforwardly into stellar evolution calculations and population synthesis techniques.

  20. Mass-loss predictions for evolved very metal-poor massive stars

    NASA Astrophysics Data System (ADS)

    Muijres, L.; Vink, J. S.; de Koter, A.; Hirschi, R.; Langer, N.; Yoon, S.-C.

    2012-10-01

    Context. The first couple of stellar generations may have been massive, of order 100 M⊙, and to have played a dominant role in galaxy formation and the chemical enrichment of the early Universe. Some fraction of these objects may have died as pair-instability supernovae or gamma-ray bursts. The winds of these stars may have played an important role in determining these outcomes. As the winds are driven by radiation pressure on spectral lines, their strengths are expected to vary with metallicity. Until now, most mass-loss predictions for metal-poor O-type stars have assumed a scaled-down solar-abundance pattern. However, Population III evolutionary tracks show significant surface enrichment through rotational mixing of CNO-processed material, because even metal-poor stars switch to CNO-burning early on. Aims: We address the question of whether the CNO surface enhanced self-enrichment in the first few generations of stars could impact their mass-loss properties. Methods: We employ Monte Carlo simulations to establish the local line-force and solve for the momentum equation of the stellar outflow, testing whether an outflow can actually be established by assessing the net acceleration at the sonic point of the flow. Stellar evolution models of rotating metal-poor stars are used to specify the surface chemical composition, focussing on the phases of early enrichment. Results: We find that the mass-loss rates of CNO enhanced metal-poor stars are higher than those of non-enriched stars, but they are much lower than those rates where the CNO abundance is included in the total abundance Z. Metal-poor stars hotter than ~50 000 K, in the metallicity range investigated here (with an initial metallicity Z ≲ 10-4) are found to have no wind, as the high-ionization species of the CNO elements have too few strong lines to drive an outflow. We present a heuristic formula that provides mass-loss estimates for CNO-dominated winds in relation to scaled-down solar abundances

  1. Testing the predicted mass-loss bi-stability jump at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Vink, J. S.; Martí, J.; Maíz Apellániz, J.; Koribalski, B.; Crowther, P. A.

    2007-06-01

    Context: Massive stars play a dominant role in the Universe, but one of the main drivers for their evolution, their mass loss, remains poorly understood. Aims: In this study, we test the theoretically predicted mass-loss behaviour as a function of stellar effective temperature across the so-called “bi-stability” jump. Methods: We observe OB supergiants in the spectral range O8-B3 at radio wavelengths to measure their thermal radio flux densities, and complement these measurements with data from the literature. We derive the radio mass-loss rates and wind efficiencies, and compare our results with Hα mass-loss rates and predictions based on radiation-driven wind models. Results: The wind efficiency shows the possible presence of a local maximum around an effective temperature of 21 000 K - in qualitative agreement with predictions. Furthermore, we find that the absolute values of the radio mass-loss rates show good agreement with empirical Hα rates derived assuming homogeneous winds - for the spectral range under consideration. However, the empirical mass-loss rates are larger (by a factor of a few) than the predicted rates from radiation-driven wind theory for objects above the bi-stability jump (BSJ) temperature, whilst they are smaller (by a factor of a few) for stars below the BSJ temperature. The reason for these discrepancies remains as yet unresolved. A new wind momenta-luminosity relation (WLR) for O8-B0 stars has been derived using the radio observations. The validity of the WLR as a function of the fitting parameter related to the force multiplier α_eff (Kudritzki & Puls, 2000, ARA&A, 629) is discussed. Conclusions: Our most interesting finding is that the qualitative behaviour of the empirical wind efficiencies with effective temperature is in line with the predicted behaviour, and this presents the first hint of empirical evidence for the predicted mass-loss bi-stability jump. However, a larger sample of stars around the BSJ needs to be observed

  2. Greenland ice sheet surface temperature, melt and mass loss: 2000-06

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Luthcke, S.B.; DiGirolamo, N.E.

    2008-01-01

    A daily time series of 'clear-sky' surface temperature has been compiled of the Greenland ice sheet (GIS) using 1 km resolution moderate-resolution imaging spectroradiometer (MODIS) land-surface temperature (LST) maps from 2000 to 2006. We also used mass-concentration data from the Gravity Recovery and Climate Experiment (GRACE) to study mass change in relationship to surface melt from 2003 to 2006. The mean LST of the GIS increased during the study period by ???0.27??Ca-1. The increase was especially notable in the northern half of the ice sheet during the winter months. Melt-season length and timing were also studied in each of the six major drainage basins. Rapid (<15 days) and sustained mass loss below 2000 m elevation was triggered in 2004 and 2005 as recorded by GRACE when surface melt begins. Initiation of large-scale surface melt was followed rapidly by mass loss. This indicates that surface meltwater is flowing rapidly to the base of the ice sheet, causing acceleration of outlet glaciers, thus highlighting the metastability of parts of the GIS and the vulnerability of the ice sheet to air-temperature increases. If air temperatures continue to rise over Greenland, increased surface melt will play a large role in ice-sheet mass loss.

  3. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris.

    PubMed

    Maercker, M; Mohamed, S; Vlemmings, W H T; Ramstedt, S; Groenewegen, M A T; Humphreys, E; Kerschbaum, F; Lindqvist, M; Olofsson, H; Paladini, C; Wittkowski, M; de Gregorio-Monsalvo, I; Nyman, L-A

    2012-10-11

    The asymptotic-giant-branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star underwent a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse--parameters that determine the lifetime of the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3″. What was previously thought to be only a thin, spherical shell with a clumpy structure is revealed to also contain a spiral structure. Spiral structures associated with circumstellar envelopes have been previously seen, leading to the conclusion that the systems must be binaries. Combining the observational data with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse about 1,800 years ago, lasting approximately 200 years. About 3 × 10(-3) solar masses of material were ejected at a velocity of 14.3 km s(-1) and at a rate around 30 times higher than the pre-pulse mass-loss rate. This shows that about three times more mass was returned to the interstellar medium during and immediately after the pulse than previously thought.

  4. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps.

    PubMed

    Noël, B; van de Berg, W J; Lhermitte, S; Wouters, B; Machguth, H; Howat, I; Citterio, M; Moholdt, G; Lenaerts, J T M; van den Broeke, M R

    2017-03-31

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt(-1), or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

  5. Dynamical friction for dark halo satellites: effects of tidal mass loss and growing host potential

    NASA Astrophysics Data System (ADS)

    Zhao, HongSheng

    2004-07-01

    Motivated by observations of inner halo satellite remnants like the Sgr stream and ω Centauri, we develop fully analytical models to study the orbital decay and tidal mass loss of satellites on eccentric orbits in an isothermal potential of a host galaxy halo. The orbital decay rate is often severely overestimated if applying Chandrasekhar's formula without correcting for (i) the evaporation and tidal loss of the satellite, and (ii) the contraction of satellite orbits due to adiabatic growth of the host galaxy potential over the Hubble time. As a satellite migrates inwards, the increasing halo density affects the dynamical friction in two opposite ways: (1) it boosts the number of halo particles swept in the gravitational `wake' of the satellite, hence increasing the drag on the satellite, and (2) it boosts the tide which `peels off' the satellite, and reduces the amplitude of the wake. These competing processes can be modelled analytically for a satellite with the help of an empirical formula for the mass-loss history. The analytical model agrees with more traditional numerical simulations of tidal mass loss and dynamical friction. Rapid mass loss due to increasing tides at smaller and smaller radius makes it less likely for streams or remnants of infalling satellites to intrude into the inner halo (like the Sgr stream and ω Centauri) than to stay in the outer halo (like the Magellanic stream), hence any intermediate-mass central black holes of the satellites are also probably `hung up' at large distances as well. It is difficult for the black holes of the satellites to come close enough to merge into the supermassive black hole in the centre of the host potential unless the satellites started with (i) pericentres much smaller than the typical distances to present-day observed satellites, and (ii) central density much higher than in the often seen finite-density cores of observed satellites.

  6. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%.

  7. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Van Loon, J. Th.

    2011-04-01

    Dust production among post-main-sequence stars is investigated in the Galactic globular cluster 47 Tucanae (NGC 104) based on infrared photometry and spectroscopy. We identify metallic iron grains as the probable dominant opacity source in these winds. Typical evolutionary timescales of asymptotic giant branch stars suggest the mass-loss rates we report are too high. We suggest that this is because the iron grains are small or elongated and/or that iron condenses more efficiently than at solar metallicity. Comparison to other works suggests metallic iron is observed to be more prevalent toward lower metallicities. The reasons for this are explored, but remain unclear. Meanwhile, the luminosity at which dusty mass loss begins is largely invariant with metallicity, but its presence correlates strongly with long-period variability. This suggests that the winds of low-mass stars have a significant driver that is not radiation pressure, but may be acoustic driving by pulsations.

  8. Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

    NASA Astrophysics Data System (ADS)

    Rahoma, Walid A.

    2016-12-01

    A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

  9. Evidences of tidal distortion and mass loss from the old open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Dalessandro, Emanuele

    2017-03-01

    We present the first evidence of clear signatures of tidal distortions in the density distribution of the fascinating open cluster NGC 6791. We find that the 2D density map shows a clear elongation and an irregular distribution starting from ~ 300'' from the cluster center and two tails extending in opposite directions beyond the tidal radius. These features are aligned to both the absolute proper motion and to the Galactic centre directions. Accordingly we find that both the surface brightness and star count density profiles reveal a departure from a King model starting from ~ 600''. These observational evidences suggest that NGC 6791 is currently undergoing mass-loss likely due to gravitational shocking and interactions with the tidal field of the Milky Way. We derive the expected mass-loss due to stellar evolution and tidal interactions and we estimate the initial cluster mass to be Mini = (1.5 - 4.0) × 105 M ⊙.

  10. Modelling mass loss and spatial uncertainty of the West Antarctic Ice Sheet: a data assimilation approach

    NASA Astrophysics Data System (ADS)

    Bamber, Jonathan L.; Schoen, Nana; Zammit-Mangion, Andrew; Rougier, Jonty; Luthcke, Scott; King, Matt

    2013-04-01

    Quantifying ice mass loss from the Antarctic Ice Sheet remains an important, yet still challenging problem. Although some agreement has been reached as to the order of magnitude of ice loss over the last two decades, in general methods lack statistical rigour in deriving uncertainties and for East Antarctica and the Peninsula significant inconsistencies remain. Here, we present rigorously-derived, error-bounded mass balance trends for part of the Antarctic ice sheet from a combination of satellite, in situ and regional climate model data sets for 2003-2009. Estimates for glacial isostatic adjustment (GIA), surface mass balance (SMB) anomaly, and ice mass change are derived from satellite gravimetry (the Gravity Recovery and Climate Experiment, GRACE), laser altimetry (ICESat, the Ice, Cloud and land Elevation Satellite) and GPS bedrock elevation rates. We use a deterministic Bayes approach to simultaneously solve for the unknown parameters and the covariance matrix which provides the uncertainties. The data were distributed onto a finite element grid the resolution of which reflects the gradients in the underlying process: here ice dynamics and surface mass balance. In this proof of concept study we solve for the time averaged, spatial distribution of mass trends over the 7 year time interval. The results illustrate the potential of the approach, especially for the Antarctic Peninsula (AP), where, due to its narrow width and steep orography, data coverage is sparse and error-prone for satellite altimetry. Results for the ice mass balance estimates are consistent with previous estimates and demonstrate the strength of the approach. Well-known patterns of ice mass change over the WAIS, like the stalled Kamb Ice Stream and the rapid thinning in the Amundsen Sea Embayment, are reproduced in terms of mass trend. Also, without relying on information on ice dynamics, the method correctly places ice loss maxima at the outlets of major glaciers on the AP. Combined ice mass

  11. Low appendicular muscle mass is correlated with femoral neck bone mineral density loss in postmenopausal women

    PubMed Central

    2011-01-01

    Background After menopause, rapid bone mass loss occurs in response to hypoestrogenism. Several studies suggest that muscle mass and bone mineral density (BMD) are positively associated in postmenopausal women. Therefore, it may be assumed that postmenopausal low appendicular muscle mass (aMM) can increase BMD loss in a short period of time. Objective The purpose of this study was to assess relationship of aMM with femoral neck BMD in postmenopausal women. Methods Prospective, controlled clinical Trial including 64 women aged 45-70 years, who had not had their last menstruation for at least one year. Subjects were divided into two groups: low aMM (n = 32), and normal aMM (n-32). Femoral neck BMD and muscle mass were measured by DXA at baseline and after twelve months. Pairwise and independent t tests were used for data analysis. Results Baseline weight, BMI and muscle mass (total and appendicular) significantly differ between groups (p < 0.05). After twelve months, femoral neck BMD was significantly lower in the group with low aMM, whereas no significant difference was observed in the group with normal aMM (p < 0.05). Conclusion In postmenopausal women, low appendicular muscle mass is associated negatively with femoral neck BMD in a short period of time. PMID:21981859

  12. Metabolic Slowing with Massive Weight Loss despite Preservation of Fat-Free Mass

    PubMed Central

    Johannsen, Darcy L.; Knuth, Nicolas D.; Huizenga, Robert; Rood, Jennifer C.; Ravussin, Eric

    2012-01-01

    Context: An important goal during weight loss is to maximize fat loss while preserving metabolically active fat-free mass (FFM). Massive weight loss typically results in substantial loss of FFM potentially slowing metabolic rate. Objective: Our objective was to determine whether a weight loss program consisting of diet restriction and vigorous exercise helped to preserve FFM and maintain resting metabolic rate (RMR). Participants and Intervention: We measured body composition by dual-energy x-ray absorptiometry, RMR by indirect calorimetry, and total energy expenditure by doubly labeled water at baseline (n = 16), wk 6 (n = 11), and wk 30 (n = 16). Results: At baseline, participants were severely obese (×± sd; body mass index 49.4 ± 9.4 kg/m2) with 49 ± 5% body fat. At wk 30, more than one third of initial body weight was lost (−38 ± 9%) and consisted of 17 ± 8% from FFM and 83 ± 8% from fat. RMR declined out of proportion to the decrease in body mass, demonstrating a substantial metabolic adaptation (−244 ± 231 and −504 ± 171 kcal/d at wk 6 and 30, respectively, P < 0.01). Energy expenditure attributed to physical activity increased by 10.2 ± 5.1 kcal/kg·d at wk 6 and 6.0 ± 4.1 kcal/kg·d at wk 30 (P < 0.001 vs. zero). Conclusions: Despite relative preservation of FFM, exercise did not prevent dramatic slowing of resting metabolism out of proportion to weight loss. This metabolic adaptation may persist during weight maintenance and predispose to weight regain unless high levels of physical activity or caloric restriction are maintained. PMID:22535969

  13. Photogrammetrically Derived Estimates of Glacier Mass Loss in the Upper Susitna Drainage Basin, Alaska Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wolken, G. J.; Whorton, E.; Murphy, N.

    2014-12-01

    Glaciers in Alaska are currently experiencing some of the highest rates of mass loss on Earth, with mass wastage rates accelerating during the last several decades. Glaciers, and other components of the hydrologic cycle, are expected to continue to change in response to anticipated future atmospheric warming, thus, affecting the quantity and timing of river runoff. This study uses sequential digital elevation model (DEM) analysis to estimate the mass loss of glaciers in the upper Susitna drainage basin, Alaska Range, for the purpose of validating model simulations of past runoff changes. We use mainly stereo optical airborne and satellite data for several epochs between 1949 and 2014, and employ traditional stereo-photogrammetric and structure from motion processing techniques to derive DEMs of the upper Susitna basin glaciers. This work aims to improve the record of glacier change in the central Alaska Range, and serves as a critical validation dataset for a hydrological model that simulates the potential effects of future glacier mass loss on changes in river runoff over the lifespan of the proposed Susitna-Watana Hydroelectric Project.

  14. Mass-loading and diffusion-loss rates of the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.

    1980-01-01

    Limits to the mass-loading and diffusion-loss rates of ions in the Io plasma torus have been calculated on the assumption that observed optical emissions are controlled by electron-ion collisions. Calculations of the yield of emission from the vicinity of Io limit the mass-loading rate to the order of 10 to the 27th per s for S II or O II, on the grounds that electron-excited emissions associated with the location of Io have not been observed in the optical spectrum. This mass-loading limit is dependent on the assumptions that Io is the source of torus particles and that most of the neutral atoms are converted to ions within 1 R(J) of Io. According to the calculations presented below, the observed partitioning of sulfur ion species in the hot torus at the time of Voyager 1 encounter indicates that the diffusion-loss time of the ions is of the order of 1/D = 100 days. The two results limiting the mass-loading and diffusion-loss rates are compatible and suggest that the energy required to maintain the observed radiated power cannot be supplied by acceleration of ions formed at Io in Jupiter's rotating magnetic field.

  15. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2014-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a "magnetic switch" found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  16. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago.

    PubMed

    Gardner, Alex S; Moholdt, Geir; Wouters, Bert; Wolken, Gabriel J; Burgess, David O; Sharp, Martin J; Cogley, J Graham; Braun, Carsten; Labine, Claude

    2011-05-19

    Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr(-1)) of ice, contributing 0.17 ± 0.02 mm yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr(-1) to 92 ± 12 Gt yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr(-1) per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.

  17. Spectroscopic survey of post-AGB star candidates

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Miranda, L. F.

    2007-01-01

    Aims:Our goal is to establish the true nature of post-AGB star candidates and to identify new post-AGB stars. Methods: We used low resolution optical spectroscopy and we compared the spectra of the candidate post-AGB stars with those of stars in the library specta available in the literature and with spectra of "standard" post-AGB stars, and direct imaging in narrow-band filters. Results: Spectra were obtained for 16 objects: 14 objects have not been observed previously and 2 objects are already known post-AGB stars used as "standards" for identification. From the spectra we identify: six new post-AGB stars with spectral types between G5 and F5, two H ii regions the morphology of which is revealed in the direct images for the first time, a G giant with infrared emission, a young stellar object, a probable post-AGB star with emission lines and three objects for which the classification is still unclear. As a whole, our results provide new, reliable identifications for 10 objects among listed post-AGB star candidates. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and at the Observatorio de Sierra Nevada, which is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía (Granada, Spain). Appendices A-D are only available in electronic form at http://www.aanda.org

  18. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; Yi, Donghui; Wang, Weili

    2011-01-01

    We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

  19. Water Mass Loss of the Himalayas from GRACE, ICESat and SRTM

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2010-05-01

    The Himalayas and the Tibet Plateau form a region of about 3.4 million square kilometers. Home to numerous large lakes and tarns (glacier lakes), and to more than 50,000 glaciers and high-elevation snowfields, this region is the source of the Indus, Ganga, Brahmaputra, and Yamuna Rivers, the Indo-Gangetic River system. The Himalayan Mountains and associated ranges form a boundary separating continental air masses associated with the westerlies, and marine air masses associated with the summer South Asian monsoon. Adverse changes in water storage / river discharge driven by effects of climate change will impact agriculture, hydroelectric power facilities, commerce, and the lives of more than 1.3 billion people. We are investigating water mass loss derived by the Gravity Recovery and Climate Experiment (GRACE), the ICE, Cloud and land Elevation (ICESat) and the Shuttle Radar Topograghy Mission (SRTM). In our current analysis we remove the effects of isostatic glacial adjustment and both retain and remove the annual cycle of water equivalent mass change for evaluation. Least-squares regression of GRACE monthly time-series shows the Himalaya region lost 17.9 ± 11.0 km3/yr water equivalent mass from August 2002 through December 2006 (annual cycle removed basis). Retaining the annual cycle of water equivalent mass change and extending the time series for one additional year, the least-squares trend is 9.9 ± 4.7 km3/yr of water equivalent mass loss from August 2002 through December 2007. Comparison of same-datum ICESat and SRTM elevations above 5000 meters shows snow surface elevations are decreasing at 1.1 ± 0.7 m/yr from June 2005 through April 2007. We will present updated analyses of the trends of regional water equivalent mass and elevation changes from GRACE and ICESat - SRTM measurements.

  20. Local reduction of decadal glacier thickness loss through mass balance management in ski resorts

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea; Helfricht, Kay; Stocker-Waldhuber, Martin

    2016-11-01

    For Austrian glacier ski resorts, established in the 1970s and 1980s during a period of glacier advance, negative mass balances with resulting glacier area loss and decrease in surface elevation present an operational challenge. Glacier cover, snow farming, and technical snow production were introduced as adaptation measures based on studies on the effect of these measures on energy and mass balance. After a decade of the application of the various measures, we studied the transition from the proven short-term effects of the measures on mass balance to long-term effects on elevation changes. Based on lidar digital elevation models and differential GPS measurements, decadal surface elevation changes in 15 locations with mass balance management were compared to those without measures (apart from piste grooming) in five Tyrolean ski resorts on seven glaciers. The comparison of surface elevation changes presents clear local differences in mass change, and it shows the potential to retain local ice thickness over 1 decade. Locally up to 21.1 m ± 0.4 m of ice thickness was preserved on mass balance managed areas compared to non-maintained areas over a period of 9 years. In this period, mean annual thickness loss in 15 of the mass balance managed profiles is 0.54 ± 0.04 m yr-1 lower (-0.23 ± 0.04 m yr-1on average) than in the respective reference areas (-0.78 ± 0.04 m yr-1). At two of these profiles the surface elevation was preserved altogether, which is promising for a sustainable maintenance of the infrastructure at glacier ski resorts. In general the results demonstrate the high potential of the combination of mass balance management by snow production and glacier cover, not only in the short term but also for multi-year application to maintain the skiing infrastructure.

  1. Acute Effects of Self-Selected Regimen of Rapid Body Mass Loss in Combat Sports Athletes

    PubMed Central

    Timpmann, Saima; Ööpik, Vahur; Pääsuke, Mati; Medijainen, Luule; Ereline, Jaan

    2008-01-01

    The purpose of the study was to assess the acute effects of the self-selected regimen of rapid body mass loss (RBML) on muscle performance and metabolic response to exercise in combat sports athletes. Seventeen male athletes (20.8 ± 1.0 years; mean ± SD) reduced their body mass by 5.1 ± 1.1% within 3 days. The RBML was achieved by a gradual reduction of energy and fluid intake and mild sauna procedures. A battery of tests was performed before (Test 1) and immediately after (Test 2) RBML. The test battery included the measurement of the peak torque of knee extensors for three different speeds, assessment of total work (Wtot) performed during a 3-min intermittent intensity knee extension exercise and measurements of blood metabolites (ammonia, lactate, glucose and urea). Absolute peak torque was lower in Test 2 compared with Test 1 at angular velocities of 1.57 rad·s-1 (218.6 ± 40.9 vs. 234.4 ± 42.2 N·m; p = 0.013) and 3.14 rad·s-1 (100.3 ± 27.8 vs. 111.7 ± 26.2 N·m; p = 0.008). The peak torque in relation to body mass remained unchanged for any speed. Absolute Wtot was lower in Test 2 compared with Test 1 (6359 ± 2326 vs. 7452 ± 3080 J; p = 0.003) as well as Wtot in relation to body mass (89.1 ± 29.9 vs. 98.6 ± 36.4 J·kg-1; p = 0.034), respectively. As a result of RBML, plasma urea concentration increased from 4.9 to 5.9 mmol·l-1 (p = 0.003). The concentration of ammonia in a post-test sample in Test 2 tended to be higher in comparison with Test 1 (80.9 ± 29.1 vs. 67.6 ± 26.5 mmol·l-1; p = 0.082). The plasma lactate and glucose responses to exercise were similar in Test 1 and Test 2. We conclude that the self-selected regimen of RBML impairs muscle performance in 3-min intermittent intensity exercise and induces an increase in blood urea concentration in experienced male combat sports athletes. Key pointsPrevious studies have revealed a negative effect of rapid body mass loss on performance. However, there are some performance characteristics

  2. AGB Stars in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Portman, Matthew; Sargent, Benjamin A.; Held, Leander; Kastner, Joel; SAGE Team

    2016-01-01

    Asymptotic giant branch (AGB) stars are evolved, pulsating variable stars that generate massive outflows of gas and dust, thereby enriching the interstellar medium (ISM) in the products of stellar nucleosynthesis. Recent studies find the dustiest, most extreme AGB stars contribute a disproportionately large amount of matter to their host galaxies; these extreme AGB stars are also the most variable, and they emit most of their energy at mid-infrared wavelengths. Therefore, using the Spitzer Space Telescope, we have imaged several target AGB stars identified in previous surveys of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Our aim is to obtain light curves at 3.6 and 4.5 microns wavelength for these extreme AGB stars. Using multiple epochs of data taken within the last 3 years by our survey and then further comparing this data to past surveys of the SMC and LMC with Spitzer, we were able to generate preliminary light curves for a sample of 30 extreme AGB stars, as well as for other stars found within the image fields. This research project was made possible by the Rochester Institute of Technology Center for Imaging Science Research Experience for Undergraduates program, funded by National Science Foundation grant PHY-1359361 to RIT.

  3. Linking the spatial variability of glacier mass loss to fjord geometry

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Tinto, K. J.; Boghosian, A.; Cochran, J. R.; Csatho, B. M.; Bell, R. E.

    2015-12-01

    There is compelling evidence of increasing mass loss of the ice sheets using a diverse set of observations, including increased thinning rates measured from both airborne and satellite altimeters, elevated mass fluxes resulting from the acceleration of outlet glaciers, and mass changes measured directly from satellite gravimetry. A dominant characteristic of observed change in Greenland outlet glaciers is that it is locally random. Numerous studies have revealed a high degree of spatial and temporal variability of outlet glacier mass change. Modeling studies suggest that increased ocean temperatures may be responsible for the observed glacial retreat in Greenland through increased basal melting, leading to increased calving rates, terminus retreat, glacier speedup, and eventually thinning of inland ice. Knowledge of fjord geometry is crucial for ice-ocean interaction because the availability of ocean heat to the ice will be restricted by narrow sills and shallow grounding lines. We investigate whether the variability in observed changes among Greenland glaciers can be partially explained by variation in fjord geometry. Using statistical techniques commonly employed to detect patterns in complex spatial data, we objectively show that mass change in Greenland tidewater glaciers between 2003 and 2009 is indeed mostly spatially incoherent. Except for a few clusters of similar change in the NW and Scoresby Sund regions, there is significant glacier-scale variability in mass loss rates. To understand the drivers of this local variability, we compare fjord bathymetries from all regions of Greenland, modeled using airborne gravimetry measurements from NASA Operation IceBridge flights, to estimates of glaciological change. Specifically, we investigate the correlation between water depths at the grounding line and the dynamic mass loss of tidewater glaciers. In theory, a deep grounding line will allow greater interaction with the warm Atlantic Water observed in most fjords

  4. The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds

    NASA Astrophysics Data System (ADS)

    Gayley, K. G.; Onifer, A. J.

    2003-01-01

    Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.

  5. Tidal Distortion of the Envelope of an AGB Star IRS 3 near Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Cotton, W.; Schödel, R.; Royster, M. J.; Roberts, D. A.; Kunneriath, D.

    2017-03-01

    We present radio and millimeter continuum observations of the Galactic center taken with the Very Large Array (VLA) and ALMA at 44 and 226 GHz, respectively. We detect radio and millimeter emission from IRS 3, lying ∼4.″5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8 μm Galactic center stellar source, consists of two semicircular dust shells facing the direction of Sgr A*. The outer circumstellar shell, at a distance of 1.6 × 104 au, appears to break up into “fingers” of dust directed toward Sgr A*. These features coincide with molecular CS (5–4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE–SW asymmetric shapes of the IRS 3 shells seen at 3.8 μm and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 yr constrains the distance of IRS 3 to ∼0.7 pc in front of or ∼0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high-resolution radio continuum images can identify dust-enshrouded stellar sources embedded in an ionized medium.

  6. Use of plume mapping data to estimate chlorinated solvent mass loss

    USGS Publications Warehouse

    Barbaro, J.R.; Neupane, P.P.

    2006-01-01

    Results from a plume mapping study from November 2000 through February 2001 in the sand-and-gravel surficial aquifer at Dover Air Force Base, Delaware, were used to assess the occurrence and extent of chlorinated solvent mass loss by calculating mass fluxes across two transverse cross sections and by observing changes in concentration ratios and mole fractions along a longitudinal cross section through the core of the plume. The plume mapping investigation was conducted to determine the spatial distribution of chlorinated solvents migrating from former waste disposal sites. Vertical contaminant concentration profiles were obtained with a direct-push drill rig and multilevel piezometers. These samples were supplemented with additional ground water samples collected with a minipiezometer from the bed of a perennial stream downgradient of the source areas. Results from the field program show that the plume, consisting mainly of tetrachloroethylene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE), was approximately 670 m in length and 120 m in width, extended across much of the 9- to 18-m thickness of the surficial aquifer, and discharged to the stream in some areas. The analyses of the plume mapping data show that losses of the parent compounds, PCE and TCE, were negligible downgradient of the source. In contrast, losses of cis-1,2-DCE, a daughter compound, were observed in this plume. These losses very likely resulted from biodegradation, but the specific reaction mechanism could not be identified. This study demonstrates that plume mapping data can be used to estimate the occurrence and extent of chlorinated solvent mass loss from biodegradation and assess the effectiveness of natural attenuation as a remedial measure.

  7. Early solar mass loss, opacity uncertainties, and the solar abundance problem

    SciTech Connect

    Guzik, Joyce Ann; Keady, John; Kilcrease, David

    2009-01-01

    Solar models calibrated with the new element abundance mixture of Asplund et al. published in 2005 no longer produce good agreement with the sound speed, convection zone depth, and convection zone helium abundance inferred from solar oscillation data. Attempts to modify the input physics of the standard model, for example, by including enhanced diffusion, increased opacities, accretion, convective overshoot, or gravity waves have not restored the good agreement attained with the prior abundances. Here we present new models including early mass loss via a stronger solar wind. Early mass loss has been investigated prior to the solar abundance problem to deplete lithium and resolve the 'faint early sun problem'. We find that mass loss modifies the core structure and deepens the convection zone, and so improves agreement with oscillation data using the new abundances: however the amount of mass loss must be small to avoid destroying all of the surface lithium, and agreement is not fully restored. We also considered the prospects for increasing solar interior opacities. In order to increase mixture opacities by the 30% required to mitigate the abundance problem, the opacities of individual elements (e.g., O, N, C, and Fe) must be revised by a factor of two to three for solar interior conditions: we are investigating the possibility of broader calculated line wings for bound-bound transitions at the relevant temperatures to enhance opacity. We find that including all of the elements in the AGS05 opacity mixture (through uranium at atomic number Z=92) instead of only the 17 elements in the OPAL opacity mixture increases opacities by a negligible 0.2%.

  8. Early Solar Mass Loss, Opacity Uncertainties, and the Solar Abundance Problem

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Keady, J. J.; Kilcrease, D. P.

    2009-09-01

    Solar models calibrated with the new element abundance mixture of Asplund et al. published in 2005 no longer produce good agreement with the sound speed, convection zone depth, and convection zone helium abundance inferred from solar oscillation data. Attempts to modify the input physics of the standard model, for example, by including enhanced diffusion, increased opacities, accretion, convective overshoot, or gravity waves have not restored the good agreement attained with the prior abundances. Here we present new models including early mass loss via a stronger solar wind. Early mass loss has been investigated prior to the solar abundance problem to deplete lithium and resolve the `faint early sun problem'. We find that mass loss modifies the core structure and deepens the convection zone, and so improves agreement with oscillation data using the new abundances; however the amount of mass loss must be small to avoid destroying all of the surface lithium, and agreement is not fully restored. We also considered the prospects for increasing solar interior opacities. In order to increase mixture opacities by the 30% required to mitigate the abundance problem, the opacities of individual elements (e.g., O, N, C, and Fe) must be revised by a factor of two to three for solar interior conditions; we are investigating the possibility of broader calculated line wings for bound-bound transitions at the relevant temperatures to enhance opacity. We find that including all of the elements in the AGS05 opacity mixture (through uranium at atomic number Z = 92) instead of only the 17 elements in the OPAL opacity mixture increases opacities by a negligible 0.2%.

  9. Model atmospheres with periodic shocks. [pulsations and mass loss in variable stars

    NASA Technical Reports Server (NTRS)

    Bowen, G. H.

    1989-01-01

    The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to study the processes involved and the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes.

  10. Investigation of seasonal melting of Greenland using GPS records reveals significant ice mass loss in 2010

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Greenland has experienced significant ice mass loss in the past decade. High-precision global positioning system (GPS) data from sites on the rocky margin of Greenland enable measurement of vertical motion of the coastal area, which is an indicator of nearby mass loss. In this study, seasonal melting variation of the Greenland ice sheet (GrIS) is investigated using GPS vertical displacement data. Using a cubic spline fitting model, we retrieve three variables of the seasonal melting pattern for GrIS from 1996 to 2010: date of the beginning and end of melt season, length of melt season, and amount of uplift in the melt season. Data from three long -term sites on the periphery of Greenland show anomalously large uplift in 2010, implying significant melting in 2010. Preliminary results also show an early onset of melting in 2010, about 8 days earlier than the 1996-2009 average. In 2010, Greenland experienced a warmer and drier winter as well as a very warm summer, which presumably contributed to the anomalous ice mass loss of 2010.

  11. Accelerated modern human–induced species losses: Entering the sixth mass extinction

    PubMed Central

    Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; García, Andrés; Pringle, Robert M.; Palmer, Todd M.

    2015-01-01

    The oft-repeated claim that Earth’s biota is entering a sixth “mass extinction” depends on clearly demonstrating that current extinction rates are far above the “background” rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing. PMID:26601195

  12. Accelerated modern human-induced species losses: Entering the sixth mass extinction.

    PubMed

    Ceballos, Gerardo; Ehrlich, Paul R; Barnosky, Anthony D; García, Andrés; Pringle, Robert M; Palmer, Todd M

    2015-06-01

    The oft-repeated claim that Earth's biota is entering a sixth "mass extinction" depends on clearly demonstrating that current extinction rates are far above the "background" rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing.

  13. Detailed abundance study of four s-process enriched post-AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    van Aarle, E.; Van Winckel, H.; De Smedt, K.; Kamath, D.; Wood, P. R.

    2013-06-01

    Context. The photospheric abundances of evolved solar-type stars of different metallicities serve as probes into stellar evolution theory. Aims: Stellar photospheres of post-asymptotic giant branch (post-AGB) stars bear witness to the internal chemical enrichment processes, integrated over their entire stellar evolution. Here we study post-AGB stars in the Large Magellanic Cloud (LMC). With their known distances, these rare objects are ideal tracers of AGB nucleosynthesis and dredge-up phenomena. Methods: We used the UVES spectrograph mounted on the Very Large Telescope at the European Southern Observatory, to obtain high-resolution spectra with high signal-to-noise of a sample of four post-AGB stars. The objects display a spectral energy distribution that indicates the presence of circumstellar dust. We perform a detailed abundance analysis on the basis of these spectra. Results: All objects are C-rich, and strongly enhanced in s-process elements. We deduced abundances of heavy s-process elements for all stars in the sample, and even found an indication of the presence of Hg in the spectrum of one object. The metallicity of all stars except J053253.51-695915.1 is considerably lower than the average value that is observed for the LMC. The derived luminosities show that we witness the late evolution of low-mass stars with initial masses close to 1 M⊙. An exception is J053253.51-695915.1 and we argue that this object is likely a binary. Conclusions: We confirmed the correlation between the efficiency of the third-dredge up and the neutron exposure that is detected in Galactic post-AGB stars. The non-existence of a correlation between metallicity and neutron irradiation is also confirmed and expanded to smaller metallicities. We confirm the status of 21 μm stars as post-carbon stars. Current theoretical AGB models overestimate the observed C/O ratios and fail to reproduce the variety of s-process abundance patterns that is observed in otherwise very similar objects

  14. Analysis of Mass Loss of a Polymeric Composite under Space Radiations

    NASA Astrophysics Data System (ADS)

    Khasanshin, Rashid

    2016-07-01

    Polymeric materials find ever-widening application in space technique. This is tied with the simplicity of producing the polymeric-based composites with the predetermined set of properties. However, these materials in space become the sources of volatile products that increase density of spacecraft outer atmosphere that undermines on serviceability of the on-board equipment. Therefore, study of mass loss of spacecraft materials in service conditions is a vital task. Polymeric composites are often used as thermal control coatings (TCC), which are subjected to maximum radiation exposure in service. It is known that irradiation of a PC is accompanied by intense gas formation but evolution of volatile products (VP) through the material-vacuum surface is limited by diffusion. Well-developed surface together with little thickness of a TCC film facilitate migration of radiolysis products to free coating surface. In this case outgassing and destruction of material augment permeability of the film, accelerate migration processes and make them easier. This work is devoted to studying action of separate (electron, proton, and electromagnetic), paired, and the whole set of radiations on mass loss of a pattern material in vacuum. The primary focus was on studying and interpretation of synergistic effects appearing in the course of mass loss of the pattern materials EKOM-1 and EKOM-2 polymeric composites, the widely used spacecraft TCC. Irradiation was made by 20-50-keV electrons and 20-keV protons and electromagnetic radiation in vacuum chamber of the UV-1/2 test facility. It was found that parameters characterizing the synergistic effects of mass loss of the material for fixed conditions of electron-proton and combined radiations are the functions of irradiation time. To interpret the experimental data, a physical-mathematical model of mass loss of polymeric materials in vacuum was proposed. The obtained data can be explained by diffusion fluxes associated with the gradient of

  15. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Liu, X. M.

    2012-04-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" that is the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems point to the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 1×10^10 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  16. 22Ne and 23Na ejecta from intermediate-mass stars: the impact of the new LUNA rate for 22Ne(p, γ)23Na

    NASA Astrophysics Data System (ADS)

    Slemer, A.; Marigo, P.; Piatti, D.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Bressan, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, G.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Prati, P.; Straniero, O.; Szücs, T.; Takács, M. P.; Trezzi, D.

    2017-03-01

    We investigate the impact of the new LUNA rate for the nuclear reaction 22Ne(p, γ)23Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim, we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0-6.0 M⊙ and metallicities Zi = 0.0005, 0.006 and 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22Ne and 23Na AGB ejecta that drop from factors of ≃10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23Na, the uncertainties that still affect the 22Ne and 23Na AGB ejecta are mainly dominated by the evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anticorrelation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass-loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anticorrelation and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available.

  17. Effects of litter position on mass loss and nitrogen release in the semiarid Patagonian steppe

    NASA Astrophysics Data System (ADS)

    Austin, A. T.

    2007-05-01

    The patchy distribution of vegetation in arid and semiarid ecosystems results in a mosaic of microsites of soil properties and variable abiotic conditions, including the well-documented "islands of fertility", low nutrient conditions in exposed bare soil and large amounts of standing dead material. I evaluated the relative importance of litter position on mass loss and nutrient release in a variety of realistic litter positions both in vegetated, unvegetated, aerial and buried microsites in a natural semiarid steppe in Patagonia, Argentina. Position demonstrated a highly significant effect on mass loss for all litter types (P<0.0001), but surprisingly, the fastest decomposition occurred in litter that was suspended in aerial positions or buried (k=0.25 and 0.32 year-1, respectively), intermediate values for mass loss of litter in bare soil and in shrub removal patches (k=0.21 and 0.24 year-1, respectively), and markedly slowest decomposition occurring under shrub patches (k = 0.018 year-1). In contrast, nutrient release showed a very different pattern with nutrient immobilization occurring only in shrub and buried microsites while all other positions demonstrated a gradual decrease in nitrogen over time. These results support the idea that abiotic photodegradation may be an important driver affecting carbon losses in litter in positions exposed to solar radiation, while nutrient dynamics appear to be largely biotically mediated and concentrated in photoprotected areas where biotic activity dominates. Global change may differentially affect carbon and nutrient turnover due to the relative importance of abiotic and biotic factors affecting litter decomposition in semiarid ecosystems.

  18. Ultraviolet emission from main-sequence companions of AGB stars

    NASA Astrophysics Data System (ADS)

    Ortiz, Roberto; Guerrero, Martín A.

    2016-09-01

    Although the majority of known binary asymptotic giant branch (AGB) stars are symbiotic systems (i.e. with a white dwarf as a secondary star), main-sequence companions of AGB stars can be more numerous, even though they are more difficult to find because the primary high luminosity hampers the detection of the companion at visual wavelengths. However, in the ultraviolet the flux emitted by a secondary with Teff > 5500 ˜ 6000 K may prevail over that of the primary, and then it can be used to search for candidates to binary AGB stars. In this work, theoretical atmosphere models are used to calculate the UV excess in the GALEX near- and far-UV bands due to a main-sequence companion. After analysing a sample of confirmed binary AGB stars, we propose as a criterium for binarity: (1) the detection of the AGB star in the GALEX far-UV band and/or (2) a GALEX near-UV observed-to-predicted flux ratio >20. These criteria have been applied to a volume-limited sample of AGB stars within 500 pc of the Sun; 34 out of the sample of 58 AGB stars (˜60 per cent) fulfill them, implying to have a main-sequence companion of spectral type earlier than K0. The excess in the GALEX near- and far-UV bands cannot be attributed to a single temperature companion star, thus suggesting that the UV emission of the secondary might be absorbed by the extended atmosphere and circumstellar envelope of the primary or that UV emission is produced in accretion flows.

  19. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?

    PubMed

    Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-08-01

    This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use.

  20. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    SciTech Connect

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  1. Quantifying the mass loss of peripheral Greenland glaciers and ice caps (1958-2014).

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; van den Broeke, Michiel

    2016-04-01

    Since the 2000s, mass loss from Greenland peripheral glaciers and ice caps (GICs) has accelerated, becoming an important contributor to sea level rise. Under continued warming throughout the 21st century, GICs might yield up to 7.5 to 11 mm sea level rise, with increasing dominance of surface runoff at the expense of ice discharge. However, despite multiple observation campaigns, little remains known about the contribution of GICs to total Greenland mass loss. Furthermore, the relatively coarse resolutions in regional climate models, i.e. 5 km to 20 km, fail to represent the small scale patterns of surface mass balance (SMB) components over these topographically complex regions including also narrow valley glaciers. Here, we present a novel approach to quantify the contribution of GICs to surface melt and runoff, based on an elevation dependent downscaling method. GICs daily SMB components at 1 km resolution are obtained by statistically downscaling the outputs of RACMO2.3 at 11 km resolution to a down-sampled version of the GIMP DEM for the period 1958-2014. This method has recently been successfully validated over the Greenland ice sheet and is now applied to GICs. In this study, we first evaluate the 1 km daily downscaled GICs SMB against a newly available and comprehensive dataset of ablation stake measurements. Then, we investigate present-day trends of meltwater production and SMB for different regions and estimate GICs contribution to total Greenland mass loss. These data are considered valuable for model evaluation and prediction of future sea level rise.

  2. Concurrent Application of ANC and THM to assess the 13C(α, n)16O Absolute Cross Section at Astrophysical Energies and Possible Consequences for Neutron Production in Low-mass AGB Stars

    NASA Astrophysics Data System (ADS)

    Trippella, O.; La Cognata, M.

    2017-03-01

    The {}13{{C}}{(α ,n)}16{{O}} reaction is considered to be the main neutron source responsible for the production of heavy nuclides (from {Sr} to {Bi}) through slow n-capture nucleosynthesis (s-process) at low temperatures during the asymptotic giant branch phase of low-mass stars (≲ 3{--}4 {M}ȯ , or LMSs). In recent years, several direct and indirect measurements have been carried out to determine the cross section at the energies of astrophysical interest (around 190+/- 40 {keV}). However, they yield inconsistent results that cause a highly uncertain reaction rate and affect the neutron release in LMSs. In this work we have combined two indirect approaches, the asymptotic normalization coefficient and the Trojan horse method, to unambiguously determine the absolute value of the {}13{{C}}{(α ,n)}16{{O}} astrophysical factor. With these, we have determined a very accurate reaction rate to be introduced into astrophysical models of s-process nucleosynthesis in LMSs. Calculations using this recommended rate have shown limited variations in the production of those neutron-rich nuclei (with 86≤slant A≤slant 209) that receive contribution only by slow neutron captures.

  3. Mass-Loss Evolution in the EUV Low Corona from SDO/AIA Data

    NASA Astrophysics Data System (ADS)

    López, Fernando M.; Hebe Cremades, M.; Nuevo, Federico A.; Balmaceda, Laura A.; Vásquez, Alberto M.

    2017-01-01

    We carry out an analysis of the mass that is ejected from three coronal dimming regions observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The three events are unambiguously identified with white-light coronal mass ejections (CMEs) that are associated in turn with surface activity of diverse nature: an impulsive (M-class) flare, a weak (B-class) flare, and a filament eruption without a flare. The use of three AIA coronal passbands allows applying a differential emission measure technique to define the dimming regions and identify their ejected mass through the analysis of the electronic density depletion associated with the eruptions. The temporal evolution of the mass loss from the three dimmings can be approximated by an exponential equation followed by a linear fit. We determine the mass of the associated CMEs from COR2 data. The results show that the ejected masses from the low corona represent a considerable amount of the CME mass. We also find that plasma is still being ejected from the low corona at the time when the CMEs reach the COR2 field of view. The temporal evolution of the angular width of the CMEs, of the dimming regions in the low corona, and of the flux registered by GOES in soft X-rays are all in close relation with the behavior of mass ejection from the low corona. We discuss the implications of our findings toward a better understanding of the temporal evolution of several parameters associated with the analyzed dimmings and CMEs.

  4. The rate of mass loss and variations in the wind from the Be star delta Centauri

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Oegerle, W. R.; Polidan, R. S.

    1980-01-01

    Copernicus ultraviolet scans of the Be star delta Centauri obtained in 1976 and 1979, show a significant variation in the Si III lambda 1206 profile, The strong asymmetry that was present in 1976 had disappeared by 1979. The Si IV lambda 1400 doublet was also asymmetric in 1976, but was not observed in 1979. A quantitative fit of the line shapes to theoretical wind profiles shows that the mass-loss rate in 1976 was 2 x 10 to the minus 8th power/yr, and that the rate of mass loss in Si III was at least one order of magnitude less in 1979. It is not possible to determine whether the variation represented an overall change in the lass-loss rate, or whether it was due to a change in the ionization balance. The profile fitting procedure resulted in the adoption of assumed underlying photospheric Si III and Si IV profiles, and the equivalent widths measured from these profiles are most consistent with T sub eff between 30,000 and 35,000 K, somewhat hotter than implied by the spectral classification normally assigned to this star. The ultraviolet photospheric line widths, coupled wit published theoretical analyses of rotational gravitational darkening, imply an intrinsic equatorial velocity of about 310 km/sec and an angle of inclination of the rotational axis to the line of sight of i is less than or equal to 44 deg.

  5. The x-ray and spectropolarimetric view of mass loss and transfer in massive binary stars

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.

    2013-03-01

    The majority of massive stars are members of binary systems. In order to have a better understanding of their evolutionary pathways, the mass and angular momentum loss from massive binaries needs to be well understood. Self consistent explanations for their behavior need to be valid across many wavelength regimes in order to illuminate key phases of mass loss to completely determine how it affects their evolution. In this dissertation I present the results of X-ray and specropolarimetric studies on one Roche-lobe overflow binary (beta Lyr) and two colliding wind binaries (V444 Cyg and WR 140). In beta Lyr a repeatable discrepancy between the secondary eclipse in total and polarized light indicates that an accretion hot spot has formed on the edge of the disk in the system. This hot spot may also be the source of the bipolar outflows within the system. The existence of a hot spot and its relationship to bipolar outflows is important in understanding the mass transfer dynamics of Roche-lobe overflow binaries. The absorption of the 2.0 keV spectral fit component in V444 Cyg suggests that the shock has a large opening angle while analysis of the X-ray light curves places the stagnation point farther away from the O star than theoretically expected. Combining this with evidence of polarimetric variability in V444 Cyg's optical emission lines shows that the effects of radiative inhibition or braking are significant for this close binary and may be important in other colliding wind systems. Long term X-ray monitoring of the shock formed by the winds in WR 140 shows conflicting evidence for unexpected intrinsic hard X-ray emission. Spectral analysis shows that the low energy thermal tail is causing the observed higher energy emission. On the other hand, light curve analysis of the absorption feature near periastron passage suggests that there may be intrinsic hard X-ray emission from the system. WR 140's polarimetric behavior is consistent with the formation of dust near

  6. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss

    USGS Publications Warehouse

    Sinsabaugh, R. L.; Carreiro, M.M.; Repert, D.A.

    2002-01-01

    Decomposition of plant material is a complex process that requires interaction among a diversity of microorganisms whose presence and activity is subject to regulation by a wide range of environmental factors. Analysis of extracellular enzyme activity (EEA) provides a way to relate the functional organization of microdecomposer communities to environmental variables. In this study, we examined EEA in relation to litter composition and nitrogen deposition. Mesh bags containing senescent leaves of Quercus borealis (red oak), Acer rubrum (red maple) and Cornus florida (flowering dogwood) were placed on forest floor plots in southeastern New York. One-third of the plots were sprayed monthly with distilled water. The other plots were sprayed monthly with NH4NO3 solution at dose rates equivalent to 2 or 8 g N m-2 y-1. Mass loss, litter composition, fungal mass, and the activities of eight enzymes were measured on 13 dates for each litter type. Dogwood was followed for one year, maple for two, oak for three, For each litter type and treatment, enzymatic turnover activities were calculated from regressions of LN (%mass remaining) vs. cumulative activity. The decomposition of dogwood litter was more efficient than that of maple and oak. Maple litter had the lowest fungal mass and required the most enzymatic work to decompose, even though its mass loss rate was twice that of oak. Across litter types, N amendment reduced apparent enzymatic efficiencies and shifted EEA away from N acquisition and toward P acquisition, and away from polyphenol oxidation and toward polysaccharide hydrolysis. The effect of these shifts on decomposition rate varied with litter composition: dogwood was stimulated, oak was inhibited and maple showed mixed effects. The results show that relatively small shifts in the activity of one or two critical enzymes can significantly alter decomposition rates.

  7. Evidence of tidal distortions and mass-loss from the old open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Dalessandro, E.; Miocchi, P.; Carraro, G.; Jílková, L.; Moitinho, A.

    2015-05-01

    We present the first evidence of clear signatures of tidal distortions in the density distribution of the fascinating open cluster NGC 6791. We used deep and wide-field data obtained with the Canada-France-Hawaii Telescope covering a 2° × 2° area around the cluster. The 2D density map obtained with the optimal matched filter technique shows a clear elongation and an irregular distribution starting from ˜300 arcsec from the cluster centre. At larger distances, two tails extending in opposite directions beyond the tidal radius are also visible. These features are aligned to both the absolute proper motion and to the Galactic Centre directions. Moreover, other overdensities appear to be stretched in a direction perpendicular to the Galactic plane. Accordingly to the behaviour observed in the density map, we find that both the surface brightness and the star count density profiles reveal a departure from a King model starting from ˜600 arcsec from the centre. These observational evidence suggest that NGC 6791 is currently experiencing mass-loss likely due to gravitational shocking and interactions with the tidal field. We use this evidence to argue that NGC 6791 should have lost a significant fraction of its original mass. A larger initial mass would in fact explain why the cluster survived so long. Using available recipes based on analytic studies and N-body simulations, we derived the expected mass-loss due to stellar evolution and tidal interactions and estimated the initial cluster mass to be Mini = (1.5-4) × 105 M⊙.

  8. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up.

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Van Winckel, H.; Wood, P. R.; Asplund, M.; Karakas, A. I.; Lattanzio, J. C.

    2017-02-01

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type (T eff = 8250 ± 250 K) luminous (8200 ± 700 L ⊙) metal-poor ([Fe/H] = ‑1.18 ± 0.10) low-mass (M initial ≈ 1.5–2.0 M ⊙) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancement (upper limit of [C/Fe] < 0.50) nor enrichment of s-process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.

  9. Rapid loss of bone mass and strength in mice after abdominal irradiation.

    PubMed

    Jia, Dan; Gaddy, Dana; Suva, Larry J; Corry, Peter M

    2011-11-01

    Localized irradiation is a common treatment modality for malignancies in the pelvic-abdominal cavity. We report here on the changes in bone mass and strength in mice 7-14 days after abdominal irradiation. Male C57BL/6 mice of 10-12 weeks of age were given a single-dose (0, 5, 10, 15 or 20 Gy) or fractionated (3 Gy × 2 per day × 7.5 days) X rays to the abdomen and monitored daily for up to 14 days. A decrease in the serum bone formation marker and ex vivo osteoblast differentiation was detected 7 days after a single dose of radiation, with little change in the serum bone resorption marker and ex vivo osteoclast formation. A single dose of radiation elicited a loss of bone mineral density (BMD) within 14 days of irradiation. The BMD loss was up to 4.1% in the whole skeleton, 7.3% in tibia, and 7.7% in the femur. Fractionated abdominal irradiation induced similar extents of BMD loss 10 days after the last fraction: 6.2% in the whole skeleton, 5.1% in tibia, and 13.8% in the femur. The loss of BMD was dependent on radiation dose and was more profound in the trabecula-rich regions of the long bones. Moreover, BMD loss in the total skeleton and the femurs progressed with time. Peak load and stiffness in the mid-shaft tibia from irradiated mice were 11.2-14.2% and 11.5-25.0% lower, respectively, than sham controls tested 7 days after a single-dose abdominal irradiation. Our data demonstrate that abdominal irradiation induces a rapid loss of BMD in the mouse skeleton. These effects are bone type- and region-specific but are independent of radiation fractionation. The radiation-induced abscopal damage to the skeleton is manifested by the deterioration of biomechanical properties of the affected bone.

  10. Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers

    USGS Publications Warehouse

    Hristov, Alexander N.; Zaman, S.; Vander Pol, M.; Ndegwa, P.; Campbell, L.; Silva, S.

    2009-01-01

    Ammonia is an important air and water pollutant, but the spatial variation in its concentrations presents technical difficulties in accurate determination of ammonia emissions from animal feeding operations. The objectives of this study were to investigate the relationship between ammonia volatilization and ??15N of dairy manure and the feasibility of estimating ammonia losses from a dairy facility using chemical markers. In Exp. 1, the N/P ratio in manure decreased by 30% in 14 d as cumulative ammonia losses increased exponentially. Delta 15N of manure increased throughout the course of the experiment and ??15N of emitted ammonia increased (p < 0.001) quadratically from -31??? to -15 ???. The relationship between cumulative ammonia losses and ??15N of manure was highly significant (p < 0.001; r2 = 0.76). In Exp. 2, using a mass balance approach, approximately half of the N excreted by dairy cows (Bos taurus) could not be accounted for in 24 h. Using N/P and N/K ratios in fresh and 24-h manure, an estimated 0.55 and 0.34 (respectively) of the N excreted with feces and urine could not be accounted for. This study demonstrated that chemical markers (P, K) can be successfully used to estimate ammonia losses from cattle manure. The relationship between manure ??15N and cumulative ammonia loss may also be useful for estimating ammonia losses. Although promising, the latter approach needs to be further studied and verified in various experimental conditions and in the field. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. The bile duct ligated rat: A relevant model to study muscle mass loss in cirrhosis.

    PubMed

    Bosoi, Cristina R; Oliveira, Mariana M; Ochoa-Sanchez, Rafael; Tremblay, Mélanie; Ten Have, Gabriella A; Deutz, Nicolaas E; Rose, Christopher F; Bemeur, Chantal

    2017-04-01

    Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation (BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat is a relevant model to study liver disease-induced muscle mass loss.

  12. TP-AGB Stars in M31: Results from PHAT

    NASA Astrophysics Data System (ADS)

    Girardi, L.; Beerman, L. C.; Boyer, M. L.; Dalcanton, J. J.; Dolphin, A.; Fouesnaeu, M.; Hamren, K.; Johnson, L. C.; Lang, D.; Lewis, A.; Marigo, P.; Rosenfield, P.; Senchyna, P.; Seth, A. C.; Veyette, M.; Weisz, D. R.; Williams, B. F.

    2015-08-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that mapped one-third of M31 from the UV through the near-IR. It provides photometry in up to 6 filters for about 117 million stars distributed across ˜20 kpc of the M31 disk, with a spatial resolution comparable to that routinely attained for the Magellanic Clouds from the ground. These data are revolutionising our view of the spatial distribution of stars and dust across M31. Here we present an overview of PHAT data and results, with a focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars. We comment on (1) the overall spatial distribution of TP-AGB stars as compared to stars of the red giant branch (RGB); (2) the detection of a dramatic drop in the C/M ratio toward the inner M31 disk; (3) the large population of TP-AGB stars in star clusters; (4) an improved view of the planetary nebula population; and (5) the unusual populations of UV-bright stars in the M31 bulge, which correspond to either post-AGB or "failed-AGB” stars. These rich datasets allow us to test the evolution of TP-AGB stars in a metal-rich and star-forming environment, avoiding the incompleteness and distance uncertainties that severely limit similar studies in the Milky Way.

  13. Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment.

    PubMed

    Drescher, Cathleen; Konishi, Masaaki; Ebner, Nicole; Springer, Jochen

    2016-01-01

    Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartrate-resistant acid phosphatase 5a (TRACP5a), and novel substances like Epigallocatechin-3-gallate (EGCg). In summary, the progress to combat muscle wasting is in full swing and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon supported by improved and more helpful strategies.

  14. Equation of motion of an interstellar Bussard ramjet with radiation and mass losses

    NASA Astrophysics Data System (ADS)

    Semay, Claude; Silvestre-Brac, Bernard

    2008-11-01

    An interstellar Bussard ramjet is a spaceship using the protons of the interstellar medium in a fusion engine to produce thrust. In recent papers, it was shown that the relativistic equation of motion of an ideal ramjet and that of a ramjet with radiation loss are analytical. When a mass loss appears, the limit speed of the ramjet is more strongly reduced. However, the parametric equations in terms of the ramjet's speed for the position of the ramjet in the inertial frame of the interstellar medium, the time in this frame and the proper time indicated by the clocks on board the spaceship can still be obtained in an analytical form. The non-relativistic motion and the motion near the limit speed are studied.

  15. Mass Losses Of Co, Cs And Hcn On Jupiter/sl9

    NASA Astrophysics Data System (ADS)

    Moreno, Raphael; Marten, A.

    2006-09-01

    Since comet Shoemaker-Levy 9 (SL9) collided with Jupiter in 1994, the IRAM 30-m Telescope (Pico Veleta, Spain) and the 15-m JCMT (Mauna Kea,Hawaii) have regularly observed Jupiter at millimeter/submillimeter wavelengths. Molecular trace species such as HCN, CO, CS and their isotopomers have been detected in the upper atmosphere since the collision. Because of the high spectral resolution attained, our data allow one to infer both temperature and abundances in Jupiter's stratosphere with a maximum spatial resolution of 10 arcsec. We have used all these data to monitor the latitudinal spreading since the impacts occurred (Marten et al. 1995), to look for changes in their abundances with time (Moreno et al. 2001, 2003) and to determine several isotopic ratios (Matthews et al. 2002). Data taken in 2004 have shown that latitudinal distributions of all these species were almost homogeneous 10 years after impacts, as predicted by Moreno et al. 2003. Moreover, compared to 1998 results, respective mass loss factors as high as 2-7 have been determined for the three molecular main compounds (Moreno et al. 2005). In order to follow-up our monitoring, new disk mapping observations took place in May 2006 using the IRAM-30m Telescope. Here we report the results of the recent measurements of CO, CS and HCN, and also the search for new species: H2CO, H2CS, CH3CN, CH3OH. Such trace compounds could have explained the mass losses observed in 2004, but no clear detections have been obtained after reasonable integration times. Estimates of the new CO, CS and HCN total masses and upper limits for the trace species searched for will be presented. The loss mechanisms will be discussed. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  16. Determination of Mass-Loss Rates of PG 1159 Stars from Far-Ultraviolet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Koesterke, Lars; Werner, Klaus

    1998-06-01

    We determine the mass-loss rates of four hot, low-gravity PG 1159 stars that are regarded as immediate descendants of Wolf-Rayet central stars of planetary nebulae (i.e., early spectral type [WCE]). The sample consists of classical hydrogen-deficient PG 1159 stars (K1-16, NGC 246, and RX J2117.1+3412) as well as one object of the very rare ``hybrid'' subtype, which also exhibits hydrogen lines (NGC 7094). The sample is complemented by the famous [WC]-PG 1159 transition object Abell 78. Our analysis is based on the O VI λλ1032, 1038 resonance line, which is the strongest wind feature in these objects. Far-UV observations were performed with the Berkeley spectrograph during the ORFEUS-SPAS II mission. One spectrum is taken from archive data of the ORFEUS-SPAS I mission, and another one was obtained with the Hopkins Ultraviolet Telescope during the Astro-2 mission. We find mass-loss rates in the range log(Ṁ/Msolar yr-1)=-8,...,-7, as compared to the [WCE] stars that have mass-loss rates of about log(Ṁ/Msolar yr-1)=-5.5,...,-6.5. By comparing with theory, we conclude that the wind of PG 1159 stars is driven by radiation pressure. Based on the development and utilization of ORFEUS (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometers), a collaboration of the Institute for Astronomy and Astrophysics at the University of Tübingen, the Space Astrophysics Group of the University of California at Berkeley, and the Landessternwarte Heidelberg.

  17. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  18. Methane Output of Tortoises: Its Contribution to Energy Loss Related to Herbivore Body Mass

    PubMed Central

    Franz, Ragna; Soliva, Carla R.; Kreuzer, Michael; Hatt, Jean-Michel; Furrer, Samuel; Hummel, Jürgen; Clauss, Marcus

    2011-01-01

    An increase in body mass (M) is traditionally considered advantageous for herbivores in terms of digestive efficiency. However, recently increasing methane losses with increasing M were described in mammals. To test this pattern in non-mammal herbivores, we conducted feeding trails with 24 tortoises of various species (M range 0.52–180 kg) fed a diet of grass hay ad libitum and salad. Mean daily dry matter and gross energy intake measured over 30 consecutive days scaled to M0.75 (95%CI 0.64–0.87) and M0.77 (95%CI 0.66–0.88), respectively. Methane production was measured over two consecutive days in respiration chambers and scaled to M1.03 (95%CI 0.84–1.22). When expressed as energy loss per gross energy intake, methane losses scaled to 0.70 (95%CI 0.47–1.05) M0.29 (95%CI 0.14–0.45). This scaling overlaps in its confidence intervals to that calculated for nonruminant mammals 0.79 (95%CI 0.63–0.99) M0.15 (95%CI 0.09–0.20), but is lower than that for ruminants. The similarity between nonruminant mammals and tortoises suggest a common evolution of the gut fauna in ectotherms and endotherms, and that the increase in energetic losses due to methane production with increasing body mass is a general allometric principle in herbivores. These findings add evidence to the view that large body size itself does not necessarily convey a digestive advantage. PMID:21408074

  19. Probing the cool outer envelope of NGC 6826 and its previous mass-loss history

    NASA Astrophysics Data System (ADS)

    Verbena, J. L.; Jeyakumar, S.; Schröder, K.-P.; Wachter, A.

    2016-10-01

    We made a direct, quantitative comparison between theoretical and observed density profiles of the planetary nebula NGC 6826. For this, we observed the optically thin 13CO(J=1-0) and 13CO(J=2-1) rotational transition lines at a projected radial distance from the central star of 60" and 75". The line strengths and ratios observed at the inner point, and the upper limits observed at the outer point, are consistent with density profiles predicted by mass-loss histories computed from our evolution models when non-LTE radiative transfer and the conditions of collisional excitation in the envelope are taken into account.

  20. Dynamic atmospheres and winds of cool luminous giants. I. Al2O3 and silicate dust in the close vicinity of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Bladh, S.; Aringer, B.; Ahuja, R.

    2016-10-01

    Context. In recent years, high spatial resolution techniques have given valuable insights into the complex atmospheres of AGB stars and their wind-forming regions. They make it possible to trace the dynamics of molecular layers and shock waves, to estimate dust condensation distances, and to obtain information on the chemical composition and size of dust grains close to the star. These are essential constraints for understanding the mass loss mechanism, which presumably involves a combination of atmospheric levitation by pulsation-induced shock waves and radiation pressure on dust, forming in the cool upper layers of the atmospheres. Aims: Spectro-interferometric observations indicate that Al2O3 condenses at distances of about 2 stellar radii or less, prior to the formation of silicates. Al2O3 grains are therefore prime candidates for producing the scattered light observed in the close vicinity of several M-type AGB stars, and they may be seed particles for the condensation of silicates at lower temperatures. The purpose of this paper is to study the necessary conditions for the formation of Al2O3 and the potential effects on mass loss, using detailed atmosphere and wind models. Methods: We have constructed a new generation of Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN), including a time-dependent treatment of grain growth and evaporation for both Al2O3 and Fe-free silicates (Mg2SiO4). The equations describing these dust species are solved in the framework of a frequency-dependent radiation-hydrodynamical model for the atmosphere and wind structure, taking pulsation-induced shock waves and periodic luminosity variations into account. Results: Condensation of Al2O3 at the close distances and in the high concentrations implied by observations requires high transparency of the grains in the visual and near-IR region to avoid destruction by radiative heating. We derive an upper limit for the imaginary part of the refractive

  1. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    SciTech Connect

    Kurokawa, H.; Nakamoto, T.

    2014-03-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  2. Determining the Nature and Origin of Mass Loss from Active Asteroid P/2013 R3

    NASA Astrophysics Data System (ADS)

    Jewitt, David

    2014-10-01

    We propose a program of WFC3 images of the active asteroid P/2013 R3 in order to determine the nature and origin of mass loss from this object. R3 has a unique, multiple nucleus structure in which the components are measured to separate at sub-meter per second velocities. It is best explained as a rotational breakup (presumably resulting from the YORP torque). We will obtain images over a wide time base in Cycle 22 in order to determine the orbits of the fragments and we will obtain time-series, high resolution photometry in order to measure their rotations. Rotational breakup and rotational mass-shedding are suspected to be the main mechanisms of destruction for sub-kilometer asteroids. Neither has been observed before but, between P/2013 R3 and P/2013 P5 (subject of another proposal) we have the first, potentially ground-breaking opportunities to observe both.

  3. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900.

    PubMed

    Kjeldsen, Kristian K; Korsgaard, Niels J; Bjørk, Anders A; Khan, Shfaqat A; Box, Jason E; Funder, Svend; Larsen, Nicolaj K; Bamber, Jonathan L; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S; Willerslev, Eske; Kjær, Kurt H

    2015-12-17

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to

  4. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Kristian K.; Korsgaard, Niels J.; Bjørk, Anders A.; Khan, Shfaqat A.; Box, Jason E.; Funder, Svend; Larsen, Nicolaj K.; Bamber, Jonathan L.; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S.; Willerslev, Eske; Kjær, Kurt H.

    2015-12-01

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to

  5. The role of pyridoxine as a countermeasure for in-flight loss of lean body mass

    NASA Technical Reports Server (NTRS)

    Gilbert, Joyce A.

    1992-01-01

    Ground based and in flight research has shown that humans, under conditions of microgravity, sustain a loss of lean body tissue (protein) and changes in several biological processes including, reductions in red blood cell mass, and neurotransmitters. The maintenance of muscle mass, the major component of lean body mass, is required to meet the needs of space station EVAs. Central to the biosynthesis of amino acids, the building blocks of protein, is pyridoxine (vitamin B-6). Muscle mass integrity requires the availability of vitamin B-6 for protein metabolism and neurotransmitter synthesis. Furthermore, the formation of red blood cells require pyridoxine as a cofactor in the biosynthesis of hemoglobin, a protein that carries oxygen to tissues. In its active form, pyridoxal-5'-phosphate (PLP), vitamin B-6 serves as a link between amino acid and carbohydrate metabolism through intermediates of glycolysis and the tricarboxylic acid cycle. In addition to its role in energy metabolism, PLP is involved in the biosynthesis of hemoglobin and neurotransmitter which are necessary for neurological functions. Alterations in pyridoxine metabolism may affect countermeasures designed to overcome some of these biochemical changes. The focus of this research is to determine the effects of microgravity on the metabolic utilization of vitamin B-6, integrating nutrition as an integral component of the countermeasure (exercise) to maintain lean body mass and muscle strength. The objectives are: 1) to determine whether microgravity effects the metabolic utilization of pyridoxine and 2) to quantitate changes in B-6 vitamer distribution in tissue and excreta relative to loss of lean body tissue. The rationale for this study encompasses the unique challenge to control biochemical mechanisms effected during space travel and the significance of pyridoxine to maintain and counter muscle integrity for EVA activities. This experiment will begin to elucidate the importance of biochemical

  6. Large-scale environments of binary AGB stars probed by Herschel. I. Morphology statistics and case studies of R Aquarii and W Aquilae

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Nowotny, W.; Cox, N. L. J.; Aringer, B.; Blommaert, J. A. D. L.; Decin, L.; van Eck, S.; Gail, H.-P.; Groenewegen, M. A. T.; Kornfeld, K.; Mecina, M.; Posch, Thomas; Vandenbussche, B.; Waelkens, C.

    2013-01-01

    The Mass loss of Evolved StarS (MESS) sample offers a selection of 78 asymptotic giant branch (AGB) stars and red supergiants (RSGs) observed with the PACS photometer on-board Herschel at 70 μm and 160 μm. For most of these objects, the dusty AGB wind is not spherically symmetric and the wind shape can be subdivided into four classes. In the present paper we concentrate on the influence of a companion on the morphology of the stellar wind. Literature was searched to find binaries in the MESS sample, which were subsequently linked to their wind-morphology class to assert that the binaries are not distributed equally among the classes. In the second part of the paper we concentrate on the circumstellar environment of the two prominent objects R Aqr and W Aql. Each shows a characteristic signature of a companion interaction with the stellar wind. For the symbiotic star R Aqr, PACS revealed two perfectly opposing arms that in part reflect the previously observed ring-shaped nebula in the optical. However, from the far-IR there is evidence that the emitting region is elliptical rather than circular. The outline of the wind of W Aql seems to follow a large Archimedean spiral formed by the orbit of the companion but also shows strong indications of an interaction with the interstellar medium. We investigated the nature of the companion of W Aql and found that the magnitude of the orbital period supports the size of the spiral outline. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties.

    PubMed

    Vogel, Anja; Eisenhauer, Nico; Weigelt, Alexandra; Scherer-Lorenzen, Michael

    2013-09-01

    Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non-additive way. We studied early-stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community-specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community-specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community-specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community-specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes.

  8. Molecular formation along the atmospheric mass loss of HD 209458b and similar Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Pinotti, R.; Boechat-Roberty, H. M.

    2016-02-01

    The chemistry along the mass loss of Hot Jupiters is generally considered to be simple, consisting mainly of atoms, prevented from forming more complex species by the intense radiation field from their host stars. In order to probe the region where the temperature is low (T<2000 K), we developed a 1D chemical and photochemical reaction model of the atmospheric mass loss of HD 209458b, involving 56 species, including carbon chain and oxygen-bearing ones, interacting through 566 reactions. The simulation results indicate that simple molecules like OH+, H2O+ and H3O+ are formed inside the region, considering that residual H2 survives in the exosphere, a possibility indicated by recent observational work. The molecules are formed and destroyed within a radial distance of less than 107 km, but the estimated integrated column density of OH+, a potential tracer of H2, is high enough to allow detection, which, once achieved, would indicate a revision of chemical models of the upper atmosphere of Hot Jupiters. For low density Hot Jupiters receiving less intense XUV radiation from their host stars than HD 209458b, molecular species could conceivably be formed with a higher total column density.

  9. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  10. Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans.

    PubMed

    Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A; Shadwick, Robert E; André, Michel

    2017-02-06

    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events.

  11. Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans

    PubMed Central

    Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A.; Shadwick, Robert E.; André, Michel

    2017-01-01

    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events. PMID:28165504

  12. Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans

    NASA Astrophysics Data System (ADS)

    Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A.; Shadwick, Robert E.; André, Michel

    2017-02-01

    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events.

  13. Effect of fjord geometry on Greenland mass loss in a warming climate (Invited)

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; Vieli, A.; Andersen, M. L.; Joughin, I. R.

    2013-12-01

    Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge through the narrow outlet glaciers. The complicated behaviour of narrow outlet glaciers has not yet been fully captured by the ice-sheet models used to predict Greenland's contribution to future sea level. Here we try to quantify the future dynamic contribution of four major marine terminating outlet glaciers to sea-level rise. We use a glacier flow line model that includes a fully dynamic treatment of marine termini to simulate behavior of Helheim, Kangerdlugssuaq, Petermann and Jakobshavn Isbræ. The contribution from these glaciers to sea-level rise is largely (80%) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. Model results show that the shape of the glacier and its fjord can alter how the glacier will respond to a changing climate. Dynamic losses are mainly related to channel geometry and occur when an ice front retreats from a basal high through an overdeepening. Subsequent decelerations in retreat and mass loss mostly coincide with a decrease in water depth as the glacier retreats or re-advances to a new or previous bathymetric high. In some cases, channel narrowing may temporarily slowdown the terminus retreat even when the terminus is located on an upward bed slope.

  14. SiO Observations of Mass-Losing AGB Stars

    NASA Astrophysics Data System (ADS)

    Aringer, B.; Wiedemann, G.; Käufl, H. U.; Hron, J.

    1995-02-01

    We have observed the first overtone rotation-vibration absorption bands of SiO near λ = 4µm for a sample of 23 oxygen-rich Mira and Semiregular variables using the ESO NTT and IRSPEC. We discuss the strength of the SiO absorption in terms of the near infrared, IRAS and pulsational properties of the stars. Especially among the Miras there are big differences in the strength of the SiO bands between individual objects, which are probably due to pulsational variability.

  15. Limits on the significant mass-loss scenario based on the globular clusters of the Fornax dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Khalaj, P.; Baumgardt, H.

    2016-03-01

    Many of the scenarios proposed to explain the origin of chemically peculiar stars in globular clusters (GCs) require significant mass loss (≥95 per cent) to explain the observed fraction of such stars. In the GCs of the Fornax dwarf galaxy, significant mass loss could be a problem. Larsen et al. showed that there is a large ratio of GCs to metal-poor field stars in Fornax and about 20-25 per cent of all the stars with [Fe/H] < -2 belong to the four metal-poor GCs. This imposes an upper limit of ˜80 per cent mass loss that could have happened in Fornax GCs. In this paper, we propose a solution to this problem by suggesting that stars can leave the Fornax galaxy. We use a series of N-body simulations to determine the limit of mass loss from Fornax as a function of the initial orbital radii of GCs and the speed with which stars leave Fornax GCs. We consider a set of cored and cuspy density profiles for Fornax. Our results show that with a cuspy model for Fornax, the fraction of stars that leave the galaxy can be as high as ˜90 per cent, when the initial orbital radii of GCs are R = 2-3 kpc and the initial speed of stars is v > 20 km s-1. We show that such large velocities can be achieved by mass loss induced by gas expulsion but not mass loss induced by stellar evolution. Our results imply that one cannot interpret the metallicity distribution of Fornax field stars as evidence against significant mass loss in Fornax GCs, if mass loss is due to gas expulsion.

  16. Predictions for Dusty Mass Loss from Asteroids During Close Encounters with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-11-01

    The Solar Probe Plus ( SPP) mission will explore the Sun's corona and innermost solar wind starting in 2018. The spacecraft will also come close to a number of Mercury-crossing asteroids with perihelia less than 0.3 AU. At small heliocentric distances, these objects may begin to lose mass, thus becoming "active asteroids" with comet-like comae or tails. This paper assembles a database of 97 known Mercury-crossing asteroids that may be encountered by SPP, and it presents estimates of their time-dependent visible-light fluxes and mass loss rates. Assuming a similar efficiency of sky background subtraction as was achieved by STEREO , we find that approximately 80 % of these asteroids are bright enough to be observed by the Wide-field Imager for SPP (WISPR). A model of gas/dust mass loss from these asteroids is developed and calibrated against existing observations. This model is used to estimate the visible-light fluxes and spatial extents of spherical comae. Observable dust clouds occur only when the asteroids approach the Sun closer than 0.2 AU. The model predicts that during the primary SPP mission between 2018 and 2025, there should be 113 discrete events (for 24 unique asteroids) during which the modeled comae have angular sizes resolvable by WISPR. The largest of these correspond to asteroids 3200 Phaethon, 137924, 155140, and 289227, all with angular sizes of roughly 15-30 arcminutes. We note that the SPP trajectory may still change, but no matter the details there should still be multiple opportunities for fruitful asteroid observations.

  17. Acceleration of the Greenland ice sheet mass loss as observed by GRACE: Confidence and sensitivity

    NASA Astrophysics Data System (ADS)

    Svendsen, P. L.; Andersen, O. B.; Nielsen, A. A.

    2013-02-01

    We examine the scale and spatial distribution of the mass change acceleration in Greenland and its statistical significance, using processed gravimetric data from the GRACE mission for the period 2002-2011. Three different data products - the CNES/GRGS, DMT-1b and GGFC GRACE solutions - have been used, all revealing an accelerating mass loss in Greenland, though with significant local differences between the three datasets. Compensating for leakage effects, we obtain acceleration values of -18.6 Gt/yr2 for CNES/GRGS, -8.8 Gt/yr2 for DMT-1b, and -14.8 Gt/yr2 for GGFC. We find considerable mass loss acceleration in the Canadian Arctic Archipelago, some of which will leak into the values for Greenland, depending on the approach used, and for our computations the leakage has been estimated at up to -4.7 Gt/yr2. The length of the time series of the GRACE data makes a huge difference in establishing an acceleration of the data. For both 10-day and monthly GRACE solutions, an observed acceleration on the order of 10-20 Gt/yr2 is shown to require more than 5 yrs of data to establish with statistical significance. In order to provide an independent evaluation, ICESat laser altimetry data have been smoothed to match the resolution of the GRACE solutions. This gives us an estimated upper bound for the acceleration of about -29.7 Gt/yr2 for the period 2003-2009, consistent with the acceleration values and corresponding confidence intervals found with GRACE data.

  18. The X-ray and Spectropolarimetric View of Mass Loss and Transfer in Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.

    2014-01-01

    The majority of massive stars are members of binary systems. However, in order to understand their evolutionary pathways, mass and angular momentum loss from these systems needs to be well characterized. Self-consistent explanations for their behavior across many wavelength regimes need to be valid in order to illuminate key evolutionary phases. In this talk I will present the results of an X-ray and spectropolarimetric study of three key binaries: beta Lyrae, V444 Cyg, and WR 140. In beta Lyrae, I will show a repeatable discrepancy between secondary eclipse in the total and polarized light curves indicates an accretion hot spot has formed on the edge of the disk in the system. The existence of this hot spot and its relationship to bipolar outflows within the system is important in the understanding of mass transfer dynamics in Roche-lobe overflow binaries. For V444 Cyg, I will present the results of an X-ray and polarimetric monitoring campaign which indicate the effects of radiative inhibition or braking, and the Coriolis force can be significant contributors to the location and shape of the shock within colliding wind binaries. Additionally, I will present data from WR 140 that suggest unexpected intrinsic hard X-ray emission may be present at some and argue that better polarimetric monitoring of the system is needed. Continued work on these and additional objects will provide new and important constraints on the mass loss structures within binary systems. This research includes contributions from collaborators at the University of Denver, NASA/GSFC, The Universite de Liege, The University of Toledo, East Tennessee State University, The University of Leeds, ESA, Hokkai-Gakuen University, NRAO, The University of Delaware, and Vanderbilt University. Additionally, I acknowledge support from the NASA Harriett G. Jenkins Pre-doctoral Fellowship Program, Sigma Xi’s Grants-in-Aid of Research Program, and NASA ADAP award NNH12ZDA001N.

  19. A Search for Mass Loss on the Cepheid Instability Strip using H i 21 cm Line Observations

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Marengo, M.; Evans, N. R.

    2016-12-01

    We present the results of a search for H i 21 cm line emission from the circumstellar environments of four Galactic Cepheids (RS Pup, X Cyg, ζ Gem, and T Mon) based on observations with the Karl G. Jansky Very Large Array. The observations were aimed at detecting gas associated with previous or ongoing mass loss. Near the long-period Cepheid T Mon, we report the detection of a partial shell-like structure whose properties appear consistent with originating from an earlier epoch of Cepheid mass loss. At the distance of T Mon, the nebula would have a mass (H i+He) of ˜ 0.5{M}⊙ , or ˜6% of the stellar mass. Assuming that one-third of the nebular mass comprises swept-up interstellar gas, we estimate an implied mass-loss rate of \\dot{M}˜ (0.6{--}2)× {10}-5 {M}⊙ yr-1. No clear signatures of circumstellar emission were found toward ζ Gem, RS Pup, or X Cyg, although in each case, line-of-sight confusion compromised portions of the spectral band. For the undetected stars, we derive model-dependent 3σ upper limits on the mass-loss rates, averaged over their lifetimes on the instability strip, of ≲ (0.3{--}6)× {10}-6 {M}⊙ yr-1 and estimate the total amount of mass lost to be less than a few percent of the stellar mass.

  20. Neutral losses: a type of important variables in prediction of branching degree for acyclic alkenes from mass spectra.

    PubMed

    Zhang, Liangxiao; Fan, Wei; Cao, Dongsheng; Zeng, Maomao; Xiao, Hongbin; Liang, Yizeng

    2012-03-30

    Neutral losses are a type of important variables in mass spectral interpretation. Since it is hard to calculate or extract neutral losses from mass spectra, they are usually discarded. In this study, dissimilarity analysis was employed to extract mass spectral characteristics for predicting branching degree of acyclic alkenes. The relationships between branching degree and neutral loss were constructed under direction of experimental observation and mass spectral fragmentations. A branching degree predictor of acyclic alkenes was subsequently built based on the above relationships. After tested by the experimental data in previous studies, the predictor could correctly provide the branching degree from abundant ions of mass spectra. More importantly, this predictor was able to point out which acyclic alkenes could be predicted correctly or not.

  1. Mass Balance Implications of Wind-Transported Snow Loss From Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Leonard, K. C.; Jacobs, S. S.; Cullather, R. I.

    2008-12-01

    Some fraction of the snow that falls as precipitation over the Antarctic ice sheet is transported across the coastline by the wind. This is a long-recognized but poorly constrained problem. If recent projections of increasing coastal wind speeds are correct, wind-blown snow transport will also intensify, as the relationship between mass transport and wind speed is strongly nonlinear. The large-scale importance of wind- transported snow to coastal ocean freshening or ice sheet mass balance depends on unknowns including details of the transport of snow by the wind, the net precipitation over Antarctica, and the effective length of its coastline. Prior estimates of snow loss into the ocean from Antarctica range over two orders of magnitude, from less than 2 to more than 200 Gt / year. Modeled annual snow transport based on measured winds at an automatic weather station site on the northern edge of the Ross Ice Shelf is in good agreement with measured values from Halley Station. When extrapolated around the coastline, these values fall between the reported extremes. Because most of Antarctica's coastal areas experience higher winds and greater snow supply than its ice shelves, this data provides a lower limit on the mass of snow removed from the ice sheet by the wind. From this lower bound we estimate the probable range of values for present-day wind blown snow export to the Southern Ocean, and explore the implications of projected rising winds for increases in wind-blown snow transport.

  2. Vertical distribution of dry mass in cereals straw and its loss during harvesting

    NASA Astrophysics Data System (ADS)

    Zajaç, T.; Oleksy, A.; Stokłosa, A.; Klimek-Kopyra, A.; Macuda, J.

    2013-01-01

    The study aimed at evaluating the distribution of mass in the straw of cereal species and also at assessing the straw yield and its losses resulting from the amount of the stubble left in the field. It was found empirically that the wheat culms are composed of five internodes, and in barley, triticale and oats of six. The highest straw mass per 1 cm was found in the second internode in both forms of wheat and winter triticale, whereas barley and oats gathered the highest weight in the first internode. In the southern part of Silesia species and forms of cereals differed in the straw yield, which can be arranged as follows, from the highest: winter wheat > spring wheat, winter triticale, winter barley, and oats > spring barley. Due to the specific distribution of dry matter in each of internodes of both wheat forms - winter and spring, they loose less stubble mass (22 and 24%, respectively), comparing to other cereals, especially spring barley, which loose 31% yield of straw in the stubble of 15 cm height.

  3. A turbulent wake as a tracer of 30,000 years of Mira's mass loss history.

    PubMed

    Martin, D Christopher; Seibert, Mark; Neill, James D; Schiminovich, David; Forster, Karl; Rich, R Michael; Welsh, Barry Y; Madore, Barry F; Wheatley, Jonathan M; Morrissey, Patrick; Barlow, Tom A

    2007-08-16

    Mira is one of the first variable stars ever discovered and it is the prototype (and also the nearest example) of a class of low-to-intermediate-mass stars in the late stages of stellar evolution. These stars are relatively common and they return a large fraction of their original mass to the interstellar medium (ISM) (ref. 2) through a processed, dusty, molecular wind. Thus stars in Mira's stage of evolution have a direct impact on subsequent star and planet formation in their host galaxy. Previously, the only direct observation of the interaction between Mira-type stellar winds and the ISM was in the infrared. Here we report the discovery of an ultraviolet-emitting bow shock and turbulent wake extending over 2 degrees on the sky, arising from Mira's large space velocity and the interaction between its wind and the ISM. The wake is visible only in the far ultraviolet and is consistent with an unusual emission mechanism whereby molecular hydrogen is excited by turbulent mixing of cool molecular gas and shock-heated gas. This wind wake is a tracer of the past 30,000 years of Mira's mass-loss history and provides an excellent laboratory for studying turbulent stellar wind-ISM interactions.

  4. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  5. Mass loss from evolved massive stars: self-consistent modeling of the wind and photosphere

    NASA Astrophysics Data System (ADS)

    Groh, J. H.

    2007-03-01

    This work analyzes the mass loss phenomenon in evolved massive stars through self-consistent modeling of the wind and photosphere of such stars, using the radiative transfer code CMFGEN. In the first part, fundamental physical parameters of Wolf-Rayet stars of spectral types WN3-w (WR 46 e WR 152) and WN6-s (WR 136) were obtained. The results clearly indicate that hydrogen is present on the surface of those stars in a considerable fraction, defying current evolutionary models. For both WN subtypes, significant difference between the physical parameters obtained here and in previous works were noticed. The 20-year evolution of the luminous blue variable (LBV) AG Carinae was analyzed in detail in the second part of this work. The results indicate unexpected changes in the current paradigm of massive star evolution during the S Dor cycle. In this work, the high rotational velocity obtained during the hot phases, and the transition between the bistability regimes of line-driven winds were detected for the first time in LBVs. Those results need to be considered in future analysis of such massive stars. This Thesis also presents a pioneering study about the impact of the time variability effects on the analysis of the winds of LBVs. The results achieved here are valid for the whole LBV class, and show that the mass-loss rates derived from Hα and radio free-free emission are affected by time-dependent effects. The mass-loss rate evolution during the S Dor cycle, derived using time-dependent models, implies that LBV eruptions begin well before the maximum in the visual lightcurve during this phase. The analysis of the full S Dor cycle of AG Car rule out that the S Dor variability is caused exclusively by an expanding pseudo-photosphere. The AG Car hydrostatic radius was found to vary by a factor of six between cool and hot phases, while the bolometric luminosity is 50% higher during the hot phase. Both results provide observational contraints for the physical mechanism

  6. Processes of mass loss on a debris covered glacier determined by high resolution DEM differencing

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah; Benn, Doug I.; Mertes, Jordan

    2015-04-01

    In recent years the response of debris-covered glaciers to climatic warming has seen significant disscussion. The insulating properties of a debris layer (> 5-6 cm) are well established however, in the Himalayas regionally averaged thinning rates, based on satellite laser altimetry, were found to be very similar on both debris-covered, and clean ice glaciers in the Himalayas. Overall mass loss rates on large debris covered glaciers have been discussed in conjunction with supraglacial lake development and growth but the processes involved in downwasting are often numerous and complex. Here we report on mass loss measurements, from a combination of in situ lake surveys and remote sensing, on large debris covered glacier in the Khumbu Himal Nepal. Lake bathymetry sonar surveys were conducted in the winter of 2009 and 2012, and GeoEye-1 stereo imagery was acquired in 2010 and 2012. The temporal data sets were combined and differencd to allow detailed investigation of glacial surface change over the 2 year period. Ngozumpa Glacier has a stagnant ice tongue extending down to ~4650 m asl, the lower 15 km of which is debris covered. This debris covered region is highly irregular with many hollows occupied by studded with numerous supraglacial ponds and lakes. In the early 1990s a base level lake was identified ~1 km from the glacier terminus. Our results show a highly complex pattern of glacial downwasting and lake change. Numerous examples of rapid supra glacial growth and drainage are evident, including the formation and enlargement of lakes along preexisting structures such as relic englacial drainage conduits. However, also in evidence are areas of significant lake shrinkage due to sedimentation and lake shore debris collapse. In addition to lake induced mass loss a background downwasting rate of ~ 0.5 m a-1 is evident in the lower ablation area where debris thicknesses are known to be between 1-3 m thick. The results illustrate the highly complex nature of debris

  7. Setting the stage for circumstellar interaction in core-collapse supernovae. II. Wave-driven mass loss in supernova progenitors

    SciTech Connect

    Shiode, Joshua H.; Quataert, Eliot E-mail: eliot@berkeley.edu

    2014-01-01

    Supernovae (SNe) powered by interaction with circumstellar material provide evidence for intense stellar mass loss during the final years before core collapse. We have argued that during and after core neon burning, internal gravity waves excited by core convection can tap into the core fusion power and transport a super-Eddington energy flux out to the stellar envelope, potentially unbinding ∼1 solar mass of material. In this work, we explore the internal conditions of SN progenitors using the MESA one-dimensional stellar evolution code in search of those most susceptible to wave-driven mass loss. We focus on simple, order of magnitude considerations applicable to a wide range of progenitors. Wave-driven mass loss during core neon and oxygen fusion happens preferentially in either lower mass (∼20 solar mass zero-age main sequence) stars or massive, sub-solar metallicity stars. Roughly 20% of the SN progenitors we survey can excite 10{sup 46-48} erg of energy in waves that can potentially drive mass loss within a few months to a decade of core collapse. This energy can generate circumstellar environments with 10{sup –3}-1 solar masses reaching 100 AU before explosion. We predict a correlation between the energy associated with pre-SN mass ejection and the time to core collapse, with the most intense mass loss preferentially occurring closer to core collapse. During silicon burning, wave energy may inflate 10{sup –3}-1 solar masses of the envelope to 10-100 s of solar radii. This suggests that some nominally compact SN progenitors (Type Ibc progenitors) will have a significantly different SN shock breakout signature than traditionally assumed.

  8. Resource loss as a predictor of posttrauma symptoms among college women following the mass shooting at Virginia Tech.

    PubMed

    Littleton, Heather; Grills-Taquechel, Amie; Axsom, Danny

    2009-01-01

    We examined risk factors for posttrauma symptomatology, 2 and 6 months following the April 2007 mass shooting at Virginia Tech. Using a conservation of resources framework and a Web-based survey methodology, we prospectively evaluated the relations among preshooting distress, social support, resource loss, and posttrauma symptomatology in a sample of 293 female students enrolled at the university at the time of the shootings. Structural equation modeling supported that preshooting social support and distress predicted resource loss postshooting. Resource loss predicted symptomatology 2 months and 6 months after the shooting. Implications of the results for research and intervention following mass trauma are discussed.

  9. Cool Bottom Processing on the AGB and Presolar Grain Compositions

    NASA Technical Reports Server (NTRS)

    Nollett, Kenneth M.; Busso, M.; Wasserburg, G. J.

    2002-01-01

    We describe results from a model of cool bottom processing (CBP) in AGB (asymptotic giant branch) stars. We predict O, Al, C and N isotopic compositions of circumstellar grains. Measured compositions of mainstream SiC grains and many oxide grains are consistent with CBP. Additional information is contained in the original extended abstract.

  10. Spectroscopic and photometric monitoring of southern post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pooley, D. J.; Cottrell, P. L.; Pollard, K. R.; Albrow, M. D.

    2004-05-01

    We present the results of contemporaneous photometric and spectroscopic monitoring of 20 post-AGB stars from Mt John University Observatory. Photometric measures were carried our suing Johnson BV and Cousins RI filters, and the radial velocity measurements were acquired using spectra from an echelle spectrograph. Our program spanned five years and the stars covered a range of spectral types from B to K in order to investigate the behavior of post-AGB stars as they evolve away from the AGB. A number of stars proved to be variable inways incompatible with post-AGB models and are reclassified. Periodicities are presented for a number of stars. Photometrically, HD 70379 was found to be pulsating in two modes with periods of 85 and 97 d. The radial velocities also varied, with the peak amplitude occurring when the photometry was also changing most. AI CMi presented three different types of spectra associated with photometric brightness, with varying strengths of narrow emission lines and molecular bandheads. The Hα profiles in almost all of the stars show evidence of emission which varies on time scales of days to months. The Na D line profiles are generally complex showing between 4 and 7 components due to both circumstellar and interstellar material.

  11. The Governance Committee: Independent Institutions. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Wilson, E. B.; Lanier, James L.

    2013-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimal committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices outlined in this publication support the objectives of board…

  12. EXCESS MID-INFRARED FLUX: AN INDICATOR OF MASS LOSS IN CEPHEIDS?

    SciTech Connect

    Schmidt, Edward G.

    2015-11-01

    Spectral energy distributions for 132 classical and type II Cepheids were searched for evidence of excess flux above the photospheric level in the mid-infrared. Eight of them were found to have unambiguously strong excess emission while a further 13 showed evidence of weak emission. The presence of emission appears to be unrelated to either the pulsational amplitude or the effective temperature while strong emission is limited to stars with periods longer than 11 days, with a single exception. For the stars with strong emission we attempted to fit the energy distribution with a stellar wind model. No acceptable fit could be found for silicate grains. With graphite or iron grains we could only obtain an acceptable fit if the maximum dust temperature was significantly lower than the condensation temperature. We conclude that the excess emission is not evidence of mass loss.

  13. Mass spectrometry and theoretical calculations about the loss of methyl radical from methoxilated coumarins

    NASA Astrophysics Data System (ADS)

    Borkowski, Eduardo J.; Cecati, Francisco M.; Suvire, Fernando D.; Ruiz, Diego M.; Ardanaz, Carlos E.; Romanelli, Gustavo P.; Enriz, Ricardo D.

    2015-08-01

    In this study we have performed CID mass spectrometry measurements and theoretical calculations in a selected series of coumarins. Our theoretical and experimental results indicate that there is room for reasonable doubts about the fragmentation way previously proposed by Shapiro and Djerassi (1965). A complementary explanation about the fragmentation way of the methyl loss from methoxy coumarins has been reported in this work. Our results demonstrated that different theoretical models are very useful to explain the fragmentation occurred in MS, supporting the usual rules of fragmentation. Although the QTAIM analysis gives a good correlation in order to explain the formation of p-quinoid resonance forms; however, the best correlation has been obtained using the NBO approximation as well as from the Wiberg indexes.

  14. Variability and mass loss in IA O-B-A supergiants

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Garrison, R. F.; Hiltner, W. A.

    1983-01-01

    Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.

  15. Glacier mass loss. Dynamic thinning of glaciers on the Southern Antarctic Peninsula.

    PubMed

    Wouters, B; Martin-Español, A; Helm, V; Flament, T; van Wessem, J M; Ligtenberg, S R M; van den Broeke, M R; Bamber, J L

    2015-05-22

    Growing evidence has demonstrated the importance of ice shelf buttressing on the inland grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens inland. Such ice sheet geometry is potentially unstable. We use satellite altimetry and gravity observations to show that a major portion of the region has, since 2009, destabilized. Ice mass loss of the marine-terminating glaciers has rapidly accelerated from close to balance in the 2000s to a sustained rate of -56 ± 8 gigatons per year, constituting a major fraction of Antarctica's contribution to rising sea level. The widespread, simultaneous nature of the acceleration, in the absence of a persistent atmospheric forcing, points to an oceanic driving mechanism.

  16. Evidence for mass loss at polar latitudes in the Be stars Omega Orionis and 66 Ophiuchi

    NASA Technical Reports Server (NTRS)

    Peters, G. J.

    1982-01-01

    IUE observations of the pole-on Be stars Omega Ori and 66 Oph have revealed the unexpected presence of high velocity (-250 to -850 km/sec), relatively narrow (about 1 A) absorption components to the resonance lines of C IV, Si IV, and Si III. The C IV features show structure indicative of multiple shells or clouds. If Omega Ori and 66 Oph are indeed viewed pole-on, then these observations suggest that substantial matter is being ejected from the polar regions of these stars. The nature of these unusual high velocity features, which were not observed in other pole-on Be stars considered in the program, and the column densities and mass loss rates implied by them are discussed in this Letter.

  17. High resolution spectroscopy of the high latitude rapidly evolving post-AGB star SAO 85766 (= IRAS 18062+2410)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; García-Lario, P.; Sivarani, T.; Manchado, A.; Sanz Fernández de Córdoba, L.

    2000-05-01

    SAO 85766 (b = +20o) is an IRAS source with far-infrared colours similar to planetary nebulae. According to the HDE catalogue, its spectrum in 1940 was that of an A5 star. The UV fluxes and colours derived from data obtained by the TD1 satellite in 1972 also indicate that SAO 85766 was an A-type supergiant at that epoch. However, high resolution spectra of SAO 85766 obtained in 1993 in the wavelength interval 4350Ä to 8820Ä shows that now it is similar to that of an early B type post-AGB supergiant. In addition to the absorptions lines typical of a B1I type star, the spectrum of SAO 85766 is found to show numerous permitted and forbidden emission lines of several elements, typically observed in the spectra of young high density low excitation planetary nebulae. From an analysis of the absorption lines we have estimated Teff=22000+/-500 K, log g=3.0+/-0.5, xi t=15+/-2km s-1 and [M/H]=-0.6. Carbon is found to be strongly underabundant ([C/Fe] = -1.0), similarly to what has been observed in other high galactic latitude hot post-AGB stars. The underabundance of carbon and metals, high galactic latitude, high radial velocity (46 km s-1), the presence of planetary nebula type detached cold circumstellar dust shell and also the presence of low excitation nebular emission lines in the spectrum indicate that SAO 85766 is a low mass star in the post-AGB stage of evolution. The above mentioned characteristics and the variations observed in the spectrum of SAO 85766 suggest that it has rapidly evolved during the past 50 years and it is now in the early stages of the planetary nebula phase. The central star may just have become hot enough to photoionize the circumstellar envelope ejected during the previous AGB phase. >From an analysis of the nebular emission lines we find Te=10000+/- 500K and Ne=2.5 104 cm-3. The nebula also shows an abundance pattern similar to that of the central star. The rapid post-AGB evolution of SAO 85766 appears to be similar to that observed in the

  18. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration

    PubMed Central

    Stevens, Daniel A.; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A.; Dawson, Valina L.; Shin, Joo-Ho; Dawson, Ted M.

    2015-01-01

    Mutations in parkin lead to early-onset autosomal recessive Parkinson’s disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α–dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925

  19. Specific protein changes contribute to the differential muscle mass loss during ageing.

    PubMed

    Capitanio, Daniele; Vasso, Michele; De Palma, Sara; Fania, Chiara; Torretta, Enrica; Cammarata, Francesco P; Magnaghi, Valerio; Procacci, Patrizia; Gelfi, Cecilia

    2016-02-01

    In the skeletal muscle, the ageing process is characterized by a loss of muscle mass and strength, coupled with a decline of mitochondrial function and a decrease of satellite cells. This profile is more pronounced in hindlimb than in forelimb muscles, both in humans and in rodents. Utilizing light and electron microscopy, myosin heavy chain isoform distribution, proteomic analysis by 2D-DIGE, MALDI-TOF MS and quantitative immunoblotting, this study analyzes the protein levels and the nuclear localization of specific molecules, which can contribute to a preferential muscle loss. Our results identify the molecular changes in the hindlimb (gastrocnemius) and forelimb (triceps) muscles during ageing in rats (3- and 22-month-old). Specifically, the oxidative metabolism contributes to tissue homeostasis in triceps, whereas respiratory chain disruption and oxidative-stress-induced damage imbalance the homeostasis in gastrocnemius muscle. High levels of dihydrolipoyllysine-residue acetyltransferase (Dlat) and ATP synthase subunit alpha (Atp5a1) are detected in triceps and gastrocnemius, respectively. Interestingly, in triceps, both molecules are increased in the nucleus in aged rats and are associated to an increased protein acetylation and myoglobin availability. Furthermore, autophagy is retained in triceps whereas an enhanced fusion, decrement of mitophagy and of regenerative potential is observed in aged gastrocnemius muscle.

  20. Analysis of mass loss of a coal particle during the course of burning in a flow of inert material

    SciTech Connect

    Pelka, Piotr

    2009-08-15

    This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

  1. Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Yukiko; Nakano, Kazunari; Zhang, Yong; Watanabe, Satoshi; Tanoue, Masahiro; Kanae, Shinjiro

    2016-07-01

    Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account.

  2. Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties

    PubMed Central

    Hirabayashi, Yukiko; Nakano, Kazunari; Zhang, Yong; Watanabe, Satoshi; Tanoue, Masahiro; Kanae, Shinjiro

    2016-01-01

    Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account. PMID:27435236

  3. Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties.

    PubMed

    Hirabayashi, Yukiko; Nakano, Kazunari; Zhang, Yong; Watanabe, Satoshi; Tanoue, Masahiro; Kanae, Shinjiro

    2016-07-20

    Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account.

  4. Sauna-Induced Body Mass Loss in Young Sedentary Women and Men

    PubMed Central

    Podstawski, Robert; Boraczyński, Tomasz; Boraczyński, Michał

    2014-01-01

    The aim of the study was to evaluate the relationship between body mass index (BMI) and body mass loss (BML) induced by thermal stress in a dry sauna. The study was conducted on a group of 674 sedentary students, 326 women and 348 men aged 19-20. The correlations between BMI scores and BML were determined. The subjects were placed in supine position in a dry sauna for two sessions of 10 minutes each with a 5-minute break. The influence of BMI on the amount of BML in the sauna was determined by nonlinear stepwise regression. The smallest BML was noted in underweight subjects; students with normal weight lost more weight, whereas the greatest BML was reported in overweight and obese subjects. Persons with a high BMI are at higher risk of dehydration, and they should pay particular attention to replenishing fluids during a visit to the sauna. The proposed equations for calculating BML based on a person's BMI can be useful in estimating the amount of fluids that should be replenished by both men and women during a visit to a dry sauna. PMID:25614882

  5. Sauna-induced body mass loss in young sedentary women and men.

    PubMed

    Podstawski, Robert; Boraczyński, Tomasz; Boraczyński, Michał; Choszcz, Dariusz; Mańkowski, Stefan; Markowski, Piotr

    2014-01-01

    The aim of the study was to evaluate the relationship between body mass index (BMI) and body mass loss (BML) induced by thermal stress in a dry sauna. The study was conducted on a group of 674 sedentary students, 326 women and 348 men aged 19-20. The correlations between BMI scores and BML were determined. The subjects were placed in supine position in a dry sauna for two sessions of 10 minutes each with a 5-minute break. The influence of BMI on the amount of BML in the sauna was determined by nonlinear stepwise regression. The smallest BML was noted in underweight subjects; students with normal weight lost more weight, whereas the greatest BML was reported in overweight and obese subjects. Persons with a high BMI are at higher risk of dehydration, and they should pay particular attention to replenishing fluids during a visit to the sauna. The proposed equations for calculating BML based on a person's BMI can be useful in estimating the amount of fluids that should be replenished by both men and women during a visit to a dry sauna.

  6. On the Contribution of Clouds to Greenland Ice Sheet Mass Loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J.; Gorodetskaya, I.; L'Ecuyer, T. S.; Noel, B.; van den Broeke, M. R.; Turner, D. D.; Van Lipzig, N. P. M.

    2015-12-01

    The Greenland ice sheet (GrIS) has become one of the main contributors to global mean sea level rise, predominantly explained by a decreasing surface mass balance (SMB). Clouds are known to have a strong influence on the surface energy budget, which in consequence impacts the SMB. For example, the potentially important role of thin liquid-bearing clouds over Greenland in enhancing ice sheet melt has recently gained interest. Yet, current research is spatially and temporally limited, focusing on particular events and cloud types, while the large-scale impact of all clouds on the SMB remains unknown. Using a unique cloud product covering the entire GrIS over the period 2007-2010, consisting of active satellite remote sensing data, ground-based observations and climate model data, together with snow model simulations, we investigate the cloud radiative effect over the GrIS and the consequences for the SMB. We show a strong sensitivity of the GrIS to clouds, with a complex interplay between enhanced and reduced mass loss. We further distinguish between ice-only and liquid-bearing clouds, temporal and spatial variations in cloud impacts, and we demonstrate the large spread in simulated clouds by state-of-the-art climate models. Our results therefore urge the need for accurate cloud representations in climate models, to improve future projections of GrIS SMB and global sea level rise.

  7. Calcium regulation and bone mass loss after total gastrectomy in pigs.

    PubMed Central

    Maier, G W; Kreis, M E; Zittel, T T; Becker, H D

    1997-01-01

    OBJECTIVE: Total gastrectomy often results in postgastrectomy bone disease with decreased bone mass and increased fracture risk. To further elucidate the mechanisms of postgastrectomy bone disease, the authors investigated calcium metabolism and bone mineral density after total gastrectomy in pigs. SUMMARY BACKGROUND DATA: Postgastrectomy bone disease can present as osteomalacia, osteoporosis in excess of normal aging, or a combination of both. The underlying mechanisms are insufficiently understood and need further investigation. METHODS: Growing minipigs were gastrectomized and compared with fed-matched, sham-operated control p gs for 1 year. Calcium absorption, serum calcium, parathyroid hormone, 25-(OH)-vitamin D, 1,25-(OH)2-vitamin D, alkaline phosphatase, and computed tomography bone mineral density were measured in three monthly intervals. RESULTS: Total gastrectomy resulted in impaired calcium absorption, reduced serum calcium and 25-(OH)-vitamin D, increased parathyroid hormone and 1,25-(OH)2-vitamin, and reduced bone mineral density compared with fed-matched, sham-operated control pigs. CONCLUSIONS: The authors data indicate that a reduced serum calcium activates counter-regulatory mechanisms, resulting in calcium mobilization from the bone. Possibly, calcium and vitamin D supplementation after total gastrectomy might prevent postgastrectomy bone mass loss. PMID:9065295

  8. Vapor pressure measurements by mass loss transpiration method with a thermogravimetric apparatus.

    PubMed

    Viswanathan, R; Narasimhan, T S Lakshmi; Nalini, S

    2009-06-18

    Thermobalances are used for equilibrium vapor pressure measurements based on both effusion and transpiration methods. In the case of the transpiration method, however, despite the numerous advantages a thermogravimetric apparatus can offer, it is not as widely used as is the conventional apparatus. In this paper, the difference that can exist in the vapor phase compositions in an effusion cell and in a transpiration cell is shown first with two examples. Subsequently, how a commercial thermobalance was utilized to perform transpiration experiments that conform to the basic principle of the transpiration method and yield vapor pressures consistent with the Knudsen effusion mass spectrometric method is described. The three systems investigated are CsI(s), TeO(2)(s), and Te(s), each known to vaporize congruently, but in different manner. A critical analysis was performed on the information available in the literature on transpiration measurements using thermogravimetric apparatuses, and the salient findings are discussed. Smaller plateau regions than with conventional transpiration apparatuses and the lack of evidence for perfect transpiration conditions in some transpiration thermogravimetric investigations are shown with a few examples. A recommendation is made for the use of the rate of mass loss versus flow rate plot to ascertain that the usual apparent vapor pressure versus flow rate plot corresponds to a meaningful transpiration experiment.

  9. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska.

    PubMed

    Gulick, Sean P S; Jaeger, John M; Mix, Alan C; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L; Berbel, Glaucia B B; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Kioka, Arata; Konno, Susumu; LeVay, Leah J; März, Christian; Matsuzaki, Kenji M; McClymont, Erin L; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R; Ridgway, Kenneth D; Romero, Oscar E; Slagle, Angela L; Stoner, Joseph S; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D; Worthington, Lindsay L; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M

    2015-12-08

    Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.

  10. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska

    PubMed Central

    Jaeger, John M.; Mix, Alan C.; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L.; Berbel, Glaucia B. B.; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Konno, Susumu; LeVay, Leah J.; März, Christian; McClymont, Erin L.; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R.; Ridgway, Kenneth D.; Romero, Oscar E.; Slagle, Angela L.; Stoner, Joseph S.; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D.; Worthington, Lindsay L.; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M.

    2015-01-01

    Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale. PMID:26598689

  11. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; van den Broeke, M. R.

    2014-11-01

    We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Greenland and Antarctica for 2003-2013. We find that the total mass loss is controlled by only a few regions. In Greenland, the southeast and northwest generate 70% of the loss (280±58 Gt/yr) mostly from ice dynamics, the southwest accounts for 54% of the total acceleration in loss (25.4±1.2 Gt/yr2) from a decrease in surface mass balance (SMB), followed by the northwest (34%), and we find no significant acceleration in the northeast. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 64% and 17%, respectively, of the total loss (180±10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (11±4 Gt/yr2), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (63±5 Gt/yr).

  12. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    SciTech Connect

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.

  13. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Pieczonka, T.; Benn, D. I.

    2011-04-01

    Mass loss of Himalayan glaciers has wide-ranging consequences such as changing runoff distribution, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated. Here, we present a time series of mass changes for ten glaciers covering an area of about 50 km2 south and west of Mt. Everest, Nepal, using stereo Corona spy imagery (years 1962 and 1970), aerial images and recent high resolution satellite data (Cartosat-1). This is the longest time series of mass changes in the Himalaya. We reveal that the glaciers have been significantly losing mass since at least 1970, despite thick debris cover. The specific mass loss for 1970-2007 is 0.32 ± 0.08 m w.e. a-1, however, not higher than the global average. Comparisons of the recent DTMs with earlier time periods indicate an accelerated mass loss. This is, however, hardly statistically significant due to high uncertainty, especially of the lower resolution ASTER DTM. The characteristics of surface lowering can be explained by spatial variations of glacier velocity, the thickness of the debris-cover, and ice melt due to exposed ice cliffs and ponds.

  14. Low Bone Mass Is a Risk Factor in Periodontal Disease-Related Tooth Loss in Patients with Intellectual Disability

    PubMed Central

    Numoto, Yoko; Mori, Takayuki; Maeda, Shigeru; Tomoyasu, Yumiko; Higuchi, Hitoshi; Egusa, Masahiko; Miyawaki, Takuya

    2013-01-01

    Teeth are fundamental to maintaining good quality of life, but are often lost prematurely in individuals with intellectual disability. Furthermore, since bone mass decreases in menopausal women, women with intellectual disability have an augmented risk of losing their teeth. However, the relationship between periodontal disease-related tooth loss and bone mass has never been studied specifically in patients with intellectual disability. This study evaluated this relationship in a retrospective cohort study. Participants were female dental patients aged between 20 and 50 years and with an intellectual disability, who were treated in the Special Needs Dentistry unit of the Okayama University Hospital from January 2009 to March 2010. Logistic regression analysis was used to analyze which factors affect periodontal disease-related tooth loss. Information relating to 12 predictor variables, including age and bone mass level, was derived from medical records. The 27 subjects had a total of 704 teeth at the time of initial examination, but 20 teeth (2.8%) had been lost owing to periodontal disease by the time bone mass measurements were recorded. Results of the multinomial logistic regression analysis indicated a significant odds ratio for three items: number of missing teeth at the time of initial examination, bone mass, and living environment. This result suggests that low bone mass is an independent risk factor in tooth loss secondary to periodontal disease in patients with intellectual disability. Dentists should thus take account of this heightened risk of tooth loss when caring for post-menopausal women with intellectual disability. PMID:24358063

  15. Evidence of AGB Pollution in Galactic Globular Clusters from the Mg-Al Anticorrelations Observed by the APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Ventura, P.; García-Hernández, D. A.; Dell'Agli, F.; D'Antona, F.; Mészáros, Sz.; Lucatello, S.; Di Criscienzo, M.; Shetrone, M.; Tailo, M.; Tang, Baitian; Zamora, O.

    2016-11-01

    We study the formation of multiple populations in globular clusters (GCs), under the hypothesis that stars in the second generation formed from the winds of intermediate-mass stars, ejected during the asymptotic giant branch (AGB) phase, possibly diluted with pristine gas, sharing the same chemical composition of first-generation stars. To this aim, we use the recent Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, which provide the surface chemistry of a large sample of giant stars, belonging to clusters that span a wide metallicity range. The APOGEE data set is particularly suitable to discriminate among the various pollution scenarios proposed so far, as it provides the surface abundances of Mg and Al, the two elements involved in a nuclear channel extremely sensitive to the temperature, hence to the metallicity of the polluters. The present analysis shows a remarkable agreement between the observations and the theoretical yields from massive AGB stars. In particular, the observed extension of the depletion of Mg and O and the increase in Al is well reproduced by the models and the trend with the metallicity is also fully accounted for. This study further supports the idea that AGB stars were the key players in the pollution of the intra-cluster medium, from which additional generations of stars formed in GCs.

  16. Modeling of Camembert-type cheese mass loss in a ripening chamber: main biological and physical phenomena.

    PubMed

    Hélias, A; Mirade, P-S; Corrieu, G

    2007-11-01

    A model of the mass loss of Camembert-type cheese was established with data obtained from 2 experimental ripening trials carried out in 2 pilot ripening chambers. During these experiments, a cheese was continuously weighed and the relative humidity, temperature, oxygen, and carbon dioxide concentrations in the ripening chamber were recorded online. The aim was to establish a simple but accurate model that would predict cheese mass changes according to available online measurements. The main hypotheses were that 1) the cheese water activity was constant during ripening, 2) the respiratory activity of the microflora played a major role by inducing heat production, combined with important water evaporation, 3) the temperature gradient existing inside the cheese was negligible, and the limiting phenomenon was the convective transfer. The water activity and the specific heat of the cheeses were assessed by offline measurements. The others parameters in the model were obtained from the literature. This dynamic model was built with 2 state variables: the cheese mass and the surface temperature of the cheese. In this way, only the heat transfer coefficient had to be fitted, and it was strongly determined by the airflow characteristics close to the cheeses. Model efficiency was illustrated by comparing the estimated and measured mass and the mass loss rate for the 2 studied runs; the relative errors were less than 1.9 and 3.2% for the mass loss and the mass loss rate, respectively. The dynamic effects of special events, such as room defrosting or changes in chamber relative humidity, were well described by the model, especially in terms of kinetics (mass loss rates).

  17. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    PubMed

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  18. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    SciTech Connect

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola E-mail: paola.marigo@unipd.it

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  19. Rapid Ice Mass Loss: Does It Have an Influence on Earthquake Occurrence in Southern Alaska?

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne M.

    2008-01-01

    The glaciers of southern Alaska are extensive, and many of them have undergone gigatons of ice wastage on time scales on the order of the seismic cycle. Since the ice loss occurs directly above a shallow main thrust zone associated with subduction of the Pacific-Yakutat plate beneath continental Alaska, the region between the Malaspina and Bering Glaciers is an excellent test site for evaluating the importance of recent ice wastage on earthquake faulting potential. We demonstrate the influence of cumulative glacial mass loss following the 1899 Yakataga earthquake (M=8.1) by using a two dimensional finite element model with a simple representation of ice fluctuations to calculate the incremental stresses and change in the fault stability margin (FSM) along the main thrust zone (MTZ) and on the surface. Along the MTZ, our results indicate a decrease in FSM between 1899 and the 1979 St. Elias earthquake (M=7.4) of 0.2 - 1.2 MPa over an 80 km region between the coast and the 1979 aftershock zone; at the surface, the estimated FSM was larger but more localized to the lower reaches of glacial ablation zones. The ice-induced stresses were large enough, in theory, to promote the occurrence of shallow thrust earthquakes. To empirically test the influence of short-term ice fluctuations on fault stability, we compared the seismic rate from a reference background time period (1988-1992) against other time periods (1993-2006) with variable ice or tectonic change characteristics. We found that the frequency of small tectonic events in the Icy Bay region increased in 2002-2006 relative to the background seismic rate. We hypothesize that this was due to a significant increase in the rate of ice wastage in 2002-2006 instead of the M=7.9, 2002 Denali earthquake, located more than 100km away.

  20. Adiabatic Mass Loss in Binary Stars. II. From Zero-age Main Sequence to the Base of the Giant Branch

    NASA Astrophysics Data System (ADS)

    Ge, Hongwei; Webbink, Ronald F.; Chen, Xuefei; Han, Zhanwen

    2015-10-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M⊙-100 M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely

  1. ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH

    SciTech Connect

    Ge, Hongwei; Chen, Xuefei; Han, Zhanwen; Webbink, Ronald F. E-mail: rwebbink@illinois.edu

    2015-10-10

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems

  2. Dietary sodium citrate supplementation enhances rehydration and recovery from rapid body mass loss in trained wrestlers.

    PubMed

    Timpmann, Saima; Burk, Andres; Medijainen, Luule; Tamm, Maria; Kreegipuu, Kairi; Vähi, Mare; Unt, Eve; Oöpik, Vahur

    2012-12-01

    This study assessed the effects of dietary sodium citrate supplementation during a 16 h recovery from 5% rapid body mass loss (RBML) on physiological functions, affective state, and performance in trained wrestlers. Sixteen wrestlers performed an upper body intermittent sprint performance (UBISP) test under three conditions: before RBML, after RBML, and after a 16 h recovery from RBML. During recovery, the subjects ate a prescribed diet supplemented with sodium citrate (600 mg·kg(-1); CIT group, N = 8) or placebo (PLC group, N = 8) and drank water ad libitum. RBML reduced (p < 0.05) UBISP mean power and increased urine specific gravity (USG). Reduction in mean power was associated with changes in plasma volume (PV) (r = 0.649, p = 0.006) and USG (r = -0.553, p = 0.026). During the 16 h recovery, increases in body mass (BM) and PV were greater (p < 0.05) in the CIT group than in the PLC group. BM gain was associated with water retention in the CIT group (r = 0.899, p = 0.002) but not in the PLC group (r = 0.335, p = 0.417). Blood pH, HCO(3)(-) concentration, and base excess increased (p < 0.05) only in the CIT group. Changes in UBISP, general negative affect, and general positive affect did not differ in the two groups. In conclusion, ingestion of sodium citrate increases blood buffering capacity and PV and stimulates BM regain during a 16 h recovery from RBML in trained wrestlers. However, sodium citrate does not improve UBISP nor does it have an impact on the affective state.

  3. Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Rummler, D. R.

    1981-01-01

    Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.

  4. Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling

    PubMed Central

    Zhao, Huabiao; Yang, Wei; Yao, Tandong; Tian, Lide; Xu, Baiqing

    2016-01-01

    Rapid climate change at high elevations has accelerated glacier retreat in the Himalayas and Tibetan Plateau. However, due to the lack of long-term glaciological measurements, there are still uncertainties regarding when the mass loss began and what the magnitude of mass loss is at such high elevations. Based on in situ glaciological observations during the past 9 years and a temperature-index mass balance model, this study investigates recent mass loss of the Naimona’nyi Glacier in the western Himalayas and reconstructs a 41-year (1973/74–2013/14) equilibrium line altitude (ELA) and glacier-wide mass loss. The result indicates that even at 6000 m above sea level (a.s.l.), the annual mass loss reaches ~0.73 m water equivalent (w.e.) during the past 9 years. Concordant with the abrupt climate shift in the end of 1980s, the ELA has dramatically risen from ~5969 ± 73 m a.s.l. during 1973/74–1988/89 to ~6193 ± 75 m a.s.l. during 1989/90–2013/14, suggesting that future ice cores containing uninterrupted climate records could only be recovered at least above 6200 m a.s.l. in the Naimona’nyi region. The glacier-wide mass balance over the past 41 years is averaged to be approximately −0.40 ± 0.17 m w.e., exhibiting a significant increase in the decadal average from −0.01 ± 0.15 to −0.69 ± 0.21 m w.e. PMID:27561411

  5. Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling

    NASA Astrophysics Data System (ADS)

    Zhao, Huabiao; Yang, Wei; Yao, Tandong; Tian, Lide; Xu, Baiqing

    2016-08-01

    Rapid climate change at high elevations has accelerated glacier retreat in the Himalayas and Tibetan Plateau. However, due to the lack of long-term glaciological measurements, there are still uncertainties regarding when the mass loss began and what the magnitude of mass loss is at such high elevations. Based on in situ glaciological observations during the past 9 years and a temperature-index mass balance model, this study investigates recent mass loss of the Naimona’nyi Glacier in the western Himalayas and reconstructs a 41-year (1973/74–2013/14) equilibrium line altitude (ELA) and glacier-wide mass loss. The result indicates that even at 6000 m above sea level (a.s.l.), the annual mass loss reaches ~0.73 m water equivalent (w.e.) during the past 9 years. Concordant with the abrupt climate shift in the end of 1980s, the ELA has dramatically risen from ~5969 ± 73 m a.s.l. during 1973/74–1988/89 to ~6193 ± 75 m a.s.l. during 1989/90–2013/14, suggesting that future ice cores containing uninterrupted climate records could only be recovered at least above 6200 m a.s.l. in the Naimona’nyi region. The glacier-wide mass balance over the past 41 years is averaged to be approximately ‑0.40 ± 0.17 m w.e., exhibiting a significant increase in the decadal average from ‑0.01 ± 0.15 to ‑0.69 ± 0.21 m w.e.

  6. Presolar Graphite from AGB Stars: Microstructure and s-Process Enrichment

    NASA Astrophysics Data System (ADS)

    Croat, Thomas K.; Stadermann, Frank J.; Bernatowicz, Thomas J.

    2005-10-01

    Correlated transmission electron microscopy and secondary ion mass spectrometry with submicron spatial resolution (NanoSIMS) investigations of the same presolar graphites spherules from the Murchison meteorite were conducted, to link the isotopic anomalies with the mineralogy and chemical composition of the graphite and its internal grains. Refractory carbide grains (especially titanium carbide) are commonly found within the graphite spherules, and most have significant concentrations of Zr, Mo, and Ru in solid solution, elements primarily produced by s-process nucleosynthesis. The effect of chemical fractionation on the Mo/Ti ratio in these carbides is limited, and therefore from this ratio one can infer the degree of s-process enrichment in the gas from which the graphite condensed. The resulting s-process enrichments within carbides are large (~200 times solar on average), showing that most of the carbide-containing graphites formed in the mass outflows of asymptotic giant branch (AGB) stars. NanoSIMS measurements of these graphites also show isotopically light carbon (mostly in the 100<12C/13C<400 range). The enrichment of these presolar graphites in both s-process elements and 12C considerably exceeds that astronomically observed around carbon stars. However, a natural correlation exists between 12C and s-process elements, as both form in the He intershell region of thermally pulsing AGB stars and are dredged up together to the surface. Their observation together suggests that these graphites may have formed in chemically and isotopically inhomogeneous regions around AGB stars, such as high-density knots or jets. As shown in the companion paper, a gas density exceeding that expected for smooth mass outflows is required for graphite of the observed size to condense at all in circumstellar environments, and the spatially inhomogeneous, high-density regions from which they condense may also be incompletely mixed with the surrounding gas. We have greatly expanded

  7. Mass loss from Wolf-Rayet stars - an analysis of radio and infrared observations of MR 111 /AS 422/

    NASA Astrophysics Data System (ADS)

    Felli, M.; Panagia, N.

    1982-11-01

    VLA radio observations at 1.3 cm of the Wolf-Rayet star MR 111 are reported. The collected fluxes over a frequency range from 1.65 micron to 6 cm are considered and separated into two components: a stellar blackbody and an extended envelope emission. The envelope emission is interpreted in terms of an ionized accelerated outflow due to mass loss. The parameters that define the outflow, i.e., the mass loss and the shape of the velocity curve, as well as the stellar photospheric radius, are derived from a best fit of the available data. MR 111 is found to be a WN-type star, with a radius of 25 solar radii losing mass at a rate of 0.000025 solar mass/yr with acceleration occurring in the inner part of the outflow.

  8. Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends

    NASA Astrophysics Data System (ADS)

    Harig, Christopher; Simons, Frederik J.

    2016-04-01

    Over the past several decades mountain glaciers and ice caps have been significant contributors to sea level rise. Here we estimate the ice mass changes in the Canadian Archipelago, the Gulf of Alaska, and Greenland since 2003 by analyzing time-varying gravimetry data from the Gravity Recovery and Climate Experiment. Prior to 2013, interannual ice mass variability in the Gulf of Alaska and in regions around Greenland remains within the average estimated over the whole data span. Beginning in summer 2013, ice mass in regions around Greenland departs positively from its long-term trend. Over Greenland this anomaly reached almost 500 Gt through the end of 2014. Overall, long-term ice mass loss from Greenland and the Canadian Archipelago continues to accelerate, while losses around the Gulf of Alaska region continue but remain steady with no significant acceleration.

  9. Impact of sublimation losses in the mass balance of glaciers in semi-arid mountain regions

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; Burlando, Paolo; MacDonell, Shelley; McPhee, James

    2016-04-01

    Glaciers in semiarid mountain regions may lose an important part of their winter snow accumulation through sublimation processes that are enhanced by the high-elevation, intense radiation and dry atmosphere of these environments. As glaciers in these regions secure freshwater resources to lower valleys during summer and drought periods, it is important to advance in a detailed quantification of their sublimation losses. However, logistical concerns and complex meteorological features make the measuring and modelling of glacier mass balances a difficult task. In this study, we estimated the spring-summer mass balances of Tapado and Juncal Norte glaciers in the semiarid Andes of north-central Chile by running a distributed energy balance model that accounts for melt, refreezing and sublimation from the surface and blowing snow. Meteorological input data were available from on-glacier Automatic Weather Stations (AWS) that were installed during the ablation season of years 2005-06, 2008-09, 2013-14 and 2014-15. Snow pits, ablation stakes and a time-lapse camera that provided surface albedo were also available. Distributed air temperature and wind speed were dynamically downscaled from NASA MERRA reanalysis using the software WINDSIM and validated against the data from the AWSs. The rest of the meteorological variables were distributed using statistical relations with air temperature derived from the AWSs data. Initial snow conditions were estimated using satellite images and distributed manual snow depth measurements. Preliminary results show that total ablation diminishes with elevation and that, during the early ablation season (October-November), melt is the main ablation component below 4500 m with sublimation dominating the ablation above this elevation. Above 4500 m an important fraction of meltwater refreezes during night. As the ablation season advances (December-February), melt extends to higher elevations, refreezing plays a smaller role and sublimation is

  10. Measurement of the sizes of circumstellar dust shells around evolved stars with high mass loss rates

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Knapp, G. R.

    1992-01-01

    The research supported by the NASA ADP contract NAG5-1153 has been completed. The attached paper, which will be submitted for publication in the Astrophysical Journal in January 1992, presents the results of this work. Here is a summary of the project and its results. A set of computer programs was developed to process the raw 60 micron and 100 micron IRAS survey data. The programs were designed to detect faint extended emission surrounding a bright unresolved source. Candidate objects were chosen from a list of red giant stars and young planetary nebulae which have been detected in millimeter/submillimeter lines of CO. Of the 279 stars examined, 55 were resolved at 60 microns. The principle results of the study are given. The average age for the shells surrounding the 9 Mira-type stars which are extended is 6 x 10(exp 4) yr. This suggests that the period during which these stars lose mass lasts for approx 10(exp 5) yr. The oldest shell found surrounds U Ori, and the youngest surrounds Mira itself. Some shells appear to be detached from the central star. This phenomenon is more common among older stars, suggesting that the mass loss becomes more episodic as the star sheds its envelope. Although all 8 stars less distant than 200 pc are resolved in the IRAS 60 micron data, 29 stars within 500 pc were not. These stars probably have younger circumstellar shells than those which were resolved. Almost all the carbon stars with distances of 500 pc or less have resolved shells, while only 1/2 of the oxygen-rich stars do. The resolved carbon star shells also are older on average than the oxygen-rich ones. These facts imply that carbon stars have been losing mass for a longer period, on average, than oxygen-rich red giants. Large circumstellar shells tend to be found at large distances from the galactic plane, confirming that the ISM density limits the size to which a dust shell can grow. Surprisingly, even very large shells seem to be nearly spherical, and do not appear to

  11. Intermittent dust mass loss from activated asteroid P/2013 P5 (PANSTARRS)

    SciTech Connect

    Moreno, F.; Pozuelos, F.

    2014-02-01

    We present observations and models of the dust environment of activated asteroid P/2013 P5 (PANSTARRS). The object displayed a complex morphology during the observations, with the presence of multiple tails. We combined our own observations, all made with instrumentation attached to the 10.4 m Gran Telescopio Canarias on La Palma, with previously published Hubble Space Telescope images to build a model aimed at fitting all the observations. Altogether, the data cover a full three month period of observations which can be explained by intermittent dust loss. The most plausible scenario is that of an asteroid rotating with the spinning axis oriented perpendicular to the orbit plane and losing mass from the equatorial region, consistent with rotational break-up. Assuming that the ejection velocity of the particles (v ∼ 0.02-0.05 m s{sup –1}) corresponds to the escape velocity, the object diameter is constrained to ∼30-130 m for bulk densities 3000-1000 kg m{sup –3}.

  12. Swimming Activity Prevents the Unloading Induced Loss of Bone Mass, Architecture, and Strength in Rats

    PubMed Central

    Falcai, Maurício J.; Leoni, Graziela Bianchi; de Sousa Neto, Manoel Damião; Volpon, Jose B.

    2015-01-01

    We investigated whether swimming activity associated with a three-week period of hypoactivity could prevent the deleterious effects of disuse on the tibias of tail-suspended rats. Forty Wistar rats were divided into five groups: (HS) permanently hindlimb suspension rats; (HS + Swim) rats submitted to unloading interrupted by swimming exercise; (HS + WB) hindlimb suspension rats with interruption for regular weight bearing for the same length of time as the HS+Swim rats; (Control) control rats that were allowed regular cage activities; and (Control + Swim) control rats that underwent swimming exercise. At the end of the experiment, bone mineral density, bone strength, and trabecular quantification were analyzed. The hindlimb-suspended rats exhibited bone quality loss (significant decrease in BMD, bone strength, and deterioration of trabecular and cortical bone architecture; decrease in BV/TV, TbN, TbTh, ConnD, CtV, and CtTh; and increase in TbSp) when compared to control rats. In contrast, trained rats showed a significant increase of 43% in bone mass, 29% in bone strength, 58% in trabecular thickness, 85% in bone volume, 27% in trabeculae number, and 30% in cortical volume, when compared to the hindlimb-suspended rats. We conclude that swimming activity not only ameliorates but also fully prevents the deleterious effects on bone quality in osteopenic rats. PMID:26090414

  13. Photometry of SN 2002ic and implications for the progenitor mass-loss history

    SciTech Connect

    Wood-Vasey, W.M.; Wang, L.; Aldering, G.

    2004-05-06

    We present new pre-maximum and late-time optical photometry of the Type Ia/IIn supernova 2002ic. These observations are combined with the published V-band magnitudes of Hamuy et al. (2003) and the VLT spectrophotometry of Wang et al. (2004) to construct the most extensive light curve to date of this unusual supernova. The observed flux at late time is significantly higher relative to the flux at maximum than that of any other observed Type Ia supernova and continues to fade very slowly a year after explosion. Our analysis of the light curve suggests that a non-Type Ia supernova component becomes prominent {approx}20 days after explosion. Modeling of the non-Type Ia supernova component as heating from the shock interaction of the supernova ejecta with pre-existing circumstellar material suggests the presence of a {approx}1.7 x 1015 cm gap or trough between the progenitor system and the surrounding circumstellar material. This gap could be due to significantly lower mass-loss {approx}15 (nu{sub omega}/10 km/s) -1 years prior to explosion or evacuation of the circumstellar material by a low-density fast wind. The latter is consistent with observed properties of proto-planetary nebulae and with models of white-dwarf + asymptotic giant branch star progenitor systems with the asymptotic giant branch star in the proto-planetary nebula phase.

  14. FUV Spectra of Evolved Late-K and M Stars: Mass Loss Revisited and Stellar Activity

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2002-01-01

    This is the final report for the FUSE Cycle 1 program A100: FUV Spectra of Evolved Late-K and M Stars: Mass Loss revisited and Stellar Activity. Targets alpha TrA (K3 II) and gamma Cru (M3 III) were originally assigned 25 ksec each, to be observed in the medium aperture. Once the in-flight performance and telescope alignment problems were known, the observations were reprogrammed to optimized the scientific return of the program. Alpha TrA was scheduled for 25 ksec observations in both the medium and large apertures. The principle aim of this program was to measure the stellar FUV line and continuum emission, in order to estimate the photoionization radiation field and to determine the level of stellar activity through the fluxes in the collisionally excited high temperature diagnostics: C III 977Angstroms and O VI 1032,1038Angstrom doublet. The medium aperture observations were obtained successfully while the large aperture observations were thought by Johns Hopkins University (JHU)to be lost to satellite problems. There was insufficient signal-to- noise in the medium aperture short wavelength Sic channels to do quantitative science.

  15. Mass loss rate of dust in comet C/LINEAR (1999 S4) after its disintegration

    NASA Astrophysics Data System (ADS)

    Borisov, Galin B.; Bonev, Tanyu R.

    2002-11-01

    A sequence of observations of comet C/LINEAR (1999 S4) was obtained with the 2m RCC telescope of the National Astronomical Observatory (NAO)-Rozhen, Bulgaria, several days after the comet disintegrated in late July 2000. The Focal Reducer Rozhen was used with a set of narrow-band interference filters, centered at two clean spectral windows, sampling the cometary continuum at 443 nm and 684 nm. From the variations of the surface brightness with time, and assuming the function of particle size distribution (PSD) to be described by a power law, we have estimated the power index of this function. We use the continuum images, calibrated in fluxes, to calculate the total geometrical cross-section of the scattering area of all dust particles. Using the particle size distribution, the scattering area, and the increasing size of the smallest particles remained in the tail, we estimate the decreasing number of dust particles after the disintegration of the comet. This number is used together with the PSD to calculate the mass loss rate during the same period.

  16. SPITZER SPECTROSCOPY OF MASS-LOSS AND DUST PRODUCTION BY EVOLVED STARS IN GLOBULAR CLUSTERS

    SciTech Connect

    Sloan, G. C.; Bernard-Salas, J.; Houck, J. R.; Matsunaga, N.; Matsuura, M.; Zijlstra, A. A.; Kraemer, K. E.; Wood, P. R.; Nieusma, J.; Devost, D. E-mail: jbs@isc.astro.cornell.ed E-mail: matsunaga@ioa.s.u-tokyo.ac.j E-mail: albert.zijlstra@manchester.ac.u E-mail: judaniel@umich.ed

    2010-08-20

    We have observed a sample of 35 long-period variables (LPVs) and four Cepheid variables in the vicinity of 23 Galactic globular clusters using the Infrared Spectrograph on the Spitzer Space Telescope. The LPVs in the sample cover a range of metallicities from near solar to about 1/40th solar. The dust mass-loss rate (MLR) from the stars increases with pulsation period and bolometric luminosity. Higher MLRs are associated with greater contributions from silicate grains. The dust MLR also depends on metallicity. The dependence is most clear when segregating the sample by dust composition, less clear when segregating by bolometric magnitude, and absent when segregating by period. The spectra are rich in solid-state and molecular features. Emission from alumina dust is apparent across the range of metallicities. Spectra with a 13 {mu}m dust emission feature, as well as an associated feature at 20 {mu}m, also appear at most metallicities. Molecular features in the spectra include H{sub 2}O bands at 6.4-6.8 {mu}m, seen in both emission and absorption, SO{sub 2} absorption at 7.3-7.5 {mu}m, and narrow emission bands from CO{sub 2} from 13.5 to 16.8 {mu}m. The star Lyngaa 7 V1 has an infrared spectrum revealing it to be a carbon star, adding to the small number of carbon stars associated with Galactic globular clusters.

  17. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss.

    PubMed

    Gomez, Natalya; Pollard, David; Holland, David

    2015-11-10

    The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution. Here we use a coupled ice sheet-sea-level model to investigate the impact of the feedback mechanism on future AIS retreat over centennial and millennial timescales for a range of emission scenarios. We show that the combination of bedrock uplift and sea-surface drop associated with ice-sheet retreat significantly reduces AIS mass loss relative to a simulation without these effects included. Sensitivity analyses show that the stabilization tends to be greatest for lower emission scenarios and Earth models characterized by a thin elastic lithosphere and low-viscosity upper mantle, as is the case for West Antarctica.

  18. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  19. The origin of single low-mass WDs: another problem that consequential angular momentum loss in CVs might solve

    NASA Astrophysics Data System (ADS)

    Zorotovic, M.; Schreiber, M. R.

    2017-03-01

    Low-mass helium-core white dwarfs (WDs) with masses below 0.5 M_{⊙} are known to be formed in binary star systems but unexpectedly, a significant fraction of them seems to be single. On the other hand, in cataclysmic variables (CVs), a large number of low-mass WD primary stars is predicted but not observed. We recently showed that the latter problem can be solved if consequential angular momentum loss causes especially CVs with low-mass WDs to merge and form single stars. Here we simulate the population of single WDs resulting from single-star evolution and from binary star mergers taking into account these new merging CVs. We show that according to the revised model of CV evolution, merging CVs might be the dominant channel leading to the formation of low-mass single WDs and that the predicted relative numbers are consistent with observations. This can be interpreted as further evidence for the revised model of CV evolution we recently suggested. This model includes consequential angular momentum loss that increases with decreasing WD mass and might not only explain the absence of low-mass WD primaries in CVs but also the existence of single low-mass WDs.

  20. Millimeter and some near infra-red observations of short-period Miras and other AGB stars

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Baas, F.; Blommaert, J. A. D. L.; Stehle, R.; Josselin, E.; Tilanus, R. P. J.

    1999-12-01

    Millimeter observations of 48 oxygen- and 20 carbon-rich AGB Miras with periods shorter than 400 days are presented. In addition, observations of 14 O-rich and 15 C-stars with longer, or no known, periods have also been obtained. The detection statistics is as follows: in 12CO J=1-0 and 2-1 we observed 97 stars, and detected 66 in at least one line. We find 24 new detections in the 1-0 line, 38 new detections in the 2-1 line, and 29 stars have been detected for the first time in one or both lines. In 12CO J=3-2 we observed 14 stars and detected 11, with 4 new detections. In 13CO J=2-1, 3-2 we observed 2 stars and had one new detection. In HCN(1-0) we observed 5 carbon stars and detected 3, one new. In SO(6_5-5_4) we observed the same 5 stars and detected none. In CS(3-2) we observed 8 carbon stars and detected 3, all new. In SiO(3-2, v=0) we observed 34 O-rich stars and detected 25, all new except one. Near-infrared JHK photometry is presented for seven stars. For four stars it is the first NIR data published. The luminosity and dust mass loss rate are obtained for seven very red stars with unknown pulsation period from modelling the spectral energy distribution (SED) and IRAS LRS spectra. Thereby, a new IR supergiant is confirmed (AFGL 2968). For the rest of the sample, luminosity and distance are obtained in a variety of ways: using hipparcos parallaxes, period-luminosity and period-M_K-relations combined with apparent K magnitudes, and kinematic distances. The dust mass loss rate is obtained from model fitting of the SED (either from the literature, or presented in the present paper), or from the observed IRAS 60 mu m flux, corrected for the photospheric contribution. The gas mass loss rate is derived from the observed CO line intensities, as presented here, combined with existing literature data, if any. This allows the derivation of the dust-to-gas ratio. Our and literature CO J = 3-2 data has been used to calibrate the relation between mass loss rate and peak

  1. Heating from free-free absorption and the mass-loss rate of the progenitor stars to supernovae

    SciTech Connect

    Björnsson, C.-I.; Lundqvist, P. E-mail: peter@astro.su.se

    2014-06-01

    An accurate determination of the mass-loss rate of the progenitor stars to core-collapse supernovae is often limited by uncertainties pertaining to various model assumptions. It is shown that under conditions when the temperature of the circumstellar medium is set by heating due to free-free absorption, observations of the accompanying free-free optical depth allow a direct determination of the mass-loss rate from observed quantities in a rather model-independent way. The temperature is determined self-consistently, which results in a characteristic time dependence of the free-free optical depth. This can be used to distinguish free-free heating from other heating mechanisms. Since the importance of free-free heating is quite model dependent, this also makes possible several consistency checks of the deduced mass-loss rate. It is argued that the free-free absorption observed in SN 1993J is consistent with heating from free-free absorption. The deduced mass-loss rate of the progenitor star is, approximately, 10{sup –5} M {sub ☉} yr{sup –1} for a wind velocity of 10 km s{sup –1}.

  2. Changes in mass loss and chemistry of AG-80 epoxy resin after 160 keV proton irradiations

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Sun, Mingren; Yang, Dezhuang; He, Shiyu; Wang, Jinhe; Xiao, Jingdong; Li, Zhijun

    2005-06-01

    The AG-80 resin is a new type of thermosetting matrix for advanced carbon/epoxy composites. Mass loss effect and the related outgassing are major concerns for its application in space. The changes in mass loss, outgassing and chemical structure under 160 keV proton exposure were investigated for the AG-80 epoxy resin. The variation in chemistry was characterized by X-ray photoelectron spectroscopy. Experimental results show that with increasing the proton fluence, the surface colour of specimens is getting darker. Mass loss ratios ascend remarkably until the fluence of approximately 5.5 × 10 15 cm -2, and then tend to leveling off. The surface roughness of specimens exhibits an increasing trend followed by decreasing as a function of proton fluence. Under the exposure, the C-C, C-H, C-N and C-O bonds are broken, a variety of molecule ions with smaller molecule weight are formed, and carbon is enriched in the surface layer of specimens. The changes in mass loss and surface roughness of the AG-80 epoxy resin could be attributed to the formation of the molecule ions and the enrichment of carbon content in the surface layer due to proton radiation.

  3. Effect of 120 keV proton irradiation on mass loss and chemical structure of AG-80 epoxy resin

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Jiang, Sheng-Ling; Dong, Shang-Li; Yang, De-Zhuang

    2010-11-01

    The AG-80 resin is a new type of thermosetting matrix for advanced carbon/epoxy composites. Mass loss effect and the related outgassing are major concerns for its application in space. The changes in mass loss, outgassing and chemical structure under 120 keV proton exposure were investigated for the AG-80 epoxy resin. The variation in chemistry was characterised by X-ray photoelectron spectroscopy. Experimental results show that by increasing the proton fluence, the surface colour of specimens becomes darker. Mass loss ratios ascend remarkably until the fluence of approximately 6.3×1015 cm-2 and then tend to level off. The surface roughness of specimens exhibits an increasing trend followed by a decreasing trend as a function of proton fluence. Under the exposure, the C‒C, C‒H, C‒N and C‒O bonds are broken, a variety of molecule ions with smaller molecular weight are formed and carbon is enriched in the surface layer of the specimens. The changes in mass loss and surface roughness of the AG-80 epoxy resin could be attributed to the formation of the molecule ions and the enrichment of carbon content in the surface layer due to proton radiation.

  4. e-MERLIN 21 cm constraints on the mass-loss rates of OB stars in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Morford, J. C.; Fenech, D. M.; Prinja, R. K.; Blomme, R.; Yates, J. A.

    2016-11-01

    We present e-MERLIN 21 cm (L-band) observations of single luminous OB stars in the Cygnus OB2 association, from the Cyg OB2 Radio Survey Legacy programme. The radio observations potentially offer the most straightforward, least model-dependent, determinations of mass-loss rates, and can be used to help resolve current discrepancies in mass-loss rates via clumped and structured hot star winds. We report here that the 21 cm flux densities of O3 to O6 supergiant and giant stars are less than ˜70 μJy. These fluxes may be translated to `smooth' wind mass-loss upper limits of ˜4.4-4.8 × 10-6 M⊙ yr -1 for O3 supergiants and ≲2.9 × 10-6 M⊙ yr -1 for B0 to B1 supergiants. The first ever resolved 21 cm detections of the hypergiant (and luminous blue variable candidate) Cyg OB2 #12 are discussed; for multiple observations separated by 14 d, we detect an ˜69 per cent increase in its flux density. Our constraints on the upper limits for the mass-loss rates of evolved OB stars in Cyg OB2 support the model that the inner wind region close to the stellar surface (where Hα forms) is more clumped than the very extended geometric region sampled by our radio observations.

  5. Macroclumping as solution of the discrepancy between Hα and P v mass loss diagnostics for O-type stars

    NASA Astrophysics Data System (ADS)

    Šurlan, B.; Hamann, W.-R.; Aret, A.; Kubát, J.; Oskinova, L. M.; Torres, A. F.

    2013-11-01

    Context. Recent studies of O-type stars have demonstrated that discrepant mass-loss rates are obtained when different diagnostic methods are employed. Fitting the unsaturated UV resonance lines (e.g., P v) gives drastically lower values than obtained from the Hα emission. Wind inhomogeneity (so-called "clumping") may be the main cause of this discrepancy. Aims: In a previous paper, we presented 3D Monte-Carlo calculations for the formation of scattering lines in a clumped stellar wind. In the present paper we select five O-type supergiants (from O4 to O7) and test whether the reported discrepancies can be resolved this way. Methods: In the first step, the analyses started with simulating the observed spectra with Potsdam Wolf-Rayet (PoWR) non-LTE model atmospheres. The mass-loss rates are adjusted to fit to the observed Hα emission lines best. For the unsaturated UV resonance lines (i.e., P v) we then applied our 3D Monte-Carlo code, which can account for wind clumps of any optical depths ("macroclumping"), a non-void interclump medium, and a velocity dispersion inside the clumps. The ionization stratifications and underlying photospheric spectra were adopted from the PoWR models. The properties of the wind clumps were constrained by fitting the observed resonance line profiles. Results: Our results show that with the mass-loss rates that fit Hα (and other Balmer and He ii lines), the UV resonance lines (especially the unsaturated doublet of P v) can also be reproduced with no problem when macroclumping is taken into account. There is no need to artificially reduce the mass-loss rates or to assume a subsolar phosphorus abundance or an extremely high clumping factor, unlike what was claimed by other authors. These consistent mass-loss rates are lower by a factor of 1.3 to 2.6, compared to the mass-loss rate recipe from Vink et al. Conclusions: Macroclumping resolves the previously reported discrepancy between Hα and P v mass-loss diagnostics. Based on

  6. Color-magnitude relations within globular cluster systems of giant elliptical galaxies: The effects of globular cluster mass loss and the stellar initial mass function

    SciTech Connect

    Goudfrooij, Paul; Kruijssen, J. M. Diederik E-mail: kruijssen@mpa-garching.mpg.de

    2014-01-01

    Several recent studies have provided evidence for a 'bottom-heavy' stellar initial mass function (IMF) in massive elliptical galaxies. Here we investigate the influence of the IMF shape on the recently discovered color-magnitude relation (CMR) among globular clusters (GCs) in such galaxies. To this end we use calculations of GC mass loss due to stellar and dynamical evolution to evaluate (1) the shapes of stellar mass functions in GCs after 12 Gyr of evolution as a function of current GC mass along with their effects on integrated-light colors and mass-to-light ratios, and (2) their impact on the effects of GC self-enrichment using the 2009 'reference' model of Bailin and Harris. As to the class of metal-poor GCs, we find the observed shape of the CMR (often referred to as the 'blue tilt') to be very well reproduced by Bailin and Harris's reference self-enrichment model once 12 Gyr of GC mass loss is taken into account. The influence of the IMF on this result is found to be insignificant. However, we find that the observed CMR among the class of metal-rich GCs (the 'red tilt') can only be adequately reproduced if the IMF was bottom-heavy (–3.0 ≲ α ≲ –2.3 in dN/dM∝M{sup α}), which causes the stellar mass function at subsolar masses to depend relatively strongly on GC mass. This constitutes additional evidence that the metal-rich stellar populations in giant elliptical galaxies were formed with a bottom-heavy IMF.

  7. The Search for Acoustically-Driven Mass-Loss in Evolved Stars

    NASA Astrophysics Data System (ADS)

    Stencel, R. E.; Brown, A.; Carpenter, K. G.; Cuntz, M.; Judge, P.

    1992-12-01

    Recent ab-initio calculations of stochastic stellar wind models by Cuntz (1992 in Cool Stars VII, ASP Conf. Ser. 26, p.383) have proven remarkably robust in predicting observed chromospheric flow patterns including possible variabilities with time in selected cool, evolved stars. The calculations solve the equations of hydrodynamics using the method of characteristics and assume: (i) saw-tooth shock wave profiles, and (ii) wave periods were changed stochastically while keeping the wave amplitudes constant (see Cuntz 1990 Ap.J. 349, p.141). Among the results of fitting chromospheric flow velocities is the implication that the permitted range of acoustic wave periods for a given star is constrained. We made use of the IUE satellite during August and September 1992 to repeatedly observe two stars, the yellow giant Aldebaran (K5 III) and the red supergiant, Betelgeuse (M2 Iab), in order to sample variations in their atmospheres on timescales of ~ 10(4) to ~ 10(6) seconds, which bracket the predicted mean acoustic wave periods for these objects. In particular, we obtained deep exposures in order to measure density-sensitive line ratios within the C II] intercombination features near 2325A (cf. Lennon et al. 1985 Ap.J. 294, p.200) to test the hypothesis that density fluctuations could be measured as a consequence of these acoustic waves. The results of these observations will be presented and discussed in terms of the number and amplitude of acoustic waves contributing to chromospheric heating and mass loss from these stars, as well as the wave origins in the evolving oscillatory structure of these stellar interiors. We are pleased to acknowledge IUE--NASA grant NAG5-2103 for partial support of this effort.

  8. The peculiar mass-loss history of SN 2014C as revealed through AMI radio observations

    NASA Astrophysics Data System (ADS)

    Anderson, G. E.; Horesh, A.; Mooley, K. P.; Rushton, A. P.; Fender, R. P.; Staley, T. D.; Argo, M. K.; Beswick, R. J.; Hancock, P. J.; Pérez-Torres, M. A.; Perrott, Y. C.; Plotkin, R. M.; Pretorius, M. L.; Rumsey, C.; Titterington, D. J.

    2017-04-01

    We present a radio light curve of supernova (SN) 2014C taken with the Arcminute Microkelvin Imager (AMI) Large Array at 15.7 GHz. Optical observations presented by Milisavljevic et al. demonstrated that SN 2014C metamorphosed from a stripped-envelope Type Ib SN into a strongly interacting Type IIn SN within 1 yr. The AMI light curve clearly shows two distinct radio peaks, the second being a factor of 4 times more luminous than the first peak. This double bump morphology indicates two distinct phases of mass-loss from the progenitor star with the transition between density regimes occurring at 100-200 d. This reinforces the interpretation that SN 2014C exploded in a low-density region before encountering a dense hydrogen-rich shell of circumstellar material that was likely ejected by the progenitor prior to the explosion. The AMI flux measurements of the first light-curve bump are the only reported observations taken within ∼50 to ∼125 d post-explosion, before the blast-wave encountered the hydrogen shell. Simplistic synchrotron self-absorption and free-free absorption modelling suggest that some physical properties of SN 2014C are consistent with the properties of other Type Ibc and IIn SNe. However, our single frequency data does not allow us to distinguish between these two models, which implies that they are likely too simplistic to describe the complex environment surrounding this event. Lastly, we present the precise radio location of SN 2014C obtained with the electronic Multi-Element Remotely Linked Interferometer Network, which will be useful for future very long baseline interferometry observations of the SN.

  9. Towards a coherent view at infrared wavelengths of mass loss in Betelgeuse

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Perrin, G.; Montargès, M.; Haubois, X.

    2013-05-01

    The violent convective motions, low surface gravity, and high brightness of red supergiants combine to trigger an intense stellar wind. As the distance from the star increases, the standard scenario is that the ejected material forms molecules, then dust particles. But this general picture is still fragmentary. Our goal is to assemble a better understanding of mass loss in Betelgeuse, considered as a prototype for its class, from its photosphere to the interface of its wind with the interstellar medium. Thanks to its proximity ( ≈ 197 pc), it is ideally suited for such a detailed study. Over the past few years, our team obtained an extensive set of observations of Betelgeuse from high angular resolution instruments, probing a broad range of spatial scales: 1) interferometric imaging of its photosphere and close envelope in the near- and thermal-IR domains (IOTA/IONIC), 2) adaptive optics "lucky imaging" of its compact molecular envelope (VLT/NACO, 1.0-2.2 μm), and 3) diffraction-limited imaging of its dusty envelope (VLT/VISIR, 8-20 μm). From our interferometric data, we detect the presence of spots at the surface of the star, as well as CO and H2O molecules, and dust particles close to the star. Within 6 R⋆, the flux distribution of the envelope is compatible with the presence of the CN molecule. At a few arcseconds from the central star, we observe a complex dusty envelope probably containing O-rich dust (e.g. silicates, alumina). We present an overview of these recent observational results and ongoing work. They provide new hints on the physical and chemical mechanisms through which Betelgeuse interacts with its environment.

  10. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  11. Spin-induced mass loss from rubble piles and the formation of asteroid satellites and pairs

    NASA Astrophysics Data System (ADS)

    Tanga, P.; Campo Bagatin, A.; Thirouin, A.; Cellino, A.; Comito, C.; Ortiz, J.; Richardson, D.; Hestroffer, D.

    2014-07-01

    Non-gravitational effects may change the angular momentum of asteroids up to a few tens of km in size to the point that rotational stability is lost at high spin rates. Once instability is initiated, mass loss may happen and potentially create satellites or dynamically detached components (pairs). We have studied this problem by means of numerical simulations and investigated the production of secondary objects of different sizes by direct splitting of the parent body under the assumption of a low internal angle of friction. We focused our attention on the effect of progressive spin-up of objects as a consequence of the YORP effect. Since asteroids are clearly not fluid but rocky bodies, one can assume that equilibrium theories --- also describing bifurcations (e.g., [1]) --- do not directly apply [2]. The equilibrium shapes of non-fluid bodies have been studied in the recent past by several authors, assuming that rubble-pile asteroids can be modeled as cohesionless granular systems in the frame of continuum theories [2--5]. [6] shows that a small amount of tensile strength could be sufficient for the survival of some fast rotators, even if they are internally fragmented. More relevant to this work are the results obtained by [7,8] by the same N-body approach that we use, i.e., by simulating the dynamics and the collisions of mono-dispersed hard spheres utilizing the PKDGRAV code [9,10]. The YORP effect is modeled by increasing rigid rotation by small increments with enough time to relax between subsequent spin-ups. In this work, our approach is based again on the same simulation code; however, our new exploration of the parameter space is broader than the previous study in the near-fluid regime, which is achieved by randomizing the initial particle positions somewhat to break the otherwise crystalline structure of monodisperse particle packing. We find that the transformation of objects into prolate ellipsoids is an efficient process when the internal angle of

  12. Effects of the LBV Primary's Mass-loss Rate on the 3D Hydrodynamics of eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Cocoran, M.; Okazaki, A.; Owocki, S.; Russell, C.; Hamaguchi, K.; Clementel, N; Groh, J.; Hillier, D. J.

    2013-01-01

    At the heart of eta Carinae's spectacular "Homunculus" nebula lies an extremely luminous (L(sub Total) greater than approximately 5 × 10(exp 6) solar luminosity) colliding wind binary with a highly eccentric (e approximately 0.9), 5.54-year orbit (Figure 1). The primary of the system, a Luminous Blue Variable (LBV), is our closest (D approximately 2.3 kpc) and best example of a pre-hypernova or pre-gamma ray burst environment. The remarkably consistent and periodic RXTE X-ray light curve surprisingly showed a major change during the system's last periastron in 2009, with the X-ray minimum being approximately 50% shorter than the minima of the previous two cycles1. Between 1998 and 2011, the strengths of various broad stellar wind emission lines (e.g. Halpha, Fe II) in line-of-sight (l.o.s.) also decreased by factors of 1.5 - 3 relative to the continuum2. The current interpretation for these changes is that they are due to a gradual factor of 2 - 4 drop in the primary's mass-loss rate over the last approximately 15 years1, 2. However, while a secular change is seen for a direct view of the central source, little to no change is seen in profiles at high stellar latitudes or reflected off of the dense, circumbinary material known as the "Weigelt blobs"2, 3. Moreover, model spectra generated with CMFGEN predict that a factor of 2 - 4 drop in the primary's mass-loss rate should lead to huge changes in the observed spectrum, which thus far have not been seen. Here we present results from large- (plus or minus 1620 AU) and small- (plus or minus 162 AU) domain, full 3D smoothed particle hydrodynamics (SPH) simulations of eta Car's massive binary colliding winds for three different primary-star mass-loss rates (2.4, 4.8, and 8.5 × 10(exp -4) solar mass/yr). The goal is to investigate how the mass-loss rate affects the 3D geometry and dynamics of eta Car's optically-thick wind and spatially-extended wind-wind collision (WWC) regions, both of which are known sources of

  13. Short-term variability and mass loss in Be stars. I. BRITE satellite photometry of η and μ Centauri

    NASA Astrophysics Data System (ADS)

    Baade, D.; Rivinius, Th.; Pigulski, A.; Carciofi, A. C.; Martayan, Ch.; Moffat, A. F. J.; Wade, G. A.; Weiss, W. W.; Grunhut, J.; Handler, G.; Kuschnig, R.; Mehner, A.; Pablo, H.; Popowicz, A.; Rucinski, S.; Whittaker, G.

    2016-04-01

    Context. Empirical evidence for the involvement of nonradial pulsations (NRPs) in the mass loss from Be stars ranges from (i) a singular case (μ Cen) of repetitive mass ejections triggered by multi-mode beating to (ii) several photometric reports about enormous numbers of pulsation modes that suddenly appear during outbursts and on to (iii) effective single-mode pulsators. Aims: The purpose of this study is to develop a more detailed empirical description of the star-to-disk mass transfer and to check the hypothesis that spates of transient nonradial pulsation modes accompany and even drive mass-loss episodes. Methods: The BRITE Constellation of nanosatellites was used to obtain mmag photometry of the Be stars η and μ Cen. Results: In the low-inclination star μ Cen, light pollution by variable amounts of near-stellar matter prevented any new insights into the variability and other properties of the central star. In the equator-on star η Cen, BRITE photometry and Heros echelle spectroscopy from the 1990s reveal an intricate clockwork of star-disk interactions. The mass transfer is modulated with the frequency difference of two NRP modes and an amplitude three times as large as the amplitude sum of the two NRP modes. This process feeds a high-amplitude circumstellar activity running with the incoherent and slightly lower so-called Štefl frequency. The mass-loss-modulation cycles are tightly coupled to variations in the value of the Štefl frequency and in its amplitude, albeit with strongly drifting phase differences. Conclusions: The observations are well described by the decomposition of the mass loss into a pulsation-related engine in the star and a viscosity-dominated engine in the circumstellar disk. Arguments are developed that large-scale gas-circulation flows occur at the interface. The propagation rates of these eddies manifest themselves as Štefl frequencies. Bursts in power spectra during mass-loss events can be understood as the noise inherent to

  14. Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration.

    PubMed

    Hines, Jes; Reyes, Marta; Mozder, Thomas J; Gessner, Mark O

    2014-12-01

    Intraspecific variation in genotypically determined traits can influence ecosystem processes. Therefore, the impact of climate change on ecosystems may depend, in part, on the distribution of plant genotypes. Here we experimentally assess effects of climate warming and excess nitrogen supply on litter decomposition using 12 genotypes of a cosmopolitan foundation species collected across a 2100 km latitudinal gradient and grown in a common garden. Genotypically determined litter-chemistry traits varied substantially within and among geographic regions, which strongly affected decomposition and the magnitude of warming effects, as warming accelerated litter mass loss of high-nutrient, but not low-nutrient, genotypes. Although increased nitrogen supply alone had no effect on decomposition, it strongly accelerated litter mass loss of all genotypes when combined with warming. Rates of microbial respiration associated with the leaf litter showed nearly identical responses as litter mass loss. These results highlight the importance of interactive effects of environmental factors and suggest that loss or gain of genetic variation associated with key phenotypic traits can buffer, or exacerbate, the impact of global change on ecosystem process rates in the future.

  15. Water quality and nitrogen mass loss from anaerobic lagoon columns receiving pretreated influent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control methods are needed to abate ammonia losses from swine anaerobic lagoons to reduce contribution of confined swine operations to air pollution. In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on water quality, reduction of N losses, and sludge accumulation...

  16. Evolution of the dust mass loss with luminosity along the giant branch of the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Ramdani, A.; Jorissen, A.

    2001-06-01

    The present paper investigates the properties of the dust mass loss in stars populating the giant branch of the globular cluster 47 Tuc, by combining ISOCAM and DENIS data. Raster maps of 5 fields covering areas ranging from 4x4 to 15x15 arcmin2 at different distances from the center of the cluster have been obtained with ISOCAM at 11.5 mu m (LW10 filter). The covered fields include most of the red variables known in this cluster. A detection threshold of about 0.2 mJy is achieved, allowing us to detect giant stars at 11.5 mu m all the way down to the horizontal branch. No dust-enshrouded asymptotic giant branch stars have been found in the observed fields, contrary to the situation encountered in LMC/SMC globular clusters with larger turnoff masses. The color index [12]-[2] (based on the ISO 11.5 mu m flux and on the DENIS Ks magnitude) is used as a diagnostic of dust emission (and hence dust mass loss). Its evolution with luminosity along the giant branch reveals that dust mass loss is only present in V3 (the only cluster Mira variable observed in the present study) and in V18, a star presenting intermittent variability. This conclusion confirms the importance of stellar pulsations in the dust formation and ensuing mass loss. Table 3 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/372/85

  17. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women.

    PubMed

    Josse, Andrea R; Atkinson, Stephanie A; Tarnopolsky, Mark A; Phillips, Stuart M

    2011-09-01

    Weight loss can have substantial health benefits for overweight or obese persons; however, the ratio of fat:lean tissue loss may be more important. We aimed to determine how daily exercise (resistance and/or aerobic) and a hypoenergetic diet varying in protein and calcium content from dairy foods would affect the composition of weight lost in otherwise healthy, premenopausal, overweight, and obese women. Ninety participants were randomized to 3 groups (n = 30/group): high protein, high dairy (HPHD), adequate protein, medium dairy (APMD), and adequate protein, low dairy (APLD) differing in the quantity of total dietary protein and dairy food-source protein consumed: 30 and 15%, 15 and 7.5%, or 15 and <2% of energy, respectively. Body composition was measured by DXA at 0, 8, and 16 wk and MRI (n = 39) to assess visceral adipose tissue (VAT) volume at 0 and 16 wk. All groups lost body weight (P < 0.05) and fat (P < 0.01); however, fat loss during wk 8-16 was greater in the HPHD group than in the APMD and APLD groups (P < 0.05). The HPHD group gained lean tissue with a greater increase during 8-16 wk than the APMD group, which maintained lean mass and the APLD group, which lost lean mass (P < 0.05). The HPHD group also lost more VAT as assessed by MRI (P < 0.05) and trunk fat as assessed by DXA (P < 0.005) than the APLD group. The reduction in VAT in all groups was correlated with intakes of calcium (r = 0.40; P < 0.05) and protein (r = 0.32; P < 0.05). Therefore, diet- and exercise-induced weight loss with higher protein and increased dairy product intakes promotes more favorable body composition changes in women characterized by greater total and visceral fat loss and lean mass gain.

  18. Increased Consumption of Dairy Foods and Protein during Diet- and Exercise-Induced Weight Loss Promotes Fat Mass Loss and Lean Mass Gain in Overweight and Obese Premenopausal Women1234

    PubMed Central

    Josse, Andrea R.; Atkinson, Stephanie A.; Tarnopolsky, Mark A.; Phillips, Stuart M.

    2011-01-01

    Weight loss can have substantial health benefits for overweight or obese persons; however, the ratio of fat:lean tissue loss may be more important. We aimed to determine how daily exercise (resistance and/or aerobic) and a hypoenergetic diet varying in protein and calcium content from dairy foods would affect the composition of weight lost in otherwise healthy, premenopausal, overweight, and obese women. Ninety participants were randomized to 3 groups (n = 30/group): high protein, high dairy (HPHD), adequate protein, medium dairy (APMD), and adequate protein, low dairy (APLD) differing in the quantity of total dietary protein and dairy food-source protein consumed: 30 and 15%, 15 and 7.5%, or 15 and <2% of energy, respectively. Body composition was measured by DXA at 0, 8, and 16 wk and MRI (n = 39) to assess visceral adipose tissue (VAT) volume at 0 and 16 wk. All groups lost body weight (P < 0.05) and fat (P < 0.01); however, fat loss during wk 8–16 was greater in the HPHD group than in the APMD and APLD groups (P < 0.05). The HPHD group gained lean tissue with a greater increase during 8–16 wk than the APMD group, which maintained lean mass and the APLD group, which lost lean mass (P < 0.05). The HPHD group also lost more VAT as assessed by MRI (P < 0.05) and trunk fat as assessed by DXA (P < 0.005) than the APLD group. The reduction in VAT in all groups was correlated with intakes of calcium (r = 0.40; P < 0.05) and protein (r = 0.32; P < 0.05). Therefore, diet- and exercise-induced weight loss with higher protein and increased dairy product intakes promotes more favorable body composition changes in women characterized by greater total and visceral fat loss and lean mass gain. PMID:21775530

  19. Weight loss may be a better approach for managing musculoskeletal conditions than increasing muscle mass and strength

    PubMed Central

    Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Suzuki, Shun; Kim, Taeho; Tanaka, Kiyoji

    2015-01-01

    To prevent or remedy musculoskeletal conditions, the relationship between obesity and the characteristics of muscle mass and strength need to be clarified. [Subjects and Methods] A total of 259 Japanese males aged 30–64 years were classified into 4 groups according to the Japanese obesity criteria. Body composition was evaluated, and handgrip strength and knee extensor strength were measured for the upper and lower extremities, respectively. Physical performance was evaluated with a jump test. [Results] Obesity was positively correlated with skeletal muscle mass index, percentage of whole-body fat, and leg muscle strength and negatively correlated with the percentage of muscle mass index, body weight-normalized handgrip strength, and knee extensor strength, and the jump test results. [Conclusion] Weight loss may be a better approach than increasing muscle mass and strength to improve musculoskeletal conditions in obese adult males. PMID:26834353

  20. EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance

    NASA Astrophysics Data System (ADS)

    Erkaev, N. V.; Lammer, H.; Odert, P.; Kislyakova, K. G.; Johnstone, C. P.; Güdel, M.; Khodachenko, M. L.

    2016-08-01

    We investigate the loss rates of the hydrogen atmospheres of terrestrial planets with a range of masses and orbital distances by assuming a stellar extreme ultraviolet (EUV) luminosity that is 100 times stronger than that of the current Sun. We apply a 1D upper atmosphere radiation absorption and hydrodynamic escape model that takes into account ionization, dissociation and recombination to calculate hydrogen mass-loss rates. We study the effects of the ionization, dissociation and recombination on the thermal mass-loss rates of hydrogen-dominated super-Earths and compare the results to those obtained by the energy-limited escape formula which is widely used for mass-loss evolution studies. Our results indicate that the energy-limited formula can to a great extent over- or underestimate the hydrogen mass-loss rates by amounts that depend on the stellar EUV flux and planetary parameters such as mass, size, effective temperature and EUV absorption radius.

  1. Body mass loss during adaptation to short winter-like days increases food foraging, but not food hoarding.

    PubMed

    Teubner, Brett J W; Bartness, Timothy J

    2009-04-20

    Siberian hamsters markedly reduce their body/lipid mass ( approximately 20-45%) in short 'winter-like' days (SD). Decreases in body/lipid mass associated with food deprivation or lipectomy result in increases in foraging and food hoarding. When at their SD-induced body/lipid mass nadir, food hoarding is not increased despite their decreases in body/lipid mass, but hoarding was not tested during the dynamic period of body/lipid mass loss (first 5-6 weeks of SDs). Therefore, we tested for changes in foraging/hoarding during this initial period in Siberian hamsters housed in a simulated burrow with a wheel running-based foraging system and exposed to either long 'summer-like' days (LD) or SDs. Two foraging effort conditions were used: 10 Revolutions/Pellet (pellet delivered after running 10 revolutions) and a Free Wheel/Free Food condition (wheel available, food pellets non-contingently available). Regardless of the foraging condition, body mass was significantly reduced across 8 weeks of SDs ( approximately 15%). Foraging increased after 7 weeks in SDs, but food hoarding did not increase compared to LDs. Instead food hoarding significantly decreased in SDs at Weeks 2-5 compared with Week 0 values, with the 10 Revolutions/Pellet foraging group returning to LD levels thereafter and the Free Wheel/Free Food group remaining reduced from Weeks 2-7. Collectively, we found that SDs decreased body mass, increased foraging after 7 weeks, and increased food hoarding, but only after an initial decrease and not above that seen in LDs. These data suggest that SD-induced body/lipid mass losses do not engender similar behavioral responses as seen with food deprivation or lipectomy.

  2. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?

    NASA Astrophysics Data System (ADS)

    Song, Chunqiao; Ke, Linghong; Huang, Bo; Richards, Keith S.

    2015-01-01

    The southeast Tibetan Plateau (SETP) includes the majority of monsoonal temperate glaciers in High Mountain Asia (HMA), which is an important source of water for the upper reaches of several large Asian river systems. Climatic change and variability has substantial impacts on cryosphere and hydrological processes in the SETP. The Gravity Recovery and Climate Experiment (GRACE) gravimetry observations between 2003 and 2009 suggest that there was an average mass loss rate of - 5.99 ± 2.78 Gigatonnes (Gt)/yr in this region. Meanwhile, the hydrological data by model calculations from the GLDAS/Noah and CPC are used to estimate terrestrial water storage (TWS) changes with a slight negative trend of about - 0.3 Gt/yr. The recent studies (Kääb et al., 2012; Gardner et al., 2013) reported the thinning rates of mountain glaciers in HMA based on the satellite laser altimetry, and an approximate estimation of the glacier mass budget in the SETP was 4.69 ± 2.03 Gt/yr during 2003-2009. This estimate accounted for a large proportion (~ 78.3%) of the difference between the GRACE TWS and model-calculated TWS changes. To better understand the cause of sharp mass loss existing in the SETP, the correlations between key climatic variables (precipitation and temperature) and the GRACE TWS changes are examined at different timescales between 2003 and 2011. The results show that precipitation is the leading factors of abrupt, seasonal and multi-year undulating signals of GRACE TWS anomaly time series, but with weak correlations with the inter-annual trend and annual mass budget of GRACE TWS. In contrast, the annual mean temperature is tightly associated with the annual net mass budget (r = 0.81, p < 0.01), which indirectly suggests that the GRACE-observed mass loss in the SETP may be highly related to glacial processes.

  3. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan J.; Carrivick, Jonathan L.; Rowan, Ann V.

    2017-02-01

    Region-wide averaging of Himalayan glacier mass change has masked any catchment or glacier-scale variability in glacier recession; thus the role of a number of glaciological processes in glacier wastage remains poorly understood. In this study, we quantify mass loss rates over the period 2000-2015 for 32 glaciers across the Everest region and assess how future ice loss is likely to differ depending on glacier hypsometry. The mean mass balance of all 32 glaciers in our sample was -0.52 ± 0.22 m water equivalent (w.e.) a-1. The mean mass balance of nine lacustrine-terminating glaciers (-0.70 ± 0.26 m w.e. a-1) was 32 % more negative than land-terminating, debris-covered glaciers (-0.53 ± 0.21 m w.e. a-1). The mass balance of lacustrine-terminating glaciers is highly variable (-0.45 ± 0.13 to -0.91 ± 0.22 m w.e. a-1), perhaps reflecting glacial lakes at different stages of development. To assess the importance of hypsometry on glacier response to future temperature increases, we calculated current (Dudh Koshi - 0.41, Tama Koshi - 0.43, Pumqu - 0.37) and prospective future glacier accumulation area Ratios (AARs). IPCC AR5 RCP 4.5 warming (0.9-2.3 °C by 2100) could reduce AARs to 0.29 or 0.08 in the Tama Koshi catchment, 0.27 or 0.17 in the Dudh Koshi catchment and 0.29 or 0.18 in the Pumqu catchment. Our results suggest that glacial lake expansion across the Himalayas could expedite ice mass loss and the prediction of future contributions of glacial meltwater to river flow will be complicated by spatially variable glacier responses to climate change.

  4. Hydrodynamic simulations of the interaction between an AGB star and a main-sequence companion in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; De Marco, Orsola; Macdonald, Daniel; Galaviz, Pablo; Passy, Jean-Claude; Iaconi, Roberto; Low, Mordecai-Mark Mac

    2016-02-01

    The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ˜800 yr ago. We have performed hydrodynamic simulations of an asymptotic giant branch (AGB) star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are ≪100 yr. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and time-scale of the simulated disc formed around the companion before the common envelope phase, we analytically estimate the properties of jets that could be launched. Allowing for super-Eddington accretion rates, we find that jets similar to those observed are plausible, provided that the putative lost companion was relatively massive.

  5. A second post-AGB nebula that contains gas in rotation and in expansion: ALMA maps of IW Carinae

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Van Winckel, H.; Sánchez Contreras, C.; Santander-García, M.

    2017-01-01

    Aims: We aim to study the presence of both rotation and expansion in post-AGB nebulae, in particular around IW Car, a binary post-AGB star that was suspected to be surrounded by a Keplerian disk. Methods: We obtained high-quality ALMA observations of 12CO and 13CO J = 3-2 lines in IW Car. The maps were analyzed by means of a simplified model of CO emission, based on those used for similar objects. Results: Our observations clearly show the presence of gas components in rotation, in an equatorial disk, and expansion, which shows an hourglass-like structure with a symmetry axis perpendicular to the rotation plane and is probably formed of material extracted from the disk. Our modeling can reproduce the observations and shows moderate uncertainties. The rotation velocity corresponds to a central stellar mass of approximately 1 M⊙. We also derive the total mass of the molecule-rich nebula, found to be of 4 × 10-3M⊙; the outflow is approximately eight times less massive than the disk. From the kinematical age of the outflow and the mass values derived for both components, we infer a (future) lifetime of the disk of approximately 5000-10 000 yr.

  6. The Effects of Post-Main-Sequence Solar Mass Loss on the Stability of Our Planetary System

    NASA Astrophysics Data System (ADS)

    Duncan, Martin J.; Lissauer, Jack J.

    1998-08-01

    We present the results of extensive long-term integrations of systems of planets with orbits initially identical to subsets of the planets within our Solar System, but with the Sun's mass decreased relative to the masses of the planets. For systems based on the giant planets, we find an approximate power-law correlation between the time elapsed until a pair of planetary orbits cross and the solar-to-planetary-mass ratio, provided that this ratio is ≲0.4 times its current value. However, deviations from this relationship at larger ratios suggest that this correlation may not be useful in predicting the lifetime of the current system. Detailed simulations of the evolution of planetary orbits through the solar mass loss phase at the end of the Sun's main-sequence lifetime suggest that the orbits of those terrestrial planets that survive the Sun's red giant phase are likely to remain stable for (possibly much) longer than a billion years and those of the giant planets are likely to remain stable for (possibly much) more than ten billion years. Pluto is likely to escape from its current 2:3 mean-motion resonance with Neptune within a few billion years beyond the Sun's main sequence lifetime if subject only to gravitational forces; its prognosis is likely to be even poorer when nongravitational forces are included. Implications for the effects of stellar mass loss on the stability of other planetary systems are discussed.

  7. Leadership in Governance: The View from AGB's Current and Former Board Chairs

    ERIC Educational Resources Information Center

    Trusteeship, 2010

    2010-01-01

    The challenges with which college and university boards must grapple promise to become only more complex in the coming years, placing ever-greater demands on the leaders of those boards. This article presents a conversation between Association of Governing Boards of Universities and Colleges (AGB) President Richard D. Legon and two AGB leaders who…

  8. The Advanced Stages of Stellar Evolution: Impact of Mass Loss, Rotation, and Link With B[e] Stars

    NASA Astrophysics Data System (ADS)

    Georgy, C.; Saio, H.; Ekström, S.; Meynet, G.

    2017-02-01

    In this paper we discuss some consequences of rotation and mass loss on the evolved stages of massive star evolution. The physical reasons of the time evolution of the surface velocity are explained. We also show how the late-time evolution of massive stars are impacted in combination with the effects of mass loss. The most interesting result is that, in some cases, a massive star can have a blue-red-blue evolution, opening the possibility that blue supergiants are composed by two distinct populations of stars: one just leaving the main sequence and crossing the HRD for the first time, and the other one evolving back to the blue side of the HRD after a Red Supergiant phase. We discuss a few possible observational tests that can allow distinguishing these two populations and how supergiant B[e] stars fit in this context.

  9. Mass loss in HR 1040 /A0 Ia/ - Analysis of Mg II lambda 2802 and H-alpha

    NASA Technical Reports Server (NTRS)

    Kunasz, P. B.; Morrison, N. D.; Spressart, B.

    1983-01-01

    It is pointed out that International Ultraviolet Explorer (IUE) data for several early A type supergiants are now available to complement the ground-based spectroscopic data available for these bright stars. An examination of the resonance doublet of Mg II in the A type supergiants reveals that HR 1040 (HD 21389) is the only star in the observational literature in which a violet-shifted, deep absorption line is present without complete saturation. From an unsaturated profile, a good estimate of Mg(+) density can be found by means of accurate radiative transfer calculations. A relation can then be derived between mass loss rate and ionization balance. When certain velocity-related quantities can be estimated from a Mg II line profile, the H-alpha provides an estimate of the mass loss rate. The present investigation is concerned with an application of these diagnostics to HR 1040.

  10. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Guo, Xiaofeng; Yao, Tandong; Zhu, Meilin; Wang, Yongjie

    2016-08-01

    The mass balance history (1980-2010) of a monsoon-dominated glacier in the southeast Tibetan Plateau is reconstructed using an energy balance model and later interpreted with regard to macroscale atmospheric variables. The results show that this glacier is characterized by significant interannual mass fluctuations over the past three decades, with a remarkably high mass loss during the recent period of 2003-2010. Analysis of the relationships between glacier mass balance and climatic variables shows that interannual temperature variability in the monsoonal season (June-September) is a primary driver of its mass balance fluctuations, but monsoonal precipitation tends to play an accentuated role for driving the observed glacier mass changes due to their covariation (concurrence of warm/dry and cold/wet climates) in the monsoon-influenced southeast Tibetan Plateau. Analysis of the atmospheric circulation pattern reveals that the predominance of anticyclonic/cyclonic circulations prevailing in the southeastern/northern Tibetan Plateau during 2003-2010 contributes to increased air temperature and decreased precipitation in the southeast Tibetan Plateau. Regionally contrasting atmospheric circulations explain the distinct mass changes between in the monsoon-influenced southeast Tibetan Plateau and in the north Tibetan Plateau/Tien Shan Mountains during 2003-2010. The macroscale climate change seems to be linked with the Europe-Asia teleconnection.

  11. Out on a Limb: Updates on the Search for X-ray Emission from AGB Stars

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Ramstedt, Sofia; Santiago-Boyd, Andrea; Kastner, Joel; Vlemmings, Wouter

    2016-01-01

    X-rays from asymptotic giant branch (AGB) stars are rarely detected, however, few modern X-ray observatories have targeted AGB stars. In 2012, we searched a list of 480 galactic AGB stars and found a total of 13 targeted or serendipitous observations with few detections (Ramstedt et al. 2012). Since this initial search new programs have successfully targeted and detected X-ray emission from a handful of AGB stars. The X-ray emission, when detected, reveals high temperature plasma (>= 10 MK). This plasma might be heated by a large-scale magnetic field or indicate the presence of accretion onto a compact companion. In this poster, we update our search for X-ray emission from AGB stars with a review of their characteristics, potential origins, and impact of X-ray emission in this late stage of stellar evolution.

  12. Impact of Abrasion on Mass Loss and Surface Appearance of Woven Fabrics Made with Injected Slub Yarn in Weft

    NASA Astrophysics Data System (ADS)

    Ray, Nemai Chandra; Mukhopadhyay, Arunangshu; Midha, Vinay Kumar

    2016-10-01

    Fancy yarn fabrics are susceptible to abrasive damage during washing and usage but the extent of damage varies with construction and type of fabric. In the present study, effect of different slub parameters viz. slub length, slub thickness and slub frequency of single base injected slub yarn on abrasive damage of woven fabrics has been studied when injected slub yarns are used in weft only. Abrasive damage has been assessed by two ways using loss in fabric mass and deterioration in fabric appearance due to abrasion. These two techniques provide entirely different effect of injected slub yarn parameters on abrasive damage of woven fabric. Fabric abrasion damage in terms of mass loss is not affected by slub thickness and damage is least when both slub length and slub frequency are at central/medium level. Under visual assessment it is observed that all the slub parameters have significant influence on abrasive damage of woven fabric. It is possible to have lower damage in surface appearance in spite of higher mass loss of fabric due to abrasion.

  13. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B.; Van Loon, J. Th.; Hora, J. L.; Robitaille, T.; Babler, B.; Meade, M.; Block, M.; Misselt, K.

    2011-04-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611{sup +213}{sub -200} pc and age as 12 {+-} 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor {omega} Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of {approx}1000 L{sub sun}, becoming ubiquitous above L = 2000 L{sub sun}. Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  14. A Study of Massive Star Evolution and Mass Loss With Multi-Wavelength Observations of Type IIn Supernovae

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Skrutskie, Michael; Chevalier, Roger; Smith, Nathan; Chandra, Poonam; Filippenko, Alex

    2012-12-01

    Type IIn supernovae (SNe IIn) are a rare (<10%) subclass of SNe that exhibit narrow emission lines due to a dense, pre-existing circumstellar medium (CSM). Although all evidence points to massive star progenitors, the precise stellar type remains elusive since few observed stars and no theoretical models can reproduce the mass-loss characteristics. More confusing, the narrow lines and dense winds associated with SNe IIn have now been identified in an unexpectedly diverse list of subclasses, suggesting multiple progenitors may be responsible. Multi-wavelength observations, spanning the X-ray to the infrared (IR) to the radio regime, can probe various aspects of shock interaction and dust formation associated with the dense CSM for months to years after the radioactive emission fades. Such diagnostics probe the progenitor mass-loss history, CSM characteristics, and even the elusive SN shock breakout. Given the required coordination amongst space-based and large ground-based telescopes, however, existing data sets are sparse and insufficient. Here we submit a joint Spitzer/Chandra proposal to trace the mass-loss history of SNe IIn with a thorough, coordinated, multi-wavelength approach. With guaranteed time on Keck and JVLA already at our disposal and an aligned team of SNe IIn experts spanning all wavelengths, now is the time for such a program.

  15. Risk-sensitive reproductive allocation: fitness consequences of body mass losses in two contrasting environments

    PubMed Central

    Bårdsen, Bård-Jørgen; Næss, Marius Warg; Tveraa, Torkild; Langeland, Knut; Fauchald, Per

    2014-01-01

    For long-lived organisms, the fitness value of survival is greater than that of current reproduction. Asymmetric fitness rewards suggest that organisms inhabiting unpredictable environments should adopt a risk-sensitive life history, predicting that it is adaptive to allocate resources to increase their own body reserves at the expense of reproduction. We tested this using data from reindeer populations inhabiting contrasting environments and using winter body mass development as a proxy for the combined effect of winter severity and density dependence. Individuals in good and harsh environments responded similarly: Females who lost large amounts of winter body mass gained more body mass the coming summer compared with females losing less mass during winter. Additionally, females experienced a cost of reproduction: On average, barren females gained more body mass than lactating females. Winter body mass development positively affected both the females' reproductive success and offspring body mass. Finally, we discuss the relevance of our findings with respect to scenarios for future climate change. PMID:24772280

  16. Comprehensive Quantification of Triacylglycerols in Soybean Seeds by Electrospray Ionization Mass Spectrometry with Multiple Neutral Loss Scans

    PubMed Central

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-01-01

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 16:0), linolenic (Ln, 18:3), linoleic (L, 18:2), oleic (O, 18:1), stearic (S, 18:0), eicosadienoic (20:2), gadoleic (20:1), arachidic (20:0), erucic (22:1), and behenic (22:0). The abundance of ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined. The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. This shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition. PMID:25301200

  17. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    DOE PAGES

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance ofmore » ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.« less

  18. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    SciTech Connect

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance of ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.

  19. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes

    PubMed Central

    Liu, Xiao-Ming; Rudnick, Roberta L.

    2011-01-01

    Chemical weathering, as well as physical erosion, changes the composition and shapes the surface of the continental crust. However, the amount of continental material that has been lost over Earth’s history due to chemical weathering is poorly constrained. Using a mass balance model for lithium inputs and outputs from the continental crust, we find that the mass of continental crust that has been lost due to chemical weathering is at least 15% of the original mass of the juvenile continental crust, and may be as high as 60%, with a best estimate of approximately 45%. Our results suggest that chemical weathering and subsequent subduction of soluble elements have major impacts on both the mass and the compositional evolution of the continental crust. PMID:22184221

  20. Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival

    PubMed Central

    Villa, Stephanie R.; Priyadarshini, Medha; Fuller, Miles H.; Bhardwaj, Tanya; Brodsky, Michael R.; Angueira, Anthony R.; Mosser, Rockann E.; Carboneau, Bethany A.; Tersey, Sarah A.; Mancebo, Helena; Gilchrist, Annette; Mirmira, Raghavendra G.; Gannon, Maureen; Layden, Brian T.

    2016-01-01

    The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2−/− mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation. PMID:27324831

  1. LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Graur, Or; Bianco, Federica B.; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Smith, Nathan

    2017-03-01

    In Paper I of this series, we showed that the ratio between stripped-envelope (SE) supernova (SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses ≲ {10}10 {M}ȯ . Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ∼3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host about nine times as many SN impostors. Normal SNe Ia seem to be ∼30% more common in low-mass galaxies, making these galaxies better sources for homogeneous SN Ia cosmology samples. The relative rates of SNe IIb are consistent in both low- and high-mass galaxies. The same is true for broad-line SNe Ic, although our sample includes only two such objects. The results presented here are in tension with a similar analysis from the Palomar Transient Factory, especially as regards SNe IIb.

  2. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss

    PubMed Central

    2012-01-01

    Background Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO), bioimpedance analysis (BIA) and ultrasonography (US) in cats, proposing equations to estimate fat (FM) and lean (LM) body mass, as compared to dual energy x-ray absorptiometry (DXA) as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females) in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals), after 10% of weight loss (T1) and after 20% of weight loss (T2). Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM) determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results The independent variables determined by BIO, BIA and US that best correlated (p < 0.005) with the dependent variables (FM and LM) were BW (body weight), TC (thoracic circumference), PC (pelvic circumference), R (resistance) and SFLT (subcutaneous fat layer thickness). Using Mallows’Cp statistics, p value and r2, 19 equations were selected (12 for FM, 7 for LM); however, only 7 equations accurately predicted FM and one LM of cats. Conclusions The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed. PMID:22781317

  3. The 2011 outburst of recurrent nova T PYX: Radio observations reveal the ejecta mass and hint at complex mass loss

    SciTech Connect

    Nelson, Thomas; Chomiuk, Laura; Roy, Nirupam; Krauss, Miriam I.; Mioduszewski, Amy J.; Rupen, Michael P.; Sokoloski, J. L.; Weston, Jennifer; Mukai, Koji

    2014-04-10

    Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 2011 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ∼50 days of the outburst. Considering a plausible range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of (1-30) × 10{sup –5} M {sub ☉}. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.

  4. On the infant weight loss of low- to intermediate-mass star clusters

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Nürnberger, D. E. A.; Sterzik, M. F.

    2007-04-01

    Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction fst of its stars. To date there are no observational constraints for fst, although N-body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20-30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that fst < 50 per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range 10-103Msolar keep at most 50 per cent of their stars.

  5. From AGBs to PNe: understanding the observations of evolved stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Dell'Agli, Flavia

    2015-08-01

    Asymptotic Giant Branch (AGB) stars represent one of the main stellar sources for dust production in the Universe. We provide a description of the formation and growth of dust particles in the circumstellar envelope of AGBs, based on detailed calculations of the AGB evolutionary phase. We use stellar population synthesis to interpret the Spitzer observations of dusty AGBs in the Large Magellanic Cloud (LMC). Our results show that carbon-rich and oxygen-rich stars evolve into different and separated regions of the observational diagrams obtained with the Spitzer bands. This allows a straight comparison with the spectroscopically confirmed samples of AGBs in the LMC present in the literature. The overall impact of AGBs on the dust production rate in the LMC is also discussed.The interpretation of the AGB population of the LMC is used to describe the observed chemical abundances of the Planetary Nebulae in the same galaxy. This analysis outlines a clear distinction between stars which experience Hot Bottom Burning and those the Third Dredge Up.

  6. Mass by Energy Loss Quantitation as a Practical Sub-Microgram Balance

    SciTech Connect

    Palmblad, M; Bench, G; Vogel, J S

    2004-09-28

    A simple device integrating a thin film support and a standard microcentrifuge tube can be used for making solutions of accurately known concentration of any organic compound in a single step, avoiding serial dilution and the use of microgram balances. Nanogram to microgram quantities of organic material deposited on the thin film are quantified by ion energy loss and transferred to the microcentrifuge tube with high recovery.

  7. Exploring Mass Loss, Low-Z Accretion, and Convective Overshoot in Solar Models to Mitigate the Solar Abundance Problem

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Mussack, Katie

    2010-04-01

    Solar models using the new lower abundances of Asplund et al. or Caffau et al. do not agree as well with helioseismic inferences as models that use the higher Grevesse & Noels or Grevesse & Sauval abundances. Adopting the new abundances leads to models with sound-speed discrepancies of up to 1.4% below the base of the convection zone (CZ) compared to discrepancies of less than 0.4% with the old abundances; a CZ that is too shallow; and a CZ helium abundance that is too low. Here we briefly review recent attempts to restore agreement, and we evaluate three changes to the models: early mass loss, accretion of low-Z material, and convective overshoot. One goal of these attempts is to explore models that could preserve the structure in the interior obtained with the old abundances while accommodating the new abundances at the surface. Although the mass-losing and accretion models show some improvement in agreement with seismic constraints, a satisfactory resolution to the solar abundance problem remains to be found. In addition, we perform a preliminary analysis of models with the Caffau et al. abundances that shows that the sound-speed discrepancy is reduced to only about 0.6% at the CZ base, compared to 1.4% for the Asplund et al. abundances and 0.4% for the Grevesse & Noels abundances. Furthermore, including mass loss in models with the Caffau et al. abundances may improve sound-speed agreement and help resolve the solar lithium problem.

  8. Characterization of the hot white dwarfs population in the Milky Way with GALEX, SDSS, PanSTARRS, and HST, to understand post-AGB evolution.

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Shiao, Bernie; Barstow, Martin; Keller, Graziela

    2016-07-01

    Hot white dwarfs are important astrophysical probes: their progenitors enrich the interstellar medium with carbon, nitrogen and other important elements. However, these stellar remnants are elusive at all wavelengths except the UV: they have small radii and low optical luminosity, and high temperatures to which optical colors are saturated. Therefore, this important component of the Milky Way stellar population remained hard to identify until recently, resulting in some critical aspects of stellar evolution to be still poorly understood. From the GALEX UV sky surveys (Bianchi 2014), matched to multi-band optical surveys (SDSS, PanSTARRS), we extracted an unprecedented, unbiased census of hot WDs, as well as identified those in binary systems with cooler companions. We compared the entire population with Milky Way models, and we further investigated selected sub-samples with HST photometry and spectroscopy, in order to constrain with multiple approaches the initial-final mass relation, shedding light on mass loss during AGB phases, which is critical to ultimately understand the chemical evolution of the galaxy. We also extend our study to the time-domain, looking for short-period oscillations or eclipses in the UV from GALEX photon data, and longer-term variations from GALEX and Pan-STARSS databases. We present our updated catalog of UV-identified hot WDs, and the early results from these related projects. In one HST project in particular we aim at resolving some of the binaries with a hot WD, to refine the stellar parameters of both components and the evolutionary status of the system, a method we will then apply to our entire sample with Gaia data.

  9. Waggle dance effect: dancing in autumn reduces the mass loss of a honeybee colony.

    PubMed

    Okada, Ryuichi; Akamatsu, Tadaaki; Iwata, Kanako; Ikeno, Hidetoshi; Kimura, Toshifumi; Ohashi, Mizue; Aonuma, Hitoshi; Ito, Etsuro

    2012-05-15

    A honeybee informs her nestmates about the location of a profitable food source that she has visited by means of a waggle dance: a round dance and a figure-of-eight dance for a short- and long-distance food source, respectively. Consequently, the colony achieves an effective collection of food. However, it is still not fully understood how much effect the dance behavior has on the food collection, because most of the relevant experiments have been performed only in limited locations under limited experimental conditions. Here, we examined the efficacy of the waggle dances by physically preventing bees from dancing and then analyzing the changes in daily mass of the hive as an index of daily food collection. To eliminate place- and year-specific effects, the experiments were performed under fully natural conditions in three different cities in Japan from mid September to early October in three different years. Because the experiments were performed in autumn, all six of the tested colonies lost mass on most of the experimental days. When the dance was prevented, the daily reduction in mass change was greater than when the dance was allowed, i.e. the dance inhibited the reduction of the hive mass. This indicates that dance is effective for food collection. Furthermore, clear inhibition was observed on the first two days of the experiments; after that, inhibition was no longer evident. This result suggests that the bee colony adapted to the new environment.

  10. Evaluation of different C20 coefficients for the determination of ice mass loss in Antarctica and Greenland

    NASA Astrophysics Data System (ADS)

    Haberkorn, Christoph; Bloßfeld, Mathis; Bouman, Johannes; Fuchs, Martin; McMillan, Malcolm

    2015-04-01

    Large ice sheets cover the regions at North Pole and South Pole, Arctic and Antarctica. Due to global warming, these ice sheets experience changes. Depending on the location, ice sheets are melting or accumulating ice. These changes can be detected using geodetic space techniques like altimetry and satellite gravimetry. The CryoSat-2 mission is a special altimetry mission to observe the Earth's cryosphere and detect ice mass changes. It was launched in 2010. The satellite gravimetry missions GRACE and GOCE started earlier in 2003 and 2009. Both techniques, altimetry and gravimetry, provide data to compute the ice mass changes. The main observable of altimetry is the elevation change caused by melting and accumulating ice, whereas gravimetry observes changes in the Earth's gravity field due to mass changes. In our study we use data of GRACE and GOCE for a period between November 2010 and September 2013. This allows to directly compare the results with results obtained from CryoSat-2 mission. GRACE is suitable to measure the long wavelength part of the Earth's gravity field, whereas GOCE is projected to detect its shorter wavelength parts. Gravity gradients derived from GRACE monthly fields are combined with directly measured GOCE gradients by filtering the data along the orbit. GRACE is used up to 10 mHz, GOCE from 10 mHz up to 150 mHz. This data set does not include the polar gap of GOCE, which is filled up with GRACE only data. We use this data set to compute monthly solutions of spheric harmonic coefficients, which are then transformed to equivalent water height (EWH) values on a grid. In addition, they are summed up to obtain ice mass loss. Therefore, the pole regions are divided into smaller basins. As both gravimetry missions are not suited to detect the spheric harmonic coefficient C20 with sufficient accuracy, it has to be replaced. The coefficient C20 describes the flattening of the Earth and has therefore a large influence at the polar regions. We use time

  11. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    PubMed

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by

  12. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    SciTech Connect

    Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A. E-mail: iain.mcdonald-2@manchester.ac.uk; and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will

  13. Binarity and Accretion: X-Ray Emission from AGB stars with FUV Excesses

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2012-10-01

    We propose a pilot survey for X-ray emission from AGB stars that are candidates for having binary companions with active accretion. These objects were identified via our innovative technique to search for FUV/NUV excesses in AGB stars using GALEX. The detection (or non-detection) of X-rays from this sample will enable us to begin testing models for the origin of the UV-excesses, leading to vital breakthroughs in our understanding of accretion-related phenomena and binarity in AGB stars. A larger survey, optimised using results fron this study, will be proposed in future cycles.

  14. Spectroscopic analysis of four post-AGB candidates

    NASA Astrophysics Data System (ADS)

    Molina, R. E.; Giridhar, S.; Pereira, C. B.; Arellano Ferro, A.; Muneer, S.

    2014-10-01

    We have done a detailed abundance analysis of four unexplored candidate post- Asymptotic Giant Branch(AGB) stars IRAS 13110 - 6629, IRAS 17579 - 3121, IRAS 18321 - 1401 and IRAS 18489 - 0629 using high resolution spectra. We have constructed Spectral Energy Distributions (SED) for these objects using the existing photometric data combined with infrared (IR) fluxes. For all sample stars, the SEDs exhibit double peaked energy distribution with well separated IR peaks showing the presence of dusty circumstellar material. The CNO abundances indicate the production of N via CN cycling, but observed [C/Fe] indicates the mixing of carbon produced by He burning by third dredge up although C/O ratio remains less that 1. A moderate DG-effect is clearly seen for IRAS 18489 - 0629 and IRAS 17579 - 3121 while a large scatter observed in depletion plots for IRAS 18321 - 1401 and IRAS 13110 - 6629 indicate the presence of other processes affecting the observed abundance pattern.

  15. A combination of methotrexate and zoledronic acid prevents bone erosions and systemic bone mass loss in collagen induced arthritis

    PubMed Central

    2009-01-01

    Introduction Osteoclasts play a key role in the pathogenesis of bone erosion and systemic bone mass loss during rheumatoid arthritis (RA). In this study, we aimed to determine the effect of methotrexate (MTX) and zoledronic acid (ZA), used alone or in combination, on osteoclast-mediated bone erosions and systemic bone mass loss in a rat model of collagen induced arthritis (CIA). We hypothesized that MTX and ZA could have an additive effect to prevent both bone erosion and systemic bone loss. Methods Arthritis was induced in 64 female Sprague-Dawley rats. After the clinical onset of CIA, rats were assigned to treatment with MTX (1 mg/kg/week), ZA (100 μg/kg twice weekly), both treatments at the same regimens, or vehicle. Arthritis score and paw thickness were recorded twice weekly. The rats were sacrificed on D28 and hind paws were removed for radiographic, histological and immunohistochemical analysis. The effects of treatments on osteoclastogenesis were determined by Tartrate resistant acid phosphatase (TRAP) staining. Micro-CT of the tibia was carried out for histomorphometric analysis. Bone mass density was evaluated by densitometry. Results MTX significantly decreased the severity of CIA, whereas ZA slightly exacerbated it. When these two drugs were used in combination, MTX prevented the pro-inflammatory effect of ZA. The combination of ZA with MTX was more effective than MTX alone for reducing structural joint damage with a dramatic decrease of osteoclasts' number in the eroded joints. However, MTX alone also significantly reduced the number of osteoclasts and the number of CD68+ mononuclear cells. ZA alone, or ZA with MTX, significantly increased the systemic bone mass density measured by densitometry and bone volume on histomorphometric analysis. Conclusions A combination of MTX and ZA prevented both bone erosion and systemic bone loss in a rat model of arthritis. Both treatments independently decreased the number of osteoclasts in the eroded joint. However

  16. Loss of Muscle Mass is Poorly Reflected in Grip Strength Performance in Healthy Young Men

    DTIC Science & Technology

    1994-01-01

    ex- to position their shoulder over the elbow, keeping the tending at the knee and hip . He then racks the weight by elbow joint at approximately 90...ob- Testing procedures. Body composition (measured tained at the start of this study was the average measure- by dual energy x-ray absorptiometry, DEXA ...previously demonstrated in soldiers (20). 7-10 d of simulated combat patrols). The average daily Fat-free mass (FFM) was measured using DEXA energy

  17. Strong ELA increase causes fast mass loss of glaciers in central Spitsbergen

    NASA Astrophysics Data System (ADS)

    Małecki, J.

    2015-11-01

    Svalbard is a heavily glacier covered archipelago in the Arctic. Its central regions, including Dickson Land (DL), are occupied by small alpine glaciers, which post-Little Ice Age (LIA) changes remain only sporadically investigated. This study presents a comprehensive analysis of glacier changes in DL based on inventories compiled from topographic maps and digital elevation models (DEMs) for LIA, 1960's, 1990 and 2009/11. The 37.9 ± 12.1 % glacier area decrease in DL (i.e. from 334.1 ± 38.4 km2 during LIA to 207.4 ± 4.6 km2 in 2009/11) has been primarily caused by accelerating termini retreat. The mean 1990-2009/11 geodetic mass balance of glaciers was -0.70 ± 0.06 m a-1 (-0.63 ± 0.05 m w.e. a-1), being one of the most negative from Svalbard regional means known from the literature. If the same figure was to be applied for other similar regions of central Spitsbergen, that would result in a considerable contribution to total Svalbard mass balance despite negligible proportion to total glacier area. Glacier changes in Dickson Land were linked to dramatic equilibrium line altitude (ELA) shift, which in the period 1990-2009/11 has been located ca. 500 m higher than required for steady-state. The mass balance of central Spitsbergen glaciers seems to be therefore more sensitive to climate change than previously thought.

  18. Assessment of the Losses Due to Self Absorption by Mass Loading on Radioactive Particulate Air Stack Sample Filters

    SciTech Connect

    Smith, Brian M.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2011-01-18

    This report discusses the effect of mass loading of a membrane filter on the self absorption of radioactive particles. A relationship between mass loading and percent loss of activity is presented. Sample filters were collected from Pacific Northwest National Laboratory (PNNL) facilities in order to analyze the current self absorption correction factor of 0.85 that is being used for both alpha and beta particles. Over an eighteen month period from February 2009 to July 2010, 116 samples were collected and analyzed from eight different building stacks in an effort coordinated by the Effluent Management group. Eleven unused filters were also randomly chosen to be analyzed in order to determine background radiation. All of these samples were collected and analyzed in order to evaluate the current correction factor being used.

  19. Abundance Anomalies in NGC6752 - Do AGB Stars Have a Role?

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Fenner, Y.; Karakas, A. I.; Lattanzio, J. C.; Gibson, B. K.

    2005-07-01

    We are in the process of testing a popular theory that the observed abundance anomalies in the Globular Cluster NGC 6752 are due to `internal pollution' from intermediate mass asymptotic giant branch stars. To this end we are using a chemical evolution model incorporating custom-made stellar evolution yields calculated using a detailed stellar evolution code. By tracing the chemical evolution of the intracluster gas, which is polluted by two generations of stars, we are able to test the internal pollution scenario in which the Na- and Al-enhanced ejecta from intermediate mass stars is either accreted onto the surfaces of other stars, or goes toward forming new stars. In this paper we focus mainly on the nucleosynthetic yields of the AGB stars and discuss whether these stars are the source of the observed Na-O anticorrelation. Comparing our preliminary results with observational data suggests that the qualitative theory is not supported by this quantitative study.This study has recently been completed and published in [Fenner, Y., Campbell, S.W., Karakas, A.I., Lattanzio, J.C, Gibson, B.K., 2004, MNRAS, 353, 789]. Details of the stellar models will be in a forthcoming paper [Campbell, S. W., et al. 2004, in prep.].

  20. Breaking news from the HST: the central star of the Stingray Nebula is now returning towards the AGB

    NASA Astrophysics Data System (ADS)

    Reindl, Nicole; Rauch, T.; Miller Bertolami, M. M.; Todt, H.; Werner, K.

    2017-01-01

    SAO 244567 is a rare example of a star that allows us to witness stellar evolution in real time. Between 1971 and 1990, it changed from a B-type star into the hot central star of the Stingray Nebula. This observed rapid heating has been a mystery for decades, since it is in strong contradiction with the low mass of the star and canonical post-asymptotic giant branch (AGB) evolution. We speculated that SAO 244567 might have suffered from a late thermal pulse (LTP) and obtained new observations with Hubble Space Telescope (HST)/COS to follow the evolution of the surface properties of SAO 244567 and to verify the LTP hypothesis. Our non-LTE spectral analysis reveals that the star cooled significantly since 2002 and that its envelope is now expanding. Therefore, we conclude that SAO 244567 is currently on its way back towards the AGB, which strongly supports the LTP hypothesis. A comparison with state-of-the-art LTP evolutionary calculations shows that these models cannot fully reproduce the evolution of all surface parameters simultaneously, pointing out possible shortcomings of stellar evolution models. Thereby, SAO 244567 keeps on challenging stellar evolution theory and we highly encourage further investigations.

  1. Numerical analysis of Eucalyptus grandis × E. urophylla heat-treatment: A dynamically detecting method of mass loss during the process

    NASA Astrophysics Data System (ADS)

    Zhao, Zijian; Ma, Qing; Mu, Jun; Yi, Songlin; He, Zhengbin

    Eucalyptus particles, lamellas and boards were applied to explore a simply-implemented method with neglected heat and mass transfer to inspect the mass loss during the heat-treatment course. The results revealed that the mass loss of a certain period was theoretically the definite integration of loss rate to time in this period, and a monitoring model for mass loss speed was developed with the particles and validated with the lamellas and boards. The loss rate was correlated to the temperature and temperature-evolving speed in the model which was composed of three functions during different temperature-evolving period. The sample mass loss was calculated in the MATLAB for the lamellas and boards and the model was validated and adjusted based on the difference between the computed results and the practically measured loss values. The error ranges of the new models were -16.30% to 18.35% for wood lamellas and -9.86% to 6.80% for wood boards. This method made it possible to acquire the instantaneous loss value through continuously detecting the wood temperature evolution. This idea could provide a reference for the Eucalyptus heat-treatment to detect the treating course and control the final material characteristics.

  2. Searching for Cool Dust in the Mid-to-Far Infrared: The Mass Loss Histories of the Hypergiants mu Cep, VY CMa, IRC +10420, and rho Cas

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.

    2016-01-01

    The most massive cool stars near the empircal upper limit of luminosity on the HR Diagram shed mass during brief, intense periods of enhanced mass loss. Their circumstellar environments show extensive and complex ejecta in scattered light at visual wavelengths. In the infrared, thermal emission from cooler dust in their ejecta can be used as a tracers of their mass loss histories. We combine high-resolution adaptive optics imaging from MMT/MIRAC (8 - 12 µm) with the new capabilities in far-infrared imaging of SOFIA/FORCAST and Herschel/PACS to probe further into the past for evidence of earlier mass loss for four famous objects: the red supergiants mu Cep and VY CMa and the yellow hypergiants IRC +10420 and rho Cas. We find evidence for a variable mass loss rate over several thousand years for mu Cep, while in contrast the lack of extended cold dust beyond VY CMa's visible ejecta indicates that its high mass loss episodes are recent. Despite its history of episodic mass loss, rho Cas has no resolved circumstellar ejecta. The new long wavelength photometry from FORCAST, however, confirms the presence of a slowly expanding dust shell from its 1946 event

  3. Collisions and Mergers of Galaxies in Clusters: Tidal Streams and Mass Loss

    NASA Astrophysics Data System (ADS)

    Lamb, S. A.; Hearn, N. C.; Van Schelt, J. A.; Marinova, I. S.

    2005-12-01

    We report the results of a series of moderately high-resolution N-body simulations of collision and subsequent merger of pairs of comparable mass galaxies that have been chosen to represent typical members of galaxy clusters. The model disk galaxies have dark matter halos approximately four times more massive than the combined stellar mass, and have disk-bulge ratios similar to either Sab or S0 galaxies. Both disk-disk galaxy collisions and elliptical-disk galaxy collisions have been investigated, and their long-term evolution to a merged state followed. We have used the tree-gravity part of the 'Tillamook' N-body code of Hearn (2002, Ph.D Thesis, UIUC), with between 250,000 and a million particles. We simulate the merger of galaxies approaching at nearly the escape velocity with a range of impact parameters that lead to both slightly off-center and glancing collisions. Following these mergers, we find that by a time of approximately 2 Gyr past closest initial approach, a central high-density region has formed in the combined dark matter halo with a radius of approximately 80 kpc, if we scale our model disk galaxies to the mass and radius of the Milky Way. Within the new, asymmetric, extended dark matter halos formed in the mergers, are long-lived streams, 'fans', and shells of stellar material. Most of the dark matter remains in the region occupied by luminous matter throughout the simulation, but some amount is spread to very large radii and between 20% and 30% would be lost to the overall potential in a cluster. (We acknowledge support from DOE LLNL B506657. The simulations were performed on the Turing Computer Cluster at UIUC.)

  4. Extreme negative temperatures and body mass loss in the Siberian salamander (Salamandrella keyserlingii, amphibia, hynobiidae).

    PubMed

    Berman, D I; Meshcheryakova, E N; Bulakhova, N A

    2016-05-01

    Frozen Siberian salamander safely tolerates long (45 days) stay at-35°C. Short-term (3 days) cooling down to-50°C was tolerable for 40% of adult individuals; down to-55°C, for 80% of the underyearlings. Generally, the salamanders lose about 28% of the body mass during the pre-hibernating period (before winter, at temperatures as low as 0°C) and during the process of freezing (as low as-5°C). The body weight remained constant upon further cooling (to-35°C). The frozen salamanders have no physiological mechanisms protecting from sublimation.

  5. The Search for Signatures Of Transient Mass Loss in Active Stars

    NASA Astrophysics Data System (ADS)

    Crosley, Michael Kevin; Osten, Rachel A.

    2017-01-01

    In order to understand habitability of exoplanets, we must understand their environments and how their host star shapes them. Stellar eruptive events are an important factor when considering habitability. The lack of experimental evidence necessitates the heavy reliance on solar scaling relationships when determining the impact of stellar eruptive events. Typically, stellar eruptive events cannot be observed in the same manner as solar events. The research we are conducting is proposing a new method for detecting Coronal Mass Ejections (CMEs), which are a type of stellar eruptive event. As CMEs travel through the stellar atmosphere, they are able to produce a Type II radio burst. Observation of Type II radio burst is the best method to identify and categorize CMEs. The LOw Frequency ARray (LOFAR) provides a means for detecting this event. Fifteen hours of observation on YZ Canis Minoris (YZ CMi), a nearby M dwarf flare star, was used to test this method. Ongoing research about jointly observed flares and CMEs is discussed to further expand the methodology. We explore using solar multi-wavelength observations to provide greater constraints on CMEs and further test the applicability of solar scaling relationships. We determine how well the velocity, mass, and CME kinetic energy can be constrained using the types of datasets available to stellar astronomers when compared to direct corona graphic solar observations.

  6. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-01-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14–19% and the ambient radiation by 9–16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems. PMID:26423726

  7. Annual variation of coastal uplift in Greenland as an indicator of variable and accelerating ice mass loss

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Wdowinski, Shimon; Dixon, Timothy H.

    2013-05-01

    Seasonal melting of the coastal part of the Greenland ice sheet is investigated using GPS vertical displacement data from coastal stations, combined with data on atmospheric and ocean temperatures. Using a high pass filter and cubic spline models, we estimate five variables describing seasonal uplift, a proxy for proximal mass loss, including duration of the melt season and the amount of summer uplift. Our analysis shows both temporal and spatial variations of uplift. Southern coastal Greenland experienced anomalously large uplift in summer 2010, implying significant melting that year. However, the northwest coast did not experience significant change in uplift at that time. Our data suggest that a combination of warm summer air temperature and warm sub-surface ocean water temperature drove the large mass losses in 2010. Using the uplift pattern of 2008-2010, and comparing to atmospheric data and ocean water temperature data, we show that warm Irminger Water (IW) exerted significant influence on coastal melting in southeastern, southern and southwestern Greenland, reaching about 69°N in 2010. North of this, IW did not exert significant influence, in effect defining the northward limit of the sub-polar gyre for that year. Thus, short-term variability in the coastal GPS uplift signal can be used to infer an oceanographic parameter that has a critical influence on Greenland ice sheet health.

  8. Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss.

    PubMed

    Pan, Xu; Berg, Matty P; Butenschoen, Olaf; Murray, Phil J; Bartish, Igor V; Cornelissen, Johannes H C; Dong, Ming; Prinzing, Andreas

    2015-05-07

    Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability.

  9. Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss

    PubMed Central

    Pan, Xu; Berg, Matty P.; Butenschoen, Olaf; Murray, Phil J.; Bartish, Igor V.; Cornelissen, Johannes H. C.; Dong, Ming; Prinzing, Andreas

    2015-01-01

    Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability. PMID:25876845

  10. The Influence of Thermal Expansion and Mass Loss on the Young's Modulus of Ceramics During Firing

    NASA Astrophysics Data System (ADS)

    Štubňa, Igor; Trník, Anton; Podoba, Rudolf; Ondruška, Ján; Vozár, Libor

    2014-10-01

    During the heating stage of the firing of a ceramic material, the mass , length , and diameter of the sample alter their values depending on the temperature . Young's modulus measured by a sonic resonance method is also a function of the resonance frequency . Therefore, three thermal analyses (TGA, TDA, modulated force TMA) must be performed to obtain correct values of Young's modulus. The calculation of Young's modulus can be simplified if TGA and/or TDA are omitted. This necessarily leads to partly incorrect results. If TGA is not performed, we have and the relative difference reaches 7 % for and less than 2 % for . If TDA is not performed, we have and the relative difference ( is less than 0.6 % for . For the simplest case, we have and the relative difference ( is 7.5 % for and less than 2 % for.

  11. A Study of Mass Loss and Dust Formation Near Hot Stars

    NASA Astrophysics Data System (ADS)

    Kuratov, K. S.; Miroshnichenko, A. S.; Kusakin, A. V.; Alimgazinova, N. Sh.; Nuryzbaeva, A. Zh.; Manapbaeva, A. B.; Kuratova, A. K.

    At present dust formation is well studied only near cool stars, whose surface temperatures are close to those of dust sublimation. Hot stars need to supply large amounts of circumstellar material to allow dust formation around them. Such conditions naturally exist near supergiants with masses over 25 M⊙. The theory of stellar evolution predicts that less massive stars do not provide enough matter for dust formation. Nevertheless, dust exists near dwarfs with the B[e] phenomenon and giants of A-G spectral types which do not belong to star formation regions.A large group of objects with the B[e] phenomenon with extremely strong emission-line spectra that are neither young nor highly evolved has been recently identified. They are called FS CMa type objects. Their infrared excesses imply a large amount of recently created dust. Therefore, these objects can noticeably contribute to the Galactic dust content, but they have not been taken into consideration from this perspective.

  12. Investigating the possibility of East Antarctic ice mass loss as an explanation for GPS-derived observations of horizontal motion

    NASA Astrophysics Data System (ADS)

    Konfal, S. A.; Wilson, T. J.; Whitehouse, P. L.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I. W. D.; Smalley, R., Jr.; Heeszel, D.; Wiens, D.

    2015-12-01

    GPS sites in the Transantarctic Mountains operating under the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET) record crustal motion in response to glacial isostatic adjustment (GIA). Observed horizontal motions are towards former ice mass centers in West Antarctica, opposite to the expected and modelled pattern of deformation due to GIA. The disagreement between observed and predicted surface deformation suggests modification to one or both primary GIA model inputs, ice history and earth properties models, is needed. 1D GIA models for Antarctica utilize radial earth models, yet mantle viscosity mapped by seismology indicates a strong boundary in earth properties between East and West Antarctica. GPS-derived horizontal crustal motions are consistently near-perpendicular to the boundary and a gradient in the magnitude of motion across the boundary is observed, with velocities increasing from the stronger, East Antarctic side, to the weaker, West Antarctic side. The spatial correlation between horizontal crustal displacements and modeled viscosity values suggests a causal relationship, and offers an explanation for the mismatch with 1D GIA models that do not incorporate lateral variation. Alternatively, we investigate the possibility of East Antarctic ice mass loss as an explanation for the discrepancy between observed and predicted surface deformation. Ice history scenarios invoking removal of ice mass from the Wilkes Subglacial Basin are coupled with a range of 1D earth models, and a comparison between predicted and observed motions made. Results suggest that East Antarctic unloading may explain both the magnitude and direction of observed motions for some regions. Perhaps more significantly, surface displacements located within an "interference zone" between the West Antarctica ice mass center and our postulated Wilkes ice mass center are strongly matched for a variety of earth model combinations, supporting the case for ice

  13. Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss

    NASA Astrophysics Data System (ADS)

    Vincent, C.; Ramanathan, Al.; Wagnon, P.; Dobhal, D. P.; Linda, A.; Berthier, E.; Sharma, P.; Arnaud, Y.; Azam, M. F.; Jose, P. G.; Gardelle, J.

    2013-04-01

    The volume change of the Chhota Shigri Glacier (India, 32° 20 N, 77° 30' E) between 1988 and 2010 has been determined using in situ geodetic measurements. This glacier has experienced only a slight mass loss between 1988 and 2010 (-3.8 ± 2.0 m w.e. (water equivalent) corresponding to -0.17 ± 0.09 m w.e. yr-1). Using satellite digital elevation models (DEM) differencing and field measurements, we measure a negative mass balance (MB) between 1999 and 2010 (-4.8 ± 1.8 m w.e. corresponding to -0.44 ± 0.16 m w.e. yr-1). Thus, we deduce a slightly positive or near-zero MB between 1988 and 1999 (+1.0 ± 2.7 m w.e. corresponding to +0.09 ± 0.24 m w.e. yr-1). Furthermore, satellite DEM differencing reveals that the MB of the Chhota Shigri Glacier (-0.39 ± 0.15 m w.e. yr-1) has been only slightly less negative than the MB of a 2110 km2 glaciarized area in the Lahaul and Spiti region (-0.44 ± 0.09 m w.e. yr-1) during 1999-2011. Hence, we conclude that the ice wastage is probably moderate in this region over the last 22 yr, with near equilibrium conditions during the nineties, and an ice mass loss after. The turning point from balanced to negative mass budget is not known but lies probably in the late nineties and at the latest in 1999. This positive or near-zero MB for Chhota Shigri Glacier (and probably for the surrounding glaciers of the Lahaul and Spiti region) during at least part of the 1990s contrasts with a recent compilation of MB data in the Himalayan range that indicated ice wastage since 1975. However, in agreement with this compilation, we confirm more negative balances since the beginning of the 21st century.

  14. Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low-Mass White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot S.; Bergeron, P.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B.

    2007-12-01

    We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H]~+0.4) open clusters in our Galaxy and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster using Keck/LRIS spectra suggests that most of these stars are undermassive, =0.43+/-0.06 Msolar, and therefore could not have formed from canonical stellar evolution involving the helium flash at the tip of the red giant branch. We show that at least 40% of NGC 6791's evolved stars must have lost enough mass on the red giant branch to avoid the flash and therefore did not convert helium into carbon-oxygen in their core. Such increased mass loss in the evolution of the progenitors of these stars is consistent with the presence of the extreme horizontal branch in the CMD. This unique stellar evolutionary channel also naturally explains the recent finding of a very young age (2.4 Gyr) for NGC 6791 from white dwarf cooling theory; helium-core white dwarfs in this cluster will cool ~3 times slower than carbon-oxygen-core stars, and therefore the corrected white dwarf cooling age is in fact >~7 Gyr, consistent with the well-measured main-sequence turnoff age. These results provide direct empirical evidence that mass loss is much more efficient in high-metallicity environments and therefore may be critical in interpreting the ultraviolet upturn in elliptical galaxies. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained at the

  15. The Secret Lives of Cepheids: Evolution, Mass-Loss, and Ultraviolet Emission of the Long-period Classical Cepheid

    NASA Astrophysics Data System (ADS)

    Neilson, Hilding R.; Engle, Scott G.; Guinan, Edward F.; Bisol, Alexandra C.; Butterworth, Neil

    2016-06-01

    The classical Cepheid l Carinae is an essential calibrator of the Cepheid Leavitt Law as a rare long-period Galactic Cepheid. Understanding the properties of this star will also constrain the physics and evolution of massive (M ≥ 8 M ⊙) Cepheids. The challenge, however, is precisely measuring the star's pulsation period and its rate of period change. The former is important for calibrating the Leavitt Law and the latter for stellar evolution modeling. In this work, we combine previous time-series observations spanning more than a century with new observations to remeasure the pulsation period and compute the rate of period change. We compare our new rate of period change with stellar evolution models to measure the properties of l Car, but find models and observations are, at best, marginally consistent. The results imply that l Car does not have significantly enhanced mass-loss rates like that measured for δ Cephei. We find that the mass of l Car is about 8-10 M ⊙. We present Hubble Space Telescope Cosmic Origins Spectrograph observations that also differ from measurements for δ Cep and β Dor. These measurements further add to the challenge of understanding the physics of Cepheids, but do hint at the possible relation between enhanced mass-loss and ultraviolet emission, perhaps both due to the strength of shocks propagating in the atmospheres of Cepheids. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13019. This work is also based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), associated with program #060374.

  16. Mass-loss of an isolated gravitating system due to energy carried away by gravitational waves with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    2016-11-01

    We derive the asymptotic solutions for vacuum spacetimes with nonzero cosmological constant Λ , using the Newman-Penrose formalism. Our approach is based exclusively on the physical spacetime, i.e., we do not explicitly deal with conformal rescaling nor the conformal spacetime. By investigating the Schwarzschild-de Sitter spacetime in spherical coordinates, we subsequently stipulate the falloffs of the null tetrad and spin coefficients for asymptotically de Sitter spacetimes such that the terms which would give rise to the Bondi mass-loss due to energy carried by gravitational radiation (i.e., involving σo ) must be nonzero. After solving the vacuum Newman-Penrose equations asymptotically, we propose a generalization to the Bondi mass involving Λ and obtain a positive-definite mass-loss formula by integrating the Bianchi identity involving D'Ψ2 over a compact 2-surface on I . Whilst our original intention was to study asymptotically de Sitter spacetimes, the use of spherical coordinates implies that this readily applies for Λ <0 , and yields exactly the known asymptotically flat spacetimes when Λ =0 . In other words, our asymptotic vacuum solutions with Λ ≠0 reduce smoothly to those where Λ =0 , in spite of the distinct characters of I being spacelike, timelike, and null for de Sitter, anti-de Sitter, and Minkowski, respectively. Unlike for Λ =0 where no incoming radiation corresponds to setting Ψ0o=0 on some initial null hypersurface, for Λ ≠0 , no incoming radiation requires Ψ0o=0 everywhere.

  17. SALT observations of the chromospheric activity of transiting planet hosts: mass-loss and star-planet interactions★

    NASA Astrophysics Data System (ADS)

    Staab, D.; Haswell, C. A.; Smith, Gareth D.; Fossati, L.; Barnes, J. R.; Busuttil, R.; Jenkins, J. S.

    2017-04-01

    We measured the chromospheric activity of the four hot Jupiter hosts WASP-43, WASP-51/HAT-P-30, WASP-72 and WASP-103 to search for anomalous values caused by the close-in companions. The Mount Wilson Ca II H & K S-index was calculated for each star using observations taken with the Robert Stobie Spectrograph at the Southern African Large Telescope. The activity level of WASP-43 is anomalously high relative to its age and falls among the highest values of all known main-sequence stars. We found marginal evidence that the activity of WASP-103 is also higher than expected from the system age. We suggest that for WASP-43 and WASP-103 star-planet interactions (SPI) may enhance the Ca II H & K core emission. The activity levels of WASP-51/HAT-P-30 and WASP-72 are anomalously low, with the latter falling below the basal envelope for both main-sequence and evolved stars. This can be attributed to circumstellar absorption due to planetary mass-loss, though absorption in the interstellar medium may contribute. A quarter of known short-period planet hosts exhibit anomalously low activity levels, including systems with hot Jupiters and low-mass companions. Since SPI can elevate and absorption can suppress the observed chromospheric activity of stars with close-in planets, their Ca II H & K activity levels are an unreliable age indicator. Systems where the activity is depressed by absorption from planetary mass-loss are key targets for examining planet compositions through transmission spectroscopy.

  18. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases

    PubMed Central

    Chacon-Cabrera, Alba; Lund-Palau, Helena; Gea, Joaquim; Barreiro, Esther

    2016-01-01

    Background Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. Methods Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. Results Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. Conclusions A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised. PMID

  19. The evaluation of tissue mass loss in the incision line of prostate with benign hyperplasia performed using holmium laser and cutting electrode

    PubMed Central

    Szewczyk, Mariusz; Jesionek–Kupnicka, Dorota; Lipinski, Piotr; Różański, Waldemar

    2014-01-01

    Introduction The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). Material and methods The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. Results In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Conclusions Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode. PMID:25247088

  20. Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Space flight and bed rest (BR) result in losses of muscle mass and strength. Resistance training (RT) and amino acid (AA) supplementation are potential countermeasures to minimize these losses. However, it is unknown if timing of supplementation with exercise can optimize benefits, particularly with...

  1. Screening for DNA Adducts by Data-Dependent Constant Neutral Loss - Triple Stage (MS3) Mass Spectrometry with a Linear Quadrupole Ion Trap Mass Spectrometer

    PubMed Central

    Bessette, Erin E.; Goodenough, Angela K.; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D.; Spivack, Simon D.; Turesky, Robert J.

    2009-01-01

    A 2-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M+H-116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2+]. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal-cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AαC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AαC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 μg of DNA are employed for the assay. PMID:19086795

  2. Screening for DNA adducts by data-dependent constant neutral loss-triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer.

    PubMed

    Bessette, Erin E; Goodenough, Angela K; Langouët, Sophie; Yasa, Isil; Kozekov, Ivan D; Spivack, Simon D; Turesky, Robert J

    2009-01-15

    A two-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M + H - 116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2]+. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AalphaC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AalphaC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 microg of DNA is employed for the assay.

  3. Uncertainties in Ensemble Predictions of Future Antarctic Mass Loss with the fETISh Model

    NASA Astrophysics Data System (ADS)

    Pattyn, F.

    2015-12-01

    Marine ice sheet models should be capable of handling complex feedbacks between ice and ocean, such as marine ice sheet instability, and the atmosphere, such as the elevation-mass balance feedback, operating at different time scales. Recent model intercomparisons (e.g., SeaRISE, MISMIP) have shown that the complexity of many ice sheet models is focused on processes that are either not well captured numerically (spatial resolution issue) or are of secondary importance compared to the essential features of marine ice sheet dynamics. Here, we propose a new and fast computing ice sheet model, devoid of most complexity, but capturing the essential feedbacks when coupled to ocean or atmospheric models. Its computational efficiency guarantees to easily tests its advantages as well as limits through ensemble modelling. The fETISh (fast Elementary Thermomechanical (marine) Ice Sheet) model is a vertically integrated hybrid (SSA/SIA) ice sheet model. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition similar to Pollard & Deconto (2012), based on Schoof (2007). Buttressing of ice shelves is taken into account via the Shallow-Shelf Approximation (SSA). The ice sheet model is solved on four staggered finite difference grids for numerical efficiency/stability. Numerical tests following EISMINT, ISMIP and MISMIP are performed as a prerequisite. The fETISh model is forced with different ice-shelf melt rates and basal sliding perturbations to allow comparison with recent model intercomparisons of the Antarctic ice sheet (e.g., SeaRISE, Favier et al. (2013)). These forcings are further completed with a set of scenarios involving ice-shelf buttressing and unbuttressing. All experiments are carried out on different spatial

  4. Mass loss, destruction and detection of Sun-grazing and -impacting cometary nuclei

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Potts, H. E.; Porter, L. J.; Le Chat, G.

    2011-11-01

    Context. Sun-grazing comets almost never re-emerge, but their sublimative destruction near the sun has only recently been observed directly, while chromospheric impacts have not yet been seen, nor impact theory developed. Aims: We seek simple analytic models of comet destruction processes near the sun, to enable estimation of observable signature dependence on original incident mass Mo and perihelion distance q. Methods: Simple analytic solutions are found for M(r) versus q and distance r for insolation sublimation and, for the first time, for impact ablation and explosion. Results: Sun-grazers are found to fall into three (Mo,q) regimes: sublimation-, ablation-, and explosion-dominated. Most sun-grazers have Mo too small (<1011 g) or q too large (>1.01R⊙) to reach atmospheric densities (n > 2.5 × 1011/cm3) where ablation exceeds sublimation. Our analytic results for sublimation are similar to numerical models. For q < 1.01R⊙,Mo > 1011 g, ablation initially dominates but results are sensitive to nucleus strength Pc = 106P6 dyne/cm2 and entry angle φ to the vertical. Nuclei with Mo ≼ 1010(P6secφ)3 g are fully ablated before exploding, though the hot wake itself explodes. For most sun-impactors secφ ≫ 1 (since q ~ r∗), so for q very close to r∗ the ablation regime applies to moderate Mo ˜ 1013-16P_6^3 g impactors unless P6 ≼ 0.1. For higher masses, or smaller q, nuclei reach densities n > 2.5 × 1014P6/cm3 where ram pressure causes catastrophic explosion. Conclusions: Analytic descriptions define (Mo,q) regimes where sublimation, ablation and explosion dominate sun-grazer/-impactor destruction. For q ≺ 1.01R⊙,Mo ≽ 1011 g nuclei are destroyed by ablation or explosion (depending on Mocos3φ/Pc) in the chromosphere, producing flare-like events with cometary abundance spectra. For all plausible Mo,q and physical parameters, nuclei are destroyed above the photosphere. This paper is dedicated to the memories of: Brian G. Marsden

  5. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions.

    PubMed

    Barreiro, Esther

    2016-05-06

    Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions.

  6. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    PubMed Central

    Barreiro, Esther

    2016-01-01

    Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions. PMID:28248228

  7. Abundances in Planetary Nebulae: an Autopsy of Low and Intermediate Mass Stars

    NASA Astrophysics Data System (ADS)

    Buell, James Francis

    In this work we report on the results of synthetic thermally pulsing asymptotic giant branch models (TP-AGB) and compare the results to the abundance ratios in a sample of planetary nebulae. We use updated the input parameters for mass-loss, the stellar luminosity, and dredge-up. We calculated models with masses between 0.8 solar masses and 8 solar masses. We also calculated models with (Fe/H) between -2.5 and 0.3. The effect of the first, second, and third dredge-up as well as hot-bottom burning are reported on. The analysis of a sample of Galactic bulge and disk planetary nebulae is also reported on.

  8. Post-AGB Stars in Nearby Galaxies as Calibrators for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    2003-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as

  9. The pulsation modes and masses of carbon-rich long period variables

    NASA Astrophysics Data System (ADS)

    Bergeat, J.; Knapik, A.; Rutily, B.

    2002-08-01

    Following our study of the carbon-rich giants in the HR diagram and of their luminosity function (Paper III), we investigate the pulsation data of the long period variables (LPVs) included in our sample. Pulsation modes (fundamental, overtone(s)) for carbon LPVs are identified in the period-radius diagram, making use of observed bi-periodicity in a small subsample of those stars, and of comparison to models. Mean pulsation masses are then deduced from theoretical PMR-relations, with due attention paid to a possible bias while averaging. Mean (present) pulsation masses (0.6 - 4.0 Msun) are found to increase along the group sequence HC5 to CV6, with still larger masses possibly associated with cool extreme CV7-objects with strong mass loss and thick circumstellar shells. This is consistent with the 0.8-4 Msun range of initial masses found in Paper III for the majority of carbon-rich giants affected by mass loss during their evolution. The pulsation masses found for a few HC-stars (Mle0 .8 Msun) are consistent with their low initial masses (Mi<~ 1.1 Msun), as inferred from their thick disk membership (age =~ 11 Gyr?) and locus in the HR diagram. A mean pulsation mass of =~ 0.6 Msun is found for the three population II Cepheids in the sample. A mass-luminosity diagram is proposed for the Galactic carbon giants. The data from observations is found consistent with theoretical predictions from AGB modeling, specially the third dredge-up (TDU) through thermal pulses (TP) with a carbon star formation line (CSFL) for TP-AGB stars. It appears that the CV-giants are close to the tip and end of their evolutionary tracks in the TP-AGB of the HR diagram. It is confirmed that this end shifts toward lower effective temperatures and higher luminosities, with increasing masses. It is shown that the C/O abundance ratios do correlate with effective temperatures, according to three distinct distributions (halo CH stars, thick disk HC-stars, and thin disk CV-stars). The mean stellar

  10. The Search for Signatures of Transient Mass Loss in Active Stars

    NASA Astrophysics Data System (ADS)

    Crosley, M. K.; Osten, R. A.; Broderick, J. W.; Corbel, S.; Eislöffel, J.; Grießmeier, J.-M.; van Leeuwen, J.; Rowlinson, A.; Zarka, P.; Norman, C.

    2016-10-01

    The habitability of an exoplanet depends on many factors. One such factor is the impact of stellar eruptive events on nearby exoplanets. Currently this is poorly constrained due to heavy reliance on solar scaling relationships and a lack of experimental evidence. Potential impacts of coronal mass ejections (CMEs), which are the large eruption of magnetic field and plasma from a star, are space weather and atmospheric stripping. A method for observing CMEs as they travel though the stellar atmosphere is the type II radio burst, and the new Low Frequency Array (LOFAR) provides a means of detection. We report on 15 hr of observation of YZ Canis Minoris (YZ CMi), a nearby M dwarf flare star, taken in LOFAR’s beam-formed observation mode for the purposes of measuring transient frequency-dependent low-frequency radio emission. The observations utilized the Low Band Antenna (10-90 MHz) or High Band Antenna (110-190 MHz) for five three-hour observation periods. In this data set, there were no confirmed type II events in this frequency range. We explore the range of parameter space for type II bursts constrained by our observations. Assuming the rate of shocks is a lower limit to the rate at which CMEs occur, no detections in a total of 15 hr of observation places a limit of {ν }{type{II}}\\lt 0.0667 shocks/hr ≤ ν CME for YZ CMi due to the stochastic nature of the events and the limits of observational sensitivity. We propose a methodology to interpret jointly observed flares and CMEs which will provide greater constraints to CMEs and test the applicability of solar scaling relations.

  11. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  12. Bone mass loss is associated with systolic blood pressure in postmenopausal women with type 2 diabetes in Tibet: a retrospective cross-sectional study.

    PubMed

    Zhou, L; Song, J; Yang, S; Meng, S; Lv, X; Yue, J; Mina, A; Puchi, B; Geng, Y; Yang, L

    2017-02-02

    We conducted an observational cross-section study to investigate the status of bone mineral mass of Tibetan postmenopausal women with type 2 diabetes and the possible predictors for osteoporosis. We found that prevalence of osteoporosis was 27.0% and blood pressure was an independent risk factor for bone mass loss.

  13. Mass loss from alpha Cyg /A2Ia/ derived from the profiles of low excitation Fe II lines

    NASA Technical Reports Server (NTRS)

    Hensberge, H.; De Loore, C.; Lamers, H. J. G. L. M.; Bruhweiler, F. C.

    1982-01-01

    The low-excitation Fe II lines in the spectral region 2000-3000 A are studied in the spectrum of alpha-Cyg. The profiles of the resonance lines are described by four representative parameters, and a preliminary model is derived from the dependence of these parameters on theoretical line strength, taking into account the influence of blending photospheric lines in an overall and qualitative way. At least 11% of all iron in the wind is once ionized, unless a non-thermal heating source enhances the fraction Fe(++) without destroying much Al(+). It is shown that the contribution of blending photospheric absorption lines to weaker P Cygni profiles has been previously largely underestimated. The mass loss rate corresponding to the model is derived, and is smaller by a factor of 500 than the one derived from the infrared excess by Barlow and Cohen (1977).

  14. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

    SciTech Connect

    Pinto, Rui F.; Brun, Allan Sacha; Grappin, Roland

    2011-08-20

    We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

  15. Chemical composition and constraints on mass loss for globular clusters in dwarf galaxies: WLM and IKN

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.; Brodie, Jean P.; Forbes, Duncan A.; Strader, Jay

    2014-05-01

    high Na abundance in the WLM GC suggests that the [Na/O] anti-correlation is present in this cluster, while the high ratios of metal-poor GCs to field stars in the dwarfs are in tension with GC formation scenarios that require GCs to have lost a very large fraction of their initial mass. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 077.B-0354(A), and at the W. M. Keck Observatory, which is operated as a partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  16. Volume loss and mass-balance for selected physicochemical constituents in Lake Pepin, upper Mississippi River, USA

    USGS Publications Warehouse

    Maurer, W.R.; Claflin, T.O.; Rada, R.G.; Rogala, J.T.

    1995-01-01

    Lake Pepin is a large, natural riverine lake in the upper Mississippi River downstream of the Twin Cities metropolitan area and the confluence with the Minnesota River, which are sources of suspended sediments and pollutants (nutrients and potentially toxic materials). The lake has a history of water quality problems and has been an efficient trap for suspended sediment and sediment-associated contaminants. Based on bathymetric survey data, the loss of volume in Lake Pepin between 1897 and 1986 was estimated. The mass balance of the lake for total suspended solids, chlorophyll a, total and dissolved reactive phosphorus and total nitrogen for 9 June 1987 to 4 June 1988 was also estimated. Water was sampled at the inflow, mid-reach, and outflow of the lake. Lake Pepin is very eutrophic, based on concentrations of phosphorus, nitrogen and chlorophyll a. The lake volume decreased by approximately 21% between 1897 and 1986. Longitudinally, the greatest fraction of the whole-lake volume loss occurred in the upper lake (45%). Based on mass balance calculations, the lake trapped about half of the suspended solids entering the lake, but it had a small net export of chlorophyll a. The lake was a sink for phosphorus and nitrogen; however, it had a net export of total phosphorus at times during low flows in the summer of 1987. Internal loading of dissolved reactive phosphorus was prevalent during the summer of 1987. The only substantial export of total nitrogen occurred in June 1987 during a bloom of cyanobacteria. The lake should continue to be an efficient trap for suspended sediment and associated contaminants, but its trapping efficiency will continue to decline slowly as lake volume decreases. Lake Pepin will probably continue to experience water quality problems, such as nuisance algal growths and low dissolved oxygen, especially during summer low flows.

  17. Connecting the dots: a correlation between ionizing radiation and cloud mass-loss rate traced by optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.

    2016-11-01

    We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.

  18. Estimation of Mass-Loss Rates from Emission Line Profiles in the UV Spectra of Cool Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, K. G.; Robinson, R. D.; Harper, G. M.

    1999-01-01

    The photon-scattering winds of cool, low-gravity stars (K-M giants and supergiants) produce absorption features in the strong chromospheric emission lines. This provides us with an opportunity to assess important parameters of the wind, including flow and turbulent velocities, the optical depth of the wind above the region of photon creation, and the star's mass-loss rate. We have used the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code along with simple models of the outer atmospheric structure to compute synthetic line profiles for comparison with the observed line profiles. The SEI code has the advantage of being computationally fast and allows a great number of possible wind models to be examined. We therefore use it here to obtain initial first-order estimates of the wind parameters. More sophisticated, but more time-consuming and resource intensive calculations will be performed at a later date, using the SEI-deduced wind parameters as a starting point. A comparison of the profiles over a range of wind velocity laws, turbulence values, and line opacities allows us to constrain the wind parameters, and to estimate the mass-loss rates. We have applied this analysis technique (using lines of Mg II, 0 I, and Fe II) so far to four stars: the normal K5-giant alpha Tau, the hybrid K-giant gamma Dra, the K5 supergiant lambda Vel, and the M-giant gamma Cru. We present in this paper a description of the technique, including the assumptions which go into its use, an assessment of its robustness, and the results of our analysis.

  19. The Mass Loss and Humification of Stumps and Roots in Masson Pine Plantations Based on Log File Records

    PubMed Central

    Zhou, Jiao; Wu, Fuzhong; Yang, Wanqin; Tan, Bo; Xu, Zhenfeng; Zhang, Jian; Duan, Fei; Liu, Hui; Justine, Meta Francis

    2016-01-01

    Stumps account for a large proportion of coarse woody debris in managed forests, but their decay dynamics are poorly understood. The loss of mass and the degree of humification of the above-ground woody debris, below-ground woody debris, bark and root system (R1, 10 mm ≥ diameter > 0 mm; R2, 25 mm ≥ diameter >10 mm; 100 mm ≥ R3 > 25 mm; R4 > 100 mm) of Masson pine (Pinus massoniana) stump systems were evaluated in southwestern China in a chronosequence of plantations cut 1–15 years prior to the study. The results indicated that above-ground woody debris decomposed more quickly than below-ground woody debris and bark, whereas the degree of humification followed the opposite trend. Compared with one-year stumps, the mass losses of 15-year stump systems were 60.4% for above-ground woody debris, 42.1% for below-ground woody debris, 47.3% for bark, 69.9% for R1, 47.3% for R2, 51.0% for R3, and 83.2% for R4. In contrast, below-ground woody debris showed a greater degree of humification compared with other components in the stump system. Among the root system, fine roots (R1, diameter ≤ 10 mm) had the largest k value (0.09), whereas the decay rate of coarser roots (R2, R3, R4; diameter > 10 mm) increased with increasing root diameter. However, coarse roots showed a larger degree of humification (0.2–0.6) than fine roots (0.3–0.4). These results suggest that below-ground woody debris and coarse roots may display a higher degree of humification, showing greater short-term contributions to overall humification when compared with the other components in the stump system. PMID:27512999

  20. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    SciTech Connect

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J.

    2012-12-10

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  1. Neutral Loss Ion Mapping Experiment Combined with Precursor Mass List and Dynamic Exclusion for Screening Unstable Malonyl Glucoside Conjugates

    NASA Astrophysics Data System (ADS)

    Yang, Min; Zhou, Zhe; Yao, Shuai; Li, Shangrong; Yang, Wenzhi; Jiang, Baohong; Liu, Xuan; Wu, Wanying; Qv, Hua; Guo, De-an

    2016-01-01

    Malonates are one type of the acylation conjugates and found abundantly in ginseng and soybean. Malonyl conjugates of ginsenosides and isoflavone glycosides were often considered as the characteristic components to evaluate various species and different forms of ginseng and soybean products because of their thermal instability. Another famous isoflavonoid-rich leguminous traditional Chinese medicine (TCM), named Puerarin lobata (Gegen), has also been reported to contain malonyl daidzin and malonyl genistin. However, the conjugates were found to present in very low amount and particularly unstable in the negative ion mode scan using LTQ Orbitrap mass spectrometry with electrospray ionization (ESI). In order to screen and characterize the malonyl conjugates in Gegen, a specific method was designed and developed combining neutral loss ion mapping (NLIM) experiment and precursor mass list (PL) triggered data dependent acquisition (DDA). Along with the activation of dynamic exclusion (DE), the method was proven to be specific and efficient for searching the malonate derivatives from Gegen. Two samples were examined by the established method. A total of 66 compounds were found, and 43 of them were malonates of isoflavone glycoside. Very few compounds were reported previously in Gegen. The results are helpful to understand the constituents of Gegen with more insight. The study not only provided a method for analyzing the malonyl conjugates from complex matrices but also explored a way to trace other low amount components in TCMs.

  2. X-RAY ECLIPSE DIAGNOSIS OF THE EVOLVING MASS LOSS IN THE RECURRENT NOVA U SCORPII 2010

    SciTech Connect

    Takei, D.; Drake, J. J.; Tsujimoto, M.; Ness, J.-U.; Osborne, J. P.; Starrfield, S.; Kitamoto, S.

    2013-05-20

    We report the Suzaku detection of the earliest X-ray eclipse seen in the recurrent nova U Scorpii 2010. A target-of-opportunity observation 15 days after the outburst found a 27% {+-} 5% dimming in the 0.2-1.0 keV energy band at the predicted center of an eclipse. In comparison with the X-ray eclipse depths seen at two later epochs by XMM-Newton, the source region shrank by about 10%-20% between days 15 and 35 after the outburst. The X-ray eclipses appear to be deeper than or similar to contemporaneous optical eclipses, suggesting the X-ray and optical source region extents are comparable on day 15. We raise the possibility of the energy dependency in the photon escape regions, and that this would be a result of the supersoft X-ray opacity being higher than the Thomson scattering opacity at the photosphere due to bound-free transitions in abundant metals that are not fully ionized. Assuming a spherically symmetric model, we constrain the mass-loss rate as a function of time. For a ratio of actual to Thomson opacity of 10-100 in supersoft X-rays, we find an ejecta mass of about 10{sup -7}-10{sup -6} M{sub Sun }.

  3. Excess Body Mass Index Loss at 3 Months: A Predictive Factor of Long-Term Result after Sleeve Gastrectomy

    PubMed Central

    Philouze, Guillaume; Voitellier, Eglantine; Lacaze, Laurence; Huet, Emmanuel; Gancel, Antoine; Prévost, Gaëtan

    2017-01-01

    Introduction. Laparoscopic Sleeve Gastrectomy (SG) is considered as successful if the percentage of Excess Body Mass Index Loss (% EBMIL) remains constant over 50% with long-term follow-up. The aim of this study was to evaluate whether early % EBMIL was predictive of success after SG. Methods. This retrospective study included patients who had SG with two years of follow-up. Patients had follow-up appointments at 3 (M3), 6, 12, and 24 months (M24). Data as weight and Body Mass Index (BMI) were collected systematically. We estimated the % EBMIL necessary to establish a correlation between M3 and M24 compared to % EBMIL speeds and calculated a limit value of % EBMIL predictive of success. Results. Data at operative time, M3, and M24 were available for 128 patients. Pearson test showed a correlation between % EBMIL at M3 and that at M24 (r = 0.74; p < 0.0001). % EBMIL speed between surgery and M3 (p = 0.0011) was significant but not between M3 and M24. A linear regression analysis proved that % EBMIL over 20.1% at M3 (p < 0.0001) predicted a final % EBMIL over 50%. Conclusions. % EBMIL at M3 after SG is correlated with % EBMIL in the long term. % EBMIL speed was significant in the first 3 months. % EBMIL over 20.1% at M3 leads to the success of SG. PMID:28250984

  4. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Pre