Science.gov

Sample records for agb nucleosynthesis models

  1. S-process nucleosynthesis in AGB stars with the full spectrum of turbulence scheme for convection.

    NASA Astrophysics Data System (ADS)

    Yagüe, A.; García-Hernández, D. A.; Ventura, P.; Lugaro, M.

    2016-07-01

    The chemical evolution of asymptotic giant branch (AGB) stars models depends greatly on the input physics (e.g. convective model, mass loss recipe). Variations of hot bottom burning (HBB) strength, or third dredge-up (TDU) efficiency are among the main consequences of adopting different input physics in the AGB models. The ATON evolutionary code stands apart from others in that it uses the Full Spectrum of Turbulence convective model. Here we present the first results of a newly developed s-process nucleosynthesis module for ATON AGB models. Our results are compared also with observations and theoretical predictions of present AGB nucleosynthesis models using different input physics.

  2. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J. W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; Paxton, B.

    2016-08-01

    The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the {}13{{C}} pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M = 2 and M=3 {M}⊙ , and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of {}12{{C}} and {}16{{O}} are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the {}22{Ne}(α, n){}25{Mg} activation and the s-process efficiency in the {}13{{C}}-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the {}13{{C}}-pocket with a mass of ≈ {10}-4 {M}⊙ . The final s-process abundances are characterized by 0.36\\lt [{{s}}/{Fe}]\\lt 0.78 and the heavy-to-light s-process ratio is -0.23\\lt [{hs}/{ls}]\\lt 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work.

  3. FRUITY Upgrades on AGB Evolution and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Piersanti, L.

    2015-08-01

    Asymptotic Giant Branch (AGB) stars are among the major polluters of the interstellar medium. These objects produce both light (C, N, O, F, Na) and heavy elements (via the slow neutron capture process, the s-process). We have devoted a long-standing project to study the physical and chemical properties of AGB stars. Our models are available on the on-line FRUITY database, which currently provides the surface isotopic compositions and yields from hydrogen to lead of low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0). We present a new set of intermediate-mass AGB models (4.0, 5.0 and 6.0 M⊙ with -2.15 ≤ [Fe/H] ≤ +0.15). We discuss their physical and chemical properties, highlighting the differences with respect to the set already on-line. Moreover, we check the reliability of our models by comparing them to observed quantities, such as the initial-to-final mass relation and AGB luminosity functions.

  4. Calculating Method and Characteristics of the Distribution of Neutron Exposures in Radiative S-process Nucleosynthesis Model for AGB Stars

    NASA Astrophysics Data System (ADS)

    Zhang, F. H.; Zhou, G. D.; Cui, W. Y.; Zhang, B.

    2013-01-01

    An investigation on the distribution of neutron exposuresin the low-mass asymptotic giant branch (AGB) stars is presented, according to the s-process nucleosynthesis model with the (^{12}C(α,n)^{16}O) reaction occurring under radiative conditions in the interpulse phases. The model parameters, such as the fractional overlap of two successive convective thermal pulses (r), the mass fraction of (^{13}C) pocket in the He intershell (q), and the mass of the effective (^{13}C) in the (^{13}C) pocket, vary with pulse number. Considering these factors, the calculating method for the distribution of neutron exposures in the He intershell is presented. This method has the characteristics of simplicity and universality. Using this method, the exposure distributions of the stellar model for a star with a mass of (3 {M_⊙}) and solar metallicity are calculated. The results suggest that, with the reasonable assumption that the (^{13}C) pocket has a uniform composition, the final exposure distribution can still be approximated by an exponential law. For a stellar model with a fixed initial mass and metallicity, there is a definite relation between the mean neutron exposure ({τ_0}), and the neutron exposure (Δτ) for per interpulse. That is ({τ_0} = 0.434λ({q_{1,}}{q_2} … {q_{{m_{max}} + 1}},{r_{1,}}{r_2} … {r_{{m_{max}} + 1}})Δτ), where ({m_{max}}) is the total number of thermal pulses with the third dredge-up episode, and the proportional coefficient (λ({q_{1,}}{q_2} … {q_{{m_{max}} + 1}},{r_{1,}}{r_2} … {r_{{m_{max}} + 1}})) can be determined through an exponential curve fitting to the final exposure distribution. This new formula quantitatively unifies the classical model with the stellar model in terms of the distribution of neutron exposures, and makes the classical model continue to offer guidance and constraints to the s-process numerical calculations in stellar models.

  5. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE

    SciTech Connect

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-15

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M{sub ⊙}) at different metallicities (−2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M{sub ⊙} ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the {sup 22}Ne(α,n){sup 25}Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY)

  6. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  7. High Resolution Spectroscopy of Post-AGB Stars: AGB Nucleosynthesis and Dredge-up

    NASA Astrophysics Data System (ADS)

    Reyniers, Maarten

    2002-12-01

    The final evolutionary stage of a low mass stellar object is a complex phase which is still poorly understood. In this thesis we contribute to a better understanding of the nucleosynthesis and dredge-up phenomena that occur in such objects during their ascent on the AGB by means of a detailed study of high-resolution optical spectra of post-AGB objects. In the first four chapters we mainly focus on the photospheric abundances of eight carbon and s-process enriched post-AGB objects. The carbon enrichment clearly proves that products of the helium burning shell were brought to the surface in the so-called third dredge-up. Moreover, also products of the (slow) neutron nucleosynthesis (the s-process) are brought to the surface, which allows us to characterize this nucleosynthesis. A detailed study of the chemical pattern displayed by these elements, including a comparison with up-to-date nucleosynthetic AGB stellar models, reveals that the expected anti-correlation between metallicity and neutron nucleosynthesis efficiency is hardly seen (if at all). The anti-correlation is expected since in a lower metallicity object, more neutrons are available per iron seed and hence heavier nucleons can be built up, assuming a similar primary production rate of the neutrons. Instead, a large spread in efficiency is seen. On the other hand, a clear correlation was found between the total enrichment and the nucleosynthesis efficiency, indicating that the dredge-up efficiency is strongly linked to the neutron production. Furthermore, detailed abundances of elements beyond the Ba-peak (Gd, Yb, Lu and possibly W) were obtained for the first time in intrinsically enriched objects for three stars of the sample, a result which was possible due to the combination of the high quality VLT+UVES spectra and newly released atomic data in both VALD and DREAM (Database on Rare Earths At Mons University). Finally, a new identification was found for the line at 670.8 nm in the spectra of the

  8. On the introduction of {sup 17}O+p reaction rates evaluated through the THM in AGB nucleosynthesis calculations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2014-05-09

    The rates for the {sup 17}O(p,αα{sup 14}N, {sup 17}O(p,α){sup 18}F and {sup 18}O(p,α){sup 15}N reactions deduced trough the Trojan Horse Method (THM) have been introduced into a state-of-the-art asymptotic giant branch (AGB) models for proton-capture nucleosynthesis and cool bottom process. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis.

  9. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  10. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    SciTech Connect

    Jones, Sam; Ritter, Christian; Herwig, Falk; Fryer, Christopher Lee; Pignatari, Marco; Bertolli, Michael G.; Paxton, Bill

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 109 (in some cases 1010) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.

  11. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    DOE PAGES

    Jones, Sam; Ritter, Christian; Herwig, Falk; Fryer, Christopher Lee; Pignatari, Marco; Bertolli, Michael G.; Paxton, Bill

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage themore » interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 109 (in some cases 1010) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.« less

  12. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jones, S.; Ritter, C.; Herwig, F.; Fryer, C.; Pignatari, M.; Bertolli, M. G.; Paxton, B.

    2016-02-01

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 109 (in some cases 1010) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. We also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.

  13. Super and massive AGB stars - II. Nucleosynthesis and yields - Z = 0.02, 0.008 and 0.004

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Lau, Herbert H. B.; Lattanzio, John C.; Siess, Lionel

    2014-01-01

    We have computed detailed evolution and nucleosynthesis models for super and massive asymptotic giant branch (AGB) stars over the mass range 6.5-9.0 M⊙ in divisions of 0.5 M⊙ with metallicities Z = 0.02, 0.008 and 0.004. These calculations, in which we find third dredge-up and hot bottom burning, fill the gap between existing low- and intermediate-mass AGB star models and high-mass star models that become supernovae. For the considered metallicities, the composition of the yields is largely dominated by the thermodynamic conditions at the base of the convective envelope rather than by the pollution arising from third dredge-up. We investigate the effects of various uncertainties, related to the mass-loss rate, mixing length parameter, and the treatment of evolution after the envelope instability that develops near the end of the (super)AGB phase. Varying these parameters alters the yields mainly because of their impact on the amount of third dredge-up enrichment, and to a lesser extent on the hot bottom burning conditions. Our models produce significant amounts of 4He, 7Li (depending on the mass-loss formulation) 13C, 14N, 17O, 23Na, 25Mg, as well the radioactive isotope 26Al in agreement with previous investigation. In addition, our results show enrichment of 22Ne, 26Mg and 60Fe, as well as a substantial increase in our proxy neutron capture species representing all species heavier than iron. These stars may provide important contributions to the Galaxy's inventory of the heavier Mg isotopes, 14N, 7Li and 27Al.

  14. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. II. Statistical analysis of a sample of 67 CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Izzard, R. G.; Karakas, A. I.

    2015-09-01

    Many of the carbon-enhanced metal-poor (CEMP) stars that we observe in the Galactic halo are found in binary systems and show enhanced abundances of elements produced by the slow neutron-capture process (s-elements). The origin of the peculiar chemical abundances of these CEMP-s stars is believed to be accretion in the past of enriched material from a primary star in the asymptotic giant branch (AGB) phase of its evolution.We investigate the mechanism of mass transfer and the process of nucleosynthesis in low-metallicity AGB stars by modelling the binary systems in which the observed CEMP-s stars were formed.For this purpose we compare a sample of 67 CEMP-s stars with a grid of binary stars generated by our binary evolution and nucleosynthesis model. We classify our sample CEMP-s stars in three groups based on the observed abundance of europium. In CEMP-s/r stars the europium-to-iron ratio is more than ten times higher than in the Sun, whereas it is lower than this threshold in CEMP-s/nr stars. No measurement of europium is currently available for CEMP-s/ur stars.On average our models reproduce the abundances observed in CEMP-s/nr stars well, whereas in CEMP-s/r stars and CEMP-s/ur stars the abundances of the light-s elements (strontium, yttrium, zirconium) are systematically overpredicted by our models, and in CEMP-s/r stars the abundances of the heavy-s elements (barium, lanthanum) are underestimated. In all stars our modelled abundances of sodium overestimate the observations. This discrepancy is reduced only in models that underestimate the abundances of most of the s-elements. Furthermore, the abundance of lead is underpredicted in most of our model stars, independent of the metallicity. These results point to the limitations of our AGB nucleosynthesis model, particularly in the predictions of the element-to-element ratios. In our models CEMP-s stars are typically formed in wide systems with periods above 10 000 days, while most of the observed CEMP-s stars

  15. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna; Beers, Timothy C.; Karakas, Amanda I.; Kennedy, Catherine R.; Christlieb, Norbert; Stancliffe, Richard J.

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  16. Isotope Anomalies in the Fe-group Elements in Meteorites and Connections to Nucleosynthesis in AGB Stars

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Trippella, O.; Busso, M.

    2015-05-01

    We study the effects of neutron captures in AGB stars on “Fe-group” elements, with an emphasis on Cr, Fe, and Ni. These elements show anomalies in 54Cr, 58Fe, and 64Ni in solar system materials, which are commonly attributed to supernovae (SNe). However, as large fractions of the interstellar medium (ISM) were reprocessed in AGB stars, these elements were reprocessed, too. We calculate the effects of such reprocessing on Cr, Fe, and Ni through 1.5 {{M}⊙ } and 3 {{M}⊙ } AGB models, adopting solar and 1/3 solar metallicities. All cases produce excesses of 54Cr, 58Fe, and 64Ni, while the other isotopes are little altered; hence, the observations may be explained by AGB processing. The results are robust and not dependent on the detailed initial isotopic composition. Consequences for other “Fe group” elements are then explored. They include 50Ti excesses and some production of 46,47,49Ti. In many circumstellar condensates, Ti quantitatively reflects these effects of AGB neutron captures. Scatter in the data results from small variations (granularity) in the isotopic composition of the local ISM. For Si, the main effects are instead due to variations in the local ISM from different SN sources. The problem of Ca is discussed, particularly with regard to 48Ca. The measured data are usually represented assuming terrestrial values for 42Ca/44Ca. Materials processed in AGB stars or sources with variable initial 42Ca/44Ca ratios can give apparent 48Ca excesses/deficiencies, attributed to SNe. The broader issue of galactic chemical evolution is also discussed in view of the isotopic granularity in the ISM.

  17. Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity

    SciTech Connect

    Fishlock, Cherie K.; Karakas, Amanda I.; Yong, David; Lugaro, Maria E-mail: amanda.karakas@anu.edu.au E-mail: maria.lugaro@monash.edu

    2014-12-10

    We present stellar evolutionary tracks and nucleosynthetic predictions for a grid of stellar models of low- and intermediate-mass asymptotic giant branch (AGB) stars at Z = 0.001 ([Fe/H] =–1.2). The models cover an initial mass range from 1 M {sub ☉} to 7 M {sub ☉}. Final surface abundances and stellar yields are calculated for all elements from hydrogen to bismuth as well as isotopes up to the iron group. We present the first study of neutron-capture nucleosynthesis in intermediate-mass AGB models, including a super-AGB model, of [Fe/H] = –1.2. We examine in detail a low-mass AGB model of 2 M {sub ☉} where the {sup 13}C(α,n){sup 16}O reaction is the main source of neutrons. We also examine an intermediate-mass AGB model of 5 M {sub ☉} where intershell temperatures are high enough to activate the {sup 22}Ne neutron source, which produces high neutron densities up to ∼10{sup 14} n cm{sup –3}. Hot bottom burning is activated in models with M ≥ 3 M {sub ☉}. With the 3 M {sub ☉} model, we investigate the effect of varying the extent in mass of the region where protons are mixed from the envelope into the intershell at the deepest extent of each third dredge-up. We compare the results of the low-mass models to three post-AGB stars with a metallicity of [Fe/H] ≅ – 1.2. The composition is a good match to the predicted neutron-capture abundances except for Pb and we confirm that the observed Pb abundances are lower than what is calculated by AGB models.

  18. Core Collapse Supernova Models and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi

    2014-01-01

    After the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.

  19. The RGB and AGB Star Nucleosynthesis in Light of the Recent 17O(p, α)14N and 18O(p, α)15N Reaction-rate Determinations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2013-02-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on A = 17 and A = 18 oxygen isotopes, overcoming extrapolation procedures and enhancement effects due to electron screening. In particular, the strengths of the 20 keV and 65 keV resonances in the 18O(p, α)15N and 17O(p, α)14N reactions, respectively, have been extracted, as well as the contribution of the tail of the broad 656 keV resonance in the 18O(p, α)15N reaction inside the Gamow window. The strength of the 65 keV resonance in the 17O(p, α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. As a result, more accurate reaction rates for the 18O(p, α)15N, 17O(p, α)14N, and 17O(p, γ)18F processes have been deduced, devoid of systematic errors due to extrapolation or the electron screening effect. Such rates have been introduced into state-of-the-art red giant branch and asymptotic giant branch (AGB) models for proton-capture nucleosynthesis coupled with extra-mixing episodes. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis. The low 14N/15N found in SiC grains cannot be explained by the revised nuclear reaction rates and remains a serious problem that has not been satisfactorily addressed.

  20. Stellar evolution of low and intermediate-mass stars. IV. Hydrodynamically-based overshoot and nucleosynthesis in AGB stars.

    NASA Astrophysics Data System (ADS)

    Herwig, F.; Bloecker, T.; Schoenberner, D.; El Eid, M.

    1997-08-01

    The focus of this study is on the treatment of those stellar regions immediately adjacent to convective zones. The results of hydrodynamical simulations by Freytag et al. (1996A&A...313..497F) show that the motion of convective elements extends well beyond the boundary of the convectively unstable region. We have applied their parametrized description of the corresponding velocities to the treatment of overshoot in stellar evolution calculations up to the AGB (Pop.I, M_ZAMS_=3Msun_). Our calculations show the 3^rd^ dredge-up already at the 7^th^ thermal pulse (TP), and the dredge-up parameter reaches λ=0.6 during the next five pulses. Accordingly, the amount of dredged up ^12^C is up to 10^-3^Msun_. Our models develope a small so-called ^13^C-pocket consisting of a few 10^-7^ Msun_. Finally, this treatment of boundaries of convective regions leads to intershell abundances of typically (^4^He/^12^C/^16^O)=(23/50/25) (compared to (70/26/1) in the standard treatment).

  1. Rb and Zr abundances in massive Galactic AGB stars revisited

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; Zamora, O.; García-Hernández, D. A.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2016-07-01

    We report new abundances of Rb and Zr in a sample of massive Galactic asymptotic giant branch (AGB) stars that were previously studied with hydrostatic models by using more realistic dynamical model atmospheres. We use a modified version of the spectral synthesis code Turbospectrum, and consider the presence of a circumstellar envelope and a radial wind in the modelling of these Galactic AGB stars. The Rb and Zr are determined from the 7800 Å Rb I resonant line and the 6474 Å ZrO bandhead, respectively, and they are compared with the AGB nucleosynthesis theoretical predictions. The derived Rb abundances are much lower (∼⃒1-2 dex) with the new dynamical models, while the Zr abundances, however, are closer to the hydrostatic values. The new model atmospheres can help to resolve the problem of the mismatch between the observations and the nucleosynthesis theoretical predictions of massive AGB stars.

  2. Nucleosynthesis in AGB stars: Observation of Mg-25 and Mg-26 in IRC+10216 and possible detection of Al-26

    NASA Technical Reports Server (NTRS)

    Guelin, M.; Forestini, M.; Valiron, P.; Ziurys, L. M.; Anderson, M. A.; Cernicharo, J.; Kahane, C.

    1995-01-01

    We report the detection in the circumstellar envelope IRC+10216 of millimeter lines of the rare isotopomers (25)MgNC and (26)MgNC, as well as of a line at 234433 MHz, which could be the J= 7-6 transition of (26)AlF (an alternate, although less likely identified would be the J= 9-8 transition of NaF). The derived Mg-24:Mg-25:Mg-26 isotopic abundance ratios (78 : 11+/- 1 : 11 +/-1) are consistent with the solar system values (79.0:10.0:11.0), following Anders & Grevesse 1989). According to new calculations of evolutionary models of 3 solar mass and 5 solar mass asymptotic giant branch (AGB) stars, these ratios and the previously measured N, O and Si isotopic ratios imply that the central star had an initial mass 3 solar mass (less than or equal to M(sub *, ini) less than 5 solar mass and has already experienced many 3rd dredge-up events. From this, it can be predicted that the Al-26/Al-27 isotopics ratio lies between 0.01 and 0.08; in fact, the value derived in the case that U234433 arises from (26)AlF is Al-26/Al-27 = 0.04. The identification of the (25)MgNC and (26)MgNC lines was made possible by ab-initio quantum mechanical calculations of the molecule geometrical structure. It was confirmed through millimeter-wave laboratory measurements. The quantum mechanical calculations are briefly described and the laboratory results presented in some detail. The rotation constants B, D, H and the spin-rotation constant gamma of (25)MgNC and (26)MgNC are determined from a fit of laboratory and astronomical data.

  3. Evolutionary models of nucleosynthesis in the galaxy.

    NASA Technical Reports Server (NTRS)

    Truran, J. W.; Cameron, A. G. W.

    1971-01-01

    A model of the galaxy is constructed and evolved in which the integrated influence of stellar and supernova nucleosynthesis on the composition of the interstellar gas is traced numerically. Our detailed assumptions concerning the character of the matter released from evolving stars and supernovae are guided by the results of recent stellar evolutionary calculations and hydrodynamic studies of supernova events. It is difficult to visualize an epoch of massive star formation in the collapsing gas cloud which formed our galaxy which would enrich the gas rapidly enough to account for the level of heavy element abundances in halo population stars; we have therefore proposed a stage of star formation which is entirely pregalactic in character. We suggest that the Jeans' length-sized initial condensations in the expanding universe discussed by Peebles and Dicke may provide the appropriate setting for this first generation of stars. Guided by these considerations, and by the need for a substantial quantity of 'unseen' mass to bind our local group of galaxies, we have constructed a model of the galaxy in which this violent early phase of massive star formation produces both (1) approximately 25% of the level of heavy elements observed in the solar system and (2) an enormous unseen mass in the form of black holes.

  4. Nucleosynthesis in helium-enriched asymptotic giant branch models: Implications for heavy element enrichment in ω Centauri

    SciTech Connect

    Karakas, Amanda I.; Marino, Anna F.; Nataf, David M.

    2014-03-20

    We investigate the effect of helium enrichment on the evolution and nucleosynthesis of low-mass asymptotic giant branch (AGB) stars of 1.7 M {sub ☉} and 2.36 M {sub ☉} with a metallicity of Z = 0.0006 ([Fe/H] ≈–1.4). We calculate evolutionary sequences with the primordial helium abundance (Y = 0.24) and with helium-enriched compositions (Y = 0.30, 0.35, 0.40). For comparison, we calculate models of the same mass but at a lower metallicity Z = 0.0003 ([Fe/H] ≈–1.8) with Y = 0.24. Post-processing nucleosynthesis calculations are performed on each of the evolutionary sequences to determine the production of elements from hydrogen to bismuth. Elemental surface abundance predictions and stellar yields are presented for each model. The models with enriched helium have shorter main sequence and AGB lifetimes, and they enter the AGB with a more massive hydrogen-exhausted core than the primordial helium model. The main consequences are as follows: (1) low-mass AGB models with enhanced helium will evolve more than twice as fast, giving them the chance to contribute sooner to the chemical evolution of the forming globular clusters, and (2) the stellar yields will be strongly reduced relative to their primordial helium counterparts. An increase of ΔY = 0.10 at a given mass decreases the yields of carbon by up to ≈60% and of fluorine by up to 80%; it also decreases the yields of the s-process elements barium and lanthanum by ≈45%. While the yields of first s-process peak elements strontium, yttrium, and zirconium decrease by up to 50%, the yields of rubidium either do not change or increase.

  5. Approaching a Physical Calibration of the AGB Phase

    NASA Astrophysics Data System (ADS)

    Marigo, Paola

    2015-08-01

    The widespread impact of Asymptotic Giant Branch (AGB) stars on the observed properties of galaxies is universally accepted. Despite their importance, severe uncertainties plague AGB models and propagate through to current population synthesis studies of galaxies, undermining the interpretation of a galaxy's basic properties (mass, age, chemical evolution, dust budget). The only reliable path forward is to apply a physically-sound calibration of AGB stellar models in which all main physical processes and their interplay are taken into account (e.g., mixing, mass loss, nucleosynthesis, pulsation, molecular chemistry, dust formation). In this context, I will review recent and ongoing efforts to calibrate the evolution of AGB stars, which combine an all-round theoretical approach anchored by stellar physics with exceptionally high quality data of resolved AGB stars in the Milky Way and nearby galaxies.

  6. NEW DETERMINATION OF THE {sup 13}C({alpha}, n){sup 16}O REACTION RATE AND ITS INFLUENCE ON THE s-PROCESS NUCLEOSYNTHESIS IN AGB STARS

    SciTech Connect

    Guo, B.; Li, Z. H.; Li, Y. J.; Su, J.; Yan, S. Q.; Bai, X. X.; Chen, Y. S.; Fan, Q. W.; Jin, S. J.; Li, E. T.; Li, Z. C.; Lian, G.; Liu, J. C.; Liu, X.; Shu, N. C.; Lugaro, M.; Buntain, J.; Pang, D. Y.; Karakas, A. I.; Shi, J. R. E-mail: guobing@ciae.ac.cn; and others

    2012-09-10

    We present a new measurement of the {alpha}-spectroscopic factor (S{sub {alpha}}) and the asymptotic normalization coefficient for the 6.356 MeV 1/2{sup +} subthreshold state of {sup 17}O through the {sup 13}C({sup 11}B, {sup 7}Li){sup 17}O transfer reaction and we determine the {alpha}-width of this state. This is believed to have a strong effect on the rate of the {sup 13}C({alpha}, n){sup 16}O reaction, the main neutron source for slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the {sup 13}C({alpha}, n){sup 16}O reaction. At a temperature of 100 MK, our rate is roughly two times larger than that by Caughlan and Fowler and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected s-process elements and isotopic ratios. There are no changes in the final results using the different rates for the {sup 13}C({alpha}, n){sup 16}O reaction when the {sup 13}C burns completely in radiative conditions. When the {sup 13}C burns in convective conditions, as in stars of initial mass lower than {approx}2 M{sub Sun} and in post-AGB stars, some changes are to be expected, e.g., of up to 25% for Pb in our models. These variations will have to be carefully analyzed when more accurate stellar mixing models and more precise observational constraints are available.

  7. New Determination of the 13C(α, n)16O Reaction Rate and its Influence on the s-process Nucleosynthesis in AGB Stars

    NASA Astrophysics Data System (ADS)

    Guo, B.; Li, Z. H.; Lugaro, M.; Buntain, J.; Pang, D. Y.; Li, Y. J.; Su, J.; Yan, S. Q.; Bai, X. X.; Chen, Y. S.; Fan, Q. W.; Jin, S. J.; Karakas, A. I.; Li, E. T.; Li, Z. C.; Lian, G.; Liu, J. C.; Liu, X.; Shi, J. R.; Shu, N. C.; Wang, B. X.; Wang, Y. B.; Zeng, S.; Liu, W. P.

    2012-09-01

    We present a new measurement of the α-spectroscopic factor (S α) and the asymptotic normalization coefficient for the 6.356 MeV 1/2+ subthreshold state of 17O through the 13C(11B, 7Li)17O transfer reaction and we determine the α-width of this state. This is believed to have a strong effect on the rate of the 13C(α, n)16O reaction, the main neutron source for slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the 13C(α, n)16O reaction. At a temperature of 100 MK, our rate is roughly two times larger than that by Caughlan & Fowler and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected s-process elements and isotopic ratios. There are no changes in the final results using the different rates for the 13C(α, n)16O reaction when the 13C burns completely in radiative conditions. When the 13C burns in convective conditions, as in stars of initial mass lower than ~2 M ⊙ and in post-AGB stars, some changes are to be expected, e.g., of up to 25% for Pb in our models. These variations will have to be carefully analyzed when more accurate stellar mixing models and more precise observational constraints are available.

  8. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  9. AGB stars and presolar grains

    SciTech Connect

    Busso, M.; Trippella, O.; Maiorca, E.; Palmerini, S.

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  10. Astrophysical models of r-process nucleosynthesis: An update

    SciTech Connect

    Qian Yongzhong

    2012-11-12

    An update on astrophysical models for nucleosynthesis via rapid neutron capture, the r process, is given. A neutrino-induced r process in supernova helium shells may have operated up to metallicities of {approx} 10{sup -3} times the solar value. Another r-process source, possibly neutron star mergers, is required for higher metallicities.

  11. The effect of the recent 17O(p,α)14N and 18O(p,α)15N fusion cross section measurements in the nucleosynthesis of AGB stars

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-01-01

    The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O(p,α)14N and 18O(p,α)15N fusion reactions and to extract the strengths of the resonances that more contribute to the reaction rates at astrophysical energies. Moreover, the strength of the 65 keV resonance in the 17O(p,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. Since, proton-induced fusion reactions on 17O and 18O belong to the CNO cycle network for H-burning in stars, the new estimates of the cross sections have been introduced into calculations of Asymptotic giant branch (AGB) star nucleosynthesis to determine their impact on astrophysical environments. Results of nucleosynthesis calculations have been compared with geochemical analysis of "presolar" grains. These solids form in the cold and dusty envelopes that surround AGB stars and once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of fusion reactions in astrophysical environments.

  12. Challenges to the standard model of Big Bang nucleosynthesis.

    PubMed

    Steigman, G

    1993-06-01

    Big Bang nucleosynthesis provides a unique probe of the early evolution of the Universe and a crucial test of the consistency of the standard hot Big Bang cosmological model. Although the primordial abundances of 2H, 3He, 4He, and 7Li inferred from current observational data are in agreement with those predicted by Big Bang nucleosynthesis, recent analysis has severely restricted the consistent range for the nucleon-to-photon ratio: 3.7 model and suggest that no new light particles may be allowed (N(BBN)nu

  13. Challenges to the standard model of Big Bang nucleosynthesis.

    PubMed Central

    Steigman, G

    1993-01-01

    Big Bang nucleosynthesis provides a unique probe of the early evolution of the Universe and a crucial test of the consistency of the standard hot Big Bang cosmological model. Although the primordial abundances of 2H, 3He, 4He, and 7Li inferred from current observational data are in agreement with those predicted by Big Bang nucleosynthesis, recent analysis has severely restricted the consistent range for the nucleon-to-photon ratio: 3.7 model and suggest that no new light particles may be allowed (N(BBN)nu

  14. The AGB star nucleosynthesis in the light of the recent {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reaction rate determinations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2015-02-24

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reactions. Moreover, the strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of 'presolar' grains to determine their impact on astrophysical environments.

  15. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  16. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  17. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; Van Winckel, H.; De Smedt, K.; Karakas, A. I.; Käppeler, F.

    2015-11-01

    Aims: We explore modifications to the current scenario for the slow neutron-capture process (the s-process) in asymptotic giant branch (AGB) stars to account for the Pb deficiency observed in post-AGB stars of low metallicity ([Fe/H] ≃-1.2) and low initial mass (≃ 1-1.5 M⊙) in the Large and Small Magellanic Clouds. Methods: We calculated the stellar evolution and nucleosynthesis for a 1.3 M⊙ star with [Fe/H] = -1.3 and tested different amounts and distributions of protons leading to the production of the main neutron source within the 13C-pocket and proton ingestion scenarios. Results: No s-process models can fully reproduce the abundance patterns observed in the post-AGB stars. When the Pb production is lowered, the abundances of the elements between Eu and Pb, such as Er, Yb, W, and Hf, are also lowered to below those observed. Conclusions: Neutron-capture processes with neutron densities intermediate between the s and the rapid neutron-capture processes may provide a solution to this problem and be a common occurrence in low-mass, low-metallicity AGB stars.

  18. Nucleosynthesis in Thermonuclear Supernovae

    SciTech Connect

    Claudia, Travaglio; Hix, William Raphael

    2013-01-01

    We review our understanding of the nucleosynthesis that occurs in thermonuclear supernovae and their contribution to Galactic Chemical evolution. We discuss the prospects to improve the modeling of the nucleosynthesis within simulations of these events.

  19. Studying the evolution of AGB stars in the Gaia epoch

    NASA Astrophysics Data System (ADS)

    Di Criscienzo, M.; Ventura, P.; García-Hernández, D. A.; Dell'Agli, F.; Castellani, M.; Marrese, P. M.; Marinoni, S.; Giuffrida, G.; Zamora, O.

    2016-10-01

    We present asymptotic giant branch (AGB) models of solar metallicity, to allow the interpretation of observations of Galactic AGB stars, whose distances should be soon available after the first release of the Gaia catalogue. We find an abrupt change in the AGB physical and chemical properties, occurring at the threshold mass to ignite hot bottom burning, i.e. 3.5 M⊙. Stars with mass below 3.5 M⊙ reach the C-star stage and eject into the interstellar medium gas enriched in carbon, nitrogen and 17O. The higher mass counterparts evolve at large luminosities, between 3 × 104 and 105 L⊙. The mass expelled from the massive AGB stars shows the imprinting of proton-capture nucleosynthesis, with considerable production of nitrogen and sodium and destruction of 12C and 18O. The comparison with the most recent results from other research groups is discussed, to evaluate the robustness of the present findings. Finally, we compare the models with recent observations of galactic AGB stars, outlining the possibility offered by Gaia to shed new light on the evolution properties of this class of objects.

  20. Evolution models from the AGB to the PNe and the rapid evolution of SAO 244567

    NASA Astrophysics Data System (ADS)

    Lawlor, Timothy M.; Sebzda, Steven; Peterson, Zach

    2015-08-01

    We present evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PNe) phase for models of mass 1 M⊙ over a range of metallicities from primordial, Z = 10-14, through near solar, Z = 0.02. Using our grid of models, we determine a central star mass dependence on initial metallicity. We also present a range of low masses for our low to very low metal models. The understanding of these objects is an important part of galactic evolution and the evolution of the composition of the universe over a broad range of red shits. For our low Z models, we find key differences in how they cross the HR diagram to the PNe phase, compared with models with higher initial Z. Some of our models experience the so called AGB Final Thermal Pulse (AFTP), which is a helium pulse that occurs while leaving the AGB and causes a rapid looping evolution while evolving between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, SAO 244567. This object has been observed to be rapidly evolving (heating) over more than the last 50 years and is the central star of the youngest known planetary nebula. These two characteristics are similar to what is expected for AFTP models. It is a short lived phase that is related to, but different than, very late thermal pulse objects such as Sakurai’s Object, FG Sge, and V605 Aql. These objects experienced a similar thermal pulse, but later on the white dwarf cooling track.

  1. Big bang nucleosynthesis: The standard model and alternatives

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).

  2. Carbon-burning nucleosynthesis with convection. [stellar models

    NASA Technical Reports Server (NTRS)

    Endal, A. S.

    1975-01-01

    The effect of convection on carbon-burning nucleosynthesis is explored with a limited network of reactions. Convection is simulated by a series of networks at fixed mass points in the core of an evolving 15 solar mass star. Complete mixing is always assumed. Comparison to single network calculations show that the 'half-energy' approximation of Arnett yields reasonable results, although the abundances of nuclei which are created by beta-decays of unstable nuclei tend to be underestimated, by this approximation.

  3. RELICS OF ANCIENT POST-AGB STARS IN A PRIMITIVE METEORITE

    SciTech Connect

    Jadhav, M.; Huss, G. R.; Pignatari, M.; Herwig, F.; Zinner, E.; Gallino, R.

    2013-11-10

    Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca, and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low {sup 12}C/{sup 13}C isotopic ratios in these grains are a result of abundant {sup 12}C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of ∼10{sup 15} cm{sup –3}, typical of the i-process, are achieved during this phase in post-AGB stars. The large {sup 42,43,44}Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from {sup 46,48}Ca, which cannot be resolved from the isobars {sup 46,48}Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a VLTP.

  4. Online Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Meyer Jordan, Bradley, IV; The, Lih-Sin; Robbins, Stuart

    2004-05-01

    Nuclear-reaction network codes are important to astronomers seeking to explore nucleosynthetic implications of astrophysical models and to nuclear physicists seeking to understand the role of nuclear properties or reaction rates in element formation. However, many users do not have the time or inclination to download and compile the codes, to manage the requisite input files, or to explore the often complex output with their own graphics programs. To help make nucleosynthesis calculations more readily available, we have placed the Clemson Nucleosynthesis code on the world-wide web at http://www.ces.clemson.edu/physics/nucleo/nuclearNetwork At this web site, any Internet user may set his or her own reaction network, nuclear properties and reaction rates, and thermodynamic trajectories. The user then submits the nucleosynthesis calculation, which runs on a dedicated server professionally maintained at Clemson University. Once the calculation is completed, the user may explore the results through dynamically produced and downloadable tables and graphs. Online help guides the user through the necessary steps. We hope this web site will prove a user-friendly and helpful tool for professional scientists as well as for students seeking to explore element formation.

  5. Explosive nucleosynthesis of N15 in a massive-star model

    NASA Astrophysics Data System (ADS)

    Bojazi, Michael J.; Meyer, Bradley S.

    2014-02-01

    Background: Presolar meteoritic graphite grains from supernovas show spatially correlated excesses in N15 and O18. These excesses signal the helium-rich layers of supernova ejecta as important source material for the grains. Purpose: Elucidate the explosive nucleosynthesis of N15 in massive stars, especially during shock passage through the helium-rich stellar layers. Method: A simple but realistic model of shock passage through the outer layers of exploding massive stars is used to follow the important N15 nucleosynthesis production pathways and their sensitivity to explosion energy and governing reaction rates in a particular stellar model. All calculations are performed with open-source, freely available codes. Results: Recent reaction rate updates tend to decrease by ˜4× the explosive helium-burning yield of N15 relative to some commonly used stellar model outputs. Conclusions: Neutron-capture reactions on F18 play an important role in the explosive production of N15 in helium-rich stellar layers. This neutron-induced nucleosynthesis is likely connected to that of other isotopic signatures in presolar supernova grains. The Supplemental Material provides instructions that interested readers can follow for their own calculations of explosive nucleosynthesis and nuclear reaction rate sensitivities.

  6. The origin of fluorine: abundances in AGB carbon stars revisited

    NASA Astrophysics Data System (ADS)

    Abia, C.; Cunha, K.; Cristallo, S.; de Laverny, P.

    2015-09-01

    Context. Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 μm region have recently become available, facilitating a revision of the F content in asymptotic giant branch (AGB) stars. Aims: AGB carbon stars are the only observationally confirmed sources of fluorine. Currently, there is no consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Methods: Using new spectroscopic tools and local thermodynamical equilibrium spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J, and SC, spanning a wide range of metallicities. Results: On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling the radiative/convective interface at the base of the convective envelope in a different way. Conclusions: New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.

  7. Nucleosynthesis of the elements and the liquid metallic hydrogen model of the Sun

    NASA Astrophysics Data System (ADS)

    Robitaille, Pierre-Marie

    2012-10-01

    Modern nucleosynthesis theory stems from the anticipated life cycle of stellar objects. Within this framework, the Sun, as a relatively young and light main sequence star, is unable to synthesize any element beyond helium. All metallic elements in our solar system have consequently been hypothesized to arise from the explosion of early stars which previously populated this region of the galaxy. Much of nucleosynthesis theory currently rests on gaseous stellar models and has developed in a direction consistent which such objects. In this presentation, the problem of nucleosynthesis is briefly reconsidered within the context of a condensed Sun. Such an object, built from liquid metallic hydrogen provides a new avenue for nucleosynthesis. Nuclei and protons contained within a metallic hydrogen lattice, will be subjected to vibrational modes which should be conducive to promoting internuclear reaction. The pressures within the Sun should make the synthesis of all the elements possible based on the combination of lighter elements. In stark contrast to current theory, it is advanced that all elements, beyond hydrogen, can be made within such a thermonuclear furnace.

  8. The lead discrepancy in intrinsically s-process enriched post-AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Karakas, A. I.; Siess, L.; Goriely, S.; Wood, P.

    2014-03-01

    Context. Our understanding of the s-process nucleosynthesis in asymptotic giant branch (AGB) stars is incomplete. AGB models predict, for example, large overabundances of lead (Pb) compared to other s-process elements in metal-poor low-mass AGB stars. This is indeed observed in some extrinsically enhanced metal-poor stars, but not in all. An extensive study of intrinsically s-process enriched objects is essential for improving our knowledge of the AGB third dredge-up and associated s-process nucleosynthesis. Aims: We compare the spectral abundance analysis of the SMC post-AGB star J004441.04-732136.4 with state-of-the-art AGB model predictions with a main focus on Pb. The low signal-to-noise (S/N) in the Pb line region made the result of our previous study inconclusive. We acquired additional data covering the region of the strongest Pb line. Methods: By carefully complementing re-reduced previous data, with newly acquired UVES optical spectra, we improve the S/N of the spectrum around the strongest Pb line. Therefore, an upper limit for the Pb abundance is estimated from a merged weighted mean spectrum using synthetic spectral modeling. We then compare the abundance results from the combined spectra to predictions of tailored AGB evolutionary models from two independent evolution codes. In addition, we determine upper limits for Pb abundances for three previously studied LMC post-AGB objects. Results: Although theoretical predictions for J004441.04-732136.4 match the s-process distribution up to tungsten (W), the predicted very high Pb abundance is clearly not detected. The three additional LMC post-AGB stars show a similar lack of a very high Pb abundance. Conclusions: From our study, we conclude that none of these low-mass, low-metallicity post-AGB stars of the LMC and SMC are strong Pb producers. This conflicts with current theoretical predictions. Based on observations collected with the Very Large Telescope at the ESO Paranal Observatory (Chili) of programme

  9. On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models

    NASA Astrophysics Data System (ADS)

    D'Orazi, V.; Campbell, S. W.; Lugaro, M.; Lattanzio, J. C.; Pignatari, M.; Carretta, E.

    2013-07-01

    Globular clusters display significant variations in their light-element content, pointing to the existence of a second stellar generation formed from the ejecta of an earlier generation. The nature of these internal polluters is still a matter of debate: the two most popular scenarios indicate intermediate-mass asymptotic giant branch (IM-AGB) stars and fast rotating massive stars. Abundances determination for some key elements can help distinguish between these competitor candidates. We present in this paper Y abundances for a sample of 103 red giant branch stars in NGC 6121. Within measurement errors, we find that the [Y/Fe] is constant in this cluster contrary to a recent suggestion. For a subsample of six stars we also find [Rb/Fe] to be constant, consistent with previous studies showing no variation in other s-process elements. We also present a new set of stellar yields for IM-AGB stellar models of 5 and 6 M⊙, including heavy element s-process abundances. The uncertainties on the mass-loss rate, the mixing length parameter and the nuclear reaction rates have a major impact on the stellar abundances. Within the IM-AGB pollution scenario, the constant abundance of heavy elements inside the cluster requires a marginal s-process efficiency in IM-AGB stars. Such a constrain could still be satisfied by the present models assuming a stronger mass-loss rate. The uncertainties mentioned above are limiting the predictive power of IM-AGB models. For these reasons, at the moment we are not able to clearly rule out their role as main polluters of the second population stars in globular clusters.

  10. Nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    El Eid, Mounib F.

    2014-05-09

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  11. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  12. SUPER-AGB-AGB EVOLUTION AND THE CHEMICAL INVENTORY IN NGC 2419

    SciTech Connect

    Ventura, Paolo; D'Antona, Francesca; Carini, Roberta; Di Criscienzo, Marcella; D'Ercole, Annibale; Vesperini, Enrico

    2012-12-20

    We follow the scenario of formation of second-generation stars in globular clusters by matter processed by hot bottom burning (HBB) in massive asymptotic giant branch (AGB) stars and super-AGB stars (SAGB). In the cluster NGC 2419 we assume the presence of an extreme population directly formed from the AGB and SAGB ejecta, so we can directly compare the yields for a metallicity Z = 0.0003 with the chemical inventory of the cluster NGC 2419. At such a low metallicity, the HBB temperatures (well above 10{sup 8} K) allow a very advanced nucleosynthesis. Masses {approx}6 M{sub Sun} deplete Mg and synthesize Si, going beyond Al, so this latter element is only moderately enhanced; sodium cannot be enhanced. The models are consistent with the observations, although the predicted Mg depletion is not as strong as in the observed stars. We predict that the oxygen abundance must be depleted by a huge factor (>50) in the Mg-poor stars. The HBB temperatures are close to the region where other p-capture reactions on heavier nuclei become possible. We show that high potassium abundance found in Mg-poor stars can be achieved during HBB by p-captures on the argon nuclei, if the relevant cross section(s) are larger than listed in the literature or if the HBB temperature is higher. Finally, we speculate that some calcium production is occurring owing to proton capture on potassium. We emphasize the importance of a strong effort to measure a larger sample of abundances in this cluster.

  13. Infrared spectroscopy of AGB/post-AGB stars

    NASA Astrophysics Data System (ADS)

    Venkataraman, V.; Anandarao, B. G.

    During their asymptotic giant branch (AGB) stage, intermediate mass stars undergo substantial mass loss believed to be triggered by pulsational shocks and radiation pressure. Near-infrared spectroscopy is one of the recognised tools to study the mass loss esses. We have carried out H and K band spectroscopy at Mt Abu observatory using the NICMOS camera/spectrograph at a spectral resolution of ~ 1000 on a sample of more than 70 AGB/Post-AGB stars of different types: M types, S types, SR types and some post-AGB stars or transition objects. We present here results on the equivalent widths of various spectral lines and discuss these in the light of the intrinsic properties of these stars like the pulsation period and near and far infrared colours. On a few selected post-AGB stars, we present SPITZER archival spectra in the region 6-30 micron. The spectral features detected in this region will be highlighted. We also present modelling of circumstellar matter in a number of these stars in order to determine the mass loss rate and dust optical depths. A clear difference is seen in these parameters in different types of AGB stars. Implications of these results will be discussed in terms of evolution of these stars.

  14. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    SciTech Connect

    Suh, Kyung-Won

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  15. Big bang nucleosynthesis - The standard model and alternatives

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  16. Primordial nucleosynthesis

    PubMed Central

    Schramm, David N.

    1998-01-01

    With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-α clouds, x-ray gas in clusters, and the microwave anisotropy are made. PMID:9419322

  17. Primordial nucleosynthesis.

    PubMed

    Schramm, D N

    1998-01-01

    With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-alpha clouds, x-ray gas in clusters, and the microwave anisotropy are made.

  18. Primordial nucleosynthesis.

    PubMed

    Schramm, D N

    1998-01-01

    With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-alpha clouds, x-ray gas in clusters, and the microwave anisotropy are made. PMID:9419322

  19. The impact of nuclear mass models on r-process nucleosynthesis network calculations

    NASA Astrophysics Data System (ADS)

    Vaughan, Kelly

    2002-10-01

    An insight into understanding various nucleosynthesis processes is via modelling of the process with network calculations. My project focus is r-process network calculations where the r-process is nucleosynthesis via rapid neutron capture thought to take place in high entropy supernova bubbles. One of the main uncertainties of the simulations is the Nuclear Physics input. My project investigates the role that nuclear masses play in the resulting abundances. The code tecode, involves rapid (n,γ) capture reactions in competition with photodisintegration and β decay onto seed nuclei. In order to fully analyze the effects of nuclear mass models on the relative isotopic abundances, calculations were done from the network code, keeping the initial environmental parameters constant throughout. The supernova model investigated by Qian et al (1996) in which two r-processes, of high and low frequency with seed nucleus ^90Se and of fixed luminosity (fracL_ν_e(0)r_7(0)^2 ˜= 8.77), contribute to the nucleosynthesis of the heavier elements. These two r-processes, however, do not contribute equally to the total abundance observed. The total isotopic abundance produced from both events was therefore calculated using equation refabund. Y(H+L) = fracY(H)+fY(L)f+1 <~belabund where Y(H) denotes the relative isotopic abundance produced in the high frequency event, Y(L) corresponds to the low freqeuncy event and f is the ratio of high event matter to low event matter produced. Having established reliable, fixed parameters, the network code was run using data files containing parameters such as the mass excess, neutron separation energy, β decay rates and neutron capture rates based around three different nuclear mass models. The mass models tested are the HFBCS model (Hartree-Fock BCS) derived from first principles, the ETFSI-Q model (Extended Thomas-Fermi with Strutinsky Integral including shell Quenching) known for its particular successes in the replication of Solar System

  20. Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.

    This lecture gives an introduction to the topic of supernova nucleosynthesis which is at the origin of almost all nuclear species that we encounter in the Universe. It starts with an overview over the relevant nuclear physics, with some emphasise on nuclear stability and nuclear reactions. The central part of the lecture is devoted to the synthesis of new elements in the interiors of stars, either during their quiescent live or during their violent explosion as supernova. The different types of supernova explosions are exposed and their key nucleosynthesis products are summarised. The lecture closes with an overview over gamma-ray line diagnostics which provides a modern tool to study supernova nucleosynthesis by the measurement of freshly produced radioactive isotopes.

  1. NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS

    SciTech Connect

    Maeda, K.; Roepke, F.K.; Fink, M.; Hillebrandt, W.; Travaglio, C.; Thielemann, F.-K.

    2010-03-20

    For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off

  2. Neutron-Capture Nucleosynthesis and the Chemical Evolution of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Shingles, Luke J.

    2015-09-01

    Elements heavier than iron are almost entirely produced in stars through neutron captures and radioactive decays. Of these heavy elements, roughly half are produced by the slow neutron-capture process (s-process), which takes place under extended exposure to low neutron densities. Most of the s-process production occurs in stars with initial masses between roughly 0.8 and 8 solar masses (Msun), which evolve through the Asymptotic Giant Branch (AGB) phase. This thesis explores several topics related to AGB stars and the s-process, with a focus on comparing theoretical models to observations in the literature on planetary nebulae, post-AGB stars, and globular cluster stars. A recurring theme is the uncertainty of carbon-13-pocket formation, which is crucial for building accurate models of s-process nucleosynthesis. We first investigated whether neutron-capture reactions in AGB stars are the cause of the low sulphur abundances in planetary nebulae and post-AGB stars relative to the interstellar medium. Accounting for uncertainties in the size of the partial mixing zone that forms carbon-13 pockets and the rates of neutron-capture and neutron-producing reactions, our models failed to reproduce the observed levels of sulphur destruction. From this, we concluded that AGB nucleosynthesis is not the cause of the sulphur anomaly. We also discovered a new method to constrain the extent of the partial mixing zone using neon abundances in planetary nebulae. We next aimed to discover the stellar sites of the s-process enrichment in globular clusters that have inter- and intra-cluster variation, with the examples of M4 (relative to M5) and M22, respectively. Using a new chemical evolution code developed by the candidate, we tested models with stellar yields from rotating massive stars and AGB stars. We compared our model predictions for the production of s-process elements with abundances from s-poor and s-rich populations. We found that rotating massive stars alone do not

  3. Neutrino Nucleosynthesis in Supernovae

    SciTech Connect

    Yoshida, Takashi; Suzuki, Toshio; Chiba, Satoshi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H.

    2009-05-04

    Neutrino nucleosynthesis is an important synthesis process for light elements in supernovae. One important physics input of neutrino nucleosynthesis is cross sections of neutrino-nucleus reactions. The cross sections of neutrino-{sup 12}C and {sup 4}He reactions are derived using new shell model Hamiltonians. With the new cross sections, light element synthesis of a supernova is investigated. The appropriate range of the neutrino temperature for supernovae is constrained to be between 4.3 MeV and 6.5 MeV from the {sup 11}B abundance in Galactic chemical evolution. Effects by neutrino oscillations are also discussed.

  4. Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Fink, Michael; Kromer, Markus; Seitenzahl, Ivo R.; Ciaraldi-Schoolmann, Franco; Röpke, Friedrich K.; Sim, Stuart A.; Pakmor, Rüdiger; Ruiter, Ashley J.; Hillebrandt, Wolfgang

    2014-02-01

    We investigate whether pure deflagration models of Chandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynamic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release Enuc ≲ 1.1 × 1051 erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with Enuc ˜ 0.5 × 1051 erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B - V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.

  5. Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy

    NASA Astrophysics Data System (ADS)

    Alexis, A.; Jean, P.; Martin, P.; Ferrière, K.

    2014-04-01

    Aims: We want to estimate whether the positrons produced by the β+-decay of 26Al, 44Ti, and 56Ni synthesised in massive stars and supernovae are sufficient to explain the 511 keV annihilation emission observed in our Galaxy. Such a possibility has often been put forward in the past. In a previous study, we showed that nucleosynthesis positrons cannot explain the full annihilation emission. Here, we extend this work using an improved propagation model. Methods: We developed a Monte Carlo Galactic propagation code for ~MeV positrons in which the Galactic interstellar medium, the Galactic magnetic field, and the propagation are finely described. This code allows us to simulate the spatial distribution of the 511 keV annihilation emission. We tested several Galactic magnetic fields models and several positron escape fractions from type-Ia supernova for 56Ni positrons to account for the large uncertainties in these two parameters. We considered the collisional/ballistic transport mode and then compared the simulated 511 keV intensity spatial distributions to the INTEGRAL/SPI data. Results: Regardless of the Galactic magnetic field configuration and the escape fraction chosen for 56Ni positrons, the 511 keV intensity distributions are very similar. The main reason is that ~MeV positrons do not propagate very far away from their birth sites in our model. The direct comparison to the data does not allow us to constrain the Galactic magnetic field configuration and the escape fraction for 56Ni positrons. In any case, nucleosynthesis positrons produced in steady state cannot explain the full annihilation emission. The comparison to the data shows that (a) the annihilation emission from the Galactic disk can be accounted for; (b) the strongly peaked annihilation emission from the inner Galactic bulge can be explained by positrons annihilating in the central molecular zone, but this seems to require more positron sources than the population of massive stars and type Ia

  6. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    SciTech Connect

    Cristallo, S.; Dominguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 {<=}M/M{sub Sun} {<=} 3.0 and metallicities 1 Multiplication-Sign 10{sup -3} {<=} Z {<=} 2 Multiplication-Sign 10{sup -2}, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  7. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation

    NASA Astrophysics Data System (ADS)

    Busso, M.; Gallino, R.; Wasserburg, G. J.

    We present a review of nucleosynthesis in AGB stars outlining the development of theoretical models and their relationship to observations. We focus on the new high resolution codes with improved opacities, which recently succeeded in accounting for the third dredge-up. This opens the possibility of understanding low luminosity C stars (enriched in s-elements) as the normal outcome of AGB evolution, characterized by production of 12C and neutron-rich nuclei in the He intershell and by mass loss from strong stellar winds. Neutron captures in AGB stars are driven by two reactions: 13C([α],n)16O, which provides the bulk of the neutron flux at low neutron densities (Nn [<=] 107 n/cm3), and 22Ne([α],n)25Mg, which is mildly activated at higher temperatures and mainly affects the production of s-nuclei depending on reaction branchings. The first reaction is now known to occur in the radiative interpulse phase, immediately below the region previously homogenized by third dredge-up. The second reaction occurs during the convective thermal pulses. The resulting nucleosynthesis phenomena are rather complex and rule out any analytical approximation (exponential distribution of neutron fluences). Nucleosynthesis in AGB stars, modeled at different metallicities, account for several observational constraints, coming from a wide spectrum of sources: evolved red giants rich in s-elements, unevolved stars at different metallicities, presolar grains recovered from meteorites, and the abundances of s-process isotopes in the solar system. In particular, a good reproduction of the solar system main component is obtained as a result of Galactic chemical evolution that mixes the outputs of AGB stars of different stellar generations, born with different metallicities and producing different patterns of s-process nuclei. The main solar s-process pattern is thus not considered to be the result of a standard archetypal s-process occurring in all stars. Concerning the 13C neutron source, its

  8. Corrected constraints on big bang nucleosynthesis in a modified gravity model of f (R )∝Rn

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki

    2015-05-01

    Big bang nucleosynthesis in a modified gravity model of f (R )∝Rn is investigated. The only free parameter of the model is a power-law index n . We find cosmological solutions in a parameter region of 1 nucleosynthesis. We compare the results with the latest observational data. It is then found that the power-law index is constrained to be (n -1 )=(-0.86 ±1.19 )×1 0-4 (95% C.L.) mainly from observations of deuterium abundance as well as 4He abundance.

  9. Stellar Evolution with Rotation: Mixing Processes in AGB Stars

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Blöcker, T.

    We included diffusive angular momentum transport and rotationally induced mixing processes in our stellar evolution code and studied the influence of rotation on the evolution of intermediate mass stars (M*=2dots6 Msolar) towards and along the asymptotic giant branch (AGB). The calculations start in the fully convective pre-main sequence phase and the initial angular momentu m was adjusted such that on the zero-age main sequence vrot=200 km/ s is achieved. The diffusion coefficients for the five rotational instabilities considered (dynamical shear, secular shear, Eddington-Sweet (ES) circulation, Solberg-Høiland-instability and Goldreich-Schubert-Fricke (GSF) instability) were adopted from Heger et al. (2000, ApJ 528, 368). Mixing efficiency and sensitivity of these processes against molecular weight gradients have been determined by calibration of the main sequence width. In this study we focus on the abundance evolution of carbon. On the one hand, the surface abundance ratios of 12C/13C a nd 12C/16O at the base of the AGB were found to be ≈ 7dots 10 and ≈ 0.1, resp., being a factor of two lower than in non-rotating models. This results from the slow but continuously operating rotationally induced mixing due to the ES-circulation and the GSF-instability during the long main sequence phase. On the other hand, 13C serves as neutron source for interior s-process nucleosynthesis in AGB stars vi a 13C(α,n)16O. Herwig et al. (1997, A&A 324, L81) found that a 13C pocket is forme d in the intershell region of 3 Msolar AGB star if diffusive overshoot is considered. Our calculations show, that mixing processes due to rotation open an alternative channel for the formation of a 13C pocket as found by Langer et al. (1999, A&A 346, L37). Again, ES-circulation and GSF-instability are the predominant rotational mixing processes.

  10. 26Al production: The Allende meteorite (Chihuahua) stellar nucleosynthesis and solar models

    NASA Astrophysics Data System (ADS)

    Araujo-Escalona, V.; Andrade, E.; Barrón-Palos, L.; Canto, C.; Favela, F.; Huerta, A.; de Lucio, O.; Ortiz, M. E.; Solís, C.; Chávez, E.

    2015-07-01

    In 1969 a meteorite fell near the small town of Allende, state of Chihuahua in the north of Mexico. Its study yielded information that changed the current understanding of the solar model. In particular traces of 26Al were found. Abundances of that isotope had been seen in the universe and were related to regions of active heavy nucleosynthesis. Its presence on the solar system was unexpected. It is now understood that cosmic rays induce nuclear reactions on materials to produce 26Al, on Earth this is well known and it is the basis of many environmental studies, so it is not only the product of some high metalicity star collapse. Taking advantage of the recently reinforced laboratory infrastructure of the Instituto de Física, at UNAM in Mexico City, we proposed to measure the cross section for 26Al production via some of the most likely reactions, from the nuclear physics point of view (highest Q-values). In this paper the study of the 28Si(d,α)26 Al nuclear reaction is shown. A target is prepared by a mixture of silicon and aluminum powders. It is irradiated with a deuteron beam (≈1 µA current) at the MV CN-Van de Graaff accelerator laboratory. The number of projectiles is deduced by Rutherford Backscattering Spectrometry (RBS). The produced 26Al nuclei are then counted at the Accelerator Mass Spectrometry Laboratory.

  11. {sup 26}Al production: The Allende meteorite (Chihuahua) stellar nucleosynthesis and solar models

    SciTech Connect

    Araujo-Escalona, V.; Andrade, E.; Barrón-Palos, L.; Canto, C.; Favela, F.; Huerta, A.; Lucio, O. de; Ortiz, M. E.; Solís, C.; Chávez, E.

    2015-07-23

    In 1969 a meteorite fell near the small town of Allende, state of Chihuahua in the north of Mexico. Its study yielded information that changed the current understanding of the solar model. In particular traces of {sup 26}Al were found. Abundances of that isotope had been seen in the universe and were related to regions of active heavy nucleosynthesis. Its presence on the solar system was unexpected. It is now understood that cosmic rays induce nuclear reactions on materials to produce {sup 26}Al, on Earth this is well known and it is the basis of many environmental studies, so it is not only the product of some high metalicity star collapse. Taking advantage of the recently reinforced laboratory infrastructure of the Instituto de Física, at UNAM in Mexico City, we proposed to measure the cross section for {sup 26}Al production via some of the most likely reactions, from the nuclear physics point of view (highest Q-values). In this paper the study of the {sup 28}Si(d,α){sup 26} Al nuclear reaction is shown. A target is prepared by a mixture of silicon and aluminum powders. It is irradiated with a deuteron beam (≈1 µA current) at the MV CN-Van de Graaff accelerator laboratory. The number of projectiles is deduced by Rutherford Backscattering Spectrometry (RBS). The produced {sup 26}Al nuclei are then counted at the Accelerator Mass Spectrometry Laboratory.

  12. r-PROCESS Nucleosynthesis in Type-II Supernova Model with Neutron Star Mass ~ 1.4M⊙

    NASA Astrophysics Data System (ADS)

    Terasawa, Mariko

    2002-09-01

    It is generally believed that the r-process occurs under explosive conditions at high neutron density, high temperature, and high entropy. It has been discussed, for sometime, that core-collapse supernovae could provide the most likely environment for such r-process nucleosynthesis. So far, the models of neutrino-driven winds from very massive (M≥ 1.7M⊙) and compact neutron star have proved to get successful r-process abundance pattern. A short expansion time is required to obtain a high neutron-to-seed ratio at moderate entropy. This expansion time is obtained by adopting a high neutron star gravitational mass, M~ 2M⊙, and a neutron star radius of R~ 10 km. However, such a large mass is sometimes criticized from observational viewpoints although several established EOSs for neutron star matter are known to stabilize massive core as far as M≤ 2.2M⊙. Nucleosynthesis in the r-process is strongly dependent on the gravitational mass of the proto-neutron star, and for this reason it is taken to be an adjustable parameter to give good r-process yields. In this paper, we study the effects of the outer boundary conditions of neutrino-driven winds on the r-process nucleosynthesis. We can get a reasonable agreement with the solar system r-process abundance pattern even by adopting the 'standard' 1.4M⊙ mass model for the proto-neutron star.

  13. Lithium and zirconium abundances in massive Galactic O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Plez, B.; Manchado, A.; D'Antona, F.; Lub, J.; Habing, H.

    2007-02-01

    Lithium and zirconium abundances (the latter taken as representative of s-process enrichment) are determined for a large sample of massive Galactic O-rich AGB stars, for which high-resolution optical spectroscopy has been obtained (R˜ 40 000{-}50 000). This was done by computing synthetic spectra based on classical hydrostatic model atmospheres for cool stars and using extensive line lists. The results are discussed in the framework of "hot bottom burning" (HBB) and nucleosynthesis models. The complete sample is studied for various observational properties such as the position of the stars in the IRAS two-colour diagram ([ 12] - [25] vs. [ 25] - [60] ), Galactic distribution, expansion velocity (derived from the OH maser emission), and period of variability (when available). We conclude that a considerable fraction of these sources are actually massive AGB stars (M>3{-}4 M⊙) experiencing HBB, as deduced from the strong Li overabundances we found. A comparison of our results with similar studies carried out in the past for the Magellanic Clouds (MCs) reveals that, in contrast to MC AGB stars, our Galactic sample does not show any indication of s-process element enrichment. The differences observed are explained as a consequence of metallicity effects. Finally, we discuss the results obtained in the framework of stellar evolution by comparing our results with the data available in the literature for Galactic post-AGB stars and PNe. Based on observations at the 4.2 m William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias. Also based on observations with the ESO 3.6 m telescope at La Silla Observatory (Chile). Tables [see full text]-[see full text] are only available in electronic form at http://www.aanda.org

  14. Primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Gustavino, C.; Anders, M.; Bemmerer, D.; Elekes, Z.; Trezzi, D.

    2016-04-01

    Big Bang nucleosynthesis (BBN) describes the production of light nuclei in the early phases of the Universe. For this, precise knowledge of the cosmological parameters, such as the baryon density, as well as the cross section of the fusion reactions involved are needed. In general, the energies of interest for BBN are so low ( E < 1MeV) that nuclear cross section measurements are practically unfeasible at the Earth's surface. As of today, LUNA (Laboratory for Underground Nuclear Astrophysics) has been the only facility in the world available to perform direct measurements of small cross section in a very low background radiation. Owing to the background suppression provided by about 1400 meters of rock at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and to the high current offered by the LUNA accelerator, it has been possible to investigate cross sections at energies of interest for Big Bang nucleosynthesis using protons, 3He and alpha particles as projectiles. The main reaction studied in the past at LUNA is the 2H(4He, γ)6Li . Its cross section was measured directly, for the first time, in the BBN energy range. Other processes like 2H(p, γ)3He , 3He(2H, p)4He and 3He(4He, γ)7Be were also studied at LUNA, thus enabling to reduce the uncertainty on the overall reaction rate and consequently on the determination of primordial abundances. The improvements on BBN due to the LUNA experimental data will be discussed and a perspective of future measurements will be outlined.

  15. Nucleosynthesis in stellar explosions

    SciTech Connect

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  16. Large-basis shell-model technology in nucleosynthesis and cosmology

    SciTech Connect

    Mathews, G.J.; Bloom, S.D.; Takahashi, K.; Fuller, G.M.; Hausman, R.F. Jr.

    1985-05-01

    We discuss various applications of the Lanczos method to describe properties of many-body microscopic systems in nucleosynthesis and cosmology. These calculations include: solar neutrino detectors; beta-decay of excited nuclear states; electron-capture rates during a core-bounce supernova; exotic quarked nuclei as a catalyst for hydrogen burning; and the quark-hadron phase transition during the early universe. 27 refs., 3 figs.

  17. Detailed abundance study of four s-process enriched post-AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    van Aarle, E.; Van Winckel, H.; De Smedt, K.; Kamath, D.; Wood, P. R.

    2013-06-01

    Context. The photospheric abundances of evolved solar-type stars of different metallicities serve as probes into stellar evolution theory. Aims: Stellar photospheres of post-asymptotic giant branch (post-AGB) stars bear witness to the internal chemical enrichment processes, integrated over their entire stellar evolution. Here we study post-AGB stars in the Large Magellanic Cloud (LMC). With their known distances, these rare objects are ideal tracers of AGB nucleosynthesis and dredge-up phenomena. Methods: We used the UVES spectrograph mounted on the Very Large Telescope at the European Southern Observatory, to obtain high-resolution spectra with high signal-to-noise of a sample of four post-AGB stars. The objects display a spectral energy distribution that indicates the presence of circumstellar dust. We perform a detailed abundance analysis on the basis of these spectra. Results: All objects are C-rich, and strongly enhanced in s-process elements. We deduced abundances of heavy s-process elements for all stars in the sample, and even found an indication of the presence of Hg in the spectrum of one object. The metallicity of all stars except J053253.51-695915.1 is considerably lower than the average value that is observed for the LMC. The derived luminosities show that we witness the late evolution of low-mass stars with initial masses close to 1 M⊙. An exception is J053253.51-695915.1 and we argue that this object is likely a binary. Conclusions: We confirmed the correlation between the efficiency of the third-dredge up and the neutron exposure that is detected in Galactic post-AGB stars. The non-existence of a correlation between metallicity and neutron irradiation is also confirmed and expanded to smaller metallicities. We confirm the status of 21 μm stars as post-carbon stars. Current theoretical AGB models overestimate the observed C/O ratios and fail to reproduce the variety of s-process abundance patterns that is observed in otherwise very similar objects

  18. Production of 26Al by super-AGB stars

    NASA Astrophysics Data System (ADS)

    Siess, L.; Arnould, M.

    2008-10-01

    Context: Super AGB (SAGB) stars have initial masses ranging between 7-11 {M_⊙} and develop efficient hydrogen burning at the base of their convective envelope during their AGB evolution, leading to a substantial production of {}26Alg. Aims: We present the first discussion of the contribution of the SAGB stars to the galactic {}26Alg production, and we estimate the main uncertainties that affect the determination of the {}26Alg yields. Methods: The results of full stellar evolution computations are presented, with special emphasis on the {}26Alg yields from SAGB stars. We also use a postprocessing nucleosynthesis code to quantify the uncertainties associated with the nuclear reaction rates and with the treatment of convection that modifies the thermodynamical conditions at the base of the convective envelope. Results: Hot bottom burning leads to individual SAGB {}26Alg yields that are larger than those from intermediate mass stars, amounting to typical values as high as 5 × 10-5 {M_⊙}. The overall SAGB contribution remains modest, however, not exceeding 0.3 {M_⊙} of the estimated galactic content of 2.8 {M_⊙}. On the other hand, the SAGB 26Al/27Al ratios always exceed 0.01, which is commensurable with the values measured in some SiC grains considered to originate in C-rich AGB stars. However, the isotopic composition of some other elements, particularly nitrogen, is clearly at variance with the observations. We find that the {}26Alg yields are not affected by the pollution induced by the third dredge-ups, but that they strongly depend on the evolution of the temperature at the base of the convective envelope, the determination of which remains highly dependent on the specific convection model used in the stellar computations. Modifications of T_env by ± 10% leads to variations in the {}26Alg yields by a factor of 0.2 to 6. In comparison, the nuclear reaction rate uncertainties have less of an impact, altering the yields by less than a factor of 2.

  19. Primordial nucleosynthesis redux

    NASA Technical Reports Server (NTRS)

    Walker, Terry P.; Steigman, Gary; Kang, Ho-Shik; Schramm, David M.; Olive, Keith A.

    1991-01-01

    The abundances of D, He-3, He-4, and Li-7, are presently recalculated within the framework of primordial nucleosynthesis in the standard hot big band model, in order to estimate the primordial abundances of the light elements. A comparison between theory and experiment demonstrates the consistency of standard model predictions; the baryon density parameter is constrained on the basis of a nucleon-to-photon ratio of 2.8-4.0. These bounds imply that the bulk of the baryons in the universe are dark, requiring that the universe be dominated by nonbaryonic matter.

  20. Gamma line radiation from supernovae. [nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1978-01-01

    Recent calculations of core collapse or massive stars result in explosive ejection of the mantle by a reflected shock. These hydrodynamic results are important for predictions of explosive nucleosynthesis and gamma-ray line emission from supernovae. Previous estimates, based on simple parameterized models or the nucleosynthesis in an average supernova, are compared with these latest results.

  1. The effects of rotation on the surface composition and yields of low mass AGB stars.

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Piersanti, L.; Straniero, O.

    Over the past 20 years, stellar evolutionary models have been strongly improved in order to reproduce with reasonable accuracy both photometric and spectroscopic observations. Notwithstanding, the majority of these models do not take into account macroscopic phenomena, like rotation and/or magnetic fields. Their explicit treatment could modify stellar physical and chemical properties. One of the most interesting problems related to stellar nucleosynthesis is the behavior of the s-process spectroscopic indexes ([hs/ls] and [Pb/hs]) in Asymptotic Giant Branch (AGB) stars. In this contribution we show that, for a fixed metallicity, rotation can lead to a spread in the [hs/ls] and [Pb/hs] in low-mass AGB stars. In particular, we demonstrate that the Eddington-Sweet and the Goldreich-Schubert-Fricke instabilities may have enough time to smear the 13C-pocket (the major neutron source) and the 14N-pocket (the major neutron poison). In fact, a different overlap between these pockets leads to a different neutrons-to-seeds ratio, with important consequences on the corresponding s-process distributions. Possible consequences on the chemical evolution of Galactic globular clusters are discussed.

  2. The Outflows of Binary AGB Stars

    NASA Astrophysics Data System (ADS)

    Ramstedt, S.; Vlemmings, W. H. T.; Mohamed, S.

    2015-12-01

    The required conditions for stars to evolve into planetary nebulae (PNs) continues to puzzle. Since PNs are found in a wide variety of shapes, processes that could sculpt circumstellar envelopes (CSEs) are being investigated. A binary companion will have a strong gravitational effect, but known binary AGB stars are rare. Using ALMA in Cycle 1 and 2, we have observed a small sample of well-studied, binary AGB stars, covering a decisive range in separation, in order to determine the influence of a companion on the circumstellar morphology of the AGB primary. The first steps toward interpreting and analyzing the data have been taken, and the results will be compared to 3D Smoothed Particle Hydrodynamics (SPH) models of the gravitational interaction.

  3. From Nuclei to Dust Grains: How the AGB Machinery Works

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cristallo, S.; Piersanti, L.

    2015-12-01

    With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.

  4. Computational Models of X-Ray Burst Quenching Times and 12C Nucleosynthesis Following a Superburst

    SciTech Connect

    Fisker, J L

    2009-03-19

    Superbursts are energetic events on neutron stars that are a thousand times more powerful than ordinary type I X-ray bursts. They are believed to be powered by a thermonuclear explosion of accumulated {sup 12}C. However, the source of this {sup 12}C remains elusive to theoretical calculations and its concentration and ignition depth are both unknown. Here we present the first computational simulations of the nucleosynthesis during the thermal decay of a superbust, where X-ray bursts are quenched. Our calculations of the quenching time verify previous analytical calculations and shed new light on the physics of stable burning at low accretion rates. We show that concentrated (X{sub {sup 12}C} {approx}> 0.40), although insufficient, amounts of {sup 12}C are generated during the several weeks following the superburst where the decaying thermal flux of the superburst stabilizes the burning of the accreted material.

  5. TYPE Ia SUPERNOVAE AS SITES OF THE p-PROCESS: TWO-DIMENSIONAL MODELS COUPLED TO NUCLEOSYNTHESIS

    SciTech Connect

    Travaglio, C.; Gallino, R.; Roepke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2011-10-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between {sup 74}Se and {sup 196}Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the 'gamma processes' by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A < 120. We explore SNe Ia as p-process sites in the framework of a two-dimensional SN Ia delayed detonation model as well as pure deflagration models. The white dwarf precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main-sequence companion. We use enhanced s-seed distributions, with seeds directly obtained from a sequence of thermal pulse instabilities both in the asymptotic giant branch phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle, we follow the explosive nucleosynthesis with a detailed nuclear reaction network for all isotopes up to {sup 209}Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) x 10{sup 9} K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at

  6. Proton-rich nucleosynthesis and nuclear physics

    SciTech Connect

    Rauscher, T.; Froehlich, C.

    2012-11-12

    Although the detailed conditions for explosive nucleosynthesis are derived from astrophysical modeling, nuclear physics determines fundamental patterns in abundance yields, not only for equilibrium processes. Focussing on the {nu}p- and the {gamma}-process, general nucleosynthesis features within the range of astrophysical models, but (mostly) independent of details in the modelling, are presented. Remaining uncertainties due to uncertain Q-values and reaction rates are discussed.

  7. Space Observatory Studies of AGB Stars in Galaxies: from IRAS to JWST

    NASA Astrophysics Data System (ADS)

    Meixner, M.

    2011-09-01

    The precision measurements of space observatories, particularly infrared missions such as Spitzer, has spawned a renaissance in studies of AGB stars from the Milky Way, to nearby galaxies and beyond. This review summarizes the key areas in AGB star studies impacted by the space observatories of the past two decades, IRAS, ISO, Spitzer, and Akari and speculates on the future promise of the SOFIA, WISE and JWST missions. Drawing from results of IRAS, ISO and Spitzer studies, this review touches on topics such as AGB star identification in stellar populations, AGB mass-loss rate measurements, dust composition, and variability that set the stage for the future work. The past, present and future space missions can be used in combination to tackle some big questions which confront studies of both AGB stars and galaxies. What is the mass-loss return or dust and metal enrichment of galaxies by the AGB stars? How does this mass-loss return depend on the star formation history (i.e. age), metallicity and galactic environment? What is the time evolution of AGB stars and how does mass loss affect it? Improved models of stellar populations that properly include AGB stars will help our understanding of both AGB stars and galaxy evolution. What model results can we prepare now to capitalize on the present and future space observatory missions? How can we improve the period-luminosity relation of AGB stars not only to better understand AGB star physics but also to use as a distance indicator for galaxies?

  8. Neutrinos and Nucleosynthesis in Gamma Ray Bursts

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Hix, William Raphael

    2006-01-01

    Gamma-ray bursts, while rare, may be important contributors to galactic nucleosynthesis. Here we consider the types of nucleosynthesis that can occur as material is ejected from a gamma-ray burst accretion disk. We calculate the composition of material within the disk as it dissociates into protons and neutrons and then use a parameterized outflow model to follow nuclear recombination in the wind. From the resulting nucleosynthesis we delineate the disk and outflow conditions in which iron peak, r-process, or light p-process nuclei may form. In all cases the neutrinos have an important impact on the final abundance distributions.

  9. The creation of AGB fallback shells

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason

    2016-04-01

    The possibility that mass ejected during Asymptotic Giant Branch (AGB) stellar evolution phases falls back towards the star has been suggested in applications ranging from the formation of accretion discs to the powering of late-thermal pulses. In this paper, we seek to explicate the properties of fallback flow trajectories from mass-loss events. We focus on a transient phase of mass ejection with sub-escape speeds, followed by a phase of a typical AGB wind. We solve the problem using both hydrodynamic simulations and a simplified one-dimensional analytic model that matches the simulations. For a given set of initial wind characteristics, we find a critical shell velocity that distinguishes between `shell fallback' and `shell escape'. We discuss the relevance of our results for both single and binary AGB stars. In particular, we discuss how our results help to frame further studies of fallback as a mechanism for forming the substantial population of observed post-AGB stars with dusty discs.

  10. Primordial nucleosynthesis with generic particles

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Kolb, E. W.; Turner, M. S.

    1986-01-01

    A revision of the standard model for Big Bang nucleosynthesis is discussed which allows for the presence of generic particle species. The primordial production of He-4 and D + He-3 is calculated as a function of the mass, spin degrees of freedom, and spin statistics of the generic particle for masses in the range 0.01-100 times the electron mass. The particular case of the Gelmini and Roncadelli majoron model for massive neutrinos is discussed.

  11. Nucleosynthesis in O-Ne-Mg Supernovae

    SciTech Connect

    Hoffman, R D; Janka, H; Muller, B

    2007-12-18

    We have studied detailed nucleosynthesis in the shocked surface layers of an oxygen-neon-magnesium core collapse supernova with an eye to determining whether the conditions are suitable for r-process nucleosynthesis. We find no such conditions in an unmodified model, but do find overproduction of N=50 nuclei (previously seen in early neutron-rich neutrino winds) in amounts that, if ejected, would pose serious problems for Galactic chemical evolution.

  12. The Case of the Missing Cyanogen-rich AGB Stars in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; Grundahl, F.; Sneden, C.

    2012-08-01

    The handful of available observations of AGB stars in Galactic Globular Clusters suggest that the GC AGB populations are dominated by cyanogen-weak stars (eg. Norris et al. 1981; Sneden et al. 2000). This contrasts strongly with the distributions on the RGB (and other) populations, which generally show a 50:50 bimodality in CN band strength. If this is a real difference then it presents a serious problem for low metallicity stellar evolution theory - since such a surface abundance change going from the RGB to AGB is not predicted by stellar models. However this is only a tentative conclusion, since it is based on very small AGB sample sizes. To test whether this problem really exists we have carried out an observational campaign targeting AGB stars in GCs. Our preliminary results indicate there is indeed a lack of CN-strong AGB stars.

  13. Stellar Evolution from AGB to Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2008-10-01

    Planetary nebulae are formed by an interacting winds process where the remnant of the AGB wind is compressed and accelerated by a later-developed fast wind from the central star. One-dimensional dynamical models have successfully explained the multi-shell (bubble, shell, crown, haloes) structures and the kinematics of planetary nebulae. However, the origin of the diverse asymmetric morphology of planetary nebulae is still not understood. Recent observations in the visible, infrared, and the submillimeter have suggested that the AGB mass loss becomes aspherical in the very late stages, forming an expanding torus around the star. A fast, highly collimated wind then emerges in the polar directions and carves out a cavity in the AGB envelope to form a bipolar nebula. Newly discovered structures such as concentric arcs, 2-D rings, multiple lobes, and point-symmetric structures suggest that both the slow and fast winds may have temporal and directional variations, and precession can play a role in the shaping of planetary nebulae. In this paper, we review the latest observations of planetary nebulae and proto-planetary nebulae and discuss the various physical mechanisms (rotation, binary, magnetic field, etc) that could lead to the observed morphologies.

  14. Post-AGB stars in the SMC as tracers of stellar evolution: the extreme s-process enrichment of the 21 μm star J004441.04-732136.4

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Karakas, A. I.; Siess, L.; Goriely, S.; Wood, P. R.

    2012-05-01

    Context. This paper is part of a larger project in which we want to focus on the still poorly understood asymptotic giant branch (AGB) third dredge-up processes and associated s-process nucleosynthesis. Aims: We confront accurate spectral abundance analyses of post-AGB stars in both the Magellanic Clouds, to state-of-the-art AGB model predictions. With this comparison we aim at improving our understanding of the 3rd dredge-up phenomena and their dependencies on initial mass and metallicity. Methods: Because of the well constrained distance with respect to Galactic post-AGB stars, we choose an extra-galactic post-AGB star for this contribution, namely the only known 21 μm object of the Small Magellanic Cloud (SMC): J004441.04-732136.4. We used optical UVES spectra to perform an accurate spectral abundance analysis. With photometric data of multiple catalogues we construct a spectral energy distribution (SED) and perform a variability analysis. The results are then compared to predictions of tailored theoretical chemical AGB evolutionary models for which we used two evolution codes. Results: Spectral abundance results reveal J004441.04-732136.4 to be one of the most s-process enriched objects found up to date, while the photospheric C/O ratio of 1.9 ± 0.7, shows the star is only modestly C-rich. J004441.04-732136.4 also displays a low [Fe/H] = -1.34 ± 0.32, which is significantly lower than the mean metallicity of the SMC. From the SED, a luminosity of 7600 ± 200 L⊙ is found, together with E(B - V) = 0.64 ± 0.02. According to evolutionary post-AGB tracks, the initial mass should be ≈1.3 M⊙. The photometric variability shows a clear period of 97.6 ± 0.3 days. The detected C/O as well as the high s-process overabundances (e.g. [Y/Fe] = 2.15, [La/Fe] = 2.84) are hard to reconcile with the predictions. The chemical models also predict a high Pb abundance, which is not compatible with the detected spectrum, and a very high 12C/13C, which is not yet constrained

  15. Supernovae and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.

    2014-09-01

    Nucleosynthesis by rapid neutron capture (the r-process) could be an important diagnostic of the explosive deep interiors of supernovae. The early appearance of r-process elements in the Galaxy, along with energetic requirements, strongly argues in favor of a supernova origin for r-process isotopes. However there is a current conundrum as to the relative contributions from various supernovae environments, e.g. MHD jets or neutrino energized winds. There are also possible contributions from failed supernovae (collapsars) leading to a black hole (BH), or the ejection of material during the mergers of neutron stars in binary systems, i.e. NS+NS or NS+BH systems. In this talk we will review the theoretical underpinnings of each possibility in the quest to deduce the relative contribution of each process. In particular, each model for r-process nucleosynthesis invariably leads to systematic discrepancies with the observed solar-system r-process abundances. For example, although the location of the abundance peaks near nuclear mass numbers A = 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. Similarly, most recent neutrino-driven wind simulations produce only the lighter r-process elements, while neutron-star mergers may miss the r-process peaks due to fission recycling. In this talk we demonstrate that the underproduction of elements above and below the r-process peaks can be supplemented via fission fragment distributions from the recycling of material synthesized during neutron star mergers, while the abundance peaks themselves are well reproduced in MHD jets in supernovae and collapsars. Moreover, we show that the relative contributions to the solar-system r-process yields from core-collapse supernovae and neutron star mergers required by this proposal are consistent with estimates of the

  16. s-Process Abundances in AGB Stars At Various Metallicities and Their Theoretical Interpretation

    NASA Astrophysics Data System (ADS)

    Busso, M.; Gallino, R.

    1997-02-01

    Results from existing models of s-processing in red giants are compared with key observed abundances in population I and II AGB stars. Population I giants are particularly important for getting constraints on the neutron density (from Rb/Sr ratios), while population II AGB's provide clues to understand how the neutron exposure is achieved (through the ratio between Ba-peak and Sr-peak elements). AGB stars are shown to require s-processing with a very low neutron density, and producing very high Ba/Sr ratios at low metallicities. Both features are typical of radiative 13C-burning phases in AGB stars.

  17. Dust input from AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Zhukovska, S.; Henning, T.

    2013-07-01

    Aims: The dust-forming population of AGB stars and their input to the interstellar dust budget of the Large Magellanic Cloud (LMC) are studied with evolutionary dust models with the main goals (1) to investigate how the amount and composition of dust from AGB stars vary over the galactic history; (2) to characterise the mass and metallicity distribution of the present population of AGB stars; (3) to quantify the contribution of AGB stars of different mass and metallicity to the present stardust population in the interstellar medium (ISM). Methods: We used models of the stardust lifecycle in the ISM developed and tested for the solar neighbourhood. The first global spatially resolved reconstruction of the star formation history of the LMC from the Magellanic Clouds Photometric Survey was employed to calculate the stellar populations in the LMC. Results: The dust input from AGB stars is dominated by carbon grains from stars with masses ≲4 M⊙ almost during the entire history of the LMC. The production of silicate, silicon carbide, and iron dust is delayed until the ISM is enriched to about half the present metallicity in the LMC. For the first time, theoretically calculated dust production rates of AGB stars are compared with those derived from infrared observations of AGB stars for the entire galaxy. We find good agreement within scatter of various observational estimates. We show that the majority of silicate and iron grains in the present stardust population originate from a small population of intermediate-mass stars consisting of only ≲4% of the total number of stars, whereas in the solar neighbourhood they originate from low-mass stars. With models of the lifecycle of stardust grains in the ISM we confirm the strong discrepancy between dust input from stars and the existing interstellar dust mass in the LMC reported previously.

  18. Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Ciaraldi-Schoolmann, Franco; Röpke, Friedrich K.; Fink, Michael; Hillebrandt, Wolfgang; Kromer, Markus; Pakmor, Rüdiger; Ruiter, Ashley J.; Sim, Stuart A.; Taubenberger, Stefan

    2013-02-01

    We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 109 g cm-3, as well as one high central density (5.5 × 109 g cm-3) and one low central density (1.0 × 109 g cm-3) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by post-processing 106 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding the white dwarf, producing a range of 56Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (˜3000-10 000 km s-1) in a shell surrounding a 56Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s-1, respectively.

  19. Nucleosynthesis and Neutrinos

    SciTech Connect

    Kajino, Toshitaka

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  20. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  1. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  2. Applications for fission product data to problems in stellar nucleosynthesis

    SciTech Connect

    Mathews, G.J.

    1983-10-01

    A general overview of the nucleosynthesis mechanisms for heavy (A greater than or equal to 70) nuclei is presented with particular emphasis on critical data needs. The current state of the art in nucleosynthesis models is described and areas in which fission product data may provide useful insight are proposed. 33 references, 10 figures.

  3. Big-bang nucleosynthesis in comparison with observed helium and deuterium abundances: Possibility of a nonstandard model

    NASA Astrophysics Data System (ADS)

    Ichimasa, R.; Nakamura, R.; Hashimoto, M.; Arai, K.

    2014-07-01

    Comparing the latest observed abundances of He4 and D, we make a χ2 analysis to see whether it is possible to reconcile primordial nucleosynthesis using the up-to-date nuclear data of NACRE II and the mean life of neutrons. If we adopt the observational data of He4 by Izotov et al. [Astron. Astrophys. 558, A57 (2013)], we find that it is impossible to get a reasonable agreement with the standard big-bang nucleosynthesis. However, by including degenerate neutrinos, we succeed in obtaining consistent constraints between the neutrino degeneracy and the baryon-to-photon ratio from a detailed comparison of calculated abundances with the observational data of He4 and D: the baryon-to-photon ratio in units of 10-10 is found to be in the range 6.02≲η10≲6.54 for the specified parameters of neutrino degeneracy.

  4. Primordial nucleosynthesis: A cosmological point of view

    SciTech Connect

    Mathews, G. J.; Kusakabe, M.; Cheoun, M.-K.

    2014-05-09

    Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the test-ing ground upon which all cosmological models must ultimately rest. It is our only probe of the universe during the first few minutes of cosmic expansion and in particular during the important radiation-dominated epoch. These lectures review the basic equations of space-time, cosmology, and big bang nucleosynthesis. We will then review the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measure-ments are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we summarize the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.

  5. Ultraviolet emission from main-sequence companions of AGB stars

    NASA Astrophysics Data System (ADS)

    Ortiz, Roberto; Guerrero, Martín A.

    2016-09-01

    Although the majority of known binary asymptotic giant branch (AGB) stars are symbiotic systems (i.e. with a white dwarf as a secondary star), main-sequence companions of AGB stars can be more numerous, even though they are more difficult to find because the primary high luminosity hampers the detection of the companion at visual wavelengths. However, in the ultraviolet the flux emitted by a secondary with Teff > 5500 ˜ 6000 K may prevail over that of the primary, and then it can be used to search for candidates to binary AGB stars. In this work, theoretical atmosphere models are used to calculate the UV excess in the GALEX near- and far-UV bands due to a main-sequence companion. After analysing a sample of confirmed binary AGB stars, we propose as a criterium for binarity: (1) the detection of the AGB star in the GALEX far-UV band and/or (2) a GALEX near-UV observed-to-predicted flux ratio >20. These criteria have been applied to a volume-limited sample of AGB stars within 500 pc of the Sun; 34 out of the sample of 58 AGB stars (˜60 per cent) fulfill them, implying to have a main-sequence companion of spectral type earlier than K0. The excess in the GALEX near- and far-UV bands cannot be attributed to a single temperature companion star, thus suggesting that the UV emission of the secondary might be absorbed by the extended atmosphere and circumstellar envelope of the primary or that UV emission is produced in accretion flows.

  6. Big bang nucleosynthesis: An update

    SciTech Connect

    Olive, Keith A.

    2013-07-23

    An update on the standard model of big bang nucleosynthesis (BBN) is presented. With the value of the baryon-tophoton ratio determined to high precision by WMAP, standard BBN is a parameter-free theory. In this context, the theoretical prediction for the abundances of D, {sup 4}He, and {sup 7}Li is discussed and compared to their observational determination. While concordance for D and {sup 4}He is satisfactory, the prediction for {sup 7}Li exceeds the observational determination by a factor of about four. Possible solutions to this problem are discussed.

  7. Nucleosynthesis: a field with still many open nuclear physics questions

    SciTech Connect

    Goriely, S.

    2010-06-01

    Stellar nucleosynthesis is a vastly interdisciplinary field. There is a large number of different problems invoked calling for a variety of different and complementary research fields. Impressive progress has been made for the last decades in the various fields related to nucleosynthesis, especially in experimental and theoretical nuclear physics, as well as in ground-based or space astronomical observations and astrophysical modellings. In spite of that success, major problems and puzzles remain. The three major nucleosynthesis processes called for to explain the origin of the elements heavier than iron are described and the major pending questions discussed. As far as nuclear physics is concerned, good quality nuclear data is known to be a necessary condition for a reliable modelling of stellar nucleosynthesis. Through some specific examples, the need for further theoretical or experimental developments is also critically discussed in view of their impact on nucleosynthesis predictions.

  8. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  9. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  10. The AGB bump: a calibrator for core mixing

    NASA Astrophysics Data System (ADS)

    Bossini, Diego; Miglio, Andrea; Salaris, Maurizio; Girardi, Léo; Montalbán, Josefina; Bressan, Alessandro; Marigo, Paola; Noels, Arlette

    2015-09-01

    The efficiency of convection in stars affects many aspects of their evolution and remains one of the key-open questions in stellar modelling. In particular, the size of the mixed core in core-He-burning low-mass stars is still uncertain and impacts the lifetime of this evolutionary phase and, e.g., the C/O profile in white dwarfs. One of the known observables related to the Horizontal Branch (HB) and Asymptotic Giant Branch (AGB) evolution is the AGB bump. Its luminosity depends on the position in mass of the helium-burning shell at its first ignition, that is affected by the extension of the central mixed region. In this preliminary work we show how various assumptions on near-core mixing and on the thermal stratification in the overshooting region affect the luminosity of the AGB bump, as well as the period spacing of gravity modes in core-He-burning models.

  11. HEAVY ELEMENT NUCLEOSYNTHESIS IN THE BRIGHTEST GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Karakas, Amanda I.; Garcia-Hernandez, D. A.

    2012-05-20

    We present updated calculations of stellar evolutionary sequences and detailed nucleosynthesis predictions for the brightest asymptotic giant branch (AGB) stars in the Galaxy with masses between 5 M{sub Sun} and 9 M{sub Sun }, with an initial metallicity of Z = 0.02 ([Fe/H] = 0.14). In our previous studies we used the Vassiliadis and Wood mass-loss rate, which stays low until the pulsation period reaches 500 days after which point a superwind begins. Vassiliadis and Wood noted that for stars over 2.5 M{sub Sun} the superwind should be delayed until P Almost-Equal-To 750 days at 5 M{sub Sun }. We calculate evolutionary sequences where we delay the onset of the superwind to pulsation periods of P Almost-Equal-To 700-800 days in models of M = 5, 6, and 7 M{sub Sun }. Post-processing nucleosynthesis calculations show that the 6 and 7 M{sub Sun} models produce the most Rb, with [Rb/Fe] Almost-Equal-To 1 dex, close to the average of most of the Galactic Rb-rich stars ([Rb/Fe] Almost-Equal-To 1.4 {+-} 0.8 dex). Changing the rate of the {sup 22}Ne +{alpha} reactions results in variations of [Rb/Fe] as large as 0.5 dex in models with a delayed superwind. The largest enrichment in heavy elements is found for models that adopt the NACRE rate of the {sup 22}Ne({alpha}, n){sup 25}Mg reaction. Using this rate allows us to best match the composition of most of the Rb-rich stars. A synthetic evolution algorithm is then used to remove the remaining envelope resulting in final [Rb/Fe] of Almost-Equal-To 1.4 dex although with C/O ratios >1. We conclude that delaying the superwind may account for the large Rb overabundances observed in the brightest metal-rich AGB stars.

  12. Spitzer Light Curves of Dusty AGB Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Meixner, Margaret; Riebel, David; Vijh, Uma; Hora, Joe; Boyer, Martha; Cook, Kem; Groenewegen, Martin; Whitelock, Patricia; Ita, Yoshifusa; Feast, Michael; Kemper, Ciska; Marengo, Massimo; Otsuka, Masaaki; Srinivasan, Sundar

    2014-12-01

    Asymptotic giant branch (AGB) variable stars are, together with supernovae, the main sources of enrichment of the interstellar medium (ISM) in processed material, particularly carbon, nitrogen and heavy s-process elements. The dustiest, extreme AGB stars contribute the largest enrichment per star. We propose to measure the first light curves for 32 of the dustiest AGB variable stars in the Small Magellanic Cloud (SMC) using the warm Spitzer mission's IRAC 3.6 and 4.5 micron imaging for monthly imaging measurements. We know most are variable based on dual-epoch observations from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) surveys of the SMC and ground-based near-infrared observations, but we have not observed these dusty SMC stars at the mid-infrared wavelengths available to Spitzer. Only Spitzer will be able to measure the light curve of this key phase of the AGB: the dustiest and indeed final stage of the AGB. Without this information, our developing picture of AGB evolution is decidedly incomplete. The observations we propose will test the validity of AGB evolution models, and, thus, their predictions of the return of mass and nucleosynthetic products to the ISM. A value-added component to this study is that we will obtain variability information on other AGB stars that lie within the fields of view of our observations. This proposal continues the studies we have begun with our Cycle 9 program (pid 90219) and our Cycle 10 program (pid 10154).

  13. Heavy elements in astrophysical nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sun, Bao-Hua; Niu, Zhong-Ming

    With the many successes of covariant density functional theory (CDFT) as seen in the previous chapters, there has been growing interest over the last years to examine directly their applicability in astrophysical nucleosynthesis simulations. This chapter thus concentrates on the very recent applications of CDFT in astrophysics nucleosynthesis, ranging from the calculations of nuclear physics inputs -- masses and beta-decay half-lives -- for rapid-neutron (r-) and rapid-proton (rp-) capture processes, to the nucleosynthesis studies that employed these inputs and to nuclear cosmochronology. The concepts of nucleosynthesis process and formulas on beta-decays are sketched briefly.

  14. Do Globular Clusters Care about AGB Stars? Metallicity Distribution of AGB and RGB Stars in NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.

    2015-08-01

    Galactic globular clusters are known to have multiple stellar populations with different scenarios being debated for their origin. In this context, the core of our project is to disentangle the first and second generation stars based on their chemical properties, in order to test different model predictions. Here we present a preliminary chemical analysis of a new sample of AGB stars in NGC 2808 observed at the VLT with FLAMES, in order to further investigate the recent finding that no Na-rich stars are found on the AGB.

  15. Current hot questions on the s process in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; D'Orazi, V.; Karakas, A. I.; Garcia-Hernandez, D. A.; Stancliffe, R. J.; Tagliente, G.; Iliadis, C.; Rauscher, T.

    2016-01-01

    Asymptotic giant branch (AGB) stars are a main site of production of nuclei heavier than iron via the s process. In massive (>4 M⊙) AGB stars the operation of the 22Ne neutron source appears to be confirmed by observations of high Rb enhancements, while the lack of Tc in these stars rules out 13C as a main source of neutrons. The problem is that the Rb enhancements are not accompanied by Zr enhancements, as expected by s-process models. This discrepancy may be solved via a better understanding of the complex atmospheres of AGB stars. Second- generation stars in globular clusters (GCs), on the other hand, do not show enhancements in any s-process elements, not even Rb. If massive AGB stars are responsible for the composition of these GC stars, they may have evolved differently in GCs than in the field. In AGB stars of lower masses, 13C is the main source of neutrons and we can potentially constrain the effects of rotation and proton-ingestion episodes using the observed composition of post-AGB stars and of stardust SiC grains. Furthermore, independent asteroseismology observations of the rotational velocities of the cores of red giants and of white dwarves will play a fundamental role in helping us to better constrain the effect of rotation. Observations of carbon-enhanced metal-poor stars enriched in both Ba and Eu may require a neutron flux in-between the s and the r process, while the puzzling increase of Ba as function of the age in open clusters, not accompanied by increase in any other element heavier than iron, require further observational efforts. Finally, stardust SiC provides us high-precision constraints to test nuclear inputs such as neutron-capture cross sections of stable and unstable isotopes and the impact of excited nuclear states in stellar environments.

  16. Hot Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Gauba, G.; Fujii, T.; Nakada, Y.

    2001-08-01

    From the study of IRAS sources with far-IR colors similar to planetary nebulae (PNe), several proto-planetary nebulae with hot (OB) post-AGB central stars have been detected. These stars form an evolutionary link between the cooler G,F,A supergiant stars that have evolved off the Asymptotic Giant Branch (AGB) and the hot (OB) central stars of PNe. The optical spectra of these objects show strong Balmer emission lines and in some cases low excitation nebular emission lines such as [NII] and [SII] superposed on the OB stellar continuum. The absence of of [OIII] 5007Å line and the presence of low excitation nebular emission lines indicate that photoionisation has just started. The UV(IUE) spectra of some of these objects revealed violet shifted stellar wind P-Cygni profiles of CIV, SiIV and NV, indicating hot and fast stellar wind and post-AGB mass loss. These objects appear to be rapildy evolving into the early stages of PNe similar to that observed in the case of Hen1357 IRAS 17119-5926 (Stingray Nebula) and IRAS 18062+2410 SAO85766.

  17. Cool Bottom Processing on the AGB and Presolar Grain Compositions

    NASA Technical Reports Server (NTRS)

    Nollett, Kenneth M.; Busso, M.; Wasserburg, G. J.

    2002-01-01

    We describe results from a model of cool bottom processing (CBP) in AGB (asymptotic giant branch) stars. We predict O, Al, C and N isotopic compositions of circumstellar grains. Measured compositions of mainstream SiC grains and many oxide grains are consistent with CBP. Additional information is contained in the original extended abstract.

  18. Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta

    NASA Astrophysics Data System (ADS)

    D'Ercole, Annibale; D'Antona, Francesca; Ventura, Paolo; Vesperini, Enrico; McMillan, Stephen L. W.

    2010-09-01

    A large number of spectroscopic studies have provided evidence of the presence of multiple populations in globular clusters by revealing patterns in the stellar chemical abundances. This paper is aimed at studying the origin of these abundance patterns. We explore a model in which second generation (SG) stars form out of a mix of pristine gas and ejecta of the first generation of asymptotic giant branch stars. We first study the constraints imposed by the spectroscopic data of SG stars in globular clusters on the chemical properties of the asymptotic and super asymptotic giant branch ejecta. With a simple one-zone chemical model, we then explore the formation of the SG population abundance patterns focusing our attention on the Na-O, Al-Mg anticorrelations and on the helium distribution function (HDF). We carry out a survey of models and explore the dependence of the final SG chemical properties on the key parameters affecting the gas dynamics and the SG formation process. Finally, we use our chemical evolution framework to build specific models for NGC 2808 and M4, two Galactic globular clusters which show different patterns in the Na-O and Mg-Al anticorrelation and have different helium distributions. We find that the amount of pristine gas involved in the formation of SG stars is a key parameter to fit the observed O-Na and Mg-Al patterns. The HDF for these models is in general good agreement with the observed one. Our models, by shedding light on the role of different parameters and their interplay in determining the final SG chemical properties, illustrate the basic ingredients, constraints and problems encountered in this self-enrichment scenario which must be addressed by more sophisticated chemical and hydrodynamic simulations.

  19. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  20. Consistency of cosmic-ray source abundances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    Certain results regarding the ratio of cosmic-ray sources (CRS) and Solar System abundances are the same as those obtained from explosive nucleosynthesis. Such a model is consistent with the fact that in the Solar System Mg, Si, and Fe are believed to be produced by explosive nucleosynthesis, whereas C and O are mainly products of other processes. The model considered explains the carbon-to-oxygen ratio in the cosmic rays.

  1. Big Bang nucleosynthesis in crisis\\?

    NASA Astrophysics Data System (ADS)

    Hata, N.; Scherrer, R. J.; Steigman, G.; Thomas, D.; Walker, T. P.; Bludman, S.; Langacker, P.

    1995-11-01

    A new evaluation of the constraint on the number of light neutrino species (Nν) from big bang nucleosynthesis suggests a discrepancy between the predicted light element abundances and those inferred from observations, unless the inferred primordial 4He abundance has been underestimated by 0.014+/-0.004 (1σ) or less than 10% (95% C.L.) of 3He survives stellar processing. With the quoted systematic errors in the observed abundances and a conservative chemical evolution parametrization, the best fit to the combined data is Nν=2.1+/-0.3 (1σ) and the upper limit is Nν<2.6 (95% C.L.). The data are inconsistent with the standard model (Nν=3) at the 98.6% C.L.

  2. Spectroscopic and photometric monitoring of southern post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pooley, D. J.; Cottrell, P. L.; Pollard, K. R.; Albrow, M. D.

    2004-05-01

    We present the results of contemporaneous photometric and spectroscopic monitoring of 20 post-AGB stars from Mt John University Observatory. Photometric measures were carried our suing Johnson BV and Cousins RI filters, and the radial velocity measurements were acquired using spectra from an echelle spectrograph. Our program spanned five years and the stars covered a range of spectral types from B to K in order to investigate the behavior of post-AGB stars as they evolve away from the AGB. A number of stars proved to be variable inways incompatible with post-AGB models and are reclassified. Periodicities are presented for a number of stars. Photometrically, HD 70379 was found to be pulsating in two modes with periods of 85 and 97 d. The radial velocities also varied, with the peak amplitude occurring when the photometry was also changing most. AI CMi presented three different types of spectra associated with photometric brightness, with varying strengths of narrow emission lines and molecular bandheads. The Hα profiles in almost all of the stars show evidence of emission which varies on time scales of days to months. The Na D line profiles are generally complex showing between 4 and 7 components due to both circumstellar and interstellar material.

  3. Neutrino degeneracy and cosmological nucleosynthesis, revisited

    NASA Technical Reports Server (NTRS)

    Olive, K. A.; Schramm, David N.; Thomas, D.; Walker, T. P.

    1991-01-01

    A reexamination of the effects of non-zero degeneracies on Big Bang Nucleosynthesis is made. As previously noted, non-trivial alterations of the standard model conclusions can be induced only if excess lepton numbers L sub i, comparable to photon number densities eta sub tau, are assumed (where eta sub tau is approx. 3 times 10(exp 9) eta sub b). Furthermore, the required lepton number densities (L sub i eta sub tau) must be different for upsilon sub e than for upsilon sub mu and epsilon sub tau. It is shown that this loophole in the standard model of nucleosynthesis is robust and will not vanish as abundance and reaction rate determinations improve. However, it is also argued that theoretically (L sub e) approx. (L sub mu) approx. (L sub tau) approx. eta sub b is much less than eta sub tau which would preclude this loophole in standard unified models.

  4. Binarity and Accretion: X-Ray Emission from AGB stars with FUV Excesses

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2012-10-01

    We propose a pilot survey for X-ray emission from AGB stars that are candidates for having binary companions with active accretion. These objects were identified via our innovative technique to search for FUV/NUV excesses in AGB stars using GALEX. The detection (or non-detection) of X-rays from this sample will enable us to begin testing models for the origin of the UV-excesses, leading to vital breakthroughs in our understanding of accretion-related phenomena and binarity in AGB stars. A larger survey, optimised using results fron this study, will be proposed in future cycles.

  5. Nucleosynthesis in classical novae

    NASA Astrophysics Data System (ADS)

    José, Jordi; Hernanz, Margarita; Iliadis, Christian

    2006-10-01

    Classical novae are dramatic stellar explosions with an energy release that is only overcome by supernovae and gamma-ray bursts. These unique cataclysmic events constitute a crucible where different scientific disciplines merge, including astrophysics, nuclear and atomic physics, cosmochemistry, high-energy physics or computer science. In this review, we focus on the nucleosynthesis accompanying nova outbursts. Theoretical predictions are compared with the elemental abundances inferred from observations of the nova ejecta as well as with the isotopic abundance ratios measured in meteorites. Special emphasis is given to the interplay between nova outbursts and the Galactic abundance pattern and on the synthesis of radioactive nuclei for which γ-ray signals are expected. Finally, we analyze the key role played by nuclear physics in our understanding of the nova phenomenon by means of recent experiments and a thorough account of the impact of nuclear uncertainties.

  6. Constraining {sup 13}C amounts in AGB stars through isotopic analysis of trace elements in presolar SiC.

    SciTech Connect

    Barzyk, J. G.; Savina, M. R.; Davis, A. M.; Gallino, R.; Gyngard, F.; Amari, S.; Zinner, E.; Pelliln, M. J.; Lewis, R. S.; Clayton, R. N.; Materials Science Division; Univ. Chicago; Chicago Ctr Cosmochem.; Universita di Torino; Washington Univ.

    2007-07-01

    Analyses of the isotopic compositions of multiple elements (Mo, Zr, and Ba) in individual mainstream presolar SiC grains were done by resonant ionization mass spectrometry (RIMS). While most heavy element compositions were consistent with model predictions for the slow neutron capture process (s-process) in low-mass (1.5-3 M{sub {circle_dot}}) asymptotic giant branch stars of solar metallicity when viewed on single-element three-isotope plots, grains with compositions deviating from model predictions were identified on multi-element plots. These grains have compositions that cannot result from any neutron capture process but can be explained by contamination in some elements with solar system material. Previous work in which only one heavy element per grain was examined has been unable to identify contaminated grains. The multi-element analyses of this study detected contaminated grains which were subsequently eliminated from consideration. The uncontaminated grains form a data set with a greatly reduced spread on the three-isotope plots of each element measured, corresponding to a smaller range of {sup 13}C pocket efficiencies in parent AGB stars. Furthermore, due to this reduced spread, the nature of the stellar starting material, previously interpreted as having solar isotopic composition, is uncertain. The constraint on {sup 13}C pocket efficiencies in parent stars of these grains may help uncover the mechanism responsible for formation of {sup 13}C, the primary neutron source for s-process nucleosynthesis in low-mass stars.

  7. Nucleosynthesis in Magnetohydrodynamical Jets from Collapsars

    SciTech Connect

    Ono, M.; Hashimoto, M.; Fujimoto, S.; Kotake, K.

    2011-10-28

    We investigate the heavy-element nucleosynthesis of a massive star whose mass in the main sequence stage is M{sub ms} = 70 M{sub {center_dot}}. Detailed calculations of the nucleosynthesis are performed during the hydrostatic stellar evolution until the core composed of iron-group nuclei begins to collapse. As a supernova explosion model, a collapsar model is constructed whose jets are driven by magnetohydrodynamical effects of a differentially rotating core. The heavy-element nucleosynthesis inside the jet of a collapsar model is followed along the trajectories of stream lines of the jet. We combine the results of both hydrostatic and heavy-element nucleosyntheses to compare with the solar abundances. We find that neutron-rich elements of 70models. We find also that different mass formula changes significantly the production of elements of A>140.

  8. Big bang nucleosynthesis limit on Nν

    NASA Astrophysics Data System (ADS)

    Lisi, E.; Sarkar, S.; Villante, F. L.

    1999-06-01

    Recently we presented a simple method for determining the correlated uncertainties of the light element abundances expected from big bang nucleosynthesis, which avoids the need for lengthy Monte Carlo simulations. We now extend this approach to consider departures from the standard model, in particular to constrain any new light degrees of freedom present in the thermal plasma during nucleosynthesis. Since the observational situation regarding the inferred primordial abundances has not yet stabilized, we present illustrative bounds on the equivalent number of neutrino species Nν for various combinations of individual abundance determinations. Our 95% C.L. bounds on Nν range between 2 and 4, and can easily be reevaluated using the technique provided when the abundances are known more accurately.

  9. Magic ultramagnetized nuclei in explosive nucleosynthesis

    SciTech Connect

    Kondratyev, V. N.

    2012-11-15

    Direct evidence of the presence of {sup 44}Ti and content of the isotope in the supernova remnant Cassiopeia A are obtained from the analysis of gamma-ray spectrum of the remnant. A significant excess of observational {sup 44}Ti volume on predictions of supernova models can be explained as the magnetization effect in the process of explosive nucleosynthesis. The formation of chemical elements is considered accounting for superstrong magnetic fields predicted for supernovae and neutron stars. Using the arguments of nuclear statistical equilibrium, a significant effect of magnetic field on the nuclear shell energy is demonstrated. The magnetic shift of the most tightly 'bound' nuclei from the transition metals of iron series to titanium leads to an exponential increase in the portion of {sup 44}Ti and, accordingly to a significant excess of the yield of these products of nucleosynthesis.

  10. A Direct Measurement of Lifetimes and Stellar Luminosities on the AGB

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2015-01-01

    The asymptotic giant branch (AGB) represents the phase of stellar evolution where stars become their brightest and reddest. As such, understanding stellar lifetimes and luminosities during this evolutionary phase is crucial to accurately interpret red and infrared light from galaxies using population synthesis models. Recently, there has been much controversy over the inferred ages and masses of infrared galaxies due to our lack of understanding of this phase. In this presentation, I'll present a direct measurement of the stellar core mass growth on the AGB by comparing the initial core masses to the post AGB core masses measured from spectroscopy of white dwarfs. The resulting data allows us to calculate the stellar lifetime and luminosity on the AGB, and to compare to popular models that are used to interpret light from distant galaxies.

  11. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  12. Starlight and Sandstorms: Mass Loss Mechanisms on the AGB

    NASA Astrophysics Data System (ADS)

    Höfner, S.

    2011-09-01

    There are strong observational indications that the dense slow winds of cool luminous AGB stars are driven by radiative pressure on dust grains which form in the extended atmospheres resulting from pulsation-induced shocks. For carbon stars, detailed models of outflows driven by amorphous carbon grains show good agreement with observations. Some still existing discrepancies may be due to a simplified treatment of cooling in shocks, drift of the grains relative to the gas, or effects of giant convection cells or dust-induced pattern formation. For stars with C/O < 1, recent models indicate that absorption by silicate dust is probably insufficient to drive their winds. A possible alternative is scattering by Fe-free silicate grains with radii of a few tenths of a micron. In this scenario one should expect less circumstellar reddening for M- and S-type AGB stars than for C-stars with comparable stellar parameters and mass loss rates.

  13. Cosmological baryon diffusion and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Applegate, James H.; Hogan, Craig J.; Scherrer, Robert J.

    1987-02-01

    The diffusion rate of baryons through the big-bang plasma is calculated. Fluctuations in baryon density in the early Universe lead to inhomogeneities in the neutron-proton ratio, due to the differential diffusion of these particles through the radiation plasma. For certain types of nonlinear fluctuations, some nucleosynthesis would occur in very neutron-rich regions. Nuclear products of homogeneous neutron-enriched regions are evaluated numerically using a standard reaction network and these results are used to estimate final abundances in an inhomogeneous universe. Net deuterium and lithium abundances tend to increase and the net helium abundance tends to decrease compared to an unperturbed standard model. It is suggested that pronounced nonlinear baryon-density fluctuations produced in QCD- or electroweak-epoch phase transitions could alter abundances sufficiently to make a closed baryonic universe consistent with current observations of these elements. In such a model the abundance of heavier elements (C,N,O, etc.) increases significantly and approaches observable levels. Abundances can be used to place constraints on extreme scenarios for phase transitions at these epochs.

  14. s-processing in AGB stars revisited. I. Does the main component constrain the neutron source in the {sup 13}C pocket?

    SciTech Connect

    Trippella, O.; Busso, M.; Maiorca, E.; Käppeler, F.; Palmerini, S. E-mail: maurizio.busso@fisica.unipg.it

    2014-05-20

    Slow neutron captures at A ≳ 85 are mainly guaranteed by the reaction {sup 13}C(α,n){sup 16}O in asymptotic giant branch (AGB) stars, requiring proton injections from the envelope. These were so far assumed to involve a small mass (≲ 10{sup –3} M {sub ☉}), but models with rotation suggest that in such tiny layers excessive {sup 14}N hampers s-processing. Furthermore, s-element abundances in galaxies require {sup 13}C-rich layers substantially extended in mass (≳ 4 × 10{sup –3} M {sub ☉}). We therefore present new calculations aimed at clarifying those issues and at understanding whether the solar composition helps to constrain the {sup 13}C 'pocket' extension. We show that: (1) mixing 'from bottom to top' (as in magnetic buoyancy or other forced mechanisms) can form a {sup 13}C reservoir substantially larger than assumed so far, covering most of the He-rich layers; (2) on the basis of this idea, stellar models at a fixed metallicity reproduce the main s-component as accurately as before; and (3) they make nuclear contributions from unknown nucleosynthesis processes (LEPP) unnecessary, against common assumptions. These models also avoid problems of mixing at the envelope border and fulfil requirements from C-star luminosities. They yield a large production of nuclei below A = 100, so that {sup 86,} {sup 87}Sr may be fully synthesized by AGB stars, while {sup 88}Sr, {sup 89}Y, and {sup 94}Zr are contributed more efficiently than before. Finally, we suggest tests suitable for providing a final answer regarding the extension of the {sup 13}C pocket.

  15. Stellar Yields from Metal-rich Asymptotic Giant Branch Models

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; Lugaro, Maria

    2016-07-01

    We present new theoretical stellar yields and surface abundances for three grids of metal-rich asymptotic giant branch (AGB) models. Post-processing nucleosynthesis results are presented for stellar models with initial masses between 1 M ⊙ and 7.5 M ⊙ for Z = 0.007, and 1 M ⊙ and 8 M ⊙ for Z = 0.014 (solar) and Z = 0.03. We include stellar surface abundances as a function of thermal pulse on the AGB for elements from C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g., {}12{{C}}/{}13{{C}}), which can be obtained from observations of molecules in stars and from the laboratory analysis of meteoritic stardust grains. Ratios of elemental abundances of He/H, C/O, and N/O are also included, which are useful for direct comparison to observations of AGB stars and their progeny, including planetary nebulae. The integrated elemental stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. Yields of Li are also included for intermediate-mass models with hot bottom burning. We present the first slow neutron-capture (s-process) yields for super solar metallicity AGB stars with Z = 0.03, and the first complete s-process yields for models more massive than 6 M ⊙ at all three metallicities.

  16. The optically bright post-AGB population of the LMC

    NASA Astrophysics Data System (ADS)

    van Aarle, Els; van Winckel, Hans; Evans, Tom Lloyd; Wood, Peter R.

    2009-03-01

    The detected variety in chemistry and circumstellar shell morphology of the limited sample of Galactic post-AGB stars is so large, that there is no consensus yet on how individual objects are linked by evolutionary channels. The evaluation is complicated by the fact that the distances and hence luminosities of these objects are poorly known. In this contribution we report on our project to overcome this problem by focusing on a significant sample of post-AGB stars with known distances: those in the LMC. Via cross-correlation of the infrared SAGE-SPITZER catalogue with optical catalogues we selected a sample of 322 LMC post-AGB candidates based on their position in the various colour-colour diagrams. We determined the fundamental properties of 82 of them, using low resolution optical spectra that we obtained at Siding Spring and SAAO. We selected a subsample to be studied at high spectral resolution in order to obtain accurate abundances of a wide range of species. This will allow us to connect the theoretical predictions with the obtained surface chemistry at a given luminosity and metallicity. By this, we want to constrain important structure parameters of the evolutionary models. Preliminary results of the selection process are presented.

  17. H2O Formation in C-rich AGB Winds

    NASA Astrophysics Data System (ADS)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; De Ridder, J.; Khouri, T.; Agúndez, M.; Blommaert, J. A. D. L.; Cernicharo, J.; González-Alfonso, E.; Groenewegen, M. A. T.; Kerschbaum, F.; Neufeld, D.; Vandenbussche, B.; Waelkens, C.

    2015-08-01

    The Herschel detection of warm H2O vapor emission from C-rich winds of AGB stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O formation. In the first, penetration of UV interstellar radiation through a clumpy circumstellar medium causes the formation of H2O molecules in the inner envelope. In the second, periodic shocks passing through the medium immediately above the stellar surface lead to H2O formation. We have identified H2O emission trends from distance-independent line-strength ratios in a sample of 18 C-rich AGB sources, by comparing to a theoretical model grid. We detect warm H2O emission close to or inside the acceleration zone of all sample stars. We find an anti-correlation between the H2O/CO line-strength ratios and the mass-loss rate for Mgas>3×10-7 M⊙/yr. This implies that the H2O formation mechanism becomes less efficient with increasing envelope column density. The anti-correlation breaks down for SRb objects, which clump together at an overall lower H2O abundance. Finally, a radial dependence of the H2O abundance within individual sources is unlikely. These findings lend support to shock-induced non-equilibrium chemistry as the primary source of H2O formation in C-rich AGB stars.

  18. Neutrinos and nucleosynthesis in core-collapse supernovae

    SciTech Connect

    Fröhlich, C.; Casanova, J.; Hempel, M.; Liebendörfer, M.; Melton, C. A.; Perego, A.

    2014-01-01

    Massive stars (M > 8-10 M{sub ⊙}) undergo core collapse at the end of their life and explode as supernova with ~ 10⁵¹ erg of kinetic energy. While the detailed supernova explosion mechanism is still under investigation, reliable nucleosynthesis calculations based on successful explosions are needed to explain the observed abundances in metal-poor stars and to predict supernova yields for galactic chemical evolution studies. To predict nucleosynthesis yields for a large number of progenitor stars, computationally efficient explosion models are required. We model the core collapse, bounce and subsequent explosion of massive stars assuming spherical symmetry and using detailed microphysics and neutrino physics combined with a novel method to artificially trigger the explosion (PUSH). We discuss the role of neutrinos, the conditions in the ejecta, and the resulting nucleosynthesis.

  19. Nucleosynthesis and the variation of fundamental couplings

    SciTech Connect

    Mueller, Christian M.; Schaefer, Gregor; Wetterich, Christof

    2004-10-15

    We determine the influence of a variation of the fundamental 'constants' on the predicted helium abundance in Big Bang Nucleosynthesis. The analytic estimate is performed in two parts: the first step determines the dependence of the helium abundance on the nuclear physics parameters, while the second step relates those parameters to the fundamental couplings of particle physics. This procedure can incorporate in a flexible way the time variation of several couplings within a grand unified theory while keeping the nuclear physics computation separate from any GUT model dependence.

  20. Big bang nucleosynthesis: Present status

    NASA Astrophysics Data System (ADS)

    Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.; Yeh, Tsung-Han

    2016-01-01

    Big bang nucleosynthesis (BBN) describes the production of the lightest nuclides via a dynamic interplay among the four fundamental forces during the first seconds of cosmic time. A brief overview of the essentials of this physics is given, and new calculations presented of light-element abundances through 6Li and 7Li, with updated nuclear reactions and uncertainties including those in the neutron lifetime. Fits are provided for these results as a function of baryon density and of the number of neutrino flavors Nν. Recent developments are reviewed in BBN, particularly new, precision Planck cosmic microwave background (CMB) measurements that now probe the baryon density, helium content, and the effective number of degrees of freedom Neff. These measurements allow for a tight test of BBN and cosmology using CMB data alone. Our likelihood analysis convolves the 2015 Planck data chains with our BBN output and observational data. Adding astronomical measurements of light elements strengthens the power of BBN. A new determination of the primordial helium abundance is included in our likelihood analysis. New D/H observations are now more precise than the corresponding theoretical predictions and are consistent with the standard model and the Planck baryon density. Moreover, D/H now provides a tight measurement of Nν when combined with the CMB baryon density and provides a 2 σ upper limit Nν<3.2 . The new precision of the CMB and D/H observations together leaves D/H predictions as the largest source of uncertainties. Future improvement in BBN calculations will therefore rely on improved nuclear cross-section data. In contrast with D/H and 4He, 7Li predictions continue to disagree with observations, perhaps pointing to new physics. This paper concludes with a look at future directions including key nuclear reactions, astronomical observations, and theoretical issues.

  1. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  2. Nonuniversal scalar-tensor theories and big bang nucleosynthesis

    SciTech Connect

    Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2009-05-15

    We investigate the constraints that can be set from big bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big bang nucleosynthesis sets more stringent constraints than those obtained from Solar System tests.

  3. Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P. R.

    2015-11-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of extra-galactic post-asymptotic giant branch (post-AGB) stars. The aim of our programme is to derive chemical abundances of stars covering a large range in luminosity and metallicity with the ultimate goal of testing, constraining, and improving our knowledge of the poorly understood AGB phase, especially the third dredge-up mixing processes and associated s-process nucleosynthesis. Aims: Post-AGB photospheres are dominated by atomic lines and indicate the effects of internal chemical enrichment processes over the entire stellar lifetime. In this paper, we study two carefully selected post-AGB stars: J051213.81-693537.1 and J051848.86-700246.9 in the Large Magellanic Cloud (LMC). Both objects show signs of s-process enhancement. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances (and hence luminosities and initial masses) make these objects ideal probes of the AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods: We use high-resolution optical UVES spectra to determine accurate stellar parameters and subsequently perform detailed elemental abundance studies of post-AGB stars. Additionally, we use available photometric data covering optical and IR bands to construct spectral energy distributions for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results: We obtained accurate atmospheric parameters for J051213.81-693537.1 (Teff = 5875 ± 125 K, log g = 1.00 ± 0.25 dex, [Fe/H] = -0.56 ± 0.16 dex) and J051848.86-700246.9 (Teff = 6000 ± 125 K, log g = 0.50 ± 0.25 dex, [Fe/H] = -1.06 ± 0.17 dex). Both stars show extreme s-process enrichment associated with relatively low C/O ratios of 1.26 ± 0.40 and 1.29 ± 0.30 for J051213-693537.1 and J051848

  4. Optical Properties of Amorphous Alumina Dust in the Envelopes around O-Rich AGB Stars

    NASA Astrophysics Data System (ADS)

    Suh, Kyung-Won

    2016-08-01

    We investigate optical properties of amorphous alumina (Al_2O_3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars using laboratory measured optical data. We derive the optical constants of amorphous alumina over a wide wavelength range that satisfy the Kramers-Kronig relation and reproduce the laboratory data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with observations on various IR two-color diagrams for a large sample of O-rich AGB stars, we find that the amorphous alumina dust (about 10-40%) mixed with amorphous silicate better models the observed points for the O-rich AGB stars with thin dust envelopes.

  5. Nonradial instability strips for post-AGB stars

    SciTech Connect

    Stanghellini, L. ); Cox, A.N. ); Starrfield, S.G. . Dept. of Physics and Astronomy Los Alamos National Lab., NM )

    1990-01-01

    We test several pre-degenerate (PNN and DO) and degenerate (DB) models for stability against nonradial oscillations. These models lie on the 0.6 M{sub {circle dot}} evolutionary track calculated by Iben. The post-AGB stars have a residual CO core with only a little surface hydrogen and helium. In order to match all the observed pulsators. We use three different surface compositions for the DO stars, and a pure helium surface for the DB white dwarfs. We find 3 DO and 1 DB instability strips that we compare to the available observations. 16 refs., 1 fig.

  6. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jose, Jordi

    2016-01-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  7. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  8. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  9. The Executive Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Legon, Richard D.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  10. The Compensation Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Hyatt, Thomas K.

    2013-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  11. 2011 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This report, the second of AGB's studies of higher education governance, documents the extent to which college and university boards are following good-governance practices. In addition, it takes a focused look at board engagement to determine the degree to which governing boards are actively, intellectually, and strategically involved with their…

  12. The Investment Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Yoder, Jay A.

    2011-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices included in this text support the objectives of board committees:…

  13. The Audit Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Staisloff, Richard L.

    2011-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  14. The Facilities Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  15. Are Galactic globular cluster AGB stars rich or poor in Sodium?

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Primas, Francesca; Charbonnel, Corinne; Chantereau, William

    2015-08-01

    In recent years, multiple stellar populations have been identified in Galactic globular clusters (GCs),with different scenarios being debated for their origin (e.g., the AGB and the Fast Rotating Massive Stars scenario, which are the most developed in the literature). These populations are currently identified thanks to their chemical properties. In particular stars with sodium overabundances have been found at different evolution stages, from the main sequence turnoff up to the tip of the red giant branch. Surprisingly however, no sodium-rich AGB stars has been found in NGC 6752. This apparent difficulty for stellar evolution could be relieved within the FRMS scenario, which predicts that above a certain cutoff in initial helium and sodium content, stars do miss the AGB.Here we present the results of the chemical analysis of our new AGB star samples observed at the ESO/VLT with FLAMES in three GCs that span a large range in metallicity. Our aim is to investigate which kind of GCs host Na-rich second-generation AGB stars, and to probe the FRMS scenario. We compare the results with theoretical evolution features based on the FRMS model at various metallicities. This study provides a new and original insight onto the GC pollution scenarios.

  16. Big Bang Nucleosynthesis in the New Cosmology

    SciTech Connect

    Fields, Brian D.

    2008-01-24

    Big bang nucleosynthesis (BBN) describes the production of the lightest elements in the first minutes of cosmic time. We review the physics of cosmological element production, and the observations of the primordial element abundances. The comparison between theory and observation has heretofore provided our earliest probe of the universe, and given the best measure of the cosmic baryon content. However, BBN has now taken a new role in cosmology, in light of new precision measurements of the cosmic microwave background (CMB). Recent CMB anisotropy data yield a wealth of cosmological parameters; in particular, the baryon-to-photon ratio {eta} = n{sub B}/n{sub {gamma}} is measured to high precision. The confrontation between the BBN and CMB ''baryometers'' poses a new and stringent test of the standard cosmology; the status of this test are discussed. Moreover, it is now possible to recast the role of BBN by using the CMB to fix the baryon density and even some light element abundances. This strategy sharpens BBN into a more powerful probe of early universe physics, and of galactic nucleosynthesis processes. The impact of the CMB results on particle physics beyond the Standard Model, and on non-standard cosmology, are illustrated. Prospects for improvement of these bounds via additional astronomical observations and nuclear experiments are discussed, as is the lingering ''lithium problem.''.

  17. Primordial Lithium and Big Bang Nucleosynthesis.

    PubMed

    Ryan; Beers; Olive; Fields; Norris

    2000-02-20

    Recent determinations of the abundance of the light-element Li in very metal-poor stars show that its intrinsic dispersion is essentially zero and that the random error in the estimated mean Li abundance is negligible. However, a decreasing trend in the Li abundance toward lower metallicity indicates that the primordial abundance of Li can be inferred only after allowing for nucleosynthesis processes that must have been in operation in the early history of the Galaxy. We show that the observed Li versus Fe trend provides a strong discriminant between alternative models for Galactic chemical evolution of the light elements at early epochs. We critically assess current systematic uncertainties and determine the primordial Li abundance within new, much tighter limits: &parl0;Li&solm0;H&parr0;p=1.23+0.68-0.32x10-10. We show that the Li constraint on OmegaB is now limited as much by uncertainties in the nuclear cross sections used in big bang nucleosynthesis (BBN) calculations as by the observed abundance itself. A clearer understanding of systematics allows us to sharpen the comparison with 4He and deuterium and the resulting test of BBN.

  18. Big bang nucleosynthesis in the new cosmology

    NASA Astrophysics Data System (ADS)

    Fields, B. D.

    2006-03-01

    Big bang nucleosynthesis (BBN) describes the production of the lightest elements in the first minutes of cosmic time. We review the physics of cosmological element production, and the observations of the primordial element abundances. The comparison between theory and observation has heretofore provided our earliest probe of the universe, and given the best measure of the cosmic baryon content. However, BBN has now taken a new role in cosmology, in light of new precision measurements of the cosmic microwave background (CMB). Recent CMB anisotropy data yield a wealth of cosmological parameters; in particular, the baryon-to-photon ratio η = n B/n γ is measured to high precision. The confrontation between the BBN and CMB “baryometers” poses a new and stringent test of the standard cosmology; the status of this test is discussed. Moreover, it is now possible to recast the role of BBN by using the CMB to fix the baryon density and even some light element abundances. This strategy sharpens BBN into a more powerful probe of early universe physics, and of galactic nucleosynthesis processes. The impact of the CMB results on particle physics beyond the Standard Model, and on non-standard cosmology, are illustrated. Prospects for improvement of these bounds via additional astronomical observations and nuclear experiments are discussed, as is the lingering “lithium problem.”

  19. Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Kobayashi, Chiaki; Tominaga, Nozomu

    2013-08-01

    After the Big Bang, production of heavy elements in the early Universe takes place starting from the formation of the first stars, their evolution, and explosion. The first supernova explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of the Universe's first stars and supernova explosions has not been well clarified. The signature of the nucleosynthesis yields of the first stars can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of stars. We thus review the recent results of the nucleosynthesis yields of mainly massive stars for a wide range of stellar masses, metallicities, and explosion energies. We also provide yields tables and examine how those yields are affected by some hydrodynamical effects during supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars. Nucleosynthesis yields are then applied to the chemical evolution model of our Galaxy and other types of galaxies to discuss how the chemical enrichment process occurred during evolution.

  20. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  1. The LF of TP-AGB stars in the LMC/SMC

    NASA Technical Reports Server (NTRS)

    Bruzual, Gustavo; Charlot, Stephane; GonzalezLopezlira, Rosa; Srinivasan, Sundar; Boyer, Martha L.

    2013-01-01

    We show that Monte Carlo simulations of the TP-AGB stellar population in the LMC and SMC galaxies using the CB. models produce LF and color distributions that are in closer agreement with observations than those obtained with the BC03 and CB07 models. This is a progress report of work that will be published elsewhere.

  2. Explosive Nucleosynthesis in Magnetohydrodynamical Jets from Collapsars. II --- Heavy-Element Nucleosynthesis of s, p, r-Processes

    NASA Astrophysics Data System (ADS)

    Ono, M.; Hashimoto, M.; Fujimoto, S.; Kotake, K.; Yamada, S.

    2012-10-01

    We investigate the nucleosynthesis in a massive star of 70 M_{⊙} with solar metallicity in the main sequence stage. The helium core mass after hydrogen burning corresponds to 32 M_{⊙}. Nucleosynthesis calculations have been performed during the stellar evolution and the jetlike supernova explosion of a collapsar model. We focus on the production of elements heavier than iron group nuclei. Nucleosynthesis calculations have been accomplished consistently from hydrostatic to dynamic stages by using large nuclear reaction networks, where the weak s-, p-, and r-processes are taken into account. We confirm that s-elements of 60 < A < 90 are highly overproduced relative to the solar abundances in the hydrostatic nucleosynthesis. During oxygen burning, p-elements of A > 90 are produced via photodisintegrations of seed s-elements. However, the produced p-elements are disintegrated in later stages except for ^{180}Ta. In the explosive nucleosynthesis, elements of 90 < A < 160 are significantly overproduced relative to the solar values owing to the r-process, which is very different from the results of spherical explosion models. Only heavy p-elements (N > 50) are overproduced via the p-process because of the low peak temperatures in the oxygen- and neon-rich layers. Compared with the previous study of r-process nucleosynthesis calculations in the collapsar model of 40 M_{⊙} by Fujimoto et al. [S. Fujimoto, M. Hashimoto, K. Kotake and S. Yamada, Astrophys. J. 656 (2007), 382; S. Fujimoto, N. Nishimura and M. Hashimoto, Astrophys. J. 680 (2008), 1350], our jet model cannot contribute to the third peak of the solar r-elements and intermediate p-elements, which have been much produced because of the distribution of the lowest part of electron fraction in the ejecta. Averaging the overproduction factors over the progenitor masses with the use of Salpeter's IMF, we suggest that the 70 M_{⊙} star could contribute to the solar weak s}-elements of 60 < A < 90 and neutron

  3. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    SciTech Connect

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F.; Marigo, Paola; Girardi, Léo; Gullieuszik, Marco; Bressan, Alessandro; Dolphin, Andrew; Aringer, Bernhard

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  4. Integrated Nucleosynthesis in Neutrino Driven Winds

    SciTech Connect

    Roberts, L F; Woosley, S E; Hoffman, R D

    2010-03-26

    Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older 1.4M{sub {circle_dot}} model for a PNS is moderately neutron-rich at late times however, and produces {sup 87}Rb, {sup 88}Sr, {sup 89}Y, and {sup 90}Zr in near solar proportions relative to oxygen. The wind from a more recently studied 1.27M{sub {circle_dot}} PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the production of the N = 50 closed shell elements and some light p-nuclei. In doing so, it may have left a distinctive signature on the abundances in metal poor stars, but the results are sensitive to both uncertain models for the explosion and the masses of the neutron stars involved.

  5. H dibaryons and primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, J. A.; Stoica, S.; Thévenin, F.; Horvath, J. E.

    1999-01-01

    The apparent discrepancy between abundances of light nuclides predicted by the standard big bang and observational data is explained by assuming the presence of metastable H dibaryons at the nucleosynthesis era. These dibaryons could be formed out of a small fraction of strange quarks at the moment of the confinement transition. For a primordial deuterium abundance of the order of 3×10-5, the measured differences in the 4He abundances requires a relative abundance of H dibaryons of the order of nH/nB~0.07, decaying in a time scale of the order of 105 s.

  6. Nuclear reactions for nucleosynthesis beyond Fe

    SciTech Connect

    Rauscher, Thomas

    2015-10-15

    Many more nuclear transitions have to be known in the determination of stellar reactivities for trans-iron nucleosynthesis than for reactions of light nuclei. This requires different theoretical and experimental approaches. Some of the issues specific for trans-iron nucleosynthesis are discussed.

  7. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of i-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = ‑1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = ‑0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (i process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the i process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the i process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute

  8. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of i-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (i process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the i process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the i process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  9. AGB Stars in Galactic Globular Clusters: Are They Really Chemically Distinct from Their Fellow RGB and HB Stars?

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; Grundahl, F.; Sneden, C.

    2011-09-01

    The handful of available observations of asymptotic giant branch (AGB) stars in Galactic globular clusters (GCs) suggest that the globular cluster AGB populations are dominated by cyanogen-weak (CN-weak) stars. This contrasts strongly with the distributions on the red giant branch (RGB) and other populations, which often show a 50:50 bimodality in CN band strength. If this is true then it presents a serious problem for low metallicity stellar evolution theory, since such a surface abundance change going from the RGB to AGB is not predicted by stellar models. However this is only a tentative conclusion, since it is based on very small AGB sample sizes. To test whether this problem really exists we have carried out an observational campaign targeting AGB stars in globular clusters. We have obtained medium resolution spectra for about 250 AGB stars across 9 Galactic globular clusters (NGC 1851, NGC 288, NGC 362, NGC 6752, M2, M4, M5, M10, and 47 Tuc) using the multi-object spectrograph on the Anglo-Australian Telescope (2df/AAOmega). In this contribution we present some preliminary findings of the study, in particular for the second-parameter pair NGC 288 and NGC 362.

  10. CNO nucleosynthesis and the nova outburst

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Truran, J.; Sparks, W.

    1977-01-01

    Predictions for CNO nucleosynthesis by the classical nova outburst are presented. Properties of the nova phenomenon pertinent to the production of CNO isotopes are discussed, the effect of beta(+) unstable nuclei on outburst evolution is examined, and the need for enhanced CNO nuclei in the envelope is described. Possible mechanisms for producing such enhancement are considered, and recent observations of enhanced CNO nuclei in nova ejecta are reviewed. Results of model evolutionary calculations are outlined which show that a thermonuclear runaway in the hydrogen envelope of a carbon-oxygen white dwarf can reproduce the gross features of the classical nova outburst, that the behavior of the outburst depends at least on the hydrogen-envelope mass and the degree of CNO enhancement, and that all degrees of isotopic enhancement result in an outburst that may be compared with observed events. Two enhancement mechanisms are identified, both of which involve mixing in the envelope.

  11. No crisis for big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kernan, Peter J.; Sarkar, Subir

    1996-09-01

    Contrary to a recent claim, the inferred primordial abundances of the light elements are quite consistent with the expectations from standard big bang nucleosynthesis when attention is restricted to direct observations rather than results from chemical evolution models. The number of light neutrino (or equivalent particle) species (Nν) can be as high as 4.53 if the nucleon-to-photon ratio (η) is at its lower limit of 1.65×10-10, as constrained by the upper bound on the deuterium abundance in high redshift quasar absorption systems. Alternatively, with Nν=3, η can be as high as 8.90×10-10 if the deuterium abundance is bounded from below by its interstellar value. These conclusions follow from the upward revision of the primordial helium abundance inferred from recent observations of blue compact galaxies, using updated atomic physics inputs.

  12. Asymmetries in AGB Stars: New Results from Aperture Masking Techniques

    NASA Astrophysics Data System (ADS)

    Lykou, F.; Hron, J.; Paladini, C.; Zijlstra, A. A.; Tuthill, P. G.; Norris, B.; Lagadec, E.

    2015-08-01

    Recent studies have shown that the extended circumstellar envelopes of AGB stars are not always spherical in shape. Moreover, the majority of post-AGB stars exhibit highly aspherical shapes, such as bipolar nebulae and equatorial waists in the form of dusty and gaseous disks and/or tori. As such, one should expect that the origin of the morphological changes seen in later evolutionary stages can be traced during the AGB phase. We now present a study of AGB stars using aperture masking interferometry to resolve such aspherical structures.

  13. Monte Carlo calculations for r-process nucleosynthesis

    SciTech Connect

    Mumpower, Matthew Ryan

    2015-11-12

    A Monte Carlo framework is developed for exploring the impact of nuclear model uncertainties on the formation of the heavy elements. Mass measurements tightly constrain the macroscopic sector of FRDM2012. For r-process nucleosynthesis, it is necessary to understand the microscopic physics of the nuclear model employed. A combined approach of measurements and a deeper understanding of the microphysics is thus warranted to elucidate the site of the r-process.

  14. Evolution and Nucleosynthesis of Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Hirschi, Raphael

    In this chapter, after a brief introduction and overview of stellar evolution, we discuss the evolution and nucleosynthesis of very massive stars (VMS: M > 100 M_{odot } ) in the context of recent stellar evolution model calculations. This chapter covers the following aspects: general properties, evolution of surface properties, late central evolution, and nucleosynthesis including their dependence on metallicity, mass loss and rotation. Since very massive stars have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All VMS at metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important mass loss through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M_{odot } . A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of neon and magnesium at the surface of WC stars. At solar metallicity, mass loss is so strong that even if a star is born with several hundred solar masses, it will end its life with less than 50 M_{odot } (using current mass loss prescriptions). At the metallicity of the LMC and lower, on the other hand, mass loss is weaker and might enable stars to undergo pair-instability supernovae.

  15. Stellar Dust Production in Chemically Primitive Environments: Infrared Lightcurves and Mass Loss in Extremely Metal-poor AGB Stars

    NASA Astrophysics Data System (ADS)

    Sonneborn, George

    In their final stage of evolution, asymptotic giant branch (AGB) stars inject a substantial amount of dust into the surrounding interstellar medium, potentially dominating the total stellar dust budgets of their host galaxies. However, stellar models conflict over whether metal-poor AGB stars can condense enough dust to drive a strong stellar wind, so it is unclear what role AGB stars play in the early Universe compared to other dust sources, e.g., in high-redshift quasars that show evidence for massive dust reservoirs. Empirically, AGB stars that are massive enough to contribute in the early Universe are only well studied in the Milky Way and the nearby Magellanic Clouds; all three environments are relatively metal-rich and thus unlikely to be representative of high-redshift AGB stars. This lack of observations of metal-poor AGB stars motivated the survey of DUST in Nearby Galaxies with Spitzer (DUSTiNGS), which imaged 50 nearby dwarf galaxies in the infrared and identified 526 dusty "extreme" AGB stars. The DUSTiNGS stars confirm that dust can form at metallicities as low as 0.008 solar, more than an order of magnitude lower than had been previously observed. However, very little is known about the DUSTiNGS stars; among the unknowns are the photospheric chemistries, stellar masses, temperatures, luminosities, pulsation periods and amplitudes, dust-production rates, and even their statuses as bona fide AGB stars. To eliminate these unknowns, we were awarded 56 hours of Priority 1 observing time in Spitzer's cycle 11 to obtain 6 new epochs of imaging for a subset of the DUSTiNGS variables over an 18 month baseline. These will be the first infrared light curves of metal-poor, dust-producing AGB stars, allowing us to study the influence of metallicity on pulsation and dust production. Combined with additional archival data, our cycle-11 Spitzer program will allow estimates of all of the parameters listed above, enabling the first direct comparisons to models of AGB

  16. Nucleosynthesis in Jets from Collapsars

    SciTech Connect

    Fujimoto, Shin-ichiro; Nishimura, Nobuya; Hashimoto, Masa-aki

    2008-05-21

    We investigate nucleosynthesis inside magnetically driven jets ejected from collapsars, or rotating magnetized stars collapsing to a black hole, based on two-dimensional magnetohydrodynamic simulation of the collapsars during the core collapse. We follow the evolution of the abundances of about 4000 nuclides from the collapse phase to the ejection phase using a large nuclear reaction network. We find that the r-process successfully operates only in the energetic jets (>10{sup 51} erg), so that U and Th are synthesized abundantly, even when the collapsars have a relatively small magnetic field (10{sup 10} G) and a moderately rotating core before the collapse. The abundance patterns inside the jets are similar to that of the r-elements in the solar system. The higher energy jets have larger amounts of {sup 56}Ni. Less energetic jets, which have small amounts of {sup 56}Ni, could induce GRB without supernova, such as GRB060505 and GRB060614.

  17. Convection, nucleosynthesis, and core collapse

    NASA Technical Reports Server (NTRS)

    Bazan, Grant; Arnett, David

    1994-01-01

    We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.

  18. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging ‑1.59 ≲ {{[Fe/H]}} ≲ ‑0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  19. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 ≲ {{[Fe/H]}} ≲ -0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  20. Nucleosynthesis in Outflows from Kerr Black Hole Accretion Disks

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Sabbatino, N.; Hix, William Raphael

    2008-01-01

    Observational evidence suggests long-duration, collapsar-type gamma-ray bursts (GRBs) may have been more common in the early universe. These events are thought to be powered by accretion disks around black holes (AD-BHs). While GRBs require AD-BHs, not all AD-BHs will power bursts and therefore their formation will be more common than GRBs themselves. Outflows from AD-BHs may therefore be important contributors to the nuclear abundances in the oldest stars, particularly for rare species or those not uniformly observed. Here we consider the nucleosynthesis in this environment starting with relativistic disk models of Kerr black holes and following the element synthesis in a parameterized outflow. We present nucleosynthesis results from a range of AD-BH models.

  1. Big Bang Nucleosynthesis in the Post-WMAP Era

    SciTech Connect

    Olive, Keith A.

    2004-12-10

    An overview of the standard model of big bang nucleosynthesis (BBN) in the post-WMAP era is presented. With the value of the baryon-to-photon ratio determined to relatively high precision by WMAP, standard BBN no longer has any free parameters. In this context, the theoretical prediction for the abundances of D, 3He, 4He, and 7Li is discussed. The observational determination of the light nuclides is also discussed. While, the D and 4He observations are concordant with BBN predictions, 7Li remains discrepant with the CMB-preferred baryon density and possible explanations are reviewed. Finally, moving beyond the standard model, primordial nucleosynthesis constraints on early universe and particle physics are also briefly discussed.

  2. Constraints on massive gravity theory from big bang nucleosynthesis

    SciTech Connect

    Lambiase, G.

    2012-10-01

    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.

  3. Shock waves and nucleosynthesis in type II supernovae

    NASA Technical Reports Server (NTRS)

    Aufderheide, M. B.; Baron, E.; Thielemann, F.-K.

    1991-01-01

    In the study of nucleosynthesis in type II SN, shock waves are initiated artificially, since collapse calculations do not, as yet, give self-consistent shock waves strong enough to produce the SN explosion. The two initiation methods currently used by light-curve modelers are studied, with a focus on the peak temperatures and the nucleosynthetic yields in each method. The various parameters involved in artificially initiating a shock wave and the effects of varying these parameters are discussed.

  4. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    SciTech Connect

    Kersten, Joern; Schmidt-Hoberg, Kai E-mail: kai.schmidt-hoberg@ph.tum.de

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  5. The 2014 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Hodge-Clark, Kristen

    2014-01-01

    "The 2014 AGB Survey of Higher Education Governance" is the fourth in AGB's studies of college and university governance. This report, based on survey responses from 592 public and independent boards, addresses a range of important governance topics that are receiving attention from boards and the news media, including presidential…

  6. Presenting Optical Spectra of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Hamren, K.; Guhathakurta, P.; Toloba, E.; Dorman, C. E.; Seth, A. C.; Splash Collaboration; Phat Collaboration

    2015-08-01

    We present optical spectra of oxygen- and carbon-rich AGB stars in the disk of the Andromeda spiral galaxy (M31). Our AGB sample is drawn from the ˜10 000 stars covered by both the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey and the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This dual coverage means that we have moderate resolution optical spectra taken with the DEIMOS spectrograph on the Keck II 10-m telescope, as well as six-filter HST photometry spanning the ultraviolet, optical and infrared. Our full AGB sample contains 143 carbon-rich AGB stars (C stars) and ˜1700 oxygen-rich AGB stars (M giants). We explore the spatial and kinematic distribution of these stars, the C/M ratio, spectral trends as a function of physical properties, and the fit to synthetic photometry.

  7. Electron screening and its effects on big-bang nucleosynthesis

    SciTech Connect

    Wang Biao; Bertulani, C. A.; Balantekin, A. B.

    2011-01-15

    We study the effects of electron screening on nuclear reaction rates occurring during the big-bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in detail. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-Hueckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. This work rules out electron screening as a relevant ingredient to big-bang nucleosynthesis, confirming a previous study [see Itoh et al., Astrophys. J. 488, 507 (1997)] and ruling out exotic possibilities for the treatment of screening beyond the mean-field theoretical approach.

  8. Particle physics catalysis of thermal big bang nucleosynthesis.

    PubMed

    Pospelov, Maxim

    2007-06-01

    We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date.

  9. Particle physics catalysis of thermal big bang nucleosynthesis.

    PubMed

    Pospelov, Maxim

    2007-06-01

    We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date. PMID:17677895

  10. Nucleosynthesis in the ejecta of neutron star mergers

    SciTech Connect

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-05-02

    We present, for the first time, the result of nucleosynthesis calculations based on the fully general-relativistic simulation of a NS-NS merger with approximate neutrino transport taken into account. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino-processed, resulting in a wide range of electron fraction, Y{sub e} ∼ 0.1-0.4. The mass-averaged abundance distribution of calculated nucleosynthesis yields is in remarkable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers can be the origin of the Galactic r-process nuclei.

  11. The Effects of Collective Neutrino Oscillations on Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Seadrow, Shaquann; Frohlich, C.; Duan, H.; Friedland, A.; McLaughlin, G.; Keohane, J. W.

    2014-01-01

    A core-collapse supernova originates from the implosion of the electron degenerate core inside a massive star. Runaway electron capture produces on the order of 1057 neutrinos containing about 1053 erg of energy in total. While the vast majority of neutrinos are eventually released, during the first few seconds these neutrinos drive both the dynamics, and likewise the nucleosynthesis, inside the supernova. Recently, our understanding of oscillations among the different flavors of neutrinos (electron, muon, and tau) has significantly improved, allowing us to ask if neutrino flavor change has a significant effect on nucleosynthesis in a core-collapse supernova. To investigate the effects of collective neutrino flavor oscillations, we use the hydrodynamic conditions from a spherically-symmetrical model of the implosion, bounce, and explosion of the 1.4 solar mass core that is inside an 8.8 solar mass star (Huedepohl et al. 2009). We select 20 mass tracers in the ejecta, varying in initial radii, and follow these trajectories for the first 9 seconds following bounce. We include these trajectories into a nuclear reaction network in order to calculate the detailed nucleosynthesis. We use three sets of neutrino reaction rates, all of which are calculated consistently with the conditions in the supernova model: (i) no collective flavor oscillations, (ii) collective oscillations for normal neutrino mass hierarchy, and (iii) collective oscillations for inverted neutrino mass hierarchy. We calculate the detailed nucleosynthesis for each trajectory for all three sets of neutrino rates. We find that the inclusion of collective oscillations (ii or iii) significantly increases the free neutron abundance; however, we obtain similar results regardless of which hierarchy is used. The increase in free neutrons also increases the subsequent rate of neutron capture, but has only a small effect on the predicted final abundances. This work was performed as part of North Carolina State

  12. Primordial nucleosynthesis and neutrino physics

    NASA Astrophysics Data System (ADS)

    Smith, Christel Johanna

    We study primordial nucleosynthesis abundance yields for assumed ranges of cosmological lepton numbers, sterile neutrino mass-squared differences and active-sterile vacuum mixing angles. We fix the baryon-to-photon ratio at the value derived from the cosmic microwave background (CMB) data and then calculate the deviation of the 2 H, 4 He, and 7 Li abundance yields from those expected in the zero lepton number(s), no-new-neutrino-physics case. We conclude that high precision (< 5% error) measurements of the primordial 2 H abundance from, e.g., QSO absorption line observations coupled with high precision (< 1% error) baryon density measurements from the CMB could have the power to either: (1) reveal or rule out the existence of a light sterile neutrino if the sign of the cosmological lepton number is known; or (2) place strong constraints on lepton numbers, sterile neutrino mixing properties and resonance sweep physics. Similar conclusions would hold if the primordial 4 He abundance could be determined to better than 10%. We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these

  13. Big-bang nucleosynthesis revisited

    NASA Technical Reports Server (NTRS)

    Olive, Keith A.; Schramm, David N.; Steigman, Gary; Walker, Terry P.

    1989-01-01

    The homogeneous big-bang nucleosynthesis yields of D, He-3, He-4, and Li-7 are computed taking into account recent measurements of the neutron mean-life as well as updates of several nuclear reaction rates which primarily affect the production of Li-7. The extraction of primordial abundances from observation and the likelihood that the primordial mass fraction of He-4, Y(sub p) is less than or equal to 0.24 are discussed. Using the primordial abundances of D + He-3 and Li-7 we limit the baryon-to-photon ratio (eta in units of 10 exp -10) 2.6 less than or equal to eta(sub 10) less than or equal to 4.3; which we use to argue that baryons contribute between 0.02 and 0.11 to the critical energy density of the universe. An upper limit to Y(sub p) of 0.24 constrains the number of light neutrinos to N(sub nu) less than or equal to 3.4, in excellent agreement with the LEP and SLC collider results. We turn this argument around to show that the collider limit of 3 neutrino species can be used to bound the primordial abundance of He-4: 0.235 less than or equal to Y(sub p) less than or equal to 0.245.

  14. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  15. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.

    2004-01-01

    Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.

  16. Presolar Graphite from AGB Stars: Microstructure and s-Process Enrichment

    NASA Astrophysics Data System (ADS)

    Croat, Thomas K.; Stadermann, Frank J.; Bernatowicz, Thomas J.

    2005-10-01

    Correlated transmission electron microscopy and secondary ion mass spectrometry with submicron spatial resolution (NanoSIMS) investigations of the same presolar graphites spherules from the Murchison meteorite were conducted, to link the isotopic anomalies with the mineralogy and chemical composition of the graphite and its internal grains. Refractory carbide grains (especially titanium carbide) are commonly found within the graphite spherules, and most have significant concentrations of Zr, Mo, and Ru in solid solution, elements primarily produced by s-process nucleosynthesis. The effect of chemical fractionation on the Mo/Ti ratio in these carbides is limited, and therefore from this ratio one can infer the degree of s-process enrichment in the gas from which the graphite condensed. The resulting s-process enrichments within carbides are large (~200 times solar on average), showing that most of the carbide-containing graphites formed in the mass outflows of asymptotic giant branch (AGB) stars. NanoSIMS measurements of these graphites also show isotopically light carbon (mostly in the 100<12C/13C<400 range). The enrichment of these presolar graphites in both s-process elements and 12C considerably exceeds that astronomically observed around carbon stars. However, a natural correlation exists between 12C and s-process elements, as both form in the He intershell region of thermally pulsing AGB stars and are dredged up together to the surface. Their observation together suggests that these graphites may have formed in chemically and isotopically inhomogeneous regions around AGB stars, such as high-density knots or jets. As shown in the companion paper, a gas density exceeding that expected for smooth mass outflows is required for graphite of the observed size to condense at all in circumstellar environments, and the spatially inhomogeneous, high-density regions from which they condense may also be incompletely mixed with the surrounding gas. We have greatly expanded

  17. Nucleosynthesis and the nova outburst

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Truran, J.W.; Wiescher, M.; Sparks, W.M.

    1995-01-01

    A nova outburst is the consequence of the accretion of hydrogen rich material onto a white dwarf and it can be considered as the largest hydrogen bomb in the Universe. The fuel is supplied by a secondary star in a close binary system while the strong degeneracy of the massive white dwarf acts to contain the gas during the early stages of the explosion. The containment allows the temperature in the nuclear burning region to exceed 10(sup 8)K under all circumstances. As a result a major fraction of CNO nuclei in the envelope are transformed into (beta)(sup +)-unstable nuclei. We discuss the effects of these nuclei on the evolution. Recent observational studies have shown that there are two compositional classes of novae; one which occurs on carbon-oxygen white dwarfs, and a second class that occurs on oxygen-neon-magnesium white dwarfs. In this review we will concentrate on the latter explosions since they produce the most interesting nucleosynthesis. We report both on the results of new observational determinations of nova abundances and, in addition, new hydrodynamic calculations that examine the consequences of the accretion process on 1.0M(sub (circle dot)), 1.25M(sub (circle dot)), and 1.35M(sub (circle dot)) white dwarfs. Our results show that novae can produce (sup 22)Na, (sup 26)Al, and other intermediate mass nuclei in interesting amounts. We will present the results of new calculations, done with updated nuclear reaction rates and opacities, which exhibit quantitative differences with respect to published work.

  18. Nucleosynthesis and the nova outburst

    SciTech Connect

    Starrfield, S.; Truran, J.W.; Wiescher, M.; Sparks, W.M.

    1995-12-31

    A nova outburst is the consequence of the accretion of hydrogen rich material onto a white dwarf and it can be considered as the largest hydrogen bomb in the Universe. The fuel is supplied by a secondary star in a close binary system while the strong degeneracy of the massive white dwarf acts to contain the gas during the early stages of the explosion. The containment allows the temperature in the nuclear burning region to exceed 10{sup 8}K under all circumstances. As a result a major fraction of CNO nuclei in the envelope are transformed into {beta}{sup +}-unstable nuclei. We discuss the effects of these nuclei on the evolution. Recent observational studies have shown that there are two compositional classes of novae; one which occurs on carbon-oxygen white dwarfs, and a second class that occurs on oxygen-neon-magnesium white dwarfs. In this review we will concentrate on the latter explosions since they produce the most interesting nucleosynthesis. We report both on the results of new observational determinations of nova abundances and, in addition, new hydrodynamic calculations that examine the consequences of the accretion process on 1.0M{sub {circle_dot}}, 1.25M{sub {circle_dot}}, and 1.35M{sub {circle_dot}} white dwarfs. Our results show that novae can produce {sup 22}Na, {sup 26}Al, and other intermediate mass nuclei in interesting amounts. We will present the results of new calculations, done with updated nuclear reaction rates and opacities, which exhibit quantitative differences with respect to published work.

  19. The excitation of circumstellar C2 in carbon-rich post-AGB object IRAS 22272+5435

    NASA Astrophysics Data System (ADS)

    Schmidt, M. R.; Začs, L.; Pułecka, M.; Szczerba, R.

    2013-08-01

    Context. Observations of the circumstellar envelopes of post-asymptotic giant branch (post-AGB) stars provide information about their mass-loss history during the AGB phase and about the chemistry inside envelopes after that phase. Aims: We analyze visual observations of C2 molecule in absorption and millimeter and sub-millimeter observations of CO molecule in emission with the aim of determining the physical and chemical conditions in the circumstellar shell of the carbon-rich post-AGB star IRAS 22272+5435. Methods: We determined the column densities and excitation structure of C2 from equivalent width analysis of the molecular absorptions. The thermal and density structure of post-AGB shell (AGB remnant) is constrained by multilevel radiative transfer modeling of CO emission lines. The chemical structure of the envelope was computed and then used in the multilevel radiative transfer in C2 for comparison with observed column densities. Results: We estimate the column density of C2 to be 3.2 × 1015 cm-2. From the chemical model we estimate peak abundance of C2 as 6.8 × 10-6 relative to nucleon density. The absorption of molecular lines originate in the ring between 5 and 10 × 1016 cm. The excitation temperature of the lowest levels of 58 K is consistent with the gas kinetic temperature derived from the CO modeling. The initial abundance of the parent molecule C2H2 inferred from the analysis is found to be 1.27 × 10-5 relative to nucleon density. Conclusions: C2 molecule is a promising tool for probing the temperature structure of the envelopes of post-AGB objects and indirectly for determining the chemical abundance of acetylene. Table 1 is available in electronic form at http://www.aanda.org

  20. Primordial nucleosynthesis in conformal Weyl gravity

    SciTech Connect

    Knox, L.; Kosowsky, A. |

    1993-10-01

    Recently conformal Weyl gravity has been considered as a candidate alternative gravity theory. This fourth-order theory is attractive because it is the only metric theory of gravity which is invariant under local conformal transformations of the metric. The authors calculate the primordial light element abundances in this theory. The major difference from the standard cosmology is that the universe expands far more slowly throughout the nucleosynthesis epoch. The production of {sup 4}He depends strongly on {eta}, the ratio of baryons to photons. For {eta} = 10{sup {minus}8} the mass fraction of {sup 4}He is X{sub 4} {approx_equal} 0.25 and the number densities relative to hydrogen for {sup 2}H, {sup 3}He and {sup 7}Li are n({sup 2}H)/n(H) {approx_equal} 9 {times} 10{sup {minus}20}, n({sup 3}He)/n(H) {approx_equal}4 {times} 10{sup {minus}18} and n({sup 7}Li)/n(H) {approx_equal} 10{sup {minus}13}. This value of {eta} corresponds to a baryon mass density close to the standard model critical density. However, adjusting {eta} to give a reasonable helium yield forces the deuterium and lithium yields to be small enough that the theory cannot be reconciled with observations.

  1. Stellar nucleosynthesis and chemical evolution of the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1988-01-01

    Current theoretical models of nucleosynthesis (N) in stars are reviewed, with an emphasis on their implications for Galactic chemical evolution. Topics addressed include the Galactic population II red giants and early N; N in the big bang; star formation, stellar evolution, and the ejection of thermonuclearly evolved debris; the chemical evolution of an idealized disk galaxy; analytical solutions for a closed-box model with continuous infall; and nuclear burning processes and yields. Consideration is given to shell N in massive stars, N related to degenerate cores, and the types of observational data used to constrain N models. Extensive diagrams, graphs, and tables of numerical data are provided.

  2. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  3. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    SciTech Connect

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  4. A generalized framework for nucleosynthesis calculations

    NASA Astrophysics Data System (ADS)

    Sprouse, Trevor; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    Simulating astrophysical events is a difficult process, requiring a detailed pairing of knowledge from both astrophysics and nuclear physics. Astrophysics guides the thermodynamic evolution of an astrophysical event. We present a nucleosynthesis framework written in Fortran that combines as inputs a thermodynamic evolution and nuclear data to time evolve the abundances of nuclear species. Through our coding practices, we have emphasized the applicability of our framework to any astrophysical event, including those involving nuclear fission. Because these calculations are often very complicated, our framework dynamically optimizes itself based on the conditions at each time step in order to greatly minimize total computation time. To highlight the power of this new approach, we demonstrate the use of our framework to simulate both Big Bang nucleosynthesis and r-process nucleosynthesis with speeds competitive with current solutions dedicated to either process alone.

  5. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  6. Core-collapse supernovae and nucleosynthesis

    SciTech Connect

    Haxton, W.C.

    1994-12-01

    I discuss some of the physics that governs the collapse and explosion of a massive star, including issues such as lepton number losses in the infall stage and neutrino heating and convection following the core bounce. I review recent work on the neutrino process and the r-process, describing how the nucleosynthesis depends on the explosion mechanism. Some of the interesting possibilities for oscillations of closure mass {nu}{sub {tau}}s are discussed, along with their signatures in terrestrial detectors and in nucleosynthesis.

  7. Nucleosynthesis in white-dwarf atmospheres

    NASA Technical Reports Server (NTRS)

    Hoyle, F.; Clayton, D. D.

    1974-01-01

    Consideration of events by which both s- and r-process nucleosynthesis may occur on the surfaces of white-dwarf stars. The main requirement is that the accreted hydrogen be mixed with comparable numbers of C-12 (or other alpha nuclei) before a runaway capture of protons takes place. Subsequent events offer many possibilities for nucleosynthesis and stars of peculiar composition. A new mechanism for a surface s-process due to few-MeV protons is also described. Concluding comments concern cosmic gamma-ray bursts and the origin of anomalous low-energy galactic cosmic rays.

  8. Nucleosynthesis of heavy elements in the r-process

    NASA Astrophysics Data System (ADS)

    Panov, I. V.

    2016-03-01

    The current state of the problem of heavy-element production in the astrophysical r-process is surveyed. The nucleosynthesis process in the neutron-star-merger scenario, within which the problem of free-neutron source is solved, is considered most comprehensively. A model that describes well the observed abundances of heavy elements is examined. Theoretical approaches used in this model to calculate a number of features of short-lived neutron-rich nuclei are described. The contributions of various fission processes to the production of heavy elements are assessed. The possibility of superheavy-element production in the r-process is demonstrated.

  9. Spectroscopic survey of post-AGB star candidates

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Miranda, L. F.

    2007-01-01

    Aims:Our goal is to establish the true nature of post-AGB star candidates and to identify new post-AGB stars. Methods: We used low resolution optical spectroscopy and we compared the spectra of the candidate post-AGB stars with those of stars in the library specta available in the literature and with spectra of "standard" post-AGB stars, and direct imaging in narrow-band filters. Results: Spectra were obtained for 16 objects: 14 objects have not been observed previously and 2 objects are already known post-AGB stars used as "standards" for identification. From the spectra we identify: six new post-AGB stars with spectral types between G5 and F5, two H ii regions the morphology of which is revealed in the direct images for the first time, a G giant with infrared emission, a young stellar object, a probable post-AGB star with emission lines and three objects for which the classification is still unclear. As a whole, our results provide new, reliable identifications for 10 objects among listed post-AGB star candidates. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and at the Observatorio de Sierra Nevada, which is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía (Granada, Spain). Appendices A-D are only available in electronic form at http://www.aanda.org

  10. Barium Isotopic Composition of Mainstream Silicon Carbides from Murchison: Constraints for s-process Nucleosynthesis in Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Savina, Michael R.; Davis, Andrew M.; Gallino, Roberto; Straniero, Oscar; Gyngard, Frank; Pellin, Michael J.; Willingham, David G.; Dauphas, Nicolas; Pignatari, Marco; Bisterzo, Sara; Cristallo, Sergio; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ(138Ba/136Ba) values are found, down to -400‰, which can only be modeled with a flatter 13C profile within the 13C pocket than is normally used. The dependence of δ(138Ba/136Ba) predictions on the distribution of 13C within the pocket in asymptotic giant branch (AGB) models allows us to probe the 13C profile within the 13C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the 22Ne(α, n)25Mg rate in the stellar temperature regime relevant to AGB stars, based on δ(134Ba/136Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ(134Ba/136Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, 130Ba and 132Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of 135Ba, we conclude that there is no measurable decay of 135Cs (t 1/2 = 2.3 Ma) to 135Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before 135Cs decayed.

  11. Winds of M-type AGB stars driven by micron-sized grains

    NASA Astrophysics Data System (ADS)

    Höfner, S.

    2008-11-01

    Context: In view of the recent problem regarding the dynamical modelling of winds of M-type AGB stars (insufficient radiation pressure on silicate grains), some of the basic assumptions of these models need to be re-evaluated critically. Aims: Accepting the conclusion that non-grey effects will force silicate grains to be virtually Fe-free, the viability of driving winds with micron-sized Fe-free silicates, instead of small particles, is examined. Methods: Using both simple estimates and detailed dynamical atmosphere and wind models, it is demonstrated that radiation pressure on Fe-free silicate grains is sufficient to drive outflows if the restriction to the small particle limit is relaxed, and prevailing thermodynamic conditions allow grains to grow to sizes in the micrometer range. Results: The predicted wind properties, such as mass loss rates and outflow velocities, are in good agreement with observations of M-type AGB stars. Due to a self-regulating feedback between dust condensation and wind acceleration, grain growth naturally comes to a halt at particle diameters of about 1~μm. Conclusions: The most efficient grain sizes to drive winds are in a rather narrow interval around 1~μm. These values are set by the wavelength range corresponding to the flux maximum in typical AGB stars, and are very similar to interstellar grains.

  12. THE SPECTRAL ENERGY DISTRIBUTION OF POST-STARBURST GALAXIES IN THE NEWFIRM MEDIUM-BAND SURVEY: A LOW CONTRIBUTION FROM TP-AGB STARS

    SciTech Connect

    Kriek, Mariska; Conroy, Charlie; Labbe, Ivo; Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel B.; Muzzin, Adam; Franx, Marijn; Quadri, Ryan F.; Illingworth, Garth D.; Rudnick, Gregory

    2010-10-10

    Stellar population synthesis (SPS) models are a key ingredient of many galaxy evolution studies. Unfortunately, the models are still poorly calibrated for certain stellar evolution stages. Of particular concern is the treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, as different implementations lead to systematic differences in derived galaxy properties. Post-starburst galaxies are a promising calibration sample, as TP-AGB stars are thought to be most prominently visible during this phase. Here, we use post-starburst galaxies in the NEWFIRM medium-band survey to assess different SPS models. The available photometry allows the selection of a homogeneous and well-defined sample of 62 post-starburst galaxies at 0.7 {approx_lt} z {approx_lt} 2.0, from which we construct a well-sampled composite spectral energy distribution (SED) over the range 1200-40000 A. The SED is well fit by the Bruzual and Charlot SPS models, while the Maraston models do not reproduce the rest-frame optical and near-infrared parts of the SED simultaneously. When the fitting is restricted to {lambda} < 6000 A, the Maraston models overpredict the near-infrared luminosity, implying that these models give too much weight to TP-AGB stars. Using the flexible SPS models by Conroy et al. and assuming solar metallicity, we find that the contribution of TP-AGB stars to the integrated SED is a factor of {approx}3 lower than predicted by the latest Padova TP-AGB models. Whether this is due to lower bolometric luminosities, shorter lifetimes, and/or heavy dust obscuration of TP-AGB stars remains to be addressed. Altogether, our data demand a low contribution from TP-AGB stars to the SED of post-starburst galaxies.

  13. Mass Loss from Dusty AGB and Red Supergiant Stars in the Magellanic Clouds and in the Galaxy

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel

    2016-01-01

    Asymptotic giant branch (AGB) and red supergiant (RSG) stars are evolved stars that eject large parts of their mass in outflows of dust and gas. As part of an ongoing effort to measure mass loss from evolved stars in our Galaxy and in the Magellanic Clouds, we are modeling mass loss from AGB and RSG stars in these galaxies. Our approach is twofold. We pursue radiative transfer modeling of the spectral energy distributions (SEDs) of AGB and RSG stars in the Large Magellanic Cloud (LMC), in the Small Magellanic Cloud (SMC), and in the Galactic bulge and in globular clusters of the Milky Way. We are also constructing detailed dust opacity models of AGB and RSG stars in these galaxies for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). Our sample of infrared spectra largely comes from Spitzer-IRS observations. The detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs. We seek to determine how mass loss from these evolved stars depends upon the metallicity of their host environments. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  14. Simplifying silicon burning: Application of quasi-equilibrium to {alpha} network nucleosynthesis

    SciTech Connect

    Hix, W.R. |; Thielemann, F.K. |; Khokhlov, A.M.; Wheeler, J.C.

    1997-12-01

    While the need for accurate calculation of nucleosynthesis and the resulting rate of thermonuclear energy release within hydrodynamic models of stars and supernovae is clear, the computational expense of these nucleosynthesis calculations often force a compromise in accuracy to reduce the computational cost. To redress this trade-off of accuracy for speed, the authors present an improved nuclear network which takes advantage of quasi-equilibrium in order to reduce the number of independent nuclei, and hence the computational cost of nucleosynthesis, without significant reduction in accuracy. In this paper they will discuss the first application of this method, the further reduction in size of the minimal alpha network. The resultant QSE-reduced alpha network is twice as fast as the conventional alpha network it replaces and requires the tracking of half as many abundance variables, while accurately estimating the rate of energy generation. Such reduction in cost is particularly necessary for future generation of multi-dimensional models for supernovae.

  15. Population II Li-6 as a probe of nucleosynthesis and stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Steigman, Gary; Fields, Brian D.; Olive, Keith A.; Schramm, David N.; Walker, Terry P.

    1993-01-01

    We discuss the importance of Population II Li-6 as a diagnostic for models of primordial nucleosynthesis, cosmic-ray nucleosyntheses in the early Galaxy, and the structure and evolution of metal-poor solar-type stars. The observation of Li-6 in the subdwarf HD 84937 is shown to be consistent with the existing Population II LiBeB data within the context of a simple three-component model: (1) standard big bang nucleosynthesis, (2) Population II cosmic-ray nucleosynthesis, (3) standard (nonrotating) stellar LiBeB depletion. If this interpretation is correct, we predict a potentially detectable boron abundance for this star: about 2 x 10 exp -12. Subsequent Population II LiBeB observations, and in particular further observations of Population II Li-6, are shown to be crucial to our understanding of the primordial and early galactic creation and destruction mechanisms for light elements.

  16. Simplifying silicon burning: Application of quasi-equilibrium to (alpha) network nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hix, W. R.; Thielemann, F.-K.; Khokhlov, A. M.; Wheeler, J. C.

    1997-01-01

    While the need for accurate calculation of nucleosynthesis and the resulting rate of thermonuclear energy release within hydrodynamic models of stars and supernovae is clear, the computational expense of these nucleosynthesis calculations often force a compromise in accuracy to reduce the computational cost. To redress this trade-off of accuracy for speed, the authors present an improved nuclear network which takes advantage of quasi- equilibrium in order to reduce the number of independent nuclei, and hence the computational cost of nucleosynthesis, without significant reduction in accuracy. In this paper they will discuss the first application of this method, the further reduction in size of the minimal alpha network. The resultant QSE- reduced alpha network is twice as fast as the conventional alpha network it replaces and requires the tracking of half as many abundance variables, while accurately estimating the rate of energy generation. Such reduction in cost is particularly necessary for future generation of multi-dimensional models for supernovae.

  17. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  18. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M.

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ˜(0.002-0.2) L⊙ and the X-ray-emitting plasma temperatures are ˜(35-160) × 106 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  19. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Lagadec, E.; Sloan, G. C.; Boyer, M. L.; Matsuura, M.; Smith, R. J.; Smith, C. L.; Yates, J. A.; van Loon, J. Th.; Jones, O. C.; Ramstedt, S.; Avison, A.; Justtanont, K.; Olofsson, H.; Blommaert, J. A. D. L.; Goldman, S. R.; Groenewegen, M. A. T.

    2015-11-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ˜1.2-3.5 × 10-7 M⊙ yr-1. We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.

  20. Improving the distances of post-AGB objects in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vickers, Shane B.; Frew, David J.; Owers, Matt S.; Parker, Quentin A.; Bojičič, Ivan S.

    2016-07-01

    Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. RV Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment.

  1. METALLICITY-DEPENDENT GALACTIC ISOTOPIC DECOMPOSITION FOR NUCLEOSYNTHESIS

    SciTech Connect

    West, Christopher; Heger, Alexander E-mail: alexander.heger@monash.edu

    2013-09-01

    All stellar evolution models for nucleosynthesis require an initial isotopic abundance set to use as a starting point. Generally, our knowledge of isotopic abundances of stars is fairly incomplete except for the Sun. We present a first model for a complete average isotopic decomposition as a function of metallicity. Our model is based on the underlying nuclear astrophysics processes, and is fitted to observational data, rather than traditional forward galactic chemical evolution modeling which integrates stellar yields beginning from big bang nucleosynthesis. We first decompose the isotopic solar abundance pattern into contributions from astrophysical sources. Each contribution is then assumed to scale as a function of metallicity. The resulting total isotopic abundances are summed into elemental abundances and fitted to available halo and disk stellar data to constrain the model's free parameter values. This procedure allows us to use available elemental observational data to reconstruct and constrain both the much needed complete isotopic evolution that is not accessible to current observations, and the underlying astrophysical processes. As an example, our model finds a best fit for Type Ia contributing {approx_equal} 0.7 to the solar Fe abundance, and Type Ia onset occurring at [Fe/H] {approx_equal} -1.1, in agreement with typical values.

  2. Fred Hoyle, primary nucleosynthesis and radioactivity

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.

    2008-10-01

    Primary nucleosynthesis is defined as that which occurs efficiently in stars born of only H and He. It is responsible not only for increasing the metallicity of the galaxy but also for the most abundant gamma-ray-line emitters. Astrophysicists have inappropriately cited early work in this regard. The heavily cited B2FH paper (Burbidge et al., 1957) did not effectively address primary nucleosynthesis whereas Hoyle (Hoyle, 1954) had done so quite thoroughly in his infrequently cited 1954 paper. Even B2FH with Hoyle as coauthor seems strangely to not have appreciated what Hoyle (Hoyle, 1954) had achieved. I speculate that Hoyle must not have thoroughly proofread the draft written in 1956 by E.M. and G.R. Burbidge. The clear roadmap of primary nucleosynthesis advanced in 1954 by Hoyle describes the synthesis yielding the most abundant of the radioactive isotopes for astronomy, although that aspect was unrealized at the time. Secondary nucleosynthesis has also produced many observable radioactive nuclei, including the first gamma-ray-line emitter to be discovered in the galaxy and several others within stardust grains. Primary gamma-ray emitters would have been even more detectable in the early galaxy, when the birth rate of massive stars was greater; but secondary emitters, such as 26Al, would have been produced with smaller yield then owing to smaller abundance of seed nuclei from which to create them.

  3. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; El Eid, M. F.

    2004-03-01

    We present details of explosive nucleosynthesis in the helium-burning shell of a 25 solar mass star. We describe the production of short-lived radioactivities in this environment. We finally describe how to access the details of our calculations over the world-wide web.

  4. Full spectrum of turbulence convective mixing. II. Lithium production in AGB stars

    NASA Astrophysics Data System (ADS)

    Mazzitelli, I.; D'Antona, F.; Ventura, P.

    1999-08-01

    We present results from new, detailed computations of lithium production by hot bottom burning (HBB) in asymptotic giant branch (AGB) stars of intermediate mass (3.5 <= M <= 6 M_sun). The dependence of lithium production on stellar mass, metallicity, mass loss rate, convection and overshooting are discussed. In particular, nuclear burning, turbulent mixing and convective overshooting (if any) are self-consistently coupled by a diffusive algorithm, and the Full Spectrum of Turbulence (FST) model of convection is adopted, with test comparisons to Mixing Length Theory (MLT) stellar models. All the evolutions are followed from pre-main sequence down to late AGB, when stars do not appear any longer lithium rich. A ``reference mass" of 6 M_sun has been chosen since, although relatively close to the upper limit for which degenerate (12) C ignition occurs, all the studied mechanisms show up more clearly. HBB is always found above ~ log L/L_sun = 4.4, but the range of (initial) masses reaching HBB is largely dependent on convection model, overshooting and metallicity. For solar chemistry, masses >= 4M_sun evolve through HBB in the FST case and including core overshooting whereas, with solarly tuned MLT models and no overshooting, only masses >= 6M_sun can reach HBB. These constraints can give feedbacks about the more correct convection model and/or the extent of overshooting, thanks to the signatures of HBB in AGB stars in clusters of known turnoff masses and metallicity. Overshooting (when included) is addressed as an exponentially decreasing diffusion above formally convective regions. It makes convective cores during the main sequence to grow larger, and also starting masses and luminosities in AGB are then larger. However, also preliminary results obtained when allowing displacement of convective elements below convective regions in AGB are shown. In the ``reference" case (6M_sun), we find that overshooting from below the convective envelope totally suppresses thermal

  5. Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Cernicharo, J.; Engels, D.; Perea-Calderón, J. V.

    2016-07-01

    Spitzer/IRS spectra of eleven heavily obscured C-rich sources rapidly evolving from asymptotic giant branch (AGB) stars to Planetary Nebulae are presented. IRAM 30m observations for three of these post-AGBs are also reported. A few (3) of these sources are known to exhibit strongly variable maser emission of O-bearing molecules such as OH and H2 O, suggesting a transitory O-rich chemistry because of the quickly changing physical and chemical conditions in this short evolutionary phase. Interestingly, the Spitzer/IRS spectra show a rich circumstellar carbon chemistry, as revealed by the detection of small hydrocarbon molecules such as C2H2, C4H2, C6H2, C6H6, and HCN. Benzene is detected towards two sources, bringing up to three the total number of Galactic post-AGBs where this molecule has been detected. In addition, we report evidence for the possible detection of other hydrocarbon molecules like HC3N, CH3C2H, and CH3 in several of these sources. The available IRAM 30m data confirm that the central stars are C-rich - in despite of the presence of O-rich masers - and the presence of high velocity molecular outflows together with extreme AGB mass-loss rates (∼⃒10-4 Mʘ /yr). Our observations confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of small C-rich molecules and a transitory O-rich chemistry.

  6. Spallation nucleosynthesis by accelerated charged-particles

    SciTech Connect

    Goriely, S.

    2008-05-12

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84{<=}Z{<=}99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 3830 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements.

  7. VLT/NACO Imaging of the Nearest AGB Star, L2 Puppis

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Ridgway, S. T.; Perrin, G.; Chesneau, O.

    2015-08-01

    AGB stars are the most important contributors to the chemical enrichment of the Galaxy. During their later evolutionary stages they experience intense pulsations and eject most of their layers as they become planetary nebulae (PNe). The process leading to the formation of bipolar PNe remains poorly understood. It is assumed that the circumstellar disk of an AGB star could collimate the stellar wind to form a bipolar PN, yet very few of these disks have been observed. Using the adaptive-optics system of the VLT/NACO instrument at the Paranal Observatory and a "lucky imaging" technique, our team obtained near-infrared diffraction-limited images of the nearest AGB star, L2 Puppis. The deconvolved images reveal a dark structure in front of the star whose morphology and photometry match a dusty edge-on disk of olivine and pyroxene modeled with a Monte-Carlo radiative transfer code. The L band images also show a loop structure, possibly the signature of an interacting hidden companion.

  8. NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS

    SciTech Connect

    Caballero, O. L.; McLaughlin, G. C.; Surman, R. E-mail: olcaball@ncsu.edu E-mail: surmanr@union.edu

    2012-02-01

    Black hole (BH) accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the BH influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from BH accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome.

  9. Hydrodynamics and nucleosynthesis in neutron stars, supernovae, and the early universe

    SciTech Connect

    Mathews, G.

    1996-03-01

    In this proposal we apply laboratory expertise in integrated numerical modeling of relativistic hydrodynamics, radiation transport, and thermonuclear reaction rates to forefront areas of basic research in areas of astrophysical interest. These studies include the last stages of a merging neutron-star binary system; the pre-collapse, collapse, and post-collapse evolution of supernova cores; the violent relaxation, protogalactic mergers, and stellar nucleosynthesis associated with galaxy formation and studies of primordial nucleosynthesis during the big bang. This project provides unique high-visibility solutions to current technical problems while enriching current laboratory capabilities in the relevant disciplines.

  10. The formation of aromatic molecules in heavily obscured post-AGB stars with O-rich masers

    NASA Astrophysics Data System (ADS)

    Garcia-Lario, Pedro; Garcia-Hernandez, Domingo Aníbal; Cernicharo, Jose; Perea-Calderon, Jose Vicente; Engels, Dieter

    2015-08-01

    We report Spitzer/IRS spectra of a small sample of heavily obscured and high mass loss post-AGB stars with O-rich maser emission. IRAM 30 m observations for two post-AGBs are also reported. The Spitzer/IRS spectra show the C-rich character of their circumstellar envelopes (CSE), as revealed by the presence of small hydrocarbon molecules such as C2H2, C4H2, C6H2, C6H6 , and HCN. Benzene (C6H6) is detected toward two sources in our sample, bringing up to three the total number of Galactic post-AGB objects where this molecule has been detected. The available IRAM 30 m data confirm that the central stars are C-rich, despite the presence of O-rich masers, and the presence of high velocity molecular outflows together with extreme mass loss rates (10-4 M⊙ yr-1). Our Spitzer and IRAM 30 m observations confirm the model of Cernicharo (2004) that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of large, complex carbon-rich molecules. This model also explain the presence of O-rich masers in C-rich post-AGB stars as a consequence of the extreme mass loss rate, being not necessary to invoke a chemistry change in their circumstellar envelopes.

  11. Primordial lithium abundance in catalyzed big bang nucleosynthesis

    SciTech Connect

    Bird, Chris; Koopmans, Kristen; Pospelov, Maxim

    2008-10-15

    There exists a well-known problem with the {sup 7}Li+{sup 7}Be abundance predicted by standard big bang nucleosynthesis being larger than the value observed in population II stars. The catalysis of big bang nucleosynthesis by metastable, {tau}{sub X} > or approx. 10{sup 3} sec, charged particles X{sup -} is capable of suppressing the primordial {sup 7}Li+{sup 7}Be abundance and making it consistent with the observations. We show that to produce the correct abundance, this mechanism of suppression places a requirement on the initial abundance of X{sup -} at temperatures of 4x10{sup 8} K to be on the order of or larger than 0.02 per baryon, which is within the natural range of abundances in models with metastable electroweak-scale particles. The suppression of {sup 7}Li+{sup 7}Be is triggered by the formation of ({sup 7}BeX{sup -}) compound nuclei, with fast depletion of their abundances by catalyzed proton reactions, and in some models by direct capture of X{sup -} on {sup 7}Be. The combination of {sup 7}Li+{sup 7}Be and {sup 6}Li constraints favors the window of lifetimes, 1000 s < or approx. {tau}{sub X}{<=}2000 s.

  12. Nuclear quests for supernova dynamics and nucleosynthesis

    SciTech Connect

    Langanke, K.; Martinez-Pinedo, G.

    2011-10-28

    Nuclear physics plays a crucial role in various aspects of core collapse supernovae. The collapse dynamics is strongly influenced by electron captures. Using modern many-body theory improved capture rates have been derived recently with the important result that the process is dominated by capture on nuclei until neutrino trapping is achieved. Following the core bounce the ejected matter is the site of interesting nucleosynthesis. The early ejecta are proton-rich and give rise to the recently discovered {nu}p-process. Later ejecta might be neutron-rich and can be one site of the r-process. The manuscript discusses recent progress in describing nuclear input relevant for the supernova dynamics and nucleosynthesis.

  13. Propagation and nucleosynthesis of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Giler, M.; Wibig, T.

    1985-01-01

    The observed fluxes of cosmic ray (C.R.) ultraheavy elements depend on their charge and mass spectrum at the sources and on the propagation effects, on the distribution of path lengths traversed by the particles on their way from the sources to the observation point. The effect of different path length distributions (p.l.d.) on the infered source abunances is analyzed. It seems that it is rather difficult to fit a reasonable p.l.d. so that the obtained source spectrum coincides with the Solar System (SS) abundances in more detail. It suggests that the nucleosynthesis conditions for c.r. nuclei may differ from that for SS matter. The nucleosynthesis of ultraheavy elements fitting its parameters to get the c.r. source abundances is calculated. It is shown that it is possible to get a very good agreement between the predicted and the observed source abundance.

  14. Nuclear Mass Systematics With Neural Nets And Astrophysical Nucleosynthesis

    SciTech Connect

    Athanassopoulos, S.; Mavrommatis, E.; Gernoth, K. A.; Clark, J. W.

    2006-04-26

    We construct a neural network model that predicts the differences between the experimental mass-excess values {delta}Mexp and the theoretical values {delta}MFRDM given by the Finite Range Droplet Model of Moeller et al. This difficult study reveals that subtle regularities of nuclear structure not yet embodied in the best microscopic/phenomenological models of atomic-mass systematics do actually exist. By combining the FRDM and the above neural network model we construct a Hybrid Model with improved predictive performance in the majority of the calculations of the systematics of nuclear mass excess and of related quantities. Such systematics is of current interest among others in such astrophysical problems as nucleosynthesis processes and the justification of the present abundances.

  15. Dark radiation emerging after big bang nucleosynthesis?

    SciTech Connect

    Fischler, Willy; Meyers, Joel

    2011-03-15

    We show how recent data from observations of the cosmic microwave background may suggest the presence of additional radiation density which appeared after big bang nucleosynthesis. We propose a general scheme by which this radiation could be produced from the decay of nonrelativistic matter, we place constraints on the properties of such matter, and we give specific examples of scenarios in which this general scheme may be realized.

  16. The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type

    NASA Astrophysics Data System (ADS)

    Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B.

    2013-02-01

    Aims: A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of asymptotic giant branch (AGB) stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. Methods: In order to constrain the circumstellar HCN abundance distribution a detailed non-local thermodynamic equilibrium (LTE) excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. Results: The median values for the derived abundances of HCN (with respect to H2) are 3 × 10-5, 7 × 10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. Conclusions: We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars. This publication is based on data

  17. Particle Physics Catalysis of Thermal Big Bang Nucleosynthesis

    SciTech Connect

    Pospelov, Maxim

    2007-06-08

    We point out that the existence of metastable, {tau}>10{sup 3} s, negatively charged electroweak-scale particles (X{sup -}) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X{sup -} with helium, formed at temperatures of about T=10{sup 8} K, lead to the catalytic enhancement of {sup 6}Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X{sup -} does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X{sup -} particles ({tau}>10{sup 5} s) relative to entropy of n{sub X{sup -}}/s < or approx. 3x10{sup -17}, which is one of the most stringent probes of electroweak scale remnants known to date.

  18. Dark/visible parallel universes and Big Bang nucleosynthesis

    SciTech Connect

    Bertulani, C. A.; Frederico, T.; Fuqua, J.; Hussein, M. S.; Oliveira, O.; Paula, W. de

    2012-11-20

    We develop a model for visible matter-dark matter interaction based on the exchange of a massive gray boson called herein the Mulato. Our model hinges on the assumption that all known particles in the visible matter have their counterparts in the dark matter. We postulate six families of particles five of which are dark. This leads to the unavoidable postulation of six parallel worlds, the visible one and five invisible worlds. A close study of big bang nucleosynthesis (BBN), baryon asymmetries, cosmic microwave background (CMB) bounds, galaxy dynamics, together with the Standard Model assumptions, help us to set a limit on the mass and width of the new gauge boson. Modification of the statistics underlying the kinetic energy distribution of particles during the BBN is also discussed. The changes in reaction rates during the BBN due to a departure from the Debye-Hueckel electron screening model is also investigated.

  19. Nucleosynthesis in self-consistent, multi-dimensional simulations of CCSNe

    NASA Astrophysics Data System (ADS)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek; Bruenn, Stephen; Lentz, Eric; Kasen, Daniel

    2016-03-01

    Observations of nuclear abundances in core-collapse supernova ejecta, highlighted by γ-ray observations of the 44Ti spatial distribution in the nearby supernova remnants Cas A and SN 1987A, allow nucleosynthesis calculations to place powerful constraints on conditions deep in the interiors of supernovae and their progenitor stars. This ability to probe where direct observations cannot makes such calculations an invaluable tool for understanding the CCSN mechanism. Unfortunately, despite knowing for two decades that supernovae are intrinsically multi-dimensional events, discussions of CCSN nucleosynthesis have been predominantly based on spherically symmetric models, which employ a contrived energy source to launch an explosion and often ignore important neutrino effects. As part of the effort to bridge the gap between first-principles simulations of the explosion mechanism and observations of both supernovae and SNRs, we investigate CCSN nucleosynthesis with self-consistent, 2D simulations using a multi-dimensional radiation-hydrodynamics code. We present nucleosynthesis results for several axisymmetric CCSN models models which qualitative differences from their parameterized counterparts in their ejecta composition and spatial distribution.

  20. Production of Lithium, Beryllium, and Boron from Baryon inhomogeneous primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Thomas, David; Schramm, David N.; Olive, Keith A.; Mathews, Grant J.; Meyer, Bradley S.; Fields, Brian D.

    1994-01-01

    We investigate the possibility that inhomogeneous nucleosynthesis may eventually be used to explain the abundances of Li-6, Be-9, and B in Population II stars. The present work differs from previous studies in that we have used a more extensive reaction network. It is demonstrated that in the simplest scenario the abundances of the light elements with A less than or = 7 constrain the separation of inhomogeneities to sufficently small scales that the model is indistinguishable from homogeneous nucleosynthesis and that the abundnace of Li-6, Be-9, and B are then below observations by several orders of magnitude. This conclusion does not depend on the Li-7 constraint. We also examine alternative scenarios which involve a post-nucleosynthesis reprocessing of the light elements to reproduce the observed abundances of Li and B, while allowing for a somewhat higher baryon density (still well below the cosmological critical density). Future B/H measurements may be able to exclude even this exotic scenario and further restrict primirdial nucleosynthesis to approach the homogeneous model conclusions.

  1. Hiding in plain sight - red supergiant imposters? Super-AGB stars - bridging the divide between low/intermediate-mass and high-mass stars

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn Louise; Gil-Pons, Pilar; Lattanzio, John; Siess, Lionel

    2015-08-01

    Super Asymptotic Giant Branch (Super-AGB) stars reside in the mass range ~ 6.5-10 M⊙ and bridge the divide between low/intermediate-mass and massive stars. They are characterised by off-centre carbon ignition prior to a thermally pulsing phase which can consist of many tens to even thousands of thermal pulses. With their high luminosities and very large, cool, red stellar envelopes, these stars appear seemingly identical to their slightly more massive red supergiant counterparts. Due to their similarities, super-AGB stars may therefore act as stellar imposters and contaminate red supergiant surveys. Super-AGB stars undergo relatively extreme nucleosynthetic conditions, with very efficient proton-capture nucleosynthesis occurring at the base of the convective envelope and also heavy element (s-process) production during the thermal pulse to be later mixed to the surface during third dredge-up events. The surface enrichment from these two processes may result in a clear nucleosynthetic signature to differentiate these two classes of star.The final fate of super-AGB stars is also quite uncertain and depends primarily on the competition between the core growth and mass-loss rates. If the stellar envelope is removed prior to the core reaching the Chandrasekhar mass, an O-Ne white dwarf will remain, otherwise the star will undergo an electron-capture supernova leaving behind a neutron star. We describe the factors which influence these different final fate channels, such as the efficiency of convection, the mass-loss rates, the third dredge-up efficiency and the Fe-peak opacity instability which may lead to expulsion of the entire remaining stellar envelope. We determine the relative fraction of super-AGB stars that end life as either an O-Ne white dwarf or as a neutron star, and provide a mass limit for the lowest mass supernova over a broad range of metallicities from the earliest time (Z=0) right through until today (Z~0.04).

  2. r-PROCESS Nucleosynthesis in Proto-Magnetar Winds

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.

    2004-09-01

    The astrophysical origin of the r-process nuclei is unknown. Because of their association with supernovae and intrinsic neutron-richness, protoneutron star winds are considered as a likely candidate site for production of the r-process nuclei. However, most models of winds from "canonical" neutron stars with mass of 1.4 M⊙ and radius of 10 km fail to generate the heaviest r-process nuclei. In this proceedings we provide a brief review of the protoneutron star wind scenario and discuss the emergence of these outflows in the context of fully dynamical models of successful core-collapse supernovae. That standard models fail motivates an exploration of more extreme neutron star environments. We address some issues surrounding winds from highly magnetic (B0 ≳ 1015 G) protoneutron stars ('proto-magnetars'), including magnetic trapping of wind material and entropy amplification. We further speculate on the role of rapid rotation in this context and the resulting nucleosynthesis.

  3. Post-AGB Stars in the Magellanic Clouds: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; van Winckel, H.; van Aarle, E.

    2011-12-01

    The evolution and mass-loss of red giants is poorly understood. It is difficult to empirically estimate the mass-loss rate and the chemical abundance changes, as a function of initial mass and metallicity. Post-AGB stars are key objects in the study of the dramatic chemical and morphological changes of stars along the AGB ascent and subsequent evolution towards the Planetary Nebula phase. Thus studying these objects would help in understanding the different physical processes and the chemical evolution that occur during these evolutionary phases. Using the AAOmega multi-fibre spectrograph on the AAT, we carried out an extensive low-resolution spectral survey of several thousand post-AGB candidates, in the Large Magellanic Cloud and the Small Magellanic Cloud. The candidates were selected from the mid-IR Spitzer Space Telescope surveys: SAGE and SAGE-SMC. In this paper we present preliminary results from our survey, delineating the regions of the HR diagram where post-AGB stars are found and where Hα-emission occurs.

  4. The Governance Committee: Independent Institutions. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Wilson, E. B.; Lanier, James L.

    2013-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimal committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices outlined in this publication support the objectives of board…

  5. Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae

    SciTech Connect

    Nagataki, Shigehiro; Mizuta, Akira; Sato, Katsuhiko; /Tokyo U. /Tokyo U., RESCEU

    2006-09-21

    Two-dimensional hydrodynamic simulations are performed to investigate explosive nucleosynthesis in a collapsar using the model of MacFadyen and Woosley (1999). It is shown that {sup 56}Ni is not produced in the jet of the collapsar sufficiently to explain the observed amount of a hypernova when the duration of the explosion is {approx} 10 sec, which is considered to be the typical timescale of explosion in the collapsar model. Even though a considerable amount of {sup 56}Ni is synthesized if all explosion energy is deposited initially, the opening angles of the jets become too wide to realize highly relativistic outflows and gamma-ray bursts in such a case. From these results, it is concluded that the origin of {sup 56}Ni in hypernovae associated with GRBs is not the explosive nucleosynthesis in the jet. We consider that the idea that the origin is the explosive nucleosynthesis in the accretion disk is more promising. We also show that the explosion becomes bi-polar naturally due to the effect of the deformed progenitor. This fact suggests that the {sup 56}Ni synthesized in the accretion disk and conveyed as outflows are blown along to the rotation axis, which will explain the line features of SN 1998bw and double peaked line features of SN 2003jd. Some fraction of the gamma-ray lines from {sup 56}Ni decays in the jet will appear without losing their energies because the jet becomes optically thin before a considerable amount of {sup 56}Ni decays as long as the jet is a relativistic flow, which may be observed as relativistically Lorentz boosted line profiles in future. We show that abundance of nuclei whose mass number {approx} 40 in the ejecta depends sensitively on the energy deposition rate, which is a result of incomplete silicon burning and alpha-rich freezeout. So it may be determined by observations of chemical composition in metal poor stars which model is the proper one as a model of a gamma-ray burst accompanied by a hypernova.

  6. Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-05-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or

  7. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  8. BIG BANG NUCLEOSYNTHESIS WITH A NON-MAXWELLIAN DISTRIBUTION

    SciTech Connect

    Bertulani, C. A.; Fuqua, J.; Hussein, M. S.

    2013-04-10

    The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is compared to observations and to the abundance yields from the standard big bang model. We find large differences between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive statistics. We found that the observations are consistent with a non-extensive parameter q = 1{sub -} {sub 0.12}{sup +0.05}, indicating that a large deviation from the Boltzmann-Gibbs statistics (q = 1) is highly unlikely.

  9. Global Monte Carlo Calculations for r-process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mumpower, Matthew; Surman, Rebecca; Aprahamian, Ani

    2015-10-01

    The rapid neutron capture process is believed to be responsible for the production of approximately half of the heavy elements above iron on the periodic table. Nuclear physics properties (e.g. nuclear masses, neutron capture rates, β-decay rates, and β-delayed neutron emission branching ratios) are critical inputs that go into theoretical calculations of this nucleosynthesis process. We highlight the current capabilities of nuclear models to reproduce the pattern of solar r-process residuals by performing global Monte Carlo variations of the uncertain nuclear physics inputs. We also explore the reduction in uncertainties that may arise from new measurements or improved modeling and discuss the implications for using abundance pattern details to constrain the site of the r process. This work was supported in part by the National Science Foundation through the Joint Institute for Nuclear Astrophysics Grant Numbers PHY0822648 and PHY1419765, and the Department of Energy under Contracts DE-SC0013039 (RS).

  10. PRESUPERNOVA EVOLUTION AND EXPLOSIVE NUCLEOSYNTHESIS OF ZERO METAL MASSIVE STARS

    SciTech Connect

    Limongi, M.; Chieffi, A. E-mail: alessandro.chieffi@inaf.it

    2012-04-01

    We present a new set of zero metallicity models in the range 13-80 M{sub Sun} together to the associated explosive nucleosynthesis. These models are fully homogeneous with the solar metallicity set we published in Limongi and Chieffi and will be freely available at the Online Repository for the FRANEC Evolutionary Output Web site. A comparison between these yields and an average star that represents the average behavior of most of the very metal-poor stars in the range -5.0 < [Fe/H] < -2.5 confirms previous findings that only a fraction of the elemental [X/Fe] may be fitted by the ejecta of standard core collapse supernovae.

  11. Compact reflection nebulae, a transit phase of evolution from post-AGB to planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hu, J. Y.; Slijkhuis, S.

    1989-01-01

    In a search of the optical counter-part of candidates of protoplanetary nebulae on the plates of UK Schmidt, ESO Schmidt, and POSS, five compact reflection nebulae associated with post-AGB stars were found. A simplified model (dust shell is spherical symmetric, expansion velocity of dust shell is constant, Q(sub sca)(lambda) is isotropic, and the dust grain properties are uniform) is used to estimate the visible condition of the dust shell due to the scattering of the core star's light. Under certain conditions the compact reflection nebulae can be seen of the POSS or ESO/SRC survey plates.

  12. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  13. np -> d gamma for big bang nucleosynthesis

    SciTech Connect

    Jiunn-Wei Chen; Martin J. Savage

    1999-12-01

    The cross section from np -> dy is calculated at energies relevant to big-bang nucleosynthesis using the recently developed effective field theory that describes the two nucleon sector. The E1 amplitude is computed up to N{sup 3}LO and depends only upon nucleon-nucleon phase shift data. In contrast, the M1 contribution is determined by the cross section for cold neutron capture. The uncertainty in the calculation for nucleon energies up to E{approx}1 MeV is estimated to be <= 4%.

  14. The nebula around the post-AGB star 89 Herculis

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.

    2007-06-01

    Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  15. Big Bang nucleosynthesis and the Quark-Hadron transition

    NASA Technical Reports Server (NTRS)

    Kurki-Suonio, Hannu; Matzner, Richard A.; Olive, Keith A.; Schramm, David N.

    1989-01-01

    An examination and brief review is made of the effects of quark-hadron transistion induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp 3), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2).

  16. Big bang nucleosynthesis and the quark-hadron transition

    NASA Technical Reports Server (NTRS)

    Kurki-Suonio, Hannu; Matzner, Richard A.; Olive, Keith A.; Schramm, David N.

    1990-01-01

    An examination and brief review is made of the effects of quark-hadron transition induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp e), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2).

  17. Heavy element production in inhomogeneous big bang nucleosynthesis

    SciTech Connect

    Matsuura, Shunji; Fujimoto, Shin-ichirou; Nishimura, Sunao; Hashimoto, Masa-aki; Sato, Katsuhiko

    2005-12-15

    We present a new astrophysical site of the big bang nucleosynthesis (BBN) that are very peculiar compared with the standard BBN. Some models of the baryogenesis suggest that very high baryon density regions were formed in the early universe. On the other hand, recent observations suggest that heavy elements already exist in high red-shifts and the origin of these elements become a big puzzle. Motivated by these, we investigate BBN in very high baryon density regions. BBN proceeds in proton-rich environment, which is known to be like the p-process. However, by taking very heavy nuclei into account, we find that BBN proceeds through both the p-process and the r-process simultaneously. P-nuclei such as {sup 92}Mo, {sup 94}Mo, {sup 96}Ru, {sup 98}Ru whose origin is not well known are also synthesized.

  18. Quark mass variation constraints from Big Bang nucleosynthesis

    SciTech Connect

    Bedaque, P; Luu, T; Platter, L

    2010-12-13

    We study the impact on the primordial abundances of light elements created of a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a model-independent way we use lattice QCD data and an hierarchy of effective field theories. We find that the measured {sup 4}He abundances put a bound of {delta}-1% {approx}< m{sub q}/m{sub 1} {approx}< 0.7%. The effect of quark mass variations on the deuterium abundances can be largely compensated by changes of the baryon-to-photon ratio {eta}. Including the bounds on the variation of {eta} coming from WMAP results and some additional assumptions narrows the range of allowed values of {delta}m{sub q}/m{sub q} somewhat.

  19. Big Bang nucleosynthesis as a probe of varying fundamental ``constants''

    NASA Astrophysics Data System (ADS)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2007-11-01

    We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference, of the nucleon mass and of A = 3,4,7 binding energies. A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected.

  20. Primordial nucleosynthesis as a probe of fundamental physics parameters

    NASA Astrophysics Data System (ADS)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2007-09-01

    We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference (for the He4 abundance), of the nucleon mass (for deuterium), and of A=3, 4, 7 binding energies (for He3, Li6, and Li7). A second step relates the nuclear parameters to the parameters of the standard model of particle physics. The deuterium, and, above all, Li7 abundances depend strongly on the average light quark mass m^≡(mu+md)/2. We calculate the behavior of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and He4 abundances are only weakly affected.

  1. Constraining spacetime noncommutativity with primordial nucleosynthesis

    SciTech Connect

    Horvat, Raul; Trampetic, Josip

    2009-04-15

    We discuss a constraint on the scale {lambda}{sub NC} of noncommutative (NC) gauge field theory arising from consideration of the big bang nucleosynthesis of light elements. The propagation of neutrinos in the NC background described by an antisymmetric tensor {theta}{sup {mu}}{sup {nu}} does result in a tree-level vectorlike coupling to photons in a generation-independent manner, raising thus a possibility to have an appreciable contribution of three light right-handed (RH) fields to the energy density of the Universe at nucleosynthesis time. Considering elastic scattering processes of the RH neutrinos off charged plasma constituents at a given cosmological epoch, we obtain for a conservative limit on an effective number of additional doublet neutrinos {delta}N{sub {nu}}=1, a bound {lambda}{sub NC} > or approx. 3 TeV. With a more stringent requirement, {delta}N{sub {nu}} < or approx. 0.2, the bound is considerably improved, {lambda}{sub NC} > or approx. 10{sup 3} TeV. For our bounds the {theta} expansion of the NC action stays always meaningful, since the decoupling temperature of the RH species is perseveringly much less than the inferred bound for the scale of noncommutativity.

  2. Primordial nucleosynthesis revisited via Trojan Horse Results

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spartá, R.; Bertulani, C.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Tumino, A.

    2016-05-01

    Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances of D, 3,4He and 7Li. These were compared with the observational primordial abundance estimates in different astrophysical sites. A comparison was also performed with calculations using other reaction rates compilations available in literature.

  3. Barium isotopic composition of mainstream silicon carbides from Murchison: Constraints for s-process nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio; Gyngard, Frank; Willingham, David G.; Pignatari, Marco; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.

  4. Pulsational variability in proto-planetary nebulae and other post-AGB objects

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.

    2016-07-01

    Light and velocity curves of several classes of pulsating stars have been successfully modeled to determine physical properties of the stars. In this observational study, we review briefly the pulsational variability of the main classes of post-AGB stars. Our attention is focused in particular on proto-planetary nebulae (PPNe), those in the short-lived phase from AGB stars to the planetary nebulae. New light curves and period analyses have been used to determine the following general properties of the PPNe variability: (a) periods range from 35 to 160 days for those of F—G spectral types, with much shorter periods (< 1 day) found for those of early-B spectral type; (b) there is a correlation between the pulsation period, maximum amplitude, and temperature of the star, with cooler stars pulsating with longer periods and larger amplitudes; (c) similar correlations are found for carbon-rich, oxygen-rich, and lower-metalicity PPNe; and (d) multiple periods are found for all of them, with P2/P1 = 1.0±0.1. New models are needed to exploit these results.

  5. Silicon and Magnesium Isotopes in SiC from AGB Stars

    NASA Astrophysics Data System (ADS)

    Clayton, D. D.; Brown, L. E.

    1992-07-01

    We report the evolution of Si and Mg isotopic abundances in the envelopes of massive (5-8 solar masses) AGB-star models. These have now been demonstrated (Brown and Clayton 1992) to be capable of generating the slope 1.4 correlation between excess ^29Si and excess ^30Si. Figure 1 shows the Si isotopic evolution of a 5.5 solar mass model, which reaches only moderately large delta values in the envelope (paralleling the dashed particle line). The asterisk identifies the transformation to carbon star at low deltas. Figure 1, which in the hard copy appears here, shows AGB 5.5 solar mass Si evolution and mass loss. For the first time we are presenting the mass of envelope lost (in wind) as a function of the ^30Si excess. When this star entered its superwind phase it lost most of its mass, and inefficient dredgeup had resulted in deltas near only 100o/oo, as in the large SiC particles. Because the remaining envelope mass is small, little material is lost subsequently on the road to larger deltas. As a result, values of ^30delta near 100 characterize most of the lost mass, showing that STARDUST SiC need not have huge ^30delta. However, changing the prescription for dredgeup or mass-loss rate can greatly alter this. A 6.5 solar mass AGB star lost its superwind near ^30delta = 1600 even with the same dredgeup prescription, showing that other star parameters can have a large influence on ^30delta through their effect on the dredgeup. This needs much more study before we can conclude the true provenance of the meteoritic SiC particles. Because the Mg isotopes also undergo large isotopic evolution in those models, we ask whether that evolution may somehow obscure the amount of live ^26Al that is inferred to have decayed in situ within these STARDUST particles. To the contrary, we show that this peak in mass loss (Fig. 1) occurs with ^25delta = 2 ^26delta, but finishes with ^26delta = 2 ^25delta, simulating mass fractionation at the end. Most of this Mg isotopic evolution is

  6. On the missing second generation AGB stars in NGC 6752

    NASA Astrophysics Data System (ADS)

    Cassisi, Santi; Salaris, Maurizio; Pietrinferni, Adriano; Vink, Jorick S.; Monelli, Matteo

    2014-11-01

    In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, it is now thought that basically all globular clusters host multiple stellar populations, each with its own chemical abundance pattern and colour-magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the globular cluster NGC 6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first generation stars, and that all second generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second generation horizontal branch stars - all located at the hot side of the blue and extended horizontal branch of this cluster - possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the asymptotic giant branch phase, thus explaining at the same time the low value of the ratio between horizontal branch and asymptotic giant branch stars (the R2 parameter) observed in NGC 6752. We have critically discussed this mass-loss scenario, finding that the required mass-loss rates are of the order of 10-9 M⊙ yr-1, significantly higher than current theoretical and empirical constraints. By making use of synthetic horizontal branch simulations, we demonstrate that our modelling correctly predicts the R2 parameter for NGC 6752, without the need to invoke very efficient mass loss during the core He-burning stage. As a test of our stellar models we show that we can reproduce the observed value of R2 for both M 3, a cluster of approximately the same metallicity and with a redder horizontal branch morphology, and M 13, a cluster with a horizontal branch very similar to NGC 6752. However, our simulations for the NGC 6752 horizontal branch predict however the presence of a significant fraction of second generation stars (about 50%) along

  7. The lithium isotope ratio in Population II halo dwarfs - A proposed test of the late decaying massive particle nucleosynthesis scenario

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence; Schramm, David N.

    1988-01-01

    It is shown that observations of the lithium isotope ratio in high surface temperature Population II stars may be critical to cosmological nucleosynthesis models. In particular, decaying particle scenarios as derived in some supersymmetric models may stand or fall with such observations.

  8. New nuclear physics for big bang nucleosynthesis

    SciTech Connect

    Boyd, Richard N.; Brune, Carl R.; Fuller, George M.; Smith, Christel J.

    2010-11-15

    We discuss nuclear reactions which could play a role in big bang nucleosynthesis. Most of these reactions involve lithium and beryllium isotopes and the rates for some of these have not previously been included in BBN calculations. Few of these reactions are well studied in the laboratory. We also discuss novel effects in these reactions, including thermal population of nuclear target states, resonant enhancement, and nonthermal neutron reaction products. We perform sensitivity studies which show that even given considerable nuclear physics uncertainties, most of these nuclear reactions have minimal leverage on the standard BBN abundance yields of {sup 6}Li and {sup 7}Li. Although a few have the potential to alter the yields significantly, we argue that this is unlikely.

  9. Nucleosynthesis and the rp-process

    SciTech Connect

    Nabi, Jameel-Un

    2012-11-20

    Production of elements heavier than iron, their abundance and cite of production remain an active field of research to-date. In this paper I would present a brief review of the nucleosynthesis process and then focus further on the proton capture processes with particular emphasis on the nuclear physics aspects of the rp-process. The present calculation clearly shows that the electron capture rates on waiting point nuclei are at least of similar magnitude as the competing positron decay rates under rp-process conditions. The study strongly suggests that electron capture rates form an integral part of weak-interaction mediated rates under rp-process conditions and should not be neglected in nuclear reaction network calculations as done in past.

  10. R-process Nucleosynthesis in Supernova Explosion

    SciTech Connect

    Saruwatari, M.; Hashimoto, M.; Kotake, K.; Yamada, S.

    2011-10-28

    We investigate the possibility of the r-process during the magnetohydrodynamical (MHD) explosion of supernova in a massive star of 13 M{sub {center_dot}} with the effects of neutrinos included. Contrary to the case of the spherical explosion, jet-like explosion due to the combined effects of rotation and magnetic field lowers the electron fraction significantly inside the layers. We find that the ejected material of low electron fraction responsible for the r-process comes out from the inner deep region of the core that is made up of iron-group nuclei. This leads to the production of the second to third peak in the solar r-process elements. We suggest that there are some variations in the r-process nucleosynthesis according to the initial conditions of rotational and magnetic fields.

  11. ALMA observations of the vibrationally excited rotational CO transitionv= 1,J= 3 - 2 towards five AGB stars

    NASA Astrophysics Data System (ADS)

    Khouri, T.; Vlemmings, W. H. T.; Ramstedt, S.; Lombaert, R.; Maercker, M.; De Beck, E.

    2016-11-01

    We report the serendipitous detection with ALMA of the vibrationally-excited pure-rotational CO transition $v=1, J=3-2$ towards five asymptotic giant branch (AGB) stars, $o$ Cet, R Aqr, R Scl, W Aql, and $\\pi^1$ Gru. The observed lines are formed in the poorly-understood region located between the stellar surface and the region where the wind starts, the so-called warm molecular layer. We successfully reproduce the observed lines profiles using a simple model. We constrain the extents, densities, and kinematics of the region where the lines are produced. R Aqr and R Scl show inverse P-Cygni line profiles which indicate infall of material onto the stars. The line profiles of $o$ Cet and R Scl show variability. The serendipitous detection towards these five sources shows that vibrationally-excited rotational lines can be observed towards a large number of nearby AGB stars using ALMA. This opens a new possibility for the study of the innermost regions of AGB circumstellar envelopes.

  12. Constraining pre-big-bang nucleosynthesis expansion using cosmic antiprotons

    SciTech Connect

    Schelke, Mia; Catena, Riccardo; Fornengo, Nicolao; Masiero, Antonio; Pietroni, Massimo

    2006-10-15

    A host of dark energy models and nonstandard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy big bang nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may nevertheless lead to enhancements of the Hubble rate up to many orders of magnitude. In this paper we show that strong bounds on the pre-BBN evolution of the Universe may be derived, under the assumption that dark matter is a thermal relic, by combining the dark matter relic density bound with constraints coming from the production of cosmic-ray antiprotons by dark matter annihilation in the Galaxy. The limits we derive apply to the Hubble rate around the temperature of dark matter decoupling. For dark matter masses lighter than 100 GeV, the bound on the Hubble rate enhancement ranges from a factor of a few to a factor of 30, depending on the actual cosmological model, while for a mass of 500 GeV the bound falls in the range 50-500. Uncertainties in the derivation of the bounds and situations where the bounds become looser are discussed. We finally discuss how these limits apply to some specific realizations of nonstandard cosmologies: a scalar-tensor gravity model, kination models and a Randall-Sundrum D-brane model.

  13. Impact of new β-decay half-lives on r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Kajino, Toshitaka; Mathews, Grant J.; Nishimura, Shunji; Suzuki, Toshio

    2012-04-01

    We investigate the effects of newly measured β-decay half-lives on r-process nucleosynthesis. These new rates were determined by recent experiments at the radioactive isotope beam factory facility in the RIKEN Nishina Center. We adopt an r-process nucleosynthesis environment based on a magnetohydrodynamic supernova explosion model that includes strong magnetic fields and rapid rotation of the progenitor. A number of the new β-decay rates are for nuclei on or near the r-process path, and hence they affect the nucleosynthesis yields and time scale of the r-process. The main effect of the newly measured β-decay half-lives is an enhancement in the calculated abundance of isotopes with mass number A=110-120 relative to calculated abundances based upon β-decay rates estimated with the finite-range droplet mass model. This effect slightly alleviates, but does not fully explain, the tendency of r-process models to underproduce isotopes with A=110-120 compared to the solar-system r-process abundances.

  14. Primordial comets: big bang nucleosynthesis, dark matter and life

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert B.

    2015-09-01

    Primordial comets are comets made of Big Bang synthesized materials—water, ammonium, and carbon ices. These are the basic elements for life, so that these comets can be colonized by cyanobacteria that grow and bioengineer it for life dispersal. In addition, should they exist in large enough quantities, they would easily satisfy the qualifications for dark matter: low albedo with low visibility, gravitationally femtolensing, galactic negative viscosity, early galaxy formation seeds, and a self-interaction providing cosmic structure. The major arguments against their existence are the absence of metals (elements heavier than He) in ancient Population III stars, and the stringent requirements put on the Big Bang (BB) baryonic density by the BB nucleosynthesis (BBN) models. We argue that CI chondrites, hyperbolic comets, and carbon-enriched Pop III stars are all evidence for primordial comets. The BBN models provide the greater obstacle, but we argue that they crucially omit the magnetic field in their homogeneous, isotropic, "ideal baryon gas" model. Should large magnetic fields exist, not only would they undermine the 1-D models, but if their magnitude exceeds some critical field/density ratio, then the neutrino interacts with the fields, changing the equilibrium ratio of protons to neutrons. Since BBN models are strongly dependent on this ratio, magnetic fields have the potential to radically change the production of C, N, and O (CNO) to produce primordial comets. Then the universe from the earliest moments is not only seeded for galaxy formation, but it is seeded with the ingredients for life.

  15. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    NASA Technical Reports Server (NTRS)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  16. Big-bang nucleosynthesis with unstable gravitino and upper bound on the reheating temperature

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Moroi, Takeo; Yotsuyanagi, Akira

    2006-06-01

    We study the effects of unstable gravitino on big-bang nucleosynthesis. If the gravitino mass is smaller than ˜10TeV, primordial gravitinos produced after inflation are likely to decay after big-bang nucleosynthesis starts, and light-element abundances may be significantly affected by hadro and photodissociation processes as well as by p↔n conversion process. We calculate the light-element abundances and derive upper bounds on the reheating temperature after inflation. In our analysis, we calculate decay parameters of the gravitino (i.e. lifetime and branching ratios) in detail. In addition, we perform a systematic study of the hadron spectrum produced by the gravitino decay, taking account of all the hadrons produced by the decay products of the gravitino (including the daughter superparticles). We discuss model dependence of the upper bound on the reheating temperature.

  17. Primordial nucleosynthesis in the Rh = ct cosmology: pouring cold water on the simmering Universe

    NASA Astrophysics Data System (ADS)

    Lewis, Geraint F.; Barnes, Luke A.; Kaushik, Rajesh

    2016-07-01

    Primordial nucleosynthesis is rightly hailed as one of the great successes of the standard cosmological model. Here we consider the initial forging of elements in the recently proposed Rh = ct universe, a cosmology that demands linear evolution of the scale factor. Such a universe cools extremely slowly compared to standard cosmologies, considerably depleting the available neutrons during nucleosynthesis; this has significant implications for the resultant primordial abundances of elements, predicting a minuscule quantity of helium which is profoundly at odds with observations. The production of helium can be enhanced in such a `simmering universe' by boosting the baryon to photon ratio, although more than an order of magnitude increase is required to bring the helium mass fraction into accordance with observations. However, in this scenario, the prolonged period of nucleosynthesis results of the efficient cooking of lighter into heavier elements, impacting the resultant abundances of all elements so that, other than hydrogen and helium, there are virtually no light elements present in the universe. Without the addition of substantial new physics in the early universe, it is difficult to see how the Rh = ct universe can be considered a viable cosmological model.

  18. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  19. Spectral classification of photometrically selected AGB candidates in NGC 6822

    NASA Astrophysics Data System (ADS)

    Sibbons, L. F.; Ryan, S. G.; Napiwotzki, R.; Thompson, G. P.

    2015-02-01

    Context. The ratio of C- and M-type asymptotic giant branch (AGB) stars is commonly used to estimate the metallicity of extragalactic populations. Sources in the AGB population must therefore be accurately classified as either C- or M-type. Spectroscopic data are presented for candidate C- and M-type AGB stars, previously classified using JHK photometry, in the Local Group dwarf galaxy NGC 6822. Aims: This paper aims to evaluate the success of the JHK classification criteria used in order to determine the level of error associated with this method, and to refine the criteria for future studies. The success rate of a second independent method of source classification, the CN-TiO method, is also examined. We also review the validity of the 4 kpc radial limit imposed in our previous work. Methods: Spectra of 323 sources, distributed across an area of 2 deg2, were taken using the AAOmega multi-fibre spectrograph on the Anglo-Australian Telescope and have been classified using an automated classification system and spectral standards from the literature. Nearly half (135) of these sources were selected in common with a photometric catalogue that relied on the CN-TiO method. Results: Within this sample we were able to classify 158 sources, including 82 C-type giants and one anomalous M-type giant, all members of NGC 6822, and 75 foreground K- and M-type dwarf sources. All but three of the giant sources are located within 3 kpc of the galactic centre. Using this spectroscopic sample, new JHK photometric criteria for the isolation and classification of C- and M-type AGB stars have been derived. The error rate in the CN-TiO method, arising from stars incorrectly classified as C-type, has been estimated to be ~7%. Conclusions: Based on the new JHK classification criteria, revised estimates of the global C/M ratio, 0.95 ± 0.04, and iron abundance, -1.38 ± 0.06 dex, are presented for NGC 6822. Tables 1, and 10-13 are available in electronic form at http://www.aanda.org

  20. HIRAS images of fossil dust shells around AGB stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Kester, Do J. M.; Bontekoe, Tj. Romke; Loup, C.

    1994-01-01

    We present high resolution HIRAS 60 and 100 micron images of AGB stars surrounded by fossil dust shells. Resolving the extended emission of the circumstellar dust allows a determination of the mass loss history of the star. We show that the geometry of the 60 micron emission surrounding HR 3126 agrees well with that of the optical reflection nebula. The emission around the carbon star U Hya is resolved into a central point source and a ring of dust, and the mass loss rate in the detached shell is 70 times higher than the current mass loss rate.

  1. Primordial nucleosynthesis and the abundances of beryllium and boron

    NASA Technical Reports Server (NTRS)

    Thomas, David; Schramm, David N.; Olive, Keith A.; Fields, Brian D.

    1993-01-01

    The recently attained ability to make measurements of Be and B as well as to put constraints on Li-6 abundances in metal-poor stars has led to a detailed reexamination of big bang nucleosynthesis in the A is greater than about 6 regime. The nuclear reaction network has been significantly expanded, with many new rates added. It is demonstrated that although a number of A is greater than 7 reaction rates are poorly determined, even with extreme values chosen, the standard homogeneous model is unable to produce significant yields above A = 7, and the (Li-7)/(Li-6) ratio always exceeds 500. We also preliminarily explore inhomogeneous models, such as those inspired by a first-order quark-hadron phase transition, where regions with high neutron/proton ratios can allow some leakage up to A is greater than 7. However, models that fit the A is not greater than 7 abundances still seem to have difficulty in obtaining significant A is greater than 7 yields.

  2. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  3. Leadership in Governance: The View from AGB's Current and Former Board Chairs

    ERIC Educational Resources Information Center

    Trusteeship, 2010

    2010-01-01

    The challenges with which college and university boards must grapple promise to become only more complex in the coming years, placing ever-greater demands on the leaders of those boards. This article presents a conversation between Association of Governing Boards of Universities and Colleges (AGB) President Richard D. Legon and two AGB leaders who…

  4. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Lugaro, M.; Karakas, A. I.

    2010-11-01

    Context. Models of primordial and hyper-metal-poor stars that have masses similar to the Sun are known to experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core. Aims: We aim to model the nucleosynthesis occurring during the proton ingestion event to ascertain if any significant neutron-capture nucleosynthesis occurs. Methods: We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star with mass 1 M_⊙ and a metallicity of [Fe/H] = -6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2366 reactions and treats mixing and burning simultaneously. Results: We find that the mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(α, n)16O reaction, releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 14N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later carried to the stellar surface and ejected via stellar winds. We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance. Conclusions: Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ˜ ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early

  5. Inhomogeneous neutrino degeneracy and big bang nucleosynthesis

    SciTech Connect

    Whitmire, Scott E.; Scherrer, Robert J.

    2000-04-15

    We examine big bang nucleosynthesis (BBN) in the case of inhomogeneous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representative cases: degeneracy of the electron neutrino alone and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio {eta}. Inhomogeneous degeneracy allows for little change in the lower bound on {eta}, but the upper bound in this case can be as large as {eta}=1.1x10{sup -8} (only {nu}{sub e} degeneracy) or {eta}=1.0x10{sup -9} (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background. (c) 2000 The American Physical Society.

  6. Explosive nucleosynthesis in SN 1987A. II - Composition, radioactivities, and the neutron star mass

    NASA Technical Reports Server (NTRS)

    Thielemann, Friedrich-Karl; Hashimoto, Masa-Aki; Nomoto, Ken'ichi

    1990-01-01

    The 20 solar mass model of Nomoto and Hashimoto (1988) is utilized with a 6 solar mass. He core is used to perform explosive nucleosynthesis calculations. The employed explosion energy of 10 to the 51st ergs lies within the uncertainty range inferred from the bolometric light curve. The nucleosynthesis processes and their burning products are discussed in detail. The results are compared with abundances from IR observations of SN 1987A and the average nucleosynthesis expected for Type II supernovae in Galactic chemical evolution. The abundances of long-lived radioactive nuclei and their importance for the late light curve and gamma-ray observations are predicted. The position of the mass cut between the neutron star and the ejecta is deduced from the total amount of ejected Ni-56. This requires a neutron star with a baryonic mass of 1.6 + or - 0.045 solar mass, which corresponds to a gravitational mass of 1.43 + or - 0.05 solar mass after subtracting the binding energy of a nonrotating neutron star.

  7. NUCLEOSYNTHESIS IN CORE-COLLAPSE SUPERNOVA EXPLOSIONS TRIGGERED BY A QUARK-HADRON PHASE TRANSITION

    SciTech Connect

    Nishimura, Nobuya; Thielemann, Friedrich-Karl; Hempel, Matthias; Kaeppeli, Roger; Rauscher, Thomas; Winteler, Christian; Fischer, Tobias; Martinez-Pinedo, Gabriel; Froehlich, Carla; Sagert, Irina

    2012-10-10

    We explore heavy-element nucleosynthesis in the explosion of massive stars that are triggered by a quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. The present study is based on general-relativistic radiation hydrodynamics simulations with three-flavor Boltzmann neutrino transport in spherical symmetry, which utilize a quark-hadron hybrid equation of state based on the MIT bag model for strange quark matter. The quark-hadron phase transition inside the stellar core forms a shock wave propagating toward the surface of the proto-neutron star. This shock wave results in an explosion and ejects neutron-rich matter from the outer accreted layers of the proto-neutron star. Later, during the cooling phase, the proto-neutron star develops a proton-rich neutrino-driven wind. We present a detailed analysis of the nucleosynthesis outcome in both neutron-rich and proton-rich ejecta and compare our integrated nucleosynthesis with observations of the solar system and metal-poor stars. For our standard scenario, we find that a 'weak' r-process occurs and elements up to the second peak (A {approx} 130) are successfully synthesized. Furthermore, uncertainties in the explosion dynamics could barely allow us to obtain the strong r-process which produces heavier isotopes, including the third peak (A {approx} 195) and actinide elements.

  8. Constraint on dark energy through Big Bang Nucleosynthesis and implication for growth of cosmic structures

    NASA Astrophysics Data System (ADS)

    Duorah, H. L.

    2015-08-01

    The bound on the cosmological constant energy density produced by big bang nucleosynthesis,0.786≤ΩΛ≤0.844 has been used to study the growth rate of large scale structure. The equation of state of dark energy is found to vary with a rate, △ω/△t≈10-14yr-1 since the time of decoupling and it levels off at about ω≈-0.996 for all the values of ΩΛ permitted by nucleosynthesis. This equation of state along with spectral index, n≈0.9 permitted by WMAP data yields growth rate which saturates at about z≈0.4 . The growth is suppressed below z≈0.4 . Observed growth data satisfies the trend of evolution. It strengthens the case for ΛCDM with nucleosynthesis bound on dark energy consistent with structure formation. The minute departure from scale invariance in presence of dark energy generates a mass scale M18=434.53-817.71 and a length scale λpeak=935.02-1283.94 Mpc. This elevation of structure mass and length may be a new feature of the ΛCDM model. The results may call for a serious look into the nature of dark energy and gravity itself.

  9. Out on a Limb: Updates on the Search for X-ray Emission from AGB Stars

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Ramstedt, Sofia; Santiago-Boyd, Andrea; Kastner, Joel; Vlemmings, Wouter

    2016-01-01

    X-rays from asymptotic giant branch (AGB) stars are rarely detected, however, few modern X-ray observatories have targeted AGB stars. In 2012, we searched a list of 480 galactic AGB stars and found a total of 13 targeted or serendipitous observations with few detections (Ramstedt et al. 2012). Since this initial search new programs have successfully targeted and detected X-ray emission from a handful of AGB stars. The X-ray emission, when detected, reveals high temperature plasma (>= 10 MK). This plasma might be heated by a large-scale magnetic field or indicate the presence of accretion onto a compact companion. In this poster, we update our search for X-ray emission from AGB stars with a review of their characteristics, potential origins, and impact of X-ray emission in this late stage of stellar evolution.

  10. Nucleosynthesis in neutrino-driven, aspherical Population III supernovae

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Ono, Masaomi; Kotake, Kei

    2012-09-01

    We investigate explosive nucleosynthesis during neutrino-driven, aspherical supernova (SN) explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of 11, 15, 20, 25, 30 and 40M ⊙ stars with zero metallicity. The magnitude and asymmetry of the explosion energy are estimated with simulations, for a given set of neutrino luminosities and temperatures, not as in the previous study in which the explosion is manually and spherically initiated by means of a thermal bomb or a piston and also some artificial mixing procedures are applied for the estimate of abundances of the SN ejecta. By post-processing calculations with a large nuclear reaction network, we have evaluated abundances and masses of ejecta from the aspherical SNe. We find that matter mixing induced via SASI is important for the abundant production of nuclei with atomic number >= 21, in particular Sc, which is underproduced in the spherical models without artificial mixing. We also find that the IMF-averaged abundances are similar to those observed in extremely metal poor stars. However, observed [K/Fe] cannot be reproduced with our aspherical SN models.

  11. Chaos and turbulent nucleosynthesis prior to a supernova explosion

    SciTech Connect

    Arnett, W. D. Meakin, C.; Viallet, M.

    2014-04-15

    Three-dimensional (3D), time dependent numerical simulations of flow of matter in stars, now have sufficient resolution to be fully turbulent. The late stages of the evolution of massive stars, leading up to core collapse to a neutron star (or black hole), and often to supernova explosion and nucleosynthesis, are strongly convective because of vigorous neutrino cooling and nuclear heating. Unlike models based on current stellar evolutionary practice, these simulations show a chaotic dynamics characteristic of highly turbulent flow. Theoretical analysis of this flow, both in the Reynolds-averaged Navier-Stokes (RANS) framework and by simple dynamic models, show an encouraging consistency with the numerical results. It may now be possible to develop physically realistic and robust procedures for convection and mixing which (unlike 3D numerical simulation) may be applied throughout the long life times of stars. In addition, a new picture of the presupernova stages is emerging which is more dynamic and interesting (i.e., predictive of new and newly observed phenomena) than our previous one.

  12. IS THE POST-AGB STAR SAO 40039 MILDLY HYDROGEN-DEFICIENT?

    SciTech Connect

    Rao, S. Sumangala; Pandey, Gajendra; Giridhar, Sunetra; Lambert, David L. E-mail: pandey@iiap.res.in E-mail: dll@astro.as.utexas.edu

    2011-08-10

    We have conducted an LTE abundance analysis for SAO 40039, a warm post-AGB star whose spectrum is known to show surprisingly strong He I lines for its effective temperature and has been suspected of being H-deficient and He-rich. High-resolution optical spectra are analyzed using a family of model atmospheres with different He/H ratios. Atmospheric parameters are estimated from the ionization equilibrium set by neutral and singly ionized species of Fe and Mg, the excitation of Fe I and Fe II lines, and the wings of the Paschen lines. On the assumption that the He I lines are of photospheric and not chromospheric origin, a He/H ratio of approximately unity is found by imposing the condition that the adopted He/H ratio of the model atmosphere must equal the ratio derived from the observed He I triplet lines at 5876, 4471, and 4713 A, and singlet lines at 4922 and 5015 A. Using the model with the best-fitting atmospheric parameters for this He/H ratio, SAO 40039 is confirmed to exhibit mild dust-gas depletion, i.e., the star has an atmosphere deficient in elements of high condensation temperature. The star appears to be moderately metal-deficient with [Fe/H] = -0.4 dex. But the star's intrinsic metallicity as estimated from Na, S, and Zn, elements of a low condensation temperature, is [Fe/H]{sub o} {approx_equal} -0.2 ([Fe/H]{sub o} refers to the star's intrinsic metallicity). The star is enriched in N and perhaps O as well, changes reflecting the star's AGB past and the event that led to He enrichment.

  13. AGB Stars In AKARI And IRAS Two-color Diagrams

    NASA Astrophysics Data System (ADS)

    Koopman, Kristen; Sjouwerman, L.; Claussen, M.

    2011-01-01

    Infrared measurements such as from the Infrared Astronomical Satellite (IRAS) all-sky survey and the Midcourse Space Experiment (MSX) Galactic plane survey have been used to statistically distinguish between different types of objects. In particular, two-color diagrams characterize Asymptotic Giant Branch (AGB) stars with different circumstellar shell opacity and thickness, and whether the source is oxygen- or carbon-rich in nature (Van der Veen & Habing 1988, A&A 194, 125; Sjouwerman et al. 2009, ApJ 795, 1554). We present two-color diagrams for AGB stars using infrared data from the AKARI satellite all-sky survey (e.g. Ishihara et al. 2010, A&A 514, A1) and created categories analogous to those for IRAS and MSX two-color diagrams. Our system specifically selects for circumstellar envelopes that are conducive in sustaining SiO maser emission. About 200 new sources were identified in the AKARI data. This research was supported by the Research Experience for Undergraduate Program of the National Science Foundation, and was completed at the National Radio Astronomy Observatory in Socorro, New Mexico.

  14. A Photometric and Spectroscopic Survey of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Brewer, James P.

    1996-04-01

    Asymptotic giant-branch (AGB) stars are identified and classified in five 7' X 7' fields spaced along M31's SW semi-major axis using a four band photometric system. An investigation of the AGB luminosity functions and red giant-branch widths reveals significant differences between the star forming histories of the five fields. The distance modulus of M31 is derived using carbon stars (C-stars) and found to be consistent with both a value obtained from Cepheids and with values in the literature. The ratio of AGB C- to M-stars (C/M ratio) in the five fields is found to increase with galactocentric distance and it is shown that photometric incompleteness is not responsible for this effect. This is the first clear demonstration of a varying C/M ratio in an external galaxy. The C/M ratios appear to be insensitive to star-forming history differences but sensitive to metallicity differences between the fields. Previous observations are used to define a relationship between the C/M ratio and metallicity, and this is used to obtain estimates of the field metallicities. These estimates are found to be consistent with a previous measurement of M31's metallicity gradient. The C/M ratios measured in M31 indicate that the composition of M31's interstellar medium may be position dependent, and evidence is cited in favour of this. Follow up spectroscopy was obtained in two of the five fields, and is used to show that the photometric system did an excellent job of discriminating between M-, S- and C-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced 13C bands (J-stars), 2 have strong H-alpha emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colours of the H-alpha stars suggest they may be in the terminal phases of their evolution. The C_2 and CN bandstrengths of the C-stars are measured, and no correlation between these bandstrengths

  15. A Photometric and Spectroscopic Survey of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Brewer, James Philip

    1996-01-01

    Asymptotic giant-branch (AGB) stars are identified and classified in five 7^'times7 ^' fields spaced along M31's SW semi-major axis using a four band photometric system. An investigation of the AGB luminosity functions and red giant -branch widths reveals significant differences between the star forming histories of the five fields. The distance modulus of M31 is derived using carbon stars (C-stars) and found to be consistent with both a value obtained from Cepheids and with values in the literature. The ratio of AGB C- to M-stars (C/M ratio) in the five fields is found to increase with galactocentric distance and it is shown that photometric incompleteness is not responsible for this effect. This is the first clear demonstration of a varying C/M ratio in an external galaxy. The C/M ratios appear to be insensitive to star -forming history differences but sensitive to metallicity differences between the fields. Previous observations are used to define a relationship between the C/M ratio and metallicity, and this is used to obtain estimates of the field metallicities. These estimates are found to be consistent with a previous measurement of M31's metallicity gradient. The C/M ratios measured in M31 indicate that the composition of M31's interstellar medium may be position dependent, and evidence is cited in favour of this. Follow up spectroscopy was obtained in two of the five fields, and is used to show that the photometric system did an excellent job of discriminating between M -, S- and C-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced ^ {13}C bands (J-stars), 2 have strong H alpha emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colours of the Hα stars suggest they may be in the terminal phase of their evolution. The C_2 and CN bandstrengths of the C-stars are measured, and no correlation between these

  16. Super- and massive AGB stars - IV. Final fates - initial-to-final mass relation

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.; Lau, Herbert H. B.

    2015-01-01

    We explore the final fates of massive intermediate-mass stars by computing detailed stellar models from the zero-age main sequence until near the end of the thermally pulsing phase. These super-asymptotic giant branch (super-AGB) and massive AGB star models are in the mass range between 5.0 and 10.0 M⊙ for metallicities spanning the range Z = 0.02-0.0001. We probe the mass limits Mup, Mn and Mmass, the minimum masses for the onset of carbon burning, the formation of a neutron star and the iron core-collapse supernovae, respectively, to constrain the white dwarf/electron-capture supernova (EC-SN) boundary. We provide a theoretical initial-to-final mass relation for the massive and ultra-massive white dwarfs and specify the mass range for the occurrence of hybrid CO(Ne) white dwarfs. We predict EC-SN rates for lower metallicities which are significantly lower than existing values from parametric studies in the literature. We conclude that the EC-SN channel (for single stars and with the critical assumption being the choice of mass-loss rate) is very narrow in initial mass, at most ≈0.2 M⊙. This implies that between ˜2 and 5 per cent of all gravitational collapse supernova are EC-SNe in the metallicity range Z = 0.02-0.0001. With our choice for mass-loss prescription and computed core growth rates, we find, within our metallicity range, that CO cores cannot grow sufficiently massive to undergo a Type 1.5 SN explosion.

  17. Heavy element nucleosynthesis in jets from collapsars

    SciTech Connect

    Fujimoto, Shin-ichirou; Hashimoto, Masa-aki; Kotake, Kei; Yamada, Shoichi

    2007-02-26

    We investigate nucleosynthesis in collapsars, based on long-term, magnetohydrodynamic simulations of a rapidly rotating massive star of 40M{center_dot} during the core collapse. We have calculated detailed composition of magnetically driven jets ejected from the collapsars, in which the magnetic fields before the collapse, are uniform and parallel to the rotational axis of the star and the magnitudes of the fields, B0, are 1010 G or 1012 G. We follow the evolution of chemical composition up to about 4000 nuclides inside the jets from the collapse phase to the ejection phase through the jet generation phase with use of a large nuclear reaction network. We find that the r-process successfully operates in the jets from the collapsar of B0 = 1012 G, so that U and Th are synthesized abundantly. Abundance pattern inside the jets is similar to that of r-elements in the solar system. Furthermore, we find that p-nuclei are produced without seed nuclei: not only light p-nuclei, such as 74Se, 78Kr, 84Sr, and 92Mo, but also heavy p-nuclei, 113In, 115Sn, and 138La, can be abundantly synthesized in the jets. The amounts of p-nuclei in the ejecta are much greater than those in core-collapse supernovae (SNe). In particular, 92Mo, 113In, 115Sn, and 138La deficient in the SNe, are significantly produced in the ejecta. On the other hand, in the jets from the collapsar of B0 = 1010 G, the r-process cannot operate and 56Ni, 28Si, 32S, and 4He are abundantly synthesized in the jets, as in ejecta from inner layers of Type II supernovae. An amount of 56Ni is much smaller than that from SN 1987A.

  18. Big bang nucleosynthesis and ΛQCD

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; McLaughlin, Gail C.

    2003-11-01

    Big bang nucleosynthesis (BBN) has increasingly become the tool of choice for investigating the permitted variation of fundamental constants during the earliest epochs of the Universe. Here we present a BBN calculation that has been modified to permit changes in the QCD scale, ΛQCD. The primary effects of changing the QCD scale upon BBN are through the deuteron binding energy BD and the neutron-proton mass difference δmnp, which both play crucial roles in determining the primordial abundances. In this paper we show how a simplified BBN calculation allows us to restrict the nuclear data we need to just BD and δmnp yet still gives useful results so that any variation in ΛQCD may be constrained via the corresponding shifts in BD and δmnp by using the current estimates of the primordial deuterium abundance and helium mass fraction. The simplification predicts the helium-4 and deuterium abundances to within 1% and 50%, respectively, when compared with the results of a standard BBN code. But ΛQCD also affects much of the remaining required nuclear input so this method introduces a systematic error into the calculation and we find a degeneracy between BD and δmnp. We show how increased understanding of the relationship of the pion mass and/or BD to other nuclear parameters, such as the binding energy of tritium and the cross section of T+D→4He+n, would yield constraints upon any change in BD and δmnp at the 10% level.

  19. Constraint on slepton intergenerational mixing from big-bang nucleosynthesis

    SciTech Connect

    Kohri, Kazunori; Ohta, Shingo; Sato, Joe; Shimomura, Takashi; Yamanaka, Masato

    2012-07-27

    We find constraint on intergenerational mixing of slepton from big-bang nucleosynthesis (BBN). Today, we know that there exist lepton flavor violation (LFV) from the observation of neutrino oscillation, though there do not exist LFV in the standard model of particle physics (SM). LFV in charged lepton sector (cLFV) have also been expected to exist. From theoretical point of view, the effects of long-lived stau on BBN have been investigated and it is known that the stau can solve the cosmological 7Li problem. However, in the study so far, tau flavor is exactly conserved and it contradict with the existence of cLFV. In this study, we generalize the flavor to be violated and call the stau as slepton. Even if the violation is tiny, it drastically changes the lifetime and the evolution of relic density of the slepton. Thus we analyze the effects of the long-lived slepton on BBN, and constrain the magnitude of the cLFV.

  20. Big bang nucleosynthesis with long-lived charged massive particles

    SciTech Connect

    Kohri, Kazunori; Takayama, Fumihiro

    2007-09-15

    We consider big bang nucleosynthesis (BBN) with long-lived charged massive particles. Before decaying, the long-lived charged particle recombines with a light element to form a bound state like a hydrogen atom. This effect modifies the nuclear-reaction rates during the BBN epoch through the modifications of the Coulomb field and the kinematics of the captured light elements, which can change the light element abundances. It is possible for heavier nuclei abundances such as {sup 7}Li and {sup 7}Be to decrease sizably, while the ratios Y{sub p}, D/H, and {sup 3}He/H remain unchanged. This may solve the current discrepancy between the BBN prediction and the observed abundance of {sup 7}Li. If future collider experiments find signals of a long-lived charged particle inside the detector, the information of its lifetime and decay properties could provide insights into not only the particle physics models but also the phenomena in the early Universe, in turn.

  1. r-process nucleosynthesis in dynamic helium-burning environments

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Cameron, A. G. W.; Truran, J. W.

    1985-01-01

    The results of an extended examination of r-process nucleosynthesis in helium-burning enviroments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the C-13 neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be 10 to the 20th-10 to the 21st neutrons per cubic centimeter for times of 0.01-0.1 s and neutron number densities in excess of 10 to the 19th per cubic centimeter for times of about 1 s. The amount of C-13 required is found to be exceedingly high - larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system.

  2. Big bang nucleosynthesis revisited via Trojan Horse method measurements

    SciTech Connect

    Pizzone, R. G.; Spartá, R.; Spitaleri, C.; La Cognata, M.; Tumino, A.; Bertulani, C. A.; Lalmansingh, J.; Lamia, L.; Mukhamedzhanov, A.

    2014-05-10

    Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of {sup 2}H(d, p){sup 3}H, {sup 2}H(d, n){sup 3}He, {sup 7}Li(p, α){sup 4}He, and {sup 3}He(d, p){sup 4}He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the {sup 2}H, {sup 3,4}He, and {sup 7}Li primordial abundances, which are then compared with observations.

  3. AGB stars in Leo P and their use as metallicity probes

    NASA Astrophysics Data System (ADS)

    Lee ( ), Chien-Hsiu

    2016-09-01

    Leo P is the most metal-poor yet star-forming galaxy in the local volume, and has the potential to serve as a local counterpart to interpret the properties of distant galaxies in the early universe. We present a comprehensive search of asymptotic giant branch (AGB) stars in Leo P using deep infrared imaging. AGB stars are the major dust contributors; the metal poor nature of Leo P can help to shed light on the dust formation process in very low-metallicity environments, similar to the early Universe. We select and classify oxygen-rich and carbon-rich candidate AGB stars using J - K versus K colour-magnitude diagram. To filter out contaminations from background galaxies, we exploit the high-resolution Hubble Space Telescope imaging and identify 9 oxygen-rich AGBs and 13 carbon-rich AGB stars in Leo P. We then use the ratio of carbon-rich and oxygen-rich AGB stars (C/M ratio) as an indicator of on-site metallicity and derive the global metallicity [Fe/H] = -1.8 dex for Leo P, in good agreement with previous studies using isochrone fitting. Follow-up observations of these Leo P AGB stars in the mid-infrared [e.g. Spitzer, James Webb Space Telescope (JWST)] will be invaluable to measure the dust formation rates using Spectral energy distribution (SED) fitting.

  4. ALMA observations of the not-so detached shell around the carbon AGB star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Maercker, Matthias

    2016-07-01

    I present our ALMA observations of the CO emission around the carbon AGB star R Sculptoris. The data reveal the known detached shell and a previously unknown, binary induced, spiral shape. The observations confirm a formation of the shell during a thermal pulse about 2300 years ago. The full analysis of the ALMA data shows that the shell around R Scl in fact is entirely filled with molecular gas, and hence not as detached as previously thought. This has implications for the mass-loss rate evolution immediately after the pulse, indicating a much higher mass-loss rate than previously assumed. Comparing the ALMA images to our optical observations of polarised, dust scattered light, we further show that the distributions of the dust and gas coincide almost perfectly, implying a common evolution of the dust and gas, and constraining the wind-driving mechanism. The mass-loss process and amount of mass lost during the thermal pulse cycle affect the chemical evolution of the star, its lifetime on the AGB, and the return of heavy elements to the ISM. New high-resolution ALMA observations constrain the parameters of the binary system and the inner spiral, and will allow for a detailed hydrodynamical modelling of the gas and dust during and after the last thermal pulse. Our results present the only direct measurements of the thermal pulse evolution currently available. They greatly increase our understanding of this fundamental period of stellar evolution, and the implications it has for the chemical evolution of evolved stars, the ISM, and galaxie

  5. Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    NASA Astrophysics Data System (ADS)

    Liljegren, S.; Höfner, S.; Nowotny, W.; Eriksson, K.

    2016-05-01

    Context. Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. Aims: We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. This will also give an indication of how robust the wind properties derived from the dynamic atmosphere models are. Methods: Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. Results: The first model with dust and stellar wind is very sensitive to moderate changes in the luminosity variation. There is a complex relationship between the luminosity minimum, and dust condensation: changing the phase corresponding to minimum luminosity can either increase or decrease mass-loss rate and wind velocity. The luminosity maximum dominates the radiative pressure on the dust, which in turn, is important for driving the wind. An earlier occurrence of the maximum, with respect to the propagation of the pulsation-induced shock wave, then increases the wind velocity, while a later occurrence leads to a decrease. These effects of changed luminosity variation are coupled with the dust formation. In contrast there is very little change to the structure of the model without dust. Conclusions: Changing the luminosity variation, both by introducing a phase shift

  6. The quark-hadron phase transition and primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1987-01-01

    After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.

  7. Linking neutrino oscillations to the nucleosynthesis of elements

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Qian, Yong-Zhong

    2016-02-01

    Neutrino interactions with matter play an important role in determining the nucleosynthesis outcome in explosive astrophysical environments such as core-collapse supernovae or mergers of compact objects. In this article, we first discuss our recent work on the importance of studying the time evolution of collective neutrino oscillations among active flavors in determining their effects on nucleosynthesis. We then consider the possible active-sterile neutrino mixing and demonstrate the need of a consistent approach to evolve neutrino flavor oscillations, matter composition, and the hydrodynamics when flavor oscillations can happen very deep inside the supernovae.

  8. New microwave background constraints on the cosmic matter budget: trouble for nucleosynthesis?

    PubMed

    Tegmark; Zaldarriaga

    2000-09-11

    We compute the joint constraints on ten cosmological parameters from the latest cosmic microwave background measurements. The lack of a significant second acoustic peak in the new BOOMERANG and MAXIMA data favors models with more baryons than big bang nucleosynthesis predicts, almost independently of what prior information is included. The simplest flat inflation models with purely scalar scale-invariant fluctuations prefer a baryon density 0. 022

  9. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    SciTech Connect

    Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A. E-mail: iain.mcdonald-2@manchester.ac.uk; and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will

  10. Phase-lag Distances of OH Masing AGB Stars

    NASA Astrophysics Data System (ADS)

    Engels, D.; Etoka, S.; Gérard, E.; Richards, A.

    2015-08-01

    Distances to AGB stars with optically thick circumstellar shells cannot be determined using optical parallaxes. However, for stars with OH 1612 MHz maser emission emanating from their circumstellar shells, distances can be determined by the phase-lag method. This method combines a linear diameter obtained from a phase-lag measurement with an angular diameter obtained from interferometry. The phase-lag of the variable emission from the back and front sides of the shells has been determined for 20 OH/IR stars in the galactic disk. These measurements are based on a monitoring program with the Nançay radio telescope ongoing for more than 6 years. The interferometric observations are continuing. We estimate that the uncertainties of the distance determination will be ˜20%.

  11. An Explosive End to Intermediate-Mass Zero-Metallicity Stars and Early Universe Nucleosynthesis

    SciTech Connect

    Lau, Herbert H.B.; Stancliffe, Richard J.; Tout, Christopher A.

    2008-03-11

    We use the Cambridge stellar evolution code STARS to model the evolution of 5 M{sub {center_dot}} and 7 M{sub {center_dot}} zero-metallicity stars. With enhanced resolution at the hydrogen and helium burning shell in the AGB phases, we are able to model the entire thermally pulsing asymptotic giant branch (TP-AGB) phase. The helium luminosities of the thermal pulses are significantly lower than in higher metallicity stars so there is no third dredge-up. The envelope is enriched in nitrogen by hot-bottom burning of carbon that was previously mixed in during second dredge-up. There is no s-process enrichment owing to the lack of third dredge up. The thermal pulses grow weaker as the core mass increases and they eventually cease. From then on the star enters a quiescent burning phase which lasts until carbon ignites at the centre of the star when the CO core mass is 1.36 M{sub {center_dot}}. With such a high degeneracy and a core mass so close to the Chandrasekhar mass, we expect these stars to explode as type 1.5 supernovae, very similar to Type Ia supernovae but inside a hydrogen rich envelope.

  12. Nuclear polarization effects in big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Voronchev, Victor T.; Nakao, Yasuyuki

    2015-10-01

    A standard nuclear reaction network for big bang nucleosynthesis (BBN) simulations operates with spin-averaged nuclear inputs—unpolarized reaction cross sections. At the same time, the major part of reactions controlling the abundances of light elements is spin dependent, i.e., their cross sections depend on the mutual orientation of reacting particle spins. Primordial magnetic fields in the BBN epoch may to a certain degree polarize particles and thereby affect some reactions between them, introducing uncertainties in standard BBN predictions. To clarify the points, we have examined the effects of induced polarization on key BBN reactions—p (n ,γ )d , d (d ,p )t , d (d ,n )He 3 , t (d ,n )α , He 3 (n ,p )t , He 3 (d ,p )α , Li 7 (p ,α )α , Be 7 (n ,p )Li 7 —and the abundances of elements with A ≤7 . It has been obtained that the magnetic field with the strength B0≤1012 G (at the temperature of 109 K ) has almost no effect on the reaction cross sections, and the spin polarization mechanism plays a minor role in the element production, changing the abundances at most by 0.01%. However, if the magnetic field B0 reaches 1015 G its effect on the key reactions appears and becomes appreciable at B0≳1016 G . In particular, it has been found that such a field can increase the p (n ,γ )d cross section (relevant to the starting point of BBN) by a factor of 2 and at the same time almost block the He 3 (n ,p )t reaction responsible for the interconversion of A =3 nuclei in the early Universe. This suggests that the spin polarization effects may become important in nonstandard scenarios of BBN considering the existence of local magnetic bubbles inside which the field can reach ˜1015 G .

  13. The s-process in low-metallicity stars - III. Individual analysis of CEMP-s and CEMP-s/r with asymptotic giant branch models

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F.

    2012-05-01

    We provide an individual analysis of 94 carbon-enhanced metal-poor stars showing an s-process enrichment (CEMP-s) collected from the literature. The s-process enhancement observed in these stars is ascribed to mass transfer by stellar winds in a binary system from a more massive companion evolving faster towards the asymptotic giant branch (AGB) phase. The theoretical AGB nucleosynthesis models have been presented in Bisterzo et al. (Paper I of this series). Several CEMP-s show an enhancement in both s- and r-process elements (CEMP-s/r). In order to explain the peculiar abundances observed in CEMP-s/r, we assume that the molecular cloud from which CEMP-s formed was previously enriched in r-elements by supernova pollution. A general discussion and the method adopted in order to interpret the observations have been provided in Bisterzo et al. (Paper II of this series). We present in this paper a detailed study of spectroscopic observations of individual stars. We consider all elements from carbon to bismuth, with particular attention to the three s-process peaks, ls (Y, Zr), hs (La, Nd, Sm) and Pb, and their ratios [hs/ls] and [Pb/hs]. The presence of an initial r-process contribution may be typically evaluated by [La/Eu]. We found possible agreements between theoretical predictions and spectroscopic data. In general, the observed [Na/Fe] (and [Mg/Fe]) provides information on the AGB initial mass, while [hs/ls] and [Pb/hs] are mainly indicators of the s-process efficiency. A range of 13C-pocket strengths are required to interpret the observations. However, major discrepancies between models and observations exist. We highlight star by star the agreements and the main problems encountered and, when possible, we suggest potential indications for further studies. These discrepancies provide starting points of debate for unsolved problems in which spectroscopic and theoretical studies may intervene.

  14. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; De Beck, E.; Black, J. H.; Olofsson, H.; Justtanont, K.

    2016-04-01

    Aims: The sulphur compounds SO and SO2 have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO2 lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. Methods: We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO2 line emission. We use molecular data files for both SO and SO2 that are more extensive than those previously available. Results: Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of (6.7 ± 0.9) × 10-6 and an SO2 abundance of 5 × 10-6 with both species having high abundances close to the star. We also modelled 34SO and found an abundance of (3.1 ± 0.8) × 10-7, giving an 32SO/34SO ratio of 21.6 ± 8.5. We derive similar results for the circumstellar SO and SO2 abundances and their distributions for the low mass-loss rate object W Hya. For the higher mass-loss rate stars, we find shell-like SO distributions with peak abundances that decrease and peak abundance radii that increase with increasing mass-loss rate. The positions of the peak SO abundance agree very well with the photodissociation radii of H2O. We also modelled SO2 in two higher mass-loss rate stars but our models for these were less conclusive. Conclusions: We conclude that for the low mass-loss rate stars, the circumstellar SO and SO2 abundances are much higher than predicted by chemical models of the extended stellar atmosphere. These two species may also account for all the available sulphur. For the higher mass-loss rate stars we find evidence that SO is most efficiently formed in the circumstellar envelope, most likely through the photodissociation of H2O and the subsequent reaction between S and OH. The S

  15. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  16. Collaborative Research: Neutrinos and Nucleosynthesis in Hot Dense Matter

    SciTech Connect

    McLaughlin, Gail; Schaefer, Thomas

    2015-05-31

    The major accomplishments of the research activity at NC State during the five years were: to determine the effects and signatures of turbulence in supernova, to calculate r-process and supernova nucleosynthesis, and to determine the neutrino scattering and flavor transformation that occurs in black hole accretion disks. This report goes into more detail on them.

  17. Fingerprints of nucleosynthesis in the local spiral arm

    NASA Technical Reports Server (NTRS)

    Knoedlseder, J.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Oberlack, U.; Ryan, J.; Schoenfelder, V.; vonBallmoos, P.

    1997-01-01

    The local spiral arm with its inherent massive star population is a natural site of recent nucleosynthesis activity. The features found in 1.8 MeV observation of candidate Al-26 sources situated in this structure are discussed. The emphasis is on Loop 1, a nearby superbubble which is possibly the site of a recent supernova explosion.

  18. Astrophysical S-factor for destructive reactions of lithium-7 in big bang nucleosynthesis

    SciTech Connect

    Komatsubara, Tetsuro; Kwon, YoungKwan; Moon, JunYoung; Kim, Yong-Kyun; Moon, Chang-Bum; Ozawa, Akira; Sasa, Kimikazu; Onishi, Takahiro; Yuasa, Toshiaki; Okada, Shunsuke; Saito, Yuta; Hayakawa, Takehito; Shizuma, Toshiyuki; Kubono, Shigeru; Kusakabe, Motohiko; Kajino, Toshitaka

    2014-05-02

    One of the most prominent success with the Big Bang models is the precise reproduction of mass abundance ratio for {sup 4}He. In spite of the success, abundances of lithium isotopes are still inconsistent between observations and their calculated results, which is known as lithium abundance problem. Since the calculations were based on the experimental reaction data together with theoretical estimations, more precise experimental measurements may improve the knowledge of the Big Bang nucleosynthesis. As one of the destruction process of lithium-7, we have performed measurements for the reaction cross sections of the {sup 7}L({sup 3}He,p){sup 9}Be reaction.

  19. Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Kohri, Kazunori; Moroi, Takeo; Takaesu, Yoshitaro

    2015-12-01

    We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.

  20. Big bang nucleosynthesis constraints on scalar-tensor theories of gravity

    SciTech Connect

    Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2006-04-15

    We investigate Big bang nucleosynthesis (BBN) in scalar-tensor theories of gravity with arbitrary matter couplings and self-interaction potentials. We first consider the case of a massless dilaton with a quadratic coupling to matter. We perform a full numerical integration of the evolution of the scalar field and compute the resulting light element abundances. We demonstrate in detail the importance of particle mass thresholds on the evolution of the scalar field in a radiation dominated universe. We also consider the simplest extension of this model including a cosmological constant in either the Jordan or Einstein frame.

  1. Nucleosynthesis in neutrino-driven, aspherical supernova explosion of a massive star

    SciTech Connect

    Fujimoto, S.; Hashimoto, M.; Ono, M.; Kotake, K.; Ohnishi, N.

    2011-10-28

    We examine explosive nucleosynthesis of p-nuclei during a delayed neutrino-driven, aspherical supernova explosion aided by standing accretion shock instability, based on two-dimensional hydrodynamic simulations of the explosion of a 15M{sub {center_dot}} star. We find that p-nuclei are mainly produced through {gamma}-processes, and that the nuclei lighter than {sup 92}Mo are abundantly synthesized in slightly neutron-rich bubbles with electron fractions of Y{sub e}{<=}0.48. {sup 94}Mo, {sup 96}Ru, and {sup 98}Ru, are underproduced compared with the solar system, as in the spherical model.

  2. Evidence for nucleosynthesis in the supernova gamma process: universal scaling for p nuclei.

    PubMed

    Hayakawa, T; Iwamoto, N; Shizuma, T; Kajino, T; Umeda, H; Nomoto, K

    2004-10-15

    Analyzing the solar system abundance, we find two universal scaling laws concerning the p and s nuclei. They indicate that the gamma process in supernova (SN) explosions is the most probable origin of the p nuclei that has been discussed with many possible nuclear reactions and sites in about 50 years. In addition, the scalings lead to new concepts: a universality of the gamma process and a new nuclear cosmochronometer. We carry out gamma-process nucleosynthesis calculations for typical core-collapse SN explosion models, and the results satisfy the observed scalings. PMID:15524971

  3. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  4. An extreme paucity of second population AGB stars in the `normal' globular cluster M4

    NASA Astrophysics Data System (ADS)

    MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Simpson, J. D.; Momany, Y.

    2016-07-01

    Galactic globular clusters (GCs) are now known to harbour multiple stellar populations, which are chemically distinct in many light element abundances. It is becoming increasingly clear that asymptotic giant branch (AGB) stars in GCs show different abundance distributions in light elements compared to those in the red giant branch (RGB) and other phases, skewing towards more primordial, field-star-like abundances, which we refer to as subpopulation one (SP1). As part of a larger programme targeting giants in GCs, we obtained high-resolution spectra for a sample of 106 RGB and 15 AGB stars in Messier 4 (NGC 6121) using the 2dF+HERMES facility on the Anglo-Australian Telescope. In this Letter, we report an extreme paucity of AGB stars with [Na/O] >-0.17 in M4, which contrasts with the RGB that has abundances up to [Na/O] =0.55. The AGB abundance distribution is consistent with all AGB stars being from SP1. This result appears to imply that all subpopulation two stars (SP2; Na-rich, O-poor) avoid the AGB phase. This is an unexpected result given M4's horizontal branch morphology - it does not have an extended blue horizontal branch. This is the first abundance study to be performed utilizing the HERMES spectrograph.

  5. Standard big bang nucleosynthesis and primordial CNO abundances after Planck

    SciTech Connect

    Coc, Alain

    2014-10-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo stars of the Galaxy. According to the importance of this ''lithium problem{sup ,} we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of {sup 6}Li, {sup 9}Be, {sup 11}B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H ≈ (5-30)×10{sup -15}. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H∼10{sup -13}. This result is important for the study of population III star formation during the dark ages.

  6. A new limit on the time between the nucleosynthesis and the acceleration of cosmic rays in supernova remnants using the Co/Ni ratio

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Gupta, M.

    1990-01-01

    Using new cross section measurements of Ni into Co, data on the Co/Ni ratio in cosmic rays from the HEAO C spacecraft have been reinterpreted in terms of the time between nucleosynthesis and the acceleration of cosmic rays, delta t. The observed Co/Ni ratio is now consistent with interstellar fragmentation only, leading to a small or zero source abundance. In terms of the decay of e-process nucleosynthesis nuclides into Co after a supernova explosion, this permits an estimate of delta t = 4-30,000 yr for the time between nucleosynthesis and the acceleration of cosmic rays if supernovae are the direct progenitors of cosmic rays. These age limits are used in conjunction with models of the expansion of supernova remnants (SNRs), to estimate that cosmic rays are accelerated when the radius of these remnants is between 0.1 and 25 pc.

  7. Gamow-Teller Strength in the Exotic Odd-Odd Nuclei {sup 138}La and {sup 180}Ta and Its Relevance for Neutrino Nucleosynthesis

    SciTech Connect

    Byelikov, A.; Kalmykov, Y.; Neumann-Cosel, P. von; Richter, A.; Shevchenko, A.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Fujita, H.; Fujita, K.; Hatanaka, K.; Kawase, K.; Nakanishi, K.; Sakamoto, N.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Heger, A.

    2007-02-23

    The Gamow-Teller strength distributions below the particle threshold in {sup 138}La and {sup 180}Ta, deduced from high-resolution measurements of the ({sup 3}He,t) reaction at 0 deg., allow us to evaluate the role of charged-current reactions for the production of these extremely rare nuclides in neutrino-nucleosynthesis models. The analysis suggests that essentially all {sup 138}La in the Universe can be made that way. Neutrino nucleosynthesis also contributes significantly to the abundance of {sup 180}Ta but the magnitude depends on the unknown branching ratio for population of the long-lived isomer.

  8. r-PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS

    SciTech Connect

    Goriely, Stephane; Bauswein, Andreas; Janka, Hans-Thomas

    2011-09-10

    Although the rapid neutron-capture process, or r-process, is fundamentally important for explaining the origin of approximately half of the stable nuclei with A > 60, the astrophysical site of this process has not been identified yet. Here we study r-process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars (NSs) and within milliseconds afterward. For the first time we make use of relativistic hydrodynamical simulations of such events, defining consistently the conditions that determine the nucleosynthesis, i.e., neutron enrichment, entropy, early density evolution and thus expansion timescale, and ejecta mass. We find that 10{sup -3}-10{sup -2} M{sub sun} are ejected, which is enough for mergers to be the main source of heavy (A {approx}> 140) galactic r-nuclei for merger rates of some 10{sup -5} yr{sup -1}. While asymmetric mergers eject 2-3 times more mass than symmetric ones, the exact amount depends weakly on whether the NSs have radii of {approx}15 km for a 'stiff' nuclear equation of state (EOS) or {approx}12 km for a 'soft' EOS. r-process nucleosynthesis during the decompression becomes largely insensitive to the detailed conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Estimating the light curve powered by the radioactive decay heating of r-process nuclei with an approximative model, we expect high emission in the B-V-R bands for 1-2 days with potentially observable longer duration in the case of asymmetric mergers because of the larger ejecta mass.

  9. NUCLEOSYNTHESIS IN THE OUTFLOWS ASSOCIATED WITH ACCRETION DISKS OF TYPE II COLLAPSARS

    SciTech Connect

    Banerjee, Indrani; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in

    2013-11-20

    We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially, and a mild supernova (SN) explosion is driven. The SN ejecta lack momentum, and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks have been studied extensively in the past. Several heavy elements are synthesized in the disk, and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this, we find that many new elements like isotopes of titanium, copper, zinc, etc., are present in the outflows. {sup 56}Ni is abundantly synthesized in most of the cases in the outflow, which implies that the outflows from these disks in a majority of cases will lead to an observable SN explosion. It is mainly present when outflow is considered from the He-rich, {sup 56}Ni/{sup 54}Fe-rich zones of the disks. However, outflow from the Si-rich zone of the disk remains rich in silicon. Although emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs by Chandra, BeppoSAX, XMM-Newton, etc., Swift seems to have not yet detected these lines.

  10. Link between Mass-loss and Variability Type for AGB Stars?

    NASA Astrophysics Data System (ADS)

    Ivezić, Ž.; Knapp, G. R.

    We find that AGB stars separate in the 25-12 vs. 12-K color-color diagram according to their chemistry (O, S vs. C) and variability type (Miras vs. SRb/Lb). While discrimination according to the chemical composition is not surprising, the separation of Miras from SRb/Lb variables is unexpected. We show that ``standard'' steady-state radiatively driven models provide excellent fits to the color distribution of Miras of all chemical types. However, these models are incapable of explaining the dust emission from O-rich SRb/Lb stars. The models can be altered to fit the data by postulating different optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300-400 K) than typical condensation temperatures (800-1,000 K), a possibility which is also supported by the detailed characteristics of LRS data. While such lower temperatures are required only for O- and S-rich SRb/Lb stars, they are also consistent with the colors of C-rich SRb/Lb stars. The absence of hot dust for SRb/Lb stars can be interpreted as a recent (order of 100 yr) decrease in the mass-loss rate. The distribution of O-rich SRb/Lb stars in the 25-12 vs. K-12 color-color diagram shows that the mass-loss rate probably resumes again, on similar time scales. It cannot be ruled out that the mass-loss rate is changing periodically on such time scales, implying that the stars might oscillate between the Mira and SRb/Lb phases during their AGB evolution as proposed by Kerschbaum et al. (1996). Such a possibility appears to be supported by recent HST images of the Egg Nebula obtained by Sahai et al. (1997), the discovery of multiple CO winds reported by Knapp et al. (1998), and long-term visual light-curve changes detected for some stars by Mattei (1998).

  11. Link between Mass-loss and Variability Type for AGB Stars?

    NASA Astrophysics Data System (ADS)

    Ivezic, Z.; Knapp, G. R.

    1998-12-01

    We find that AGB stars separate in the 25-12 vs. 12-K color-color diagram according to their chemistry (O, S vs. C) and variability type (Miras vs. SRb/Lb). While discrimination according to the chemical composition is not surprising, the separation of Miras from SRb/Lb variables is unexpected. We show that ``standard'' steady-state radiatively driven models provide excellent fits to the color distribution of Miras of all chemical types. However, these models are incapable of explaining the dust emission from O-rich SRb/Lb stars. The models can be altered to fit the data by postulating different optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300-400 K) than typical condensation temperatures (800-1000 K), a possibility which is also supported by the detailed characteristics of LRS data. While such lower temperatures are required only for O- and S-rich SRb/Lb stars, they are also consistent with the colors of C-rich SRb/Lb stars. The absence of hot dust for SRb/Lb stars can be interpreted as a recent (order of 100 yr) decrease in the mass-loss rate. The distribution of O-rich SRb/Lb stars in the 25-12 vs. K-12 color-color diagram shows that the mass-loss rate probably resumes again, on similar time scales. It cannot be ruled out that the mass-loss rate is changing periodically on such time scales, implying that the stars might oscillate between the Mira and SRb/Lb phases during their AGB evolution as proposed by Kerschbaum et al. (1996). Such a possibility appears to be supported by recent HST images of the Egg Nebula obtained by Sahai et al. (1997), the discovery of multiple CO winds reported by Knapp et al. (1998), and long-term visual light-curve changes detected for some stars by Mattei (1998).

  12. Improvement of the high-accuracy 17O(p ,α )14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; O'Brien, S.; Roberson, D.; Tan, W.; Wiescher, M.; Irgaziev, B.; Mukhamedzhanov, A.; Mrazek, J.; Kroha, V.

    2015-06-01

    The 17O(p ,α )14N and 17O(p ,γ )18F reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of 17O and the formation of the short-lived radioisotope 18F, which is of special interest for γ -ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T =0.01 -0.1 GK for RG, AGB, and massive stars and T =0.1 -0.4 GK for a classical nova explosion, the 17O(p ,α )14N reaction cross section is dominated by two resonances: one at about ERc m=65 keV above the 18F proton threshold energy, corresponding to the EX=5.673 MeV level in 18F, and another one at ERc m=183 keV (EX=5.786 MeV). We report on the indirect study of the 17O(p ,α )14N reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect.

  13. Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario

    SciTech Connect

    Jittoh, Toshifumi; Koike, Masafumi; Sato, Joe; Yamanaka, Masato; Kohri, Kazunori; Shimomura, Takashi

    2008-09-01

    A scenario of the big-bang nucleosynthesis is analyzed within the minimal supersymmetric standard model, which is consistent with a stau-neutralino coannihilation scenario to explain the relic abundance of dark matter. We find that we can account for the possible discrepancy of the abundance of {sup 7}Li between the observation and the prediction of the big-bang nucleosynthesis by taking the mass of the neutralino as 300 GeV and the mass difference between the stau and the neutralino as (100-120) MeV. We can therefore simultaneously explain the abundance of the dark matter and that of {sup 7}Li by these values of parameters. The lifetime of staus in this scenario is predicted to be O(100-1000) sec.

  14. High rotational CO lines in post-AGB stars and PNe

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Tielens, Alexander G. G. M.; Skinner, C. J.; Haas, Michael R.

    1995-01-01

    A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.

  15. a Review of r-PROCESS Nucleosynthesis in the Collapsar Jet

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Kajino, Toshitaka; Mathews, Grant J.; Sato, Susumu; Harikae, Seiji

    2013-09-01

    The collapsar scenario for long-duration gamma ray bursts (GRBs) has been proposed as a possible astrophysical site for r-process nucleosynthesis. We summarize the status of r-process nucleosynthesis calculations of our group and others in the context of a magnetohydrodynamics + neutrino-heated collapsar model. In the simulations of our group, we begin with a relativistic magnetohydrodynamic model including ray-tracing neutrino transport to describe the development of the black hole accretion disk and the neutrino heating of the funnel region above the black hole. The late-time evolution of the associated jet was then followed using axisymmetric special relativistic hydrodynamics. We utilized representative test particles to follow the temperature, entropy, electron fraction and density for material flowing within the jet from ejection from the accretion disk until several thousand kilometer above the black hole as temperatures fall from 9×109 to 3×108 K. The evolution of nuclear abundances from nucleons to heavy nuclei for ejected test particle trajectories has been solved in a large nuclear reaction network. It was found that an r-process-like abundance distribution forms in material ejected in the collapsar jet.

  16. The fundamental role of fission during r-process nucleosynthesis in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Goriely, S.

    2015-02-01

    The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Despite important efforts, the astrophysical site of the r-process remains unidentified. Here we study r-process nucleosynthesis in a material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. r-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Due to the important role played by fission in such a scenario, the impact of fission is carefully analyzed. We consider different state-of-the-art global models for the determination of the fission paths, nuclear level densities at the fission saddle points and fission fragment distributions. Based on such models, the sensitivity of the calculated r-process abundance distribution is studied. The fission path is found to strongly affect the region of heavy nuclei responsible for the fission recycling, while the fission fragment distribution of nuclei along the A ≃ 278 isobars defines the abundance pattern of nuclei produced in the 110 ≲ A ≲ 170 region. The late capture of prompt fission neutrons is also shown to affect the abundance distribution, and in particular the shape of the third r-process peak around A ≃ 195.

  17. β-decay spectroscopy for the r-process nucleosynthesis

    SciTech Connect

    Nishimura, Shunji; Collaboration: RIBF Decay Collaborations

    2014-05-09

    Series of decay spectroscopy experiments, utilizing of high-purity Ge detectors and double-sided silicon-strip detectors, have been conducted to harvest the decay properties of very exotic nuclei relevant to the r-process nucleosynthesis at the RIBF. The decay properties such as β-decay half-lives, low-lying states, β-delayed neutron emissions, isomeric states, and possibly Q{sub β} of the very neutron-rich nuclei are to be measured to give significant constraints in the uncertainties of nuclear properties for the r-process nucleosynthesis. Recent results of βγ spectroscopy study using in-flight fission of {sup 238}U-beam will be presented together with our future perspectives.

  18. HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?

    SciTech Connect

    Hansen, C. J.; Montes, F.; Arcones, A. E-mail: cjhansen@dark-cosmology.dk E-mail: almudena.arcones@physik.tu-darmstadt.de

    2014-12-20

    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to the production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.

  19. Primordial and Stellar Nucleosynthesis Chemical Evolution of Galaxies

    SciTech Connect

    Chiosi, Cesare

    2010-03-01

    Following a brief introduction to early Universe cosmology, we present in some detail the results of primordial nucleosynthesis. Then we summarize the basic theory of nuclear reactions in stars and sketch the general rules of stellar evolution. We shortly review the subject of supernova explosions both by core collapse in massive stars (Type II) and carbon-deflagration in binary systems when one of the components is a White Dwarf accreting mass from the companion (Type Ia). We conclude the part dedicated to nucleosynthesis with elementary notions on the s- and r-process. Finally, we shortly address the topic of galactic chemical evolution and highlight some simple solutions aimed at understanding the main observational data on abundances and abundance ratios.

  20. Optical Transients and Nucleosynthesis from Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel

    2015-10-01

    The production and ejection of radioactive isotopes during, or immediately following, the merger of two neutron stars (or a neutron star and a black hole) can give rise to optical/infrared emission similar to, but dimmer and briefer than that of an ordinary supernova. These transients are promising electromagnetic counterparts to gravitational wave sources, and may be diagnostic of the sites of r-process nucleosynthesis. I will describe the physics of compact object mergers and their aftermath, and present calculations that demonstrate how the nucleosynthetic yields depend on the mechanism of ejection, the degree of neutron-richness and neutrino irradiation, and the survival lifetime of a remnant hyper-massive neutron star or the spin of a remnant black hole. We find that the color and luminosity of the transients depend sensitively on the mass and composition of the outflow, and therefore can provide a direct and informative probe of r-process nucleosynthesis at the production site.

  1. Dirac fields in loop quantum gravity and big bang nucleosynthesis

    SciTech Connect

    Bojowald, Martin; Das, Rupam; Scherrer, Robert J.

    2008-04-15

    Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.

  2. Big bang nucleosynthesis with independent neutrino distribution functions

    SciTech Connect

    Smith, Christel J.; Fuller, George M.; Smith, Michael S.

    2009-05-15

    We have performed new big bang nucleosynthesis calculations, which employ arbitrarily specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate, and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early Universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally determined primordial helium and deuterium abundances. We have modified a standard big bang nucleosynthesis code to perform these calculations and have made it available to the community.

  3. Effects of axions on nucleosynthesis in massive stars

    NASA Astrophysics Data System (ADS)

    Aoyama, Shohei; Suzuki, Takeru K.

    2015-09-01

    We investigate the effect of axion cooling on nucleosynthesis in a massive star with 16 M⊙ by a standard stellar evolution calculation. We find that axion cooling suppresses nuclear reactions in carbon, oxygen, and silicon burning phases because of the extraction of the energy. As a result, larger amounts of the already synthesized neon and magnesium remain without being consumed to produce further, heavier elements. Even in the case with axion-photon coupling constant ga γ=10-11 GeV-1 , which is six times smaller than the current upper limit, the amount of neon and magnesium that remain just before the core-collapse supernova explosion is considerably larger than the standard value. This implies that we could give a more stringent constraint on ga γ from the nucleosynthesis of heavy elements in massive stars.

  4. The r-, s-, and p-Processes in Nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    1994-01-01

    A goal of this paper is to review the recent progress astrophysicists, astronomers, and physicists have made in the r-, s-, and p-processes in nucleosynthesis and to point out the problems that remain in our understanding of the formation of the heavy nuclei. Another, perhaps deeper, goal is to to seek some understanding of why there are three major processes available to nature for synthesis of heavy elements.

  5. Topical Collaboration "Neutrinos and Nucleosynthesis in Hot and Dense Matter"

    SciTech Connect

    Allahverdi, Rouzbeh

    2015-09-18

    This is the final technical report describing contributions from the University of New Mexico to Topical Collaboration on "Neutrinos and Nucleosynthesis in Hot and Dense Matter" in the period June 2010 through May 2015. During the funding period, the University of New Mexico successfully hired Huaiyu Duan as a new faculty member with the support from DOE, who has contributed to the Topical Collaboration through his research and collaborations.

  6. Solar-system abundances and processes of nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Woolum, Dorothy S.

    1988-01-01

    The origin of the elements is studied. The average elemental composition of the solar system is examined and used to infer the primordial solar system abundances of the individual nuclides. Patterns in these nuclide abundances are used as clues to their origin. The possible cosmic significance of the patterns are considered. The astrophysical settings for nucleosynthesis and the chemical evolution of the Galaxy and information based on observed isotopic anomalies in meteorites are taken into account.

  7. {beta}-decay of {sup 23}Al and nova nucleosynthesis

    SciTech Connect

    Saastamoinen, A.; Jokinen, A.; Aeystoe, J.; Trache, L.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Banu, A.; Bentley, M. A.; Jenkins, D. G.; Davinson, T.; Woods, P. J.

    2010-11-24

    We have studied the {beta}-decay of {sup 23}Al with a novel detector setup at the focal plane of the MARS separator at the Texas A and M University to resolve existing controversies about the proton intensities of the IAS in {sup 23}Mg and to determine the absolute proton branching ratios by combining our results to the latest {gamma}-decay data. Experimental technique, results and the relevance for nova nucleosynthesis are discussed.

  8. Antimatter regions in the early universe and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kurki-Suonio, Hannu; Sihvola, Elina

    2000-11-01

    We have studied big bang nucleosynthesis in the presence of regions of antimatter. Depending on the distance scale of the antimatter region, and thus the epoch of their annihilation, the amount of antimatter in the early universe is constrained by the observed abundances. Small regions, which annihilate after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He yield, because of neutron annihilation. Large regions, which annihilate after nucleosynthesis, lead to an increased 3He yield. Deuterium production is also affected but not as much. The three most important production mechanisms of 3He are (1) photodisintegration of 4He by the annihilation radiation, (2) p¯4He annihilation, and (3) n¯4He annihilation by ``secondary'' antineutrons produced in 4He¯ annihilation. Although p¯4He annihilation produces more 3He than the secondary n¯4He annihilation, the products of the latter survive later annihilation much better, since they are distributed further away from the annihilation zone. Our results are in qualitative agreement with similar work by Rehm and Jedamzik, but we get a larger 3He yield.

  9. The composition of freshly-formed dust in recent (post-)AGB thermal pulses

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak

    2013-01-01

    We recently discovered a candidate Asymptotic Giant Branch (AGB) star undergoing a thermal pulse (TP). WISE J1810--3305 is one of only two sources in the WISE sky survey which show very red WISE colors but a very blue 2MASS [K] vs. WISE [W1 (3.4 mu m)] color, and drastic brightening at 12 mu m since IRAS observation. This favours a scenario in which we have caught a massive dust ejection event during a TP that began only ~15 years ago. The other source is Sakurai's object, which also underwent a massive dust expulsion around the same time, but is in a later evolutionary (post-AGB) phase. Few firm constraints exist on the TP stage because of its brevity. These objects provide a unique opportunity for understanding TP evolution and dust production in real-time. Here we propose COMICS spectroscopy of WISE J1810--3305 in order to study the composition of the circumstellar dust. We will search for molecular bands, and identify whether the central object is an Oxygen or Carbon rich AGB star. We also propose identical spectroscopy of Sakurai's object in order to compare AGB with post-AGB evolution. These objects are presently brightest in the mid-IR, and COMICS is the only ground-based mid-IR camera with the requisite capability for observation.

  10. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.

    PubMed

    Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C

    2006-12-01

    Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

  11. STANDARD BIG BANG NUCLEOSYNTHESIS UP TO CNO WITH AN IMPROVED EXTENDED NUCLEAR NETWORK

    SciTech Connect

    Coc, Alain; Saimpert, Matthias; Vangioni, Elisabeth

    2012-01-10

    Primordial or big bang nucleosynthesis (BBN) is one of the three strong pieces of evidence for the big bang model together with the expansion of the universe and cosmic microwave background radiation. In this study, we improve the standard BBN calculations taking into account new nuclear physics analyses and enlarge the nuclear network up to sodium. This is, in particular, important to evaluate the primitive value of CNO mass fraction that could affect Population III stellar evolution. For the first time we list the complete network of more than 400 reactions with references to the origin of the rates, including Almost-Equal-To 270 reaction rates calculated using the TALYS code. Together with the cosmological light elements, we calculate the primordial beryllium, boron, carbon, nitrogen, and oxygen nuclei. We performed a sensitivity study to identify the important reactions for CNO, {sup 9}Be, and boron nucleosynthesis. We re-evaluated those important reaction rates using experimental data and/or theoretical evaluations. The results are compared with precedent calculations: a primordial beryllium abundance increase by a factor of four compared to its previous evaluation, but we note a stability for B/H and for the CNO/H abundance ratio that remains close to its previous value of 0.7 Multiplication-Sign 10{sup -15}. On the other hand, the extension of the nuclear network has not changed the {sup 7}Li value, so its abundance is still 3-4 times greater than its observed spectroscopic value.

  12. Standard Big Bang Nucleosynthesis up to CNO with an Improved Extended Nuclear Network

    NASA Astrophysics Data System (ADS)

    Coc, Alain; Goriely, Stéphane; Xu, Yi; Saimpert, Matthias; Vangioni, Elisabeth

    2012-01-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three strong pieces of evidence for the big bang model together with the expansion of the universe and cosmic microwave background radiation. In this study, we improve the standard BBN calculations taking into account new nuclear physics analyses and enlarge the nuclear network up to sodium. This is, in particular, important to evaluate the primitive value of CNO mass fraction that could affect Population III stellar evolution. For the first time we list the complete network of more than 400 reactions with references to the origin of the rates, including ≈270 reaction rates calculated using the TALYS code. Together with the cosmological light elements, we calculate the primordial beryllium, boron, carbon, nitrogen, and oxygen nuclei. We performed a sensitivity study to identify the important reactions for CNO, 9Be, and boron nucleosynthesis. We re-evaluated those important reaction rates using experimental data and/or theoretical evaluations. The results are compared with precedent calculations: a primordial beryllium abundance increase by a factor of four compared to its previous evaluation, but we note a stability for B/H and for the CNO/H abundance ratio that remains close to its previous value of 0.7 × 10-15. On the other hand, the extension of the nuclear network has not changed the 7Li value, so its abundance is still 3-4 times greater than its observed spectroscopic value.

  13. Big Bang nucleosynthesis: Accelerator tests and can. cap omega. /sub B/ really be large

    SciTech Connect

    Schramm, D.N.

    1987-10-01

    The first collider tests of cosmological theory are now underway. The number of neutrino families in nature, N/sub nu/, plays a key role in elementary particle physics as well as in the synthesis of the light elements during the early evolution of the Universe. Standard Big Bang Nucleosynthesis argues for N/sub nu/ = 3 +- 1. Current limits on N/sub nu/ from the CERN anti pp collider and e/sup +/e/sup -/ colliders are presented and compared to the cosmological bound. Supernova SN 1987A is also shown to give a limit on N/sub nu/ comparable to current accelerator bounds. All numbers are found to be small thus verifying the Big Bang model at an earlier epoch than is possible by traditional astronomical observations. Future measurements at SLC and LEP will further tighten this argument. Another key prediction of the standard Big Bang Nucleosynthesis is that the baryon density must be small (..cap omega../sub B/ less than or equal to 0.1). Recent attempts to try to subvert this argument using homogeneities of various types are shown to run afoul of the /sup 7/Li abundance which has now become a rather firm constraint. 18 refs., 2 figs.

  14. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

    SciTech Connect

    Eggleton, P P; Dearborn, D P; Lattanzio, J

    2006-07-26

    Low-mass stars, {approx} 1-2 solar masses, near the Main Sequence are efficient at producing {sup 3}He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of {sup 3}He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that {sup 3}He production in low-mass stars poses to the Big Bang nucleosynthesis of {sup 3}He.

  15. Neutron excess number and nucleosynthesis of heavy elements in a type Ia supernova explosion

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Korneev, I. Y.; Blinnikov, S. I.; Röpke, F.

    2016-04-01

    Type Ia supernovae produce very powerful burst of light, which can be observed to high redshift. This fact is very attractive for cosmological applications. For supernova light curve modeling, it is very important to know the amount of Fe and Ni, formed during the explosion. In this paper, we explore both the chemical composition of the ejected supernova shells and the possibility of weak r-process under increased neutron excess number based on a set of trajectories of tracer particles, calculated in a hydrodynamic model of SNIa explosion. It is shown that no r-process elements are synthesized in the considered supernova model, even for an increased neutron excess number ( Y e ˜ 0.4) because of the slow evolution of temperature and density along chosen trajectories. The results of explosive nucleosynthesis are discussed.

  16. VizieR Online Data Catalog: Torun catalog of post-AGB and related objects (Szczerba+, 2007)

    NASA Astrophysics Data System (ADS)

    Szczerba, R.; Siodmiak, N.; Stasinska, G.; Borkowski, J.

    2007-09-01

    With the ongoing AKARI infrared sky survey, of much greater sensitivity than IRAS, a wealth of post-AGB objects may be discovered. It is thus time to organize our present knowledge of known post-AGB stars in the galaxy with a view to using it to search for new post-AGB objects among AKARI sources. We searched the literature available on the NASA Astrophysics Data System up to 1 October 2006, and defined criteria for classifying sources into three categories: very likely, possible and disqualified post-AGB objects. The category of very likely post-AGB objects is made up of several classes. We have created an evolutionary, on-line catalogue of Galactic post-AGB objects, to be referred to as the Torun catalogue of Galactic post-AGB and related objects. The present version of the catalogue contains 326 very likely, 107 possible and 64 disqualified objects. For the very likely post-AGB objects, the catalogue gives the available optical and infrared photometry, infrared spectroscopy and spectral types, and links to finding charts and bibliography. (3 data files).

  17. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  18. VizieR Online Data Catalog: Obscured AGB in Magellanic Clouds. I. (Loup+ 1997)

    NASA Astrophysics Data System (ADS)

    Loup, C.; Zijlstra, A. A.; Waters, L. B. F. M.; Groenewegen, M. A. T.

    1997-02-01

    We have selected 198 IRAS sources in the Large Magellanic Cloud, and 11 in the Small Magellanic Cloud, which are the best candidates to be mass-loosing AGB stars (or possibly post-AGB stars). We used the catalogues of Schwering & Israel (1990, Cat. ) and Reid et al. (1990, Cat. ). They are based on the IRAS pointed observations and have lower detection limits than the Point Source Catalogue. We also made cross-identifications between IRAS sources and optical catalogues. (8 data files).

  19. Primordial nucleosynthesis and Dirac's large numbers hypothesis

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1980-01-01

    Consideration is given to the analysis of Falik (1979) which attempted to show that the cosmological model proposed by Canuto and Hsieh (1978) in which the gravitational constant varies with time contradicts observations of primordial helium. It is shown that the analysis was based on the assumptions that (1) the energy density of radiation in local thermodynamic equilibrium is approximately equal to the fourth power of the equilibrium temperature, where the product of the equilibrium temperature with the scale factor of the Robertson-Walker metric is constant, and (2) the gravitational constant is approximately equal to the inverse of the time even at early cosmological epochs. These assumptions are demonstrated to be invalid in the scale covariant theory of gravitation used to develop the model, thus negating the conclusion that the Canuto and Hsieh model excludes the primordial synthesis of helium.

  20. Stellar Nucleosynthesis in the Hyades Open Cluster

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; King, Jeremy R.; The, Lih-Sin

    2009-08-01

    We report a comprehensive light-element (Li, C, N, O, Na, Mg, and Al) abundance analysis of three solar-type main sequence (MS) dwarfs and three red giant branch (RGB) clump stars in the Hyades open cluster using high-resolution and high signal-to-noise spectroscopy. The abundances have been derived in a self-consistent fashion, and for each group (MS or RGB), the CNO abundances are found to be in excellent star-to-star agreement. Using the dwarfs to infer the initial composition of the giants, the combined abundance patterns confirm that the giants have undergone the first dredge-up and that material processed by the CN cycle has been mixed to the surface layers. The observed abundances are compared to predictions of a standard stellar model based on the Clemson-American University of Beirut (CAUB) stellar evolution code. The model reproduces the observed evolution of the N and O abundances, as well as the previously derived 12C/13C ratio, but it fails to predict by a factor of 1.5 the observed level of 12C depletion. A similar discord appears to exist in previously reported observed and modeled C abundances of giants in the Galactic disk. Random uncertainties in the mean abundances and uncertainties related to possible systematic errors in the Hyades dwarf and giant parameter scales cannot account for the discrepancy in the observed and modeled abundances. Li abundances are derived to determine if noncanonical extra mixing, like that seen in low-mass metal-poor giants, has occurred in the Hyades giants. The Li abundance of the giant γ Tau is in good accord with the predicted level of surface Li dilution, but a ~0.35 dex spread in the giant Li abundances is found and cannot be explained by the stellar model. Possible sources of the spread are discussed; however, it is apparent that the differential mechanism responsible for the Li dispersion must be unrelated to the uniformly low 12C abundances of the giants. Na, Mg, and Al abundances are derived as an additional

  1. NanoSIMS STUDIES OF SMALL PRESOLAR SiC GRAINS: NEW INSIGHTS INTO SUPERNOVA NUCLEOSYNTHESIS, CHEMISTRY, AND DUST FORMATION

    SciTech Connect

    Hoppe, Peter; Leitner, Jan; Groener, Elmar; Marhas, Kuljeet K.; Meyer, Bradley S.; Amari, Sachiko

    2010-08-20

    We have studied more than 2000 presolar silicon carbide (SiC) grains from the Murchison CM2 chondrite in the size range 0.2-0.5 {mu}m for C- and Si-isotopic compositions. In a subset of these grains, we also measured N-, Mg-Al-, S-, and Ca-Ti-isotopic compositions as well as trace element concentrations. The overall picture emerging from the isotope data is quite comparable with that of larger grains, except for the abundances of grains from Type II supernovae (SNeII) and low-metallicity asymptotic giant branch (AGB) stars. Especially, the latter are much more abundant among submicrometer-sized grains than among micrometer-sized grains. This implies that SiC grains from lower-than-solar-metallicity AGB stars are on average smaller than those from solar metallicity AGB stars which provided the majority of presolar SiC grains. We identified five grains with large enrichments in {sup 29}Si (up to 3.5x solar) and {sup 30}Si (up to 3.9x solar in three of these grains). These grains are most likely from SNeII. The isotopically light S ({sup 32}S/{sup 34}S of 2x solar) together with the heavy Si in one of these grains suggests that molecule formation precedes macroscopic mixing and dust formation in SNII ejecta. This adds to the complexity of SN mixing calculations and should be considered in future studies. In total, about 2% of the presolar SiC grains in the size range 0.2-0.5 {mu}m appear to come from SNeII. This is about a factor of 2 higher than for micrometer-sized grains and suggests that SNeII, on average, produce smaller SiC grains than solar metallicity AGB stars. The high {sup 29}Si/{sup 30}Si ratio in one of the SN grains suggests that current SN models underestimate the {sup 29}Si production in the C- and Ne-burning regions by about a factor of 2. It is shown that with this adjustment the solar {sup 29}Si/{sup 28}Si ratio can be well reproduced in Galactic chemical evolution models and that a merger of our Galaxy with a low-metallicity satellite some 1.5 Gyr

  2. The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Goriely, S.

    2003-09-01

    The p-process of stellar nucleosynthesis is aimed at explaining the production of the stable neutron-deficient nuclides heavier than iron that are observed up to now in the solar system exclusively. Various scenarios have been proposed to account for the bulk p-nuclide content of the solar system, as well as for deviations (`anomalies') with respect to the bulk p-isotope composition of some elements discovered in primitive meteorites. The astrophysics of these models is reviewed, and the involved nuclear physics is discussed, including a brief account of recent experimental efforts. Already published results are complemented with new ones. A specific attention is paid to the very rare odd-odd nuclides 138La and 180Tam, as well as to the puzzling case of the light Mo and Ru isotopes. Astrophysics and nuclear physics prospects of improvements in the p-process modeling are presented.

  3. Big-bang nucleosynthesis and the baryon density of the universe.

    PubMed

    Copi, C J; Schramm, D N; Turner, M S

    1995-01-13

    For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.

  4. Nucleosynthesis in novae - A source of Ne-E and Al-26

    NASA Technical Reports Server (NTRS)

    Hillebrandt, W.; Thielemann, F.-K.

    1982-01-01

    It is shown upon computation of the nucleosynthesis products of explosive hydrogen burning, in the framework of recent nova models, that nova condensates will probably contain isotopic anomalies in Ne-22, from Na-22 decay, and Mg-26, from Al-26 decay. It is found, for all the models considered, that while too much Ne-20 and -21 is produced relative to Ne-22 to explain the presumably almost pure Ne-22 meteoritic Ne-E component, the Na-22 abundance is high enough to explain Ne-E as its decay product if nova condensates are preserved in Ne samples. It is also determined that while Al-26 is coproduced with Na-22, its total amount strongly depends on the uncertain, Si-27(p, gamma)P-28 reaction rate. The abundances of all nuclides, up to Ar, are computed and found to be clearly nonsolar in many cases.

  5. Big-bang nucleosynthesis and WIMP dark matter in modified gravity

    NASA Astrophysics Data System (ADS)

    Kang, Jin U.; Panotopoulos, Grigoris

    2009-06-01

    In the present work the primordial Big-Bang Nucleosynthesis (BBN) and weakly interacting massive particle (WIMP) dark matter are discussed in a certain class of modified gravitational theories, namely f(R)˜R gravity. The new gravitational model is characterized by a single parameter n. First we determine the conditions under which the theoretical predictions for the 4He abundance are in agreement with the observations. More precisely, during BBN the physics is known and all the parameters are known. The only free parameter to be constrained is the power n related to the new gravitational model. After that, for cold dark matter we use the value of n determined from the BBN considerations and determine how the mass of the dark matter particle is related to the annihilation cross section in order for the cold dark matter constraint to be satisfied.

  6. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    SciTech Connect

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

  7. Neutron Capture Rates and r-PROCESS Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Surman, R. A.; Mumpower, M. R.; McLaughlin, G. C.; Sinclair, R.; Hix, W. R.; Jones, K. L.

    2013-03-01

    Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and β decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A ~ 80 and rare earth peaks.

  8. Nucleosynthesis in the Magellanic Clouds and the Galaxy.

    NASA Technical Reports Server (NTRS)

    Burbidge, G.

    1971-01-01

    Available evidence on the chemical composition of the Magellanic Clouds (when compared to the Galaxy) is not sufficient for a detailed theory of the chemical evolution of the Clouds to be developed at present. However, this evidence is thus far compatible with the view that much of the material of the Clouds went through a considerable amount of nucleosynthesis early in its history. The Clouds could once have been part of the Galaxy, or they could have formed as satellites when the protogalaxy condensed. The general problem of the chemical evolution is tied closely to the problem of galaxy formation which remains unsolved.

  9. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  10. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    NASA Technical Reports Server (NTRS)

    Audouze, J.; Lindley, D.; Silk, J.

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements (H-2, He-3, He-4, and Li-7) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate He-4 (formed in the standard hot big bang) to produce H-2 and He-3. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that He-4 is synthesized by a later generation of massive stars.

  11. Let's go: Early universe 2. Primordial nucleosynthesis the computer way

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence

    1992-01-01

    This is a revised description and manual for the primordial nucleosynthesis program, NUC123, an updated and modified version of the code of R.V. Wagoner. NUC123 has undergone a number of changes, further enhancing its documentation and ease of use. Presented here is a guide to its use, followed by a series of appendices containing specific details such as a summary of the basic structure of the program, a description of the computational algorithm, and a presentation of the theory incorporated into the program.

  12. Experimental studies of reactions relevant for γ-process nucleosynthesis

    SciTech Connect

    Scholz, P.; Endres, J.; Hennig, A.; Mayer, J.; Netterdon, L.; Zilges, A.; Sauerwein, A.

    2014-05-09

    We report on our recent experimental studies of reactions relevant for the γ process nucleosynthesis. Applying the activation method using the Cologne Clover Counting Setup total cross sections of the reactions {sup 168}Yb(α,γ), {sup 168}Yb(α,n), and {sup 187}Re(α,n) could be obtained. Furthermore, the reaction {sup 89}Y(p,γ) was investigated via the in-beam technique with HPGe detectors at the high-efficiency g-ray spectrometer HORUS in Cologne in order to determine partial and total cross sections.

  13. Sodium abundances of AGB and RGB stars in Galactic globular clusters. I. Analysis and results of NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-07-01

    Context. Galactic globular clusters (GC) are known to have multiple stellar populations and be characterised by similar chemical features, e.g. O-Na anti-correlation. While second-population stars, identified by their Na overabundance, have been found from the main sequence turn-off up to the tip of the red giant branch (RGB) in various Galactic GCs, asymptotic giant branch (AGB) stars have rarely been targeted. The recent finding that NGC 6752 lacks an Na-rich AGB star has thus triggered new studies on AGB stars in GCs, since this result questions our basic understanding of GC formation and stellar evolution theory. Aims: We aim to compare the Na abundance distributions of AGB and RGB stars in Galactic GCs and investigate whether the presence of Na-rich stars on the AGB is metallicity-dependent. Methods: With high-resolution spectra obtained with the multi-object high-resolution spectrograph FLAMES on ESO/VLT, we derived accurate Na abundances for 31 AGB and 40 RGB stars in the Galactic GC NGC 2808. Results: We find that NGC 2808 has a mean metallicity of -1.11 ± 0.08 dex, in good agreement with earlier analyses. Comparable Na abundance dispersions are derived for our AGB and RGB samples, with the AGB stars being slightly more concentrated than the RGB stars. The ratios of Na-poor first-population to Na-rich second-population stars are 45:55 in the AGB sample and 48:52 in the RGB sample. Conclusions: NGC 2808 has Na-rich second-population AGB stars, which turn out to be even more numerous - in relative terms - than their Na-poor AGB counterparts and the Na-rich stars on the RGB. Our findings are well reproduced by the fast rotating massive stars scenario and they do not contradict the recent results that there is not an Na-rich AGB star in NGC 6752. NGC 2808 thus joins the larger group of Galactic GCs for which Na-rich second-population stars on the AGB have recently been found. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  14. The nucleosynthesis of deterium and helium-3

    NASA Technical Reports Server (NTRS)

    Lavrukhina, A. K.; Kuznetsova, R. I.

    1985-01-01

    A new model of the creation of D and 3He in supernova of the first generation was considered. It is based on the idea that a supernova event leads simultaneously to acceleration of particles in the shock wave front and to their interactions with supernova atmosphere matter. The D, 3He, Li, Be, B and bypassed isotopes are created in these interactions. The cosmic abundances of the bypassed isotopes with A or = 113 allowed to determine the integral proton flux I sub p (E sub p 25 MeV) = 5 x 10 to the 21/sq cm the spectral index - gamma = 3. The calculations of the D and 3He yields in various nuclear reactions at these irradiation conditions show that only the 4He(p,d)3He reaction leads to cosmic abundances of these isotopes on the assumption that all matter has been exposed.

  15. THE IMPACT OF HELIUM-BURNING REACTION RATES ON MASSIVE STAR EVOLUTION AND NUCLEOSYNTHESIS

    SciTech Connect

    West, Christopher; Heger, Alexander; Austin, Sam M. E-mail: alexander.heger@monash.edu

    2013-05-20

    We study the sensitivity of presupernova evolution and supernova nucleosynthesis yields of massive stars to variations of the helium-burning reaction rates within the range of their uncertainties. The current solar abundances from Lodders are used for the initial stellar composition. We compute a grid of 12 initial stellar masses and 176 models per stellar mass to explore the effects of independently varying the {sup 12}C({alpha}, {gamma}){sup 16}O and 3{alpha} reaction rates, denoted R{sub {alpha},12} and R{sub 3{alpha}}, respectively. The production factors of both the intermediate-mass elements (A = 16-40) and the s-only isotopes along the weak s-process path ({sup 70}Ge, {sup 76}Se, {sup 80}Kr, {sup 82}Kr, {sup 86}Sr, and {sup 87}Sr) were found to be in reasonable agreement with predictions for variations of R{sub 3{alpha}} and R{sub {alpha},12} of {+-}25%; the s-only isotopes, however, tend to favor higher values of R{sub 3{alpha}} than the intermediate-mass isotopes. The experimental uncertainty (one standard deviation) in R{sub 3{alpha}}(R{sub {alpha},12}) is approximately {+-}10%({+-}25%). The results show that a more accurate measurement of one of these rates would decrease the uncertainty in the other as inferred from the present calculations. We also observe sharp changes in production factors and standard deviations for small changes in the reaction rates, due to differences in the convection structure of the star. The compactness parameter was used to assess which models would likely explode as successful supernovae, and hence contribute explosive nucleosynthesis yields. We also provide the approximate remnant masses for each model and the carbon mass fractions at the end of core-helium burning as a key parameter for later evolution stages.

  16. Diffuse galactic annihilation radiation from supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.

    1985-01-01

    The propagation of MeV positrons in the outer ejecta of type I supernovae was investigated. It was found that the positrons created at times of approx 100 days propagated along magnetic field lines in the outer ejecta without any appreciable pitch-angle scattering or excitation of hydromagnetic waves. The lack of significant pitch-angle scattering is well consistent with models of wave excitation and scattering by resonant interactions. This occurs because time periods to scatter the particles or to excite waves are significantly longer than escape times. Thus it is expected that, when positrons are not coupled to the ejecta by Coulomb collisions, they escape from the relatively cold, dense ejecta and reside predominantly in the tenuous, hotter, shock-heated interstellar gas. In the tenuous shock-heated gas the positron lifetime against annihilation is much greater than lifetimes in the dense ejectra. Thus the production of steady-state diffuse annihilation radiation by some fraction of these escaped positrons seems probable.

  17. p-process nucleosynthesis: Activation experiments

    NASA Astrophysics Data System (ADS)

    Glorius, J.; Knörzer, M.; Müller, S.; Pietralla, N.; Sauerwein, A.; Sonnabend, K.; Wälzlein, C.; Wiescher, M.

    2011-04-01

    For the astrophysical p process a complex reaction network has to be solved. In the order of 10,000 theoretically predicted reaction rates are needed for simulations of this network. For reactions involving α particles or protons, the predictions in the framework of the Hauser-Feshbach (HF) model were found to deviate from experimental results partially by a factor of 5 or even more. To optimize the predictive power of the applied HF codes, the nuclear physics input has to be improved. For this purpose, the reactions 166ErTm(p,n) as well as the reaction 170Yb(γ,n) have been measured with the activation method at low energies. The data can provide a further test of HF predictions but can also be used to optimize input parameters of the afore mentioned codes. Preliminary results of the experiments are presented and compared to theoretical predictions using the standard settings of the HF codes NON-SMOKER and TALYS.

  18. FUV and Optical Spectroscopy of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Dixon, William V.

    2004-01-01

    The goal of this program was to determine the atmospheric parameters (effective temperature and surface gravity) and abundances of the hot, post-AGB (PAGB) stars in globular clusters observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-l and 2 missions.

  19. Iron and Nickel Isotopic Compositions of Presolar Silicon Carbide Grains from AGB Stars Measured with CHILI

    NASA Astrophysics Data System (ADS)

    Trappitsch, R.; Stephan, T.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Gyngard, F.; Bisterzo, S.; Gallino, R.; Dauphas, N.

    2016-08-01

    Simultaneous iron and nickel isotopic studies in presolar SiC mainstream grains measured on CHILI show the expected AGB star anomalies in the neutron-rich isotopes. Neutron-poor isotopes are dominated by GCE and show clear correlations with silicon.

  20. Nucleosynthesis in neutrino-driven, aspherical supernovae of population III stars

    SciTech Connect

    Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Ono, Masaomi; Kotake, Kei

    2012-11-12

    We examine explosive nucleosynthesis during neutrino-driven, aspherical supernovae of Population III stars, based on two-dimensional (2D) hydrodynamic simulations of the explosion of 11-40M{sub Circled-Dot-Operator} stars with zero metallicity. The magnitude and asymmetry of the explosion energy are estimated with the simulations. By post-processing calculations with a large nuclear reaction network, we have evaluated abundances and masses of ejecta from the aspherical SNe. We find that the evaluated abundance patterns are similar to those observed in extremely metal poor stars, as shown in spherical and 2D models, in which the explosion is manually and spherically initiated. Matter mixing induced via standing accretion shock instability is important for the abundances and masses of the SN ejecta.

  1. r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Ruffert, Maximilian; Janka, Hans-Thomas; Hix, William Raphael

    2008-01-01

    We consider hot accretion disk outflows from black hole-neutron star mergers in the context of the nucleosynthesis they produce. We begin with a three-dimensional numerical model of a black hole-neutron star merger and calculate the neutrino and antineutrino fluxes emitted from the resulting accretion disk. We then follow the element synthesis in material outflowing the disk along parameterized trajectories. We find that at least a weak r-process is produced, and in some cases a main r-process as well. The neutron-rich conditions required for this production of r-process nuclei stem directly from the interactions of the neutrinos emitted by the disk with the free neutrons and protons in the outflow.

  2. r-Process Nucleosynthesis in Black Hole-Neutron Star Mergers

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Ruffert, Maximilian; Janka, Hans-Thomas; Hix, William Raphael

    2008-01-01

    Compact object mergers have long been speculated to be a possible site of r-process nucleosynthesis. While most attention has been focused on the cold decompression of neutron star matter ejected from the merger, other sites within the merger likely contribute to its nucleosynthetic output. Here we consider hot outflows from the accretion disk that forms around the black hole following a black hole- neutron star merger. We begin with the results of a three-dimensional numerical merger model and carefully calculate the neutrino and antineutrino fluxes emitted from the accretion disk. We find that neutrino interactions on free nucleons in the outflowing material result in neutron excesses such that at least a weak r-process is produced and in some cases a main r-process as well. Additionally, we find that the weak r-process pattern calculated for certain trajectories compares favorably to the pattern observed in a weak r-process-enhanced halo star.

  3. r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole - Neutron Star Mergers

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Ruffert, Maximilian; Janka, Hans-Thomas; Hix, William Raphael

    2008-01-01

    We consider hot accretion disk outflows from black hole-neutron star mergers in the context of the nucleosynthesis they produce. We begin with a three-dimensional numerical model of a black hole-neutron star merger and calculate the neutrino and antineutrino fluxes emitted from the resulting accretion disk. We then follow the element synthesis in material outflowing the disk along parameterized trajectories. We find that at least a weak r-process is produced, and in some cases a main r-process as well. The neutron-rich conditions required for this production of r-process nuclei stem directly from the interactions of the neutrinos emitted by the disk with the free neutrons and protons in the outflow.

  4. Aspherical nucleosynthesis in a core-collapse supernova with 25 M {sub ☉} standard progenitor

    SciTech Connect

    Popov, M. V.; Filina, A. A.; Baranov, A. A.; Chardonnet, P.; Chechetkin, V. M.

    2014-03-01

    The problem of nucleosynthesis was studied within an aspherical supernova model. The explosive burning was computed in a star of 25 M {sub ☉} initial mass on its final stage of evolution. The chemical composition of a presupernova was taken from realistic evolutionary computations. A piecewise parabolic method on a local stencil was applied to simulate the hydrodynamics of the explosion. The gravity was recomputed by a Poisson solver on a fine grid as the explosion developed. A detailed yield of chemical elements was performed as a post-processing step using the tracer particles method. The produced nuclei formed a layer-like structure enclosing large fragments of nickel and iron-group isotopes that were pushed away from the central region by an explosion along the polar direction. The light nuclei were preferentially moving along the equatorial plane forming a torus-like structure.

  5. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    PubMed

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova. PMID:23383895

  6. Beta-decay spectroscopy relevant to the r-process nucleosynthesis

    SciTech Connect

    Nishimura, Shunji; Collaboration: RIBF Decay Collaboration

    2012-11-12

    A scientific program of beta-decay spectroscopy relevant to r-process nucleosynthesis has been started using high intensity U-beam at the RIBF. The first results of {beta}-decay half-lives of very neutron-rich Kr to Tc nuclides, all of which lie close to the r-process path, suggest a systematic enhancement of the the {beta}-decay rates of the Zr and Nb isotopes around A110 with respect to the predictions of the deformed quasiparticle-random-phase-approximation model (FRDM + QRPA). An impact of the results on the astrophysical r-process is discussed together with the future perspective of the {beta}-decay spectroscopy with the EURICA.

  7. Stellar and primordial nucleosynthesis of 7Be: measurement of 3He(alpha,gamma)7Be.

    PubMed

    Di Leva, A; Gialanella, L; Kunz, R; Rogalla, D; Schürmann, D; Strieder, F; De Cesare, M; De Cesare, N; D'Onofrio, A; Fülöp, Z; Gyürky, G; Imbriani, G; Mangano, G; Ordine, A; Roca, V; Rolfs, C; Romano, M; Somorjai, E; Terrasi, F

    2009-06-12

    The 3He(alpha,gamma)7Be reaction presently represents the largest nuclear uncertainty in the predicted solar neutrino flux and has important implications on the big bang nucleosynthesis, i.e., the production of primordial 7Li. We present here the results of an experiment using the recoil separator ERNA (European Recoil separator for Nuclear Astrophysics) to detect directly the 7Be ejectiles. In addition, off-beam activation and coincidence gamma-ray measurements were performed at selected energies. At energies above 1 MeV a large discrepancy compared to previous results is observed both in the absolute value and in the energy dependence of the cross section. Based on the available data and models, a robust estimate of the cross section at the astrophysical relevant energies is proposed. PMID:19658929

  8. Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    NASA Astrophysics Data System (ADS)

    Tveten, G. M.; Spyrou, A.; Schwengner, R.; Naqvi, F.; Larsen, A. C.; Eriksen, T. K.; Bello Garrote, F. L.; Bernstein, L. A.; Bleuel, D. L.; Crespo Campo, L.; Guttormsen, M.; Giacoppo, F.; Görgen, A.; Hagen, T. W.; Hadynska-Klek, K.; Klintefjord, M.; Meyer, B. S.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.

    2016-08-01

    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme astrophysical environments. A particularly challenging part of that question is the creation of the so-called p -nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average γ strength function of 92Mo. State-of-the-art p -process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the 91Nb(p ,γ )92Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92Mo. Based on our results, we conclude that the 92Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.

  9. The search for the site of the r-process. [rapid neutron capture in stellar nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Cameron, A. G. W.; Truran, J. W.; Sneden, Christopher

    1986-01-01

    A number of sites have been suggested for the r-process, including neutronized cores of exploding supernovae, jets of neutronized matter ejected from the collapse of rotating magnetized stellar cores, the helium and carbon zones of stars undergoing supernova explosions, and helium core flashes in low-mass stars. Despite much work and many advances in nuclear physics, the site or sites of the r-process is still unknown. Observations of metal-poor stars in the halo of the Galaxy indicate r-process production early in the history of the Galaxy and provide important constraints on galactic nucleosynthesis. Further observations of metal-poor stars, along with advances in understanding the nuclear properties of neutron-rich nuclei and improved astrophysical models of stars in the late stages of evolution, should help to identify the site of the r-process.

  10. Measurement of the Ca40(α,γ)Ti44 reaction relevant for supernova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Ouellet, C. O.; The, L.-S.; Buchmann, L.; Caggiano, J.; Chen, A. A.; Crawford, H.; D'Auria, J. M.; Davids, B.; Fogarty, L.; Frekers, D.; Hussein, A.; Hutcheon, D. A.; Kutschera, W.; Laird, A. M.; Lewis, R.; O'Connor, E.; Ottewell, D.; Paul, M.; Pavan, M. M.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Wales, B.; Wallner, A.

    2007-09-01

    The short-lived nuclide Ti44 is an important nuclide for the understanding of explosive nucleosynthesis. The main production reaction, Ca40(α,γ)Ti44, has been studied in inverse kinematics with the recoil mass spectrometer DRAGON located at the TRIUMF-ISAC facility in Vancouver, Canada. The temperature range relevant for α-rich freeze-out during a core-collapse supernova has been covered entirely with a Ca40 beam of 0.60 to 1.15 MeV/nucleon. All relevant quantities for the calculation of the astrophysical reaction rate have been measured directly. Because of many previously undiscovered resonances, the reaction rate derived from the energy dependent Ti44 yield is higher than the one based on previous prompt γ-ray studies commonly used in supernova models. The presented new rate results in an increased Ti44 production in supernovae.

  11. Stellar and primordial nucleosynthesis of 7Be: measurement of 3He(alpha,gamma)7Be.

    PubMed

    Di Leva, A; Gialanella, L; Kunz, R; Rogalla, D; Schürmann, D; Strieder, F; De Cesare, M; De Cesare, N; D'Onofrio, A; Fülöp, Z; Gyürky, G; Imbriani, G; Mangano, G; Ordine, A; Roca, V; Rolfs, C; Romano, M; Somorjai, E; Terrasi, F

    2009-06-12

    The 3He(alpha,gamma)7Be reaction presently represents the largest nuclear uncertainty in the predicted solar neutrino flux and has important implications on the big bang nucleosynthesis, i.e., the production of primordial 7Li. We present here the results of an experiment using the recoil separator ERNA (European Recoil separator for Nuclear Astrophysics) to detect directly the 7Be ejectiles. In addition, off-beam activation and coincidence gamma-ray measurements were performed at selected energies. At energies above 1 MeV a large discrepancy compared to previous results is observed both in the absolute value and in the energy dependence of the cross section. Based on the available data and models, a robust estimate of the cross section at the astrophysical relevant energies is proposed.

  12. Low-lying resonances and relativistic screening in Big Bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Famiano, M. A.; Balantekin, A. B.; Kajino, T.

    2016-04-01

    We explore effects of the screening due to the relativistic electron-positron plasma and presence of resonances in the secondary reactions leading to A =7 nuclei during the Big Bang nucleosynthesis. In particular, we investigate and examine possible low-lying resonances in the 7Be (3He,γ ) 10C reaction and examine the resultant destruction of 7Be for various resonance locations and strengths. While a resonance in the 10C compound nucleus is thought to have negligible effects we explore the possibility of an enhancement from plasma screening that may adjust the final 7Be abundance. We find the effects of relativistic screening and possible low-lying resonances to be relatively small in the standard Early Universe models.

  13. Radial-Velocity Analysis of the Post-AGB Star, HD101584

    NASA Astrophysics Data System (ADS)

    Díaz, F.; Hearnshaw, J.; Rosenzweig, P.; Guzman, E.; Sivarani, T.; Parthasarathy, M.

    2007-08-01

    This project concerns the analysis of the periodicity of the radial velocity of the peculiar emission-line supergiant star HD 101584 (F0 Ia), and also we propose a physical model to account for the observations. From its peculiarities, HD 101584 is a star that is in the post-AGB phase. This study is considered as a key to clarify the multiple aspects related with the evolution of the circum-stellar layer associated with this star's last phase. The star shows many lines with P Cygni profiles, including H-alpha, Na D lines in the IR Ca triplet, indicating a mass outflow. For HD 101584 we have performed a detailed study of its radial-velocity variations, using both emission and absorption lines over a wide range of wavelength. We have analyzed the variability and found a periodicity for all types of lines of 144 days, which must arise from the star's membership in a binary system. The data span a period of five consecutive years and were obtained using the 1-m telescope of Mt John Observatory, in New Zealand., with the echelle and Hercules high resolution spectrographs and CCD camera. HD101584 is known to be an IRAS source, and our model suggests it is a proto-planetary nebula, probably with a bipolar outflow and surrounded by a dusty disk as part of a binary system. We have found no evidence for HD101584 to contain a B9 star as found by Bakker et al (1996). A low resolution IUE spectrum shows the absence of any strong UV continuum that would be expected for a B star to be in this system.

  14. Neutron-capture nucleosynthesis in the first stars

    SciTech Connect

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  15. Challenges in nucleosynthesis of trans-iron elements

    SciTech Connect

    Rauscher, T.

    2014-04-15

    Nucleosynthesis beyond Fe poses additional challenges not encountered when studying astrophysical processes involving light nuclei. Astrophysical sites and conditions are not well known for some of the processes involved. On the nuclear physics side, different approaches are required, both in theory and experiment. The main differences and most important considerations are presented for a selection of nucleosynthesis processes and reactions, specifically the s-, r-, γ-, and νp-processes. Among the discussed issues are uncertainties in sites and production conditions, the difference between laboratory and stellar rates, reaction mechanisms, important transitions, thermal population of excited states, and uncertainty estimates for stellar rates. The utility and limitations of indirect experimental approaches are also addressed. The presentation should not be viewed as confining the discussed problems to the specific processes. The intention is to generally introduce the concepts and possible pitfalls along with some examples. Similar problems may apply to further astrophysical processes involving nuclei from the Fe region upward and/or at high plasma temperatures. The framework and strategies presented here are intended to aid the conception of future experimental and theoretical approaches.

  16. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Lawler, James E.; Sneden, Christopher; DenHartog, E. A.; Collier, Jason; Dodge, Homer L.

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy the progenitors of the halo stars responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingly consistent with a (relative) Solar System r-process pattern, and are also consistent with abundance predictions expected from such neutron-capture nucleosynthesis.

  17. Big Bang nucleosynthesis, microwave anisotropy, and the light element abundances

    NASA Astrophysics Data System (ADS)

    Coc, A.; Angulo, C.; Vangioni-Flam, E.; Descouvemont, P.; Adahchour, A.

    2005-04-01

    From the observations of the anisotropies of the Cosmic Microwave Background (CMB) radiation, the WMAP satellite has provided a determination of the baryonic density of the Universe, with an unprecedented precision: 4%. This imposes a careful reanalysis of the standard Big-Bang Nucleosynthesis (SBBN) calculations. In a recent paper, we used the R-matrix theory to fit S-factor data on nuclear reactions involved in Big Bang nucleosynthesis. We derived the reaction rates with associated uncertainties, which were evaluated on statistical grounds (available at http://pntpm3.ulb.ac.be/bigbang). Combining these BBN results with the Ωbh2 value from WMAP, we deduced the light element (4He, D,3He and 7Li) primordial abundances and compare them with spectroscopic observations. There is a very good agreement with deuterium observed in cosmological clouds, which strengthens the confidence on the estimated baryonic density of the Universe. However, there is a discrepancy between the deduced 7Li abundance and the one observed in halo stars of our Galaxy, supposed, until now, to represent the primordial abundance of this isotope. The origin of this discrepancy, observational, nuclear or more fundamental remains to be clarified. The possible role of the up to now neglected 7Be(d,p)2α and 7Be(d,α)5Li reactions is considered and we present here a dedicated experiment performed at Louvain-la-Neuve to measure these cross sections.

  18. Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite

    SciTech Connect

    Amari, Sachiko; Zinner, Ernst; Gallino, Roberto

    2014-05-02

    Pesolar graphite grains exhibit a range of densities (1.65 – 2.20 g/cm{sup 3}). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractions KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with {sup 86}Kr/{sup 82}Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of

  19. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Marcucci, L. E.; Mangano, G.; Kievsky, A.; Viviani, M.

    2016-03-01

    The astrophysical S factor for the radiative capture d (p ,γ ) 3He in the energy range of interest for big bang nucleosynthesis (BBN) is calculated using an ab initio approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions—the Argonne v18 and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the 1 /m leading order contribution (m is the nucleon mass), also the next-to-leading order term, proportional to 1 /m3. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the A =3 bound and scattering states. Particular attention is paid in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical S factor of the order or below ˜1 %. Then, in this energy range, the S factor is found to be ˜10 % larger than the currently adopted values. Part of this increase (1%-3%) is due to the 1 /m3 one-body operator, while the remaining is due to the new more accurate scattering wave functions. We have studied the implication of this new determination for the d (p ,γ )3He S factor on the deuterium primordial abundance. We find that the predicted theoretical value for 2H/H is in excellent agreement with its experimental determination, using the most recent determination of the baryon density of the Planck experiment, and with a standard number of relativistic degrees of freedom Neff=3.046 during primordial nucleosynthesis. This calls for a more accurate measurement of the astrophysical S factor in order to confirm the present predictions.

  20. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis.

    PubMed

    Marcucci, L E; Mangano, G; Kievsky, A; Viviani, M

    2016-03-11

    The astrophysical S factor for the radiative capture d(p,γ)^{3}He in the energy range of interest for big bang nucleosynthesis (BBN) is calculated using an ab initio approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions-the Argonne v_{18} and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the 1/m leading order contribution (m is the nucleon mass), also the next-to-leading order term, proportional to 1/m^{3}. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the A=3 bound and scattering states. Particular attention is paid in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical S factor of the order or below ∼1%. Then, in this energy range, the S factor is found to be ∼10% larger than the currently adopted values. Part of this increase (1%-3%) is due to the 1/m^{3} one-body operator, while the remaining is due to the new more accurate scattering wave functions. We have studied the implication of this new determination for the d(p,γ)^{3}He S factor on the deuterium primordial abundance. We find that the predicted theoretical value for ^{2}H/H is in excellent agreement with its experimental determination, using the most recent determination of the baryon density of the Planck experiment, and with a standard number of relativistic degrees of freedom N_{eff}=3.046 during primordial nucleosynthesis. This calls for a more accurate measurement of the astrophysical S factor in order to confirm the present predictions.

  1. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis.

    PubMed

    Marcucci, L E; Mangano, G; Kievsky, A; Viviani, M

    2016-03-11

    The astrophysical S factor for the radiative capture d(p,γ)^{3}He in the energy range of interest for big bang nucleosynthesis (BBN) is calculated using an ab initio approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions-the Argonne v_{18} and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the 1/m leading order contribution (m is the nucleon mass), also the next-to-leading order term, proportional to 1/m^{3}. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the A=3 bound and scattering states. Particular attention is paid in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical S factor of the order or below ∼1%. Then, in this energy range, the S factor is found to be ∼10% larger than the currently adopted values. Part of this increase (1%-3%) is due to the 1/m^{3} one-body operator, while the remaining is due to the new more accurate scattering wave functions. We have studied the implication of this new determination for the d(p,γ)^{3}He S factor on the deuterium primordial abundance. We find that the predicted theoretical value for ^{2}H/H is in excellent agreement with its experimental determination, using the most recent determination of the baryon density of the Planck experiment, and with a standard number of relativistic degrees of freedom N_{eff}=3.046 during primordial nucleosynthesis. This calls for a more accurate measurement of the astrophysical S factor in order to confirm the present predictions. PMID:27015474

  2. Using inertial fusion implosions to measure the T+He3 fusion cross section at nucleosynthesis-relevant energies

    DOE PAGES

    Zylstra, A. B.; Herrmann, H. W.; Johnson, M. Gatu; Kim, Y. H.; Frenje, J. A.; Hale, G.; Li, C. K.; Rubery, M.; Paris, M.; Bacher, A.; et al

    2016-07-11

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of 6Li in low-metallicity stars. Using high energy-density plasmas we measure the T(3He,γ)6Li reaction rate, a candidate for anomalously high 6Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. In conclusion, this is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  3. Using Inertial Fusion Implosions to Measure the T+^{3}He Fusion Cross Section at Nucleosynthesis-Relevant Energies.

    PubMed

    Zylstra, A B; Herrmann, H W; Johnson, M Gatu; Kim, Y H; Frenje, J A; Hale, G; Li, C K; Rubery, M; Paris, M; Bacher, A; Brune, C R; Forrest, C; Glebov, V Yu; Janezic, R; McNabb, D; Nikroo, A; Pino, J; Sangster, T C; Séguin, F H; Seka, W; Sio, H; Stoeckl, C; Petrasso, R D

    2016-07-15

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  4. Using Inertial Fusion Implosions to Measure the T + 3He Fusion Cross Section at Nucleosynthesis-Relevant Energies

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Herrmann, H. W.; Johnson, M. Gatu; Kim, Y. H.; Frenje, J. A.; Hale, G.; Li, C. K.; Rubery, M.; Paris, M.; Bacher, A.; Brune, C. R.; Forrest, C.; Glebov, V. Yu.; Janezic, R.; McNabb, D.; Nikroo, A.; Pino, J.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Sio, H.; Stoeckl, C.; Petrasso, R. D.

    2016-07-01

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of 6Li in in low-metallicity stars. Using high-energy-density plasmas we measure the T (3He, ,γ )6Li reaction rate, a candidate for anomalously high 6Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  5. Using Inertial Fusion Implosions to Measure the T+^{3}He Fusion Cross Section at Nucleosynthesis-Relevant Energies.

    PubMed

    Zylstra, A B; Herrmann, H W; Johnson, M Gatu; Kim, Y H; Frenje, J A; Hale, G; Li, C K; Rubery, M; Paris, M; Bacher, A; Brune, C R; Forrest, C; Glebov, V Yu; Janezic, R; McNabb, D; Nikroo, A; Pino, J; Sangster, T C; Séguin, F H; Seka, W; Sio, H; Stoeckl, C; Petrasso, R D

    2016-07-15

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics. PMID:27472118

  6. Measurement of Reactions on 30P for Nova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Guidry, M. W.; Hix, W. R.; Smith, M. S.

    2003-05-01

    Replace these paragraphs with your abstract. We encourage you to include a sentence acknowledging your funding agency. In a recent study the 30P(p,gamma)31S rate played a crucial role in the synthesis of heavier nuclear species, from Si to Ca, in nova outbursts on ONe White Dwarfs [1]. The adopted rate of this reaction, based on a Hauser-Feshbach calculation [2], has a large uncertainty and could be as much as a factor of 100 too high or too low [3]. In their study, Jose et al.[1] varied the 30P(p,gamma)31S reaction rate within this uncertainty and found that, when rate is reduced by a factor of 100, the synthesis of elements above Si is lowered by a factor 10 with respect to the values found with the nominal rate. This has important consequences for nova nucleosynthesis, as overproduction of isotopes in the Si to Ca mass region has been observed in the ejecta from some nova explosions (e.g.,[4,5]). While generally valid at higher temperatures, Hauser-Feshbach calculations of the rates at nova temperatures can have large uncertainties. At these temperatures, the rate is more likely dominated by a few individual nuclear resonances. At present there are about 10 31S resonances known above the 30P + p threshold that may contribute to the 30P(p,gamma)31S reaction rate at nova temperatures. The excitation energies of these levels are known but spins and parities (for all but two) are not. We plan to measure the 30P(p,p)30P and 30P(p,gamma)31S reactions at HRIBF to better determine this reaction rate. A detailed description of the experiments will be given. We are also conducting a new nova nucleosynthesis simulation over multiple spatial zones of the exploding envelope to investigate the influence of the 30P(p,gamma)31S reaction rate on nova nucleosynthesis. The results of these calculations will be discussed. 1. Jose , J., Coc, A., Hernanz, M., Astrophys. J., 560, 897(2001). 2. Thielemann, F.-K et al., 1987, Advances in Nuclear Astrophysics, ed. E. Vangioni-Flam ( Gif

  7. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  8. [Nucleosynthesis, Rotation and Magnetism in Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars

    2004-01-01

    This is my final report on the NASA ATP grant on nucleosynthesis, rotation and magnetism in accreting neutron stars (NAG5-8658). In my last two reports, I summarized the science that I have accomplished, which covered a large range of topics. For this report, I want to point out the graduate students that were partially supported on this grant and where they are now. Andrew Cumming is an Assistant Professor of Physics at McGill University, Greg Ushomirsky is a researcher at MIT s Lincoln Laboratories, Dean Townsley is a postdoctoral researcher at Univ. of Chicago, Chris Deloye is a postdoctoral researcher at Northwestern University. The other two students, Phil Chang and Tony Piro, are still at UCSB and will be completing their PhD s in Summer 05 and Summer 06.

  9. Effects of ordinary and superconducting cosmic strings on primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.; Turner, Michael S.

    1988-01-01

    A precise calculation is done of the primordial nucleosynthesis constraint on the energy per length of ordinary and superconducting cosmic strings. A general formula is provided for the constraint on the string tension for ordinary strings. Using the current values for the various parameters that describe the evolution of loops, the constraint for ordinary strings is G mu less than 2.2 x 10 to the minus 5 power. Our constraint is weaker than previously quoted limits by a factor of approximately 5. For superconducting loops, with currents generated by primordial magnetic fields, the constraint can be less or more stringent than this limit, depending on the strength of the magnetic field. It is also found in this case that there is a negligible amount of entropy production if the electromagnetic radiation from strings thermalizes with the radiation background.

  10. Weak interaction rate Coulomb corrections in big bang nucleosynthesis

    SciTech Connect

    Smith, Christel J.; Fuller, George M.

    2010-03-15

    We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest {approx}0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN, and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.

  11. Nucleosynthesis in jets from rotating magnetized stars during core collapse

    SciTech Connect

    Fujimoto, Shin-ichirou; Nishimura, Nobuya; Hashimoto, Masa-aki

    2008-05-12

    We investigate nucleosynthesis inside magnetically driven jets ejected from rotating, magnetized massive stars, or collapsars, based on long-term, magnetohydrodynamic simulations of the core collapse of six collapsars with the various distributions of magnetic fields and angular momentum before the collapse. We follow the evolution of the abundances of about 4000 nuclides from the collapse phase to the ejection phase and through the jet generation phase using a large nuclear reaction network. We find that the r-process successfully operates in the jets from three collapsars, so that U and Th are synthesized abundantly, even when the collapsar have a relatively small magnetic field (10{sup 10} G) and a moderately rotating core before the collapse. The abundance patterns inside the jets are similar to that of the r-elements in the solar system.

  12. Nucleosynthesis in the neighborhood of a black hole

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Sandip K.

    1986-01-01

    The preliminary results from simulations of nucleosynthesis inside a thick accretion disk around a black hole are discussed as a function of the accretion rate, the viscosity parameter, and the mass of the black hole. Results for the Bondi accretion case are also presented. Taking the case of a 10-solar mass and a 10 to the 6th-solar mass central Schwarzschild hole, detailed evolution of a representative element of matter as it accretes into the hole is presented in the case when the initial abundance (at the outer edge of the disk) is the same as the solar abundance. It is suggested that such studies may eventually shed light on the composition of the outgoing jets observed in the active galaxies and SS433.

  13. The heavy element yields of neutron capture nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1982-01-01

    Consideration of the contribution made to the abundances of the heavy element isotopes by the S- and R-processes of nucleosynthesis has led to the determination that the previous assumption concerning the exclusive alignment of isobars to one or the other of these processes is probably in error. If the relatively small odd and even mass number abundance fluctuations characterizing R-process abundances are always the case, as assumed by this study, S-process contributions to the abundances of R-process isobars are substantial, consistent with transient flashing episodes in the S-process neutron production processes. A smooth and monotonically-decreasing curve of the abundance of the S-process yields times the neutron capture cross-section versus mass number is therefore the primary tool for the separation of the abundances due to the two processes.

  14. Outflows from neutron star merger remnant disks: nucleosynthesis and kilonovae

    NASA Astrophysics Data System (ADS)

    Fernandez, Rodrigo; Lippuner, Jonas; Roberts, Luke; Tchekhovskoy, Alexander; Foucart, Francois; Metzger, Brian; Kasen, Daniel; Quataert, Eliot

    2016-03-01

    The accretion disk formed in a neutron star merger can drive powerful winds on timescales of 100ms to seconds after coalescence. The wind material is more strongly irradiated by neutrinos than the dynamical ejecta, and hence has a less neutron-rich composition, with implications for r-process element synthesis and the radioactively-powered kilonova transient. This talk will present preliminary results from projects aimed at quantifying (1) the nucleosynthesis yield from disks around hypermassive neutron stars, (2) the effect of MHD turbulence on mass ejection when a black hole sits at the center, and (3) the interaction between disk wind and dynamical ejecta when the relative masses of these components vary.

  15. Neutrino nucleosynthesis in core-collapse Supernova explosions

    NASA Astrophysics Data System (ADS)

    Sieverding, A.; Huther, L.; Martínez-Pinedo, G.; Langanke, K.; Heger, A.

    2016-02-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 15 and 40 M⊙ has been studied. A new extensive set of neutrino-nucleus cross-sections for all the nuclei included in the reaction network is used and the average neutrino energies are reduced to agree with modern supernova simulations. Despite these changes the ν process is found to contribute still significantly to the production of the nuclei 7Li, 11B, 19F, 138La and 180Ta, even though the total yields for those nuclei are reduced. Furthermore we study in detail contributions of the ν process to the production of radioactive isotopes 26Al, 22Na and confirm the production of 92Nb and 98Tc.

  16. Explosive Nucleosynthesis:. Supernovae, Classical Novae, & X-Ray Bursts

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2006-08-01

    The first nucleosynthetic processes occurred about 200 seconds after the Big Bang, when the Universe was cool enough to allow the formation of light elements. Hydrogen, Helium-4, and traces of only a handful of isotopes (c.f., Deuterium, Helium-3, and Lithium-7), constitute the legacy of this primordial nucleosynthesis, that lasted only about 10 minutes. Synthesis of heavier species requires stellar furnaces and more or less violent events that provide a suitable way to contaminate this pristine primordial material, and therefore had to wait for the formation and evolution of the first stars. This took place about 180 Myr after the Big Bang, according to the recent analysis of the cosmic microwave background performed with the WMAP satellite. In this paper, we outline the nuclear processes associated with explosive stellar sites, namely supernovae, classical novae and x-ray bursts, and their interplay with the Galactic abundances.

  17. Experimental developments for the study of explosive nucleosynthesis in stars

    NASA Astrophysics Data System (ADS)

    Erikson, Luke

    For several years now, the n-SNS collaboration has been working to place a small neutrino detector at the Spallation Neutron Source at Oak Ridge National Lab. If successful, the experiment may produce the needed neutrino-nucleus cross sections on solid targets such as iron and aluminum. These reaction probabilities are of great interest for a number of reasons, including: neutrino astronomy, explosive nucleosynthesis, and nuclear structure. However, success for this project requires a very efficient cosmic ray detector to exclude backgrounds. The system would need to be ~99% efficient while remaining affordable in a difficult financial climate for basic science. The first half of this thesis addresses a prototype cosmic ray veto based on extruded scintillator with embedded wave-length-shifting fibers. This approach has been successfully used before, and may provide the performance needed for this project. However, our results suggest some additional research and development would be required to meet the requirements for the n-SNS experiment. The second half of this thesis relates to experimental work to study the resonance strength of the 23 Mg(p,g) 24 Al reaction. For this purpose a radioactive ion beam experiment has been conducted at TRIUMF using the DRAGON experiment. This reaction is thought to play an important role during explosive nucleosynthesis such as novae and X-ray bursts. If so, then accurate knowledge of this break-out reaction would help explain the isotopic abundances around that mass range in the universe. Our results suggest the rate of this reaction at astrophysically relevant energies is lower than predicted and might further exclude explosive binary systems as the production site for such elements as 26 Al.

  18. The effects of variations in nuclear interactions on nucleosynthesis in thermonuclear supernovae

    NASA Astrophysics Data System (ADS)

    Parikh, A.; José, J.; Seitenzahl, I. R.; Röpke, F. K.

    2013-09-01

    Context. Type Ia supernova explosions are violent stellar events important for their contribution to the cosmic abundance of iron peak elements and for their role as cosmological distance indicators. Aims: The impact of nuclear physics uncertainties on nucleosynthesis in thermonuclear supernovae has not been fully explored using comprehensive and systematic studies with multiple models. To better constrain predictions of yields from these phenomena, we investigate thermonuclear reaction rates and weak interaction rates that significantly affect yields in our underlying models. Methods: We have performed a sensitivity study by postprocessing thermodynamic histories from two different hydrodynamic, Chandrasekhar-mass explosion models. We have individually varied all input reaction and, for the first time, weak interaction rates by a factor of ten (up and down) and compared the yields in each case to yields using standard rates. Results: Of the 2305 nuclear reactions in our network, we find that in either model the rates of only 53 reactions affect the yield of any species with an abundance of at least 10-8 M⊙ by at least a factor of two. The rates of the 12C(α,γ), 12C+12C, 20Ne(α,p), 20Ne(α,γ), and 30Si(p,γ) reactions are among those that modify the most yields when varied by a factor of ten. From the individual variation of 658 weak interaction rates in our network by a factor of ten, only the stellar 28Si(β+)28Al, 32S(β+)32P, and 36Ar(β+)36Cl rates significantly affect the yields of species in a model. Additional tests reveal that reaction rate changes over temperatures T > 1.5 GK have the greatest impact and that ratios of radionuclides that may be used as explosion diagnostics change by a factor of ≲2 from the variation of individual rates by a factor of ten. Conclusions: Nucleosynthesis in the two adopted models is relatively robust to variations in individual nuclear reaction and weak interaction rates. Laboratory measurements of a limited number

  19. An ALMA view of the post-AGB object HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W.; Maercker, M.; Humphreys, E.; Lindqvist, M.; Nyman, L.; Ramstedt, S.

    2016-07-01

    ALMA cycles 1 and 3 observations of CO isotopologues and 1.3mm continuum are used in a study of the circumstellar environment of the binary HD 101584, a post-AGB star and a low-mass companion that is most likely a post-common-envelope-evolution system. These data are supplemented with new information from OH maser emission. It is inferred that the large- scale circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic, ≥⃒ 150 km s-1, jet. Significant amount of material still resides in the central region. It is proposed that the circumstellar morphology is related to an event which took place ≤⃒ 500 yr ago, possibly a capture event where the companion spiralled in towards the AGB star. Several observed features remain to be explained, and may hint to a more complicated scenario.

  20. A chemically peculiar post-AGB star in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Van Winckel, H.; De Smedt, K.; Wood, P. R.

    2016-07-01

    Post-Asymptotic Giant Branch (post-AGB) stars bear signatures of the entire chemical and morphological changes that occur prior to and during the AGB phase of evolution. These objects also provide vital clues on the ultimate fate of the star. Detailed chemical abundance studies of some of these objects have shown that they are chemically much more diverse than anticipated. As expected, some are the most s-process enriched objects known to date while others are not s-process enriched. Our recent study has revealed a star in the Small Magellanic Cloud, J005252.87-722842.9, which displays a peculiar chemical signature that does not correspond to the expected chemical diversity observed in these objects. This unique object reveals the possibility of a new stellar evolutionary channel where the star evolves without any third dredge-up episodes or during its evolution becomes devoid of its nucleosynthetic history.

  1. Variability And Mass-loss From Agb Stars In The Lmc

    NASA Astrophysics Data System (ADS)

    Riebel, David; Meixner, M.; Srinivasan, S.; Fraser, O.; Babler, B.; Block, M.; Bracker, S.; Engelbracht, S.; Gordon, K.; Hora, J.; Indebetouw, R.; Leitherer, C.; Meade, M.; Misselt, K.; Whitney, B.; Sewilo, M.; Vijh, U.

    2009-01-01

    Mass loss from evolved stars on the Asymptotic Giant Branch (AGB) is an important factor in both stellar and galactic evolution; the total amount of mass lost determines the star's eventual fate as a compact object and plays a significant role in the chemical enrichment of the interstellar medium. We combine excess infrared emission derived by Srinivasan et al. (2008) from the Spitzer SAGE survey of the LMC (Meixner, et al. 2006) with variability parameters derived from the MACHO survey (Fraser, et al. 2008, in press) to examine the effects of stellar variability on mass loss from evolved stars on the AGB. We find that stellar populations differing in chemical composition show different relationships between mass loss and the period and amplitude of variation, while general trends of increasing mass loss with increasing variability are visible in all populations.

  2. The Nearby AGB Star L2 Puppis: The Birth Of a Planetary Nebula?

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Lagadec, E.

    2015-12-01

    Adaptive optics observations in the infrared (VLT/NACO, Kervella et al. [6]) and visible (VLT/SPHERE, Kervella et al. [7]) domains revealed that the nearby AGB star L2 Pup (d = 64 pc) is surrounded by a dust disk seen almost edge-on. Thermal emission from a large dust "loop" is detected at 4 μm up to more than 10 AU from the star. We also detect a secondary source at a separation of 32 mas, whose nature is uncertain. L2 Pup is currently a relatively "young" AGB star, so we may witness the formation of a planetary nebula. The mechanism that breaks the spherical symmetry of mass loss is currently uncertain, but we propose that the dust disk and companion are key elements in the shaping of the bipolar structure. L2 Pup emerges as an important system to test this hypothesis.

  3. SiO masers from AGB stars in the vibrationally excited v = 1, v = 2, and v = 3 states

    NASA Astrophysics Data System (ADS)

    Desmurs, J.-F.; Bujarrabal, V.; Lindqvist, M.; Alcolea, J.; Soria-Ruiz, R.; Bergman, P.

    2014-05-01

    Context. The v = 1 and v = 2 J = 1-0 (43 GHz), and v = 1 J = 2-1 (86 GHz) SiO masers are intense in asymptotic giant branch (AGB) stars and have been mapped using very long baseline interferometry (VLBI) showing ring-like distributions. Those of the v = 1, v = 2 J = 1-0 masers are similar, but the spots are rarely coincident, while the v = 1 J = 2-1 maser arises from a well-separated region farther out. These relative locations can be explained by models tools that include the overlap of two IR lines of SiO and H2O. The v = 3 J = 1-0 line is not directly affected by any line overlap and its spot structure and position, relative to the other lines, is a good test to the standard pumping models. Aims: The aim of this project are to gain insight into the properties and the general theoretical considerations of the different SiO masers that can help to understand them. Methods: We present single-dish and simultaneous VLBI observations of the v = 1, v = 2, and v = 3 J = 1-0 maser transitions of 28SiO in several AGB stars. The results are compared to the predictions of radiative models of SiO masers that both include and not include the effect of IR line overlap. Results: The spatial distribution of the SiO maser emission in the v = 3 J = 1-0 transition from AGB stars is systematically composed of a series of spots that occupy a ring-like structure (as often found in SiO masers). The overall ring structure is extremely similar to that found in the other 43 GHz transitions and is very different from the structure of the v = 1 J = 2-1 maser. The positions of the individual spots of the different 43 GHz lines are, however, very rarely coincident, which in general is separated by about 0.3 AU (between 1 and 5 mas). These results are very difficult to reconcile with standard pumping models, which predict that the masers of rotational transitions within a given vibrational state require very similar excitation conditions (since the levels are placed practically at the same

  4. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis

    SciTech Connect

    Woosley, Stan

    2014-08-29

    Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

  5. Heavy sterile neutrinos: bounds from big-bang nucleosynthesis and SN 1987A

    NASA Astrophysics Data System (ADS)

    Dolgov, A. D.; Hansen, S. H.; Raffelt, G.; Semikoz, D. V.

    2000-12-01

    Cosmological and astrophysical effects of heavy (10-200 MeV) sterile Dirac neutrinos, mixed with the active ones, are considered. The bounds on mass and mixing angle from both supernovae and big-bang nucleosynthesis are presented.

  6. Review of Big Bang Nucleosynthesis and Primordial Abundances

    NASA Astrophysics Data System (ADS)

    Tytler, David; O'Meara, John M.; Suzuki, Nao; Lubin, Dan

    2001-03-01

    Big Bang Nucleosynthesis (BBN) is the synthesis of the light nuclei, Deuterium (D or 2H), 3He, 4He and 7Li during the first few minutes of the universe. This review concentrates on recent improvements in the measurement of the primordial (after BBN, and prior to modification) abundances of these nuclei. We mention improvement in the standard theory, and the non-standard extensions which are limited by the data. We have achieved an order of magnitude improvement in the precision of the measurement of primordial D/H, using the HIRES spectrograph on the W. M. Keck telescope to measure D in gas with very nearly primordial abundances towards quasars. From 1994 - 1996, it appeared that there could be a factor of ten range in primordial D/H, but today four examples of low D are secure. High D/H should be much easier to detect, and since there are no convincing examples, it must be extremely rare or non-existent. All data are consistent with a single low value for D/H, and the examples which are consistent with high D/H are readily interpreted as H contamination near the position of D. The new D/H measurements give the most accurate value for the baryon to photon ratio, η, and hence the cosmological baryon density. A similar density is required to explain the amount of Lyα absorption from neutral Hydrogen in the intergalactic medium (IGM) at redshift z ≃ 3, and to explain the fraction of baryons in local clusters of galaxies. The D/H measurements lead to predictions for the abundances of the other light nuclei, which generally agree with measurements. The remaining differences with some measurements can be explained by a combination of measurement and analysis errors or changes in the abundances after BBN. The measurements do not require physics beyond the standard BBN model. Instead, the agreement between the abundances is used to limit the non-standard physics. New measurements are giving improved understanding of the difficulties in estimating the abundances of all

  7. Impacts of Tree Height-Dbh Allometry on Lidar-Based Tree Aboveground Biomass Modeling

    NASA Astrophysics Data System (ADS)

    Fang, R.

    2016-06-01

    Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.

  8. The boron-to-beryllium ratio in halo stars - A signature of cosmic-ray nucleosynthesis in the early Galaxy

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.

    1993-01-01

    We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.

  9. Study of the inner dust envelope and stellar photosphere of the AGB star R Doradus using SPHERE/ZIMPOL

    NASA Astrophysics Data System (ADS)

    Khouri, T.; Maercker, M.; Waters, L. B. F. M.; Vlemmings, W. H. T.; Kervella, P.; de Koter, A.; Ginski, C.; De Beck, E.; Decin, L.; Min, M.; Dominik, C.; O'Gorman, E.; Schmid, H.-M.; Lombaert, R.; Lagadec, E.

    2016-06-01

    Context. On the asymptotic giant branch (AGB) low- and intermediate-mass stars eject a large fraction of their envelope, but the mechanism driving these outflows is still poorly understood. For oxygen-rich AGB stars, the wind is thought to be driven by radiation pressure caused by scattering of radiation off dust grains. Aims: We study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We focus on investigating the spatial distribution of the dust grains that scatter light and whether these grains can be responsible for driving the outflow of this star. Methods: We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study R Dor and its inner envelope in a novel way. We present observations in filters V, cntHα, and cnt820 and investigate the surface brightness distribution of the star and of the polarised light produced in the inner envelope. Thanks to second-epoch observations in cntHα, we are able to see variability on the stellar photosphere. We study the polarised-light data using a continuum-radiative-transfer code that accounts for direction-dependent scattering of photons off dust grains. Results: We find that in the first epoch the surface brightness of R Dor is asymmetric in V and cntHα, the filters where molecular opacity is stronger, while in cnt820 the surface brightness is closer to being axisymmetric. The second-epoch observations in cntHα show that the morphology of R Dor has changed completely in a timespan of 48 days to a more axisymmetric and compact configuration. This variable morphology is probably linked to changes in the opacity provided by TiO molecules in the extended atmosphere. The observations show polarised light coming from a region around the central star. The inner radius of the region from where polarised light is seen varies only by a small amount with azimuth. The value of the polarised intensity, however, varies by between a factor of 2.3 and 3.7 with

  10. Dust formation in the oxygen-rich AGB star IK Tauri

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cherchneff, I.; Sarangi, A.; Plane, J. M. C.; Bromley, S. T.

    2016-01-01

    Aims: We model the synthesis of molecules and dust in the inner wind of the oxygen-rich Mira-type star IK Tau by considering the effects of periodic shocks induced by the stellar pulsation on the gas and by following the non-equilibrium chemistry in the shocked gas layers between 1 R⋆ and 10 R⋆. We consider a very complete set of molecules and dust clusters, and combine the nucleation phase of dust formation with the condensation of these clusters into dust grains. We also test the impact of increasing the local gas density. Our derived molecular abundances and dust properties are compared to the most recent observational data. Methods: A semi-analytical formalism based on parameterised fluid equations is used to describe the gas density, velocity, and temperature in the inner wind. The chemistry is described by using a chemical kinetic network of reactions and the condensation mechanism is described by a Brownian formalism. A set of stiff, ordinary, coupled differential equations is solved, and molecular abundances, dust cluster abundances, grain size distributions and dust masses are derived. Results: The shocks drive an active non-equilibrium chemistry in the dust formation zone of IK Tau where the collision destruction of CO in the post-shock gas triggers the formation of C-bearing species such as HCN and CS. Most of the modelled molecular abundances agree well with the latest values derived from Herschel data, except for SO2 and NH3, whose formation may not occur in the inner wind. Clusters of alumina, Al2O3, are produced within 2 R⋆ and lead to a population of alumina grains close to the stellar surface. Clusters of silicates (Mg2SiO4) form at larger radii (r> 3R⋆), where their nucleation is triggered by the formation of HSiO and H2SiO. They efficiently condense and reach their final grain size distribution between ~6 R⋆ and 8 R⋆ with a major population of medium size grains peaking at ~200 Å. This two dust-shell configuration agrees with recent

  11. Review of Big Bang Nucleosynthesis and Primordial Abundances

    NASA Astrophysics Data System (ADS)

    Tytler, David; O'Meara, John M.; Suzuki, Nao; Lubin, Dan

    2001-03-01

    Big Bang Nucleosynthesis (BBN) is the synthesis of the light nuclei, Deuterium (D or 2H), 3He, 4He and 7Li during the first few minutes of the universe. This review concentrates on recent improvements in the measurement of the primordial (after BBN, and prior to modification) abundances of these nuclei. We mention improvement in the standard theory, and the non-standard extensions which are limited by the data. We have achieved an order of magnitude improvement in the precision of the measurement of primordial D/H, using the HIRES spectrograph on the W. M. Keck telescope to measure D in gas with very nearly primordial abundances towards quasars. From 1994 - 1996, it appeared that there could be a factor of ten range in primordial D/H, but today four examples of low D are secure. High D/H should be much easier to detect, and since there are no convincing examples, it must be extremely rare or non-existent. All data are consistent with a single low value for D/H, and the examples which are consistent with high D/H are readily interpreted as H contamination near the position of D. The new D/H measurements give the most accurate value for the baryon to photon ratio, η, and hence the cosmological baryon density. A similar density is required to explain the amount of Lyα absorption from neutral Hydrogen in the intergalactic medium (IGM) at redshift z ≃ 3, and to explain the fraction of baryons in local clusters of galaxies. The D/H measurements lead to predictions for the abundances of the other light nuclei, which generally agree with measurements. The remaining differences with some measurements can be explained by a combination of measurement and analysis errors or changes in the abundances after BBN. The measurements do not require physics beyond the standard BBN model. Instead, the agreement between the abundances is used to limit the non-standard physics. New measurements are giving improved understanding of the difficulties in estimating the abundances of all

  12. Nucleosynthesis Modes in the High-Entropy-Wind Scenario of Type II Supernovae

    SciTech Connect

    Farouqi, K.; Kratz, K.-L.; Cowan, J. J.; Mashonkina, L. I.; Pfeiffer, B.; Sneden, C.; Thielemann, F.-K.; Truran, J. W.

    2008-03-11

    In an attempt to constrain the astrophysical conditions for the nucleosynthesis of the classical r-process elements beyond Fe, we have performed large-scale dynamical network calculations within the model of an adiabatically expanding high- entropy wind (HEW) of type II supernovae (SN II). A superposition of several entropy-components (S) with model-inherent weightings results in an excellent reproduction of the overall Solar System (SS) isotopic r-process residuals (N{sub r,{center_dot}}), as well as the more recent observations of elemental abundances of metal-poor, r-process rich halo stars in the early Galaxy. For the heavy r-process elements beyond Sn, our HEW model predicts a robust abundance pattern up to the Th, U r-chronometer region. For the lighter neutron-capture region, an S-dependent superposition of (i) a normal {alpha}-component directly producing stable nuclei, including s-only isotopes, and (ii) a component from a neutron-rich {alpha}-freezeout followed by the rapid recapture of {beta}-delayed neutrons ({beta}dnrpar; emitted from the far-unstable seed nuclei is indicated. In agreement with several recent halo-star observations in the 60model confirms a Z-dependent non-correlation, respectively partial correlation with the heavier 'main' r-process elements.

  13. Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T.; Groenewegen, M. A. T.; Kerschbaum, F.; Cernicharo, J.; Vandenbussche, B.; Waelkens, C.

    2016-04-01

    Context. The recent detection of warm H2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2O molecules in the intermediate wind. Aims: We aim to determine the properties of H2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2O formation pathway. Methods: Using far-infrared spectra taken with the PACS instrument onboard the Herschel telescope, we combined two methods to identify H2O emission trends and interpreted these in terms of theoretically expected patterns in the H2O abundance. Through the use of line-strength ratios, we analyzed the correlation between the strength of H2O emission and the mass-loss rate of the objects, as well as the radial dependence of the H2O abundance in the circumstellar outflow per individual source. We computed a model grid to account for radiative-transfer effects in the line strengths. Results: We detect warm H2O emission close to or inside the wind acceleration zone of all sample stars, irrespective of their stellar or circumstellar properties. The predicted H2O abundances in carbon-rich environments are in the range of 10-6 up to 10-4 for Miras and semiregular-a objects, and cluster around 10-6 for semiregular-b objects. These predictions are up to three orders of magnitude greater than what is predicted by state-of-the-art chemical models. We find a negative correlation between the H2O/CO line-strength ratio and gas mass-loss rate for Ṁg> 5 × 10-7 M⊙ yr-1, regardless of the upper-level energy of the relevant transitions

  14. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  15. REVISED BIG BANG NUCLEOSYNTHESIS WITH LONG-LIVED, NEGATIVELY CHARGED MASSIVE PARTICLES: UPDATED RECOMBINATION RATES, PRIMORDIAL {sup 9}Be NUCLEOSYNTHESIS, AND IMPACT OF NEW {sup 6}Li LIMITS

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J. E-mail: kyungsik@kau.ac.kr E-mail: kajino@nao.ac.jp E-mail: gmathews@nd.edu

    2014-09-01

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X {sup –}, on big bang nucleosynthesis (BBN). The BBN model with an X {sup –} particle was originally motivated by the discrepancy between the {sup 6,} {sup 7}Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, {sup 7}Be is destroyed via the recombination with an X {sup –} particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of {sup 7}Be, {sup 7}Li, {sup 9}Be, and {sup 4}He with X {sup –}. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X {sup –} mass, m{sub X} ≳ 100 GeV, the d-wave → 2P transition is most important for {sup 7}Li and {sup 7,} {sup 9}Be, unlike recombination with electrons. Our new nonresonant rate of the {sup 7}Be recombination for m{sub X} = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for {sup 9}Be production: the recombination of {sup 7}Li and X {sup –} followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of {sup 7}Be destruction depends significantly on the charge distribution of {sup 7}Be. Finally, updated constraints on the initial abundance and the lifetime of the X {sup –} are derived in the context of revised upper limits to the primordial {sup 6}Li abundance. Parameter regions for the solution to the {sup 7}Li problem and the primordial {sup 9}Be abundances are revised.

  16. The r-process nucleosynthesis: Nuclear physics challenges

    SciTech Connect

    Goriely, S.

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  17. Stau-catalyzed big-bang nucleosynthesis reactions

    SciTech Connect

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X{sup -}) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X{sup -} particle has a lifetime of tau{sub X} > or approx. 10{sup 3} s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X{sup -} acts as a catalyst. Some of these X{sup -} catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  18. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    SciTech Connect

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-06-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M{sub c}entre dot star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L{sub n}u{sub e}>=3.9x10{sup 52}ergss{sup -1} and the as-pherical shock passes through the outer layers of the star (>=10,000 km), with the explosion energies of approx10{sup 51}ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and {sup 56}Ni correlate with the neutrino luminosity, and {sup 56}Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10{sup 51}ergs. We emphasize that {sup 64}Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  19. Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis

    SciTech Connect

    Ruchayskiy, Oleg; Ivashko, Artem E-mail: ivashko@lorentz.leidenuniv.nl

    2012-10-01

    We analyze the influence of sterile neutrinos with the masses in the MeV range on the primordial abundances of Helium-4 and Deuterium. We solve explicitly the Boltzmann equations for all particle species, taking into account neutrino flavour oscillations and demonstrate that the abundances are sensitive mostly to the sterile neutrino lifetime and only weakly to the way the active-sterile mixing is distributed between flavours. The decay of these particles also perturbs the spectra of (decoupled) neutrinos and heats photons, changing the ratio of neutrino to photon energy density, that can be interpreted as extra neutrino species at the recombination epoch. We derive upper bounds on the lifetime of sterile neutrinos based on both astrophysical and cosmological measurements of Helium-4 and Deuterium. We also demonstrate that the recent results of Izotov and Thuan [1], who find 2σ higher than predicted by the standard primordial nucleosynthesis value of Helium-4 abundance, are consistent with the presence in the plasma of sterile neutrinos with the lifetime 0.01–2 seconds.

  20. Effect of bound dineutrons upon big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; McLaughlin, Gail C.

    2004-08-01

    We have examined the effects of a bound dineutron 2n upon big bang nucleosynthesis (BBN) as a function of its binding energy B2n. We find a weakly bound dineutron has little impact but as B2n increases its presence begins to alter the flow of free nucleons to helium-4. Because of this disruption, and in the absence of changes to other binding energies or fundamental constants, BBN sets a reliable upper limit of B2n≲2.5 MeV in order to maintain the agreement with the observations of the primordial helium-4 mass fraction and D/H abundance. We also consider simultaneous variations in B2n and the deuteron binding energy BD using a simplified BBN calculation. We demonstrate that only when BD is very close to 1.7 MeV does the B2n upper limit increase to 3.5 MeV, a value set by incompatibility of an observed primordial A=2 abundance with the decay of deuterons.

  1. Supernova nucleosynthesis and the physics of neutrino oscillation

    SciTech Connect

    Kajino, Toshitaka

    2012-11-20

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like {sup 7}Li, {sup 11}B, {sup 138}La, {sup 180}Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, {theta}{sub 13} and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process {sup 11}B and {sup 7}Li encapsulated in the grains. Combining the recent experimental constraints on {theta}{sub 13}, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  2. A HIFI view on circumstellar H2O in M-type AGB stars: radiative transfer, velocity profiles, and H2O line cooling

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Danilovich, T.; Olofsson, H.; De Beck, E.; Justtanont, K.; Lombaert, R.; Royer, P.

    2016-06-01

    Aims: We aim to constrain the temperature and velocity structures, and H2O abundances in the winds of a sample of M-type asymptotic giant branch (AGB) stars. We further aim to determine the effect of H2O line cooling on the energy balance in the inner circumstellar envelope. Methods: We use two radiative-transfer codes to model molecular emission lines of CO and H2O towards four M-type AGB stars. We focus on spectrally resolved observations of CO and H2O from HIFI aboard the Herschel Space Observatory. The observations are complemented by ground-based CO observations, and spectrally unresolved CO and H2O observations with PACS aboard Herschel. The observed line profiles constrain the velocity structure throughout the circumstellar envelopes (CSEs), while the CO intensities constrain the temperature structure in the CSEs. The H2O observations constrain the o-H2O and p-H2O abundances relative to H2. Finally, the radiative-transfer modelling allows to solve the energy balance in the CSE, in principle including also H2O line cooling. Results: The fits to the line profiles only set moderate constraints on the velocity profile, indicating shallower acceleration profiles in the winds of M-type AGB stars than predicted by dynamical models, while the CO observations effectively constrain the temperature structure. Including H2O line cooling in the energy balance was only possible for the low-mass-loss-rate objects in the sample, and required an ad hoc adjustment of the dust velocity profile in order to counteract extreme cooling in the inner CSE. H2O line cooling was therefore excluded from the models. The constraints set on the temperature profile by the CO lines nevertheless allowed us to derive H2O abundances. The derived H2O abundances confirm previous estimates and are consistent with chemical models. However, the uncertainties in the derived abundances are relatively large, in particular for p-H2O, and consequently the derived o/p-H2O ratios are not well constrained.

  3. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, Marcelo Miguel

    2016-04-01

    Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at

  4. PREFACE: Nucleosynthesis and the role of neutrinos: state of the art and open issues Nucleosynthesis and the role of neutrinos: state of the art and open issues

    NASA Astrophysics Data System (ADS)

    Volpe, Cristina; Baha Balantekin, A.

    2014-04-01

    Understanding the origin of the elements around us is one of the main quests of modern science. Realizing that only a few of the lightest elements can have been produced in the early Universe because of the lack of stable nuclei with A = 5 and A = 8, and that stars need to be producing some of the heavier nuclei up to iron so they may shine were triumphs of nuclear physics in the first part of the 20th century. For the synthesis of heavier elements the situation is more complicated. In particular, the site of r-process nucleosynthesis is still an open question. Suggested sites for r-process nucleosynthesis include the high-temperature, high-entropy region outside the newly formed neutron star in a core-collapse supernova, 4He mantles of the metal-poor (i.e. early) supernova progenitors, neutron-star mergers and accretion discs around black holes. The nucleosynthetic outcomes in such sites depend on their neutron- or proton-richness, which is determined by the astrophysical conditions as well as the properties of exotic nuclei, far from the valley of stability. A key development during the last few decades has been the appreciation of the close relationship between neutrinos and nucleosynthesis as physicists and astronomers ascertained the fact that neutrino properties figure prominently in many astrophysical environments. Neutrinos are involved in different types of stellar nucleosynthesis processes: the v-process, the v p process and the r-process. These developments have occurred in parallel with the impressive progress in our understanding of neutrino masses and mixings as well as neutrino flavour conversion in astrophysical (and cosmological) environments. Neutrino interactions with protons and neutrons impact the conditions for proton or neutron richness of a given site. Further investigations are necessary in order to fully unravel neutrino flavour conversion phenomena in these environments and to establish how much these finally impact the nucleosynthesis

  5. Metallicity and the Nucleosynthesis of the Intermediate Mass Elements in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Chamulak, David; Brown, E. F.; Calder, A. C.; Jackson, A. P.; Krueger, B. K.; Timmes, F. X.; Townsley, D. M.

    2011-01-01

    Type Ia supernovae (SNe Ia) are the premier standard candle for measuring the expansion history of the universe. SNe Ia make good standard candles only because their light curves can be calibrated. However, observations indicate even after calibration SNe Ia light curves have some dependence on properties of the host galaxy. Numerical models are steadily becoming more refined and can begin to probe the connection between the properties of the progenitor white dwarf and the outcome of the explosion. We perform numerical calculations to examine the effect of metallicity on the nucleosynthesis taking place in SNe Ia. Detailed yields resulting from explosive burning of the carbon/oxygen plasma in our models are examined using post-processing through a 532-nuclide reaction network. We explore how the production of elements from silicon to titanium varies with metallicity of the progenitor star. Our calculations suggest systematic trends in the silicon-group elements that may be observable. There is a clear trend with increasing metallicity of increasing silicon production while all other intermediate mass elements are produced in smaller abundances. We find, for example, that calcium follows a nearly linear trend of decreasing production with increasing metallicity. This work was supported by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  6. The Board's Role in Financial Oversight. AGB Board Essentials Series

    ERIC Educational Resources Information Center

    Krawitz, Natalie

    2015-01-01

    An often-volatile economy, changing demographics, and technological innovations in educational delivery are among the dramatic changes across higher education that have forced boards and institutions to question the viability of the existing business model. Flat or declining state support in real terms, lower investment returns in some years,…

  7. Mapping the 12CO J = 1-0 and J = 2-1 emission in AGB and early post-AGB circumstellar envelopes. I. The COSAS program, first sample

    NASA Astrophysics Data System (ADS)

    Castro-Carrizo, A.; Quintana-Lacaci, G.; Neri, R.; Bujarrabal, V.; Schöier, F. L.; Winters, J. M.; Olofsson, H.; Lindqvist, M.; Alcolea, J.; Lucas, R.; Grewing, M.

    2010-11-01

    We present COSAS (CO Survey of late AGB Stars), a project to map and analyze the 12CO J = 1-0 and J = 2-1 line emission in a representative sample of circumstellar envelopes around AGB and post-AGB stars. The survey was undertaken with the aim of investigating small- and large-scale morphological and kinematical properties of the molecular environment surrounding stars in the late AGB and early post-AGB phases. For this, COSAS combines the high sensitivity and spatial resolving power of the IRAM Plateau de Bure interferometer with the better capability of the IRAM 30 m telescope to map extended emission. The global sample encompasses 45 stars selected to span a range in chemical type, variability type, evolutionary state, and initial mass. COSAS provides means to quantify variations in the mass-loss rates, assess morphological and kinematical features, and to investigate the appearance of fast aspherical winds in the early post-AGB phase. This paper, which is the first of a series of COSAS papers, presents the results from the analyses of a first sample of 16 selected sources. The envelopes around late AGB stars are found to be mostly spherical, often mingled with features such as concentric arcs (R Cas and TX Cam), a broken spiral density pattern (TX Cam), molecular patches testifying to aspherical mass-loss (WX Psc, IK Tau, V Cyg, and S Cep), and also with well-defined axisymmetric morphologies and kinematical patterns (X Her and RX Boo). The sources span a wide range of angular sizes, from relatively compact (CRL 2362, OH 104.9+2.4 and CRL 2477) to very large (χ Cyg and TX Cam) envelopes, sometimes partially obscured by self-absorption features, which particularly for IK Tau and χ Cyg testifies to the emergence of aspherical winds in the innermost circumstellar regions. Strong axial structures with more or less complex morphologies are detected in four early post-AGB stars (IRAS 20028+3910, IRAS 23321+6545, IRAS 19475+3119 and IRAS 21282+5050) of the sub

  8. Neutrino energy transport in weak decoupling and big bang nucleosynthesis

    DOE PAGES

    Grohs, Evan Bradley; Paris, Mark W.; Kishimoto, Chad T.; Fuller, George M.; Vlasenko, Alexey

    2016-04-21

    In this study, we calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongsidemore » and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter Neff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.« less

  9. Dark radiation from particle decays during big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Menestrina, Justin L.; Scherrer, Robert J.

    2012-02-01

    CMB observations suggest the possibility of an extra dark radiation component, while the current evidence from big bang nucleosynthesis (BBN) is more ambiguous. Dark radiation from a decaying particle can affect these two processes differently. Early decays add an additional radiation component to both the CMB and BBN, while late decays can alter the radiation content seen in the CMB while having a negligible effect on BBN. Here, we quantify this difference and explore the intermediate regime by examining particles decaying during BBN, i.e., particle lifetimes τX satisfying 0.1sec<τX<1000sec. We calculate the change in the effective number of neutrino species, Neff, as measured by the CMB, ΔNCMB, and the change in the effective number of neutrino species as measured by BBN, ΔNBBN, as a function of the decaying particle initial energy density and lifetime, where ΔNBBN is defined in terms of the number of additional two-component neutrinos needed to produce the same change in the primordial He4 abundance as our decaying particle. As expected, for short lifetimes (τX≲0.1sec), the particles decay before the onset of BBN, and ΔNCMB=ΔNBBN, while for long lifetimes (τX≳1000sec), ΔNBBN is dominated by the energy density of the nonrelativistic particles before they decay, so that ΔNBBN remains nonzero and becomes independent of the particle lifetime. By varying both the particle energy density and lifetime, one can obtain any desired combination of ΔNBBN and ΔNCMB, subject to the constraint that ΔNCMB≥ΔNBBN. We present limits on the decaying particle parameters derived from observational constraints on ΔNCMB and ΔNBBN.

  10. Neutrino energy transport in weak decoupling and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, G. M.; Kishimoto, C. T.; Paris, M. W.; Vlasenko, A.

    2016-04-01

    We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter Neff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.

  11. Isospin Mixing Reveals 30P (p ,γ ) 31S Resonance Influencing Nova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, M. B.; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; Bardayan, D. W.; Chen, A. A.; Chipps, K. A.; Fry, C.; Glassman, B. E.; Langer, C.; Larson, N. R.; McNeice, E. I.; Meisel, Z.; Ong, W.; O'Malley, P. D.; Pain, S. D.; Prokop, C. J.; Schatz, H.; Schwartz, S. B.; Suchyta, S.; Thompson, P.; Walters, M.; Xu, X.

    2016-03-01

    The thermonuclear 30P (p ,γ ) 31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31 proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β -delayed γ decay of a 31S state at Ex=6390.2 (7 ) keV , with a 39P (p ,γ )31S resonance energy of Er=259.3 (8 ) keV , in the middle of the 30P (p ,γ )31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex=6279.0 (6 ) keV , giving it an unambiguous spin and parity of 3 /2+ and making it an important l =0 resonance for proton capture on 30P 30.

  12. Isospin mixing reveals 30P(p, γ)31S resonance influencing nova nucleosynthesis

    DOE PAGES

    Bennett, M. B.; Wrede, C.; Brown, B. A.; Liddick, S. N.; Perez-Loureiro, D.; Bardayan, D. W.; Chen, A. A.; Chipps, K. A.; Fry, C.; Glassman, B. E.; et al

    2016-03-08

    Here, the thermonuclear 30P(p, γ)31S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key 31S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of 31Cl, we have observed the β-delayed γ decay of a 31S state at Ex = 6390.2(7) keV, with a 30P(p, γ)31S resonance energy of Er =more » 259.3(8) keV, in the middle of the 30P(p, γ)31S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at Ex = 6279.0(6) keV, giving it an unambiguous spin and parity of 3/2+ and making it an important l = 0 resonance for proton capture on 30P.« less

  13. The surprising influence of late charged current weak interactions on Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, George M.

    2016-10-01

    The weak interaction charged current processes (νe + n ↔ p +e-; νbare + p ↔ n +e+; n ↔ p +e- +νbare) interconvert neutrons and protons in the early universe and have significant influence on Big Bang Nucleosynthesis (BBN) light-element abundance yields, particularly that for 4He. We demonstrate that the influence of these processes is still significant even when they operate well below temperatures T ∼ 0.7 MeV usually invoked for "weak freeze-out," and in fact down nearly into the alpha-particle formation epoch (T ≈ 0.1 MeV). This physics is correctly captured in commonly used BBN codes, though this late-time, low-temperature persistent effect of the isospin-changing weak processes, and the sensitivity of the associated rates to lepton energy distribution functions and blocking factors are not widely appreciated. We quantify this late-time influence by analyzing weak interaction rate dependence on the neutron lifetime, lepton energy distribution functions, entropy, the proton-neutron mass difference, and Hubble expansion rate. The effects we point out here render BBN a keen probe of any beyond-standard-model physics that alters lepton number/energy distributions, even subtly, in epochs of the early universe all the way down to near T = 100 keV.

  14. 31Cl beta decay and the 30P31S reaction rate in nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, Michael; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; NSCL e12028 Collaboration

    2016-03-01

    The 30P31S reaction rate is critical for modeling the final isotopic abundances of ONe nova nucleosynthesis, identifying the origin of presolar nova grains, and calibrating proposed nova thermometers. Unfortunately, this rate is essentially experimentally unconstrained because the strengths of key 31S proton capture resonances are not known, due to uncertainties in their spins and parities. Using a 31Cl beam produced at the National Superconducting Cyclotron Laboratory, we have populated several 31S states for study via beta decay and devised a new decay scheme which includes updated beta feedings and gamma branchings as well as multiple states previously unobserved in 31Cl beta decay. Results of this study, including the unambiguous identification due to isospin mixing of a new l = 0 , Jπ = 3 /2+ 31S resonance directly in the middle of the Gamow Window, will be presented, and significance to the evaluation of the 30P31S reaction rate will be discussed. Work supported by U.S. Natl. Sci. Foundation (Grants No. PHY-1102511, PHY-1404442, PHY-1419765, and PHY-1431052); U.S. Dept. of Energy, Natl. Nucl. Security Administration (Award No. DE-NA0000979); Nat. Sci. and Eng. Research Council of Canada.

  15. Isospin Mixing Reveals ^{30}P(p,γ)^{31}S Resonance Influencing Nova Nucleosynthesis.

    PubMed

    Bennett, M B; Wrede, C; Brown, B A; Liddick, S N; Pérez-Loureiro, D; Bardayan, D W; Chen, A A; Chipps, K A; Fry, C; Glassman, B E; Langer, C; Larson, N R; McNeice, E I; Meisel, Z; Ong, W; O'Malley, P D; Pain, S D; Prokop, C J; Schatz, H; Schwartz, S B; Suchyta, S; Thompson, P; Walters, M; Xu, X

    2016-03-11

    The thermonuclear ^{30}P(p,γ)^{31}S reaction rate is critical for modeling the final elemental and isotopic abundances of ONe nova nucleosynthesis, which affect the calibration of proposed nova thermometers and the identification of presolar nova grains, respectively. Unfortunately, the rate of this reaction is essentially unconstrained experimentally, because the strengths of key ^{31}S proton capture resonance states are not known, largely due to uncertainties in their spins and parities. Using the β decay of ^{31}Cl, we have observed the β-delayed γ decay of a ^{31}S state at E_{x}=6390.2(7)  keV, with a ^{30}P(p,γ)^{31}S resonance energy of E_{r}=259.3(8)  keV, in the middle of the ^{30}P(p,γ)^{31}S Gamow window for peak nova temperatures. This state exhibits isospin mixing with the nearby isobaric analog state at E_{x}=6279.0(6)  keV, giving it an unambiguous spin and parity of 3/2^{+} and making it an important l=0 resonance for proton capture on ^{30}P. PMID:27015475

  16. The chemical abundances of the Cassiopeia A fast-moving knots - Explosive nucleosynthesis on a minicomputer

    NASA Technical Reports Server (NTRS)

    Johnston, M. D.; Joss, P. C.

    1980-01-01

    A simplified nuclear reaction network for explosive nucleosynthesis calculations is described in which only the most abundant nuclear species and the most important reactions linking these species are considered. This scheme permits the exploration of many cases without excessive computational effort. Good agreement with previous calculations employing more complex reaction networks is obtained. This scheme is applied to the observed chemical abundances of the fast-moving knots in the supernova remnant Cassiopeia A and it is found that a wide range of initial conditions could yield the observed abundances. The abundances of four of the knots with significant and different amounts of elements heavier than oxygen are consistent with an origin in material of the same initial composition but processed at different peak temperatures and densities. Despite the observed high oxygen abundances and low abundances of light elements in the knots, they did not necessarily undergo incomplete oxygen burning; in fact, it is not even necessary that oxygen have been present in the initial composition. The agreement between the calculated and observed chemical abundances in Cas A and similar supernova remnants depends primarily upon the relevant nuclear physics and does not provide strong evidence in favor of any particular model of the supernova event.

  17. Influence of neutrinos on r-process nucleosynthesis in black hole-neutron star mergers

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.; Duez, Matthew D.; Faber, Joshua A.; Foucart, Francois; Lombardi, James C.; Ott, Christian D.; Ponce, Marcelo

    2016-03-01

    During a black hole-neutron star merger, baryonic material can be dynamically ejected. Because this ejecta is extremely neutron-rich, the r-process rapidly synthesizes heavy nuclides as the material expands and cools. This can contribute to galactic chemical evolution of the r-process elements and lead to a short-lived optical transient, called a kilonova, powered by the radioactive decay of the heavy nuclides. We use the nuclear reaction network SkyNet to model r-process nucleosynthesis under varying levels of neutrino irradiation by post-processing tracer particles in the ejecta of a full numerical relativity simulation of a black hole-neutron star merger. We find the ejected material robustly produces the second and third r-process peaks, whose abundances remain unchanged even for very high neutrino luminosities, due to the rapid velocities of the outflow. Nonetheless, we find that neutrinos can have an impact on the detailed abundance pattern by significantly enhancing the amount of material produced in the first peak around A ~ 78 . Electron neutrinos are captured by neutrons to produce protons while neutron capture is occurring. These protons rapidly form low-mass seed nuclei, a fraction of which eventually ends up in the first peak after neutron capture ceases. Partially supported by NASA and NSF under AST-1205732, AST-1313091, AST-1333520, PF3-140114, PF4-150122, and PHY-1151197.

  18. Nucleosynthesis of He-3 in the sun and the variation of He-3/He-4 in solar wind

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1975-01-01

    The time history of the variation of He-3/He-4 (R) on the surface of the sun as a result of nucleosynthesis in the solar interior has been studied for different empherical models of mixing. For homogeneous mixing with mixing periods between one million and 1,000 millions years, the expected value of R is very much larger than the observed solar wind value. On the other hand, the absolute value of R and its possible time variation in the solar wind are consistent with a model in which slow mixing with adjacent layers, equivalent to about 0.01 Mr, of the core takes place over a period of 100 million years. The possibility of explaining the He-3 rich solar flare events is discussed.

  19. Nucleosynthesis in a massive star associated with magnetohydrodynamical jets from collapsars

    SciTech Connect

    Ono, M.; Hashimoto, M.; Fujimoto, S.; Kotake, K.; Yamada, S.

    2012-11-12

    We investigate the nucleosynthesis during the stellar evolution and the jet-like supernova explosion of a massive star of 70 M{sub Circled-Dot-Operator} having the solar metallicity in the main sequence stage. The nucleosynthesis calculations have been performed with large nuclear reaction networks, where the weak s-, p-, and r-processes are taken into account. As a result s-elements of 60 > A > 90 and r-elements of 90 > A > 160 are highly overproduced relative to the solar system abundances. We find that the Sr-Y-Zr isotopes are primarily synthesized in the explosive nucleosynthesis which could be one of the sites of the lighter element primary process (LEPP).

  20. CNO and 6Li from big-bang nucleosynthesis-Impact of unmeasured reaction rates

    NASA Astrophysics Data System (ADS)

    Madsen, Jes

    1990-04-01

    Rates for a number of nuclear reactions not studied in the laboratory are crucial for predicting the outcome of big-bang nucleosynthesis. It is shown in the present investigation that the mass fraction of CNO elements produced in neutron-rich zones in inhomogeneous nucleosynthesis (other parameters fixed) spans almost 3 orders of magnitude depending on the unmeasured rate of 8Li(α,n)11B. The possibility of producing observable quantities of primordial 6Li via 3H(3He,γ)6Li is discussed for the first time, and finally it is reported that helium production through 2H(2H, γ)4He is negligible in all nucleosynthesis scenarios, in spite of recent measurements increasing the low-energy rate by a factor 32.

  1. Small SiC grains and a nitride grain of circumstellar origin from the Murchison meteorite: implications for stellar evolution and nucleosynthesis.

    PubMed

    Hoppe, P; Strebel, R; Eberhardt, P; Amari, S; Lewis, R S

    1996-03-01

    We report the results of SIMS isotopic analyses of carbon, nitrogen, oxygen, and silicon made on 849 small (approximately 1 micrometer) individual silicon carbide grains from the Murchison meteorite. The isotopic compositions of the major elements carbon and silicon of most grains (mainstream) are similar to those observed in larger grain studies suggesting an AGB star origin of these grains. In contrast, the trace element nitrogen shows a clear dependency on grain size. 14N/15N ratios increase with decreasing grain size, suggesting different stellar sources for grains of different size. Typically observed 14N/15N ratios in the small grains of this study are approximately 2700, clearly larger than the values expected from model calculations of AGB stars. In addition to the three dredge-up episodes characteristic for the evolution of AGB stars, extra-mixing of CNO-processed matter in low mass AGB stars appears to be a promising possibility in order to explain the high 14N/15N ratios of the small circumstellar SiC grains. A small fraction of grains shows a silicon isotopic signature not observed in larger circumstellar SiC grains from Murchison. Their stellar origin is still uncertain. The minor type A, B, Y, and X grains were found to be present at a level of a percent, which is similar to their abundance in the larger-grain SiC separates from Murchison. Oxygen isotopic compositions are normal within the experimental uncertainties of several 10%, indicating that oxygen of stellar origin is rare or even absent in the SiC grains. We conclude that most of the oxygen is a contaminant which was introduced into the SiC grains after their formation, e.g., during sample processing in the laboratory. We identified a nitride grain, most likely Si3N4 with little carbon, with highly anomalous isotopic compositions (12C/13C = 157 +/- 33, 14N/15N = 18 +/- 1, delta 29 Si = -43 +/- 56%, delta 30 Si = -271 +/- 50%). The isotopic patterns of carbon, nitrogen, and silicon resemble

  2. Calibration of Post-AGB Supergiants as Standard Extragalactic Candles for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1998-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic-giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The reason for this belief is that in old populations, the stars that are evolving through the PAGB region of the HR (Hertzsprung-Russell) diagram arise from only a single main-sequence turnoff mass. In addition, the theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, the PAGB stars of these spectral types are very easily identified, due to their large Balmer jumps, which are due to their very low surface gravities.

  3. An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Blake, Adam C.

    2011-01-01

    The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.

  4. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  5. Constraining antimatter domains in the early universe with big bang nucleosynthesis.

    PubMed

    Kurki-Suonio, H; Sihvola, E

    2000-04-24

    We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of 4He. For larger domains, the limit comes from 3He overproduction. Since most of the 3He from &pmacr; 4He annihilation are themselves annihilated, the main source of primordial 3He is the photodisintegration of 4He by the electromagnetic cascades initiated by the annihilation.

  6. Inhomogeneous primordial nucleosynthesis and new abundance constraints on {Omega}{sub b}h{sup 2}

    SciTech Connect

    Mathews, G.J. ||; Kajino, T.; Orito, M.

    1995-07-20

    We discuss the upper limit to the baryonic contribution to the closure density. We consider effects of new observational and theoretical uncertainties in the primordial light element abundances, and the effects of fluctuation geometry on the inhomogeneous nucleosynthesis yields. We also consider implications of the possible detection of a high D/H abundance in a Lyman-{alpha} absorption cloud at high redshift and the implied chemical evolution effects of a high deuterium abundance. We show that there exists a region of the parameter space for inhomogeneous models in which a somewhat higher baryonic contribution to the closure density is possible than that allowed in standard homogeneous models. This result is contrary to some other recent studies and is due to both geometry and recently revised uncertainties in primordial light-element abundances, particularly {sup 7}Li. We find that the presently adopted abundance constraints are consistent with a contribution of baryons to the closure density as high as {Omega}{sub b}h{sub 50}{sup 2} {le} 0.11 ({eta} {le} 7 {times} 10{sup {minus}10}). This corresponds to a 20% increase over the limit from standard homogeneous models ({Omega}{sub b}h{sub 50}{sup 2} {le} 0.08, {eta} {le} 5.8 {times} 10{sup {minus}10}). With a high deuterium abundance the upper limits for the inhomogeneous and homogeneous models would be {Omega}{sub b}h{sub 50}{sup 2} {le} 0.04 and 0.03 ({eta} {le} 2.6 {times} 10{sup {minus}10} and 1.9 {times} 10{sup {minus}10}), respectively. Even higher limits could be obtained by further relaxing the presently accepted primordial lithium abundance constraint as some have proposed.

  7. Measurement of the {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction relevant for supernova nucleosynthesis

    SciTech Connect

    Vockenhuber, C.; Buchmann, L.; Caggiano, J.; Crawford, H.; Davids, B.; Fogarty, L.; Hutcheon, D. A.; O'Connor, E.; Ottewell, D.; Pavan, M. M.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Ouellet, C. O.; Chen, A. A.; Pearson, J.; Wales, B.; The, L.-S.; D'Auria, J. M.; Frekers, D.

    2007-09-15

    The short-lived nuclide {sup 44}Ti is an important nuclide for the understanding of explosive nucleosynthesis. The main production reaction, {sup 40}Ca({alpha},{gamma}){sup 44}Ti, has been studied in inverse kinematics with the recoil mass spectrometer DRAGON located at the TRIUMF-ISAC facility in Vancouver, Canada. The temperature range relevant for {alpha}-rich freeze-out during a core-collapse supernova has been covered entirely with a {sup 40}Ca beam of 0.60 to 1.15 MeV/nucleon. All relevant quantities for the calculation of the astrophysical reaction rate have been measured directly. Because of many previously undiscovered resonances, the reaction rate derived from the energy dependent {sup 44}Ti yield is higher than the one based on previous prompt {gamma}-ray studies commonly used in supernova models. The presented new rate results in an increased {sup 44}Ti production in supernovae.

  8. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    SciTech Connect

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

  9. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  10. Massive Open Online Courses (MOOCs): A Primer for University and College Board Members. An AGB White Paper

    ERIC Educational Resources Information Center

    Voss, Brian D.

    2013-01-01

    The environment in which MOOCs and other forms of online education operate is changing virtually every day. Based upon a presentation given to the board of directors of AGB, this white paper is an effort to give board chairs, presidents, and others some context to help guide discussions on their own campuses. It provides a primer on MOOCs,…

  11. A G-Protein β Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis

    PubMed Central

    Xu, Dong-bei; Chen, Ming; Ma, Ya-nan; Xu, Zhao-shi; Li, Lian-cheng; Chen, Yao-feng; Ma, You-zhi

    2015-01-01

    Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade. PMID:25635681

  12. A chart of cosmic ray isotopes. [showing radioactive decay, abundance and nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.

    1975-01-01

    A chart has been prepared that lists some of the properties relevant to cosmic ray studies of all the significant nuclides between lithium and nickel. On this chart there are shown all the possible decays that might be of interest in the unique conditions experienced by cosmic ray nuclei, various abundance figures and the probable nucleosynthesis processes of origin.

  13. Supernova heavy element nucleosynthesis: Can it tell us about neutrino masses?

    SciTech Connect

    Fuller, George M.

    1997-05-20

    Here we describe a new probe of neutrino properties based on heavy element nucleosynthesis. This technique is in many ways akin to the familiar light element Primordial Nucleosynthesis probe of conditions in the early universe. Our new probe is based on the fact that neutrino masses and vacuum mixings can engender matter-enhanced neutrino flavor transformation in the post core bounce supernova environment. Transformations of the type {nu}{sub {mu}}{sub (r)}<-->{nu}{sub e} in this site will have significant effects on the synthesis of the rapid neutron capture (r-Process) elements and the light p-nuclei. We suggest that an understanding of the origin of these nuclides, combined with the measured abundances of these species, may provide a ''Rosetta Stone'' for neutrino properties. Heavy element nucleosynthesis abundance considerations give either constraints/evidence for neutrino masses and flavor mixings, or strong constraints on the site of origin of r-Process nucleosynthesis. The putative limits on neutrino characteristics are complimentary to those derived from laboratory neutrino oscillation studies and solar and atmospheric neutrino experiments. Preliminary studies show that the existence of r-Process nuclei in the abundances observed in the Galaxy cannot be understood unless neutrinos have small masses (possibly in the cosmologically significant range)

  14. Big bang nucleosynthesis constraints on the self-gravity of pressure

    SciTech Connect

    Rappaport, Saul; Schwab, Josiah; Burles, Scott; Steigman, Gary

    2008-01-15

    Using big bang nucleosynthesis and present, high-precision measurements of light element abundances, we constrain the self-gravity of radiation pressure in the early universe. The self-gravity of pressure is strictly non-Newtonian, and thus the constraints we set provide a direct test of this prediction of general relativity and of the standard, Friedmann-Robertson-Walker cosmology.

  15. The Evolution of Massive Stars and the Concomitant Non-explosive and Explosive Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Arnould, Marcel

    These lectures are concerned with some aspects of the evolution of massive stars and of the concomitant nucleosynthesis. They complement other lectures in this volume. Special emphasis is put on the production of the nuclides heavier than iron by the r- and p-processes.

  16. Dark matter relic abundance and big bang nucleosynthesis in Horava's gravity

    SciTech Connect

    Lambiase, G.

    2011-05-15

    The cosmological consequences of Horava's gravity are reviewed in the frameworks of the PAMELA experiment (which has reported an excess of positron events that likely can be ascribed to weakly interacting massive particles dark matter) and of big bang nucleosynthesis. Constraints on parameters characterizing Horawa's cosmology are derived.

  17. OPACOS: OVRO POST-AGB CO (1-0) EMISSION SURVEY. I. DATA AND DERIVED NEBULAR PARAMETERS

    SciTech Connect

    Sanchez Contreras, C.; Sahai, R.

    2012-11-15

    We have performed interferometric observations of the {sup 12}CO (J = 1-0) emission in a sample of 27 objects spanning different evolutionary stages from the late asymptotic giant branch (late-AGB), through the post-AGB (pAGB) phase, and to the planetary nebula (PN) stage, but dominated by pAGB objects and young PNs ({>=}81%). In this paper (the first in a series) we present our maps and main nebular properties derived for the whole sample. Observations were performed with the Caltech Millimeter Array at the Owens Valley Radio Observatory. The angular resolution obtained in our survey ranges between 2.''3 and 10.''7. The {sup 13}CO and C{sup 18}O (J = 1-0) transitions as well as the 2.6 mm continuum emission have also been observed in several objects. The detection statistics in the {sup 12}CO, {sup 13}CO, C{sup 18}O transitions and 2.6 mm continuum are 89%, 83%, 0%, and 37%, respectively. We report first detections of {sup 12}CO (J = 1-0) emission in 13 targets and confirm emission from several previous marginal detections. The molecular envelope probed by {sup 12}CO (J = 1-0) emission is extended for 18 (out of 24) sources; envelope asymmetries and/or velocity gradients are found in most extended objects. Our data have been used to derive accurate target coordinates and systemic velocities and to characterize the envelope size, morphology, and kinematics. We also provide an estimate of the total molecular mass and the fraction of it contained in fast flows, lower limits to the linear momentum and to the isotopic {sup 12}C/{sup 13}C ratio, as well as the AGB mass-loss rate and timescale for sources with extended CO emission.

  18. VizieR Online Data Catalog: NGC 2808 AGB and RGB stars Na abundance (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-05-01

    The high-resolution spectra of our sample of AGB and RGB stars in the Galactic globular cluster NGC 2808 were obtained with the high-resolution multi-object spectrograph FLAMES, mounted on ESO/VLT-UT2. A combined mode was used where the brightest five objects was observed with UVES-fibre and the remaining targets with GIRAFFE/Medusa. The basic information of our sample stars are listed in Table 2, including the evolutionary phase, instrument used for observation, coordinates, photometry and barycentric radial velocity. Our Fe abundances were derived from the equivalent widths of Fe lines, while the Na abundances were determined with spectra synthesis. Both FeI and Na abundances have been corrected for the non-LTE effect. In Table 4 we show the derived stellar parameters of our sample stars, and the Na abundances are shown in Table 6. (3 data files).

  19. Optically Visible Post-AGB and Post-RGB Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2015-08-01

    We have performed an extensive low-resolution (R ≍ 1300) optical spectral survey with the AAOmega multi-fiber spectrograph mounted on the 3.9-m Anglo Australian telescope, resulting in a clean and complete census of well-characterised post-AGB objects with spectroscopically determined stellar parameters - Teff, log g, [Fe/H] and E(B-V) - spanning a wide range in luminosity in the Small Magellanic Cloud (SMC) and Large Magellanic Cloud (LMC). The known distances to the Magellanic clouds enabled luminosity estimations for all the objects and led to one of the most important results of this survey: the serendipitous discovery of a group of new, low-luminosity, evolved, dusty post-RGB objects in both Clouds. In this paper, we present an overview of this survey and a few important results.

  20. Nucleosynthesis in the Hot Convective Bubble in Core-Collapse Supernovae

    SciTech Connect

    Pruet, J; Woosley, S E; Buras, R; Janka, H; Hoffman, R D

    2004-09-02

    As an explosion develops in the collapsed core of a massive star, neutrino emission drives convection in a hot bubble of radiation, nucleons, and pairs just outside a proto-neutron star. Shortly thereafter, neutrinos drive a wind-like outflow from the neutron star. In both the convective bubble and the early wind, weak interactions temporarily cause a proton excess (Y{sub e} {approx}> 0.50) to develop in the ejected matter. This situation lasts for at least the first second, and the approximately 0.05-0.1 M{sub {circle_dot}} that is ejected has an unusual composition that may be important for nucleosynthesis. Using tracer particles to follow the conditions in a two-dimensional model of a successful supernova explosion calculated by Janka, Buras, and Rampp (2003), they determine the composition of this material. most of it is helium and {sup 56}Ni. The rest is relatively rare species produced by the decay of proton-rich isotopes unstable to positron emission. In the absence of pronounced charged-current neutrino capture, nuclear flow will be held up by long-lived waiting point nuclei in the vicinity of {sup 64}Ge. The resulting abundance pattern can be modestly rich in a few interesting rare isotopes like {sup 45}Sc, {sup 49}Ti, and {sup 64}Zn. The present calculations imply yields that, when compared with the production of major species in the rest of the supernova, are about those needed to account for the solar abundance of {sup 45}Sc and {sup 49}Ti. Since the synthesis will be nearly the same in stars of high and low metallicity, the primary production of these species may have discernible signatures in the abundances of low metallicity stars. They also discuss uncertainties in the nuclear physics and early supernova evolution to which abundances of interesting nuclei are sensitive.

  1. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J.

    2014-05-02

    Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destruction reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.

  2. Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Saviano, Ninetta; Pisanti, Ofelia; Mangano, Gianpiero; Mirizzi, Alessandro

    2014-12-01

    Short-baseline neutrino anomalies suggest the existence of low-mass [m ˜O (1 ) eV ] sterile neutrinos νs. These would be efficiently produced in the early universe by oscillations with active neutrino species, leading to a thermal population of the sterile states seemingly incompatible with cosmological observations. In order to relieve this tension it has been recently speculated that new "secret" interactions among sterile neutrinos, mediated by a massive gauge boson X (with MX≪MW), can inhibit or suppress the sterile neutrino thermalization, due to the production of a large matter potential term. We note however, that they also generate strong collisional terms in the sterile neutrino sector that induce an efficient sterile neutrino production after a resonance in matter is encountered, increasing their contribution to the number of relativistic particle species Neff. Moreover, for values of the parameters of the νs-νs interaction for which the resonance takes place at temperature T ≲few MeV , significant distortions are produced in the electron (anti)neutrino spectra, altering the abundance of light element in big bang nucleosynthesis (BBN). Using the present determination of 4He and deuterium primordial abundances we determine the BBN constraints on the model parameters. We find that 2H/H density ratio exclude much of the parameter space if one assumes a baryon density at the best fit value of Planck experiment, ΩBh2=0.02207 , while bounds become weaker for a higher ΩBh2=0.02261 , the 95% C.L. upper bound of Planck. Due to the large error on its experimental determination, the helium mass fraction Yp gives no significant bounds.

  3. Massive black holes and light-element nucleosynthesis in a baryonic universe

    NASA Technical Reports Server (NTRS)

    Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.

    1995-01-01

    We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5

  4. The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants.

    PubMed

    Yu, Yunqing; Assmann, Sarah M

    2016-01-01

    Salinity is a major agricultural problem that affects crop yield. Na(+) is transported to the shoot through the transpiration stream. The mutant of the sole Arabidopsis heterotrimeric G protein β subunit, agb1, is hypersensitive to salinity in part due to a higher transpiration rate. Here, we investigated the direct effect of Na(+) on stomatal opening using detached epidermal peels of wild type and agb1 plants. In both genotypes, NaCl is equally as effective as KCl in mediating stomatal opening at the concentrations tested. In both genotypes, ABA is less effective in inhibiting Na(+) mediated stomatal opening than K(+) mediated stomatal opening. The agb1 mutant is hyposensitive to ABA inhibition of K(+)-mediated but not Na(+)-mediated stomatal opening. These results suggest that the greater transpiration observed in agb1 plants grown in saline conditions is likely not mediated by differential genotypic direct effects of Na(+) on stomatal apertures. PMID:26431457

  5. Constraints on unparticle long range forces from big bang nucleosynthesis bounds on the variation of the gravitational coupling

    SciTech Connect

    Bertolami, O.; Santos, N. M. C.

    2009-06-15

    We use big bang nucleosynthesis bounds on the variation of the gravitational coupling to derive constraints on the strength of the deviation from the gravitational inverse-square law due to tensor and vector unparticle exchange.

  6. Luminous AGB Stars beyond the Local Group: Tracers of Intermediate-age Populations in the Cen A Group

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Rejkuba, M.; Grebel, E. K.; da Costa, G.; Jerjen, H.

    2011-09-01

    We investigate the resolved stellar content of three predominantly old and metal-poor early-type dwarf galaxies in the Centaurus A group (at a distance of ˜4 Mpc). Our goal is to estimate the fraction of the intermediate-age populations (IAPs) and the period of most recent star formation from their luminous AGB stars. We combine optical HST/ACS and near-infrared VLT/ISAAC images to identify AGB star candidates. The first dataset provides high-resolution photometry while the second one permits us to disentangle the galaxies’ stellar content from the foreground contamination and to characterize the IAPs. The IAP fraction is found to be very low in the target galaxies (up to ˜15%). We compare the results to our own Local Group.

  7. The role of primary 16O as a neutron poison in AGB stars and fluorine primary production at halo metallicities.

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Bisterzo, S.; Cristallo, S.; Straniero, O.

    The discovery of a historical bug in the s-post-process AGB code obtained so far by the Torino group forced us to reconsider the role of primary 16O in the 13C-pocket, produced by the 13C(alpha , n)16O reaction, as important neutron poison for the build up of the s-elements at Halo metallicities. The effect is noticeable only for the highest 13C-pocket efficiencies (cases ST*2 and ST). For Galactic disc metallicities, the bug effect is negligible. A comparative analysis of the neutron poison effect of other primary isotopes (12C, 22Ne and its progenies) is presented. The effect of proton captures, by 14N(n, p)14C, boosts a primary production of fluorine in halo AGB stars, with [F/Fe] comparable to [C/Fe], without affecting the s-elements production.

  8. The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Goriely, S.; Takahashi, K.

    2007-09-01

    The r-process, or the rapid neutron-capture process, of stellar nucleosynthesis is called for to explain the production of the stable (and some long-lived radioactive) neutron-rich nuclides heavier than iron that are observed in stars of various metallicities, as well as in the solar system. A very large amount of nuclear information is necessary in order to model the r-process. This concerns the static characteristics of a large variety of light to heavy nuclei between the valley of stability and the vicinity of the neutron-drip line, as well as their beta-decay branches or their reactivity. Fission probabilities of very neutron-rich actinides have also to be known in order to determine the most massive nuclei that have a chance to be involved in the r-process. Even the properties of asymmetric nuclear matter may enter the problem. The enormously challenging experimental and theoretical task imposed by all these requirements is reviewed, and the state-of-the-art development in the field is presented. Nuclear-physics-based and astrophysics-free r-process models of different levels of sophistication have been constructed over the years. We review their merits and their shortcomings. The ultimate goal of r-process studies is clearly to identify realistic sites for the development of the r-process. Here too, the challenge is enormous, and the solution still eludes us. For long, the core collapse supernova of massive stars has been envisioned as the privileged r-process location. We present a brief summary of the one- or multidimensional spherical or non-spherical explosion simulations available to-date. Their predictions are confronted with the requirements imposed to obtain an r-process. The possibility of r-nuclide synthesis during the decompression of the matter of neutron stars following their merging is also discussed. Given the uncertainties remaining on the astrophysical r-process site and on the involved nuclear physics, any confrontation between predicted r

  9. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  10. Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle

    SciTech Connect

    MacDonald, J.; Mullan, D. J.

    2009-08-15

    Contrary to a common argument that a small increase in the strength of the strong force would lead to destruction of all hydrogen in the big bang due to binding of the diproton and the dineutron with a catastrophic impact on life as we know it, we show that provided the increase in strong force coupling constant is less than about 50% substantial amounts of hydrogen remain. The reason is that an increase in strong force strength leads to tighter binding of the deuteron, permitting nucleosynthesis to occur earlier in the big bang at higher temperature than in the standard big bang. Photodestruction of the less tightly bound diproton and dineutron delays their production to after the bulk of nucleosynthesis is complete. The decay of the diproton can, however, lead to relatively large abundances of deuterium.

  11. Searching for heavily obscured post-AGB stars and planetary nebulae. II. Near-IR observations of IRAS sources

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Guerrero, M. A.; Suárez, O.; Miranda, L. F.; Gómez, J. F.

    2012-09-01

    The most massive AGB stars are expected to result in heavily obscured post-AGB stars, proto-PNe and PNe with highly axisymmetric morphologies. To investigate this evolutionary connection, we have selected a sample of 165 presumably obscured IRAS post-AGB star and PN candidates and obtained near-IR JHK images for 164 of them. These images, in conjunction with DSS, 2MASS, Spitzer GLIMPSE, MSX, AKARI, and IRAS archival data, have allowed us to identify the near-IR counterparts of 154 of these sources, providing reliable finding charts and coordinates. Near-IR narrow-band Brγ, H2, and K continuum images were acquired for 6 of these sources that were found to be resolved in near-IR JHK images. Among the extended post-AGB source and PN candidates, three are round and seven have bipolar morphologies. Five of the extended sources are ionized and may have thus entered the PN stage. We note that all extended sources with water maser emission have bipolar morphology. We have investigated the Galactic distribution of sources with the largest flux drop from the 9 μm AKARI band to the near-IR J band and found that the width of the distribution in Galactic latitude is consistent with those of bipolar PNe and DUPLEX (DUst-Prominent Longitudinally EXtended) sources. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (081.D-0812), observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations with AKARI, a JAXA project with the participation of ESA.

  12. Radial velocity variable, hot post-AGB stars from the MUCHFUSS project. Classification, atmospheric parameters, formation scenarios

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Geier, S.; Kupfer, T.; Bloemen, S.; Schaffenroth, V.; Heber, U.; Barlow, B. N.; Østensen, R. H.

    2016-03-01

    In the course of the MUCHFUSS project we recently discovered four radial velocity (RV) variable, hot (Teff≈ 80 000-110 000 K) post-asymptotic giant branch (AGB) stars. Among them, we found the first known RV variable O(He) star, the only second known RV variable PG 1159 close binary candidate, as well as the first two naked (i.e., without planetary nebula (PN)) H-rich post-AGB stars of spectral type O(H) that show significant RV variations. We present a non-LTE spectral analysis of these stars along with one further O(H)-type star whose RV variations were found to be not significant. We also report the discovery of a far-infrared excess in the case of the PG 1159 star. None of the stars in our sample displays nebular emission lines, which can be explained well in terms of a very late thermal pulse evolution in the case of the PG 1159 star. The "missing" PNe around the O(H)-type stars seems strange, since we find that several central stars of PNe have much longer post-AGB times. Besides the non-ejection of a PN, the occurrence of a late thermal pulse, or the re-accretion of the PN in the previous post-AGB evolution offer possible explanations for those stars not harbouring a PN (anymore). In the case of the O(He) star J0757, we speculate that it might have been previously part of a compact He transferring binary system. In this scenario, the mass transfer must have stopped after a certain time, leaving behind a low-mass close companion that may be responsible for the extreme RV shift of 107.0 ± 22.0 km s-1 that was measured within only 31 min.

  13. PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements

    SciTech Connect

    Pisanti, O.; Cirillo, A.; Esposito, S.; Iocco, F.; Mangano, G.; Miele, G.; Serpico, P.D.

    2007-05-04

    We describe a program for computing the abundances of light elements produced during Big Bang Nucleosynthesis which is publicly available at http://parthenope.na.infn.it/. Starting from nuclear statistical equilibrium conditions the program solves the set of coupled ordinary differential equations, follows the departure from chemical equilibrium of nuclear species, and determines their asymptotic abundances as function of several input cosmological parameters as the baryon density, the number of effective neutrino, the value of cosmological constant and the neutrino chemical potential.

  14. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    SciTech Connect

    Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L; Roberts, Luke F; Tytler, David; Fuller, George M; Lingerfelt, Eric J; Hix, William Raphael; Nesaraja, Caroline D

    2008-01-01

    We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint.

  15. Dynamic atmospheres and winds of cool luminous giants. I. Al2O3 and silicate dust in the close vicinity of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Bladh, S.; Aringer, B.; Ahuja, R.

    2016-10-01

    Context. In recent years, high spatial resolution techniques have given valuable insights into the complex atmospheres of AGB stars and their wind-forming regions. They make it possible to trace the dynamics of molecular layers and shock waves, to estimate dust condensation distances, and to obtain information on the chemical composition and size of dust grains close to the star. These are essential constraints for understanding the mass loss mechanism, which presumably involves a combination of atmospheric levitation by pulsation-induced shock waves and radiation pressure on dust, forming in the cool upper layers of the atmospheres. Aims: Spectro-interferometric observations indicate that Al2O3 condenses at distances of about 2 stellar radii or less, prior to the formation of silicates. Al2O3 grains are therefore prime candidates for producing the scattered light observed in the close vicinity of several M-type AGB stars, and they may be seed particles for the condensation of silicates at lower temperatures. The purpose of this paper is to study the necessary conditions for the formation of Al2O3 and the potential effects on mass loss, using detailed atmosphere and wind models. Methods: We have constructed a new generation of Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN), including a time-dependent treatment of grain growth and evaporation for both Al2O3 and Fe-free silicates (Mg2SiO4). The equations describing these dust species are solved in the framework of a frequency-dependent radiation-hydrodynamical model for the atmosphere and wind structure, taking pulsation-induced shock waves and periodic luminosity variations into account. Results: Condensation of Al2O3 at the close distances and in the high concentrations implied by observations requires high transparency of the grains in the visual and near-IR region to avoid destruction by radiative heating. We derive an upper limit for the imaginary part of the refractive

  16. Pulsational Light Variability in a Sample of Carbon-rich Post-AGB Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.; Lu, W.; Soszynski, I.; Szczerba, R.; Volk, K.

    2013-06-01

    A sample of 17 carbon-rich post-AGB stars has been identified based on Spitzer spectra of candidate objects in the Magellanic Clouds (Volk et al. 2011, ApJ, 735, 127). We have studied the light variability of these using Ogle II and III data for 15 of these that have such data. We find periodic variability in three, with periods of 74, 96, and 158 days; these have F spectral types. These three we compare with the pulsation properties of carbon-rich post-AGB objects (proto-planetary nebulae) in the Galaxy (Hrivnak et al. 2010, ApJ, 709, 1042). The others all vary, but generally with a shorter timescale. The pulsation amplitudes of the variables range from 0.1 to 0.5 mag in I, and are larger in V. In addition, several show long-term, monotonic changes in brightness. Only a few of these have spectra from which to determine spectral types. Based on our study of post-AGB objects in the Galaxy, we would expect the short-term variables to be objects that have evolved to higher temperatures (B stars) on the HR diagram. This research has been supported by the NSF (AST 1009974).

  17. AGB circumstellar environments probed through the 21 cm atomic hydrogen line emission. A programme for the SKA?

    NASA Astrophysics Data System (ADS)

    Gerard, E.; Le Bertre, T.

    2006-06-01

    Red giant stars are responsible for 70% of the recycling of stellar matter in the local interstellar medium (ISM) through mass loss, mainly along the AGB sequence. Most of the matter in circumstellar shells is hydrogen in atomic (or molecular form). However, up to now, atomic hydrogen has remained largely undetected due to the weakness of its emission, the merging of circumstellar matter with the ambient ISM and the confusion from foreground and background interstellar hydrogen along the same line of sight. With the upgraded Nancay Radiotelescope, we have started a new search for HI at 21 cm towards AGB stars and post-AGBs, including PNs. We illustrate our results on one case, EP~Aqr, which shows that the contamination by interstellar emission must be treated with great care and discuss the prospects with the SKA. In order to sort out the genuine circumstellar HI emission from the interstellar one, it is necessary to map large areas of the sky (at all angular scales from sub-arcsec to degrees) with high spectral resolution, high sensitivity and a large dynamical range.

  18. Post-AGB Stars in Nearby Galaxies as Calibrators for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    2003-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as

  19. The Karlsruhe Astrophysical Database of Nucleosynthesis in Stars Project – Status and Prospects

    SciTech Connect

    Dillmann, I.; Szücs, T.; Plag, R.; Fülöp, Z.; Käppeler, F.; Mengoni, A.; Rauscher, T.

    2014-06-15

    The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars) project is an astrophysical online database for cross sections relevant for nucleosynthesis in the s process and the γ process. The s-process database ( (http://www.kadonis.org)) was started in 2005 and is presently facing its 4th update (KADoNiS v1.0). The γ-process database (KADoNiS-p, (http://www.kadonis.org/pprocess)) was recently revised and re-launched in March 2013. Both databases are compilations for experimental cross sections with relevance to heavy ion nucleosynthesis. For the s process recommended Maxwellian averaged cross sections for kT=5−100 keV are given for more than 360 isotopes between {sup 1}H and {sup 210}Bi. For the γ-process database all available experimental data from (p,γ),(p,n),(p,α),(α,γ),(α,n), and (α,p) reactions between {sup 70}Ge and {sup 209}Bi in or close to the respective Gamow window were collected and can be compared to theoretical predictions. The aim of both databases is a quick and user-friendly access to the available data in the astrophysically relevant energy regions.

  20. Nucleosynthesis constraints on a massive gravitino in neutralino dark matter scenarios

    SciTech Connect

    Cyburt, Richard H.; Ellis, John; Fields, Brian D.; Luo, Feng; Olive, Keith A.; Spanos, Vassilis C. E-mail: John.Ellis@cern.ch E-mail: fluo@physics.umn.edu E-mail: spanos@physics.umn.edu

    2009-10-01

    The decays of massive gravitinos into neutralino dark matter particles and Standard Model secondaries during or after Big-Bang nucleosynthesis (BBN) may alter the primordial light-element abundances. We present here details of a new suite of codes for evaluating such effects, including a new treatment based on PYTHIA of the evolution of showers induced by hadronic decays of massive, unstable particles such as a gravitino. We present several sets of results obtained using these codes, including general constraints on the possible lifetime and abundance of an unstable particle decaying into neutralino dark matter under various hypotheses for its decay mechanism. We also develop an analytical treatment of non-thermal hadron propagation in the early universe, and use this to derive analytical estimates for light-element production and in turn on decaying particle lifetimes and abundances, which confirm our numerical results and illuminate the underlying physics. We then consider specifically the case of an unstable massive gravitino within the constrained minimal supersymmetric extension of the Standard Model (CMSSM). We present upper limits on its possible primordial abundance before decay for different possible gravitino masses, with CMSSM parameters along strips where the lightest neutralino provides all the astrophysical cold dark matter density. We do not find any CMSSM solution to the cosmological {sup 7}Li problem for small m{sub 3/2}. Discounting this, for m{sub 1/2} ∼ 500 GeV and tan β = 10 the other light-element abundances impose an upper limit m{sub 3/2}n{sub 3/2}/n{sub γ} ∼< 3 × 10{sup −12} GeV to ∼< 2 × 10{sup −13} GeV for m{sub 3/2} = 250 GeV to 1 TeV, which is similar in both the coannihilation and focus-point strips and somewhat weaker for tan β = 50, particularly for larger m{sub 1/2}. The constraints also weaken in general for larger m{sub 3/2}, and for m{sub 3/2} > 3 TeV we find a narrow range of m{sub 3/2}n{sub 3/2}/n{sub γ}, at