Science.gov

Sample records for agbr loaded tio2

  1. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120.

    PubMed

    Velmurugan, Rengasamy; Sreedhar, Bojja; Swaminathan, Meenakshisundaram

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  2. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120

    PubMed Central

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  3. Au-loaded TiO2 and Ag-loaded TiO2 synthesized by modified sol-gel/impregnation method as photocatalysts

    NASA Astrophysics Data System (ADS)

    Ninsonti, Hathaithip; Sriwichai, Saengrawee; Wetchakun, Natda; Kangwansupamonkon, Wiyong; Phanichphant, Sukon

    2016-02-01

    In this work, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were synthesized by modified sol-gel method together with impregnation method. The samples were characterized by their physicochemical properties using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy in order to obtain the correlation between structure and photocatalytic properties. XRD results indicated unloaded TiO2, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were all in the anatase phase with average crystallite size in the range of 10-13 nm. In addition, XPS analysis confirmed the presence of Au and Ag elements in Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles, respectively. The photocatalytic activities of TiO2, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were evaluated through the mineralization of formic acid under UV-light illumination. The results showed that Au-loading and Ag-loading could effectively improve the photocatalytic activities of TiO2. Furthermore, Au-loaded TiO2 exhibited a higher photocatalytic activity than Ag-loaded TiO2.

  4. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Sheini, Azarmidokht; Armand, Nezam

    2012-06-01

    The use of titanium dioxide (TiO2) as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. In this investigation photocatalytic degradation of monoethanolamine (MEA) using TiO2 (in form of anatase) loaded on surface of clinoptilolite (CP) (TiO2-CP) in wastewater was studied. The surface interaction between TiO2 and CP was investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), IR and X-ray diffraction (XRD). Then the effects of some parameters such as pH, amount of photocatalyst, and initial concentration of MEA on degradation percentage of MEA were examined. The obtained results show that the TiO2-CP is an active photocatalyst as compared with TiO2 nanopowders. All these results indicated that this proposed method can be useful for the development of wastewater treatment applications.

  5. Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications.

    PubMed

    Anandan, Srinivasan; Rao, Tata Narasinga; Sathish, Marappan; Rangappa, Dinesh; Honma, Itaru; Miyauchi, Masahiro

    2013-01-01

    We develop a simple approach to fabricate graphene-loaded TiO(2) thin films on glass substrates by the spin-coating technique. Our graphene-loaded TiO(2) films were highly conductive and transparent and showed enhanced photocatalytic activities. More significantly, graphene/TiO(2) films displayed superhydrophilicity within a short time even under a white fluorescent light bulb, as compared to a pure TiO(2) film. The enhanced photocatalytic activity of graphene/TiO(2) films is attributed to its efficient charge separation, owing to electrons injection from the conduction band of TiO(2) to graphene. The electroconductivity of the graphene-loaded TiO(2) thin film also contributes to the self-cleaning function by its antifouling effect against particulate contaminants. The present study reveals the ability of graphene as a low cost cocatalyst instead of expensive noble metals (Pt, Pd), and further shows its capability for the application of self-cleaning coatings with transparency. The promising characteristics of (inexpensive, transparent, conductive, superhydrophilic, and highly photocatalytically active) graphene-loaded TiO(2) films may have the potential use in various indoor applications. PMID:23240759

  6. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst.

    PubMed

    Meng, Xianguang; Ouyang, Shuxin; Kako, Tetsuya; Li, Peng; Yu, Qing; Wang, Tao; Ye, Jinhua

    2014-10-01

    Surface modification of TiO2 with NaOH promoted the chemisorption, activation and photocatalytic CO2 reduction. An optimized loading amount of NaOH kept a good balance between CO2 chemisorption quantity and BET surface area of TiO2. This noble metal free method provides a simple pathway for effective multiple H(+)/e(-) CO2 photoreduction. PMID:25130434

  7. Phase dependent photocatalytic activity of Ag loaded TiO2 films under sun light

    NASA Astrophysics Data System (ADS)

    Madhavi, V.; Kondaiah, P.; Shaik, Habibuddin; Rao, G. Mohan

    2016-02-01

    Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation).

  8. Synthesis of nanosize MCM-41 loaded with TiO 2 and study of its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sadjadi, M. S.; Farhadyar, N.; Zare, K.

    2009-07-01

    In recent years, nanosized mesoporous materials have received significant attention due to their impact in different processes. Several diverse applications of these materials, e.g. high density magnetic recording, magnetic fluids, magnetic refrigeration as well as in photocatalysis, solar cells, photosensors, have triggered considerable research activities in the area of nanotechnology. In this work, nanosize MCM-41 was synthesized and loaded then with TiO 2 using tetra butoxy titanium (TBT). As prepared TiO 2 loaded materials was investigated by using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR). The photocatalytic activity of the prepared TiO 2 loaded MCM-41 was finally evaluated by the degradation of methyl orange under irradiation of UV light. The result showed that TiO 2 loaded on nanosize MCM-41 has higher photocatalytic activity than that of TiO 2.

  9. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    NASA Astrophysics Data System (ADS)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  10. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    SciTech Connect

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-02-02

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst.

  11. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  12. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation.

    PubMed

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-12-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests. PMID:27229518

  13. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N.

    2015-10-01

    In this work, Ag nanoparticles were loaded by chemical reduction onto TiO2 P25 under different loadings ranging from 1 up to 4 wt% and hydrothermally deposited on reduced graphene oxide sheets. Chemical reduction was determined to be an effective preparation approach for Ag attachment to titania, leading to the formation of small silver nanoparticles with an average diameter of 4.2 nm. The photocatalytic performance of the hybrid nanocomposite materials was evaluated via methylene blue (MB) dye removal under visible-light irradiation. The rate of dye decolorization was found to depend on the metal loading, showing an increase till a threshold value of 3 wt%, above which the rate drops. Next, the as prepared sample of TiO2/Ag of better photocatalytic response, i.e., at a 3 wt% loading value, was hydrothermally deposited on a platform of reduced graphene oxide (rGO) of tunable content (mass ratio). TiO2/Ag/rGO coupled nanocomposite presented significantly enhanced photocatalytic activity compared to the TiO2/Ag, TiO2/rGO composites and bare P25 titania semiconductor photocatalysts. In particular, after 45 min of irradiation almost complete decolorization of the dye was observed for the TiO2/Ag/rGO nanocatalyst, while the respective removal efficiency was 92% for TiO2/Ag, 93% for TiO2/rGO and only 80% for the bare TiO2 nanoparticles. This simple step by step preparation strategy allows for optimum exploitation of the advanced properties of metal plasmonic effect and reduced graphene oxide as the critical host for boosting the overall photocatalytic activity towards visible-light.

  14. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric.

    PubMed

    Wang, Haiqiang; Wu, Zhongbiao; Zhao, Weirong; Guan, Baohong

    2007-01-01

    TiO2 loading on woven glass fabric is applied to treat nitrogen oxides (NOx) by photocatalytic oxidation (PCO). In this paper, the PCO behavior of NO at high concentrations was studied by PCO of NOx at source levels (20-168 ppm). The PCO efficiency reached 27% in this experiment, while the inlet NOx concentration was 168 ppm (147 ppm NO). The dependency of the reaction rate on several key influencing factors (relative humidity, space time, inlet concentration, oxygen percentage) was also studied. The results illustrate that the resulting hydroxyl radical and active oxide play an important role in the oxidation of NOx. The reactions are limited by the thermodynamic equilibrium after ca. 15s space time. A possible explanation for the catalyst deactivation is the accumulation of nitric acid and nitrous acid on the TiO2 surface during the PCO of NOx. However, the photocatalytic activity can be recovered with a simple heat treatment. The results from the study of the effect of the inlet concentration were described with the Langmuir-Hinshelwood model. PMID:16806397

  15. Preparation and Solar Light Photocatalytic Activity of N-Doped TiO2-Loaded Halloysite Nanotubes Nanocomposites

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi-Lin; Sun, Wei

    2015-10-01

    A novel method to prepare N-doped TiO2-loaded halloysite nanotubes (N-TiO2/HNTs) nanocomposites was achieved by using the chemical vapor deposition in autoclave. The N-TiO2/HNTs nanocomposites obtained by the different form of the doping N source were studied through a series of characterizations. The XRD, SEM, and TEM characterizations verified the anatase structure of TiO2 nanoparticles with the size of ca.20nm loaded on the outer surface of HNTs. The UV-vis characterization of the N-TiO2/HNTs presented a further red-shift compared to the pure N-TiO2 nanoparticles.. The XPS characterizations confirmed the N element doped into the crystal structure of TiO2 nanoparticles. The photocatalytic activities of N-TiO2/HNTs nanocomposites prepared were evaluated by degradation of phenol at room temperature under simulated solar light irradiation.

  16. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Y. Y.; Zhang, Y. Y.; Zhang, J.; Shi, Y.; Li, Z.; Feng, Z. C.; Li, C.

    2016-05-01

    CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO2 (CuS/TiO2) at low temperature. CuS/TiO2 composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO2 samples. It is found that CuS/TiO2 photocatalyst, which CuS are loaded on the surface of rutile TiO2, exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO2 or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO2 by forming heterojunction between CuS and rutile TiO2, which is confirmed by photoluminescence (PL) spectra and TEM. Moreover, CuS content has a significant influence on photocatalytic activity and 2 wt% CuS/TiO2 showed the maximum photocatalytic activity for degradation of MB.

  17. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Golestani-Fard, F.; Bayati, R.; Eftekhari-Yekta, B.

    2015-04-01

    In this work, TiO2 and WO3-grafted TiO2 nanotubes were grown via anodizing of titanium substrates in tungstate containing electrolytes. The samples were characterized in detail by XRD, XPS, SEM, EDX, and UV-Vis spectrophotometry techniques. Besides, photocatalytic characteristics were evaluated through measuring the degradation rate of 4-chlorophenol to establish a correlation between structure and photochemical properties. We were able to control morphology and growth mode of nanotubes from a tubular to a worm-like structure by changing the electrolyte composition. The samples possessed an anatase-rutile matrix where the anatase/rutile ratio was found to increase with the concentration of tungstate in the electrolyte. We attributed this observation to change in electrical conductivity of the electrolyte and the heat generated on the substrates. It was unambiguously revealed that a composite of WO3 and TiO2 forms and, in parallel, tungsten is doped into the crystalline lattice of TiO2. The maximum photocatalytic reaction rate constant for TiO2 and WO3-TiO2 samples was determined to be 0.0131 and 0.0174 min-1 respectively. The grafting TiO2 nanotubes with WO3 enhances the photocatalytic activity mainly due to the hindrance of charge carrier recombination and the formation of a more acidic surface. We established a correlation between structure, stoichiometry, and photocatalytic characteristics of nanotubes.

  18. Decomposition of indoor ammonia with TiO 2-loaded cotton woven fabrics prepared by different textile finishing methods

    NASA Astrophysics Data System (ADS)

    Dong, Yongchun; Bai, Zhipeng; Liu, Ruihua; Zhu, Tan

    Addition of urea-based antifreeze admixtures during cement mixing in construction of buildings has led to increasing indoor air pollution due to continuous transformation and emission of urea to gaseous ammonia in indoor concrete wall. In order to control ammonia pollution from indoor concrete wall, the aqueous dispersion was firstly prepared with nano-scale TiO 2 photocatalysts and dispersing agent, and then mixed with some textile additives to establish a treating bath or coating paste. Cotton woven fabrics were used as the support materials owing to their large surface area and large number of hydrophilic groups on their cellulose molecules and finished using padding and coating methods, respectively. Two TiO 2-loaded fabrics were obtained and characterized by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Moreover, a specifically designed ammonia photocatalytic system consisting of a small environmental chamber and a reactor was used for assessing the performance of these TiO 2-loaded fabrics as the wall cloth or curtains used in house rooms in the future and some factors affecting ammonia decomposition are discussed. Furthermore, a design equation of surface catalytic kinetics was developed for describing the decomposition of ammonia in air stream. The results indicated that increasing dosage of the TiO 2 aqueous dispersion in treating bath or coating paste improved the ammonia decomposition. And ammonia was effectively removed at low ammonia concentration or gas flow rate. When relative humidity level was 45%, ammonia decomposition was remarkably enhanced. It is the fact that ammonia could be significantly decomposed in the presence of the TiO 2-padded cotton fabric. Whereas, the TiO 2-coated cotton fabric had the reduced photocatalytic decomposition of ammonia and high adsorption to ammonia owing to their acrylic binder layer. Finally, the reaction rate constant k and the adsorption equilibrium constant K values were determined through a

  19. Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    NASA Astrophysics Data System (ADS)

    Gołąbiewska, Anna; Lisowski, Wojciech; Jarek, Marcin; Nowaczyk, Grzegorz; Zielińska-Jurek, Anna; Zaleska, Adriana

    2014-10-01

    TiO2 modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH4 or N2H4), TiO2 matrix type (P-25, ST-01, TiO-5, TiO2 nanotubes or TiO2 obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV-vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO2 loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm-3 min-1 for samples prepared using different reducing agent. Sodium borohydride (NaBH4) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Auδ-) resulted in higher photoactivity. TiO2 obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO2 photoactivity under visible light due to surface area shrinkage, crystal structure change and probably change in Au/Pt nanoparticles morphology.

  20. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications. PMID:23228941

  1. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2012-12-01

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu2O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO2 catalyst has enhanced the photocatalytic H2 production. Comparatively, H2 treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H2 production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO2 catalyst systems due to their low cost and high performance in photocatalytic applications.

  2. High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mont, Frank W.; Kim, Jong Kyu; Schubert, Martin F.; Schubert, E. Fred; Siegel, Richard W.

    2008-04-01

    A high-refractive-index (high-n) encapsulant is highly desirable because it can result in enhancement of light-extraction efficiency from high-n semiconductor light-emitting diode (LED) chips. A uniform dispersion of TiO2 nanoparticles in epoxy for LED encapsulation is demonstrated for surfactant-coated TiO2 nanoparticles by drying, mixing with a solvent, refluxing, centrifuging, and mixing with epoxy. The refractive index of surfactant-coated TiO2-nanoparticle-loaded epoxy is 1.67 at 500nm, significantly higher than that of conventional epoxy (n =1.53). Theoretical analysis of optical scattering in nanoparticle-loaded encapsulants reveals that the diameter of nanoparticles and the volume loading fraction of nanoparticles are of critical importance for optical scattering. Quasispecular transparency of the encapsulant film can be achieved if the thickness of the film is kept below the optical scattering length. A graded-refractive-index multilayer encapsulation structure with the thickness of each layer being less than the mean optical scattering length is proposed in order to reduce optical losses from scattering and Fresnel reflection. Furthermore, three-dimensional optical ray-tracing simulations demonstrate that encapsulants with an optimized scattering coefficient, ks, benefit from optical scattering by extracting deterministic trapped modes. Theoretical light-extraction enhancements larger than 50% are found when comparing scattering-free to scattering encapsulation materials.

  3. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets

    NASA Astrophysics Data System (ADS)

    Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin

    2015-12-01

    CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.

  4. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. PMID:26386660

  5. Self-cleaning properties of cement plates loaded with N,C-modified TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Janus, Magdalena; Zatorska, Justyna; Czyżewski, Adam; Bubacz, Kamila; Kusiak-Nejman, Ewelina; Morawski, Antoni W.

    2015-03-01

    The photocatalytic activity of cement pastes containing nitrogen and carbon co-modified TiO2 photocatalysts (TiO2-N,C) were evaluated trough the degradation of model organic water contaminate (Reactive Red 198) under UV-vis light source. It was found that cement plates containing TiO2-N,C photocatalysts exhibited higher photocatalytic efficiency than those containing unmodified TiO2.

  6. Synthesis of molecularly imprinted photocatalysts containing low TiO2 loading: Evaluation for the degradation of pharmaceuticals.

    PubMed

    de Escobar, Cícero Coelho; Lansarin, Marla Azário; dos Santos, João Henrique Zimnoch

    2016-04-01

    A molecularly imprinted (MI) photocatalyst containing a low TiO2 loading (7.00-16.60mgL(-1) of TiO2) was prepared via an acid-catalyzed sol-gel route using different classes of pharmaceutical compounds (i.e., Atorvastatin, Diclofenac, Ibuprofen, Tioconazole, Valsartan, Ketoconazole and Gentamicine) as the template. Herein, our main goal was to test the hypothesis that photocatalysts based on molecular imprinting may improve the degradation performance of pharmaceutical compounds compared to that of a commercial sample (Degussa P25) due to presence of specific cavities in the silica domain. To elucidate certain trends between the performance of photocatalysts and their structural and textural properties, as well the effect of the structure of the drugs on molecular imprinting, the data were analyzed in terms of pore diameter, pore volume, surface area, zeta potential and six-membered ring percentage of silica. In comparison to the commercial sample (P25), we have shown that adsorption and degradation were enhanced from 48 to 752% and from 5 to 427%, respectively. A comparison with the control system (non-imprinted) indicates that the increased performance of the MI systems was due to the presence of specific cavities on the silica domain, and the textural and structural aspects also support this conclusion. The MI photocatalyst was reusable for seven cycles of reuse in which approximately 60% of its photocatalytic efficiency was preserved for the system containing Diclofenac as the template. PMID:26800507

  7. Synthesis of Pt-Loaded Self-Interspersed Anatase TiO2 with a Large Fraction of (001) Facets for Efficient Photocatalytic Nitrobenzene Degradation.

    PubMed

    Wang, Wei-Kang; Chen, Jie-Jie; Li, Wen-Wei; Pei, Dan-Ni; Zhang, Xing; Yu, Han-Qing

    2015-09-16

    TiO2 is capable of directly utilizing solar energy for sustainable energy harvest and water purification. Facet-dependent performance of TiO2 has attracted enormous interests due to its tunable photocatalytic activity toward photoredox transformations, but information about the noble-metal-loaded TiO2 for its facet-dependent photocatalytic performance, especially in pollutant degradation systems, is limited. In this work, inspired by our previous theoretical calculations about the roles of the crystal surface in Pt-loaded TiO2 in its enhanced photocatalytic capacity, TiO2 nanocrystals with interspersed polyhedron nanostructures and coexposed (001) and (101) surfaces as a support of Pt nanoparticles are prepared in a simple and relatively green route. Also, their performance for photocatalytic degradation of nitrobenzene (NB), a model organic pollutant, is explored. The experimental results demonstrate that the NB photodegradation and photoconversion efficiencies are significantly enhanced by uniformly loading Pt nanoparticles on the crystal surfaces, but the Pt nanoparticles deposited on only the (101) surface have no contribution to the improved NB photodegradation. Furthermore, the liquid chromatography mass spectrometry results also show that NB photodegradation tends to proceed on the (001) surface of Pt/TiO2 for the generation of nitrophenol intermediates through the photooxidation pathway. This work provides a new route to design and construct advanced photocatalysts toward pollutant photoredox conversions and deepens our fundamental understanding about crystal surface engineering. PMID:26308282

  8. Preparation of TiO2 Nanoparticle Loaded MCM-41 and Study of Its Photo-Catalytic Activity Towards Decolorization of Methyl Orange.

    PubMed

    Naik, Bhanudas; Hazra, Subhenjit; Dayananda, Desagani; Prasad, V S; Ghosh, Narendra Nath

    2015-09-01

    Here we report the synthesis of TiO2 nanoparticle loaded mesoporous MCM-41 photocatalysts for degradation of methyl orange dye in aqueous medium under sunlight exposure. TiO2 loaded MCM-41 was synthesized by impregnation method. Anatase form of TiO2 nanoparticles were formed in the porous matrix of the silicate MCM-41. The synthesized materials were characterized using powder X-ray diffraction method, surface area and porosimetry analysis; diffuse reflectance analysis, particle size analysis and transmission electron microscopy. The photocatalytic property of the synthesized materials were investigated towards the degradation of methyl orange under sunlight exposure and monitored by UV-visible spectrophotometer. Synthesized catalysts showed high photocatalytic activity for the degradation of methyl orange. PMID:26716226

  9. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies

    PubMed Central

    Zhang, Hangzhou; Sun, Yu; Tian, Ang; Xue, Xiang Xin; Wang, Lin; Alquhali, Ali; Bai, Xizhuang

    2013-01-01

    The goal for current orthopedic implant research is to design implants that have not only good biocompatibility but also antibacterial properties. TiO2 nanotubes (NTs) were fabricated on the titanium surface through electrochemical anodization, which added new properties, such as enhanced biocompatibility and potential utility as drug nanoreservoirs. The aim of the present study was to investigate the antibacterial properties and biocompatibility of NTs loaded with vancomycin (NT-V), both in vitro and in vivo. Staphylococcus aureus was used to study the antibacterial properties of the NT-V. There were three study groups: the commercially pure titanium (Cp-Ti) group, the NT group (nonloaded vancomycin), and the NT-V group. We compared NT-V biocompatibility and antibacterial efficacy with those of the NT and Cp-Ti groups. Compared with Cp-Ti, NT-V showed good antibacterial effect both in vitro and in vivo. Although the NTs reduced the surface bacterial adhesion in vitro, implant infection still developed in in vivo studies. Furthermore, the results also revealed that both NTs and NT-V showed good biocompatibility. Therefore, the NTs loaded with antibiotic might be potentially used for future orthopedic implants. PMID:24403827

  10. Synthesis and photocatalytic properties of Palladium-loaded three dimensional flower-like anatase TiO2 with dominant {001} facets.

    PubMed

    Bai, Xue; Lv, Lingling; Zhang, Xiaoyuan; Hua, Zulin

    2016-04-01

    Palladium-loaded (Pd-loaded) anatase TiO2 with dominant {001} facets used as photocatalysts was prepared by a two-step process. Three dimensional flower-like structures of anatase TiO2 with exposed {001} facets were synthesized by solvothermal method, and then Pd nanoparticles were photodeposited onto the {101} surface of TiO2 by UV reduction. The resulting Pd/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectra. Characterization results indicated that the flower-like structures of anatase TiO2 were assembled by two dimensional nanosheets with a thickness of approximately 10nm and a length of approximately 1.0μm. The Pd/TiO2 nanocomposites with improved visible-light-harvesting capability, high charge-hole mobility, and low electron-hole recombination exhibited improved photocatalytic performance in degrading bisphenol A. This study provided new insights into the fabrication and practical application of high-performance photocatalysts in degrading organic pollutants. PMID:26771748

  11. Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish

    2016-07-01

    Cordierite honeycomb monoliths loaded with N/TiO2 and Cu/TiO2 nanocatalysts for dynamic photocatalytic CO2 reduction with H2 to CO in a continuous photoreactor illuminated with UV-light irradiations have been investigated. The nanocatalysts, loaded over the monoliths channels using sol-gel dip-coating method, were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance and photoluminescence (PL) analysis. Crystalline and anatase TiO2 structure with nanoparticles evenly supported over the cordierite monolith channels were observed. Cu and N presented over TiO2, shifted band gap energy towards visible region and hindered charges recombination rate. Loading Cu and N greatly improved TiO2 photoactivity for dynamic CO2 reduction to CO. Due to high photoactivity and selectivity, Cu/TiO2 assisted system yielded 14 times higher CO than the N/TiO2 and 64 times the amount of copper observed over pure TiO2 in a continuous operation of photoreactor. This significant improvement in Cu/TiO2 activity was noticeable due to efficient trapping and transport of electrons by Cu-metal. With unique properties, N/TiO2 showed good activity for continuous CO2 reduction to CH4. In addition, a photocatalytic reaction mechanism is proposed to understand the experimental results over Cu and N modified TiO2 catalysts in a continuous operation of photoreactor.

  12. Improved visible solar absorber based on TiO2 nanotube film by surface-loading of plasmonic Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shao, Zhufeng; Wang, Xinshun; Ren, Shoutian; Tian, Zhaoshuo; Fan, Shengli; Sun, Shengsheng; Liu, Shutian; Wang, Qiang

    2013-08-01

    Plasmon-driven electrons injection into active layers of optoelectronic devices is a promising and challenging research topic due to the great unavailability of suitable materials and devices configurations capable of providing comprehensively high photocurrent. In this letter, anodic TiO2 nanotubes array (TNA) films are formed to show enhanced visible light absorbing properties by surface-loading of isolated Au nanoparticles (NPs), exhibiting increased photocurrent and decreased response time. Surface Plasmon produces hot free electrons in the gold NPs when the device is illuminated by visible light with suitable photon energies, and the direct injection of hot electrons into TNA film is realized due to the energy nonequilibrium between gold NPs and TNA film. A significant fraction of these electrons will tunnel into the semiconductor's conduction band, which will introduce the surface n-type conduction layer, resulting in about 145% enhancement of photocurrent and 37% reduction of response time. A scattering-induced enhancement mechanism contributes effectively to the plasmonic photoresponse.

  13. New fly ash TiO2 composite for the sustainable treatment of wastewater with complex pollutants load

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Isac, Luminita; Duta, Anca

    2015-06-01

    The goal of this paper was to develop a new composite obtained in mild hydrothermal conditions starting from fly ash (a waste raising significant environmental problems), and TiO2. The composite was characterized through XRD, SEM/EDX, AFM, and BET surface measurements. The composite was further used for the advanced treatment of wastewaters with multiple-pollutants load. The photocatalytic efficiency of the powder composite was tested on synthetic solutions containing a heavy metal cation (copper), a dye (methyl orange), and a surfactant (sodium dodecylbenzenesulfonate), under UV and simulated solar radiation. Comparative experiments were done in systems with and without H2O2 showing a significant increase in efficiency for methyl orange removal from mono-, bi-, and tri-pollutants solutions. The process parameters were optimized and the adsorption mechanisms are discussed, outlining that adsorption is the limiting step. Experiments also outlined that homogeneous photocatalysis (using H2O2) is less efficient then the heterogeneous process using the novel composite, both under UV and simulated solar radiation.

  14. Fibrous nanocrystals of hydroxyapatite loaded with TiO(2) nanoparticles for the capture and photocatalytic decomposition of specific proteins.

    PubMed

    Hirakura, Sho; Kobayashi, Toru; Ono, Shohei; Oaki, Yuya; Imai, Hiroaki

    2010-08-01

    The monomolecular adsorption of lysozyme (LSZ) and bovine serum albumin (BSA) on hydroxyapatite (HAp) was observed by using two types of fibrous crystals elongated in the c-axis. Selective removal of the specific proteins was achieved by the capture and decomposition on the HAp crystals having the particular nanostructures attached with anatase-type TiO(2). Bundled short nanorods of ca. 10nm in diameter were suitable for the capture of a relatively small protein molecule, LSZ, due to their high specific surface area, while the adsorption of a relatively large molecule, BSA, was restricted because of the narrow clearance gap between the nanorods. On the other hand, the large protein preferentially adsorbed to long nanoneedles of 30-60 nm in diameter, which had a wide gap among the loosely aggregated crystals. The captured proteins were smoothly decomposed with anatase nanoparticles loaded on the fibrous HAp crystals under UV irradiation. Thus, the photocatalytic activity for the decomposition of proteins could be controlled with the adsorption on the surface of the nanostructured HAp crystals. PMID:20444584

  15. Deciphering effects of functional groups and electron density on azo dyes degradation by graphene loaded TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Liang, Xiao; Chen, Bor-Yann; Chang, Chang-Tang

    2015-12-01

    This study tended to decipher the mechanism of photo degradation of azo dyes, which bond was favorable to be broken for application of wastewater decolorization. That is, from chemical structure perspective, the critical substituents to affect electron donor/acceptor for dye degradation would be identified in this research. The model reactive blacks (RB5), reactive blue 171 (RB171) and reactive red 198 (RR198) were degraded by graphene loaded TiO2, indicating how the electron withdrawing and releasing groups affect azo dye degradability. The byproducts and intermediate products were analyzed by ultraviolet-visible spectroscopy (UV-vis), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). Furthermore, the radicals involved in the reaction were found by electron paramagnetic resonance (ESR) to confirm the main oxidized species of hydroxyl radicals rather than the light generated positive holes. The finding revealed that the breakages of the bonds were due to the electron density changes around the bonds. This principle can be applicable not only for RB5 degradation, but also for reactive blue 171 (RB171), reactive red 198 (RR198) and some other textile dyes.

  16. Enhanced photocatalytic hydrogen evolution activity of CuInS2 loaded TiO2 under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Changjiang; Xi, Zhenhao; Fang, Wenzhang; Xing, Mingyang; Zhang, Jinlong

    2015-03-01

    In this paper, p-n type CuInS2/TiO2 particles were prepared in ethylenediamine by the solvothermal method. The microstructural properties of the synthesized p-n type catalysts were characterized by X-ray diffraction (XRD) in order to confirm the existence of crystalline CuInS2 on the surface of TiO2, which was also confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) images provided the detailed morphological properties about the CuInS2/TiO2 heterostructure. UV-vis diffuse reflectance spectroscopy (UV-vis DRS) was used to investigate the optical properties of the CuInS2/TiO2 particles. The DRS results indicated that both the p-n type structure and CuInS2 acting as a sensitizer can enhance significantly the absorption of UV and visible light. The photocatalytic activities of the CuInS2/TiO2 particles were evaluated by hydrogen evolution reactions using Xe-lamp irradiation as a simulated solar light source. The greatly enhanced photocatalytic activity of hydrogen evolution under simulated solar light is about ~7 fold higher than that of pure commercial TiO2 (Degussa P25).

  17. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition

    PubMed Central

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. PMID:26869786

  18. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  19. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. PMID:25506648

  20. Enhancement of photocatalytic H2 evolution over TiO2 nano-sheet films by surface loading NiS nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Yaopeng; Tang, Chunni

    2016-05-01

    NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV-Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm-2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.

  1. Plasmonic TiO2/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Dai, Kai; Li, Dongpei; Lu, Luhua; Liu, Qi; Liang, Changhao; Lv, Jiali; Zhu, Guangping

    2014-09-01

    In this work, TiO2/AgBr/Ag ternary composite nanosphere photocatalyst has been synthesized by in situ deposition of AgBr onto hollow spherical TiO2 template and followed by sun light reduction of AgBr into AgBr/Ag. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images have shown that the diameter of hollow TiO2 nanospheres is 250-350 nm and AgBr/Ag nanoparticles are well dispersed on the outer surface of TiO2 nanosphere. UV-vis spectrum analysis has shown largely improved visible light absorption of this ternary composite, in comparison to pure TiO2 and AgBr. The building-in AgBr/Ag, TiO2/AgBr and TiO2/Ag junctions within the ternary composite enhanced the visible light absorption because of plasmonic resonance and narrow bandgap. The pseudo-first-order rate constant kapp of the TiO2/AgBr/Ag ternary composite for methylene blue photodegradation displays 24.5 times and 3.3 times than the pure TiO2 nanosphere and AgBr/Ag nanoparticles, respectively. Furthermore, the stability of TiO2/AgBr/Ag ternary composite is characterized through cyclic photocatalytic test. Results indicate that 92.7% of photocatalytic degradation can be achieved by TiO2/AgBr/Ag ternary composite even after five recycles.

  2. Improving the visible light photocatalytic activity of mesoporous TiO2 via the synergetic effects of B doping and Ag loading

    NASA Astrophysics Data System (ADS)

    Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng

    2011-11-01

    B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.

  3. Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2015-08-01

    Bio-template approach was employed to construct inverse V-type TiO2-based photocatalyst with well distributed AgBr in TiO2 matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO2/AgBr can be turned into inverse V-type TiO2/Ag0 from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag0 in TiO2 matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO2/Ag0 microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO2/Ag0 and TiO2/Ag0 without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag0 might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  4. Synthesis, features and solar-light-driven photocatalytic activity of TiO2 nanotube arrays loaded with SnO2.

    PubMed

    Sim, Lan Ching; Ng, Kai Wern; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-09-01

    In the present study TiO2 nanotube arrays (TNTs) were loaded with a post-transition metal oxide particles namely SnO2 via incipient wet impregnation method by varying its concentration (1.59 wt%, 2.25 wt% and 2.84 wt%). The photocatalytic activity of the prepared photocatalyst was evaluated for the degradation of methylene blue (MB) in presence of natural solar light irradiation. The morphological analyses revealed that the prepared TNTs had average inner diameter of 109 nm, wall thickness of 15 nm and tube length of 7-10 μm, respectively, while the crystalline phase and Raman spectra confirmed the 100% anatase mineral form of TiO2. Further, the presence of SnO2 in TNTs was confirmed by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The visible light absorption properties of TNTs improved drastically with increasing SnO2 loadings. The coupling effect of SnO2 and TiO2 significantly enhanced degradation efficiency of MB. An 84% degradation of MB was achieved in 6 h of irradiation under clear sky condition. PMID:25924362

  5. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  6. Correlations of Optical Absorption, Charge Trapping, and Surface Roughness of TiO2 Photoanode Layer Loaded with Neat Ag-NPs for Efficient Perovskite Solar Cells.

    PubMed

    Yang, Dongwook; Jang, Jae Gyu; Lim, Joohyun; Lee, Jin-Kyu; Kim, Sung Hyun; Hong, Jong-In

    2016-08-24

    We systematically investigated the effect of silver nanoparticles (Ag-NPs) on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Neat, spherical Ag-NPs at loading levels of 0.0, 0.5, 1.0, and 2.0 wt % were embedded into the titanium dioxide (TiO2) photoanode layer. The plasmonic effect of the Ag-NPs strongly enhanced the incident light absorption over a wide range of the visible wavelength region in addition to the inherent absorbance of the perovskite sensitizer. The low conduction energy level of the Ag-NPs compared to that of TiO2 provides trap sites for free charge carriers. Thus, the correlation between the enhancement of the optical absorption and the number of charge traps provided by the Ag-NPs is critical to determine the device performance, especially current density (Jsc) and PCE. This is confirmed by the quantitative comparison of the incident light absorption and the time-resolved photoluminescence decay according to the loading levels of the Ag-NPs in the TiO2 layer. The absorption enhancement from 380 to 750 nm in the UV-visible spectrum is proportional to the increase in the loading levels of the Ag-NPs. However, the Jsc increases with the device with 0.5 wt % Ag-NPs and gradually decreases with increases in the loading level above 0.5 wt % because of the different contributions to the absorbance and the charge trapping by different Ag-NP loading levels. In addition, the suppression of the surface roughness with dense packing by the Ag-NPs helps to improve the Jsc and the following PCE. Consequently, the PCE of the PSC with 0.5 wt % Ag-NPs is increased to 11.96%. These results are attributed to the balance between increased absorbance by the localized surface plasmon resonance and the decreased charge trapping as well as the decreased surface roughness of the TiO2 layer with the Ag-NPs. PMID:27471777

  7. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  8. Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Jiang, Zhifeng; Wei, Wei; Mao, Danjun; Chen, Cheng; Shi, Yunfei; Lv, Xiaomeng; Xie, Jimin

    2014-12-01

    Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and ciprofloxacin under visible light irradiation. The experimental results indicate that N-doped yolk-shell mesoporous TiO2 hollow microspheres show higher photocatalytic activity than P25 TiO2 under visible light irradiation because of N doping and the unique yolk-shell structure. In addition, Ag-N-TiO2-YSM shows enhanced activity compared with N-TiO2-YSM due to the SPR absorption of silver NPs and the fast generation, separation and transportation of the photogenerated carriers. Moreover, the Ag contents can affect the photocatalytic activity of the Ag-N-TiO2-YSM composite. A suitable amount of Ag deposition gives the highest photocatalytic activity. A higher loading does not improve the photocatalytic activity of N-TiO2-YSM further. The active species generated in the photocatalytic system were also investigated. Based on our experimental results, a possible photocatalytic mechanism was proposed. The strategy presented here gives a promising route towards the development of delicate metal@hollow semiconductor composites for many applications in photocatalysis.Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and

  9. Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Crespo-Monteiro, N.; Destouches, N.; Nadar, L.; Reynaud, S.; Vocanson, F.; Michalon, J. Y.

    2011-10-01

    The photochromism of heterogeneous silver nanoparticles grown thermally in mesoporous TiO2 films is investigated under visible laser illuminations with different irradiances. At low irradiance, a selective oxidation occurs that changes the film color in accordance with the illuminant wavelength. At higher irradiance, the oxidation of large nanoparticles is going with the formation of many small nanoparticles in their vicinity, which gives the films an orangy color whatever the wavelength. This color fades after long exposure times at a laser line. The laser polarization has also an influence on the dichroism of the colored films.

  10. Cadmium removal and 2,4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles.

    PubMed

    Chen, Guiqiu; Guan, Song; Zeng, Guangming; Li, Xiaodong; Chen, Anwei; Shang, Cui; Zhou, Ying; Li, Huanke; He, Jianmin

    2013-04-01

    Phanerochaete chrysosporium has been identified as an effective bioremediation agent for its biosorption and degradation ability. However, the applications of P. chrysosporium are limited owing to its long degradation time and low resistance to pollutants. In this research, nitrogen-doped TiO2 nanoparticles were loaded on P. chrysosporium to improve the remediation capacity for pollutants. The removal efficiencies were maintained at a high level: 84.2% for Cd(II) and 78.9% for 2,4-dichlorophenol (2,4-DCP) in the wide pH range of 4.0 to 7.0 in 60 h. The removal capacity of immobilized P. chrysosporium loaded with nitrogen-doped TiO2 nanoparticles (PTNs) was strongly affected by the initial Cd(II) and 2,4-DCP concentrations. The hyphae of PTNs became tight, and a large amount of crystals adhered to them after the reaction. Fourier transform infrared spectroscopy showed that carboxyl, amino, and hydroxyl groups on the surface of PTNs were responsible for the biosorption. In the degradation process, 2,4-DCP was broken down into o-chlorotoluene and 4-hexene-1-ol. These results showed that PTNs is promising for simultaneous removal of Cd(II) and 2,4-DCP from wastewater. PMID:22569639

  11. Photocatalytic direct conversion of ethanol to 1,1- diethoxyethane over noble-metal-loaded TiO2 nanotubes and nanorods.

    PubMed

    Zhang, Hongxia; Wu, Yupeng; Li, Li; Zhu, Zhenping

    2015-04-13

    As one of the most important biomass platform molecules, ethanol needs to have its product chain chemically extended to meet future demands in renewable fuels and chemicals. Additionally, chemical conversion of ethanol under mild and green conditions is still a major challenge. In this work, ethanol is directly converted into 1,1-diethoxyethane (DEE) and H2 under mild photocatalytic conditions over platinum-loaded TiO2 nanotubes and nanorods. The reaction follows a tandem dehydrogenation-acetalization mechanism, in which ethanol is first dehydrogenated into acetaldehyde and H(+) ion by photogenerated holes, and then acetalization between acetaldehyde and ethanol proceeds through promotion by H(+) ions formed in real time. Excess H(+) ions are simultaneously reduced into H2 by photogenerated electrons. This photocatalytic process has a very high reaction rate over nanosized tubular and rod-like TiO2 photocatalysts, reaching 157.7 mmol g(-1)  h(-1) in relatively low photocatalyst feeding. More importantly, the reaction is highly selective, with a nearly stoichiometric conversion of reacted ethanol into DEE. This photocatalytic dehydrogenation CO coupling of ethanol is a new green approach to the direct efficient conversion of ethanol into DEE and provides a promising channel for sustainable bioethanol applications. PMID:25755072

  12. Enhanced photo-degradation of paracetamol on n-platinum-loaded TiO2: The effect of ultrasound and OH/hole scavengers.

    PubMed

    Ziylan-Yavaş, Asu; Ince, Nilsun H

    2016-11-01

    Elimination/mineralization of paracetamol (PCT) was investigated by catalytic oxidation under ultrasound, UV and both. The catalyst was synthesized by immobilization of nPt on TiO2 to benefit from the ability of Pt to facilitate charge transfer processes and to separate e(-)/h(+) pairs. It was found that increasing the Pt-loading enhanced the rate of sonochemical reactions, but retarded that of photolytic reactions, due to reduced UV absorption on the surface. Simultaneous application of sonolysis and photolysis was synergistic due to disaggregation of the particles and homogenization of the active species over the catalyst surface. The decay of PCT was highly dependent on the availability of OH, as the reactions were nearly terminated in the presence of a strong OH scavenger-2-propanol. However, a remarkable rate enhancement was observed in the presence of a suitable dose of I(-), which scavenges both OH and hvb(+). The result was explained by the production of excess radicals upon sonolysis of iodide solutions, and the reactivity of PCT with them. Finally, carbon mineralization was significantly hindered in the presence of both scavengers due to increased competition for OH and inefficient formation of hydroquinone arising from reduced availability of hvb(+). PMID:27518924

  13. DC electrical conductivity retention and electrical compensation of polyaniline by TiO2 at higher loading percentages in polyaniline@TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Omaish; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Cho, Moo Hwan

    2015-07-01

    Electrically conductive HCl-doped polyaniline (Pani)@titanium dioxide (TiO2) nanocomposites were prepared by the in-situ oxidative polymerization of aniline in the presence of different amounts of TiO2 nanoparticles. The synthesized Pani@TiO2 nanocomposites were characterized by transmission electron microscopy, X-ray diffraction, UV-visible spectroscopy, and thermogravimetric analysis. The stability of the Pani@TiO2 nanocomposites in terms of their electrical conductivity retention was examined under isothermal and cyclic aging conditions, and compared with that of pure Pani. The Pani@TiO2 nanocomposites showed higher thermal stability than pure Pani. The effect of competitive doping/de-doping by TiO2 was examined at different Pani to TiO2 weight ratios. TiO2 at a higher weight percentage was found to be involved in the de-doping type of interaction with Pani, leading to its neutralization, which was found to be similar to the dedoping phenomenon, as in the case of neutralization in basic media. The novel mechanism for this de-doping type of interaction of TiO2 with Pani has also been proposed. [Figure not available: see fulltext.

  14. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m2 g-1) than that of Co0.85Se nanofilms (55.17 m2 g-1) and TiO2 nanoparticles (19.49 m2 g-1). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.

  15. Physiological fluxes and antioxidative enzymes activities of immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles after exposure to toxic pollutants in solution.

    PubMed

    Tan, Qiong; Chen, Guiqiu; Zeng, Guangming; Chen, Anwei; Guan, Song; Li, Zhongwu; Zuo, Yanan; Huang, Zhenzhen; Guo, Zhi

    2015-06-01

    Immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles (PTNs) are novel high-value bioremediation materials for adsorbing cadmium and for degrading 2,4-dichlorophenol (2,4-DCP). The real-time changes in H(+) and O2 fluxes were measured using the noninvasive microtest technique (NMT). The H(+) influx increased after the addition of 2,4-DCP, and shifted to efflux following the addition of Cd(2+). The O2 flux decreased after the addition of both 2,4-DCP and Cd(2+). A larger Cd(2+) flux was immediately observed after exposure to 0.5mM Cd(2+) (-351.25 pmol cm(-2) s(-1)) than to 0.1 mM Cd(2+) (-107.47 pmol cm(-2) s(-1)). The removal of Cd(2+) by the PTNs increased more after treatment with the 0.5 mM exposure solution (27.6 mg g(-1)) than with the 0.1 mM exposure solution (3.49 mg g(-1)). The enzyme activities were analyzed to review the antioxidative defense system of PTNs in a solution containing various concentrations of Cd(2+). The activities of the coenzyme nicotinamide adenine dinucleotide (NADH) oxidase as well as the enzyme catalase (CAT) plateaued at 6.5 U g(-1) FW and 9.7 U g(-1) FW, respectively, after exposure to 0.25 mM Cd(2+). The activity of superoxide dismutase (SOD) increased gradually in solutions containing 0.1-0.6 mM Cd(2+), and eventually reached a maximum (68.86 U g(-1) FW). These results illustrate how the antioxidative defense system and the physiological fluxes of PTNs respond to the stress caused by toxic pollutants. PMID:25638529

  16. Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Shalan, Ahmed E.; Rashad, M. M.; Mahmoud, M. H. H.

    2015-12-01

    In this article, a low cost mesoporous Fe2O3-TiO2 nanoparticles has been synthesized from Abu Ghalaga ilmenite ore, Egypt using simple hydrothermal route. Meanwhile, silver, platinum and palladium metals nanoparticles from spent catalysts have been extracted and deposited between the anatase TiO2 particles using in situ reduction step. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopic (TEM), N2 adsorption-desorption isotherm (SBET) and X-ray photoelectron spectroscopy (XPS). The as-prepared materials were applied as photoanodes in dye-sensitized solar cells (DSSCs), whose photocurrent-voltage J-V characteristic curves measurements were consistently performed. The 0.5% precious metal doped samples NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths which also exhibited very good and enhanced photovoltaic performance as a result of the strong scattering lightresulting of noticeable enhancement of charge transfer rates. Indeed, the Ag@Fe2O3-TiO2 sample exhibited the maximum overall conversion efficiency (η % = 4.5%) and it can be considered as a cost-effective photoanode for DSSCs.

  17. [Removal of gaseous elemental mercury over cerium doped low vanadium loading V2O5-WO3/TiO2 in simulated coal-fired flue gas].

    PubMed

    Wan, Qi; Duan, Lei; He, Ke-Bin; Chen, Liang; Li, Jun-Hua

    2011-09-01

    This paper discussed a recent study of mercury removal by gaseous hydrogen chloride over novel Ce doped low vanadium V2O5-WO3/TiO2 catalysts under a bench scale condition. The performances on Hg(0) removal over the catalyst were tested in simulated flue gas with 80-100 microg x m(-3) Hg(0), 8% O2, 10 x10(-6) HCl, 8% H2O, 800 x10(-6) SO2 and balanced with N2. Results showed that about 95% of Hg(0) could be removed. According to the characterization results, BET surface areas had not significant influence on catalytic performance. XPS results indicated that Ce4+ oxide was a mainly form in the catalysts surface, which was beneficial for Hg(0) removal reactions. Water vapor slightly inhibited Hg(0) removal efficiency, due to the competitive adsorption, however, SO2 promoted the oxidation reactions, resulting in higher removal efficiencies. PMID:22165254

  18. Controlling available active sites of Pt-loaded TiO2 nanotube-imprinted Ti plates for efficient dye-sensitized solar cells.

    PubMed

    Lin, Lu-Yin; Yeh, Min-Hsin; Chen, Wei-Chieh; Ramamurthy, Vittal; Ho, Kuo-Chuan

    2015-02-25

    The counter electrode (CE) of dye-sensitized solar cells (DSSCs) plays an important role for transferring electrons and catalyzing the I-/I3- reduction. Active surface area of the substrate determines the reduction sites of the deposited catalyst as well as the catalytic ability of the CE. An effective method for enhancing and controlling the active surface area of metal plates is provided in this study. The Ti plates are imprinted by TiO2 nanotubes (TNT) via the technique of anodization along with the ultrasonic vibration process. The available active area of imprinted Ti plates is controlled by varying the anodization voltage to produce TNT imprints with different diameters and depths. A solar-to-electricity conversion efficiency (η) of 9.35% was obtained for the DSSC with a TNT-imprinted Ti plate as the CE substrate, while the cell with an imprint-free Ti plate shows an η of 7.81%. The enhanced η is due to the improved electrocatalytic ability of the CE by using the TNT-imprinted Ti plate as the substrate with higher active surface area. PMID:25642665

  19. New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: critical issues.

    PubMed

    Nesic, Jelena; Rtimi, Sami; Laub, Danièle; Roglic, Goran M; Pulgarin, Cesar; Kiwi, John

    2014-11-01

    This study presents new evidence for the events leading to Escherichia coli reduction in the absence of light irradiation on TiO2-polyester (from now on TiO2-PES. By transmission electron microscopy (TEM) the diffusion of TiO2 NP's aggregates with the E. coli outer lipo-polyssacharide (LPS) layer is shown to be a prerequisite for the loss of bacterial cultivability. Within 30 min in the dark the TiO2 aggregates interact with E. coli cell wall leading within 120 min to the complete loss of bacterial cultivability on a TiO2-PES 5% TiO2 sample. The bacterial reduction was observed to increase with a higher TiO2 loading on the PES up to 5%. Bacterial disinfection on TiO2-PES in the dark was slower compared to the runs under low intensity simulated sunlight light irradiation. The interaction between the TiO2 aggregates and the E. coli cell wall is discussed in terms of the competition between the TiO2 units collapsing to form TiO2-aggregates at a physiologic pH-value followed by the electrostatic interaction with the bacteria surface. TiO2-PES samples were able to carry repetitive bacterial inactivation. This presents a potential for practical applications. X-ray photoelectron spectroscopy (XPS) evidence was found for the reduction of Ti4+ to Ti3+ contributing to redox interactions between TiO2-PES and the bacterial cell wall. Insight is provided into the mechanism of interaction between the E. coli cell wall and TiO2 NP's. The properties of the TiO2-PES surface like percentage atomic concentration, TiO2-loading, optical absorption, surface charge and crystallographic phases are reported in this study. PMID:25444660

  20. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  1. Beta zeolite supported sol-gel TiO2 materials for gas phase photocatalytic applications.

    PubMed

    Lafjah, Mama; Djafri, Fatiha; Bengueddach, Abdelkader; Keller, Nicolas; Keller, Valérie

    2011-02-28

    Beta zeolite supported sol-gel TiO(2) photocatalytic materials were prepared according to a sol-gel route in which high specific surface area Beta zeolite powder was incorporated into the titanium isopropoxide sol during the course of the sol-gel process. This led to an intimate contact between the zeolite surface and the TiO(2) precursors, and resulted in the anchorage of large amounts of dispersed TiO(2) nanoparticles and in the stabilization of TiO(2) in its anatase form, even for high TiO(2) wt. contents and high calcination temperatures. Taking the UV-A photocatalytic oxidation of methanol as gas phase target reaction, high methanol conversions were obtained on the Beta zeolite supported TiO(2) photocatalysts when compared to bulk sol-gel TiO(2), despite lower amounts of TiO(2) within the photoactive materials. The methanol conversion was optimum for about 40 wt.% TiO(2) loading and calcination temperatures of 500-600°C. PMID:21177024

  2. Fabrication of TiO2-strontium loaded CaSiO3/biopolymer coatings with enhanced biocompatibility and corrosion resistance by controlled release of minerals for improved orthopedic applications.

    PubMed

    Raj, V; Raj, R Mohan; Sasireka, A; Priya, P

    2016-07-01

    Titanium dioxide (TiO2) arrays were fabricated on Ti alloy by anodization method. Synthesis of CaSiO3 (CS) and various concentrations (1X-5X) of Sr(2+) substitutions in CS coatings on TiO2 substrate was achieved through an electrophoretic deposition technique. Fast release of mineral ions from implant surface produce over dosage effect and it is a potential hazardous factor for osteoblasts. So, in order to prevent the fast release of minerals, biopolymer coating was applied above the composite coatings. The coatings were characterized by FTIR, XRD, FE-SEM and EDX techniques. The mechanical, anticorrosion, antimicrobial properties and biocompatibility of the coatings were evaluated. Studies on the mechanical properties indicate that the addition of Sr(2+) and biopolymer increase the hardness strength of the coatings. The metal ion release from the coatings was studied by ICP-AES. The electrochemical properties of the coatings were studied in Ringer's solution, in which CS-3X/Chi-PVP coating on TiO2 exhibits good anticorrosion property and high resistivity against Escherichia coli and Staphylococcus aureus compared to CS-3X coating on TiO2. In vitro cell experiments indicate that osteoblasts show good adhesion and high growth rates for CS-3X/Chi-PVP coated TiO2 substrate, indicating that the surface cytocompatibility of CS-3X/Chi-PVP coated TiO2 substrate is significantly improved by the controlled release of mineral ions. In conclusion, the surface modification of TiO2/CS-3X/Chi-PVP coated titanium is a potential candidate for implant coating. PMID:27018944

  3. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  4. In vitro apatite formation and drug loading/release of porous TiO2 microspheres prepared by sol-gel processing with different SiO2 nanoparticle contents.

    PubMed

    Kawashita, Masakazu; Tanaka, Yui; Ueno, Shoji; Liu, Gengci; Li, Zhixia; Miyazaki, Toshiki

    2015-05-01

    Bioactive titania (TiO2) microparticles can be used as drug-releasing cement fillers for the chemotherapeutic treatment of metastatic bone tumors. Porous anatase-type TiO2 microspheres around 15 μm in diameter were obtained through a sol-gel process involving a water-in-oil emulsion with 30:70 SiO2/H2O weight ratio and subsequent NaOH solution treatment. The water phase consisted of methanol, titanium tetraisopropoxide, diethanolamine, SiO2 nanoparticles, and H2O, while the oil phase consisted of kerosene, Span 80, and Span 60. The resulting microspheres had a high specific surface area of 111.7 m(2)·g(-1). Apatite with a network-like surface structure formed on the surface of the microspheres within 8 days in simulated body fluid. The good apatite-forming ability of the microspheres is attributed to their porous structure and the negative zeta potential of TiO2. The release of rhodamine B, a model for a hydrophilic drug, was rapid for the first 6 h of soaking, but diffusion-controlled thereafter. The burst release in the first 6h is problematic for clinical applications; nonetheless, the present results highlight the potential of porous TiO2 microspheres as drug-releasing cement fillers able to form apatite. PMID:25746276

  5. Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y

    NASA Astrophysics Data System (ADS)

    Guesh, Kiros; Márquez-Álvarez, Carlos; Chebude, Yonas; Díaz, Isabel

    2016-08-01

    Zeolite Y was treated using ammonium acetate and ammonium fluoride sequentially. As a consequence the aluminum from the surface was selectively removed. Then, loading with TiO2 (20 wt%) led to a final photocatalyst. The samples were characterized by X-ray diffraction (XRD), elemental analysis (ICP-OES), N2 adsorption, diffuse reflectance UV-vis spectroscopy (DRS), photoluminescence spectroscopy (PL), and X-ray photoelectron spectroscopy (XPS). It was found that 50% of the Al atoms were removed from the surface of the zeolite without affecting the framework structure. The TiO2/treated zeolite sample yielded 92% photocatalytic degradation of 10 ppm methyl orange (MO), a model pollutant, while the TiO2/parent zeolite converted only 7.6%. The mass normalized turnover rate (TORm) of the treated zeolite loaded with TiO2 was about 12 times higher than that of the parent zeolite loaded with the same amount of TiO2 precursor. This higher photocatalytic activity of the TiO2 supported on treated zeolite can be attributed to a more efficient interaction of the TiO2 with the zeolite leading to higher adsorption capacity. Reusability of the photocatalysts was assessed by performing three consecutive reaction cycles that showed no significant loss of photocatalytic activity.

  6. Electrospinning processed nanofibrous TiO(2) membranes for photovoltaic applications.

    PubMed

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-28

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO(2) membranes as electrode materials. A thin TiO(2) film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF(4) aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO(2) film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO(2) membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO(2) membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N(')-bis(2,2(')-bipyridyl-4,4(')-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO(2) film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO(2) membranes. The efficiency of the fibrous TiO(2) photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%. PMID:21727376

  7. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  8. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry

    PubMed Central

    Cantin, Greg T.; Shock, Teresa R.; Park, Sung Kyu; Madhani, Hiten D.; Yates, John R.

    2008-01-01

    An automated online multidimensional liquid chromatography system coupled to ESI-based tandem mass spectrometry was used to assess the effectiveness of TiO2 in the enrichment of phosphopeptides from tryptic digests of protein mixtures. By monitoring the enrichment of phosphopeptides, an optimized set of loading, wash, and elution conditions were realized for TiO2. A comparison of TiO2 with other resins used for phosphopeptide enrichment, Fe(III)-IMAC and ZrO2, was also carried out using tryptic digests of both simple and moderately complex protein mixtures; where TiO2 was shown to be superior in performance. PMID:17523591

  9. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells.

    PubMed

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-12-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time. PMID:26754938

  10. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-01-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  11. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    NASA Astrophysics Data System (ADS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  12. Photocatalytic degradation of N-nitrosodimethylamine: mechanism, product distribution, and TiO2 surface modification.

    PubMed

    Lee, Jaesang; Choi, Wonyong; Yoon, Jeyong

    2005-09-01

    The photocatalytic degradation (PCD) reaction of N-nitrosodimethylamine (NDMA) in water was investigated using pure and surface-modified TiO2. The PCD products of NDMA were methylamine (MA), dimethylamine (DMA), nitrite, nitrate, and ammonium, and their distribution could be changed by modifying the surface of TiO2. The PCD reaction of NDMA seems to be initiated mostly by OH radicals, not valence band holes, because the addition of excess oxalates (hole scavengers) only moderately retarded the PCD rate. The presence of oxalate, however, enabled a new reductive transformation path in which the CO2-* radicals generated from the oxalate converted NDMA into DMA. In acidic suspensions of pure TiO2, the formation of MA was highly favored over DMA and NH3, whereas all degradation products (MA, DMA, and NH3) were generated at comparable concentrations at basic pH. It is suggested that there are three parallel paths depending on the position of the initial attack of OH radical on NDMA and the product distribution is closely related with which path is favored under a specific condition. DMA production is related to the OH radical attack on the nitrosyl nitrogen. Platinum deposition, silica loading, Nafion coating, and surface fluorination were tested to investigate the effects of TiO2 surface modification on the product distribution. The surface platinization of TiO2 had little effect on the PCD reaction of NDMA under air-equilibrated conditions but accelerated the PCD reaction under deaerated conditions. An enhanced PCD reaction of NDMA was achieved with the silica-loaded TiO2 and Nafion-coated TiO2, both of which favored the formation of DMA over MA. The PCD of NDMA on surface-fluorinated TiO2 was also highly enhanced but favored the formation of MA over the formation of DMA. PMID:16190242

  13. Super-high photocatalytic activity, stability and improved photocatalytic mechanism of monodisperse AgBr doped with In.

    PubMed

    Song, Limin; Zhang, Shujuan; Zhang, Shuna

    2015-12-15

    Monodisperse In(3+) doped AgBr (In-AgBr) nanoparticles were synthesized by a hydrothermal route. The pure AgBr and In-AgBr samples were investigated by X-ray powder diffraction, transmission electron microscopy, ultraviolet-visible absorption spectroscopy, X-ray photoelectron spectroscopy, measurement of total organic carbon, and electron paramagnetic resonance spectrometry. In-AgBr was more photocatalytically active than pure AgBr in photodegradation of 20 mg/L methyl orange under visible light irradiation (λ>420 nm). The 0.05 mol/L In-AgBr sample showed the highest photodegradation efficiency and high stability. The doped In(3+) expanded the light absorption range, reduced the band gap of AgBr and improved the utilization of photons. The additional In(3+) can inhibit the formation of Ag particles on the surface of AgBr, which can further stabilize AgBr. The doped In(3+) in AgBr served as a temporary site for trapping of photoinduced electrons, and thereby obviously restrained the recombination of photoinduced electron-hole pairs on the surface of AgBr. The enhanced photocatalytic ability of In-AgBr may be mainly attributed to the improved separation efficiency of photogenerated charges. PMID:26259096

  14. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment. PMID:26877029

  15. Atomic force microscopy of AgBr crystals and adsorbed gelatin films

    SciTech Connect

    Haugstad, G.; Gladfelter, W.L.; Keyes, M.P.; Weberg, E.B.

    1993-06-01

    Atomic force microscopy of the (111) surface of macroscopic AgBr crystals revealed steps ranging in height from two atomic layers up to 10 nm, lying predominantly along the (110) and (112) families of crystal directions. Rods of elemental Ag, formed via photoreduction, were observed along the (110) family of directions. Images of adsorbed gelatin films revealed circular pores with diameters of order 10-100 nm, extending to the AgBr surface. The length of deposition time, the pH and concentration of the gelatin solution, and the presence of steps on the AgBr surface were observed to affect the size, number, and location of pores in the gelatin films. 12 refs., 7 figs.

  16. Surface modification of polypropylene non-woven fibers with TiO2 nanoparticles via layer-by-layer self assembly method: Preparation and photocatalytic activity.

    PubMed

    Pavasupree, Suttipan; Dubas, Stephan T; Rangkupan, Ratthapol

    2015-11-01

    Polypropylene (PP) meltblown fibers were coated with titanium dioxide (TiO2) nanoparticles using layer-by-layer (LbL) deposition technique. The fibers were first modified with 3 layers of poly(4-styrenesulfonic acid) (PSS) and poly(diallyl-dimethylammonium chloride) (PDADMAC) to improve the anchoring of the TiO2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic TiO2 nanoparticles to construct TiO2/PDADMAC bilayer in the LbL fashion. The number of deposited TiO2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust TiO2 loading. The LbL technique showed higher TiO2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue (MB). Results showed that the TiO2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of TiO2 powder dispersed in solution. The deposition of TiO2 3 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4hr. TiO2-LbL constructions also preserved TiO2 adhesion on substrate surface after 1cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of TiO2 particles from the substrate outer surface. However, even in the third cycle, the TiO2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8hr of treatment. PMID:26574088

  17. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  18. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites.

    PubMed

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-03-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. PMID:26884248

  19. Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Wang, Yang; You, Yuting; Meng, Hao; Zhang, Jianghua; Xu, Xinxin

    2012-12-01

    The TiO2 nanoparticles entrapped poly(vinylidenefluoride) (PVDF) hybrid membranes were prepared through impregnating the pre-treated PVDF film in the TiO2 suspension. SEM, XRD, TG and ATR-IR analyses were used to character the hybrid membranes. The results showed that the TiO2 nanoparticles with average size about 44 nm were deposited on the surface and inner pores of PVDF films. The pre-treatment of PVDF with cetyltrimethyl ammonium bromide (CTAB) is benefit for TiO2loading. The ATR-IR spectra revealed that physical interaction played important role in the construction of hybrid membranes. The adsorption behavior of Cu2+ on the hybrid membranes was studied, and a promoted adsorption and elution efficiency of PVDF/TiO2 hybrid membranes were observed compared with that of the pristine PVDF film. Meanwhile, the surface contact angle, pure water flux and static adsorption of bovine serum albumin (BSA) on the hybrid membranes were also measured to study the effects of TiO2 nanoparticles. It was found that the TiO2 nanoparticles improved the surface hydrophilicity and permeability of PVDF membranes, and the decreasing adsorption capacity of BSA indicated the promoted antifouling ability of PVDF membranes. Such the PVDF/TiO2 hybrid membranes exhibit potential applications in the separation and pre-concentration of metal ions.

  20. Preparation and tribological properties of stearic acid-modified hierarchical anatase TiO 2 microcrystals

    NASA Astrophysics Data System (ADS)

    Qian, Jianhua; Yin, Xiangyu; Wang, Ning; Liu, Lin; Xing, Jinjuan

    2012-01-01

    Hierarchical TiO2 microcrystals were synthesized through a facile solvothermal method. X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements were used to characterize the structure of the as-prepared samples. The results indicated that the synthesized hierarchical titania (TiO2) microspheres were composed of numerous anatase phase TiO2 particles. The as-prepared samples were chemically modified with stearic acid to improve their dispersion in oil. Fourier transmission infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA) were carried out to evaluate the characteristics of the modified TiO2 microcrystals. The tribological properties of the modified TiO2 microcrystals as additives of liquid paraffin were studied by a four-ball tester, and the results showed that they could significantly improve anti-wear performance, friction-reduction property and load-carrying capacity of liquid paraffin. These advantages make the modified TiO2 microcrystals promising for green lubricating oil additives.

  1. Photocatalytic Oxidation of Volatile Organic Compounds Over Electrospun Activated TIO2/CARBON Nanofiber Composite

    NASA Astrophysics Data System (ADS)

    Gholamvand, Zahra; Aboutalebi, Seyed Hamed; Keyanpour-Rad, Mansoor

    In this study, TiO2/PAN-based fibers were prepared by electrospinning a composite solution containing both the desirable contents of TiO2 and a 10 wt. % PAN polymer solution dissolved in N, N-dimethylformamide. The TiO2 loaded electrospun PAN nanofibers were then carbonized at 1000 °C in N2 atmosphere furnace after stabilization at 230 °C in air. Then CNF/TiO2 nanofibers were oxidized at 450 °C in air. The morphology and structure of the TiO2-embeded carbon nanofibers were investigated by SEM and Raman spectroscopy. Specific surface area was determined using BET equation from N2 adsorption analysis. Photocatalytic tests were conducted in a UV illuminated set-up specialized for the filters using ethanol vapor. The results have shown that ethanol vapor was efficiently degraded on TiO2/CNF composite nanofiber mat under UV illumination. The aim of this study was to further investigate the feasibility of TiO2/ACF for practical indoor air purification.

  2. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    PubMed

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles. PMID:27000026

  3. Electrospun nylon-6 spider-net like nanofiber mat containing TiO(2) nanoparticles: a multifunctional nanocomposite textile material.

    PubMed

    Pant, Hem Raj; Bajgai, Madhab Prasad; Nam, Ki Taek; Seo, Yun A; Pandeya, Dipendra Raj; Hong, Seong Tshool; Kim, Hak Yong

    2011-01-15

    In this study, electrospun nylon-6 spider-net like nanofiber mats containing TiO(2) nanoparticles (TiO(2) NPs) were successfully prepared. The nanofiber mats containing TiO(2) NPs were characterized by SEM, FE-SEM, TEM, XRD, TGA and EDX analyses. The results revealed that fibers in two distinct sizes (nano and subnano scale) were obtained with the addition of a small amount of TiO(2) NPs. In low TiO(2) content nanocomposite mats, these nanofiber weaves were found uniformly loaded with TiO(2) NPs on their wall. The presence of a small amount of TiO(2) NPs in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO(2) antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved mechanical strength and UV blocking ability will also make it a potential candidate for protective clothing. PMID:20875702

  4. Formation mechanism of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N.

    2003-01-01

    Transmission electron microscopic observation showed that TiO2 nanotubes synthesized via a simple hydrothermal chemical process formed a crystalline structure with open-ended and multiwall morphologies. Unlike multiwalled carbon nanotubes, the TiO2 nanotube walls were not seamless. During alkali treatment, crystalline TiO2 raw material underwent delamination in the alkali solution to produce single-layer TiO2 sheets. TiO2 nanotubes were formed by rolling up the single-layer TiO2 sheets with a rolling-up vector of [001] and attracting other sheets to surround the tubes.

  5. Instability of hydrogenated TiO2.

    PubMed

    Nandasiri, Manjula I; Shutthanandan, Vaithiyalingam; Manandhar, Sandeep; Schwarz, Ashleigh M; Oxenford, Lucas; Kennedy, John V; Thevuthasan, Suntharampillai; Henderson, Michael A

    2015-11-19

    Hydrogenated TiO2 (H-TiO2) is touted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using nuclear reaction analysis (NRA), Rutherford backscattering spectrometry, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy. Protons (40 keV) implanted at a ∼2 atom % level within a ∼120 nm wide profile of rutile TiO2(110) were situated ∼300 nm below the surface. NRA revealed that this H-profile broadened toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (∼800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile at low temperatures, as well as its interfacial activity toward reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. PMID:26545303

  6. Instability of Hydrogenated TiO2

    SciTech Connect

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  7. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-09-01

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail.Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in

  8. Preparation and characterization of Zr(SO4)2/TiO2 catalyst.

    PubMed

    Huang, Xin; Gu, Zhenggui; Sun, Hao

    2016-01-01

    Solid acid Zr(SO4)2/TiO2 catalyst has highly catalytic activity, and has non-corrosiveness to equipment. It is separated from production expediently. As the above advantages, the influence of Zr(SO4)2 loading amount, calcination temperature, and calcination time on the solid acid Zr(SO4)2/TiO2 catalyst preparation process is discussed. The experimental condition is optimized by orthogonal test, the result indicate that Zr(SO4)2 load is 65%, calcination temperature is 430°C, and calcination time is 2.5 h. Solid acid catalyst Zr(SO4)2/TiO2 is analyzed and characterized by FT-IR, XRD and SEM. The results will provide the experimental condition for enlarging experimental study. PMID:27339282

  9. In situ sonosynthesis of nano TiO2 on cotton fabric.

    PubMed

    Akhavan Sadr, Farid; Montazer, Majid

    2014-03-01

    Here, titanium dioxide nanoparticles (NPs) were sonosynthesized and loaded simultaneously onto the cotton fabric. Titanium tetra isopropoxide (TTIP) was used as precursor and ultrasonic irradiation was utilized as a tool for synthesis of TiO2 in low temperature with anatase structure and loading nanoparticles onto the cotton fabric. TiO2 loaded cotton fabric was characterized by XRD, FE-SEM, EDS, and XRF. Moreover, several properties of the treated cotton fabrics such as self-cleaning, UV protection, washing durability, and tensile strength were studied. The effect of variables, including TTIP concentration and sonication time, was investigated based on central composite design (CCD) and response surface methodology (RSM). The results confirmed formation of anatase TiO2 nanoparticles with 3-6 nm crystalline size loaded onto the cotton fabric at low temperature (75 °C) that led to good self-cleaning and UV-protection properties. The excellent UV-protection rating of the treated fabric maintained even after 25 home launderings indicating an excellent washing durability. Interestingly, sonochemical method had no negative influence on the cotton fabric structure. The statistical analysis indicated significant effect of both TTIP concentration and sonication time on the content of the loaded TiO2 on the fiber and self-cleaning properties of the fabric. PMID:24152573

  10. Photoinduced interaction between riboflavin and TiO 2 colloid

    NASA Astrophysics Data System (ADS)

    Kathiravan, A.; Renganathan, R.

    2008-12-01

    The adsorption of riboflavin on the surface of TiO 2 colloidal particles and the electron transfer process from its singlet excited state to the conduction band of TiO 2 were examined by absorption and fluorescence quenching measurements. The apparent association constants ( Kapp) were determined. The quenching mechanism is discussed involving electron transfer from riboflavin to TiO 2.

  11. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-03-01

    The fabrication method and characterization results of a TiO2-TiO2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO2 crystallites embedded in a matrix of nanometric TiO2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant.

  12. TiO2 hierarchical nanostructures: Hydrothermal fabrication and application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Zhang, Gengmin; Yang, Jin; Sun, Wentao; Shi, Mingji

    2015-01-01

    Arrays of TiO2 hierarchical nanostructures that consisted of rutile nanorods and anatase branches were hydrothermally fabricated and employed as photoanodes in dye-sensitized solar cells (DSSCs). Each hierarchical nanostructure array was attained in two steps. First, a primary nanorod array was synthesized in aqueous solutions of hydrochloric acid (HCl) and tetrabutyl titanate (C16H36O4Ti); subsequently, secondary branches were grown on the nanorods in aqueous solutions of ammonium hexafluorotitanate ((NH4)2TiF6) and boric acid (H3BO3). The secondary anatase branches filled part of the space among the primary rutile nanorods and gave rise to a larger surface area. Light-harvesting capability of the DSSCs with TiO2 hierarchical nanostructures as photoanodes was appreciably improved because more dye molecules could be loaded on the photoanodes and more light could be scattered inside the DSSCs. Therefore, the conversion efficiencies of the DSSCs were doubled by replacing the photoanode of primary TiO2 nanorod array with the photoanodes of TiO2 hierarchical nanostructure arrays. Furthermore, in order to reach a compromise between the photoanode surface area and the inter-nanorod space volume, the growth time of the secondary TiO2 anatase branches was optimized.

  13. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.

    PubMed

    Wen, Yan; Liu, Bitao; Zeng, Wei; Wang, Yuhua

    2013-10-21

    Anatase/rutile mixed titania nanotubes (TiO2 NTs) precipitated with gold nanoparticles (Au NPs), i.e. Au/TiO2, have been synthesized and investigated on visible photocatalysis properties. A deposition-precipitation (DP) method was adopted to reduce the gold precursor to Au NPs within the preformed TiO2 NTs by the emulsion electrospinning technique. The optimal visible photocatalytic activity was found in the sample Au3(DP350)/TiO2 with a loading of 3 wt% Au NPs and calcining at 350 °C. Through transmission electron microscopy, Au NPs of 4.16 nm diameter were observed at the interface between the anatase and rutile phases in the optimal Au3(DP350)/TiO2 sample, and these joint active sites at the interface were beneficial for charge separation. The obtained optimal photocatalytic efficiency of Au3(DP350)/TiO2 was ascribed to the synergistic effect of the enhanced visible absorption and the anatase/rutile mixed-phase composition, and the possible mechanism for this was discussed in detail. PMID:23963545

  14. An innovative ultrasound, Fe(2+) and TiO(2) photoassisted process for bisphenol A mineralization.

    PubMed

    Torres-Palma, Ricardo A; Nieto, Jessica I; Combet, Evelyne; Pétrier, Christian; Pulgarin, Cesar

    2010-04-01

    This paper explores the degradation of a model pollutant, bisphenol A, by an advanced oxidation process that combines sonolysis, Fe(2+), and TiO(2) in a photoassisted process. Experiments were done under saturated oxygen conditions. The effect of different Fe(2+) (0.56 and 5.6 mg/L) and TiO(2) (10 and 50 mg/L) concentrations was investigated on both the elimination and mineralization of the pollutant. A pronounced synergistic effect that led to the complete and rapid elimination of dissolved organic carbon (DOC) was observed even at low catalyst loadings. In this system, almost a complete removal of DOC (93%) was observed after 4 h using 10 and 5.6 mg/L of TiO(2) and Fe(2+), respectively, whereas at the same time, only 5, 6, and 22% of DOC was removed by an individual process alone (TiO(2) photocatalysis, ultrasound, and photo-Fenton, respectively). In this system, ultrasound has the principal role of eliminating the initial substrate and providing hydrogen peroxide for the photocatalytic systems, while photo-Fenton and TiO(2) photocatalysis are mainly responsible for the transformation of the intermediates in CO(2) and H(2)O. The role of H(2)O(2) generated from the sonochemical process is also discussed. PMID:20106498

  15. PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications.

    PubMed

    Torres, Cecilia C; Campos, Cristian H; Diáz, Carola; Jiménez, Verónica A; Vidal, Felipe; Guzmán, Leonardo; Alderete, Joel B

    2016-08-01

    PAMAM-grafted TiO2 nanotubes (PAMAM-TiO2NT) have been synthesized and evaluated as new drug nanocarriers, using curcumin (CUR), methotrexate (MTX), and silibinin (SIL) as model therapeutic compounds. TiO2NT were surface-modified using a silane coupling agent and subsequently conjugated with PAMAM dendrimer of the third generation. The characterization of PAMAM-TiO2NT nanomaterials was performed by FTIR, TEM, N2 adsorption-desorption isotherms, XRD, and TGA techniques, which accounted for a 2.6wt.% of PAMAM grafting in the prepared materials. The drug loading capacity, drug release properties, and cytotoxicity of PAMAM-TiO2NT showed a significant improvement compared to pristine TiO2NT, thus revealing the promising properties of these new materials for drug delivery purposes. PMID:27157739

  16. Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films.

    PubMed

    Boonprakob, Natkritta; Wetchakun, Natda; Phanichphant, Sukon; Waxler, David; Sherrell, Peter; Nattestad, Andrew; Chen, Jun; Inceesungvorn, Burapat

    2014-03-01

    Enhanced photocatalytic degradation of methylene blue (MB) using graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) catalyst films has been demonstrated in this present work. The g-C3N4/TiO2 composites were prepared by directly heating the mixture of melamine and pre-synthesized TiO2 nanoparticles in Ar gas flow. The g-C3N4 contents in the g-C3N4/TiO2 composites were varied as 0, 20, 50 and 70 wt%. It was found that the visible-light-induced photocatalytic degradation of MB was remarkably increased upon coupling TiO2 with g-C3N4 and the best degradation performance of ~70% was obtained from 50 wt% g-C3N4 loading content. Results from UV-vis absorption study, Electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggest that the improved photoactivity is due to a decrease in band gap energy, an increased light absorption in visible light region and possibly an enhanced electron-hole separation efficiency as a result of effective interfacial electron transfer between TiO2 and g-C3N4 of the g-C3N4/TiO2 composite film. Based on the obtained results, the possible MB degradation mechanism is ascribed mainly to the generation of active species induced by the photogenerated electrons. PMID:24407703

  17. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites

    NASA Astrophysics Data System (ADS)

    Zeng, Guangyong; He, Yi; Yu, Zongxue; Zhan, Yingqing; Ma, Lan; Zhang, Lei

    2016-05-01

    Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO2-HNTs) composites into the PVDF matrix. The effects of TiO2-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO2 was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO2-HNTs. The pure water flux of 3%TiO2-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO2/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO2-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  18. Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution.

    PubMed

    Gomez, Silvina; Marchena, Candelaria Leal; Pizzio, Luis; Pierella, Liliana

    2013-08-15

    The TiO2/HZSM-11 materials were synthesized using titanium isopropoxide as a TiO2 precursor and HZSM-11 a medium pore size zeolite with high thermal and chemical resistance as support. The amount of titanium isopropoxide was varied in order to obtain TiO2 concentrations of 3, 10, 20, 30 and 50 wt% in the final material. They were characterized by a series of complementary techniques: X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (DRS), transmittance Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The surface area of the TiO2/HZSM-11 samples decreased with the increment of TiO2 loading. As result of the increment of the calcination temperature from 450 to 800°C an increase in the size of the anatase crystals was observed. However, the X-ray diffraction patterns of the solids only presented the characteristic peaks of the anatase phase. The catalytic activity of the materials in the photodegradation of Dichlorvos (DDVP) depended on the TiO2 amount the thermal treatment temperature. The sample containing 30% TiO2 calcined at 450°C showed the best catalytic performance and it can be reused without noticeable activity loss during at least four cycles. The catalytic performance was similar to that of the P25 Degussa used as a reference but its separation, recovery and reuse was easier. PMID:23692679

  19. Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts.

    PubMed

    Huang, Xin; Yuan, Jian; Shi, Jianwei; Shangguan, Wenfeng

    2009-11-15

    TiO(2)/H-ZSM-5 catalysts were prepared by impregnation with different amount of TiO(2) loading and calcination at various temperatures. The catalysts were characterized by X-ray diffraction (XRD), ultraviolet and visible spectroscopy (UV-vis) and BET specific surface area. It was demonstrated that the anatase TiO(2) retained stable on H-ZSM-5 after heat treatment even at 700 degrees C. The activities of samples were investigated under the various conditions of UV, ozone and UV-ozone, respectively by the comparison of acetaldehyde degradation. It was found that the photocatalysis combined with ozonation promoted the acetaldehyde degradation. TiO(2)/H-ZSM-5 catalysts were superior to simple TiO(2) and H-ZSM-5 with respect to the ozone-assisted photocatalytic oxidation of gaseous acetaldehyde, and the activity of the catalyst TiO(2)/H-ZSM-5 (TiO(2):H-ZSM-5=2:10) is the highest one among all those prepared samples. The improvement was attributed to the synergetic effect among adsorption, ozonation and catalytic reaction. PMID:19604630

  20. Preparation and photocatalytical performance of TiO2:SiO2 nanocomposites produced by the polymeric precursors method.

    PubMed

    Dawson, Margaret; Soares, Gabriela Byzynski; Ribeiro, Caue

    2013-07-01

    Anatase TiO2 is a promising photocatalyst due to its chemical stability, non-toxic characteristics, notable UV light absorption as well as photo-corrosion resistance and oxidative properties. Surface area and TiO2 dispersion quality are important factors that affect photoactivity of TiO2:SiO2 nanocomposites. In order to improve these factors, TiO2 nanoparticles were immobilized on mesoporous silica substrate through the polymeric precursors method, obtaining the nanocomposites in a simple routine. The TiO2 resin was synthesized by the polymeric precursors method and different resin thickness (0.5; 1.0; 2.0; 3.5; 5.0 nm) on silica were synthesized by calcination during 4 hours at 450 degrees C in pH 1.5. The selected pH for immobilization ensured adhesion of TiO2 nanoparticles onto the silica substrate surface. X-Ray Diffraction patterns indicate that all samples were predominantly anatase phase and immobilization improved surface area. Ametryn kinetic evaluation presents better results for SAM 3.5 and SAM 0.5. The results show that difference in TiO2 loading, surface area and crystallinity of samples are factors that influence photocatalytic efficiency. PMID:23901540

  1. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-11-01

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile

  2. Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis.

    PubMed

    Bera, Sandipan; Rawal, Sher Bahadur; Kim, Hark Jin; Lee, Wan In

    2014-06-25

    A quadrilateral disk-shaped FeWO4 nanocrystal (NC) with an average size of ∼35 nm was prepared via hydrothermal reaction. The obtained dark brown FeWO4 NC with a bandgap (Eg) of 1.98 eV was then coupled with TiO2 to form FeWO4/TiO2 composites. The valence band (VB) of FeWO4 (+2.8 eV vs NHE) was more positive than that of TiO2 (+2.7 eV); thus this system could be classified as a Type-B heterojunction. Under visible-light irradiation, 5/95 FeWO4/TiO2 (by wt %) exhibited remarkable photocatalytic activity: the amount of CO2 evolved from gaseous 2-propanol (IP) and the decomposition rate of aqueous salicylic acid (SA) were, respectively, 1.7 and 2.5 times greater than those of typical nitrogen-doped TiO2 (N-TiO2). This unique catalytic property was deduced to arise from the intersemiconductor hole transfer between the VBs of FeWO4 and TiO2. Herein, several experimental evidence were also provided to confirm the hole-transfer mechanism. To further enhance the catalytic efficiency, double-heterojunctioned FeWO4/TiO2/CdS composites were prepared by loading CdS quantum dots (QDs) onto the FeWO4/TiO2 surface. Surprisingly, the catalytic activity for evolving CO2 from IP was 2.6 times greater than that of bare FeWO4/TiO2 and 4.4 times greater than that of N-TiO2, suggesting that both holes and electrons were essential species in decomposing organic compounds. PMID:24847976

  3. Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization-activation method.

    PubMed

    Zhang, Chuanjun; Yang, Danni; Jiang, Xia; Jiang, Wenju

    2016-08-01

    In this study, TiO2 powder was used as the additive to directly blend with raw bituminous coal and coking coal for preparing modified activated carbon (Ti/AC) by one-step carbonization-activation method. The Ti/AC samples were prepared through blending with different ratios of TiO2 (0-12 wt%) and their desulphurization performance was evaluated. The results show that the desulphurization activity of all Ti/AC samples was higher than that of the blank one, and the highest breakthrough sulphur capacity was obtained at 200.55 mg/g C when the blending ratio of TiO2 was 6 wt%. The Brunauer-Emmett-Temer results show that the micropores were dominant in the Ti/AC samples, and their textual properties did not change evidently compared with the blank one. The X-ray photoelectron spectroscopy results show that the loaded TiO2 could influence the relative content of surface functional groups, with slightly higher content of π-π* transitions groups on the Ti/AC samples, and the relative contents of C=O and π-π* transitions groups decreased evidently after the desulphurization process. The X-ray diffraction results show that the anatase TiO2 and rutile TiO2 co-existed on the surface of the Ti/AC samples. After the desulphurization process, TiO2 phases did not change and Ti(SO4)2 was not observed on the Ti/AC samples, while sulphate was the main desulphurization product. It can be assumed that SO2 could be catalytically oxidized into SO3 by TiO2 indirectly, rather than TiO2 directly reacted with SO2 to Ti(SO4)2. PMID:26695433

  4. [Preparation and spectral characterisation of TiO2/polyaniline nanocomposites with 2D lamellar morphology].

    PubMed

    Shi, Li; Luo, Zhi-Yuan; Wu, Xiao-Dong; Yang, Xu-Jie; Lu, Lu-De; Wang, Xin

    2011-02-01

    Nanostructured polyanilines (PANIs) are selected quite often as the matrix for the synthesis of inorganic/conductive polymer composites due to their excellent optical, electrical and magnetic properties. Herein both 2D lamellar PANI and the cor responding composite loading TiO2 species were successfully prepared from a microemulsion system, as composed by dodecyl benzenesulfonic acid (DBSA) and water. The composite was achieved through a simultaneous polymerization of aniline in the presence of ammonium persulfate and hydrolysis of tetrabutyl titanate. Scanning electron microscopy (SEM) images indicate clearly that 2D PANI lamella are formed through organization of small PANI sheets. The inter-lamellar distance of PANI and that of TiO2/polyaniline composite, as derived from X-ray diffraction (XRD), is about 3.4 nm (nearly twice the length of one DBS molecule), suggesting that PANI and double-layered DBSA species are arranged in an alternated way. FTIR spectrum displays that PANI chains exhibit quinonoid and benzenoid strutures while both Raman and X-ray photoelectron spectroscopy (XPS) indicate that rutile TiO2 is produced upon hydrolyzation of tetrabutyl titanate in the microemulsion system. Moreover, UV-Vis spectrum suggests that the electronic absorption behaviour of PANI species is influenced upon loading TiO2. PMID:21510404

  5. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr.

    PubMed

    Ng, Tsz Wai; Zhang, Lisha; Liu, Jianshe; Huang, Guocheng; Wang, Wei; Wong, Po Keung

    2016-03-01

    Bacterial inactivation by magnetic photocatalyst receives increasing interests for the ease recovery and reuse of photocatalysts. This study investigated bacterial inactivation by a magnetic photocatalysts, Fe2O3-AgBr, under the irradiation of a commercially available light emitting diode lamp. The effects of different factors on the inactivation of Escherichia coli were also evaluated, in term of the efficiency in inactivation. The results showed that Fe2O3-AgBr was able to inactivate both Gram negative (E. coli) and Gram positive (Staphylococcus aureus) bacteria. Bacterial inactivation by Fe2O3-AgBr was more favorable under high temperature and alkaline pH. Presence of Ca(2+) promoted the bacterial inactivation while the presence of [Formula: see text] was inhibitory. The mechanisms of photocatalytic bacterial inactivation were systemically studied and the effects of the presence of various specific reactive species scavengers and argon suggest that Fe2O3-AgBr inactivate bacterial cells by the oxidation of H2O2 generated from the photo-generated electron and direct oxidation of photo-generated hole. The detection of different reactive species further supported the proposed mechanisms. The results provide information for the evaluation of bacterial inactivation performance of Fe2O3-AgBr under different conditions. More importantly, bacterial inactivation for five consecutive cycles demonstrated Fe2O3-AgBr exhibited highly stable bactericidal activity and suggest that the magnetic Fe2O3-AgBr has great potential for water disinfection. PMID:26724445

  6. Synergetic catalytic performance of TiO2/MCM-41 for ozone-assisted photocatalytic degradation of gaseous acetaldehyde.

    PubMed

    Huang, Xin; Shi, Wenjing; Yuan, Jian; Shi, Jianwei; Jiang, Zhi; Shangguan, Wenfeng

    2011-01-01

    This paper presents the preparation and characterization of TiO2/MCM-41 catalysts with different amounts of TiO2 loading or calcination at various temperatures. The activities of the samples were investigated under UV, ozone and UV-zone by the comparison of acetaldehyde degradation. The results showed that the application of photocatalytic ozonation (UV-ozone) produced the highest efficiency for acetaldehyde removal, indicating that a synergistic effect occurred when photocatalysis and ozonation are carried out simultaneously. The synergistic catalytic performance depended significantly on the composition of catalysts used. The TiO2/MCM-41 catalysts were superior to single TiO2 and MCM-41 with respect to the ozone-assisted photocatalytic oxidation of gaseous acetaldehyde, and the activity of the catalyst TiO2/MCM-41, with TiO2:MCM-41 = 5:10, is the highest one among these prepared catalysts. The improvement was attributed to the synergetic effect between adsorption, ozonation and catalytic reaction. PMID:21780699

  7. Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2.

    PubMed

    Kozlova, E A; Safatov, A S; Kiselev, S A; Marchenko, V Yu; Sergeev, A A; Skarnovich, M O; Emelyanova, E K; Smetannikova, M A; Buryak, G A; Vorontsov, A V

    2010-07-01

    Air disinfection from bacteria and viruses by means of photocatalytic oxidation is investigated with microorganisms loaded over photocatalysts' films from aerosols. Deposition method and equipment have been developed to load Mycobacterium smegmatis , Bacillus thuringiensis , vaccinia virus, and influenza A (H3N2) virus on slides with undoped TiO(2) and platinized sulfated TiO(2) (Pt/TiO(2)). Inactivation dynamics was measured under UVA irradiation and in the dark. About 90% inactivation is reached in 30 min irradiation on TiO(2) and from 90 to 99.8% on Pt/TiO(2). The first-order inactivation rate coefficient ranged from 0.18 to 0.03 min(-1), over Pt/TiO(2) being higher than on TiO(2) for all microorganisms except Bacillus thuringiensis. The photocatalytic mineralization of Bacillus thuringiensis was performed on TiO(2) and Pt/TiO(2) with different photocatalyst and microorganism loadings. Completeness of mineralization depended on the TiO(2) to bacteria mass ratio. The rate of the photocatalytic carbon dioxide production grows with both the cell mass increase and the photocatalyst mass increase. Pt/TiO(2) showed increased rate of mineralization as well as of the inactivation likely due to a better charge carrier separation in the doped semiconductor photocatalyst. The results demonstrate that photocatalytic filters with deposited TiO(2) or Pt/TiO(2) are able to inactivate aerosol microorganisms and completely decompose them into inorganic products and Pt/TiO(2) provides higher disinfection and mineralization rates. PMID:20521809

  8. Morphology and structure of photosensitive dye J-aggregates adsorbed on AgBr microcrystals grown in gelatin.

    PubMed

    Saijo, H; Shiojiri, M

    1998-07-15

    Though the cyanine dye J-aggregates carry the role to sense the exposing light in the silver halide photographic system, little research on the morphology of the aggregates in adsorption has been made with modern surface analytical methods. In this paper, we describe the size, epitaxy, multi-layered array formation, nucleation and preferential adsorption, and irregular distribution of population between particles and the segregation on a particle, of J-aggregates adsorbed on AgBr grown in gelatin. We employed cathodoluminescence microscopy, low energy high resolution scanning electron microscopy, and atomic force microscopy. Dye molecules aggregate together near the surface of AgBr and adsorb on the surface. The growth of adsorbed aggregates is controlled by the diffusion of dye molecules from the surrounding solution. The population of J-aggregates adsorbed on an AgBr particle varies from almost none to full coverage. Each aggregate is about (20-30) x (30-50) nm in size and is 2.1 nm thick for thiacarbocyanine with sodium ion, 1.04 nm for thiacarbocyanine with tosyl ion, and 0.5 nm for an oxacarbocyanine. The aggregates connect their longer edges to each other to form arrays, and the arrays build up multi-layered stacks. The arrays align parallel and segregate to form terraces. The longer edges of J-aggregates align along [210] on AgBr (100) or [632] on AgBr (111). PMID:9728883

  9. Synthesis and characterization of the efficient visible-light-induced photocatalyst AgBr and its photodegradation activity

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Xu, Hui; Li, Huaming; Xu, Yuanguo; Xia, Jiexiang; Yin, Sheng

    2012-04-01

    AgBr photocatalysts were prepared with the 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br) reactable ionic liquid at different temperatures by one-step hydrothermal method, in which the ionic liquid acted as a precursor and a template to control the size of AgBr crystal. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), the Brunauer-Emmett-Teller (BET) surface area and diffuse reflectance spectroscopy (DRS). Methyl orange (MO) dye was chosen as a model pollutant to investigate the photocatalytic activity and the stability of the samples under visible light irradiation. The results indicated that the AgBr photocatalysts showed high efficiency in the degradation of MO under visible light irradiation. The kinetic property of the reaction followed the first-order reaction model. During the photocatalytic degradation reaction, AgBr was transformed to the Ag0/AgBr composite. However, the photocatalytic efficiency was still high and the photocatalytic activity was stable. The possible photocatalytic mechanism of the photocatalysts was also eventually proposed.

  10. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery.

    PubMed

    Wang, Tianyi; Jiang, Haitao; Wan, Long; Zhao, Qinfu; Jiang, Tongying; Wang, Bing; Wang, Siling

    2015-02-01

    Novel multifunctional porous titanium dioxide (TiO2) nanoparticles modified with polyethylenimine (PEI) were developed to explore the feasibility of exploiting the photocatalytic property of titanium dioxide to achieve ultraviolet (UV) light triggered drug release. Additionally, in order to further realize targeting delivery, folic acid, which chemically conjugated to the surface of the functionalized multifunctional porous TiO2 nanoparticles through amide linkage with free amine groups of PEI, was used as a cancer-targeting agent to effectively promote cancer-cell-specific uptake through receptor-mediated endocytosis. And a typical poorly water-soluble anti-cancer drug, paclitaxel, was encapsulated in multifunctional porous TiO2 nanoparticles. The PEI on the surface of multifunctional porous TiO2 nanoparticles could effectively block the channel to prevent premature drug release, thus providing enough circulation time to target cancer cells. Following UV light radiation, PEI molecules on the surface were cut off by the free radicals (OH˙ and O2-) that TiO2 produced, and then the drug loaded in the carrier was released rapidly into the cytoplasm. Importantly, the amount of drug released from multifunctional porous TiO2 nanoparticles can be regulated by the UV-light radiation time to further control the anti-cancer effect. This multifunctional porous TiO2 nanoparticle exhibits a combination of stimuli-triggered drug release and cancer cell targeting. The authors believe that the present study will provide important information for the use of porous TiO2 nanomaterials in light-controlled drug release and targeted therapy. PMID:25462846

  11. Visible light active TiO 2 films prepared by electron beam deposition of noble metals

    NASA Astrophysics Data System (ADS)

    Hou, Xing-Gang; Ma, Jun; Liu, An-Dong; Li, De-Jun; Huang, Mei-Dong; Deng, Xiang-Yun

    2010-03-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  12. Photoassisted and photocatalytic degradation of sulfur mustard using TiO2 nanoparticles and polyoxometalates.

    PubMed

    Naseri, Mohammad Taghi; Sarabadani, Mansour; Ashrafi, Davood; Saeidian, Hamdollah; Babri, Mehran

    2013-02-01

    The decomposition of highly toxic chemical warfare agent, sulfur mustard (bis(2-chloroethyl) sulfide or HD), has been studied by homogeneous photolysis and heterogeneous photocatalytic degradation on titania nanoparticles. Direct photolysis degradation of HD with irradiation system was investigated. The photocatalytic degradation of HD was investigated in the presence of TiO(2) nanoparticles and polyoxometalates embedded in titania nanoparticles in liquid phase at room temperature (33 ± 2 °C). Degradation products during the treatment were identified by gas chromatography-mass spectrometry. Whereas apparent first-order kinetics of ultraviolet (UV) photolysis were slow (0.0091 min(-1)), the highest degradation rate is obtained in the presence of TiO(2) nanoparticles as nanophotocatalyst. Simultaneous photolysis and photocatalysis under the full UV radiation leads to HD complete destruction in 3 h. No degradation products observed in the presence of nanophotocatalyst without irradiation in 3 h. It was found that up to 90 % of agent was decomposed under of UV irradiation without TiO(2), in 6 h. The decontamination mechanisms are often quite complex and multiple mechanisms can be operable such as hydrolysis, oxidation, and elimination. By simultaneously carrying out photolysis and photocatalysis in hexane, we have succeeded in achieving faster HD decontamination after 90 min with low catalyst loading. TiO(2) nanoparticles proved to be a superior photocatalyst under UV irradiation for HD decontamination. PMID:22707206

  13. Photocatalysis with chromium-doped TiO2: bulk and surface doping.

    PubMed

    Ould-Chikh, Samy; Proux, Olivier; Afanasiev, Pavel; Khrouz, Lhoussain; Hedhili, Mohamed N; Anjum, Dalaver H; Harb, Moussab; Geantet, Christophe; Basset, Jean-Marie; Puzenat, Eric

    2014-05-01

    The photocatalytic properties of TiO2 modified by chromium are usually found to depend strongly on the preparation method. To clarify this problem, two series of chromium-doped titania with a chromium content of up to 1.56 wt % have been prepared under hydrothermal conditions: the first series (Cr:TiO2) is intended to dope the bulk of TiO2, whereas the second series (Cr/TiO2) is intended to load the surface of TiO2 with Cr. The catalytic properties have been compared in the photocatalytic oxidation of formic acid. Characterization data provides evidence that in the Cr/TiO2 catalysts chromium is located on the surface of TiO2 as amorphous CrOOH clusters. In contrast, in the Cr:TiO2 series, chromium is mostly dissolved in the titania lattice, although a minor part is still present on the surface. Photocatalytic tests show that both series of chromium-doped titania demonstrate visible-light-driven photo-oxidation activity. Surface-doped Cr/TiO2 solids appear to be more efficient photocatalysts than the bulk-doped Cr:TiO2 counterparts. PMID:24737636

  14. Groundwater Arsenic Adsorption on Granular TiO2: Integrating Atomic Structure, Filtration, and Health Impact.

    PubMed

    Hu, Shan; Shi, Qiantao; Jing, Chuanyong

    2015-08-18

    A pressing challenge in arsenic (As) adsorptive filtration is to decipher how the As atomic surface structure obtained in the laboratory can be used to accurately predict the field filtration cycle. The motivation of this study was therefore to integrate molecular level As adsorption mechanisms and capacities to predict effluent As from granular TiO2 columns in the field as well as its health impacts. Approximately 2,955 bed volumes of groundwater with an average of 542 μg/L As were filtered before the effluent As concentration exceeded 10 μg/L, corresponding to an adsorption capacity of 1.53 mg As/g TiO2. After regeneration, the TiO2 column could treat 2,563 bed volumes of groundwater, resulting in an As load of 1.36 mg/g TiO2. Column filtration and EXAFS results showed that among coexisting ions present in groundwater, only Ca(2+), Si(OH)4, and HCO3(-) would interfere with As adsorption. The compound effects of coexisting ions and molecular level structural information were incorporated in the PHREEQC program to satisfactorily predict the As breakthrough curves. The total urinary As concentration from four volunteers of local residences, ranging from 972 to 2,080 μg/L before groundwater treatment, decreased to the range 31.7-73.3 μg/L at the end of the experimental cycle (15-33 days). PMID:26198737

  15. A low-cost, environment-friendly and solvent-free route for synthesis of AgBr nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahsavani, Ensieh; Khalaji, Aliakbar Dehno; Feizi, Nourollah; Das, Debasis; Matalobos, Jesus Sanmartin; Kučeráková, Monika; Dušek, Michal

    2015-06-01

    We report on the synthesis of AgBr nanoparticles average size below 20 nm by from AgNO3 and a thiosemicarbazone ligand, Brcatsc [Brcatsc = 2-bromo-3-phenylpropenalthiosemicarbazone]. Brcatsc was prepared by reacting α-bromocinnam-aldehyde and thiosemicarbazide (1:1, molar ratio) in hot ethanol characterized by elemental analyses (CHN), FT-IR, 1H NMR spectroscopy and single crystal X-ray diffraction. AgBr nanoparticles were prepared by heating the mixture of AgNO3 and Brcatsc at 600 °C for 3 h under aerobic condition, and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD pattern clearly indicates the formation of AgBr nanoparticles while SEM and TEM results reveal their uniformity and purity.

  16. Biocidal effects of photocatalytic semiconductor TiO2.

    PubMed

    Rajagopal, G; Maruthamuthu, S; Mohanan, S; Palaniswamy, N

    2006-08-15

    Photocatalytic action of the commercial TiO(2) was the subject of study on the destruction of the microbes within the biofilms. The TiO(2) powder was characterized by X-ray diffraction (XRD) for identifying its type and the particle size was determined. The biofilm was allowed to form over TiO(2) coatings over glass slides irradiated with polychromatic light for different time durations and distances. It indicates that a five-fold decrease in bacterial count due to the formation of H(2)O(2) at TiO(2)/biofilm interface. The formation of H(2)O(2) at the TiO(2)/biofilm interface is estimated and it does not destroy the entire bacterial population within the biofilm. Bacterial killing effect is supported by FT-IR analysis. PMID:16870404

  17. Acetaldehyde photochemistry on TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Henderson, Michael A.

    2008-07-01

    The ultraviolet (UV) photon induced decomposition of acetaldehyde absorbed on the oxidized retile TIO2(110) surface was studied with photon stimulated desorption (PSD) and theral programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(110) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde absorbed on oxidized TiO2(110) undergoes a facile thermal reaction to form a photoactive acetaldehyde-oxygen complex. UV irradiation of the acetaldehyde-oxygen complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.

  18. Acetaldehyde Photochemistry on TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Henderson, Michael A.

    2008-07-01

    The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(110) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(110) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(110) undergoes a facile thermal reaction to form a photoactive acetaldehyde-oxygen complex. UV irradiation of the acetaldehyde-oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.

  19. Photocatalytic process of simultaneous desulfurization and denitrification of flue gas by TiO2-polyacrylonitrile nanofibers.

    PubMed

    Su, Chunyan; Ran, Xu; Hu, Jianglei; Shao, Changlu

    2013-10-15

    TiO2 nanoparticles were successfully fabricated on electrospun polyacrylonitrile (PAN) nanofibers via the coupling of electrospinning and hydrothermal pathway. A straightforward photocatalysis oxidation process has been developed for simultaneous desulfurization and denitrification of flue gas using the TiO2-PAN photocatalyst. Also, the influences of some important operating parameters, such as titanium loading content of catalyst, flue gas humidity, flue gas flow, and inlet flue gas temperature on removal efficiencies of SO2 and NO were investigated. The results demonstrated that removal efficiencies of 99.3% for SO2 and 71.2% for NO were attained under the following optimal experiment conditions: titanium loading content, 6.78 At %; gas flow rate, 200 mL/min; flue gas humidity, 5%; inlet flue gas temperature, 40 °C. Furthermore, the presumed reaction mechanism of SO2 and NO removal using TiO2-PAN photocatalyst under UV light was proposed. PMID:24024677

  20. Low temperature fabrication & photocatalytical activity of carbon fiber-supported TiO2 with different phase compositions.

    PubMed

    Wang, Zhifeng; Yoshinaga, Kohji; Bu, Xiu R; Zhang, Ming

    2015-06-15

    Crystalline TiO2 nanoparticles with different phase compositions were fabricated on carbon fibers. The fabrication is achieved at low temperature. The process includes the treatment of Ti(OH)4 with hydrogen peroxide in the presence of carbon fibers. Neither additional acids nor bases, or additives are used during the process. Carbon fibers prior to and after TiO2 loading are characterized by FE-SEM, XRD, and UV-vis absorption spectroscopy. The photocatalytic activity was assessed via photocatalytic degradation of methyl orange solution, and found to be phase composition-dependent & pH dependent. Carbon fibers loaded with mixed-phase TiO2 led to the best photocatalytic performance. HRTEM reveals the anatase/rutile heterojunction which helps explain the high efficiency of photocatalysis. They have been demonstrated to be re-usable in the continuous photocatalytic degradation process. PMID:25791498

  1. Fabrication of TiO2 Thick Film for Photocatalyst from Commercial TiO2 Powder

    NASA Astrophysics Data System (ADS)

    Asteti, S. Fuji; Syarif, D. Gustaman

    2008-03-01

    Photocatalytic activity of TiO2 thick film ceramics made of commercial TiO2 powder has been studied. The TiO2 powder was nano sized one that was derived from dried TiO2 suspension. The TiO2 suspension was made by pouring some blended commercial TiO2 powder into some amount of water. The paste of TiO2 was made by mixing the nano sized TiO2 powder with organic vehicle and glass frit. The paste was spread on a glass substrate. The paste was dried at 100 °C and heated at different temperatures (400 °C and 500 °C) for 60 minutes to produce thick film ceramics. The photocatalytic activity of these films was evaluated by measuring the concentration of a solution of methylene blue where the thick films were inside after being illuminated by UV light at various periods of times. The initial concentration of the methylene blue solution was 5 ppm. Structural analyses were carried out by X-ray diffraction (XRD). The XRD analyses showed that the produced thick film ceramic had mainly crystal structure of anatase. According to the photocatalytical data, it was known that the produced thick film ceramics were photocatalyst which were capable of decomposing an organic compound such as the methylene blue.

  2. Preparation of 13X from Waste Quartz and Photocatalytic Reaction of Methyl Orange on TiO2/ZSM-5, 13X and Y-Zeolite.

    PubMed

    Wang, Jia-Jie; Jing, You-Hai; Ouyang, Tong; Chang, Chang-Tang

    2015-08-01

    TiO2 photocatalytic reactions not only remove a variety of organic pollutants via complete mineralization, but also destroy the bacterial cell wall and cell membrane, thus playing an important bactericidal role. However, the post-filtration procedures to separate nanometer-levels of TiO2 and the gradual inactivity of photocatalyst during continuous use are defects that limit its application. In this case, we propose loading TiO2 on zeolite for easy separation and 13X is considered as a promising one. In our study, 13X-zeolite was prepared by a hydrothermal method and the source of Si was extracted from waste quartz sand. For comparison, commercial zeolite with different microporous and mesoporous diameters (ZSM-5 and Y-zeolites) were also used as TiO2 supports. The pore size of the three kinds of zeolites are as follows: Y-zeolite > 13X > ZSM-5. Different TiO2 loading content over ZSM-5, 13X and Y-zeolite were prepared by the sol-gel method. XRD, FTIR, BET, UV-vis, TGA and SEM were used for investigation of material characteristics. In addition, the efficiencies of mineralization and photodegradation were studied in this paper. The effects of the loading ratio of TiO2 over zeolites, initial pH, and concentration on photocatalytic performance are investigated. The relationship between best loading content of TiO2 and pore size of the zeolite was studied. The possible roles of the ZSM-5, 13X-zeolites and Y-zeolites support on the reactions and the possible mechanisms of effects were also explored. The best loading content of TiO2 over ZSM-5, 13X and Y-zeolite was found to be 50 wt%, 12.5 wt% and 7 wt%, respectively. The optimum pH condition is 3 with TiO2 over ZSM-5, 13X-zeolites and Y-zeolites. The results showed that the degradation and mineralization efficiency of 12.5 wt%GT13X (TiO2 over 13X) after 90 min irradiation reached 57.9% and 22.0%, which was better than that of 7 wt%GTYZ (TiO2 over Y-zeolites) while much lower than that of 50 wt%GTZ (TiO2 over ZSM-5

  3. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst.

    PubMed

    Kim, Jihyun R; Kan, Eunsung

    2016-09-15

    The present study reports an effective heterogeneous photocatalytic degradation of sulfamethoxazole (SMX) in water using a biochar-supported TiO2 (biochar/TiO2). The biochar was used as a low cost and effective support for TiO2 to lower the recombination rate of electrons and electron holes during photocatalysis, allow efficient attachment of TiO2, increase adsorption capacity and help easy separation of the photocatalyst after use. The biochar/TiO2 showed much higher adsorption of SMX than the commercial TiO2 powder due to the hydrophobic interaction between the biochar and SMX. Particularly this study focused on the effects of water quality and operating conditions on the photocatalytic oxidation of SMX. The addition of low concentration of bicarbonate made drastic enhancement in SMX removal and mineralization while the final effluent showed high biotoxicity. On the contrary, the presence of nitrate exhibited slight enhancement in SMX removal efficiency. The photocatalyst loading and UV irradiation time also played their important roles in enhancement of SMX removal and mineralization. In overall the photocatalytic oxidation of SMX using the biochar/TiO2 at the selected catalyst loading and irradiation time (5 g biochar-supported TiO2 L(-1), 6 h) resulted in the high removal and mineralization of SMX and negligible toxicity. PMID:27213862

  4. Effect of TiO2 blocking layer on TiO2 nanorod arrays based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Paulraj, M.

    2016-05-01

    Highly ordered rutile titanium dioxide nanorod (TNR) arrays (1.2 to 6.2 μm thickness) were grown on TiO2 blocking layer chemically deposited on fluorine doped tin oxide (FTO) substrate and were used as photo-electrodes to fabricate dye sensitized solar cells (DSSC's). Homogeneous layer of TiO2 on FTO was achieved by using aqueous peroxo- titanium complex (PTC) solutions via chemical bath deposition. Structural and morphological properties of the prepared samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) measurements. TNR arrays (6.2 μm) with TiO2 blocking layer showed higher energy conversion efficiency (1.46%) than that without TiO2 blocking layer. The reason can be ascertained to the suppression of electron-hole recombination at the semiconductor/electrolyte interface by the effect of TiO2 blocking layer.

  5. Preparation and photocatalytic activity of bicrystal phase TiO2 nanotubes containing TiO2-B and anatase

    NASA Astrophysics Data System (ADS)

    Huang, Chuanxi; Zhu, Kerong; Qi, Mengyao; Zhuang, Yonglong; Cheng, Chao

    2012-06-01

    Bicrystal phase TiO2 nanotubes (NTS) containing monoclinic TiO2-B and anatase were prepared by the hydrothermal reaction of anatase nanoparticles with NaOH aqueous solution and a heat treatment. Their structure was characterized by XRD, TEM and Raman spectra. The results showed that the bicrystal phase TiO2 NTS were formed after calcining H2Ti4O9·H2O NTS at 573 K. The bicrystal phase TiO2 NTS exhibit significantly higher photocatalytic activity than the single phase anatase NTS and Dessuga P-25 nanoparticles in the degradation of Methyl Orange aqueous solution under ultraviolet light irradiation, which is attributed to the large surface and interface areas of the bicrystal phase TiO2 NTS.

  6. Enhanced TiO2 Photocatalytic Processing of Organic Wastes for Green Space Exploration

    NASA Technical Reports Server (NTRS)

    Udom, I.; Goswami, D. Y.; Ram, M. K.; Stefanakos, E. K.; Heep, A. F.; Kulis, M. J.; McNatt, J. S.; Jaworske, D. A.; Jones, C. A.

    2013-01-01

    The effect of transition metal co-catalysts on the photocatalytic properties of TiO2 was investigated. Ruthenium (Ru), palladium, platinum, copper, silver, and gold, were loaded onto TiO2 powders (anatase and mixed-phase P25) and screened for the decomposition of rhodamine B (RhB) under broad-band irradiation. The morphology and estimated chemical composition of photocatalysts were determined by scanning electron microscopy and energy dispersive spectroscopy, respectively. Brunhauer, Emmett and Teller (BET) analysis measured mass-specific surface area(s). X-ray diffraction analysis was performed to confirm the identity of titania phase(s) present. The BET surface area of anatase TiO2/Ru 1% (9.2 sq m/gm) was one of the highest measured of all photocatalysts prepared in our laboratory. Photolyses conducted under air-saturated and nitrogen-saturated conditions revealed photodegradation efficiencies of 85 and 2 percent, respectively, after 60 min compared to 58 percent with no catalyst. The cause of low photocatalytic activity under an inert atmosphere is discussed. TiO2/Ru 1% showed a superior photocatalytic activity relative to P25-TiO2 under broad-band irradiation. A potential deployment of photocatalytic technologies on a mission could be a reactor with modest enhancement in solar intensity brought about by a trough-style reactor, with reactants and catalyst flowing along the axis of the trough and therefore being illuminated for a controlled duration based on the flow rate.

  7. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study.

    PubMed

    Lee, Jae-Kwan; Choi, Dong-Soon; Jang, Insan; Choi, Won-Youl

    2015-01-01

    TiO2 nanotube arrays on the surface of dental implants were fabricated by two-step anodic oxidation. Their effects on bone-implant contact were researched by a pilot in vivo study. The implants were classified into four groups. An implant group with TiO2 nanotube arrays and recombinant human bone morphogenetic protein-2 (rhBMP-2) was compared with various surface implants, including machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. The diameter of the TiO2 nanotube window and TiO2 nanotube were ~70 nm and ~110 nm, respectively. The rhBMP-2 was loaded into TiO2 nanotube arrays and elution was detected by an interferometric biosensing method. A change in optical thickness of ~75 nm was measured by flow cell testing for 9 days, indicating elution of rhBMP-2 from the TiO2 nanotube arrays. For the in vivo study, the four groups of implants were placed into the proximal tibia of New Zealand White rabbits. In the implant group with TiO2 nanotube arrays and rhBMP-2, the bone-to-implant contact ratio was 29.5% and the bone volume ratio was 77.3%. Bone remodeling was observed not only in the periosteum but also in the interface between the bone and implant threads. These values were higher than in the machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. Our results suggest that TiO2 nanotube arrays could potentially be used as a reservoir for rhBMP-2 to reinforce osseointegration on the surface of dental implants. PMID:25709438

  8. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-01

    This study investigated the photocatalytic behavior of nanocrystalline TiO2 deposited on Ag-doped long-lasting phosphor (CaAl2O4:Eu2+,Nd3+). The CaAl2O4:Eu2+,Nd3+ phosphor powders were prepared via conventional sintering using CaCO3, Al2O3, Eu2O3, and Nd2O3 as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO2 was deposited on Ag-doped CaAl2O4:Eu2+,Nd3+ powders via low-pressure chemical vapor deposition (LPCVD). The TiO2 coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO2, which is almost non-reactive. The coupling of TiO2 with phosphor may result in an energy band bending in the junction region, which then induces the TiO2 crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO3 that formed at the interface between TiO2 and the CaAl2O4:(Eu2+,Nd3+) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO2/CaAl2O4:Eu2+,Nd3+ phosphor. TiO2 on the Ag-doped phosphor presented a higher benzene gas decomposition rate than the TiO2 did on the phosphor without Ag-doping under both irradiation with ultraviolet and visible light.

  9. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study

    PubMed Central

    Lee, Jae-Kwan; Choi, Dong-Soon; Jang, Insan; Choi, Won-Youl

    2015-01-01

    TiO2 nanotube arrays on the surface of dental implants were fabricated by two-step anodic oxidation. Their effects on bone-implant contact were researched by a pilot in vivo study. The implants were classified into four groups. An implant group with TiO2 nanotube arrays and recombinant human bone morphogenetic protein-2 (rhBMP-2) was compared with various surface implants, including machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. The diameter of the TiO2 nanotube window and TiO2 nanotube were ~70 nm and ~110 nm, respectively. The rhBMP-2 was loaded into TiO2 nanotube arrays and elution was detected by an interferometric biosensing method. A change in optical thickness of ~75 nm was measured by flow cell testing for 9 days, indicating elution of rhBMP-2 from the TiO2 nanotube arrays. For the in vivo study, the four groups of implants were placed into the proximal tibia of New Zealand White rabbits. In the implant group with TiO2 nanotube arrays and rhBMP-2, the bone-to-implant contact ratio was 29.5% and the bone volume ratio was 77.3%. Bone remodeling was observed not only in the periosteum but also in the interface between the bone and implant threads. These values were higher than in the machined surface, sandblasted large-grit and acid-etched surface, and TiO2 nanotube array surface groups. Our results suggest that TiO2 nanotube arrays could potentially be used as a reservoir for rhBMP-2 to reinforce osseointegration on the surface of dental implants. PMID:25709438

  10. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  11. Photoreduction of CO2 on TiO2/SrTiO3 Heterojunction Network Film

    NASA Astrophysics Data System (ADS)

    Bi, Yongsheng; Zong, Lanlan; Li, Chen; Li, Qiuye; Yang, Jianjun

    2015-08-01

    Nanotube titanic acid (NTA) network film has a porous structure and large BET surface area, which lead them to possessing high utilization of the incident light and strong adsorption ability. We used NTA as the precursor to fabricate a TiO2/ SrTiO3 heterojunction film by the hydrothermal method. In the process of the reaction, part of NTA reacted with SrCl2 to form SrTiO3 nanocubes, and the remainder dehydrated to transform to the rutile TiO2. The ratio of TiO2 and SrTiO3 varied with the hydrothermal reaction time. SEM and TEM images indicated that SrTiO3 nanocubes dispersed uniformly on TiO2 film, and the particle size and crystallinity of SrTiO3 nanocubes increased with the reaction time prolonging. The TiO2/SrTiO3 heterojunction obtained by 1 h showed the best activity for CO2 photoreduction, where the mole ratio of TiO2 and SrTiO3 was 4:1. And the photo-conversion efficiency of CO2 to CH4 improved remarkably after the foreign electron traps of Pt and Pd nanoparticles were loaded. The highest photocatalytic production rate of CH4 reached 20.83 ppm/h cm2. In addition, the selectivity of photoreduction product of CO2 was also increased apparently when Pd acted as the cocatalyst on TiO2/SrTiO3 heterojunction film.

  12. Photocatalytic degradation of toluene vapour using fixed bed multichannel photoreactors equipped with TiO2-coated fabrics.

    PubMed

    Park, O H; Na, H Y

    2008-09-01

    The feasibility of producing TiO2-coated fabric using nonwoven polyester as a photocatalyst support was examined through investigations on (i) changes in the fabric properties after coating with TiO2, (ii) the toluene removal capacity of a multichannel TiO2/fabric/UV reactor in removing the toluene vapour with and without O3 addition, and (iii) the photocatalytic effect of regenerated TiO2. The value and usefulness of a multichannel photoreactor as a main reactor or a supplementary device to improve the efficiency of VOC (volatile organic chemicals) removal in a photoreacting fabric filter, which was originally invented to simultaneously remove fine dust and VOCs, was manifested through investigations of the multichannel effect in the treatment of large volumes of air containing toluene as a sample VOC vapour. The parallel-flow photoreactor was manufactured by fixing TiO2-coated fabrics in parallel along the gas flow and installing UV sources for every channel. Photocatalytic degradation of toluene vapour was investigated with respect to various operational parameters such as reaction time, photocatalyst load, vapour load and number of channels. Toluene vapour was taken as a sample VOC because it is a non-biodegradable toxic organic substance, and the UV/TiO2 process was tested as an alternative process to biofiltration. As a result of this study, it was confirmed that nonwoven polyester can be used as a photocatalyst support, and the multichannel photoreactor, equipped with TiO2-coated fabrics, is a useful device that can economically and efficiently treat a larger vapour load by providing more channels with ozone addition and by arranging the reactor units in series. PMID:18844127

  13. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies.

    PubMed

    Parida, Kulamani; Mishra, Krushna Gopal; Dash, Suresh Kumar

    2012-11-30

    This paper deals with the immobilization of various weight percentage of TiO(2) on mesoporous MCM-41, characterization of the materials by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, UV-vis diffuse reflectance spectroscopy (DRS) and evaluation of the adsorption capacity toward Cr(VI) removal. It is found that the MCM-41 structure retained after loading of TiO(2) but the surface area and pore diameter decreased due to pore blockage. Adsorption of Cr(VI) from aqueous state was investigated on TiO(2)-MCM-41 by changing various parameters such as pH, metal ion concentration, and the temperature. When TiO(2) loading was more than 20 wt.%, the adsorption activity (25)TiO(2)-MCM-41 reduced significantly due to considerable decrease in the surface area. It is also observed that TiO(2) and neat MCM-41 exhibits very less Cr(VI) adsorption compared to TiO(2)-MCM-41. The adsorption of Cr(VI) onto (20)TiO(2)-MCM-41 at pH~5.5 and temperature 323 K was 91% at 100mg/L Cr(VI) metal ion concentration in 80 min. The experimental data fitted well to Langmuir and Freundlich isotherms. The adsorption of Cr(VI) on TiO(2)-MCM-41 followed a second order kinetics with higher values of intra-particle diffusion rate. Thermodynamic parameters suggested that the adsorption process is endothermic in nature and desorption studies indicated a chemisorption mode. PMID:23092612

  14. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  15. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  16. High performance flexible ultraviolet photodetectors based on TiO2/graphene hybrid for irradiation monitoring applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Wang, Xiaohong; Kuang, Xuanlin; Xu, Sixing

    2016-07-01

    This paper reports a novel ultraviolet (UV) photodetector based on a TiO2/graphene hybrid, with high responsivity (0.482 A W‑1) at 3 V bias and 330 nm irradiation, which is ~100 times higher than that based on pure TiO2. The collaboration of TiO2 and graphene in the hybrid material contributes to the high performance of the device. To be more specific, graphene provides a large surface area to load sufficient TiO2 nanoparticles, and the generated electrons are instantly collected due to the prominent electrical properties of graphene which can overcome the low quantum efficiency of pristine TiO2 caused by recombination of photo-induced electron–hole pairs. The device was fabricated on a flexible substrate using a facile spraying method that shows the possibility of broadening the future of photodetectors in wearable devices. An on-board interface circuit based on commercial IC components is implemented to collaborate with the photodetector to demonstrate a UV sensing application.

  17. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    PubMed Central

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-01-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications. PMID:25716132

  18. Hierarchically structured microspheres for high-efficiency rutile TiO(2)-based dye-sensitized solar cells.

    PubMed

    Ye, Meidan; Zheng, Dajiang; Wang, Mengye; Chen, Chang; Liao, Wenming; Lin, Changjian; Lin, Zhiqun

    2014-02-26

    Peachlike rutile TiO2 microsphere films were successfully produced on transparent conducting fluorine-doped tin oxide substrate via a facile, one-pot chemical bath route at low temperature (T = 80-85 °C) by introducing polyethylene glycol (PEG) as steric dispersant. The formation of TiO2 microspheres composed of nanoneedles was attributed to the acidic medium for the growth of 1D needle-shaped building blocks where the steric interaction of PEG reduced the aggregation of TiO2 nanoneedles and the Ostwald ripening process. Dye-sensitized solar cells (DSSCs) assembled by employing these complex rutile TiO2 microspheres as photoanodes exhibited a light-to-electricity conversion efficiency of 2.55%. It was further improved to a considerably high efficiency of 5.25% upon a series of post-treatments (i.e., calcination, TiCl4 treatment, and O2 plasma exposure) as a direct consequence of the well-crystallized TiO2 for fast electron transport, the enhanced capacity of dye loading, the effective light scattering, and trapping from microstructures. PMID:24467178

  19. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  20. Preparation of SiO2/TiO2 and TiO2/TiO2 micropattern and their effects on platelet adhesion and endothelial cell regulation

    NASA Astrophysics Data System (ADS)

    Li, Jing-an; Yang, Ping; Zhang, Kun; Ren, Hui-lan; Huang, Nan

    2013-07-01

    TiO2 films were applied on blood contact biomaterials for its excellent biocompatibility. The topological structure of the biomaterial surfaces have a significant impact on cell adhesion, spreading and proliferation. Thus, it is anticipated that the combination of TiO2 film deposition and surface micro-patterning will provide a potential application for cardiovascular implants materials. In this work, TiO2/TiO2 and SiO2/TiO2 micro-groove/ridge stripes on Si (100) were prepared by photolithography, wet etching and unbalanced magnetron sputtering (UBMS). Their surface morphology, chemical composition and wettability were investigated. The crystal structure of TiO2 films was characterised by X-ray diffraction (XRD). Platelet adhesion on the SiO2/TiO2 and TiO2/TiO2 surfaces was tested, and the morphology and behaviour of endothelial cells cultured on the micropatterned surfaces were observed. It was proved that the SiO2/TiO2 pattern could reduce platelet adhesion and aggregation compared with TiO2/TiO2 pattern, endothelial cells grew along the micro-stripes and their behaviour could be effectively regulated by micropatterned surface. So, it is suggested that the micropatterned SiO2/TiO2 surface can contribute more bio-compatible function of regulating and coordinating the behaviour of endothelial cells and platelets.

  1. Preparation of Mesoporous V2O5@TiO2 Composites with Enhanced Photoactivity for Gaseous Benzene Degradation

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxia; Feng, Subo; Chen, Wen; Li, Xiaoyu; Song, Yanbao; Cao, Jinqiao

    Mesoporous V2O5@TiO2 composites were fabricated by an ultrasonic method with V2O5 sol as the guest precursor. The prepared materials were characterized by powder X-ray diffraction, field emission-scanning electron microscopy, transmission electron microscope, X-ray photoelectron spectroscopy, UV-Vis spectroscopy and nitrogen sorption analysis. The results indicated that V2O5 nanoparticles dispersed well on/into the porous structure of TiO2 matrix. The composites presented typical IUPAC IV isotherms with type H2 hysteresis loops, revealing the mesoporous structure. It was observed that V2O5 loading led to red shift of the absorption edge to 540 nm and reduced the band gap < 3.0 eV. The V2O5@TiO2 composites with V/Ti molar ratio of 0.1 exhibited outstanding degradation efficiency of gaseous benzene.

  2. Effective blockage of the interfacial recombination process at TiO(2) nanowire array electrodes in dye-sensitized solar cells.

    PubMed

    Jiang, Dianlu; Hao, Yuanqiang; Shen, Rujuan; Ghazarian, Sevak; Ramos, Angela; Zhou, Feimeng

    2013-11-27

    Effective blockage of recombination electron transfer of a fast electron transfer redox couple (ferrocenium/ferrocene or Fc(+)/Fc) at TiO2 nanowire array electrodes is achieved by silanization of the dye loaded TiO2 nanowire array. FT-IR clearly shows the formation of polysiloxane network at fluorine doped tin electrodes covered with TiO2 nanowire arrays and the dye molecules. Compared to the commonly used TiO2 nanoparticle film electrodes, the TiO2 nanowire array has a more spatially accessible structure, facilitating the formation of uniform polysiloxane films. Energy-dispersive X-ray spectroscopy (EDS) also reveals the presence of Si over multiple spots at the cross sections of the silanized TiO2 nanowire array electrodes. As a result, a rather high open-cell voltage Voc (0.69 V) and an enhanced efficiency (0.749 %) for DSSC with the Fc(+)/Fc couple were obtained. Contrary to the passivated TiO2 nanoparticle film electrodes at which a complex, biphasic dependence of electron lifetime on Voc was observed, we recorded a logarithm linear dependence of the lifetime on Voc after the silanization treatment. The nanowire arrays with optimal salinization treatments afford a useful surface for the study of electron recombination and photovoltaic generation in DSSCs. PMID:24191693

  3. Investigation of physical properties of TiO2 nanolayers

    NASA Astrophysics Data System (ADS)

    Struk, Przemyslaw; Pustelny, Tadeusz

    2015-12-01

    We present applications of titanium dioxide wide bandgap oxide semiconductor and its application in integrated optics devices. The paper is focus on research of physical properties TiO2 such as: spectral transmittance, refractive index, extinction coefficient in the UV-VIS-IR range of light as well as surface topography. In addition we show the numerical calculation and optical characterization of fabricated optical planar waveguide based on TiO2.

  4. Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2.

    PubMed

    Shankar, M V; Anandan, S; Venkatachalam, N; Arabindoo, B; Murugesan, V

    2006-05-01

    Zeolites HY, Hbeta and HZSM-5 with different physico-chemical properties were chosen as support for TiO2 to illustrate their adsorption, dispersion and electronic structure in photocatalysis. The extent of TiO2 loading was monitored by XRD and BET surface area measurements. The adsorption capacity of HY zeolite was found to be high and hence chosen for further modification to continue the investigation. Photodegradation kinetics were carried out with 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution. The extent of 2,4-D degradation on TiO2/HY loading revealed the importance of adsorption in photocatalysis. Mineralisation studies on all three zeolites with 1 wt.% TiO2 loading demonstrated the good dispersion properties of TiO2/HY. Its photocatalytic activity was found to be excellent with formulated 2,4-D. Comparison of relative photonic efficiencies demonstrated that supported photocatalysts exhibited higher activity than some of the commercial photocatalysts. The high activity of supported TiO2 is due to synergistic effects of improved adsorption of 2,4-D and efficient delocalisation of photogenerated electrons by zeolite support. PMID:16289243

  5. TiO2 optical sensor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Tereshchenko, Alla; Viter, Roman; Konup, Igor; Ivanitsa, Volodymyr; Geveliuk, Sergey; Ishkov, Yuriy; Smyntyna, Valentyn

    2013-11-01

    A novel optical sensor based on TiO2 nanoparticles for Valine detection has been developed. In the presented work, commercial TiO2 nanoparticles (Sigma Aldrich, particle size 32 nm) were used as sensor templates. The sensitive layer was formed by a porphyrin coating on a TiO2 nanostructured surface. As a result, an amorphous layer between the TiO2 nanostructure and porphyrin was formed. Photoluminescence (PL) spectra were measured in the range of 370-900 nm before and after porphyrin application. Porphyrin adsorption led to a decrease of the main TiO2 peak at 510 nm and the emergence of an additional peak of high intensity at 700 nm. Absorption spectra (optical density vs. wavelenght, measured from 300 to 1100 nm) showed IR shift Sorret band of prophiryn after deposition on metal oxide. Adsorption of amino acid quenched PL emission, related to porphyrin and increased the intensity of the TiO2 emission. The interaction between the sensor surface and the amino acid leads to the formation of new complexes on the surface and results in a reduction of the optical activity of porphyrin. Sensitivity of the sensor to different concentrations of Valine was calculated. The developed sensor can determine the concentration of Valine in the range of 0.04 to 0.16 mg/ml.

  6. TiO2 Nanoparticles Induced Hippocampal Neuroinflammation in Mice

    PubMed Central

    Ze, Xiao; Yu, Xiaohong; Pan, Xiaoyu; Lin, Anan; Zhao, Yue; Zhang, Chi; Zhou, Qiuping; Wang, Ling; Hong, Fashui

    2014-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) have been used in various medical and industrial areas. However, the impacts of these nanoparticles on neuroinflammation in the brain are poorly understood. In this study, mice were exposed to 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 90 consecutive days, and the TLRs/TNF-α/NF-κB signaling pathway associated with the hippocampal neuroinflammation was investigated. Our findings showed titanium accumulation in the hippocampus, neuroinflammation and impairment of spatial memory in mice following exposure to TiO2 NPs. Furthermore, TiO2 NPs significantly activated the expression of Toll-like receptors (TLR2, TLR4), tumor necrosis factor-α, nucleic IκB kinase, NF-κB-inducible kinase, nucleic factor–κB, NF-κB2(p52), RelA(p65), and significantly suppressed the expression of IκB and interleukin-2. These findings suggest that neuroinflammation may be involved in TiO2 NP-induced alterations of cytokine expression in mouse hippocampus. Therefore, more attention should be focused on the application of TiO2 NPs in the food industry and their long-term exposure effects, especially in the human central nervous system. PMID:24658543

  7. Structural, Optical and Thermal Investigations of TiO2 and S-Doped TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Divyanshu; Kumar, Ashavani

    2011-12-01

    Titanium dioxide (TiO2) and sulfur doped titanium dioxide (S-doped TiO2) nanoparticles are synthesized by Coprecipitation technique using titanium trichloride (TiCl3) as precursor, ammonium hydroxide (NH4OH) as solvent and sodium sulfite as source of sulfur. The X-ray diffraction (xrd) pattern reveals that TiO2 Nanoparticles are in anatase phase and anatase content decreases with increasing S-doping. The Differential Scanning Calorimetry (DSC) analysis elucidates the metastable anatase phase changes to stable rutile phase at 746 °C temperature. The UV/Vis study predicts larger band gap of TiO2 Nanoparticles as compare to bulk and blue shift with increasing S-doping.

  8. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications.

    PubMed

    Uhm, Soo-Hyuk; Lee, Sang-Bae; Song, Doo-Hoon; Kwon, Jae-Sung; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-10-01

    We investigated whether a silver coating on an anodic oxidized titania (TiO2) nanotube surface would be useful for preventing infections in dental implants. We used a magnetron sputtering process to deposit Ag nanoparticles onto a TiO2 surface. We studied different sputtering input power densities and maintained other parameters constant. We used scanning electron microscopy, X-ray diffraction, and contact angle measurements to characterize the coated surfaces. Staphylococcus aureus was used to evaluate antibacterial activity. The X-ray diffraction analysis showed peaks that corresponded to metallic Ag, Ti, O, and biocompatible anatase phase TiO2 on the examined surfaces. The contact angles of the Ag nanoparticle-loaded surfaces were significantly lower at 2.5 W/cm2 input power under pulsed direct current mode compared to commercial, untreated Ti surfaces. In vitro antibacterial analysis indicated that a significantly reduced number of S. aureus were detected on an Ag nanoparticle-loaded TiO2 nanotube surface compared to control untreated surfaces. No cytotoxicity was noted, except in the group treated with 5 W/cm2 input power density, which was the highest input of power density we tested for the magnetron sputtering process. Overall, we concluded that it was feasible to create antibacterial Ag nanoparticle-loaded titanium nanotube surfaces with magnetron sputtering. PMID:25942879

  9. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces.

    PubMed

    Miyauchi, Tomohiko; Yamada, Masahiro; Yamamoto, Akiko; Iwasa, Fuminori; Suzawa, Tetsuo; Kamijo, Ryutaro; Baba, Kazuyoshi; Ogawa, Takahiro

    2010-05-01

    Recently, UV photofunctionalization of titanium has been shown to be effective in enhancing osteogenic environment around this functional surface, in particular for the use of endosseous implants. However, the underlying mechanism remains unknown and its potential application to other tissue engineering materials has never been explored. We determined whether adhesion of a single osteoblast is enhanced on UV-treated nano-thin TiO(2) layer with virtually no surface roughness or topographical features. Rat bone marrow-derived osteoblasts were cultured on UV-treated or untreated 200-nm thick TiO(2) sputter-coated glass plates. After an incubation of 3 h, the mean critical shear force required to initiate detachment of a single osteoblast was determined to be 1280 +/- 430 nN on UV-treated TiO(2) surfaces, which was 2.5-fold greater than the force required on untreated TiO(2) surfaces. The total energy required to complete the detachment was 37.0 +/- 23.2 pJ on UV-treated surfaces, 3.5-fold greater than that required on untreated surfaces. Such substantial increases in single cell adhesion were also observed for osteoblasts cultured for 24 h. Osteoblasts on UV-treated TiO(2) surfaces were larger and characterized with increased levels of vinculin expression and focal contact formation. However, the density of vinculin or focal contact was not influenced by UV treatment. In contrast, both total expression and density of actin fibers increased on UV-treated surfaces. Thin layer TiO(2) coating and UV treatment of Co-Cr alloy and PTFE membrane synergistically resulted in a significant increase in the ability of cell attachment and osteoblastic production of alkaline phosphatase. These results indicated that the adhesive nature of a single osteoblast is substantially enhanced on UV-treated TiO(2) surfaces, providing the first evidence showing that each individual cell attached to these surfaces is substantially more resistant to exogenous load potentially from blood and

  10. Lithium insertion in nanostructured TiO(2)(B) architectures.

    PubMed

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li(+) pathways from surface to subsurface sites, which many chemists believe to contribute to the pseudocapacitive charging. Several disadvantages exist as well. TiO2(B), and titania in general, suffers from poor electronic and ionic conductivity. Nanostructured TiO2(B) also exhibits significant irreversible capacity loss (ICL) upon first discharge (lithiation). Nanostructuring TiO2(B) can help alleviate problems with poor ionic conductivity by shortening lithium diffusion pathways. Unfortunately, this also increases the likelihood of severe first discharge ICL due to reactive Ti-OH and Ti-O surface sites that can cause unwanted electrolyte degradation and irreversible trapping of Li(+). Nanostructuring also results in lowered volumetric energy density, which could be a considerable problem for mobile applications. We will also discuss these problems and proposed solutions. Scientists have synthesized TiO2(B) in a variety of nanostructures including nanowires, nanotubes, nanoparticles, mesoporous-ordered nanostructures, and nanosheets. Many of these structures exhibit enhanced Li(+) diffusion kinetics and increased specific capacities compared to bulk material, and thus warrant investigation on how nanostructuring influences lithiation behavior. This Account will focus on these influences from both experimental and theoretical perspectives. We will discuss the surface charging mechanism that gives rise to the increased lithiation and delithiation kinetics for TiO2(B), along with the influence of dimensional confinement of the nanoarchitectures, and how nanostructuring can change the lithiation mechanism considerably. PMID:23425042

  11. Effect of TiO2 dispersion on mechanical properties of epoxy polymer

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Singh, Samarjit; Kohli, Raunak; Jain, Anuj; Kumar, Abhishek

    2016-05-01

    This study is focused to assess reinforcing effects of TiO2 particles on the mechanical properties of epoxy resins, particularly with regards to fracture and toughening mechanisms. An experimental study has been carried out on series of composites containing varying amount of micro size titanium dioxide (TiO2) up to 8 wt.%. The particles were dispersed via mixing with mechanical stirrer at 1000 rpm for 2 hours to ensure a well-dispersed phase of the particles. The epoxy resin with the dispersed particle has been cured with hardener at 40 °C for 16 hours. Test reveals improvement in up to 4 wt.% of the particles and decrease in the mechanical properties beyond 4 wt. %. This may be attributed to the significant increase in clustering and settlement of the particles during long curing time. The tensile strength increases by 32 % and fracture toughness (K1C) by 44.95 % and the fracture energy (G1C) by 150.29 % with particle loading of 4 wt. % TiO2.

  12. Visible Light Active Cu2+/TiO2 Nanocatalyst for Degradation of Dichlorvos

    NASA Astrophysics Data System (ADS)

    Segne, Teshome Abdo; Tirukkovalluri, Siva Rao; Challapalli, Subrahmanyam

    2012-10-01

    The advantage of doping of TiO2 with copper has been utilized for enhanced degradation of pesticide under visible light irradiation. The sol-gel method has been undertaken for the synthesis of copper-doped TiO2 by varying the dopant loadings from 0.25 wt.% to 1.0 wt.% of Cu2+. The doped samples were characterized by UV-Visible Diffuse Reflectance Spectroscopy (DRS), N2 adsorption-desorption (BET), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometry (EDS). The photocatalytic activity of the catalyst was tested by degradation of dichlorvos under visible light illumination. The results found that 0.75 wt.% of Cu2+ doped nanocatalysts have better photo catalytic activity than the rest of percentages doped, undoped TiO2 and Degussa P25. The reduction of band gap was estimated and the influence of the process parameters on photo catalytic activity of the catalyst has been explained.

  13. Bi-layer of nanorods and three-dimensional hierarchical structure of TiO2 for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Weixin; Yang, Junyou; Jiang, Qinghui; Luo, Yubo; Hou, Yaru; Zhou, Shuqin; Zhou, Zhiwei

    2015-06-01

    A novel bi-layer structure assembled by nanorods and three-dimensional hierarchical TiO2 is synthesized by a facile two step hydrothermal method. By adjusting the acid concentration, the morphology of three-dimensional hierarchical TiO2 can be well controlled. This bi-layer structure combines the merits of one-dimensional nanorods which can serve as direct electrons transport pathways and three-dimensional hierarchical structure supplying light scattering ability and large specific surface area for dye loading. Hence, the photovoltaic performance of the dye-sensitized solar cells based on the bi-layer TiO2 is greatly enhanced compared to that of single nanorods film. The maximum short-circuit current and power conversion efficiency of the DSSCs based on bi-layer TiO2 structure reach 12.55 mA/cm2 and 5.61% respectively, which are remarkably larger than those of 5.00 mA/cm2 and 2.38% for the DSSC based on a single layer TiO2 nanorods film. The superior performance of bi-layer TiO2 structure is attributed to the large dye loading amount and light scattering properties due to the unique hierarchical structure.

  14. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  15. Low temperature fabrication of perovskite solar cells with TiO2 nanoparticle layers

    NASA Astrophysics Data System (ADS)

    Kanayama, Masato; Oku, Takeo; Suzuki, Atsushi; Yamada, Masahiro; Sakamoto, Hiroki; Minami, Satoshi; Kohno, Kazufumi

    2016-02-01

    TiO2/CH3NH3PbI3-based photovoltaic devices were fabricated by a spin-coating method using a mixture solution. TiO2 require high-temperature processing to achieve suitably high carrier mobility. TiO2 electron transport layers and TiO2 scaffold layers for the perovskite were fabricated from TiO2 nanoparticles with different grain sizes. The photovoltaic properties and microstructures of solar cells were characterized. Nanoparticle sizes of these TiO2 were 23 nm and 3 nm and the performance of solar cells was improved by combination of two TiO2 nanoparticles

  16. Highly Crystalline Nanoparticle Suspensions for Low-Temperature Processing of TiO2 Thin Films.

    PubMed

    Watté, Jonathan; Lommens, Petra; Pollefeyt, Glenn; Meire, Mieke; De Buysser, Klaartje; Van Driessche, Isabel

    2016-05-25

    In this work, we present preparation and stabilization methods for highly crystalline TiO2 nanoparticle suspensions for the successful deposition of transparent, photocatalytically active TiO2 thin films toward the degradation of organic pollutants by a low temperature deposition method. A proof-of-concept is provided wherein stable, aqueous TiO2 suspensions are deposited on glass substrates. Even if the processing temperature is lowered to 150-200 °C, the subsequent heat treatment provides transparent and photocatalytically active titania thin layers. Because all precursor solutions are water-based, this method provides an energy-efficient, sustainable, and environmentally friendly synthesis route. The high load in crystalline titania particles obtained after microwave heating opens up the possibility to produce thin coatings by low temperature processing, as a conventional crystallization procedure is in this case superfluous. The impact of the precursor chemistry in Ti(4+)-peroxo solutions, containing imino-diacetic acid as a complexing ligand and different bases to promote complexation was studied as a function of pH, reaction time and temperature. The nanocrystal formation was followed in terms of colloidal stability, crystallinity and particle size. Combined data from Raman and infrared spectroscopy, confirmed that stable titanium precursors could be obtained at pH levels ranging from 2 to 11. A maximum amount of 50.7% crystallinity was achieved, which is one of the highest reported amounts of anatase nanoparticles that are suspendable in stable aqueous titania suspensions. Decoloring of methylene blue solutions by precipitated nanosized powders from the TiO2 suspensions proves their photocatalytic properties toward degradation of organic materials, a key requisite for further processing. This synthesis method proves that the deposition of highly crystalline anatase suspensions is a valid route for the production of photocatalytically active, transparent

  17. Composite TiO2/clays materials for photocatalytic NOx oxidation

    NASA Astrophysics Data System (ADS)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  18. Chemical modification of nanometric TiO2 particles by anchoring functional silane molecules in supercritical CO2

    NASA Astrophysics Data System (ADS)

    López-Periago, Ana M.; Sandoval, Wendy; Domingo, Concepción

    2014-03-01

    Supercritical carbon dioxide (scCO2) was used as a green solvent for the grafting of complex functional organosilanes containing nitrogen moieties on titanium dioxide (TiO2) nanoparticles using two strategies. The first strategy involved the preparation of two functional silanes, 4-nitrophenyl-(3-(trimethoxysilyl)-propyl)methanimine (NPTMS) and 4-(((3-(trimethoxysilyl)propyl)imino)methyl)-benzaldehyde (FPTMS) and further deposited under anhydrous conditions and scCO2 onto the TiO2 surface. The second strategy involved the scCO2 anhydrous deposition of bifunctional commercial silanes on the TiO2 surface. Two structures were synthesized. The first consisted in grafted TiO2 nanoparticles prepared by addition of the ligand, ((1R,2R)-N-(pyridin-2-ylmethyl)-2-(((E)-pyridin-2-ylmethylene) amino)-cyclohexan-1-amine (LPy-red), and designated as Ti-Cl-LPy-red. The second structure was synthesized by the reaction of (1,2)-diaminocylohexane (Dac), through the reactive site of 3-(Trimethoxysilyl)propyl methacrylate (MPTMS) previously deposited on the TiO2 surface and designated as Ti-MP-Dac. The synthesized silanes were characterized by ATR-FT and NMR spectroscopies and mass spectrometry. ATR-FT spectroscopy confirmed the presence of the silanes on the surface of the hybrid nanoparticles. Thermogravimetic analysis was used to estimate the loading of the silane grafted through both hydrogen and covalent bonding on the TiO2 surface. Further characterization of the solid samples was done by N2 adsorption-desorption and UV-vis diffuse reflectance.

  19. Elementary photocatalytic chemistry on TiO2 surfaces.

    PubMed

    Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming

    2016-07-01

    Photocatalytic hydrogen production and pollutant degradation provided both great opportunities and challenges in the field of sustainable energy and environmental science. Over the past few decades, we have witnessed fast growing interest and efforts in developing new photocatalysts, improving catalytic efficiency and exploring the reaction mechanism at the atomic and molecular levels. Owing to its relatively high efficiency, nontoxicity, low cost and high stability, TiO2 becomes one of the most extensively investigated metal oxides in semiconductor photocatalysis. Fundamental studies on well characterized single crystals using ultrahigh vacuum based surface science techniques could provide key microscopic insight into the underlying mechanism of photocatalysis. In this review, we have summarized recent progress in the photocatalytic chemistry of hydrogen, water, oxygen, carbon monoxide, alcohols, aldehydes, ketones and carboxylic acids on TiO2 surfaces. We focused this review mainly on the rutile TiO2(110) surface, but some results on the rutile TiO2(011), anatase TiO2(101) and (001) surfaces are also discussed. These studies provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting field. At the end of this review, we have discussed how these studies can help us to develop new photocatalysis models. PMID:26335268

  20. Tailoring of electron diffusion through TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Jose, R.; Yusoff, M. M.

    2012-11-01

    Charge transport through a random network of onedimensional TiO2 nanostructures such as nanorods, nanowires, and nanofibers developed by electrospinning technique has been studied in the presence of an electrolyte by electrochemical impedance spectroscopy and transient photocurrent measurements. The results have been compared with the charge transport parameters of random TiO2 nanoparticle (25 nm) network. The charge transport was discussed under the framework of hopping transport. Continuous nanofibers had longer charge collecting times and short nanorods have enhanced scattering losses. The TiO2 films containing random network of nanowires of aspect ratio 10:1 can have an order of magnitude higher diffusion coefficient than other morphologies. Furthermore, charge transport through Nb-doped anatase TiO2 nanofibers was studied. It was observed that the Fermi level of TiO2 rise close to its conduction band and result in a band-edge type diffusion mechanism even at low bias voltages when 2 wt% Nb atoms replaces the Ti atoms in the anatase lattice. The Nb-doped anatase electrospun nanofibers showed high chemical capacitance, high effective diffusion coefficient, and lower transport resistance compared to the undoped samples and conventional nanoparticles.

  1. Hydrogen Impurity Defects in Rutile TiO2.

    PubMed

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  2. Photocatalytic Properties of TiO2 Porous Network Film.

    PubMed

    Yu, Lianqing; Zhi, Qianqian; Huang, Chengxing; Zhang, Yaping; Dong, Kaituo; Neppolian, B

    2015-09-01

    Three-dimensional porous network TiO2 film (PW-film) and nanoparticles film were synthesized on surface of the Ti foil by a facile method to investigate both the photoelectrochemical and photocatalytic properties. The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction spectroscopy (XRD) techniques. Methylene blue was used as a target molecule to estimate the photocatalytic activity of the films. Results revealed that the hydrothermal temperature and time have great influence on the crystal type and film morphology of TiO2 catalysts. A higher hydrothermal temperature is benefit for the formation of anatase phase of TiO2 nanotubes with PW-film, which had a large number of nodes. After investigation of the photoelectrochemical properties, a maximum photoconversion efficiency of 4.79% is observed for nanoparticles film with rutile phase of TiO2 under UV light illumination, which was incredible 2 times higher than that of the PW-film with anatase phase. It was shown that the morphology of TiO2 film contributes more significant effect on photocatalytic and photoelectric performance than its crystal type. PMID:26716214

  3. Hydrogen Impurity Defects in Rutile TiO2

    PubMed Central

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  4. Hydrogen Impurity Defects in Rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-12-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy.

  5. Water - Based TiO2 Suspensions: A Raman Study

    NASA Astrophysics Data System (ADS)

    Rangel, Roberto; Chipara, Dorina; Yust, Brian; Padilla, Desiree; Chipara, Mircea

    The antibacterial features of TiO2 are under scrutiny due to the UV radiation, which contributes to the generation of reactive oxygen species, mainly in water environments. A study of TiO2 suspensions in water and broth is reported. TiO2 has a low solubility in water. TiO2 (anatase), with average diameter of 15 nm from Nanostructured & Amorphous Materials, Inc. has been added to the fluid (water, broth) and the mixture was stirred for 1-10 h, followed by a 10-60 minutes sonication. The suspension was left to sediment for 1 day before measurements. Quasistable suspensions of TiO2 in water and broth were investigated by Raman spectroscopy using a Renishaw InVia spectrometer operating at 532 and 785 nm. The spectra of the nanofiller have been simulated by a collection of Breit-Wigner Fano line shapes and the effect of the preparation conditions (stirring and sonication time) on the parameters of Raman lines are reported. The differences are explained by observing that the sonication destroys the agglomerates of anatase resulting in a better dispersion of nanoparticles and consequently a longer sedimentation time. Sample preparation/storage have been done both under dark and UV light conditions.

  6. Photoinduced underwater superoleophobicity of TiO2 thin films.

    PubMed

    Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro

    2013-06-11

    The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter. PMID:23701360

  7. Photoelectrical properties of TiO2-Si structures

    NASA Astrophysics Data System (ADS)

    Petrova, Yu S.; Zarubin, A. N.; Kalygina, V. M.; Zupiy, S. Yu

    2014-10-01

    The effect of thermal annealing at 500 and 750°C as well as treatment in oxygen plasma on electrical and photoelectrical characteristics of TiO2-Si structures were investigated. TiO2 films were deposited on n-Si substrates by magnetron sputtering. It was found that in the structures annealed at 500°C and treated in oxygen plasma a substantial part of the enhanced photocurrent was observed over a long time after removing of illumination with λ = 400 nm.

  8. A Surface Science Perspective on TiO2 Photocatalysis

    SciTech Connect

    Henderson, Michael A.

    2011-06-15

    The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.

  9. Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient Photoelectrocatalytic decomposition of synergistic pollutants.

    PubMed

    Zhang, Zhonghai; Yu, Yanjie; Wang, Peng

    2012-02-01

    In this paper, top-porous and bottom-tubular TiO(2) nanotubes (TiO(2) NTs) loaded with palladium nanoparticles (Pd/TiO(2) NTs) were fabricated as an electrode for an enhanced photoelectrocatalytic (PEC) activity toward organic dye decomposition. TiO(2) NTs with a unique hierarchical top-porous and bottom-tubular structure were prepared by a facile two-step anodization method and Pd nanoparticles were decorated onto the TiO(2) NTs via a photoreduction process. The PEC activity of Pd/TiO(2) NTs was investigated by decomposition of methylene blue (MB) and Rhodamine B (RhB). Because of formation Schottky junctions between TiO(2) and Pd, which significantly promoted the electron transfer and reduced the recombination of photogenerated electrons and holes, the Pd/TiO(2) NT electrode showed significantly higher PEC activities than TiO(2) NTs. Interestingly, an obvious synergy between two dyes was observed and corresponding mechanism based on facilitated transfer of electrons and holes as a result of a suitable energy level alignment was suggested. The findings of this work provide a fundamental insight not only into the fabrication but also utility of Schottky junctions for enhanced environmental remediation processes. PMID:22233777

  10. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    PubMed

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P<0.05) as compared to TiO2/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO2-ceramic and MWCNT/TiO2-ceramic under fluorescent light was found be 1.45×10(-2) min(-1) and 2.23×10(-2) min(-1) respectively. Further, when I-V characteristics were performed for TiO2/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. PMID:23910358

  11. Photocatalytic production of 1O2 and *OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO2.

    PubMed

    Castro, Camilo A; Osorio, Paula; Sienkiewicz, Andrzej; Pulgarin, Cesar; Centeno, Aristóbulo; Giraldo, Sonia A

    2012-04-15

    Ag loaded TiO(2) was applied in the photocatalytic inactivation of Escherichia coli under ultraviolet (UV) and visible (Vis) light irradiations. Ag enhanced the TiO(2) photodisinfecting effect under Vis irradiation promoting the formation of singlet oxygen and hydroxyl radicals as identified by EPR analyses. Ag nanoparticles, determined on TEM analyses, undergo an oxidation process on the TiO(2)'s surface under UV or Vis irradiation as observed by XPS. In particular, UV pre-irradiation of the material totally diminished its photodisinfection activity under a subsequent Vis irradiation test. Under UV, photodegradation of dichloroacetic acid (DCA), attributed to photoproduced holes in TiO(2), was inhibited by the presence of Ag suggesting that oxidation of Ag(0) to Ag(+) and Ag(2+) is faster than the oxidative path of the TiO(2)'s holes on DCA molecules. Furthermore, photoassisted increased of Ag(+) concentration on TiO(2)'s surface enhances the bacteriostatic activity of the material in dark periods. Indeed, this latter dark contact of Ag(+)-TiO(2) and E. coli seems to induce recovering of the Vis light photoactivity promoted by the surface Ag photoactive species. PMID:21940102

  12. The role of surface modification for TiO2 nanoparticles in cancer cells.

    PubMed

    Xie, Jin; Pan, Xiaobo; Wang, Mengyan; Ma, Jiong; Fei, Yiyan; Wang, Pei-Nan; Mi, Lan

    2016-07-01

    Titanium dioxide nanoparticles (TiO2 NPs) have a potential in the field of biological application. However, its poor dispersibility in water hampered its applications. In this study, 3-phosphonopropionic acid and 3-aminopropyl-triethoxysilane were respectively used for surface modification on TiO2 NPs with negative and positive surface charges (denoted as TiO2-COOH and TiO2-NH2). Zeta potentials of the prepared samples with high absolute value demonstrate the great improvement in their dispersibility. In terms of viability experiment, both TiO2-COOH and TiO2-NH2 showed low cytotoxicity. The cellular uptake efficiency and the uptake pathways of TiO2-COOH and TiO2-NH2 for cancer cells were studied. The exocytosis of TiO2-NH2 was also observed in the experiment. PMID:27003465

  13. Polymer TiO2 solar cells: TiO2 interconnected network for improved cell performance

    NASA Astrophysics Data System (ADS)

    Oey, C. C.; Djurisic, A. B.; Wang, H.; Man, K. K. Y.; Chan, W. K.; Xie, M. H.; Leung, Y. H.; Pandey, A.; Nunzi, J.-M.; Chui, P. C.

    2006-02-01

    A titanium dioxide porous network structure was synthesized using a poly(styrene-block-polyethylene oxide) diblock copolymer template. The influence of the titanium precursor concentration and annealing temperature on the obtained morphology was studied. Heterojunction solar cells consisting of TiO2 porous network structure and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV) were fabricated. The influence of the MEH-PPV layer thickness and device architecture on the solar cell performance was investigated. For an optimized device structure, a short-circuit current as high as 3.3 mA cm-2 is obtained under simulated solar illumination with an air mass AM 1.5 filter. The improved higher short-circuit current compared to other reports on MEH-PPV /TiO2 heterojunction cells can be attributed to improved morphology of the TiO2 layer.

  14. Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2.

    PubMed

    Ramli, Zatil Amali Che; Asim, Nilofar; Isahak, Wan N R W; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M Ambar; Sopian, K

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m(2) g(-1)). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples. PMID:25013855

  15. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    PubMed Central

    Che Ramli, Zatil Amali; Asim, Nilofar; Isahak, Wan N. R. W.; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M. Ambar; Sopian, K.

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples. PMID:25013855

  16. Synergistic effects of TiO2 and Cu2O in UV/TiO2/zeolite-based systems on photodegradation of bisphenol A.

    PubMed

    Kuo, Chao-Yin; Wu, Chung-Hsin; Lin, Han-Yu

    2014-08-01

    In this study, TiO2/zeolite (TZ)-based composite was utilized to degrade bisphenol A (BPA) under ultraviolet (UV) irradiation. The effects of the TiO2 and Cu2O doses in TZ and Cu2O/TiO2/zeolite (CTZ) on the rate of BPA removal were identified, respectively. The surface area of TZ declined as the TiO2 loading increased. The photodegradation rate (k) of BPA in the TZ and CTZ systems fitted pseudo-first-order kinetics. Under UV (365 nm) irradiation, the k values of TiO2 (20%)/zeolite (80%), TiO2 (40%)/zeolite (60%), TiO2 (60%)/zeolite (40%), and TiO2 (80%)/zeolite (20%) were 0.51, 0.55, 0.97, and 0.91 h-1, respectively. In the UV (365nm)/TiO2 (60%)/zeolite (40%) system, the k values of CTZ with 1%, 5%, 10%, 20%, and 30% Cu2O added were 1.50, 1.04, 1.15, 1.88, and 0.47h-1, respectively. The photocatalytic activity of TZ was enhanced by adding Cu2O. The optimal dosage of TiO2 in the TZ system was 60% and that of Cu20 in the CTZ system was 20%. p-Hydroxybenzaldehyde (p-HBA), p-hydroxyacetophenone (p-HAP), p-hydroxybenzoic acid (p-HBA acid) and hydroquinone (HQ) were intermediates ofBPA photodegradation in the UV/TZ system and the rates of degradation followed the order HQ > p - HBA acid > BPA > p - HAP > p - HBA. PMID:24956778

  17. Deposition and characterization of binary Al 2O 3/SiO 2 coating layers on the surfaces of rutile TiO 2 and the pigmentary properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsheng; Yin, Hengbo; Wang, Aili; Ren, Min; Gu, Zhuomin; Liu, Yumin; Shen, Yutang; Yu, Longbao; Jiang, Tingshun

    2010-12-01

    Binary Al 2O 3/SiO 2-coated rutile TiO 2 composites were prepared by a liquid-phase deposition method starting from Na 2SiO 3·9H 2O and NaAlO 2. The chemical structure and morphology of binary Al 2O 3/SiO 2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al 2O 3/SiO 2 coating layers both in amorphous phase were formed at TiO 2 surfaces. The silica coating layers were anchored at TiO 2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO 2-coated TiO 2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al 2O 3/SiO 2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al 2O 3/SiO 2-coated TiO 2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al 2O 3/SiO 2-coated TiO 2 composites were higher than those of the naked rutile TiO 2 and the SiO 2-coated TiO 2 samples. The relative light scattering index was found to depend on the composition of coating layers.

  18. TiO(2) nanotube arrays: intrinsic peroxidase mimetics.

    PubMed

    Zhang, Lingling; Han, Lei; Hu, Peng; Wang, Li; Dong, Shaojun

    2013-11-18

    TiO2 nanotube arrays (NTA), prepared by potentiostatic anodization, were discovered to possess an intrinsic peroxidase-like activity. The colorimetric and electrochemical assays both demonstrated their excellent catalytic activity towards H2O2 reduction. On this basis, a simple and inexpensive electrochemical biosensor for glucose detection was developed. PMID:24084751

  19. TiO2 Photocatalytic Degradation of Phenylarsonic Acid

    PubMed Central

    Zheng, Shan; Cai, Yong; O’Shea, Kevin E.

    2010-01-01

    Phenyl substituted arsenic compounds are widely used as feed additives in the poultry industry and have become a serious environmental concern. We have demonstrated that phenylarsonic acid (PA) is readily degraded by TiO2 photocatalysis. Application of the Langmuir–Hinshelwood kinetic model for the initial stages of the TiO2 photocatalysis of PA yields an apparent rate constant (kr) of 2.8 µmol/L·min and the pseudo-equilibrium constant (K) for PA is 34 L/mmol. The pH of the solution influences the adsorption and photocatalytic degradation of PA due to the surface charge of TiO2 photocatalyst and speciation of PA. Phenol, catechol and hydroquinone are observed as the predominant products during the degradation. The roles of reactive oxygen species, •OH, 1O2, O2−• and hVB+ were probed by adding appropriate scavengers to the reaction medium and the results suggest that •OH plays a major role in the degradation of PA. By-products studies indicate the surface of the catalyst plays a key role in the formation of the primary products and the subsequent oxidation pathways leading to the mineralization to inorganic arsenic. TiO2 photocatalysis results in the rapid destruction of PA and may be attractive for the remediation of a variety of organoarsenic compounds. PMID:20473340

  20. The Synthesis of Cadmium Doped Mesoporous TiO2

    SciTech Connect

    Li, Xiaohong S.; Fryxell, Glen E.; Engelhard, Mark H.; Wang, Chong M.

    2007-06-01

    Cd doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors. The Cd doping was found to be able to significantly inhibit the growth of anatase crystal size, stabilize the mesoporous structure, and retard the densification of nanoporous TiO2 at elevated temperatures.

  1. ALMA observations of TiO2 around VY CMa

    NASA Astrophysics Data System (ADS)

    De Beck, Elvire; Vlemmings, Wouter; Muller, Sébastien; Black, John H.; O'Gorman, Eamon; Richards, Anita M. S.; Baudry, Alain; Maercker, Matthias; Decin, Leen; Humphreys, Elizabeth M.

    2016-07-01

    Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. We present and discuss the detections of 15 emission lines of TiO2 with ALMA in the complex environment of the red supergiant VY CMa. The observations reveal a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. We find evidence for a roughly east-west oriented, accelerating bipolar-like structure, of which the blue component runs into and breaks up around a solid continuum component. We see a distinct tail to the south-west for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.

  2. Protein Corona Prevents TiO2 Phototoxicity

    PubMed Central

    Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez

    2015-01-01

    Background & Aim TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Methods & Results Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles’ surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes’ surface. Conclusion These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired – as for efficient photodynamic cancer therapy. PMID:26083725

  3. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells.

    PubMed

    Li, Zhao-Qian; Ding, Yong; Mo, Li-E; Hu, Lin-Hua; Wu, Ji-Huai; Dai, Song-Yuan

    2015-10-14

    In general, the properties and performance of mesoporous TiO2 are greatly dependent on its crystal size, crystallinity, porosity, surface area, and morphology; in this regard, design and fine-tuning the crystal and pore sizes of the TiO2 submicrospheres and investigating the effect of these factors on the properties and photoelectric performance of dye-sensitized solar cells (DSSCs) is essential. In this work, uniform TiO2 submicrospheres were synthesized by a two-step procedure containing hydrolysis and solvothermal process. The crystal and pore sizes of the TiO2 submicrospheres were fine-tuned and controlled in a narrow range by adjusting the quantity of NH4OH during the solvothermal process. The effect of crystal and pore size of TiO2 submicrosphere on the performance of the DSSCs and their properties including dye-loading capacity, light scattering effect, power conversion efficiency (PCE), incident photon-to-electron conversion efficiencies (IPCEs), and electron recombination were compared and analyzed. The results show that increasing pore size plays a more significant role in improving the dye-loading capacity and PCE than increasing surface area, and an overall PCE value of 8.62% was obtained for the device with a 7.0 μm film thickness based on the TiO2 submicrospheres treated with 0.6 mL of NH4OH. Finally, the best TiO2 submicrosphere based photoanode film was optimized by TiCl4 treatment, and increasing film thickness and a remarkable PCE up to 11.11% were achieved. PMID:26393366

  4. Preparation of visible-light nano-photocatalysts through decoration of TiO2 by silver nanoparticles in inverse miniemulsions.

    PubMed

    Cao, Zhihai; Zhu, Shudi; Qu, Hui; Qi, Dongming; Ziener, Ulrich; Yang, Liu; Yan, Yingjie; Yang, Haitang

    2014-12-01

    Ag/TiO2 nanocomposites were prepared through combination of a sol-gel process of a titanium precursor in inverse miniemulsions and in situ reduction of silver ions in the "nanoreactors". The morphological investigation shows that Ag nanoparticles are mainly located on the surface of TiO2 nano-supports because of the fast reduction rate of Ag ions by hydrazine. Ag/TiO2 nanocomposites with amorphous or anatase TiO2 phase displayed high visible-light catalytic activity for degradation of Rhodamine B. The photoactivity of Ag/anatase TiO2 nanocomposites could be influenced by the Ag content that could be conveniently tuned by the loading of silver salts. The influence of the loading of silver salts on the particle properties of the Ag/TiO2 nanocomposites was investigated systematically. PMID:25217730

  5. Mesostructured TiO2 Gated Periodic Mesoporous Organosilica-Based Nanotablets for Multistimuli-responsive Drug Release.

    PubMed

    Wang, Tao; Guan, Buyuan; Wang, Xue; Li, Xiang; Zhang, Ye; Qiao, Zhen-An; Liu, Yunling; Huo, Qisheng

    2015-11-25

    A multistimuli-responsive drug carrier is designed and successfully synthesized by self-assembly of thiol-modified periodic mesoporous organosilica (PMO) nanoparticles, coated gold nanoparticles (AuNPs), and mesostructured titanium dioxide (TiO2). Dye-loaded PMO-Au@TiO2 nanotablets are shown to respond to environmental changes (pH, temperature, and light) to achieve controlled release. PMID:26418053

  6. The synthesis of TiO2 and TiO2-Pt and their application in the removal of Cr (VI).

    PubMed

    Fan, Jian-Wei; Liu, Xiang-Hu; Zhang, Jie

    2011-01-01

    The deposition of noble metal on titanium dioxide (TiO2) has been considered as an effective strategy to improve the activity of TiO2. In this paper, TiO2 nanoparticles were prepared via a sol-gel route, followed by heat treatment at elevated temperatures. TiO2-Pt catalyst was prepared by deposition of platinum (Pt) on the surface of as-prepared TiO2 nanoparticles. TiO2 and TiO2-Pt were characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, ultraviolet-visible differential reflectance spectra and infrared spectroscopy. TiO2 and TiO2-Pt were used as heterogeneous catalysts for the removal of Cr (VI) under ultraviolet-light illumination. TiO2 prepared at low temperature had smaller particle size and higher specific surface area, and consequently had higher activity on the removal of Cr (VI). The Pt deposited on the surface of TiO2 favoured the separation of photo-produced electrons (e-) and holes (h+), inhibited the recombination of e- and h+, and enhanced Cr (VI) removal. However, its blocking of active sites also inhibited the removal of Cr (VI). The deposition of 1% (wt.%) Pt to TiO2 produced the optimum activity for the removal of Cr (VI). A lower pH favoured the adsorption of Cr (VI) on the surface of TiO2, and correspondingly enhanced the removal of Cr (VI). PMID:21780710

  7. Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light.

    PubMed

    Gu, Jiali; Dong, Dianbo; Kong, Lingxue; Zheng, Yong; Li, Xiaojun

    2012-01-01

    The effect of nanometer anatase TiO2 was investigated on the photocatalytic degradation of phenanthrene on soil surfaces under a variety of conditions. After being spiked with phenanthrene, soil samples loaded with different amounts of TiO2 (0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.%) were exposed to UV-light irradiation for 25 hr. The results indicated that the photocatalytic degradation of phenanthrene followed the pseudo first-order kinetics. TiO2 significantly accelerated the degradation of phenanthrene with the half-life reduced from 45.90 to 31.36 hr for TiO2 loading of 0 wt.% and 4 wt.%, respectively. In addition, the effects of H2O2, light intensity and humic acid on the degradation of phenanthrene were investigated. The degradation of phenanthrene increased with the concentration of H2O2, light intensity and the concentration of humic acids. It has been demonstrated that the photocatalytic method in the presence of nanometer anatase TiO2 was a very promising technology for the treatments of soil polluted with organic substances in the future. PMID:23534208

  8. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak

    2014-07-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%).

  9. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    PubMed Central

    Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak

    2014-01-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%). PMID:24980936

  10. Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Li, Xin-wei; Cai, Qi-zhou; Yan, Qing-song; Pan, Zhen-hua

    2012-11-01

    V2O5/TiO2 composite films were prepared on pure titanium substrates via micro-arc oxidation (MAO) in electrolytes consisting of NaVO3. Their morphology and elements were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Phase composition and valence states of species in the films were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were also employed to evaluate the photophysical property of the films. The V2O5/TiO2 composite films show a sheet-like morphology. Not only V2O5 phase appears in the films when the NaVO3 concentration of the electrolyte is higher than 6.10 g/L and is loaded at the surface of anatase, but also V4+ is incorporated into the crystal lattice of anatase. In comparison with pure TiO2 films the V2O5/TiO2 composite films exhibit significantly narrow band gap energy. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the narrowest band gap energy, which is approximately 1.89 eV. The V2O5/TiO2 composite films also have the significantly enhanced visible light photocatalytic activity. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the best photocatalytic activity and about 93% of rhodamine is degraded after 14 h visible light radiation.

  11. Uniform titanium dioxide (TiO(2)) microcapsules prepared by glass membrane emulsification with subsequent solvent evaporation.

    PubMed

    Supsakulchai, A; Ma, G H; Nagai, M; Omi, S

    2002-01-01

    Anatase-type titanium dioxide (TiO(2)) was encapsulated using an Shirasu porous glass (SPG) membrane emulsification technique and followed by solvent evaporation. The oil phase, consisting of fine#10; powder of anatase TiO(2), Disperbyk-180, the hydrophobic oil phase additive, and polymer wall solution, was pushed through the membrane pores into the aqueous phase of poly(vinyl alcohol) and sodium dodecyl sulfate to form the solid-in-oil-in water, (S/O)/W, emulsion droplets. Three types of styrene-based copolymer poly(styrene-co-acrylic acid) (PS-AA), poly(styrene-co-2-ethyl hexyl acrylate) (PS-2EHA) and poly(styrene-co-dimethyl aminoethylmethacrylate) (PS-DMAEMA) were used as an encapsulating shell. Uniform droplets were successfully obtained by modifying the oil phase using methyl laurate or hexadecanol as the oil phase additive, together with carefully monitoring the emulsification flow rate during the emulsification. The (S/O)/W emulsion was gently stirred in a sealed reactor, and evacuation of solvent started under moderate heating with increasing a vacuum intensity. Those uniform-sized TiO(2) microcapsules revealed fine porous morphologies on their surfaces as a result of a mild phase separation induced from the addition of the oil phase additive. The encapsulation efficiency was influenced by the stability of TiO(2) in the oil phase, the polymer wall employed, and the operational control of the glass membrane emulsification process. The membrane emulsification process could prepare the TiO(2) microcapsules with about approximately 6-8.5 wt% of encapsulation loadings. PS-AA and PS-2EHA copolymers provided better encapsulation efficiency compared to PS-DMAEMA. SPG membranes with 1.42, 2.8, 5.25, 7.0, or 9.5 microm were employed and 2-20 microm microcapsules were subsequently obtained. PMID:12396381

  12. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  13. A facile hydrothermal approach for construction of carbon coating on TiO2 nanoparticles

    PubMed Central

    Olurode, Kehinde; Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiphing

    2012-01-01

    Herein a facile hydrothermal approach is used to construct carbon coated TiO2 nanoparticles employing dextrose as the source of carbon. The procedure is operated at a low temperature of 200 °C. Fourier infrared spectroscopy demonstrated the successful coating of carbon on TiO2 nanoparticles. The phase composition of TiO2 and carbon coated TiO2 nanoparticles were studied using X-ray diffraction and the surface morphology was analyzed by scanning and transmission electron microscopy. The existence of carbon coating on TiO2 nanoparticles was revealed by thermogravimetric analysis through different thermograms exhibited for TiO2 and carbon coated TiO2 nanoparticles. The reported method offers a simple and efficient approach for production of carbon coating TiO2 nanoparticles. PMID:22297036

  14. Sonophotocatalytic degradation of dye C.I. Acid Orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric.

    PubMed

    Marković, Darka; Šaponjić, Zoran; Radoičić, Marija; Radetić, Tamara; Vodnik, Vesna; Potkonjak, Branislav; Radetić, Maja

    2015-05-01

    This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact. PMID:25487219

  15. Photocatalytic degradation of diethyl phthalate using TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singla, Pooja; Pandey, O. P.; Singh, K.

    2014-04-01

    TiO2 nanoparticles predominantly in rutile phase are synthesized by ultrasonication assisted sol-gel method. TiO2 powder is characterized using X-ray powder diffraction and UV-vis diffuse reflectance. TiO2 is used as catalyst in photocatalytic degradation of Diethyl Phthalate. TiO2 exhibits good photocatalytic activity for the degradation of diethyl phthalate.

  16. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings.

    PubMed

    He, Xiaojing; Zhang, Xiangyu; Bai, Long; Hang, Ruiqiang; Huang, Xiaobo; Qin, Lin; Yao, Xiaohong; Tang, Bin

    2016-01-01

    Implant-associated infection and poor osseointegration remains a major clinical challenge in Ti-based implant materials. A versatile strategy to endow Ti-based implants with long-term antibacterial ability as well as better osteogenic activity is highly desirable for high quality implantation. Strontium (Sr) has been shown to be a significant element to favor bone growth by promoting new bone formation and inhibiting bone resorption. In this study, a novel duplex-treatment technique encompassing magnetron sputtering with micro-arc oxidation is utilized to fabricate porous Sr/Ag-containing TiO2 coatings loaded with different concentrations of Ag and Sr. All coatings are porous with pore size less than 5 µm. Ag is primarily distributed homogeneously inside the pores, and the concentrations of Ag in Sr/Ag-containing TiO2 coatings with low and high Ag contents are 0.40 at.% and 0.83 at.% respectively. We have demonstrated that this kind of coating displays long-lasting antibacterial ability even up to 28 d due to the incorporation of Ag. Further, Sr/Ag-containing TiO2 coatings with optimum Ag and Sr contents revealed good cytocompatibility, enhanced osteoblast spreading and osseointegration, which stemmed primarily from the synergistic effect exerted by the porous surface topography and the bioactive element Sr. However, this study has also identified, for the first time, that proper addition of Ag would further facilitate osteogenic effects. Besides, Sr may be able to alleviate the potential cytotoxic effect of excessive Ag. Thus, integration of optimum functional elements Ag and Sr into Ti-based implant materials would be expected to expedite osseointegration while simultaneously sustaining long-term antibacterial activity, which would provide new insights for relevant fundamental investigations and biomedical applications. PMID:27508428

  17. Photocatalytic synthesis of TiO(2) and reduced graphene oxide nanocomposite for lithium ion battery.

    PubMed

    Qiu, Jingxia; Zhang, Peng; Ling, Min; Li, Sheng; Liu, Porun; Zhao, Huijun; Zhang, Shanqing

    2012-07-25

    In this work, we synthesized graphene oxide (GO) using the improved Hummers' oxidation method. TiO2 nanoparticles can be anchored on the GO sheets via the abundant oxygen-containing functional groups such as epoxy, hydroxyl, carbonyl, and carboxyl groups on the GO sheets. Using the TiO2 photocatalyst, the GO was photocatalytically reduced under UV illumination, leading to the production of TiO2-reduced graphene oxide (TiO2-RGO) nanocomposite. The as-prepared TiO2, TiO2-GO, and TiO2-RGO nanocomposite were used to fabricate lithium ion batteries (LIBs) as the active anode materials and their corresponding lithium ion insertion/extraction performance was evaluated. The resultant LIBs of the TiO2-RGO nanocomposite possesses more stable cyclic performance, larger reversible capacity, and better rate capability, compared with that of the pure TiO2 and TiO2-GO samples. The electrochemical and materials characterization suggest that the graphene network provides efficient pathways for electron transfer, and the TiO2 nanoparticles prevent the restacking of the graphene nanosheets, resulting in the improvement in both electric conductivity and specific capacity, respectively. This work suggests that the TiO2 based photocatalytic method could be a simple, low-cost, and efficient approach for large-scale production of anode materials for lithium ion batteries. PMID:22738305

  18. TiO2/methylcellulose nanocomposite films for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Rosu, M. C.; Suciu, R. C.; Dreve, S. V.; Silipas, T. D.; Bratu, I.; Indrea, E.

    2012-02-01

    TiO2/methylcellulose (MeC) nanocomposite films were obtained by wet-chemical techniques using MeC and/or additives (acetylacetone, polyethylene glycol and Triton X-100). Thin films were obtained by spin-coating the colloidal suspensions on conductive indium tin oxide (ITO) glass, followed by a heat-treatment. The effect of MeC and additives on TiO2 nanoparticles dispersion was investigated by FTIR microscopy and X-ray diffraction (for structural and morphological properties), UV-VIS absorption spectroscopy and spectrofluorimetry (for optoelectronic properties) and wet technique adhesion test (for mechanical integrity). The composite film with methylcellulose and additives has good integrity and better adhesion to ITO substrate, without losing its photocatalytic activity. The results of these experiments showed that such nanocomposite films are interesting candidate for applications in the field of photocatalytic degradation of organic pollutants.

  19. Hydrogenation and disorder in engineered black TiO2.

    PubMed

    Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Mao, Samuel S; Shen, D Z

    2013-08-01

    A new form of TiO2 which is black in color has been shown to exhibit high efficiency for photocatalytic reactions under solar radiation [X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Science 331, 746 (2011)]. However, the mechanism behind this disorder-engineering process is not fully understood. In this Letter, based on density functional theory, we describe the role of hydrogen in producing lattice disorder in the anatase nanocrystals. We clarify further that the highly localized nature of the midgap states results in spatial separation of photoexcited electrons and holes in black TiO2, and that accounts for its high photocatalytic efficiency. PMID:23971586

  20. Robust superamphiphobic film from electrospun TiO2 nanostructures.

    PubMed

    Ganesh, V Anand; Dinachali, Saman Safari; Nair, A Sreekumaran; Ramakrishna, Seeram

    2013-03-13

    Rice-shaped TiO2 nanostructures are fabricated by electrospinning for creating a robust superamphiphobic coating on glass substrates. The as-fabricated TiO2 nanostructures (sintered at 500 °C) are superhydrophilic in nature which upon silanization turn into superamphiphobic surface with surface contact angle (SCA) values achieved using water (surface tension, γ = 72.1 mN/m) and hexadecane (surface tension, γ = 27.5 mN/m) being 166° and 138.5°, respectively. The contact angle hysteresis for the droplet of water and hexadecane are measured to be 2 and 12°, respectively. Thus, we have successfully fabricated superior self-cleaning coatings that possess exceptional superamphiphobic property by employing a simple, cost-effective, and scalable technique called electrospinning. Furthermore, the coating showed good mechanical and thermal stability with strong adherence to glass surface, thus revealing the potential for real applications. PMID:23427896

  1. Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential

    NASA Astrophysics Data System (ADS)

    Ye, Sheng-ying; Zheng, Sen-hong; Song, Xian-liang; Luo, Shu-can

    2015-06-01

    Removing ethylene (C2H4) from the atmosphere of storage facilities for fruits and vegetable is one of the main challenges in their postharvest handling for maximizing their freshness, quality, and shelf life. In this study, we investigated the photoelectrocatalytic (PEC) degradation of ethylene gas by applying a pulsed direct current DC square-wave (PDCSW) potential and by using a Nafion-based PEC cell. The cell utilized a titanium dioxide (TiO2) photocatalyst or γ-irradiated TiO2 (TiO2*) loaded on activated carbon fiber (ACF) as a photoelectrode. The apparent rate constant of a pseudo-first-order reaction (K) was used to describe the PEC degradation of ethylene. Parameters of the potential applied to the PEC cell in a reactor that affect the degradation efficiency in terms of the K value were studied. These parameters were frequency, duty cycle, and voltage. Ethylene degradation by application of a constant PDCSW potential to the PEC electrode of either TiO2/ACF cell or TiO2*/ACF cell enhanced the efficiency of photocatalytic degradation and PEC degradation. Gamma irradiation of TiO2 in the electrode and the applied PDCSW potential synergistically increased the K value. Independent variables (frequency, duty cycle, and voltage) of the PEC cell fabricated from TiO2 subjected 20 kGy γ radiation were optimized to maximize the K value by using response surface methodology with quadratic rotation-orthogonal composite experimental design. Optimized conditions were as follows: 358.36 Hz frequency, 55.79% duty cycle, and 64.65 V voltage. The maximum K value attained was 4.4 × 10-4 min-1.

  2. Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Liu, Enzhou; Liang, Xuhua; Hu, Xiaoyun; Fan, Jun

    2015-08-01

    In this paper, the Fe-Ni co-doped and Ag deposited anatase TiO2 (Fe-Ni/Ag/TiO2) nanocomposites were successfully prepared by a simple one-pot solvothermal approach. The investigations indicated that all as-prepared TiO2 samples were single anatase phase, and the impurity level was generated due to the Fe3+ or Ni2+ being located in the intrinsic band gap of TiO2, while the Ag+ ions could be transformed into metallic silver due to the reduction reaction and then loaded onto the surface of TiO2. Compared with pure TiO2, Fe-Ni/Ag/TiO2 composites with the sizes of Ag nanoparticles from 1.0 to 3.0 nm displayed the well optical property including higher visible light absorption activity and lower electron-hole pair recombination rate, and its absorption wavelength edge moved remarkably with a red shift to 700 nm. The photocatalytic water splitting was performed to produce H2 over the samples, and the experimental results indicate that Fe-Ni/Ag/TiO2 composites presented the highest H2 evolution rate, it can reach up to 793.86 μmol h-1 gcat-1 (λ > 400 nm for 6 h, energy efficiency is 0.25%), which was much higher than that of pure TiO2 for 9.57 μmol h-1 gcat-1. In addition, a tentative photocatalytic mechanism is proposed to understand the enhancement mechanism over Fe-Ni codoped and Ag deposited anatase TiO2.

  3. Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation

    PubMed Central

    Cui, Guixin; Xin, Yan; Jiang, Xin; Dong, Mengqi; Li, Junling; Wang, Peng; Zhai, Shumei; Dong, Yongchun; Jia, Jianbo; Yan, Bing

    2015-01-01

    Anatase TiO2 nanoparticles (TNPs) are synthesized using the sol-gel method and loaded onto the surface of polyester-cotton (65/35) fabrics. The nanofabrics degrade formaldehyde at an efficiency of 77% in eight hours with visible light irradiation or 97% with UV light. The loaded TNPs display very little release from nanofabrics (~0.0%) during a standard fastness to rubbing test. Assuming TNPs may fall off nanofabrics during their life cycles, we also examine the possible toxicity of TNPs to human cells. We found that up to a concentration of 220 μg/mL, they do not affect viability of human acute monocytic leukemia cell line THP-1 macrophages and human liver and kidney cells. PMID:26610470

  4. Photocatalytic Activity of Immobilized Geometries of TiO2

    NASA Astrophysics Data System (ADS)

    Koohestani, Hassan; Sadrnezhaad, Sayed Khatiboleslam

    2015-07-01

    Photocatalysts that are used for waste water treatment are often suspended in the waste water during processing and then must be removed from the water after treatment. To reduce the post-degradation expenses and time, separation is facilitated by an immobilization process. The effect of immobilized TiO2 geometries on the photocatalytic behavior of the photocatalyst is investigated in this work. Powder, fiber, film, and network-shaped TiO2 nanocatalysts were produced by using different templates. The cellulose fiber and ceramic templates were used as substrates for fiber and film/network geometry production. The products were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement. The photocatalytic performance was determined by methyl orange degradation and cyanide photo-oxidation under ultraviolet irradiation. From the SEM images, the size range of the TiO2 particles in the film and in the network geometries were 20-60 nm. The nanoparticles had covered the surface of the substrate, uniformly. Removal of the cellulose substrate by heat treatment yielded hollow TiO2 fibers with diameters of 0.5-1 µm and lengths of 30 µm. The efficiencies of both photocatalytic reactions were obtained in the following order: powder > network > film > fiber geometry. The rate constant of the dye degradation reaction using powder catalyst was 0.0118 min-1. For network catalyst, it was 0.0083 min-1. Corresponding results for cyanide disinfection were 0.0055 and 0.0046 min-1. Although powder samples had higher rate constants, network geometry was preferred due to its higher immobility.

  5. Methanethiol Chemistry on TiO2-Supported Ni Clusters

    SciTech Connect

    Ozturk,O.; Park, J.; Black, T.; Rodriguez, J.; Hrbek, J.; Chen, D.

    2008-01-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiOx and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  6. Methanethiol chemistry on TiO 2-supported Ni clusters

    NASA Astrophysics Data System (ADS)

    Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A.

    2008-10-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO 2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO 2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO 2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO 2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiO x and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  7. Transparent Nano-Crystalline TiO2 films

    NASA Astrophysics Data System (ADS)

    Sakthivel, K.; Venkatachalam, T.; Renugadevi, R.

    2011-10-01

    Thin films of TiO2 have been deposited on well cleaned glass substrates by Sol-Gel dip-drive coating technique. The films have been prepared at three different pH values (3, 5, and 9) of Sol and annealed in muffle furnace at three distinct temperatures (350 °C, 450 °C, and 550 °C) for one hour and are allowed to cool to room temperature. The films were characterized by XRD, EDAX, SEM and UV-Vis Spectrophotometer. The as deposited films were found to be amorphous in nature. The annealed films exhibit anatase in crystalline structure. The EDAX results have shown that all the films are maintained with TiO2 in composition. The XRD results reveal that they are nano-crystalline in nature and the crystalline nature increases with annealing temperature and pH of the Sol. The transmittance and absorbance spectra have shown that the films are transparent and band gap of the films are of the order of 3 eV. The ab initio studies of TiO2 (using GGA) was performed with Vienna ab initio Simulation package and the band structure and effective masses of the electrons and holes were determined.

  8. Raman spectroscopy of ball-milled TiO 2

    NASA Astrophysics Data System (ADS)

    Gajović, A.; Stubičar, M.; Ivanda, M.; Furić, K.

    2001-05-01

    Raman spectroscopy was applied to study structural and dimensional changes during high-energy ball milling of TiO 2 anatase. Milling was performed for up to 10 h using two different sets of grinding tools (wolfram carbide (WC) and agate). The diminution of the TiO 2 particle to nanometric size was monitoring by low-frequency Raman spectroscopy. The nanometric sizes were confirmed by transmission electron microscopy (TEM). After short milling time by WC the bands of high-pressure TiO 2 II phase (α-PbO 2 structure) were detected in Raman spectrum. Prolonged milling time was needed for transformation to rutil. When milling was performed by agate, the time necessary for both phase transitions was longer, presumably because of lower ball-to-powder weight ratio. The low-frequency Raman band of the prolonged milled samples was broad, which suggests the wide dispersion in nano-particle dimensions. The position of the low-frequency band in longer-milled samples indicated dimensions smaller than 20 nm, since the diameter of the particle is inversely proportional to the low-frequency mode of the spherical particles. These results were in agreement with the TEM results.

  9. Optofluidic microreactors with TiO2-coated fiberglass.

    PubMed

    Li, Lin; Chen, Rong; Zhu, Xun; Wang, Hong; Wang, Yongzhong; Liao, Qiang; Wang, Dongye

    2013-12-11

    Optofluidic microreactors are promising prospects for photocatalytic reactions. However, because the flow type in conventional designs is typically laminar, the mass transport mainly relies on diffusion, and thus the rate of mass transport is limited. Accordingly, poor mass transport reduces the photocatalytic reaction rate. To alleviate the limitation of mass transport, in this work, we proposed a novel optofluidic microreactor with TiO2-coated fiberglasses immersed in the microreaction chamber. Such a design enables enhanced mass transport by shortening the transport length and inducing the perturbation to liquid flow so as to improve the performance. We demonstrated the feasibility of the optofluidic microreactor with the TiO2-coated fiberglass by the photocatalytic water treatment of methylene blue under UV irradiation. Results showed that the proposed optofluidic microreactor yielded much higher degradation efficiency than did the conventional optofluidic microreactor as a result of enhanced mass transport. The microreactor with the TiO2-coated fiberglass showed a 2-3-fold improvement in the reaction rate constant as opposed to conventional ones. The maximal increment of the degradation efficiency can reach more than 40%. PMID:24262010

  10. BIOLOGICAL RESPONSE TO NANO-SCALE TIO2: ROLE OF PARTICLE DOSE, SHAPE AND RETENTION

    PubMed Central

    Silva, Rona M.; TeeSy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E.; Pinkerton, Kent E.

    2015-01-01

    TiO2 is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to establish a lowest observed effect level (LOEL) for nano-scale TiO2, determine TiO2 uptake in the lungs, and estimate toxicity based on physico-chemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly-dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were given TiO2 (0, 20, 70, or 200 µg) via intratracheal instillation. Broncho-alveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 days post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB elicited any significant degree of inflammation seen in BALF at the 1-day time-point. This inflammation resolved by 7 days; although, TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB caused cellular changes at day 1 which were still evident at day 7. We conclude TiO2-NB is the most inflammatory with a lowest observable effect level of 200 µg at 1 day post instillation. PMID:24156719

  11. Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces.

    PubMed

    Hasnat, M A; Uddin, M M; Samed, A J F; Alam, S S; Hossain, S

    2007-08-17

    The UV radiation assisted photocatalytic decolorization/degradation kinetics of an anionic dye erythrosine (ER), has been studied over TiO2 and ZnO surfaces. Since adsorption is the prerequisite condition for decolorization/degradation of dye molecules in presence of heterogeneous catalysis, the Langmuir and Freundlich isotherms were examined to verify the adsorption intensity. Standard adsorption free energy measurement implies that the adsorption of ER on both TiO2 and ZnO surfaces is spontaneous endothermic process. The effect of catalyst loading (TiO2/ZnO) revealed the fact that the maximum decolorization rate is obtained under an optimized catalyst loading condition. The decolorization efficiency was also investigated over the pH range of 5.0-10.0 indicating that increasing pH enhances decolorization efficiency. The influence of H2O2 on decolorization efficiency was found noticeable since it is a hydroxyl radical provider. The kinetic study of this degradation indicates that under the experimental condition, the decolorization mechanism follows zero order kinetics on the basis of Langmuir-Hinshelwood (L-H) heterogeneous reaction mechanism. PMID:17316984

  12. Understanding the dispersion of Ag on high surface area TiO2 supports using XPS intensity ratios

    NASA Astrophysics Data System (ADS)

    Davis, Zenda D.; Tatarchuk, Bruce J.

    2015-10-01

    Silver-titania (Ag/TiO2) adsorbents, in the range of 4 wt% Ag, display high selectivity toward sulfur heterocyclic compounds from complex fuel streams containing other aromatics. An experimental investigation of Ag on TiO2 has been undertaken to understand the state of dispersion and growth of Ag. XPS is one of the more promising characterization tools for the state of dispersion. Silver loading from 1 wt% to 20 wt% on 150 m2/g titania was investigated. Ag/Ti intensity ratios increased linearly with Ag content up to 4 wt% and increased less significantly thereafter from 8 wt% to 20 wt% indicating nucleation and growth of Ag crystallites. Inelastic mean free path (IMFP) calculations were used to estimate Ag crystallite size based on the attenuation of the Ag signal, realizing in this regime there is insufficient Ag to attenuate background titania. At 4, 8, 12, and 20 wt% the estimated average crystallite sizes were 0.35, 0.71, 0.84, and 1.11 nm respectively. Ag loadings up to 4 wt% were present in the form of Ag+1 adatoms presumably occupying TiO2 surface defects. Saturation of surface TiO2 defects is in good agreement with quantitative sulfur heterocycle adsorption.

  13. Bragg Reflectors Based on Block Copolymer/Polyhedral Oligomeric Silsesquioxanes (POSS) and TiO2 Hybrid Nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Colella, Nicholas; Watkins, James

    2014-03-01

    Maleamic acid functionalized polyhedral oligomeric silsesquioxanes (POSS) can interact with the poly (ethylene oxide) (PEO) block in Pluronics F108 block copolymer via hydrogen bonding to form well-ordered block copolymer nanocomposites. In this study, the block copolymer composites are spin coated into thin films and maleamic acid groups are thermal crosslinked to stabilize the nanocomposite structure. High temperature calcination of the stabilized nanocomposite yields a robust mesoporous silica thin film. By adjusting the loading of POSS into the block copolymer prior to calcination, the refractive index (RI) of mesoporous silica films can be tuned between 1.13 and 1.18. We show these low RI films can be sequentially layered with hybrid TiO2 nanocomposite films that exhibit a RI of approximately 2.0 to yield efficient Bragg reflectors. The TiO2 films are prepared by the calcinations of polymer/anatase TiO2 nanoparticle composites with NP loadings as high as 90wt%. Due to the porosity existing in each layer, the wavelength of the reflected light is sensitive to the adsorption of solvent vapors such as toluene, isopropanol, and tetrahydrofuran, or analytes, which suggest applications in sensors. Acknowledge The Center for Hierarchical Manufacturing.

  14. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  15. Characteristics of dye-sensitized solar cell with TiO2 anode under UV irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hsiao, Chih-Chen; Weng, Hao-Wei

    2016-03-01

    The anatase phase crystalline quality of commercial TiO2 (P25) nanoparticle sintered in air and N2 is improved. Compared DSSC with air-sintered TiO2 anode, DSSC with N2-sintered TiO2 anode has better performance mainly from high optical absorption efficiency. Under UV irradiation, organic contaminants adsorbed on TiO2 are dissociated by the photocatalysis, and the dye adsorption is enhanced. The DSSC performance with UV-treated/N2-sintered TiO2 anode is further improved.

  16. Photocatalytic degradation of textile dyestuffs using TiO2 nanotubes prepared by sonoelectrochemical method

    NASA Astrophysics Data System (ADS)

    Tekin, Derya

    2014-11-01

    TiO2 nanotubes were prepared by anodization of Ti plates by conventional electrochemical technique as well as by an emerging sonoelectrochemical technique. Scanning electron miscroscope (SEM) analysis showed that ultrasound assisted anodization yielded more ordered and controllable TiO2 tube banks with higher tube diameter. The photocatalytical activities of TiO2 nanotubes were tested in the photocatalytical degradation of Orange G dye. The results showed that sonoelectrochemically prepared TiO2 tubes exhibited 10% higher photocatalytic performance than the electrochemical prepared ones, and more than 18% higher activity than the other TiO2 samples.

  17. Study of TiO2 particles size, dyes, and catalyst to improve the performance of DSSC

    NASA Astrophysics Data System (ADS)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-02-01

    This study reports effort to improve performance of solar cells by using various natural dyes in dye-sensitized solar cell (DSSC). We applied three kind of natural dye, i.e, black rice dye, cactus dye and dragon fruit dye. We found that performance of DSSC which employ black rice dye was higher than other natural dyes. It is because the wider spectrum wavelength of black rice dyes. Its performance also compared with rhutenium dye (N719). Effect of TiO2 particle to DSSC performance was also investigated. It was concluded that smaller TiO2 particle size will increase the performance of DSSC solar cells. It was because the smaller particle size (high surface area) will load more dye. In addition, we also demonstrated the use of graphite from lead pencil as counter electrode.

  18. Effect of TiO2 ceramic filler on PEG-based composite polymer electrolytes for magnesium batteries

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Kumar, K. Vijaya; Jyothi, N. Krishna

    2013-02-01

    Composite polymer electrolytes based on poly(ethylene glycol) (PEG), magnesium acetate [Mg(CH3COO)2] and x wt. % of titanium oxide (TiO2) ceramic fillers (where x = 0, 5, 10, 15 and 20 respectively) have been prepared using solution casting technique. Several experimental techniques, such as composition-dependent conductivity, temperature dependent conductivity in the temperature range of 303-333 K and transport number measurements, have been employed to characterize these composite polymer electrolyte systems. The transference number data indicated the dominance of ion-type charge transport in these specimens. Using this (PEG-Mg(CH3COO)2-TiO2) (85-15-10) electrolyte, solid state electrochemical cell was fabricated and their discharge profiles were studied under a constant load of 100 kω.

  19. A novel and efficient surfactant-free synthesis of Rutile TiO2 microflowers with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Jijith, M.; Gummaluri, Venkata Siva; Vijayan, C.

    2016-05-01

    Rutile TiO2 microflowers with three-dimensional spiky flower like architecture at the nanometer level are obtained by a fast single step surfactant free ethylene glycol based solvothermal scheme of synthesis. These structures are characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and Raman spectroscopy. These measurements confirm Rutile phase of TiO2 flowers with very high crystallinity. Photodegradation of Rhodamine B with UV exposure is investigated by UV-Visible spectroscopy measurements in the presence of these samples. They are shown to have high photocatalytic activity due to the large surface area contributed by the highly dense spiky nanostructures. The plasmonic (Au) loading in these structures are shown to significantly enhance the photocatalytic activity.

  20. Swelling induced regeneration of TiO2-impregnated chitosan adsorbents under visible light.

    PubMed

    Yang, Limin; Jiang, Lei; Hu, Di; Yan, Qingyun; Wang, Zhi; Li, Sisi; Chen, Cheng; Xue, Qi

    2016-04-20

    Since only the molecules that are in direct contact with the TiO2 surface undergo photosensitization, it is challenging to regenerate the TiO2-impregnated chitosan (TIC) adsorbent beads under visible light. This study focused on the role of chitosan swelling properties. It was found that dye-loaded TIC adsorbent exhibited a pH-dependent swelling owing to protonation/deprotonation of free amino groups on chitosan chains. In the acidic medium (pH<6.0), the adsorbent underwent a 'smart' phase transition from a dry contracted state to a hydrated swollen state, and its physicochemical properties were also significantly changed, which eventually enabled the photosensitized oxidation of dye. This swelling induced regeneration was further confirmed by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The involvement of oxygen radical species (O2(-)/HOO and OH) was also confirmed with electron spin resonance (ESR) spectroscopy. Moreover, the adsorption effectiveness of TIC adsorbent was mostly recovered after six regeneration cycles. PMID:26876871

  1. Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3.

    PubMed

    Pan, Yanxiao; Zhao, Wei; Zhong, Qin; Cai, Wei; Li, Hongyu

    2013-08-01

    TiO2 supports doped with different amounts of Si were prepared by a sol-gel method, and 1 wt% vanadia (V2O5) loaded on Si-doped TiO2 was obtained by an impregnation method. The mole ratio of Si/Ti was 0.2, NOx conversion exceeds 94% at 300 degrees C and GHSV of 41,324 hr(-1), which is about 20% higher than pure V2O5/TiO2. The catalysts were characterized by XRD, BET, TEM, FT-IR, NH3-TPD, XPS, H2-TPR, Raman and in situ DRIFTS. The results of FT-IR and XPS indicated that Si was doped into the TiO2 lattice successfully and a solid solution was obtained. V2O5 active component could be dispersed well on the support with the increasing of surface area of the catalyst, which was confirmed by Raman and XRD results. Above all, the numbers of acid sites (especially the Brønsted-acid) and oxidation properties were enhanced for Si-doped V2O5/TiO2 catalysts, which improved the deNOx catalytic activity. PMID:24520711

  2. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst.

    PubMed

    Du, Xuesen; Gao, Xiang; Fu, Yincheng; Gao, Feng; Luo, Zhongyang; Cen, Kefa

    2012-02-15

    The effect of the Sb and Nb additives on the V(2)O(5)/TiO(2) catalyst for the selective catalytic reduction (SCR) of NO with NH(3) was investigated. The experimental results show that either Nb or Sb can improve the activity of V(2)O(5)/TiO(2) catalyst. Higher Nb loading led to higher N(2) selectivity. The co-doping of Sb and Nb showed higher improving effect than the single doping of Sb or Nb. The V(2)O(5)/TiO(2) catalyst doped with Sb and Nb had a better H(2)O resistance than the V(2)O(5)/TiO(2) catalyst. The addition of Sb and Nb also enhance the resistance of the V(2)O(5)/TiO(2) catalyst to K(2)O poisoning. The catalysts were characterized by BET, XRD, TEM, and XPS. The results showed that the active components of V, Sb, and Nb were well interacting with each other. The coexistence of Sb and Nb will enhance the redox ability and surface acidity and thus promote the SCR performance. PMID:22169236

  3. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells.

    PubMed

    Chandiran, Aravind Kumar; Abdi-Jalebi, Mojtaba; Nazeeruddin, Mohammad K; Grätzel, Michael

    2014-03-25

    Mesoporous TiO2 nanoparticle films are used as photoanodes for high-efficiency dye-sensitized solar cells (DSCs). In spite of excellent photovoltaic power conversion efficiencies (PCEs) displayed by titanium dioxide nanoparticle structures, the transport rate of electrons is known to be low due to low electron mobility. So the alternate oxides, including ZnO, that possesses high electron mobility are being investigated as potential candidates for photoanodes. However, the PCE with ZnO is still lower than with TiO2, and this is typically attributed to the low internal surface area. In this work, we attempt to make a one-to-one comparison of the photovoltaic performance and the electron transfer dynamics involved in DSCs, with ZnO and TiO2 as photoanodes. Previously such comparative investigations were hampered due to the morphological differences (internal surface area, pore diameter, porosity) that exist between zinc oxide and titanium dioxide films. We circumvent this issue by depositing different thicknesses of these oxides, by atomic layer deposition (ALD), on an arbitrary mesoporous insulating template and subsequently using them as photoanodes. Our results reveal that at an optimal thickness ZnO exhibits photovoltaic performances similar to TiO2, but the internal electron transfer properties differ. The higher photogenerated electron transport rate contributed to the performances of ZnO, but in the case of TiO2, it is the low recombination rate, higher dye loading, and fast electron injection. PMID:24552648

  4. Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers.

    PubMed

    Kim, Su-Jin; Cho, Yu Kyung; Lee, Chongmok; Kim, Myung Hwa; Lee, Youngmi

    2016-03-15

    This paper reports that the high electrocatalytic activity of RuO2 nanowires grown on electrospun TiO2 nanofibers for the oxidation of l-ascorbic acid (AA); and the application of these materials for direct selective sensing of AA in complex samples. Compared to bare glassy carbon (GC) electrode, RuO2 nanowires on TiO2 nanofibers-loaded GC electrode facilitates the oxidation of AA most drastically among the tested species: AA, 4-acetamidophenol (AP), dopamine (DA), uric acid (UA), and glucose. The amperometric response of RuO2 nanowires on TiO2 nanofibers at the applied potential of 0.018 V (vs. SCE) exhibits high sensitivity (268.2 ± 3.7 μAmM(-1)cm(-2), n=5), low detection limit (<1.8 μM), great linearity, reasonable stability, and exclusive selectivity over AP, DA, glucose and UA at their physiological levels. In differential pulse voltammetry, it is verified that the potential resolution of RuO2 nanowires on TiO2 nanofibers is able to differentiate AA, DA, UA, and AP one from the others. In addition, as prepared RuO2 nanowires on TiO2 nanofibers are successfully applied for direct and selective AA measurements in commercial vitamin samples and for the real-time direct analysis of AA generated from living rat liver tissue in vitro. PMID:26569445

  5. Photocatalytic Water-Splitting Characteristic of Electric Reduced Black TiO2 Nanorods

    NASA Astrophysics Data System (ADS)

    Yun, Jong-Won; Ryu, Ki Yeon; Kim, Sunho; Jang, Se-Jung; Kim, Yong Soo

    In various reduction methods of TiO2, the electric reduction could apply to anodized TiO2 nanotube. However, it is not suitable to reduce TiO2 nanorods(NRs) grown on fluorine doped tin oxide (FTO) substrate using hydrothermal method, because those are easily peeled off due to lattice mismatching between FTO and TiO2 NRs. In this talk, we will demonstrate electric reduced-black TiO2 NRs with strong adhesion on FTO substrate for an effective visible photocatalyst. To fabricate the reduced-black TiO2 NRs, we firstly deposited TiO2 seed layer on FTO glass using RF-sputtering for mitigating the exfoliation, then grow TiO2 NRs with hydrothermal method. Finally, TiO2 NRs were reduced with electric bias. The final reduced-black TiO2 NRs exhibit a higher photocurrent density, 0.9 mA/cm2 in comparison with pure-TiO2 NRs. This result indicates that our reduced-black TiO2 NRs has lower bandgap with modified valance band position and enhance the surface reactivity with oxygen defect generation. This research was supported by Priority Research Centers Program (2009-0093818), the Basic Science Research Program (2015-019609) and Basic Research Lab Program (2014-071686) through National Research Foundation of Korea (NRF) funded by the Korean government.

  6. Cu2ZnSnS4 Nanoparticle Sensitized Metal-Organic Framework Derived Mesoporous TiO2 as Photoanodes for High-Performance Dye-Sensitized Solar Cells.

    PubMed

    Tang, Rui; Xie, Zhirun; Zhou, Shujie; Zhang, Yanan; Yuan, Zhimin; Zhang, Luyuan; Yin, Longwei

    2016-08-31

    We present a facile hot injection and hydrothermal method to synthesize Cu2ZnSnS4 (CZTS) nanoparticles sensitized metal-organic frameworks (MOFs)-derived mesoporous TiO2. The MOFs-derived TiO2 inherits the large specific surface area and abundantly porous structures of the MOFs structure, which is of great benefit to effectively enhance the dye loading capacity, prolong the incident light traveling length by enhancing the multiple interparticle light-scattering process, and therefore improve the light absorption capacity. The sensitization of CZTS nanoparticles effectively enlarges the photoresponse range of TiO2 to the visible light region and facilitates photoinduced carrier transport. The formed heterostructure between CZTS nanoparticles and MOFs-derived TiO2 with matched band gap structure effectively suppresses the recombination rates of photogenerated electron/hole pairs and prolongs the lifespan of the carriers. Photoanodes based upon CZTS/MOFs-derived TiO2 photoanodes can achieve the maximal photocurrent of 17.27 mA cm(-2) and photoelectric conversion performance of 8.10%, nearly 1.93 and 2.21 times higher than those of TiO2-based photoanode. The related mechanism and model are investigated. The strikingly improved photoelectric properties are ascribed to a synergistic action between the MOFs-derived TiO2 and the sensitization of CZTS nanoparticles. PMID:27494761

  7. Study of TiO2 nanotubes as an implant application

    NASA Astrophysics Data System (ADS)

    Hazan, Roshasnorlyza; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.; Abdullah, Yusof; Mat, Ishak

    2016-01-01

    Vertically aligned TiO2 nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO2 nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO2 nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO2 nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO2 nanotubes surface during in vitro study revealed that BMSC prone to attach on TiO2 nanotubes. From the result, it can be conclude that TiO2 nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials.

  8. A study on electrospun nylon-6/TiO2 composite nanofibers

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Won, Jeong Jin; Kim, Hak Yong; Navamathavan, R.; Chuan, Yi; El-Newehy, Mohamed; Al-Deyab, Salem S.

    2012-05-01

    We report on the preparation and the characterization of TiO2 nanoparticles incorporated with nylon-6 composite nanofibers by using electrospinning technique. Two different composite nanofiber mats with TiO2 nanoparticles sizes of 20 and 300 nm were prepared. The resultant nanofibers exhibited good incorporation of TiO2 nanoparticles. The doping of TiO2 nanoparticles into the nylon-6 nanofibers was confirmed by using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy. The measurement of the electrical conductivity of the TiO2 nanoparticles incorporated with nylon-6 nanofibers were carried out. Current-voltage (I-V) characteristics revealed that the current was enhanced for the sample with 300 nm TiO2 nanoparticles compared to that with 20-nm TiO2 nanoparticles.

  9. Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection.

    PubMed

    Elgrabli, Dan; Beaudouin, Remy; Jbilou, Nawel; Floriani, Magali; Pery, Alexandre; Rogerieux, Françoise; Lacroix, Ghislaine

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure. In this study, we focused on TiO2 nanoparticle biodistribution, clearance and toxicological effects after intravenous injection, considering TiO2 translocation in the blood occurs. Using ICP-OES, transmission electron microscopy, and histological methods, we found TiO2 accumulation in liver, lungs and spleen. We estimated TiO2 nanoparticles' half life in the body to about 10 days. Clinical biomarkers were also quantified for 56 days to identify potential toxicological impact on lungs, blood, liver, spleen and kidneys. Results showed absence of toxicological effects after TiO2 intravenous injection at concentrations of 7.7 to 9.4 mg/kg. PMID:25909957

  10. Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection

    PubMed Central

    Elgrabli, Dan; Beaudouin, Remy; Jbilou, Nawel; Floriani, Magali; Pery, Alexandre; Rogerieux, Françoise; Lacroix, Ghislaine

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure. In this study, we focused on TiO2 nanoparticle biodistribution, clearance and toxicological effects after intravenous injection, considering TiO2 translocation in the blood occurs. Using ICP-OES, transmission electron microscopy, and histological methods, we found TiO2 accumulation in liver, lungs and spleen. We estimated TiO2 nanoparticles’ half life in the body to about 10 days. Clinical biomarkers were also quantified for 56 days to identify potential toxicological impact on lungs, blood, liver, spleen and kidneys. Results showed absence of toxicological effects after TiO2 intravenous injection at concentrations of 7.7 to 9.4 mg/kg. PMID:25909957

  11. Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Fujihara, K.; Kumar, A.; Jose, R.; Ramakrishna, S.; Uchida, S.

    2007-09-01

    A simple technique was developed to fabricate a large-area TiO2 electrode layer using electrospun nanorods for dye-sensitized solar cells (DSSCs). Using this technique, we assembled DSSCs of area ~1 cm2 consisting of a thin TiO2 nanoparticle layer and a thick TiO2 nanorod layer as electrode. The TiO2 nanorods were obtained by mechanically grinding electrospun TiO2 nanofibers. A titania sol was first spin-coated on a conductive glass plate and a TiO2 nanorod layer was next spray dried on it to fabricate TiO2 nanoparticle/nanorod layers. These layers were subsequently sintered. The best-performing DSSC evaluated under AM1.5G (1 sun) condition gave current density ~13.6 mA cm-2, open circuit voltage ~0.8 V, fill factor ~51% and energy conversion efficiency ~5.8%.

  12. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film.

    PubMed

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I; Qamaruddin, Muhammad; Yamani, Zain H

    2015-01-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested. Graphical abstractWO3-surface modified TiO2 film showing better photocatalytic and photoelectrocatalytic activity. PMID:25852351

  13. Enhanced Photocatalytic Activity for H2 Evolution under Irradiation of UV–Vis Light by Au-Modified Nitrogen-Doped TiO2

    PubMed Central

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Background Purpose Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Methods Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV–vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. Results DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV–vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Conclusion Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and

  14. Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix.

    PubMed

    Wang, Xiaoyan; Meng, Jian-Qiang; Wang, Meimei; Xiao, Ying; Liu, Rui; Xia, Yonggao; Yao, Yuan; Metwalli, Ezzeldin; Zhang, Qian; Qiu, Bao; Liu, Zhaoping; Pan, Jing; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Cheng, Ya-Jun

    2015-11-01

    A facile scalable synthesis of TiO2/C nanohybrids inspired by polymeric dental restorative materials has been developed, which creates ultrasmall TiO2 nanoparticles homogeneously embedded in the carbon matrix. The average size of the nanoparticles is tuned between about 1 and 5 nm with the carbon content systematically increased from 0% to 65%. Imaging analysis and a scattering technique have been applied to investigate the morphology of the TiO2 nanoparticles. The composition, nature of carbon matrix, crystallinity, and tap density of the TiO2/C nanohybrids have been studied. The application of the TiO2/C nanohybrids as lithium-ion battery anode is demonstrated. Unusual discharge/charge profiles have been exhibited, where characteristic discharge/charge plateaus of crystalline TiO2 are significantly diminished. The tap density, cyclic capacities, and rate performance at high current densities (10 C, 20 C) of the TiO2/C nanohybrid anodes have been effectively improved compared to the bare carbon anode and the TiO2/C nanohybrids with larger particle size. PMID:26465800

  15. Bimodal TiO2 Contents of Mare Basalts at Apollo and Luna Sites and Implications for TiO2 Derived from Clementine Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    2001-01-01

    A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.

  16. Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation.

    PubMed

    González-Moya, Johan R; Garcia-Basabe, Yunier; Rocco, Maria Luiza M; Pereira, Marcelo B; Princival, Jefferson L; Almeida, Luciano C; Araújo, Carlos M; David, Denis G F; da Silva, Antonio Ferreira; Machado, Giovanna

    2016-07-15

    Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ∼100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a

  17. Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    González-Moya, Johan R.; Garcia-Basabe, Yunier; Rocco, Maria Luiza M.; Pereira, Marcelo B.; Princival, Jefferson L.; Almeida, Luciano C.; Araújo, Carlos M.; David, Denis G. F.; Ferreira da Silva, Antonio; Machado, Giovanna

    2016-07-01

    Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ∼100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a

  18. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions.

    PubMed

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-01-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding. PMID:26497265

  19. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-10-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding.

  20. Development of TiO2 and TiO2/Fe-based polymeric nanocomposites by single-step laser pyrolysis

    NASA Astrophysics Data System (ADS)

    Alexandrescu, R.; Morjan, I.; Dumitrache, F.; Scarisoreanu, M.; Fleaca, C. T.; Morjan, I. P.; Barbut, A. D.; Birjega, R.; Prodan, G.

    2013-08-01

    Polymer-based nanocomposites provided with inorganic cores were simultaneously manufactured by the single-step laser pyrolysis. A comparative study was performed on two types of nanocomposites, starting from two different systems: TiO2/methyl methacrylate (MMA) and TiO2/Fe/hexamethyl disiloxane (HMDSO) polymer. The reactive mixture contained TiCl4 as Ti precursor and alternatively, Fe(CO)5 (in case of TiO2/Fe mixture). The analytical techniques used for the characterization indicate distinct morphologies for the obtained nanostructures. Polyhedral and almost spherical nanoparticles in a coalescent matrix and very rare individual core-shell particles are noticed for the TiO2/MMA nanocomposites. Instead, nanoparticles presenting core-shell structures were often present in the TiO2/Fe/HMDSO polymeric nanocomposites.

  1. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    PubMed Central

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-01-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding. PMID:26497265

  2. Hierarchically organized nanostructured TiO2 for photocatalysis applications.

    PubMed

    Di Fonzo, F; Casari, C S; Russo, V; Brunella, M F; Li Bassi, A; Bottani, C E

    2009-01-01

    A template-free process for the synthesis of nanocrystalline TiO2 hierarchical microstructures by reactive pulsed laser deposition (PLD) is here presented. By a proper choice of deposition parameters a fine control over the morphology of TiO2 microstructures is demonstrated, going from classical compact/columnar films to a dense forest of distinct hierarchical assemblies of ultrafine nanoparticles (<10 nm), up to a more disordered, aerogel-type structure. Correspondingly, the film density varies with respect to bulk TiO2 anatase, with a degree of porosity going from 48% to over 90%. These structures are stable with respect to heat treatment at 400 degrees C, which results in crystalline ordering but not in morphological changes down to the nanoscale. Both as deposited and annealed films exhibit very promising photocatalytic properties, even superior to standard Degussa-P25 powder, as demonstrated by the degradation of stearic acid as a model molecule. The observed kinetics are correlated to the peculiar morphology of the PLD grown material. We show that the 3D multiscale hierarchical morphology enhances reaction kinetics and creates an ideal environment for mass transport and photon absorption, maximizing the surface area-to-volume ratio while at the same time providing readily accessible porosity through the large inter-tree spaces that act as distributing channels. The reported strategy provides a versatile technique to fabricate high aspect ratio 3D titania microstructures through a hierarchical assembly of ultrafine nanoparticles. Beyond photocatalytic and catalytic applications, this kind of material could be of interest for those applications where high surface-to-volume and efficient mass transport are required at the same time. PMID:19417258

  3. A computational study of the TiO2 molecule

    NASA Technical Reports Server (NTRS)

    Ramana, M. V.; Phillips, D. H.

    1988-01-01

    A computational investigation of the ground 1A1 and lowest energy B2 states of the titanium dioxide molecule has been carried out. The treatment utilized SCF calculations in an extended basis followed by a CI treatment for each geometry. The ground state geometry agrees well with experiment, while the agreement between the computed vibrational frequency nu1 and the experimental value for a matrix isolated TiO2 is less satisfactory. Population analysis for the ground state indicates less than one excess electron on each oxygen atom. The first excited state has a linear geometry and the singlet and triplet are essentially degenerate.

  4. Immobilization of TiO2 nanofibers on reduced graphene sheets: Novel strategy in electrospinning.

    PubMed

    Pant, Hem Raj; Adhikari, Surya Prasad; Pant, Bishweshwar; Joshi, Mahesh K; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-11-01

    A simple and efficient approach is developed to immobilize TiO2 nanofibers onto reduced graphene oxide (RGO) sheets. Here, TiO2 nanofiber-intercalated RGO sheets are readily produced by two-step procedure involving the use of electrospinning process to fabricate TiO2 precursor containing polymeric fibers on the surface of GO sheets, followed by simultaneous TiO2 nanofibers formation and GO reduction by calcinations. GO sheets deposited on the collector during electrospinning/electrospray can act as substrate on to which TiO2 precursor containing polymer nanofibers can be deposited which give TiO2 NFs doped RGO sheets on calcinations. Formation of corrugated structure cavities of graphene sheets decorated with TiO2 nanofibers on their surface demonstrates that our method constitutes an alternative top-down strategy toward fabricating verities of nanofiber-decorated graphene sheets. It was found that the synthesized TiO2/RGO composite revealed a remarkable increased in photocatalytic activity compared to pristine TiO2 nanofibers. Therefore, engineering of TiO2 nanofiber-intercalated RGO sheets using proposed facile technique can be considered a promising method for catalytic and other applications. PMID:26164250

  5. Physiological effect of anatase TiO2 nanoparticles on Lemna minor.

    PubMed

    Song, Guanling; Gao, Yuan; Wu, Hao; Hou, Wenhua; Zhang, Chunyang; Ma, Huiquan

    2012-09-01

    Manufactured metal oxide nanoparticles (NPs) are being used on a large scale, and these particles will inevitably reach a body of water through wastewater and urban runoff. The ecotoxicological study of these NPs on hydrophyte is limited at present. Lemna minor was exposed to media with different concentrations of titanium dioxide (TiO(2)) NPs or bulk TiO(2) for 7 d. The changes in plant growth, chlorophyll, antioxidant defense enzymes (peroxidase [POD], catalase [CAT], and superoxide dismutase [SOD] activities), and malondialdehyde (MDA) content were measured in the present study. The particle size of TiO(2) NPs and the zeta potential of TiO(2) NPs and of bulk TiO(2) in the culture media were also analyzed to complementally study the toxicity of these materials on duckweed. The results showed that the effect of TiO(2) NPs on plant growth was more obvious than bulk TiO(2.) Titanium dioxide NPs stimulated plant growth in low concentrations, but inhibited plant growth at high concentrations. The POD, SOD, and CAT activity of Lemna minor increased when TiO(2) NP concentration was lower than 200 mg/L to eliminate accumulated reactive oxygen species in plant cells. The SOD activity decreased when the TiO(2) NP concentration was higher than 200 mg/L, and the plant cell membrane encountered serious damage from 500 mg/L TiO(2) NP concentration in the culture media. PMID:22760594

  6. TiO2 coated microfluidic devices for recoverable hydrophilic and hydrophobic patterns

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Hyung; Kim, Sang Kyung; Park, Hyung-Ho; Kim, Tae Song

    2015-03-01

    We report a simple method for modifying the surfaces of plastic microfluidic devices through dynamic coating process with a nano-colloidal TiO2 sol. The surface of the thermoplastic, cyclic olefin copolymer (COC) was coated with the TiO2 film, that displayed an effective photocatalytic property. The hydrophilic surface is obtained in the TiO2-coated zone of a microfluidic channel, and TiO2 coated surface degradation can be reversed easily by UV irradiation. The present work shows a photocatalytic activity concerning the effect of TiO2 coating density, which is controlled by the number of coating cycles. The hydrophilized surface was characterized by the contact angle of water and the TiO2 coated COC surface reduced the water contact angle from 85° to less than 10° upon UV irradiation. The photocatalytic effect of the layer that was coated five times with TiO2 was excellent, and the super-hydrophilicity of the TiO2 surface could be promptly recovered after 10 months of storage at atmospheric conditions. The COC microfluidic devices, in which TiO2 has been freshly deposited and aged for 10 months, were capable of generating water-in oil-in water (W/O/W) double emulsions easily and uniformly by simple control of the flow rates for demonstration of excellent hydrophilic patterning and recovery of the TiO2 coated in the microchannels.

  7. Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Sun, Qiong; Zhao, Mei; Li, Yang; Liu, Qiuhong; Dong, Lifeng

    2015-08-01

    In this study, titanium oxysulfate (TiOSO4) and graphene were used as titanium source and supporter, respectively, to synthesize anatase TiO2-graphene (TiO2-G) composite. Crystal structure, morphology, and composition of TiO2-G were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis. Both TiO2-G and blank TiO2 powders exhibit spindle-shaped structure with the long axis along [001]. Compared to unsupported TiO2, TiO2 nanoparticles uniformly formed on graphene surface. When fabricated into dye-sensitized solar cells, photoelectrical conversion efficiency of TiO2-G (2.3 %) was much higher than that of blank TiO2 (0.89 %) prepared at the same conditions. Moreover, high sintering temperature enhanced photoelectrical performance of the composite. When the temperature was increased from 450 to 600 °C, the efficiency was improved from 1.5 to 2.6 %. The findings above demonstrate that TiO2-G has great potential for applications in dye-sensitized solar cells.

  8. Activity of laccase immobilized on TiO2-montmorillonite complexes.

    PubMed

    Wang, Qingqing; Peng, Lin; Li, Guohui; Zhang, Ping; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2013-01-01

    The TiO2-montmorillonite (TiO2-MMT) complex was prepared by blending TiO2 sol and MMT with certain ratio, and its properties as an enzyme immobilization support were investigated. The pristine MMT and TiO2-MMT calcined at 800 °C (TiO2-MMT800) were used for comparison to better understand the immobilization mechanism. The structures of the pristine MMT, TiO2-MMT, and TiO2-MMT800 were examined by HR-TEM, XRD and BET. SEM was employed to study different morphologies before and after laccase immobilization. Activity and kinetic parameters of the immobilized laccase were also determined. It was found that the TiO2 nanoparticles were successfully introduced into the MMT layer structure, and this intercalation enlarged the "d value" of two adjacent MMT layers and increased the surface area, while the calcination process led to a complete collapse of the MMT layers. SEM results showed that the clays were well coated with adsorbed enzymes. The study of laccase activity revealed that the optimum pH and temperature were pH = 3 and 60 °C, respectively. In addition, the storage stability for the immobilized laccase was satisfactory. The kinetic properties indicated that laccase immobilized on TiO2-MMT complexes had a good affinity to the substrate. It has been proved that TiO2-MMT complex is a good candidate for enzyme immobilization. PMID:23771020

  9. A facile method for the structure control of TiO2 particles at low temperature

    NASA Astrophysics Data System (ADS)

    Li, Zhaoqing; Zhu, Yun; Wang, Lianwen; Wang, Jiatai; Guo, Qian; Li, Jiangong

    2015-11-01

    Crystalline and amorphous TiO2 particles have important potential applications in photocatalysis, structural ceramics, solar batteries and nanoglasses. Hence controlling the structure of TiO2 particles is of practical importance. Crystalline TiO2 particles are usually prepared by calcination of their amorphous precursor. Here a facile method was developed to control the structure of TiO2 particles at a low temperature. TiO2 particles were prepared by sol-gel method; and it was found that during the washing process, the TiO2 particles washed with water are crystalline whereas the TiO2 particles washed with ethanol are amorphous. Further analyses indicate that ethanol washing may introduce an organic cover layer on the TiO2 particles which hinders the crystallization of amorphous TiO2 particles. Therefore, the structure of TiO2 particles, amorphous or crystalline (anatase), can be controlled just by changing the washing medium, water or ethanol. This method seems a common method for controlling the (amorphous or crystalline) structure of metal oxides and hydroxides and was verified in the preparation of ZrO2, FeO(OH), and Al(OH)3 particles.

  10. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes

    PubMed Central

    Wang, Qingqing; Peng, Lin; Li, Guohui; Zhang, Ping; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2013-01-01

    The TiO2-montmorillonite (TiO2-MMT) complex was prepared by blending TiO2 sol and MMT with certain ratio, and its properties as an enzyme immobilization support were investigated. The pristine MMT and TiO2-MMT calcined at 800 °C (TiO2-MMT800) were used for comparison to better understand the immobilization mechanism. The structures of the pristine MMT, TiO2-MMT, and TiO2-MMT800 were examined by HR-TEM, XRD and BET. SEM was employed to study different morphologies before and after laccase immobilization. Activity and kinetic parameters of the immobilized laccase were also determined. It was found that the TiO2 nanoparticles were successfully introduced into the MMT layer structure, and this intercalation enlarged the “d value” of two adjacent MMT layers and increased the surface area, while the calcination process led to a complete collapse of the MMT layers. SEM results showed that the clays were well coated with adsorbed enzymes. The study of laccase activity revealed that the optimum pH and temperature were pH = 3 and 60 °C, respectively. In addition, the storage stability for the immobilized laccase was satisfactory. The kinetic properties indicated that laccase immobilized on TiO2-MMT complexes had a good affinity to the substrate. It has been proved that TiO2-MMT complex is a good candidate for enzyme immobilization. PMID:23771020

  11. Role of Cl - ions in photooxidation of propylene on TiO 2 surface

    NASA Astrophysics Data System (ADS)

    Guo, Jianhui; Mao, Liqun; Zhang, Jiwei; Feng, Caixia

    2010-01-01

    The effect of Cl - ions on photooxidation of propylene on TiO 2 semiconductor was investigated. Cl -/TiO 2 catalysts were prepared by annealing Degussa P25 TiO 2 in the gas flow of N 2 and Cl 2 under 100-400 °C. The photocatalytic oxidation of propylene was carried out in a continuous flow system, with the chromatograph to analyze the products on line. The experimental results showed that the activity of Cl -/TiO 2 catalysts increased as heat-treated temperature decreased. The activity of the sample heat-treated at 100 °C was about two times higher than that of pure TiO 2. Moreover, as to TiO 2, the main product of the propylene photocatalytic oxidation was CO 2, but with Cl -/TiO 2 catalysts, not only CO 2 but also trace CO was determined. The adsorbed species on TiO 2 surface before and after reaction were analyzed by X-ray photoelectron spectroscopy (XPS) and thermogravimetric/differential thermal analyses (TG-DTA) coupled to a mass spectrometer (MS). XPS analysis showed that there was Cl - absorbed on the Cl -/TiO 2 surface, and the absorption amount of Cl - decreased after the photooxidation reaction of propylene. TG-DTA-MS analysis confirmed chlorine absorbed on the surface of TiO 2 in the form of Cl - ion. These results illuminated that absorbed Cl - on the surface of TiO 2 formed a weak physical absorption on TiO 2 at low temperature, and subsequently participated in the photooxidation of propylene, finally removed from TiO 2 surface.

  12. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    PubMed

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-01

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently. PMID:25192018

  13. Cr(VI) photocatalytic reduction: effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2.

    PubMed

    Dozzi, Maria Vittoria; Saccomanni, Alessia; Selli, Elena

    2012-04-15

    Commercial TiO(2) samples with different phase composition and surface area were tested as photocatalysts in the photoinduced reduction of Cr(VI) in aqueous suspensions at pH 3.7 under UV-visible light irradiation. This reaction was also coupled with the simultaneous photocatalytic oxidation of the pollutant azo dye Acid Orange 8 (AO8) and of formic acid, acting as hole scavengers. The co-presence of oxidizable and reducible species ensured better separation of photogenerated charge carriers, resulting in a higher rate of both organics' oxidation and Cr(VI) reduction, especially in the case of high surface area anatase TiO(2), having the strongest affinity for Cr(VI) and AO8, as demonstrated by competitive adsorption tests. The effects on Cr(VI) photocatalytic reduction of gold nanoparticles photodeposited on TiO(2) and of the Au loading were also investigated, aiming at ascertaining if this noble metal plays a role in the electron transfer processes involved in Cr(VI) reduction. PMID:21959186

  14. High electrocatalytic activity of Pt-Pd binary spherocrystals chemically assembled in vertically aligned TiO2 nanotubes.

    PubMed

    Lei, Yanzhu; Zhao, Guohua; Tong, Xili; Liu, Meichuan; Li, Dongming; Geng, Rong

    2010-01-18

    To obtain noble metal catalysts with high efficiency, long-term stability, and poison resistance, Pt and Pd are assembled in highly ordered and vertically aligned TiO(2) nanotubes (NTs) by means of the pulsed-current deposition (PCD) method with assistance of ultrasonication (UC). Here, Pd serves as a dispersant which prevents agglomeration of Pt. Thus Pt-Pd binary catalysts are embed into TiO(2) NTs array under UC in sunken patterns of composite spherocrystals (Sps). Owing to this synthesis method and restriction by the NTs, the these catalysts show improved dispersion, more catalytically active sites, and higher surface area. This nanotubular metallic support material with good physical and chemical stability prevents catalyst loss and poisoning. Compared with monometallic Pt and Pd, the sunken-structured Pt-Pd spherocrystal catalyst exhibits better catalytic activity and poison resistance in electrocatalytic methanol oxidation because of its excellent dispersion. The catalytic current density is enhanced by about 15 and 310 times relative to monometallic Pt and Pd, respectively. The poison resistance of the Pt-Pd catalyst was 1.5 times higher than that of Pt and Pd, and they show high electrochemical stability with a stable current enduring for more than 2100 s. Thus, the TiO(2) NTs on a Ti substrate serve as an excellent support material for the loading and dispersion of noble metal catalysts. PMID:19924757

  15. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. PMID:24148858

  16. Preparation and photo-catalytic activity of TiO2-coated medical stone-based porous ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Ru-qin; Hou, Xin-mei

    2013-06-01

    Medical stone-based porous ceramics as a carrier were prepared by ultra-fine grinding and low-temperature sintering method. Nano-TiO2 thin films were loaded on the carrier by chemical liquid deposition method using titanium tetrachloride as a precursor. The micro-morphology and microstructure of the synthesized samples were characterized using X-ray diffraction, scanning electron microscopy with energy dispersive spectrometry, and mercury injection method. The photo-catalytic activity of the TiO2 thin films was investigated by degrading formaldehyde. The main crystalline phase in the TiO2 thin films calcined at 550°C is anatase with the average particle size about 10 nm. The specific surface area of the carrier-coated nano-TiO2 increases from 3.68 to 5.32 m2/g. The formaldehyde removal rate of the TiO2/medical stone-based porous ceramics irradiated under an ultraviolet lamp for 120 min reaches 85.6%.

  17. Carbon-Decorated TiO2 Nanotube Membranes: A Renewable Nanofilter for Charge-Selective Enrichment of Proteins.

    PubMed

    Xu, Jingwen; Yang, Lingling; Han, Yuyao; Wang, Yongmei; Zhou, Xuemei; Gao, Zhida; Song, Yan-Yan; Schmuki, Patrik

    2016-08-31

    In this work, we design a TiO2 nanomembrane (TiNM) that can be used as a nanofilter platform for selective enrichment of specific proteins. After a first use, the photocatalytic properties of TiO2 allow the decomposition of unwanted remnants on the substrate and thus make the platform reusable. To construct this platform, we fabricate a free-standing TiO2 nanotube array and remove the bottom oxide to form a both-end-open TiNM. By pyrolysis of the natural tube wall contamination, the walls become decorated with graphitic carbon patches (C/TiNM). Owing to the large surface area, the amphiphilic nature and the charge-adjustable character, this C/TiNM can be used to extract and enrich hydrophobic charged biomolecules. Using human serum albumin (HSA) as a model protein as well as protein mixtures, we show that the composite membrane exhibits a highly enhanced loading capacity and protein selectivity and is reusable after a short UV treatment. PMID:27509326

  18. Effective approach to strengthening TiO2 nanotube arrays by using double or triple reinforcements

    NASA Astrophysics Data System (ADS)

    Sun, Mengwei; Yu, Dongliang; Lu, Linfeng; Ma, Weihua; Song, Ye; Zhu, Xufei

    2015-08-01

    Porous anodic TiO2 nanotube arrays (TNTAs) are fragile and also susceptible to be damaged during physical manipulation. Few studies have involved the improvement of the poor interfacial adhesion of TNTAs to the Ti substrate. Here, the poor adhesion of TNTAs was dramatically improved by appending an additional compact layer (ACL) formed at the interface between TNTAs and the Ti substrate. The adhesion of TNTAs with single-ACL increased with the increase of the ACL thickness. Furthermore, the reinforced TNTAs with double-ACL and triple-ACL have been successfully developed for the first time. The experimental results indicated that the critical load of the TNTAs with triple-ACL is roughly 5.8 times higher than that of the untreated TNTAs. The present results may be helpful to assemble less brittle and large area TNTAs for extensive applications.

  19. Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects

    NASA Astrophysics Data System (ADS)

    Rincón, Angela Guiovana; Pulgarin, Cesar

    In this chapter, an overview of photocatalytic bacterial inactivation is given together with recent relevant literature examples and references. The most important parameters influencing the process are classified in physicochemical, biological, and engineering aspects. Experiments carried out at laboratory and field scale are illustrated and discussed. Limitations, advantages, and drawbacks are pointed out. Sensitivity of bacteria to solar disinfection in the absence and presence of TiO2 can vary for each species of microorganism according to strain, stage of the culture, growth medium, initial bacterial load, and type of plating medium used for bacterial cultivation and counting. Physicochemical parameters and reactor design among others also influence the process. However, to comply with requirements in the disinfection systems, it is important to determine for each condition the length of the irradiation period or effective disinfection time (EDT) that ensures death of the bacteria and consequently the end of the treatment.

  20. Amphiphilic block-graft copolymer templates for organized mesoporous TiO2 films in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lim, Jung Yup; Lee, Chang Soo; Lee, Jung Min; Ahn, Joonmo; Cho, Hyung Hee; Kim, Jong Hak

    2016-01-01

    Amphiphilic block-graft copolymers composed of poly(styrene-b-butadiene-b-styrene) (SBS) backbone and poly(oxyethylene methacrylate) (POEM) side chains are synthesized and combined with hydrophilically preformed TiO2 (Pre-TiO2), which works as a structural binder as well as titania source. This results in the formation of crack free, 6-μm-thick, organized mesoporous TiO2 (OM-TiO2) films via one-step doctor-blading based on self-assembly of SBS-g-POEM as well as preferential interaction of POEM chains with Pre-TiO2. SBS-g-POEM with different numbers of ethylene oxide repeating units, SBS-g-POEM(500) and SBS-g-POEM(950), are used to form OM-TiO2(500) and OM-TiO2(950), respectively. The efficiencies of dye-sensitized solar cells (DSSCs) with a quasi-solid-state polymer electrolyte reach 5.7% and 5.8% at 100 mW/cm2 for OM-TiO2(500) and OM-TiO2(950), respectively. The surface area of OM-TiO2(950) was greater than that of OM-TiO2(500) but the light reflectance was lower in the former, which is responsible for similar efficiency. Both DSSCs exhibit much higher efficiency than one (4.8%) with randomly-organized particulate TiO2 (Ran-TiO2), which is attributed to the higher dye loading, reduced charge recombination and improved pore infiltration of OM-TiO2. When utilizing poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) and mesoporous TiO2 spheres as the solid electrolyte and the scattering layer, the efficiency increases up to 7.5%, one of the highest values for N719-based solid-state DSSCs.

  1. Enhanced in vitro osteoblast differentiation on TiO2 scaffold coated with alginate hydrogel containing simvastatin

    PubMed Central

    Pullisaar, Helen; Tiainen, Hanna; Landin, Maria A; Lyngstadaas, Ståle P; Reseland, Janne E; Østrup, Esben

    2013-01-01

    The aim of this study was to develop a three-dimensional porous bone graft material as vehicle for simvastatin delivery and to investigate its effect on primary human osteoblasts from three donors. Highly porous titanium dioxide (TiO2) scaffolds were submerged into simvastatin containing alginate solution. Microstructure of scaffolds, visualized by scanning electron microscopy and micro-computed tomography, revealed an evenly distributed alginate layer covering the surface of TiO2 scaffold struts. Progressive and sustained simvastatin release was observed for up to 19 days. No cytotoxic effects on osteoblasts were observed by scaffolds with simvastatin when compared to scaffolds without simvastatin. Expression of osteoblast markers (collagen type I alpha 1, alkaline phosphatase, bone morphogenetic protein 2, osteoprotegerin, vascular endothelial growth factor A and osteocalcin) was quantified using real-time reverse transcriptase–polymerase chain reaction. Secretion of osteoprotegerin, vascular endothelial growth factor A and osteocalcin was analysed by multiplex immunoassay (Luminex). The relative expression and secretion of osteocalcin was significantly increased by cells cultured on scaffolds with 10 µM simvastatin when compared to scaffolds without simvastatin after 21 days. In addition, secretion of vascular endothelial growth factor A was significantly enhanced from cells cultured on scaffolds with both 10 nM and 10 µM simvastatin when compared to scaffolds without simvastatin at day 21. In conclusion, the results indicate that simvastatin-coated TiO2 scaffolds can support a sustained release of simvastatin and induce osteoblast differentiation. The combination of the physical properties of TiO2 scaffolds with the osteogenic effect of simvastatin may represent a new strategy for bone regeneration in defects where immediate load is wanted or unavailable. PMID:24555011

  2. Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2-embedded carbon nanofiber support

    NASA Astrophysics Data System (ADS)

    Ito, Yudai; Takeuchi, Taizo; Tsujiguchi, Takuya; Abdelkareem, Mohammad Ali; Nakagawa, Nobuyoshi

    2013-11-01

    A TiO2-embedded carbon nanofiber (TECNF) was proposed as a promising support of the PtRu nanocatalyst for the methanol oxidation reaction. The nanofiber support was prepared by the electrospinning of polyacrylonitrile (PAN) with TiO2 nanoparticles followed by carbonization and steam activation of the nanofiber, and lastly, the PtRu nanoparticles deposition. Cyclic voltammetry (CV) revealed a significantly high MOR activity for the PtRu/TECNF compared to that of the PtRu nanoparticles deposited on different supports, i.e., carbon black (C), TiO2 nanoparticles (TiO2), a mixture of these nanoparticles (C + TiO2) and carbon nanofiber (CNF). The MOR activity was high in the order of PtRu/TECNF > PtRu/CNF > PtRu/(C + TiO2) > PtRu/C >> PtRu/TiO2. The activity of PtRu/TECNF increased with an increase in the weight ratio of Ti/C for TECNF up to 1.0 and then decreased. The MOR mass activity of PtRu/TECNF at the optimum Ti/C ratio was 4 times higher than that of PtRu/C. The ultrahigh catalytic activity of PtRu/TECNF is attributed to the metal-support interaction, which efficiently occurs at the PtRu/TECNF structure. The ultrahigh catalytic activity was also confirmed by the two-times higher DMFC power output using PtRu/TECNF, in spite of quarter the PtRu loading on the electrode, compared to that using the commercial PtRu/C.

  3. TXM-NEXAFS of TiO2-Based Nanostructures

    NASA Astrophysics Data System (ADS)

    Guttmann, P.; Bittencourt, C.; Ke, X.; Van Tendeloo, G.; Umek, P.; Arcon, D.; Ewels, C. P.; Rehbein, S.; Heim, S.; Schneider, G.

    2011-09-01

    In this work, electronic properties of individual TiOx-pristine nanoribbons (NR) prepared by hydrothermal treatment of anatase TiO2 micro-particles were studied using the HZB transmission x-ray microscope (TXM) at the BESSY II undulator beamline U41-FSGM. NEXAFS is ideally suited to study TiO2-based materials because both the O K-edge and Ti L-edge features are very sensitive to the local bonding environment, providing diagnostic information about the crystal structures and oxidation states of various forms of titanium oxides and sub-oxides. TXM-NEXAFS combines full-field x-ray microscopy with spectroscopy, allowing the study of the electronic structure of individual nanostructures with spatial resolution better than 25 nm and a spectral resolution of up to E/ΔE = 10000. The typical image field in TXM-NEXAFS measurements is about 10 μm×10 μm, which is large compared to the individual nanoparticle. Therefore, one image stack already contains statistically significant data. In addition, the directional electric field vector (Ē) of the x-rays can be used as a "search tool" for the direction of chemical bonds of the atom selected by its absorption edge.

  4. Electronic properties of vanadium-doped TiO2.

    PubMed

    Islam, Mazharul M; Bredow, Thomas; Gerson, Andrea

    2011-12-01

    The electronic properties of vanadium-doped rutile TiO(2) are investigated theoretically with a Hartree-Fock/DFT hybrid approach. The most common oxidation states (V(2+), V(3+), V(4+), and V(5+)) in different spin states are investigated and their relative stability is calculated. The most stable spin states are quartet, quintet, doublet, and singlet for V(2+), V(3+), V(4+), and V(5+) doping, respectively. By comparing the formation energy with respect to the parent oxides and gas-phase oxygen (ΔE), we conclude that V(4+) (ΔE=145.3 kJ mol(-1)) is the most likely oxidation state for vanadium doping with the possibility of V(5+) doping (ΔE=283.5 kJ mol(-1)). The energetic and electronic properties are converged with dopant concentrations in the range of 0.9 to 3.2%, which is within the experimentally accessible range. The investigation of electronic properties shows that V(4+) doping creates both occupied and unoccupied vanadium states in the band gap and V(5+) doping creates unoccupied states at the bottom of the conduction band. In both cases there is a significant reduction of the band gap by 0.65 to 0.75 eV compared to that of undoped rutile TiO(2). PMID:22025455

  5. Birefringence enhancement in annealed TiO2 thin films

    NASA Astrophysics Data System (ADS)

    van Popta, Andy C.; Cheng, June; Sit, Jeremy C.; Brett, Michael J.

    2007-07-01

    Postdeposition thermal annealing is used to enhance the form birefringence of nanostructured TiO2 thin films grown by electron-beam evaporation using the serial bideposition technique. Thin films were grown on fused silica substrates using oblique deposition angles between 60° and 75° and repetitive 180° substrate rotations to produce birefringent thin films that are structurally anisotropic. Postdeposition annealing in air, between 200 and 900°C, was used to increase the form birefringence of the films by changing the TiO2 phase from the as-deposited amorphous state to a polycrystalline state that exhibits a greater inherent density and larger bulk refractive index. The optical properties, microstructure, and crystallinity were characterized by Mueller matrix ellipsometry, scanning electron microscopy, atomic force microscopy, and x-ray diffraction. It was found that the in-plane birefringence increased significantly upon thermal annealing, in some cases yielding birefringence values that doubled in magnitude, from 0.11 to 0.22 at a wavelength of 550nm for films annealed at 400°C.

  6. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.

    PubMed

    Qiao, S; Sun, D D; Tay, J H; Easton, C

    2003-01-01

    A novel TiO2 coated haematite photocatalyst was prepared and used for removal of colored humic acids from wastewater in an UV bubble photocatalytic reactor. XRD analysis confirmed that nano-size anatase crystals of TiO2 were formed after calcination at 480 degrees C. SEM results revealed that nano-size particles of TiO2 were uniformly coated on the surface of Fe2O3 to form a bulk of nano-structured photocatalyst Fe2O3/TiO2. The porous catalyst had a BET surface area of 168 m2/g. Both the color and total organic carbon (TOC) conversion versus the residence time were measured at various conditions. The effects of pH value, catalyst loaded, initial humic acid concentration and reaction temperature on conversion were monitored. The experimental results proved that the photocatalytic oxidation process was not temperature sensitive and the optimum catalyst loading was found to be 0.4 g/l. Degradation and decolorization of humic acids have higher efficiency in acidic medium and at low initial humic acid concentration. The new catalyst was effective in removing TOC at 61.58% and color400 at 93.25% at 180 minutes illumination time and for 20 mg/l neutral humic acid aqueous solution. The kinetic analysis showed thatthe rate of photocatalytic degradation of humic acids obeyed the first order reaction kinetics. PMID:12578197

  7. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    PubMed

    Reyes-Gil, Karla R; Stephens, Zachary D; Stavila, Vitalie; Robinson, David B

    2015-02-01

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performance were studied. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials. PMID:25562778

  8. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  9. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  10. Two-Dimensional Hollow TiO2 Nanoplates with Enhanced Photocatalytic Activity.

    PubMed

    Song, Chuang; Wang, Lanfang; Gao, Feng; Lu, Qingyi

    2016-04-25

    Two-dimensional anatase TiO2 hollow nanoplates were firstly synthesized through a facile synthesis route by using α-Fe2 O3 nanoplates as removable templates. Two-dimensional hollow TiO2 nanoplates with different ratios of anatase and rutile phases were obtained by adjusting the calcining temperature. The average diameters were around 600 nm, and the shell thickness was approximately 30 nm. The photocatalytic performance of TiO2 was investigated by decomposing rhodamine B under simulated sunlight. Among the TiO2 samples, the anatase TiO2 hollow nanoplates manifested a significant enhancement in the photocatalytic performances. The excellent catalytic performance can be attributed to the unique structure of the two-dimensional anatase TiO2 hollow nanoplates, including a large surface area and increased dye-photocatalyst contact areas as well as more active sites for photodegradation. PMID:26996999

  11. Antibacterial effect of silver modified TiO2/PECVD films

    NASA Astrophysics Data System (ADS)

    Hájková, P.; Patenka, P. Å.; Krumeich, J.; Exnar, P.; Kolouch, A.; Matoušek, J.; Kočí, P.

    2009-08-01

    This paper deals with photocatalytic activity of silver treated TiO2 films. The TiO2 films were deposited on glass substrates by plasma enhanced chemical vapor deposition (PECVD) in a vacuum reactor with radio frequency (RF) low temperature plasma discharge in the mixture of oxygen and titanium isopropoxide vapors (TTIP). The depositions were performed under different deposition conditions. Subsequently, the surface of TiO2 films was modified by deposition of silver nanoparticles. Photocatalytic activity of both silver modified and unmodified TiO2 films was determined by decomposition of the model organic matter (acid orange 7). Selected TiO2 samples were used for tests of antibacterial activity. These tests were performed on Gram-negative bacteria Escherichia coli. The results clearly proved that presence of silver clusters resulted in enhancement of the photocatalytic activity, which was up to four times higher than that for pure TiO2 films.

  12. Effect of calcination temperature on the photocatalytic properties of electrospun TiO2 nanofibers.

    PubMed

    Lee, Young-In; Lee, Jong-Sik; Park, Eun-Sil; Jang, Dae-Hwan; Lee, Jae-Eun; Kim, Kahee; Myung, Nosang V; Choa, Yong-Ho

    2014-10-01

    In this study, TiO2 nanofibers with a high aspect ratio and a large specific surface area were synthesized using the electrospinning technique, and the effect of calcination temperature on their crystal structure, diameter, specific surface area and photocatalytic activity was systematically investigated. The electrospun, as-prepared PVP/TTIP nanofibers were several tens of micrometers in length with a diameter of 74 nm. TiO2 nanofibers with an average diameter of 50 nm were prepared after calcination at various temperatures. The calcination temperature significantly influenced the photocatalytic and material properties of TiO2 including grain size and specific surface area. When compared to other nanostructured TiO2 materials, such as commercial TiO2 nanoparticles (P25, Degussa), the TiO2 nanofibers exhibited greater photocatalytic activity for the degradation of acetaldehyde and ammonia. PMID:25942911

  13. Structural and Optical Characterization of Synthesized TiO2 Nanopowder Using Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Lourduraj, S.; Williams, R. Victor

    2016-02-01

    The nanocrystalline TiO2 powder was synthesized by sol-gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673K is found to be 7.7nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621cm-1 and 412cm-1.

  14. Synthesis and characterization of TiO2 and Ag/TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Thakur, Amit Kumar; Kulshrestha, Vaibhav; Shahi, V. K.

    2013-02-01

    Single phase anatase TiO2 nanoparticles were prepared using Titanium tertachloride (TiCl4) as precursor through an inexpensive method. Well dispersed nanocomposites of silver at TiO2 were synthesized successfully by photochemical route. Both TiO2 and Ag/TiO2 were characterized using X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). The particle size of TiO2 is found to be ˜ 11 nm and ˜ 22 nm for Ag/TiO2, by XRD and confirmed by TEM. TEM micrographs also show the single phase crystal of TiO2 and confirm the deposition of silver among TiO2.

  15. Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers.

    PubMed

    Wang, Qingqing; Dong, Xianjun; Pang, Zengyuan; Du, Yuanzhi; Xia, Xin; Wei, Qufu; Huang, Fenglin

    2012-01-01

    Titanium dioxide-polyaniline/polyamide 6 (TiO(2)-PANI/PA6) composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO(2)-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO(2)-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO(2)-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO(2) had a great influence on both the morphology and the sensing property of TiO(2)-PANI/PA6 composite nanofibers. PMID:23235446

  16. Enhanced performance of natural dye sensitised solar cells fabricated using rutile TIO2 nanorods

    NASA Astrophysics Data System (ADS)

    Akila, Y.; Muthukumarasamy, N.; Agilan, S.; Mallick, Tapas K.; Senthilarasu, S.; Velauthapillai, Dhayalan

    2016-08-01

    Due to the lower cost, natural dye molecules are good alternatives for the ruthenium based sensitizers in the dye-sensitized solar cells. In this article, we have reported the natural sensitizer based dye-sensitized solar cells fabricated using TiO2 nanorods. Rutile phase TiO2 nanorods have been synthesized by template free hydrothermal method which results in TiO2 nanorods in the form of acropora corals. These TiO2 nanorods have been sensitized by flowers of Sesbania grandiflora, leaves of Camellia sinensis and roots of Rubia tinctorum. The maximum conversion efficiency of 1.53% has been obtained for TiO2 nanorods based solar cells sensitized with the leaves of Camellia sinensis. The flowers of Sesbania grandiflora and roots of Rubia tinctorum sensitized TiO2 nanorods based solar cells exhibited an efficiency of 0.65% and 1.28% respectively.

  17. Enhanced magnetoresistance in half-metallic CrO2-TiO2 composites

    NASA Astrophysics Data System (ADS)

    Fan, Yinbo; Zhang, Caiping; Du, Xiaobo; Wen, Gehui; Ma, Hongan; Jia, Xiaopeng

    2013-06-01

    CrO2-TiO2 composites were synthesized by a high temperature and high pressure method (HTHP). The CrO2-TiO2 composites are composed of large rod-like CrO2 crystals separated by TiO2 nanoparticles. The saturation magnetization of the CrO2 in the composites is very close to the theoretical value. The CrO2-TiO2 composites show greatly enhanced magnetoresistance than that of pure CrO2. This is mainly attributed to spin-dependent tunneling between adjacent CrO2 grains enhanced by the addition of TiO2. The tunneling mechanism in the composites can be best described by the fluctuation-induced tunneling model as convinced by the temperature dependence of the conductivity of the CrO2-TiO2 composites at low temperature.

  18. Review of the progress in preparing nano TiO2: an important environmental engineering material.

    PubMed

    Wang, Yan; He, Yiming; Lai, Qinghua; Fan, Maohong

    2014-11-01

    TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well. PMID:25458670

  19. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  20. Orientated anatase TiO2 nanocrystal array thin films for self-cleaning coating.

    PubMed

    Zhao, Zhao; Tan, Huaqiao; Zhao, Haifeng; Li, Di; Zheng, Min; Du, Peng; Zhang, Guoqiang; Qu, Dan; Sun, Zaicheng; Fan, Hongyou

    2013-10-11

    We developed a simple method to synthesize TiO2 nanowire arrays with nearly 100% exposed {001} facets. The coating exhibits good transparency. The thin films of TiO2 nanowire arrays display a very good photocatalytic degradation of dye molecules and good durability. Based on the above features, the TiO2 nanowire array coating is advantageous for self-cleaning coating. PMID:23963053

  1. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles

    PubMed Central

    2014-01-01

    In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol–gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)–doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)–doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated. PMID:25105016

  2. Annealing of TiO2 Films Deposited on Si by Irradiating Nitrogen Ion Beams

    SciTech Connect

    Yokota, Katsuhiro; Yano, Yoshinori; Miyashita, Fumiyoshi

    2006-11-13

    Thin TiO2 films were deposited on Si at a temperature of 600 deg. C by an ion beam assisted deposition (IBAD) method. The TiO2 films were annealed for 30 min in Ar at temperatures below 700 deg. C. The as-deposited TiO2 films had high permittivities such 200 {epsilon}o and consisted of crystallites that were not preferentially oriented to the c-axis but had an expanded c-axis. On the annealed TiO2 films, permittivities became lower with increasing annealing temperature, and crystallites were oriented preferentially to the (110) plane.

  3. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  4. Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

    PubMed Central

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti3+-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti4+ on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti3+-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  5. On the Crystal Structural Control of Sputtered TiO2 Thin Films.

    PubMed

    Jia, Junjun; Yamamoto, Haruka; Okajima, Toshihiro; Shigesato, Yuzo

    2016-12-01

    In this study, we focused on the origin on the selective deposition of rutile and anatase TiO2 thin films during the sputtering process. The observation on microstructural evolution of the TiO2 films by transmission electron microscopy revealed the coexistence of rutile and anatase TiO2 phases in the initial stage under the preferential growth conditions for the anatase TiO2; the observations further revealed that the anatase phase gradually dominated the crystal structure with increasing film thickness. These results suggest that the bombardment during the sputtering deposition did not obviously affect the TiO2 crystal structure, and this was also confirmed by off-axis magnetron sputtering experiments. We also investigated the mechanism of the effect of Sn impurity doping on the crystal structure using first-principles calculations. It is found that the formation energy of Sn-doped rutile TiO2 is lower than that of Sn-doped anatase TiO2; this suggests that the Sn-doped TiO2 favours the rutile phase. These results offer a guideline for the utilization of selective deposition of rutile and anatase TiO2 thin films in various industrial applications. PMID:27389344

  6. Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kanemitsu, Yoshihiko

    2012-09-01

    The dynamical behavior of photoexcited states of TiO2 governs the activities of TiO2-based solar cells and photocatalysts. We determined the lifetimes of photoexcited electrons and holes in rutile and anatase TiO2 single crystals by combining advantages of time-resolved photoluminescence, photoconductance, and transient absorption spectroscopy. Electrons and holes in rutile show exponential decays with the lifetime of a few tens of nanoseconds, while non-exponential decays are observed in anatase, indicating the presence of multiple carrier trapping processes. We revealed the generic features of the carrier recombination processes in rutile and anatase TiO2.

  7. Solubility of TiO2 in Olivine from 1 to 8 Gpa

    NASA Astrophysics Data System (ADS)

    Tinker, D.; Lesher, C. E.

    2001-12-01

    Laboratory experiments have been conducted to determine the solubility of TiO2 in olivine from 1 to 8 GPa, between 1127° and 1560° C. These experiments were performed in the piston cylinder device (1 and 2 GPa) and the MA6/MA8 multianvil apparatus (3 to 8 GPa), using starting materials consisting of San Carlos olivine and 20 wt % TiO2 powder. Excess TiO2 forms rutile in all run products. The presence of rutile imposes unit activity of TiO2 in olivine and, thus, we measure maximum solubilities of Ti in olivine. This situation differs from studies in which olivine is in equilibrium with ilmenite [1,2,3]. Electron microprobe analyses of run products show that the TiO2 content of olivine has positive pressure dependence between 1 and 8 GPa. Olivine contains 0.2 wt % TiO2 between 1 and 3 GPa, at 1127° and 1460° C; TiO2 contents increase to 0.5 wt % between 3 and 8 GPa. Dobrzhinetskaya et al. [1] and Green et al. [2] observed a similar positive pressure dependence on TiO2 solubility in olivine between 6 and 14 GPa. However, TiO2 contents of olivine from 6 to 8 GPa in these studies are lower than TiO2 contents we find between 6 and 8 GPa. Lower TiO2 contents presumably reflect ilmenite-olivine equilibria. In contrast, Okamoto et al. [3] and Ulmer and Trommsdorff [4] did not report a positive pressure dependence on TiO2 solubility in olivine, although rutile was stable in the experiments of [4]. The positive pressure dependence of TiO2 solubility is important for the interpretation of high pressure metamorphic rocks containing abundant exsolved titanate rods, which on recombination can yield 0.6 wt % TiO2 in host olivine before exsolution [5]. We estimate from our data that olivine containing 0.6 wt % TiO2 originated at a minimum depth of 10 GPa. The positive pressure dependence of TiO2 in olivine offers an additional pathway for the transport of Ti and other high field strength elements into the mantle, and these elements may later be recovered by rising mantle plumes. [1] Dobrzhinetskaya et al. (2000) Chem. Geol., 163, 325-338; [2] Green et al. (1997) Tectonics, 279, 1-21; [3] Okamoto et al. (1997) EOS, F761; [4] Ulmer and Trommsdorff (1997) TERRA, 9, 39; [5] Green et al. (1997) Science, 278, 704-707

  8. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    NASA Astrophysics Data System (ADS)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  9. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00476g

  10. On the Crystal Structural Control of Sputtered TiO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Yamamoto, Haruka; Okajima, Toshihiro; Shigesato, Yuzo

    2016-07-01

    In this study, we focused on the origin on the selective deposition of rutile and anatase TiO2 thin films during the sputtering process. The observation on microstructural evolution of the TiO2 films by transmission electron microscopy revealed the coexistence of rutile and anatase TiO2 phases in the initial stage under the preferential growth conditions for the anatase TiO2; the observations further revealed that the anatase phase gradually dominated the crystal structure with increasing film thickness. These results suggest that the bombardment during the sputtering deposition did not obviously affect the TiO2 crystal structure, and this was also confirmed by off-axis magnetron sputtering experiments. We also investigated the mechanism of the effect of Sn impurity doping on the crystal structure using first-principles calculations. It is found that the formation energy of Sn-doped rutile TiO2 is lower than that of Sn-doped anatase TiO2; this suggests that the Sn-doped TiO2 favours the rutile phase. These results offer a guideline for the utilization of selective deposition of rutile and anatase TiO2 thin films in various industrial applications.

  11. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    PubMed

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  12. Synthesis, characterization and photocatalytic activity of 1D TiO2 nanostructures.

    PubMed

    Cabrera, Julieta; Alarcón, Hugo; López, Alcides; Candal, Roberto; Acosta, Dwight; Rodriguez, Juan

    2014-01-01

    Nanowire/nanorod TiO(2) structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO(2) nanopowders. The first precursor was TiO(2) obtained by the sol-gel process (SG-TiO(2)); the second was the well-known commercial TiO(2) P-25 (P25-TiO(2)). Anatase-like 1D TiO(2) nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO(2) powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO(2) preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m²/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO(2) powder. However, the rod-like nanostructures obtained from SG-TiO(2) displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO(2) in both materials. PMID:25259484

  13. The role of interfacial effects on enhanced catalytic performance of TiO2 -graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Chakarov, Dinko; Sellappan, Raja

    2014-03-01

    Graphene-containining TiO2 nanocomposites have significantly higher photocatalytic activity compared to bare TiO2 films. The enhancement is result of improved transport and higher efficiency of the charge carries separation at carbon-TiO2 interface. These effects were assessed by comparison of six anatase-graphene structures, fabricated by different synthesizing techniques and referenced to the performance of TiO2-graphitic-carbon and TiO2-Au thin films. The work was financially supported by The Nordic Energy Research Council through project N-I-S-F-D.

  14. Nitrogen doped TiO2 nano-particles: Phase control by solution combustion method

    NASA Astrophysics Data System (ADS)

    Bapna, Komal; Choudhary, R. J.; Phase, D. M.; Shastri, Sheetal; Prasad, R.; Ahuja, B. L.

    2016-05-01

    N-doped TiO2 nano powders were prepared by sol-gel solution combustion method. The influence of different fuels (urea and citric acid) used in obtaining N-TiO2 nano particles in similar conditions (heat treatment, amount of precursors) has been investigated. The growth of different phases of TiO2 (anatase and rutile) is strongly affected by the ligands and the dehydration reaction. Reduction in the band gap of TiO2 and features observed in the XPS spectra confirm the incorporation of N into TiO2 matrix.

  15. Sonochemical synthesis of TiO(2 nanoparticles on graphene for use as photocatalyst.

    PubMed

    Guo, Jingjing; Zhu, Shenmin; Chen, Zhixin; Li, Yao; Yu, Ziyong; Liu, Qinglei; Li, Jingbo; Feng, Chuanliang; Zhang, Di

    2011-09-01

    Using ultrasonication we succeed in a controlled incorporation of TiO(2) nanoparticles on the graphene layers homogeneously in a few hours. The average size of the TiO(2) nanoparticles was controlled at around 4-5 nm on the sheets without using any surfactant, which is attributed to the pyrolysis and condensation of the dissolved TiCl(4) into TiO(2) by ultrasonic waves. The photocatalytic activity of the resultant graphene-TiO(2) composites containing 25 wt.% TiO(2) is better than that of commercial pure TiO(2). This is partly due to the extremely small size of the TiO(2) nanoparticles and partly due to the graphene-TiO(2) composite structure consisting of homogeneous dispersion of crystalline TiO(2) nanoparticles on the graphene sheets. As the graphene in the composites has a very good contact with the TiO(2) nanoparticles it enhances the photo-electron conversion of TiO(2) by reducing the recombination of photo-generated electron-hole pairs. PMID:21482166

  16. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Zhu, Dachuan; Cao, Shixiu

    2016-02-01

    A facile method by combining anodic oxidation and hydrothermal method was developed to construct highly ordered anatase TiO2 nanorods (TNRs) and nanotubes (TNTs). In this method, the anodic oxidation was used for preparing highly ordered amorphous TNTs, which subsequently served as highly ordered template for next reaction process. Upon hydrothermal treatment, the as-anodized amorphous template got converted to highly ordered anatase TNTs (blank sample) in without cobalt nitrate solution and TNRs (doped sample) in cobalt nitrate solution, respectively. To our best knowledge, this is first successful attempt to prepare highly ordered anatase TNRs based on the above amorphous template. The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicate that the as-prepared anatase TNRs are composed by a large number of anatase TiO2 nanoparticles (TNPs) and the morphology at top of TNRs is different from that of its trunk. Details of the morphology, phase transformation, and growth mechanism of the obtained TNRs are discussed. In addition, the role of Co2+ in the crystallization process had been also discussed.

  17. Self-cleaning properties of TiO2/palygorskite and TiO2/halloysite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Panagiotaras, Dionisios; Kaplani, Eleni; Stathatos, Elias; Papoulis, Dimitrios

    2014-10-01

    Tubular halloysite and microfibrous palygorskite clay mineral combined with nanocrystalline TiO2 are involved in the preparation of nanocomposite films on glass substrates via sol-gel route at 450°C. The synthesis employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite and halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite/TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye's decoloration in spite of small amount of palygorskite/TiO2 or halloysite/TiO2 catalyst immobilized onto glass substrates.

  18. Characterization of manufactured TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.

    2013-04-01

    Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different techniques to characterize five different manufactured TiO2 nanoparticles. In this study, different measurement techniques have been implemented: Transmission Electron Microscopy (TEM), Scanning Mobility Particle Sizer (SMPS) and Aerodynamic Particle Sizer (APS). The TEM results lead to a relatively good agreement between data from the manufacturer and our characterizations of primary particle size. With regard to the dustiness, the results show a strong presence of agglomerates / aggregates of primary particles and a significant presence of emitted airborne nanoparticles with a diameter below 100 nm (composed of isolated primary particles and small aggregates / agglomerates formed from a few primary particles): the number proportion of these particles varies from 0 to 44 % in the measurement range 14-360 nm depending on the types of powders and corrections of measurements.

  19. Inkjet printable luminescent Eu3+-TiO2 doped in sol gel matrix for paper tagging.

    PubMed

    Attia, M S; Elsaadany, Soad A; Ahmed, Kawther A; El-Molla, Mohamed M; Abdel-Mottaleb, M S A

    2015-01-01

    Europium (III) with different concentrations (0.2, 0.4 and 0.8 %)-TiO(2) doped silica composite systems were sensitized by sol-gel method. Different spectroscopic and microscopic tools characterized the composites. The Europium ion incorporated into the liquid silica-titania solution acts as red light emission center in the luminescent materials. This luminescent nano composite pigment has great potential of application in preparing luminescent ink. Inkjet printer loaded with the prepared ink to show its potential usage as tagging material performed the printing test on a white paper. PMID:25591996

  20. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension.

    PubMed

    Giraldo, Ana L; Peñuela, Gustavo A; Torres-Palma, Ricardo A; Pino, Nancy J; Palominos, Rodrigo A; Mansilla, Héctor D

    2010-10-01

    In the work presented here, a photocatalytic system using titanium Degussa P-25 in suspension was used to evaluate the degradation of 20mg L(-1) of antibiotic oxolinic acid (OA). The effects of catalyst load (0.2-1.5 g L(-1)) and pH (7.5-11) were evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, low pH values and 1.0 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of the substrate, chemical oxygen demand, dissolved organic carbon, toxicity and antimicrobial activity on Escherichia coli cultures were evaluated. The results indicate that, under optimal conditions, after 30 min, the TiO(2) photocatalytic system is able to eliminate both the substrate and the antimicrobial activity, and to reduce the toxicity of the solution by 60%. However, at the same time, ∼53% of both initial DOC and COD remain in solution. Thus, the photocatalytical system is able to transform the target compound into more oxidized by-products without antimicrobial activity and with a low toxicity. The study of OA by-products using liquid chromatography coupled with mass spectrometry, as well as the evaluation of OA degradation in acetonitrile media as solvent or in the presence of isopropanol and iodide suggest that the reaction is initiated by the photo-Kolbe reaction. Adsorption isotherm experiments in the dark indicated that under pH 7.5, adsorption corresponded to the Langmuir adsorption model, indicating the dependence of the reaction on an initial adsorption step. PMID:20633918

  1. Fabrication N, F, and N/F-Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells.

    PubMed

    Park, Su Kyung; Yun, Tae Kwan; Bae, Jae Young

    2015-08-01

    In this study, pure TiO2, N-doped TiO2, F-doped TiO2, and N/F-doped TiO2 particles were successfully synthesized through the hydrolysis of TiCl4 in the presence of ammonia water and NH4F, respectively. The introduction of doping materials did not affect the crystalline structure. No absorption peak for pure TiO2 was observed above the wavelength of 400 nm. However, the N-doped TiO2 and N/F-doped TiO2 powders exhibited a new absorption peak in the visible light region between 400 and 530 nm. The Jsc value of DSSCs based on the N/F-doped TiO2 electrode was increased by 10% compared to DSSCs using a pure TiO2 electrode, and the energy conversion efficiency was increased by 12%. PMID:26369182

  2. TiO2 doped with nitrogen: synthesis and characterization.

    PubMed

    Abazović, Nadica D; Montone, Amelia; Mirenghi, Luciana; Janković, Ivana A; Comor, Mirjana I

    2008-02-01

    In this study, nitrogen-doped titanium dioxide (TiO2) powders were synthesized in two ways: by heating of titanium hydroxide with urea and by direct hydrolysis of titanium tetraisopropoxide (TTIP) with ammonium hydroxide. The samples were characterized by structural (XRD), analytical (XPS), optical (UV/Vis absorption/reflection and Raman spectroscopy) and morphological (SEM, TEM) techniques. The characterization suggested that the doped materials have anatase crystalline form without any detectable peaks that correspond to dopants. The absorption threshold of titanium dioxide was moved in the visible range of optical spectrum from 3.2 eV to 2.20 eV. Particle sizes of synthesized powders were obtained from XRD measurements and from TEM data ranging from 6-20 nm. XPS and Raman spectroscopy were used for detection of nitrogen in doped samples. PMID:18464379

  3. Modelling of nanostructured TiO2-based memristors

    NASA Astrophysics Data System (ADS)

    Shinde, S. S.; Dongle, T. D.

    2015-03-01

    The fourth fundamental circuit element memristor completes the missing link between charge and magnetic flux. It consists of the function of the resistor as well as memory in nonlinear fashion. The property of the memristor depends on the magnitude and direction of applied potential. This unique property makes it the primitive building block for many applications such as resistive memories, soft computing, neuromorphic systems and chaotic circuits etc. In this paper we report TiO2-based nanostructured memristor modelling. The present memristor model is constructed in MATLAB environment with consideration of the linear drift model of memristor. The result obtained from the linear drift model is well matched with earlier reported results by other research groups.

  4. Imaging Surface Reactions of Formaldehyde on TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenrong; Tang, Miru; Wang, Zhi-Tao; Ke, Zhu; Xia, Yaobiao; Park, Kenneth; Lyubinetsky, Igor; Dohnálek, Zdenek; Ge, Qingfeng

    2015-03-01

    Formaldehyde is involved in many surface catalytic and photo-catalytic reactions on metal oxides. We studied surface reactions of formaldehyde on reduced TiO2(110) surfaces using variable-temperature scanning tunneling microscopy (STM) and density functional theory (DFT). STM images taken from a same area at various temperatures clearly show that formaldehyde preferentially adsorbs on the bridge-bonded oxygen vacancy (VO) defect sites. Bias-dependent STM images suggest the bonding configurations of the Ti-bound CH2O and the VO-bound CH2O. The isothermal time dependent images show the rotation of VO-bound CH2O and the two diffusion channels of formaldehyde at different temperatures. We also directly observed the formation of formaldehyde dimmer.

  5. Antioxidant defences and haemocyte internalization in Limnoperna fortunei exposed to TiO2 nanoparticles.

    PubMed

    Girardello, Francine; Leite, Camila Custódio; Branco, Catia Santos; Roesch-Ely, Mariana; Fernandes, Andreia Neves; Salvador, Mirian; Henriques, João Antonio Pêgas

    2016-07-01

    TiO2 nanoparticles (TiO2-NP) have been incorporated into a large range of materials for different applications in the last decades and are very likely to appear in wastewater and effluents, eventually reaching the aquatic environment. Therefore, the assessment of the biological impact of TiO2-NP on aquatic ecosystem is of a major concern. The mussels represent a target group for TiO2-NP toxicity, as they are filter feeders and are capable of bioaccumulating toxic compounds. Furthermore, the exotic organism Limnoperna fortunei, golden mussel, is a freshwater bivalve that has been used in biomonitoring environmental conditions. In this work, the TiO2-NP's ability to interact with haemocytes of golden mussel was assessed by transmission electron microscopy. The enzymatic and non-enzymatic antioxidant defenses were evaluated by superoxide dismutase (Sod) and catalase (Cat) activities and protein sulfhydryl content, which were measured after the golden mussel was exposed to TiO2-NP (1, 5, 10 and 50μgmL(-1)). Results demonstrate that TiO2-NP was internalized by cells, causing alterations in haemocytes membrane. Antioxidant activity of Sod and Cat decreased after 2h TiO2-NP exposure. After 4h exposure, the enzymatic antioxidant activity was restored. Notably, the protein sulfhydryl content decreased after 2h to all the TiO2-NP concentrations and no alterations were observed after 4h of TiO2-NP exposure. These results demonstrate the potential of golden mussel as sentinel organism to TiO2-NP exposure. PMID:27152940

  6. Highly recoverable TiO2-GO nanocomposites for stormwater disinfection.

    PubMed

    Wang, Gen; Feng, Wenjun; Zeng, Xiangkang; Wang, Zhouyou; Feng, Chuanping; McCarthy, David T; Deletic, Ana; Zhang, Xiwang

    2016-05-01

    A highly recoverable titanium dioxide-graphene oxide (TiO2-GO) composite was developed by a facile method of ultrasonic treatment of GO nanosheets and TiO2 nanoparticles, which should overcome the separation problem of nanosized TiO2 from treated water. Separability of the prepared samples was systematically investigated by gravity settling experiments. The samples' photocatalytic activity for stormwater disinfection was also studied under the irradiation of a solar simulator. The results demonstrated that TiO2-GO showed high efficient separability due to its accelerated settling behaviour. Zeta-potential analysis showed that the accelerated sedimentation of the catalyst was attributed to the aggregation of TiO2-GO resulting from the electrostatic attraction between TiO2 and GO. The TiO2-GO composite with a mass ratio of 100:2 (TiO2-2%GO) achieved both higher separability and good photocatalytic activity for stormwater disinfection. Its suspension became clear (turbidity < 50 NTU) after 8 h of sedimentation, while 99.5% of E.coli were deactivated in 90 min. The TiO2-GO composite exhibited excellent durability; no apparent change in the separability of TiO2-2%GO was observed after 10 treatment cycles (15 h in total), while only slight decrease in the photocatalytic activity was noted. In conclusion, the developed TiO2-GO composite showed promising results for stormwater disinfection. PMID:26991482

  7. High pressure structural phase transitions of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Quan-Jun, Li; Bing-Bing, Liu

    2016-07-01

    Recently, the high pressure study on the TiO2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO2-B nanoribbons. Various TiO2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO2 nanoribbons, α-PbO2-type TiO2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11374120, 11004075, 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.

  8. Water diffusion on TiO2 anatase surface

    NASA Astrophysics Data System (ADS)

    Agosta, L.; Gala, F.; Zollo, G.

    2015-06-01

    Compatibility between biological molecules and inorganic materials, such as crystalline metal oxides, is strongly dependent on the selectivity properties and the adhesion processes at the interface between the two systems. Among the many different aspects that affect the adsorption processes of peptides or proteins onto inorganic surfaces, such as the charge state of the amino acids, the peptide 3D structure, the surface roughness, the presence of vacancies or defects on and below the surface, a key role is certainly played by the water solvent whose molecules mediate the interaction. Then the surface hydration pattern may strongly affect the adsorption behavior of biological molecules. For the particular case of (101) anatase TiO2 surface that has a fundamental importance in the interaction of biocompatible nano-devices with biological environment, it was shown, both theoretically and experimentally, that various hydration patterns are close in energy and that the water molecules are mobile at as low temperature values as 190 K. Then it is important to understand the dynamical behavior of first hydration layer of the (101) anatase surface. As a first approach to this problem, density functional calculations are used to investigate water diffusion on the (101) anatase TiO2 surface by sampling the potential energy surface of water molecules of the first hydration layer thus calculating the water molecule migration energy along some relevant diffusion paths on the (101) surface. The measured activation energy of water migration seems in contrast with the observed surface mobility of the water molecules that, as a consequence could be explained invoking a strong role of the entropic term in the context of the transition state theory.

  9. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    NASA Astrophysics Data System (ADS)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented. Finally, it was found that quantum dots attach in high amounts to linker-functionalized TiO2 when suspended in pyridine. This increased surface attachment was present even when the linker molecule used lacked a functional group which would bind to the CdSe surface.

  10. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    NASA Astrophysics Data System (ADS)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  11. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88. PMID:24682063

  12. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications.

    PubMed

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-01-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light. PMID:27146098

  13. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications

    NASA Astrophysics Data System (ADS)

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-05-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light.

  14. Very low amount of TiO2 on N-doped carbon nanotubes significantly improves oxygen reduction activity and stability of supported Pt nanoparticles.

    PubMed

    Zhao, Anqi; Masa, Justus; Xia, Wei

    2015-04-28

    Electrochemical corrosion is a major problem for carbon materials used in electrocatalysis. Highly dispersed TiO2 was deposited on O-functionalized and N-doped carbon nanotubes by chemical vapour deposition to tackle the carbon corrosion problem. Very low Ti loadings of about 1 wt% were applied to minimize the negative influence of TiO2 as a semiconductor on the high conductivity of carbon materials. Both N doping and TiO2 coating facilitate strong metal-support interactions and favour the formation of small Pt particles. N doping improved the intrinsic catalytic activity of the carbon support and enhanced the conductivity due to the removal of surface oxygen groups, while the negative effect of TiO2 on conductivity is counterbalanced by its promoting effect on metal-support interactions leading to enhanced overall catalytic performance. Pt/TiO2/NCNTs showed the highest ORR activity, and significantly outperformed Pt/NCNTs in electrochemical stability tests. PMID:25811122

  15. Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion.

    PubMed

    Kadam, A N; Dhabbe, R S; Kokate, M R; Gaikwad, Y B; Garadkar, K M

    2014-12-10

    We report herein, nitrogen doped TiO2 nanostructure synthesized by simple microwave assisted method, where ammonia was used as hydrolyzing agent. The synthesized nanomaterials were characterized by means of X-ray diffraction (XRD) which demonstrated that N-doped TiO2 is in anatase phase with average crystallite size of 10nm. Doping of N into the lattice of TiO2 was supported by X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy (FT-IR), CHNS analysis, energy dispersive spectroscopy (EDS). The diffuse reflectance spectroscopy (DRS) showed shifting of absorption edge toward the visible region. Thermogravimetric-differential thermal analysis (TGA-DTA) points out N-doped TiO2 nanoparticles are thermally stable. In order to achieve maximum degradation efficiency, the effect of catalyst loading, pH and light sources (UV and sunlight) were studied. A maximum 97% degradation efficiency was achieved under optimized conditions. A 80% reduction in the chemical oxygen demand (COD) was observed after 150min that indicated mineralization of Malathion. The cytotoxicological studies indicate that photocatalytically degraded products were less toxic as compared to Malathion. PMID:24996208

  16. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications

    PubMed Central

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-01-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light. PMID:27146098

  17. Study on the mechanism of NH3-selective catalytic reduction over CuCe x Zr1-x /TiO2

    NASA Astrophysics Data System (ADS)

    Chen, Xujuan; Sun, Xiaoliang; Gong, Cairong; Lv, Gang; Song, Chonglin

    2016-03-01

    Copper-cerium-zirconium catalysts loaded on TiO2 prepared by a wet impregnation method were investigated for NH3-selective catalytic reduction (SCR) of NO x . The reaction mechanism was proposed on the basis of results from in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH3 is introduced, ammonia bonded to Lewis acid sites is more stable over CuCe0.25Zr0.75/TiO2 at high temperature, while Brønsted acid sites are more important than Lewis acid sites at low temperature. For the NH3+NO+O2 co-adsorption, NH3 species occupy most of activity sites on CuCe0.25Zr0.75/TiO2 catalyst, and mainly exist in the forms of NH{4/+} (at low temperature) and NH3 coordinated (at high temperature), playing a crucial role in the NH3-SCR process. Two different reaction routes, the L-H mechanism at low temperature ( < 200°C) and the E-R mechanism at high temperature ( > 200°C), are presented for the SCR reaction over CuCe0.25Zr0.75/TiO2 catalyst.

  18. Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion

    NASA Astrophysics Data System (ADS)

    Kadam, A. N.; Dhabbe, R. S.; Kokate, M. R.; Gaikwad, Y. B.; Garadkar, K. M.

    2014-12-01

    We report herein, nitrogen doped TiO2 nanostructure synthesized by simple microwave assisted method, where ammonia was used as hydrolyzing agent. The synthesized nanomaterials were characterized by means of X-ray diffraction (XRD) which demonstrated that N-doped TiO2 is in anatase phase with average crystallite size of 10 nm. Doping of N into the lattice of TiO2 was supported by X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy (FT-IR), CHNS analysis, energy dispersive spectroscopy (EDS). The diffuse reflectance spectroscopy (DRS) showed shifting of absorption edge toward the visible region. Thermogravimetric-differential thermal analysis (TGA-DTA) points out N-doped TiO2 nanoparticles are thermally stable. In order to achieve maximum degradation efficiency, the effect of catalyst loading, pH and light sources (UV and sunlight) were studied. A maximum 97% degradation efficiency was achieved under optimized conditions. A 80% reduction in the chemical oxygen demand (COD) was observed after 150 min that indicated mineralization of Malathion. The cytotoxicological studies indicate that photocatalytically degraded products were less toxic as compared to Malathion.

  19. Highly Active Subnanometer Au Particles Supported on TiO2 for Photocatalytic Hydrogen Evolution from a Well-Defined Organogold Precursor, [Au5(mesityl)5].

    PubMed

    Siddiqi, Georges; Mougel, Victor; Copéret, Christophe

    2016-04-18

    A highly efficient H2 evolution photocatalyst based on TiO2 supported subnanometer Au particles was developed on the basis of the reaction of a gold(I) molecular precursor [Au5Mes5] (Mes = 2,4,6-trimethylphenyl), with titanium dioxide partially dehydroxylated at 120 °C. IR, UV-vis, elemental analysis, XANES, and STEM-EDX show that the deposition of [Au5Mes5] onto TiO2 leads to the formation of both subnanometer Au particles and chemisorbed [Au5Mes5]. The remaining organic ligands are removed via a mild treatment under H2, yielding subnanometer gold(0) particles. A range of Au loadings (0.3, 0.9, 2.4 wt %) with similar particle sizes (<1 nm) on TiO2 are obtained and tested in methanol-assisted photocatalytic hydrogen production under UV light. These catalysts display significantly higher activity than a commercial reference Au-TiO2 catalyst. The presence of chemisorbed [Au5Mes5] in the as-synthesized catalyst further improved activity, albeit at the expense of stability. This work demonstrates a simple synthetic route to obtain subnanometer Au particles on TiO2 that display exceptional activity in photocatalysis. PMID:27064051

  20. An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Quantong; Li, Siqian; Wang, Yi; Ye, Cong; Ruterana, Pierre; Wang, Hao

    2014-12-01

    An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube (TNT) arrays is prepared by a sol-gel process through hydrolysis and condensation of titaniumtetrachloride in an aqueous medium containing alcohol and ammonia. By introducing the TiO2 nanoparticles of proper particle size ∼20 nm into TNT arrays, the surface area, dye adsorption, short-circuit photocurrent density (Jsc), open circuit voltage (Voc) and the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs) are significantly improved (up to 107% enhancement on PCE). Particularly, the addition of alcohol and ammonia in TiO2 sol results in more hydroxyl groups chemisorbed onto the surface of the photoanodes, which is favorable for achieving large amount of dye adsorption. The influence of sol-treating time on the microstructure, morphology of photoanodes and the corresponding photovoltaic performance of DSSCs are investigated. It is found that immersing the TNT arrays into TiO2 sol for 0.5-2 h gives PCE of DSSC higher than 9.6%, and the highest PCE of 9.86% is achieved in DSSC when treating the TNT arrays with TiO2 sol for 2 h.

  1. Improved performance of dye-sensitized solar cells using TiO2 nanotubes infiltrated by TiO2 nanoparticles using a dipping-rinsing-hydrolysis process

    NASA Astrophysics Data System (ADS)

    Lin, Lu-Yin; Chen, Chia-Yuan; Yeh, Min-Hsin; Tsai, Keng-Wei; Lee, Chuan-Pei; Vittal, R.; Wu, Chun-Guey; Ho, Kuo-Chuan

    2013-12-01

    An efficient back-illuminated dye-sensitized solar cell (DSSC) is made with a flexible Ti-foil based photoanode composed of a composite TiO2 film with TiO2 nanotubes (TNT) and TiO2 nanoparticles (TNP). The composite TiO2 film is fabricated through a novel dipping-rinsing-hydrolysis (DRH) process by inserting TiO2 into TNT and sintering the product to form TNP inside TNT. By directly placing TiO2 nanoparticles into TNT, the former grow internally from the base of TNT to occupy it completely. This solves previous problems of incomplete filling of TNP into TNT, which used partial penetration of TiCl4 reactant from the top of the TNT. In the present case, the TNP are grown from the base of TNT. A DSSC containing TNT and TNP prepared in this way shows a photoelectric efficiency of 6.45%, which is much higher than that (4.21%) of a DSSC with untreated TNT. The films are characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The improvement in the photoelectric efficiency is explained by using electrochemical impedance spectroscopy (EIS), incident photon-to-current conversion efficiency (IPCE) analysis, and UV-absorption spectra analysis.

  2. Hierarchical TiO2 flowers built from TiO2 nanotubes for efficient Pt-free based flexible dye-sensitized solar cells.

    PubMed

    Lei, Bing-Xin; Luo, Qiu-Ping; Yu, Xiao-Yun; Wu, Wu-Qiang; Su, Cheng-Yong; Kuang, Dai-Bin

    2012-10-14

    A novel hierarchical TiO(2) flower consisting of anatase TiO(2) nanotubes on a Ti foil substrate has been prepared via a mild hydrothermal reaction of TiO(2) nanoparticles/Ti foil. The photovoltaic performance of DSSC based on hierarchical TiO(2) flowers/Ti (7.2%) is much higher than that of TiO(2) nanoparticle/Ti (6.63%) because of its superior light scattering ability and fast electron transport. Moreover, full flexible DSSC based on the novel hierarchical TiO(2) flowers/Ti foil photoelectrode and electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) on indium tin oxide-coated poly(ethylene terephthalate) (ITO-PET) counter electrode shows a significant power conversion efficiency of 6.26%, accompanying a short-circuit current density of 11.96 mA cm(-2), an open-circuit voltage of 761 mV and a fill factor of 0.69. PMID:22914771

  3. Charge Separation in TiO2/BDD Heterojunction Thin Film for Enhanced Photoelectrochemical Performance.

    PubMed

    Terashima, Chiaki; Hishinuma, Ryota; Roy, Nitish; Sugiyama, Yuki; Latthe, Sanjay S; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Fujishima, Akira

    2016-01-27

    Semiconductor photocatalysis driven by electron/hole has begun a new era in the field of solar energy conversion and storage. Here we report the fabrication and optimization of TiO2/BDD p-n heterojunction photoelectrode using p-type boron doped diamond (BDD) and n-type TiO2 which shows enhanced photoelectrochemical activity. A p-type BDD was first deposited on Si substrate by microwave plasma chemical vapor deposition (MPCVD) method and then n-type TiO2 was sputter coated on top of BDD grains for different durations. The microstructural studies reveal a uniform disposition of anatase TiO2 and its thickness can be tuned by varying the sputtering time. The formation of p-n heterojunction was confirmed through I-V measurement. A remarkable rectification property of 63773 at 5 V with very small leakage current indicates achieving a superior, uniform and precise p-n junction at TiO2 sputtering time of 90 min. This suitably formed p-n heterojunction electrode is found to show 1.6 fold higher photoelectrochemical activity than bare n-type TiO2 electrode at an applied potential of +1.5 V vs SHE. The enhanced photoelectrochemical performance of this TiO2/BDD electrode is ascribed to the injection of hole from p-type BDD to n-type TiO2, which increases carrier separation and thereby enhances the photoelectrochemical performance. PMID:26756353

  4. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Vasei, Mitra; Das, Paramita; Cherfouh, Hayet; Marsan, Benoit; Claverie, Jerome

    2014-07-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  5. Neurotoxicity and biochemical responses in the earthworm Pheretima hawayana exposed to TiO2NPs.

    PubMed

    Khalil, Abdelmonem M

    2015-12-01

    Serious concerns have been expressed about potential risks of manufactured TiO2NPs. In this research, toxicity of nanoparticulate and bulk TiO2 were examined to the earthworm Pheretima hawayana. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic. The 24-h LC50 for TiO2NPs (145.36 mg kg(-1)) was highly toxic than that of bulk TiO2 (357.77 mg kg(-1)). The aim of the present work is to evaluate the suitability of P. hawayana and its biochemical responses to be used as a bioindicator organism and biomarkers of TiO2 toxicity. Earthworms were exposed to three sublethal concentrations of TiO2NPs (1, 10 and 100 µg kg(-1)) for 28 days to test acetylcholinesterase (AChE), antioxidant enzymes (superoxide dismutase: SOD and catalase: CAT) activities and MDA content. The response of the antioxidant enzymes combined with AChE inhibition and MDA accumulation indicated that TiO2NPs could induce significant impairments to the earthworms at the actual environment tested concentrations. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to TiO2NPs exposure, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of earthworm P. hawayana as potential bioindicator species for assessing the risk of nanoparticles environmental contamination. PMID:26398239

  6. Superstructure of TiO2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges.

    PubMed

    Bian, Zhenfeng; Tachikawa, Takashi; Majima, Tetsuro

    2012-06-01

    Materials with intricate nanostructures display fascinating properties, which have inspired extensive research on the synthesis of materials with controlled structures. In this study, we investigated the properties of superstructures of TiO2 to understand the inter-relationship between structural ordering and photocatalytic performance. The nanoplate anatase TiO2 mesocrystals were chosen as the typical investigation objects, which were newly synthesized by a topotactic structural transformation. The TiO2 mesocrystals displayed the superstructure of crystallographically ordered alignment of anatase TiO2 nanocrystals with high surface area and large high-energy surface {001} planes exposed. The photoconductive atomic force microscopy and time-resolved diffuse reflectance spectroscopy were utilized to determine the charge transport properties of TiO2 mesocrystals, and their features were highlighted by a comparison with reference TiO2 samples, for example, anatase TiO2 nanocrystals with similar surface area and single crystal structure. Consequently, it was found for the first time that such a superstructure of TiO2 could largely enhance charge separation and had remarkably long-lived charges, thereby exhibiting greatly increased photoconductivity and photocatalytic activity. PMID:26285616

  7. A TiO2 abundance map for the northern maria

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Saunders, R. S.; Matson, D. L.; Mosher, J. A.

    1977-01-01

    A map of TiO2 abundance for most of the northern maria is presented. The telescopic data base used is the 0.38/0.56-micron ratio mosaic from Johnson et at. (1977). The titanium content has been estimated using the correlation established by Charette et al. (1974). The combination of observational, processing, and calibration errors indicates that the TiO2 map is accurate to + or - 2% (wt% TiO2) for high TiO2 content (more than 5%) and + or - 1% for low values of TiO2. Analysis of the lunar sample and telescopic data suggests strongly that the spectral parameter mapped is sensitive primarily to TiO2 abundance in the range 3-9% and does not correlate directly with iron content. It is suggested, however, that for the low TiO2 mare regions (less than 2-3% TiO2) there may be a relation between the spectral ratio and iron content and that some of the reddest mare areas in the Imbrium region may have low iron contents as well as low titanium abundances.

  8. Effect of TiO2 nanotubes arrays on osseointegration of orthodontic miniscrew.

    PubMed

    Jang, Insan; Shim, Seong-Cheol; Choi, Dong-Soon; Cha, Bong-Kuen; Lee, Jae-Kwan; Choe, Byung-Hak; Choi, Won-Youl

    2015-08-01

    To increase the stability of orthodontic miniscrews, TiO2 nanotube arrays were fabricated on the surface of Ti miniscrews and the effect of those arrays on the osseointegration of miniscrews was evaluated. Highly ordered TiO2 nanotube arrays were grown on the surface of orthodontic miniscrews. Ethylene glycol based electrolyte was used in the anodic oxidation process. Two-step anodic oxidation was conducted to obtain clean and open windows in TiO2 nanotube arrays. The diameter and length of the TiO2 nanotube arrays were ~ 70 nm and ~ 5 μm, respectively. The miniscrews with TiO2 nanotube arrays were implanted in the legs of New Zealand white rabbits for 8 weeks. Histological osseointegration was assessed by bone-to-implant contact ratio, and three-dimensional bone volume ratio was measured by micro-computed tomography analysis. The miniscrews with TiO2 nanotube arrays had a greater mean bone-to-implant contact ratio of 52.8 % than the control, 29.3 %. Mean bone volume ratio (BV/TV) was also higher in the miniscrews with TiO2 nanotube arrays, at 81.2 % than those in the control via micro-CT analysis. Our findings support that TiO2 nanotube arrays on the surface of miniscrews enhance osseointegration and improve the stability of the miniscrew. PMID:26149697

  9. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  10. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee; Juan, Joon Ching; Basirun, Wan Jefrey; Centi, Gabriele

    2016-05-01

    The synergistic effect between fluorine and hydrogen in hydrogenated F-doped TiO2 photocatalysts is evaluated for the photocatalytic degradation of atrazine. The interaction between fluorine and hydrogen species in hydrogenated F-doped TiO2 overcomes the limitations of individual F-doped TiO2 and hydrogenated TiO2 photocatalyst properties. Hydrogenated F-doped TiO2 is photo-active under UV, visible and infrared light illumination with efficient electrons and holes separations. The optimized concentration of surface vacancies and Ti3+ centers coupled with enhanced surface hydrophilicity facilitates the production of surface-bound and free hydroxyl radicals. The surface of the catalyst contains dbnd Tisbnd F, dbnd Tisbnd OH, dbnd Tisbnd Ovacancy and dbnd Tisbnd H bonds as evidenced by XPS, Raman, FTIR and HR-TEM analysis. This combination also triggers the formation of new Ti3+ occupied states under the conduction band of hydrogenated F-doped TiO2. Moreover, the change in the pore structure from cylindrical to slits and larger surface area facilitates surface charge interactions. The thermal stability is also enhanced and a single anatase phase is obtained. The size of the particles of hydrogenated F-doped TiO2 is also uniform with defined and homogeneous crystal structure. This synergetic effect between fluorine and hydrogen opens up new alternatives in improving the properties of TiO2 and its photocatalytic activity.

  11. Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite.

    PubMed

    Khataee, Alireza; Sheydaei, Mohsen; Hassani, Aydin; Taseidifar, Mojtaba; Karaca, Semra

    2015-01-01

    The sonocatalytic performance of the synthesized TiO2/Montmorillonite K10 (TiO2/MMT) nanocomposite was studied in removal of Basic Blue 3 (BB3) from water. The TiO2/MMT nanocomposite was prepared by hydrothermal method. Scanning electron microscope, X-ray diffraction and Fourier transform infrared were used to characterize the synthesized nanocomposite. The average size of TiO2 nanoparticles decreased from 60-80nm to 40-60nm through the immobilization of this semiconductor on the surface of MMT. The obtained results indicated that the sonocatalytic activity of TiO2/MMT nanocomposite was higher than that of pure TiO2 nanoparticles and MMT particles. Furthermore, the main influence factors on the sonocatalytic activity such as the BB3 concentration, pH of solution, TiO2/MMT dose, power of ultrasonic generator, and inorganic salts were studied. The intermediates of BB3 degradation during the sonocatalytic process in the presence of the TiO2/MMT nanocomposite have been monitored by gas chromatography-mass spectrometry. PMID:25060118

  12. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation

    PubMed Central

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P.

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent. PMID:25072054

  13. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties.

    PubMed

    Zhang, Genqiang; Wu, Hao Bin; Song, Taeseup; Paik, Ungyu; Lou, Xiong Wen David

    2014-11-10

    While the synthesis of TiO2 hollow structures is well-established, in most cases it is particularly difficult to control the crystallization of TiO2 in solution or by calcination. As a result, TiO2 hollow structures do not really exhibit enhanced lithium storage properties. Herein, we report a simple and cost-effective template-assisted method to synthesize anatase TiO2 hollow spheres composed of highly crystalline nanocrystals, in which carbonaceous (C) spheres are chosen as the removable template. The release of gaseous species from the combustion of C spheres may inhibit the growth of TiO2 crystallites so that instead small TiO2 nanocrystals are generated. The small size and high crystallinity of primary TiO2 nanoparticles and the high structural integrity of the hollow spheres gives rise to significant improvements in the cycling stability and rate performance of the TiO2 hollow spheres. PMID:25124735

  14. Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage

    NASA Astrophysics Data System (ADS)

    Abdi, Yaser; Khalilian, Maryam; Arzi, Ezatollah

    2011-06-01

    Carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Cabbage-like TiO2 nanostructures on the CNTs were produced by atmospheric-pressure chemical vapour deposition. Scanning electron microcopy was used to study the morphology of the TiO2/CNT structures while x-ray diffraction and Fourier transform infrared (FTIR) spectroscopy were used to verify the characteristics of the prepared nanostructures. Their hydrophilicity under UV and visible light was investigated and compared with the activity of thin films of TiO2. The TiO2/CNTs showed a highly improved photocatalytic activity in comparison with the TiO2 film. The excellent visible-light-induced hydrophilicity of the TiO2/CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate. The results of this study showed that the fabricated cabbage-like TiO2/CNT nanostructures have a super-hydrophilic surface without further UV irradiation. Electrical measurements showed that a p-n junction was formed at the interface of the TiO2/CNTs. Consequently, a super-hydrophilic surface was achieved by applying an electric bias voltage. Visible-light- and electro-induced hydrophilicity of the obtained nanostructure was reported in this work.

  15. Reprint of: photostability of wool fabrics coated with pure and modified TiO2 colloids.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A; Sun, Lu; Wang, Xungai

    2015-06-01

    The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images. PMID:25746934

  16. Enhanced Luminescence of Eu-Doped TiO2Nanodots

    PubMed Central

    2009-01-01

    Monodisperse and spherical Eu-doped TiO2nanodots were prepared on substrate by phase-separation-induced self-assembly. The average diameters of the nanodots can be 50 and 70 nm by changing the preparation condition. The calcined nanodots consist of an amorphous TiO2matrix with Eu3+ions highly dispersed in it. The Eu-doped TiO2nanodots exhibit intense luminescence due to effective energy transfer from amorphous TiO2matrix to Eu3+ions. The luminescence intensity is about 12.5 times of that of Eu-doped TiO2film and the luminescence lifetime can be as long as 960 μs. PMID:20596343

  17. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    PubMed

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed. PMID:25852353

  18. A Multiscale TiO2 Nanorod Array for Ultrasensitive Capture of Circulating Tumor Cells.

    PubMed

    Sun, Na; Li, Xinpan; Wang, Zhili; Zhang, Ruihua; Wang, Jine; Wang, Kewei; Pei, Renjun

    2016-05-25

    In this work, a uniform multiscale TiO2 nanorod array is fabricated to provide a "multi-scale interacting platform" for cell capture, which exhibits excellent capture specificity and sensitivity of the target cells after modification with bovine serum albumin (BSA) and DNA aptamer. After studying the capture performance of the BSA-aptamer TiO2 nanorod substrates and other nanostructured substrates, we can conclude that the multisacle TiO2 nanorod substrates could indeed effectively enhance the capture yields of target cancer cells. The capture yield of artificial blood samples on the BSA-aptamer TiO2 nanorod substrates is up to 85%-95%, revealing the potential application of the TiO2 nanorods on efficient and sensitive capture of rare circulating tumor cells. PMID:27176724

  19. Nb doping effect on TiO2-x films for bolometer applications

    NASA Astrophysics Data System (ADS)

    Shin, Young Bong; Kumar Reddy, Y. Ashok; Kang, In-Ku; Lee, Hee Chul

    2016-04-01

    Nb-doped TiO2-x thin films were deposited using a 1 at% niobium doped titanium target by RF reactive magnetron sputtering at various oxygen partial pressures (pO2). The films appeared amorphous in the pO2 range of 4.4-4.7% with resistivity ranging from 0.39 Ω cm to 2.48 Ω cm. Compared to pure TiO2-x films, the resistivity of the Nb-doped TiO2-x films did not change sensitively with the oxygen partial pressure, indicating that the resistivity of the films can be accurately controlled. 1/f noise parameter of Nb-doped TiO2-x films were found to decrease largely while the measured temperature coefficient of resistance (TCR) of the films was still high. The obtained results indicate that Nb-doped TiO2-x films have great potential as an alternative bolometric material.

  20. Effect of Xe ion irradiation on photocatalytic performance of oblique TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Li, Zhengcao; Teng, Yi; Chen, Chienhua; Lv, Shasha; Wang, Guojing; Zhang, Zhengjun

    2015-02-01

    In this work oblique TiO2 nanowire arrays (NWs) were prepared by magnetron sputtering method and irradiated by 200 keV Xe ion with different doses. The photocatalytic activity of TiO2 was studied by degrading methyl orange dye (MO) under ultraviolet (UV) light, which indicates that the photocatalytic performance of as-deposited and irradiated TiO2 NWs. It was found that when the dose was relatively low, the Ti3+ content on the surface was increased upon irradiation, dominating the enhancement of the photocatalytic property of the TiO2 NWs. By this means, an optimization of Xe ion dose can largely improve the photocatalytic performance of TiO2 NWs.

  1. Sandwich structure of Pd doped nanostructure TiO2 film as O2 sensor.

    PubMed

    Wang, Hairong; Sun, Quantao; Chen, Lei; Zhao, Yulong

    2013-09-01

    In this paper, we investigated the sensing properties of sandwich structure of TiO2/Pd/TiO2 thin films at various operating temperatures and oxygen partial pressures. The nanostructure TiO2 thin films were prepared by the sol-gel method. Various thickness of Pd buried layer was deposited by magnetron sputtering of a pure Pd target. The films were characterized using X-ray diffraction analysis and SEM. It was found that TiO2/Pd/TiO2 thin films have the p-type behavior while the pure TiO2 thin film is n-type semiconductor materials. We found that the structure of TiO2/Pd/TiO2 thin films with 10 s sputtering Pd layer has a better stability at 240 °C. PMID:24089853

  2. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-02-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  3. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Rentería-Tapia, V.; Aguilar-Franco, M.

    2011-06-01

    In this work, amorphous and crystalline TiO2 films were synthesized by the sol-gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.

  4. Effects of annealed temperature on the properties of TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Avesh

    2016-05-01

    In this work, the structural, morphological and electrical properties of TiO2 thin films are studied. The phase transformation of TiO2 from anatase to rutile is occurred at a certain temperature. This transformation increases defects concentration onthe surface of the film which acts as trapping sites for carriers, thereby affecting the Fermi level of TiO2 film.Quantitative estimation of Fermi level shifting is measured in terms of work function measurement using scanning Kelvin probe measurement. Work function of TiO2 was found to decrease with increasing annealed temperature indicating shifting of Fermi level towards conduction band. Position of Fermi level plays an important role in phase transformation and electronic properties of TiO2.

  5. Characterization and acetone gas sensing properties of electrospun TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Bian, Haiqin; Ma, Shuyi; Sun, Aimin; Xu, Xiaoli; Yang, Guijin; Gao, Jiming; Zhang, Zhengmei; Zhu, Haibin

    2015-05-01

    In this work, random network structure of titanium dioxides (TiO2) nanorods was synthesized by calcining electrospun TiO2/PVP hybrid rods. Structural, optical and acetone gas sensing properties of the nanorods were investigated. The TiO2 nanorods are polycrystalline with a mixture of anatase and rutile structures. The diameter of TiO2 nanorods is about 500 nm. The photoluminescence (PL) spectra measurement at room temperature revealed that a broad emission band including the two emission peaks are about at 401 and 467 nm. The sensor shows the high response, good reproducibility and selectivity for acetone (CH3COCH) with a fast response and recovery time at 500 °C. In addition, the acetone sensing mechanism of the TiO2 nanorods sensors is discussed.

  6. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  7. Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Chaudhary, Ujwal; Das, Santanu; Godavarty, Anuradha; Agarwal, Arvind

    2013-10-01

    The effect of porosity on photocatalytic activity of plasma-sprayed TiO2 coating on steel substrate is studied by varying processing parameters viz. plasma power and powder feed rate. The relationship between porosity content and methylene blue (MB) dye decomposition rate was established to correlate coating microstructure and its photocatalytic activity. The coating with the highest porosity content exhibited best photocatalytic efficiency. The same processing parameters were used to deposit TiO2 coating on FTO glass. The photocatalytic activity of TiO2 coating on FTO was 2.5 times better than TiO2 coating on the steel substrate. TiO2 coating on FTO glass contains bimodal porosity distribution (micropores and submicron pores) which accelerated MB decomposition by accelerated diffusion of ionic species.

  8. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  9. A simple hydrothermal preparation of TiO 2 nanomaterials using concentrated hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Nguyen Phan, Thuy-Duong; Pham, Hai-Dinh; Viet Cuong, Tran; Jung Kim, Eui; Kim, Sunwook; Woo Shin, Eun

    2009-12-01

    A TiO 2 nanostructure was synthesized via a simple method using only concentrated hydrochloric acid as the morphological/crystallographic controlling agent. Microscopy images showed that the texture of the TiO 2 powder could be easily engineered and tuned by tailoring the HCl volume, creating cuboid, flower, cauliflower, and ball-shaped particles. Three-dimensional TiO 2 microparticles resulted from the self-assembly of nanostructured sub-units including nanocubes, nanoprisms, and nanorods. The crystalline anatase and rutile phases were also identified depending on the acidic medium. HCl played a key role in orchestrating the structures and morphologies of the TiO 2 nanoscale materials. The phase transformation and morphological changes were strongly related to the crystal growth mechanism of the TiO 2 nanostructure.

  10. Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches

    NASA Astrophysics Data System (ADS)

    Lee, Daeho; Rho, Yoonsoo; Allen, Frances I.; Minor, Andrew M.; Ko, Seung Hwan; Grigoropoulos, Costas P.

    2013-10-01

    In this study, a hierarchical TiO2 nanostructure with densely-packed and omnidirectional branches grown by a hydrothermal method is introduced. This morphology is achieved via high-concentration TiCl4 treatment of upright backbone nanowires (NWs) followed by hydrothermal growth. Secondary nanobranches grow in all directions from densely distributed, needle-like seeds on the jagged round surface of the backbone NWs. In addition, hierarchical, flower-like branches grow on the top surface of each NW, greatly increasing the surface area. For dye-sensitized solar cell (DSSC) applications, the TiO2 nanostructure demonstrated a photoconversion efficiency of up to 6.2%. A parametric study of the DSSC efficiency showed that branched TiO2 DSSCs can achieve nearly four times the efficiency of non-branched TiO2 nanowire DSSCs, and up to 170% the efficiency of previously-reported sparsely-branched TiO2 NW DSSCs.

  11. Dramatic activity of mixed-phase TiO2 photocatalyst synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Xu, Bolian; Fan, Yining

    2013-02-01

    The mixed-phase TiO2 photocatalysts with different anatase/rutile/brookite ratios and high specific surface area (157-218 m2/g) were prepared by hydrothermal method at 100 °C and the effect of rutile content in TiO2 on the BET surface area, light absorption and separation efficiency of photogenerated charge carriers was studied and correlated to the photocatalytic activity of TiO2. Rutile content increased from 0% to 100% by increasing the amount of TiCl4 in aqueous phase and the initial pH value of reaction solution played an important role in the phase composition of TiO2. The photocatalytic mechanism of mixed-phase TiO2 was discussed.

  12. Fabrication of TiO2 Colloidal Crystal Films and Characterization of Their Photocatalytic Properties

    SciTech Connect

    Huang, Wei; Wang, Feng; Wang, Wei

    2011-01-01

    We have studied hydrolysis of organic alkyltitanate compounds and optimized reaction condition for synthesis of monodisperse titania (TiO2 colloidal particles with controlled size from nanometer to submicron. The synthesized TiO2 colloidal particles were further surface-modified with hydrophobic silane coupling agent. With the monodisperse hydrophobic particles, we fabricated TiO2 colloidal crystal thin films through transferring self-assembled colloidal crystal monolayer from water surface onto solid substrates. The TiO2 colloidal crystal films exhibit enhanced interaction with visible light. Consequently, in comparison with plain TiO2 particle thin film, the thin film with colloidal crystal structure shows enhanced photocatalytic activity, as evaluated through photodegradation of organic dye methyl orange in solution under simulated solar light.

  13. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    NASA Astrophysics Data System (ADS)

    Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-01

    Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  14. Electrochromic properties of spray deposited TiO 2-doped WO 3 thin films

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Mujawar, S. H.; Inamdar, A. I.; Sadale, S. B.

    2005-08-01

    TiO 2-doped WO 3 thin films were deposited onto fluorine-doped tin oxide coated conducting glass substrates using spray pyrolysis technique at 525 °C. The volume percentage of TiO 2 dopant was varied from 13% to 38%. The thin film samples were transparent, uniform and strongly adherent to the substrates. Electrochromical properties of TiO 2-doped WO 3 thin films were studied with the help of cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulometry (CC) techniques. It has been found that TiO 2 doping in WO 3 enhances its electrochromic performance. Colouration efficiency becomes almost double and samples exhibit increasingly high reversibility with TiO 2 doping concentrations, in the studied range.

  15. Removal of benzene and toluene by carbonized bamboo materials modified with TiO2.

    PubMed

    Chuang, Chih Shen; Wang, Ming-Kuang; Ko, Chun-Han; Ou, Chia-Chih; Wu, Chien-Hou

    2008-03-01

    Carbonized moso bamboo (Phyllostachys pubescens) was coated with TiO(2) nanoparticles to enhance its removal efficiency of harmful gases. Carbonized bamboo-TiO(2) composite (CBC) was prepared by heating mixtures of carbonized bamboo powder (CB) and TiO(2) nanoparticles, denoted as CBM, under nitrogen condition. TiO(2) nanoparticle and carbonized bamboo powder were mixed with the mass ratios of 1/1 and 2/1, respectively. At the same mass ratio of TiO(2) to CB, the benzene and toluene removal efficiencies follow the trend: CBC>CBM>CB, which is consistent with the amount of TiO(2) validated by elemental analysis. Sorption mechanism of benzene and toluene by CB, CBM and CBC might belong to hydrophobic-hydrophobic interaction, observed by depletion of untreated bamboo (UB) carbohydrates during carbonization. Sorption kinetics was further analyzed, and optimal correlation was found by fitting with the Elovich kinetic equation. PMID:17459699

  16. Photocatalytic oxidation of chloroform using immobilized-biogenic TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Cho, Y.; Yoo, H.

    2011-12-01

    Although commercial titanium dioxide (TiO2) nanoparticles as a suspension in water are one of the most popular photocatalysts for treatment of chlorinated organic compounds, the reuse and recovery of the nanoscale phtocatalyst is a practical challenge for application in water and groundwater treatment system. As part of efforts to overcome this practical limitation, development of immobilized TiO2 is needed. Diatom Pinnularia sp. were found to be capable of producing nanoscale TiO2 in their microscale silica shells. In order to obtain biogenic TiO2 nanoparticles from Pinnularia sp., soluble Ti was fed to the silicon-starved cells, resulting in deposition of titanium on the microscale features of the silica shells. After thermal treatment at 720 oC for 2 hr, the titanium was eventually converted to nanoscale TiO2. In order to determine the physical and chemical properties of the immobilized TiO2, material characterization such as TEM, STEM-EDS, BET and XRD analysis was carried out. In this study, a novel type of immobilized photocatalytic nanoparticles, biogenic TiO2 on silica shells was used for the mineralization of chloroform in water. Batch tests were conducted to evaluate the chloroform removal efficiency of biogenic and commercial TiO2 nanoparticles. Also, the amount of Cl- ions in water during the mineralization was measured to check mineralization of chloroform by biogenic TiO2 nanoparticles. Kinetic models were used to determine the rate of chloroform mineralization. In addition, the effect of UVA (ultraviolet-A) intensity on chloroform mineralization was investigated. The results obtained from this study could provide useful information for practical application of biogenic TiO2 in the groundwater treatment contaminated with some chlorinated organic compounds.

  17. Achieving enhanced DSSC performance by microwave plasma incorporation of carbon into TiO2 photoelectrodes

    NASA Astrophysics Data System (ADS)

    Dang, Binh H. Q.; MacElroy, Don; Dowling, Denis P.

    2013-06-01

    The photoactivity of carbon-incorporated titanium dioxide (TiO2) has been widely reported. This study involves a novel approach to the incorporation of carbon into TiO2 through the use of microwave plasma processing. The process involved thermally treating printed TiO2 nanoparticle coatings in a microwave-induced argon-oxygen plasma containing low concentrations of methane. The resulting deposited carbon layer was characterized using XRD, XPS, Raman, UV-vis, ellipsometry, and optical profilometry. It was found that the methane gas was dissociated in the microwave plasma into its carbon species, which were then deposited as a nm-thick layer onto the TiO2 coatings, most likely in the form of graphite. The photovoltaic performances of both the TiO2 and the carbon-incorporated TiO2 were assessed through J-V and IPCE measurements of the N719-sensitized solar cells using the titania as their photoanodes. Up to a 72% improvement in the maximum power density (Pd-max) was observed for the carbon-incorporated TiO2 samples as compared to the TiO2, onto which no carbon was added. This improvement was found to be mainly associated with an increase in the short-circuit current density (Jsc), but independent from the open-circuit voltage (Voc), the filter factor (FF), and the level of dye adsorption. Possible contributory factors to the improved performance of the carbon-incorporated TiO2 were the enhanced electron conductivity and electron lifetime, both of which were elucidated through electrochemical impedance spectroscopy (EIS). When the surface layer was examined using XPS, the optimal carbon content on the TiO2 coating surface was found to be 8.4%, beyond which there was a reduction in the DSSC efficiency.

  18. Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles

    NASA Astrophysics Data System (ADS)

    Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong

    2011-12-01

    Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.

  19. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment.

    PubMed

    Yue, Xiaoshan; Schunter, Alissa; Hummon, Amanda B

    2015-09-01

    Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multistep enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multiphosphopeptides as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multistep enrichment. PMID:26237447

  20. High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers.

    PubMed

    Wang, Bin; Karthikeyan, Rengasamy; Lu, Xiao-Ying; Xuan, Jin; Leung, Michael K H

    2013-12-15

    In this study, TiO2 nanorods were successfully immobilized on carbon fibers by a facile pyrolysis of natural cotton in nitrogen atmosphere followed by a one-pot hydrothermal method. Carbonized cotton fibers (CCFs) and TiO2-CCFs composites were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffractometer (XRD), diffuse reflectance UV-vis spectroscopy (DRS) and photoluminescence (PL) spectroscopy. Results implied that the band gap narrowing of TiO2 was achieved after integration of CCFs. Dye adsorption isotherm indicated that the maximum dye adsorption capacity (qm) of CCFs-1000 (13.4 mg/g) was 2 times higher than that of cotton fibers and qm of TiO2-CCFs-1000 (9.0mg/g) was 6-7 times higher than that of TiO2 nanorods. Photocatalytic activity of TiO2 nanorods prepared with 3 mL Ti(OBu)4 showed the highest photocatalytic activity. TiO2-CCFs-1000 exhibited higher activity than TiO2 immobilized on CCFs-400, CCFs-600 and CCFs-800. Good photostability of TiO2-CCFs-1000 was found for dye degradation under visible light irradiation. The enhancement of photocatalytic dye degradation was due to the high adsorptivity of dye molecules, enhanced light adsorption and effective separation of electron-hole pairs. This work provides a low-cost and sustainable approach to immobilize nanostructured TiO2 on carbon fibers for environmental remediation. PMID:24220193

  1. Characterization and comparison of photocatalytic activities of prepared TiO2/graphene nanocomposites using titanium butoxide and TiO2 via microwave irradiation method

    NASA Astrophysics Data System (ADS)

    Darvishi, Motahareh; Seyed-Yazdi, Jamileh

    2016-08-01

    Photocatalysis based on TiO2 nanostructures with nanoscale hybridization of graphene, is a promising method to create highly conductive composite materials and surfaces with enhanced light absorption. In this study, graphite-oxide (GO) was produced by improved Hummers’ method followed by synthesis of TiO2/graphene nanocomposites. We used two precursors, titanium butoxide (TBO) and commercial TiO2, to produce nanocomposites in a mixture of water/ethanol and graphene-oxide, for hydrolysis of titania precursors on graphene-oxide sheets resulting in the formation of nanocomposites. Microwave irradiation is used to reduce graphene-oxide into graphene. TiO2/graphene nanocomposites in both cases demonstrate enhancement of overall photocatalytic activity compared with titania precursors which was examined by degradation of methylene blue (MB). In this study, nanocomposites were synthesized with different mass ratios of GO compare to titania precursors (i.e. GO: 1, 5 and 8 wt%). Photocatalytic performance increased with the increasing content of graphene in both cases. The reduction rate of MB for TiO2 was 62% and for TiO2/graphene (TiO2/G) (GO: 8 wt%) was 85% after 90 min, and for TBO and TBO/G (GO: 8 wt%) was 3% and 99.95%, respectively. SEM, XRD, Fourier transform infrared and UV–vis spectroscopy were used to characterize the synthesized nanocomposites. FTIR analysis demonstrates the formation of Ti–O–C bonds and confirms the formation of nanocomposites made of graphene and titania nanoparticles.

  2. Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Razi, P.; Hoseinifard, S.; Jabbari, V.

    2013-11-01

    In order to search for an efficient photocatalysts working under visible light illumination, we have investigated the effect of metal and nonmetal ions (In, S) codoping on the photocatalytic activity of TiO2 nanoparticles (TiO2 NPs) prepared by combining of sol-gel (SG) and photodeposition (PD) methods using titanium tetra isopropoxide (TTIP), indium nitrate (In(NO3)3) and thiourea as precursors. In this regard, at first three different percentage of S (0.05, 0.2 and 0.5) doped into the TiO2 by SG method, and then different amount of In(III) loaded on the surface of the prepared samples by PD technique. The results showed that the In, S-codoped TiO2 (In, S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of In, S-TiO2 showed a considerable red shift to the visible region. Finally, the photocatalytic activity of In, S-TiO2 photocatalysts were evaluated by photooxidative degradation of methyl orange (MO) solution under UV and visible light illumination. As a result, it was found that 0.05%S-0.5%In/TiO2, 0.2%S-1.5%In/TiO2 and 0.5%S-0.5%In/TiO2 had the highest catalytic activity under visible light in each group and among these samples 0.2%S-1.5%In/TiO2 showed the best photocatalytic performance under visible light and decomposes more than 95% MO in only 90 min.

  3. Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation

    PubMed Central

    Rtimi, Sami; Nesic, Jelena; Pulgarin, Cesar; Sanjines, Rosendo; Bensimon, Michael; Kiwi, John

    2015-01-01

    Evidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO2 sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO2 loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES–TiO2 and PE–TiO2 samples. The amount of TiO2 on the films was monitored by diffuse reflectance spectroscopy and X-ray fluorescence. X-ray electron spectroscopy shows the lack of accumulation of bacterial residues such as C, N and S during bacterial inactivation since they seem to be rapidly destroyed by TiO2 photocatalysis. Evidence was found for Ti4+/Ti3+ redox catalysis occurring on PES–TiO2 and PE–TiO2 during the bacterial inactivation process. On PE–TiO2 surfaces, Fourier transform infrared spectroscopy (ATR-FTIR) provides evidence for a systematic shift of the na(CH2) stretching vibrations preceding bacterial inactivation within 60 min. The discontinuous IR-peak shifts reflect the increase in the C–H inter-bond distance leading to bond scission. The mechanism leading to E. coli loss of viability on PES–TiO2 was investigated in the dark up to complete bacterial inactivation by monitoring the damage in the bacterial outer cell by transmission electron microscopy. After 30 min, the critical step during the E. coli inactivation commences for dark disinfection on 0.1–5% wt PES–TiO2 samples. The interactions between the TiO2 aggregates and the outer lipopolysaccharide cell wall involve electrostatic effects competing with the van der Waals forces. PMID:25657831

  4. Nitrite Reduction to Nitrous Oxide and Ammonia by TiO2 Electrons in a Colloid Solution via Consecutive One-Electron Transfer Reactions.

    PubMed

    Goldstein, Sara; Behar, David; Rajh, Tijana; Rabani, Joseph

    2016-04-21

    The mechanism of nitrite reduction by excess electrons on TiO2 nanoparticles (eTiO2(-)) was studied under anaerobic conditions. TiO2 was loaded with up to 75 electrons per particle, induced by γ-irradiation of acidic TiO2 colloid solutions containing 2-propanol. Time-resolved kinetics and material analysis were performed, mostly at 1.66 g L(-1) TiO2. At relatively low nitrite concentrations (R = [eTiO2(-)]o/[nitrite]o > 1.5), eTiO2(-) decays via two consecutive processes; at higher concentrations, only one decay step is observed. The stoichiometric ratio Δ[eTiO2(-)]/[nitrite]o of the faster process is about 2. This process involves the one-electron reduction of nitrite, forming the nitrite radical (k1 = (2.0 ± 0.2) × 10(6) M(-1) s(-1)), which further reacts with eTiO2(-) (k2) in competition with its dehydration to nitric oxide (NO) (k3). The ratios k2/k3 = (3.0 ± 0.5) × 10(3) M(-1) and k2 > 1 × 10(6) M(-1) s(-1) were derived from kinetic simulations and product analysis. The major product of this process is NO. The slower stage of the kinetics involves the reduction of NO by eTiO2(-), and the detailed mechanism of this process has been discussed in our earlier publication. The results reported in this study suggest that several intermediates, including NO and NH2OH, are adsorbed on the titanium nanoparticles and give rise to inverse dependency of the respective reaction rates on the TiO2 concentration. It is demonstrated that the reduction of nitrite by eTiO2(-) yields mainly N2O and NH3 via consecutive one-electron transfer reactions. PMID:27050805

  5. A general templated method to homogeneous and composition-tunable hybrid TiO2 nanocomposite fibers.

    PubMed

    Xu, Ximing; Li, Xiaona; Lin, Pingyong; Chen, Ting; Yuan, Rusheng; Ding, Zhengxin; Wu, Ling; Wang, Xuxu; Li, Zhaohui

    2011-03-01

    Sequential impregnations of metal ions and titanium tetraisopropoxide (TTIP) into activated carbon fibers (ACF) followed by a solvothermal treatment has been found to be a general method in the preparations of homogeneous and composition-tunable hybrid TiO(2) hierarchical nanocomposite fibers like WO(3)/TiO(2), Fe(2)O(3)/TiO(2) and SnO(2)/TiO(2). PMID:21225065

  6. Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation

    NASA Astrophysics Data System (ADS)

    Banerjee, Biplab; Amoli, Vipin; Maurya, Abhayankar; Sinha, Anil Kumar; Bhaumik, Asim

    2015-06-01

    We report a non-trivial facile chemical approach using ionic liquid ([bmim][Cl]) as a porogen for the synthesis of (001) faceted TiO2 nanocrystals having mesoscopic void space. This faceted TiO2 nanomaterial has been doped with Pt nanoclusters through chemical impregnation. The resulting Pt-doped TiO2 nanomaterials are thoroughly characterized by powder X-ray diffraction (PXRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), ultra high resolution transmission electron microscopy (UHR-TEM), energy dispersive X-ray spectrometry (EDX), UV-vis diffuse reflection spectroscopy (DRS) and N2 sorption studies. These Pt/TiO2 nanocrystals with (001) exposed facets are employed as efficient and benign catalysts for hydrogen production from pure water and methanol-water systems under one AM 1.5G sunlight illumination. The effect of platinum loading and methanol-water ratio on the photocatalytic activity of the faceted TiO2 nanocrystals are investigated and it is found that hydrogen evolution rates have been enhanced significantly upon Pt loading. Under optimized reaction conditions the highest photocatalytic activity of 11.2 mmol h-1 g-1 has been achieved over ca. 1.0 wt% Pt loaded Pt/TiO2 nanocrystals with (001) exposed facets, which is one of the highest hydrogen evolution rates over the noble metal/TiO2 system reported to date in the literature.We report a non-trivial facile chemical approach using ionic liquid ([bmim][Cl]) as a porogen for the synthesis of (001) faceted TiO2 nanocrystals having mesoscopic void space. This faceted TiO2 nanomaterial has been doped with Pt nanoclusters through chemical impregnation. The resulting Pt-doped TiO2 nanomaterials are thoroughly characterized by powder X-ray diffraction (PXRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), ultra high resolution transmission electron microscopy (UHR-TEM), energy dispersive X-ray spectrometry (EDX), UV-vis diffuse reflection spectroscopy (DRS) and

  7. Coupled cluster calculations on TiO2 nanoclusters

    SciTech Connect

    Berardo, Enrico; Hu, Hanshi; Kowalski, Karol; Zwijnenburg, Martijn A.

    2013-08-14

    The excitation energies of the four lowest-lying singlet excited states of the TiO2 Ti2O4 and Ti3O6 clusters are calculated by a variety of different Equation-of-Motion Coupled Cluster (EOM-CC) approaches in order to obtain benchmark values for the optical excitations of titanium dioxide clusters. More specifically we investigate what is the effect of the inclusion of triple excitations "triples" in the (EOM-)CC scheme on the calculated excited states of those clusters. While for the monomer and dimer the inclusion of triples causes only a rigid shift in the excitation energies, in the case of the trimer the crossing of the interested states is observed. Coupled cluster approaches where triples are treated perturbatively were found to offer no advantage over EOM-CCSD, whereas the active-space methods (EOM-CCSDt(II/I)) proved to yield results very close to the full EOM-CCSDT, but at a much lower computational cost.

  8. TiO2-graphene nanocomposites for enhanced osteocalcin induction.

    PubMed

    Kandiah, Kavitha; Muthusamy, Prabhu; Mohan, Selvam; Venkatachalam, Rajendran

    2014-05-01

    Bone defects and damages are common these days, which increases the usage of biomaterial for humans. To prepare a potential biomaterial, we synthesised a series of titania-graphene nanocomposites (TGS) (2:x (0.25, 0.5, 1.0, 2.0, and 4.0 g)) using in situ sol-gel method. The obtained structural results show that the prepared TGS nanocomposites are an irregular sheet with spherical TiO2 intercalated morphology. The SSA of the nanocomposites ranging from 167.98 to 234.56 m(2) g(-1) with mesoporosity and swelling tendency ranging from 11.55 to 26.13% leads to an enhancement in human cell attachment as well as avoids the migration and agglomeration of the nanoparticles in the body. Further, the biological analysis in simulated body fluid and human cell lines (AGS and MG-63) collectively reveals that the TG2 (2:2) and TG4 (2:4) samples are found to be more favourable materials for biomimic bone action among the prepared TGS nanocomposites. PMID:24656376

  9. The potential health challenges of TiO2 nanomaterials.

    PubMed

    Sha, Baoyong; Gao, Wei; Cui, Xingye; Wang, Lin; Xu, Feng

    2015-10-01

    Titanium dioxide (TiO2 ) nanomaterials (NMs) have found widespread applications owing to their attractive physical and chemical properties. As a result, the potential adverse impacts of nano-TiO2 exposure on humans have become a matter of concern. This review presents the state-of-the-art advances on the investigations of the adverse effects of NMs, including the potential exposure routes of nano-TiO2 (e.g. respiratory system, skin absorption and digestive system), the physico-chemical characterizations of nano-TiO2 (e.g. crystal structure, shape,size, zeta potential, treatment media, aggregation and agglomeration tendency, surface characteristics and coatings), risk evaluation of nanotoxicity (e.g. cytotoxicity, ecotoxicity, phototoxicity, and phytotoxicity) and potential mechanisms of adverse effects (e.g. generation of reactive oxygen species, oxidative stress and organelle dysfunction). The review aims to facilitate scientific assessments of health risks to nano-TiO2 , which would guide the safe applications of NMs in our daily life. PMID:26179748

  10. XAS study of TiO2-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Schneider, K.; Zajac, D.; Sikora, M.; Kapusta, Cz.; Michalow-Mauke, K.; Graule, Th.; Rekas, M.

    2015-07-01

    X-Ray Absorption Spectroscopy studies of the W (0-1 at% W) and Mo-doped TiO2 (0-1 at% Mo) nanoparticle specimens at the K edges of titanium and molybdenum as well as at the L2 L3 edges of tungsten are presented. The materials were prepared with Flame Spray Synthesis process by oxidation of metal-organic precursors. The Ti:K edge spectra in the XANES range show pre-edge and post-edge features characteristic for anatase. A decrease of the amplitude of the EXAFS function with doping is observed and attributed to a softening of the crystal lattice. The Mo EXAFS functions show a considerable decrease of the second-neighbour-shell peak with increasing Mo content, which is attributed to an increased number of cation vacancies. For tungsten a less pronounced effect is observed. The Mo and W XANES spectra do not show noticeable changes with doping level, which indicates their unchanged oxidation states.

  11. Crystallinity of anodic TiO2 nanotubes and bioactivity.

    PubMed

    An, Sang-Hyun; Narayanan, Ramaswamy; Matsumoto, Takuya; Lee, Hyo-Jin; Kwon, Tae-Yub; Kim, Kyo-Han

    2011-06-01

    Anodic TiO2 nanotubes were produced on titanium at 20 V using 1 M Na2SO4 and 0.5 wt% NaF. Oxidation for 3 hours produced amorphous tubes of diameter 100 nm and thicknesses 2 microm. Heat-treatments were done for 3 hours at different temperatures. 300 degrees C treatment converted the amorphous coatings to anatase. 550 and 700 degrees C treatments formed dual anatase and rutile; 850 degrees C treatment crystallized to rutile. The treatment at 700 degrees C produced an oxide surface with higher roughness, lower wetting angle and higher coating adhesion. Bioactivity of the as-oxidized and heated coatings were evaluated by treating them in a simulated body fluid (SBF) to form hydroxyapatite (HA) and the rates of HA formation were compared. Deposits of HA could be seen on the dual oxide structure within 3 days. HA was detected after 7 days in the anatase structure and only after 21 days in the amorphous and rutile structures. In vitro cell culture tests done using mouse osteoblasts indicated that, the 700 degrees C-heated surface showed higher levels of cell activity than the other surfaces. It is concluded that the dual rutile and anatase structure formed by heating the oxide at 700 degrees C is the best of the five surfaces tested. PMID:21770121

  12. Quantum Dot TiO2-Ge Solar Cells

    NASA Astrophysics Data System (ADS)

    Church, Carena; Muthuswamy, Elayaraja; Kauzlarich, Susan; Carter, Sue

    2014-03-01

    Colloidal germanium (Ge) quantum dots (CQDs) are attractive solar materials due to their low toxicity compared to Pb- or Cd- based nanocrystals (NC), low cost, and optimal, tunable bandgap for both increased IR response and potential power conversion efficiency (η) boosts from Multiple Exciton Generation (MEG). We report on the successful fabrication and characterization of spun-cast donor/acceptor type TiO2-Ge CQD solar cells utilizing Ge colloidal quantum dots (CQD) synthesized via a facile microwave method as the active layer. We find that our Ge QD size performance-related trends are similar to other QD systems studied. Additionally, our best heterojunction devices achieved short circuit currents (JSC) of 450 μA and open circuit voltages (VOC) of 0.335 V, resulting in η = 0.022 %. While this represents significant increases over previous Ge CQD PV (85 % over hybrid Ge-P3HT PV, 350 % over Ge NC PV), our photocurrents are still much lower than other NC systems. Analysis of intensity-dependent J-V characteristics reveal that our currents are limited by a space-charge region that forms leading to unbalanced charge extraction. We conclude by discussing a variety of film treatments and device structures we have tested to increase JSC.

  13. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films.

    PubMed

    Mattsson, Andreas; Leideborg, Michael; Larsson, Karin; Westin, Gunnar; Osterlund, Lars

    2006-01-26

    Adsorption and solar light decomposition of acetone was studied on nanostructured anatase TiO2 and Nb-doped TiO2 films made by sol-gel methods (10 and 20 mol % NbO2.5). A detailed characterization of the film materials show that films contain only nanoparticles with the anatase modification with pentavalent Nb oxide dissolved into the anatase structure, which is interpreted as formation of substituted Nb=O clusters in the anatase lattice. The Nb-doped films displayed a slight yellow color and an enhanced the visible light absorption with a red-shift of the optical absorption edge from 394 nm for the pure TiO2 film to 411 nm for 20 mol % NbO2.5. In-situ Fourier transform infrared (FTIR) transmission spectroscopy shows that acetone adsorbs associatively with eta1-coordination to the surface cations on all films. On Nb-doped TiO2 films, the carbonyl bonding to the surface is stabilized, which is evidenced by a lowering of the nu(C=O) frequency by about 20 cm(-1) to 1672 cm(-1). Upon solar light illumination acetone is readily decomposed on TiO2, and stable surface coordinated intermediates are formed. The decomposition rate is an order of magnitude smaller on the Nb-doped films despite an enhanced visible light absorption in these materials. The quantum yield is determined to be 0.053, 0.004 and 0.002 for the pure, 10% Nb:TiO2, and 20%Nb:TiO2, respectively. Using an interplay between FTIR and DFT calculations we show that the key surface intermediates are bidentate bridged formate and carbonate, and H-bonded bicarbonate, respectively, whose concentration on the surface can be correlated with their heats of formation and bond strength to coordinatively unsaturated surface Ti and Nb atoms at the surface. The oxidation rate of these intermediates is substantially slower than the initial acetone decomposition rate, and limits the total oxidation rate at t>7 min on TiO2, while no decrease of the rate is observed on the Nb-doped films. The rate of degradation of key surface intermediates is different on pure TiO2 and Nb-doped TiO2, but cannot explain the overall lower total oxidation rate for the Nb-doped films. Instead the inferior photocatalytic activity in Nb-doped TiO2 is attributed to an enhanced electron-hole pair recombination rate due to Nb=O cluster and cation vacancy formation. PMID:16471666

  14. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    PubMed

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells. PMID:25974906

  15. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  16. Preparation and photocatalytic activity of CeO 2/TiO 2 interface composite film

    NASA Astrophysics Data System (ADS)

    Jiang, Bangtong; Zhang, Shengyi; Guo, Xiaozhu; Jin, Baokang; Tian, Yupeng

    2009-03-01

    The CeO 2/TiO 2 and TiO 2/CeO 2 interface composite films were prepared on glass substrates by the sol-gel process via dip-coating and calcining technique. The scanning electron microscopy (SEM) revealed that the TiO 2 layer has a compact and uniformity glasslike surface with 200 nm in thickness, and the CeO 2 layer has a coarse surface with 240 nm in thickness. The X-ray diffractometer (XRD) analysis showed that the TiO 2 layer is made up of anatase phase, and the CeO 2 layer is structured by cubic fluorite phase. Through a series of photo-degradation experiments, the relationship of the photocatalytic activity with the constituents of the films was studied. In virtue of the efficient interfacial charge separation via the process of electron transfer from TiO 2 to CeO 2, the photocatalytic activity of the CeO 2/TiO 2 composite film is high. Contrarily, the photocatalytic activity of the TiO 2/CeO 2 composite film is low, due to its inert surface made up of CeO 2 with broad bandwidth. Apart from the effect of the film structure, the effect of film thickness on photocatalytic activity was also discussed.

  17. Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls

    NASA Astrophysics Data System (ADS)

    Erdogan, Deniz Altunoz; Polat, Meryem; Garifullin, Ruslan; Guler, Mustafa O.; Ozensoy, Emrah

    2014-07-01

    Polystyrene cross-linked divinyl benzene (PS-co-DVB) microspheres were used as an organic template in order to synthesize photocatalytic TiO2 microspheres and microbowls. Photocatalytic activity of the microbowl surfaces were demonstrated both in the gas phase via photocatalytic NO(g) oxidation by O2(g) as well as in the liquid phase via Rhodamine B degradation. Thermal degradation mechanism of the polymer template and its direct influence on the TiO2 crystal structure, surface morphology, composition, specific surface area and the gas/liquid phase photocatalytic activity data were discussed in detail. With increasing calcination temperatures, spherical polymer template first undergoes a glass transition, covering the TiO2 film, followed by the complete decomposition of the organic template to yield TiO2 exposed microbowl structures. TiO2 microbowl systems calcined at 600 °C yielded the highest per-site basis photocatalytic activity. Crystallographic and electronic properties of the TiO2 microsphere surfaces as well as their surface area play a crucial role in their ultimate photocatalytic activity. It was demonstrated that the polymer microsphere templated TiO2 photocatalysts presented in the current work offer a promising and a versatile synthetic platform for photocatalytic DeNOx applications for air purification technologies.

  18. The behaviors of anatase and TiO2(B) phase coexisting nanosheets under high pressure

    NASA Astrophysics Data System (ADS)

    Huang, Yanwei; Li, Wentao; Ren, Xiangting; Yu, Zhenhai; Samanta, Sudeshna; Yan, Shuai; Zhang, Jun; Wang, Lin

    2016-03-01

    High pressure behaviors of anatase TiO2 and TiO2(B) coexisting nanosheets were investigated using in situ synchrotron X-ray diffraction and Raman Spectroscopy. The X-ray diffraction revealed that upon compression an α-PbO2 phase appeared at 11.4 GPa, and then the baddeleyite phase appeared at 23.6 GPa. Upon decompression the anatase phase still existed obviously and TiO2(B) phase almost cannot be observed. The Raman spectrum at ambient pressure presented the typical curve of anatase TiO2, however the pressure dependence for compression and decompression did not show the common phase transion from anatase to α-PbO2 or to baddeleyite. This is different from high pressure behaviors of other TiO2 nanostructures and could be attributed to the existence of small amount of TiO2(B) at the starting materials. The pressure relationship of the Raman frequencies shift slope indicated the coexistence nanosheet has high incompressibility compared with other TiO2 nanomaterials and corresponding bulks.

  19. Density functional theory study of dopants in polycrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Körner, Wolfgang; Elsässer, Christian

    2011-05-01

    We present a density functional theory (DFT) study of doped rutile and anatase TiO2 in which we investigate the impact of grain boundaries on the physics of atomic defects. The main goal is to obtain information about the positions of the defect levels generated by an oxygen vacancy, a titanium interstitial, cation dopants Nb, Al, and Ga, and an anion dopant N in the electronic band gap having in mind the application of TiO2 as a transparent conducting oxide (TCO) or its use in heterogeneous catalysis. Due to the known deficiency of the local density approximation (LDA) of DFT to yield accurate values for band gap energies for insulators such as TiO2, a self-interaction correction (SIC) to the LDA is employed. The main result of our study is that grain boundaries do affect the defect formation energies as well as the position and shape of the dopant-induced electronic energy levels significantly with respect to the single crystal. According to our study Nb doping may lead to n-conducting TiO2 whereas doping with N, Al, or Ga is not promising in order to achieve p-conducting TiO2. Furthermore an increase in the photoconductivity of TiO2:N and the colorlessness of TiO2:Al may be explained by our results.

  20. Fast diffusion of silver in TiO2 nanotube arrays

    PubMed Central

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui

    2016-01-01

    Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  1. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity.

    PubMed

    Wu, Xiaofeng; Fang, Shun; Zheng, Yang; Sun, Jie; Lv, Kangle

    2016-01-01

    Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S) modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R) from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B) and Rhodamine B (RhB) dyes under visible light irradiation (λ > 420 nm). The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity. PMID:26840294

  2. Controllable atomic layer deposition of one-dimensional nanotubular TiO2

    NASA Astrophysics Data System (ADS)

    Meng, Xiangbo; Banis, Mohammad Norouzi; Geng, Dongsheng; Li, Xifei; Zhang, Yong; Li, Ruying; Abou-Rachid, Hakima; Sun, Xueliang

    2013-02-01

    This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 °C) produced amorphous TiO2 while a high temperature (250 °C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors.

  3. Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Pakdel, Esfandiar; Daoud, Walid A.; Wang, Xungai

    2013-06-01

    Wool fabrics were functionalised using TiO2 and TiO2/SiO2 nanocomposites through a low-temperature sol-gel method. Titanium terta isopropoxide (TTIP) and tetra ethylorthosilicate (TEOS) were employed as precursors of TiO2 and SiO2, respectively. Nanocomposite sols were devised based on three molar ratio percentages of TiO2/SiO2 70:30, 50:50, and 30:70 to investigate the role of each component. The self-cleaning and hydrophilicity of wool fabrics were analysed based on the removal of coffee stain under UV and water droplet contact angle measurements, respectively. It was observed that applying TiO2/SiO2 50:50 and 30:70 sols to wool rendered the fabric superhydrophilic. Fabrics functionalised with TiO2/SiO2 30:70 showed the highest efficiency in stain removal, followed by samples functionalised with TiO2/SiO2 50:50.

  4. Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: Size-Reactivity Correlation.

    PubMed

    Zheng, Jing; Liu, Lei; Ji, Guangbin; Yang, Qifan; Zheng, Lirong; Zhang, Jing

    2016-08-10

    An improved hydrogenation strategy for controllable synthesis of oxygen-deficient anatase TiO2 (H-TiO2) is performed via adjusting the particle size of starting rectangular anatase TiO2 nanosheets from 90 to 30 nm. The morphology and structure characterizations obviously demonstrate that the starting materials of TiO2 nanosheets are transformed into nanoparticles with distinct size reduction; meanwhile, the concentration of oxygen vacancy is gradually increased with the decreasing particle size of starting TiO2. As a result, the Li-storage performance of H-TiO2 is not only much better than that of the pure TiO2 but also elevated stage by stage with the decreasing particle size of starting TiO2; especially the H-TiO2 with highest concentration of oxygen vacancy from smallest TiO2 nanosheets shows the best Li-storage performance with a stable discharge capacity 266 mAh g(-1) after 100 cycles at 1 C. Such excellent performance should be attributed to the joint action from oxygen vacancy and size effect, which promises significant enhancement of high electronic conductivity without weakening Li(+) diffusion via hydrogenation strategy. PMID:27434151

  5. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Wang, Wenhui; Dong, Jingya; Ye, Xiaozhou; Li, Yang; Ma, Yurong; Qi, Limin

    2016-03-01

    Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two-dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride-doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate. PMID:26779803

  6. Preparation of mesoporous nanocrystalline anatase TiO2 for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Jacob, K. Stanly; Abraham, P. A.; Panicker, N. Rani; Pramanik, N. C.

    2014-01-01

    Dye sensitized solar cell (DSSC) introduced by Prof.M.Gratzel is a low cost alternative to the existing silicon based solar cells. Solar light conversion efficiency of the current DSSC can be further improved by replacing the conventional anatase TiO2 having lesser surface area with mesoporous high surface area anatase TiO2. This paper describes the sol-gel synthesis of mesoporous high surface area nanocrystalline anatase TiO2 by the controlled hydrolysis and condensation of titanium isopropoxide followed by heat treatment. XRD reveals that xerogel heat treated at 500°C is phase pure anatase. Crystallite size of prepared anatase TiO2 calculated using Scherrer equation was found to be 15 nm. BET analysis of prepared anatase TiO2 exhibited relatively high specific surface area of 97 m2/g, which is found to be almost double to that of the anatase TiO2 generally used for DSSC photo anode fabrication. The pore size distribution (BJH plot) also revealed the mesoporous nature of prepared anatase TiO2 having an average pore size of 7.4 nm.

  7. Graphene Oxide Modified TiO2 Micro Whiskers and Their Photo Electrochemical Performance.

    PubMed

    Rambabu, Y; Jaiswal, Manu; Roy, Somnath C

    2016-05-01

    Harnessing the solar energy and producing clean fuel hydrogen through efficient photo-electrochemical water splitting has remained one of the most challenging endeavors in materials science. The core problem is to develop a suitable photo-catalyst material that absorbs a significant part of the solar spectrum and produces electron-hole pairs that can be easily separated without recombination. In the recent times, the composite of Titanium dioxide with graphene have been investigated to explore the advantages of both class of materials. Here we report on the photo-electrochemical properties of reduced graphene oxide functionalised TiO2 whiskers. The TiO2 whiskers are obtained from potassium titanium oxide (KTi8O16) synthesized through hydrothermal technique followed by ion exchange method and heat treatment. Graphene oxide was deposited on the as prepared TiO2 whiskers using hydrothermal method. As formed samples were characterized by Raman spectroscopy to confirm the presence of reduced graphene oxide (RGO) attached to TiO2 whiskers. Comparative photo electrochemical studies were carried out for TiO2 and reduced graphene oxide modified TiO2 whiskers. Among these, RGO modified TiO2 whiskers show significantly higher photo current density possibly due to enhancement in charge separation ability and longer electron life times. PMID:27483830

  8. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis

    NASA Astrophysics Data System (ADS)

    Raghava Reddy, Kakarla; Gomes, Vincent G.; Hassan, Mahbub

    2014-03-01

    TiO2 nanofibers (30-50 nm diameter), fabricated by the electro-spinning process, were modified with organo-silane agents via a coupling reaction and were grafted with carbohydrate molecules. The mixture was carbonized to produce a uniform coating of amorphous carbon on the surface of the TiO2 nanofibers. The TiO2@C nanofibers were characterized by high resolution electron microscopy (HRTEM), x-ray diffraction (XRD), x-ray photoelectron (XPS), Fourier transform infrared (FTIR) and UV-vis spectroscopy. The photocatalytic property of the functional TiO2 and carbon nanocomposite was tested via the decomposition of an organic pollutant. The catalytic activity of the covalently functionalized nanocomposite was found to be significantly enhanced in comparison to unfunctionalized composite and pristine TiO2 due to the synergistic effect of nanostructured TiO2 and amorphous carbon bound via covalent bonds. The improvement in performance is due to bandgap modification in the 1D co-axial nanostructure where the anatase phase is bound by nano-carbon, providing a large surface to volume ratio within a confined space. The superior photocatalytic performance and recyclability of 1D TiO2@C nanofiber composites for water purification were established through dye degradation experiments.

  9. Simplified TiO2 force fields for studies of its interaction with biomolecules

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  10. Fast diffusion of silver in TiO2 nanotube arrays.

    PubMed

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui; Liang, Wei; Yang, Fuqian

    2016-01-01

    Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10(-18) m(2)/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  11. N-doped TiO2 Prepared by RF DBD Plasma

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Guang; Liu, Jing-Lin; Li, Xiao-Song; Zhai, Zhao-Jun; Zhu, Ai-Min; Laboratory of Plasma Physical Chemistry Team

    2014-10-01

    TiO2 is the most promising photocatalyst because of its chemical stable, nontoxic, low cost, high photocatalytic activity and other attractive properties. Anatase has the highest photocatalytic activity among the three crystal form of TiO2. However, the 3.2 eV bandgap of anatase TiO2 makes it can only utilize the ultraviolet part of solar spectrum. Nitrogen doping is an effective method to extend the absorption range of anatase to visible light. N-doped TiO2 preparation methods, such as heat treatment under NH3 flow, the hydrolytic precipitation and the sol-gel process, have been reported. In this work, preparation of N-doped TiO2 was explored by radio-frequency (RF) dielectric barrier discharge (DBD) plasma using Ar as discharge gas. TiCl4, O2 and N2 were used as Ti, O and N precursors, respectively. In addition, H2 was added to the plasma. X-ray photoelectron spectra (XPS) showed nitrogen was successfully doped into the as-prepared TiO2. Further investigations on structure, composition and optical property of the as-prepared TiO2 samples were conducted by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and UV-Vis absorption spectra techniques.

  12. Light-induced antifungal activity of TiO 2 nanoparticles/ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-09-01

    Antifungal activity of TiO2/ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO2/ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO2 (anatase and rutile) and ZnO. TiO2/ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  13. Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Mehdi, Ahmadi; Sajjad Rashidi, Dafeh; Hamed, Fatehy

    2016-04-01

    An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol–gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (R s) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.

  14. Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO2.

    PubMed

    Terriza, Antonia; Díaz-Cuenca, Aránzazu; Yubero, Francisco; Barranco, Angel; González-Elipe, Agustín R; Gonzalez Caballero, Juan Luis; Vilches, José; Salido, Mercedes

    2013-04-01

    We have studied the effect of the UV induced superhydrophilic wetting of TiO(2) thin films on the osteoblasts cell adhesion and cytoskeletal organization on its surface. To assess any effect of the photo-catalytic removal of adventitious carbon as a factor for the enhancement of the osteoblast development, 100 nm amorphous TiO(2) thin layers were deposited on polyethylene terephthalate (PET), a substrate well known for its poor adhesion and limited wettability and biocompatibility. The TiO(2) /PET materials were characterized by X-ray photoelectron spectroscopy, and atomic force microscopy and their wetting behavior under light illumination studied by the sessile drop method. The amorphous TiO(2) thin films showed a very poor photo-catalytic activity even if becoming superhydrophilic after illumination. The illuminated samples recovered partially its initial hydrophobic state only after their storage in the dark for more than 20 days. Osteoblasts (HOB) were seeded both on bare PET and on TiO(2) /PET samples immediately after illumination and also after four weeks storage in darkness. Cell attachment was much more efficient on the immediately illuminated TiO(2)/PET samples, with development of focal adhesions and cell traction forces. Although we cannot completely discard some photo-catalytic carbon removal as a factor contributing to this cell enhanced attachment, our photodegradation experiments on amorphous TiO(2) are conclusive to dismiss this effect as the major cause for this behavior. PMID:22965473

  15. Air detoxification with nanosize TiO2 aerosol tested on mice.

    PubMed

    Besov, A S; Krivova, N A; Vorontsov, A V; Zaeva, O B; Kozlov, D V; Vorozhtsov, A B; Parmon, V N; Sakovich, G V; Komarov, V F; Smirniotis, P G; Eisenreich, N

    2010-01-15

    A method for fast air purification using high concentration aerosol of TiO(2) nanoparticles is evaluated in a model chemical catastrophe involving toxic vapors of diisopropyl fluorophosphate (DFP). Mice are used as human model in a closed 100 dm(3) chamber. Exposure of mice to 37 ppm of DFP vapor for 15 min resulted in acute poisoning. Spraying TiO(2) aerosol in 2 min after the start of exposure to DFP vapors resulted in quick removal of DFP vapors from the chamber's air. Animals did not show signs of poisoning after the decontamination experiment and exposure to TiO(2) aerosol alone. Reactive oxygen species (ROS) and antioxidant activity (AOA) of mice blood plasma were measured for animals exposed to sound of aerosol generator, DFP vapors, TiO(2) aerosol and DFP vapors+TiO(2) aerosol. Reduced ROS and increased AOA were found for mice exposure to sound, DFP and TiO(2) aerosol. Exposure to DFP and decontamination with TiO(2) nanoparticles resulted in decreased AOA in 48 h following the exposure. The results suggest that application of TiO(2) aerosol is a powerful method of air purification from toxic hydrolysable compounds with moderate health aftermaths and requires further study and optimization. PMID:19765900

  16. Nanostructured TiO2 Films Attached CdSe QDs Toward Enhanced Photoelectrochemical Performance.

    PubMed

    Du, Yingying; Yang, Ping; Liu, Yunshi; Zhao, Jie; He, Haiyan; Miao, Yanping

    2016-06-01

    TiO2 films consisted of small nanoparticles were fabricated via a spinning coating method on fluorine doped in tin oxide (FTO) slide glass. After calcination, the films were subsequently sensitized by CdSe quantum dots (QDs) using mercaptopropionic acid (MPA) as a bifunctional surface modifier. Upon UV light irradiation, CdSe QDs inject electrons into TiO2 nanoparticles, thus resulting in the generation of photocurrent in QD-sensitized solar cell. The results indicate that TiO2 films sensitized by CdSe QDs have achieved 1.5-fold enhancement in photocurrent compared with pure TiO2 films, indicating that CdSe QDs can improve the photocurrent by promoting the separation of photoinduced charge carriers. In addition, the photocurrent enhances as the thickness of TiO2 films increased. Such improved photoelectrochemical performance is ascribed to the basis of improved interfacial charge transport of the TiO2-CdSe composite films. Combining QDs on TiO2 thin films is a promising and effective way to enhance the photoelectrochemical performance, which is important in QD-sensitized solar cell application. PMID:27427714

  17. Resistive switching characteristics in memristors with Al2O3/TiO2 and TiO2/Al2O3 bilayers

    NASA Astrophysics Data System (ADS)

    Alekseeva, Liudmila; Nabatame, Toshihide; Chikyow, Toyohiro; Petrov, Anatolii

    2016-08-01

    Differences between the resistive switching characteristics of Al2O3/TiO2 and TiO2/Al2O3 bilayer structures, fabricated by atomic layer deposition at 200 °C and post-deposition annealing, were studied in Pt bottom electrode (Pt-BE)/insulator/Pt top electrode (Pt-TE) capacitors. The Pt-BE/Al2O3/TiO2/Pt-TE capacitor exhibits stable bipolar resistive switching with an on-resistance/off-resistance ratio of ∼102 controlled by a small voltage of ±0.8 V. The forming process occurs in two steps of breaking of the Al2O3 layer and transfer of oxygen vacancies (VO) into the TiO2 layer. The capacitor showed poor endurance, particularly in the high-resistance state under vacuum conditions. This indicates that the insulating TiO2 layer without VO is not formed near the Al2O3 layer because oxygen cannot be introduced from the exterior. On the other hand, in the Pt-BE/TiO2/Al2O3/Pt-TE capacitor, multilevel resistive switching with several applied voltage-dependent nonvolatile states is observed. The switching mechanism corresponds to the Al2O3 layer’s trapped VO concentration, which is controlled by varying the applied voltage.

  18. Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    NASA Technical Reports Server (NTRS)

    Chen, C. Y.; Littlejohn, M. A.

    1977-01-01

    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.

  19. Layered TiO2 :PVK nano-composite thin films for photovoltaic applications. TiO2 :PVK nano-composite thin films

    NASA Astrophysics Data System (ADS)

    Kaune, G.; Wang, W.; Metwalli, E.; Ruderer, M.; Roßner, R.; Roth, S. V.; Müller-Buschbaum, P.

    2008-05-01

    The influence of the solvent used for spin-coating on the homogeneity of poly(N-vinylcarbazole) (PVK) films is investigated. Homogenous films are obtained only by the use of toluene, solution in tetrahydrofuran (THF) and chloroform results in radially oriented inhomogeneities and films prepared by use of N-methylpyrrolidone and dimethylacetamide show particle formation during spin-coating. Layered nano-composite thin films are prepared by spin-coating a PVK film on top of a nano-structured titanium dioxide ( TiO2 layer. The TiO2 thin films are prepared by a sol-gel process using an amphiphilic copolymer as structure-directing agent. Structural characterisation of the TiO2 :PVK nano-composite films is done by field emission scanning electron microscopy (FESEM) and grazing-incidence small-angle scattering (GISAXS). Bare TiO2 films are probed for comparison. Light is basically only absorbed in the ultraviolet regime and absorption slightly increases upon addition of PVK, which makes the layered TiO2 :PVK nano-composite thin films good candidates for UV photovoltaic devices. Furthermore, absorption remains stable over a period of several days.

  20. Photocatalysis of Phenolic Compounds with Synthesized Nanoparticles TiO2/Sn2

    NASA Astrophysics Data System (ADS)

    Khuanmar, Kulyakorn; Wirojanagud, Wanpen; Kajitvichyanukul, Puangrat; Maensiri, Santi

    This study was aimed to determine the photocatalytic degradation of phenolic compounds contaminated in the pulp and paper wastewater with the synthesized nanoparticle TiO2/Sn2 and the commercial TiO2 (Sigma Aldrich). The studied phenolic compounds included 2-methoxy phenol (guaiacol), 2,6-dimethoxy phenol (syringol) and phenol. The synthesized TiO2/Sn2 was prepared by sol-gel technique, mixture of titanium solution and ethanol/polymer with 2% of tin. The characterization of the synthesized TiO2/Sn2 and the commercial TiO2 were performed by XRD, BET and SEM. The synthesized TiO2/Sn2 were: mixed phase of anatase:rutile of 85: 15, 14 nm crystalline size of anatase (101) and 47 nm rutile (110) and 65.7 m2 g-1 surface area by BET. On the other hand the commercial TiO2 (Sigma aldrich) only showed the anatase phase with particle size of 41 nm and 10.9 m2 g-1 surface area by BET. The photocatalytic degradation were tested on the individual and mixed phenolic compounds. The phenolic compound solution suspended with the catalyst was irradiated with UV light. The photocatalytic degradation of phenolic compounds by such two types was significantly different. TiO2/Sn2 presented the sequential degradation as syringol > guaiacol > phenol for both individual and mixed phenolic compounds. While the commercial TiO2 indicated the degradation as phenol>guaiacol>syringol for the individual phenolic compound and the reverse order of degradation as syringol>guaiacol>phenol for the mixed compounds.

  1. Structural and optoelectronic characterization of TiO2 films prepared using the sol gel technique

    NASA Astrophysics Data System (ADS)

    Jiménez González, A. E.; Gelover Santiago, S.

    2007-07-01

    TiO2 is a versatile material that makes for fascinating study in any of its several physical forms: monocrystal, polycrystal, powder or thin film. Its enhanced photosensitivity to UV radiation and excellent chemical stability in acidic and aqueous media point to its excellent potential for use in a variety of applications, such as solar cells, electronic devices, chemical sensors and photocatalysts. Of late, thin films of TiO2 have permitted the study of physical and chemical properties that are almost impossible to examine in powders. Using the sol-gel technique, it was possible to prepare TiO2 films, and to specifically modify their characteristic properties by means of annealing treatments. Optical measurements carried out on sol-gel derived films produced results similar to those found in films prepared using the sputtering technique. The use of TiO2 films facilitates the study of the behaviour of crystalline structure, grain size, photoresponse, electrical conductivity in both darkness and light and energy band gap (Eg) as a function of treatment temperature. For the first time, it has been demonstrated that the photoconductivity of TiO2 becomes apparent at a treatment temperature of 350 °C, which means that below this temperature the material is not photosensitive. The photosensitivity (S) of TiO2 films prepared by the sol-gel technique reaches values between 100 and 104, surpassing by more than two orders of magnitude the photosensitivity of TiO2 in powder form. In addition, it was possible to study the surface crystalline structure, where TEM studies clearly revealed both the polycrystalline order and the atomic arrangements of the TiO2 films. Our findings will afford us an opportunity to better study the nature of TiO2 and to enhance its performance with respect to the above-mentioned applications.

  2. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins.

    PubMed

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  3. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties. PMID:19758597

  4. Polycrystalline TiO2 (B) Nanosheet Films Deposited via Langmuir-Blodgett Method

    NASA Astrophysics Data System (ADS)

    Biedermann, Laura; Kotula, Paul; Beechem, Thomas; Dylla, Anthony; Stevenson, Keith; Chan, Calvin

    2014-03-01

    As an energy storage material, TiO2 offers higher Li+ capacities and smaller volume changes with lithiation than graphite electrodes. In particular, the bronze phase, TiO2(B) has a higher lithiation capacity (1.0 Li+/Ti) and faster lithiation kinetics due to its larger lattice parameters than other TiO2 polymorphs. Direct observation of lithiation will require TiO2(B) monolayers, such as those prepared via Langmuir-Blodgett deposition of the nanosheets (NS). Optical microscopy of the TiO2(B)-NS Langmuir monolayer at the air/water interface shows that these nanosheets assemble into large (>1 mm) islands. These elastic TiO2(B)-NS monolayers are deposited on diverse substrates for further characterization. Electron diffraction in both transmission electron microscopy (TEM) and low-energy electron microscopy (LEEM) of these films confirm that their polycrystalline structure is predominately composed of TiO2(B) nanocrystals, ~10s nm across. Discrimination of monolayer and bilayer TiO2(B) is evident in LEEM. Thermal stability of these nanosheets is investigated via in-situ TEM and ex-situ Raman spectroscopy. This monolayer TiO2(B) deposition will allow future observations of lithiation and phase changes. Sandia is managed by Sandia Corp., a subsidiary Lockheed Martin, for the U.S. DOE NNSA (DE-AC04-94AL85000). Work was supported by an U.S. DOE BES EFRC (DE-SC0001091).

  5. Beneficial surface passivation of hydrothermally grown TiO2 nanowires for solar water oxidation

    NASA Astrophysics Data System (ADS)

    Yun, Gun; Song, Gwang Yeom; Ahn, Bo-Eun; Lee, Sang-Kwon; Heo, Jaeyeong; Ahn, Kwang-Soon; Kang, Soon Hyung

    2016-03-01

    Rutile TiO2 nanowires (TONWs) with a length of 2.0 μm were synthesized using a facile hydrothermal method in a strong acid solution. To investigate the effect of surface passivation of TONW arrays, a TiO2 layer with a thickness varying from 5 to 20 nm on TONW arrays was applied by atomic layer deposition (ALD). No distinct morphological modification was observed in all prepared TONW arrays in the environment where the diameter of the TONW arrays was systematically increased from 10 to 40 nm. In this study, Mott-Schottky analysis revealed that 10 nm TiO2-coated TONW (denoted as TiO2(10 nm)/TONW) arrays showed the highest electronic conductivity, followed by the 5 nm, 20 nm, and 0 nm TiO2/TONW arrays. The photoelectrochemical (PEC) performance was assessed in 0.1 M KOH, which revealed that TiO2(10 nm)/TONW arrays displayed a photocurrent density (3.92 mA/cm2 at 0.5 VNHE) higher than that (2.72 mA/cm2) of TONW arrays. This may be ascribed to the surface passivation of trap or defect sites by the thin TiO2 surface coating, leading to the increased electron densities and improving the PEC performance. For a more definitive examination, photovoltage decay measurement was performed to calculate the decay lifetime, which is closely correlated to the electron-hole recombination reaction. In this study, TiO2(10 nm)/TONW arrays exhibited a decay lifetime (0.7 s) shorter than that (1.1 s) of TONW arrays, proving the suppressed charge recombination in the thin TiO2/TONW arrays.

  6. Photoinduced Stepwise Oxidative Activation of a Chromophore–Catalyst Assembly on TiO2

    SciTech Connect

    Song, Wenjing; Glasson, Christopher R. K.; Luo, Hanlin; Hanson, Kenneth G.; Brennaman, Kyle M.; Concepcion, Javier J.; Meyer, Thomas J.

    2011-07-08

    To probe light-induced redox equivalent separation and accumulation, we prepared ruthenium polypyridyl molecular assembly [(dcb)2Ru(bpy-Mebim2py)Ru(bpy)(OH2)]4+ (RuaII–RubII–OH2) with Rua as light-harvesting chromophore and Rub as water oxidation catalyst (dcb = 4,4'-dicarboxylic acid-2,2'-bipyridine; bpy-Mebim2py = 2,2'-(4-methyl-[2,2':4',4''-terpyridine]-2'',6''-diyl)bis(1-methyl-1H-benzo[d]imidazole); bpy = 2,2'-bipyridine). When bound to TiO2 in nanoparticle films, it undergoes MLCT excitation, electron injection, and oxidation of the remote -RubII–OH2 site to give TiO2(e–)–RuaII–RubIII–OH23+ as a redox-separated transient. The oxidized assembly, TiO2–RuaII–RubIII–OH23+, similarly undergoes excitation and electron injection to give TiO2(e–)–RuaII–RubIV=O2+, with RubIV=O2+ a known water oxidation catalyst precursor. Injection efficiencies for both forms of the assembly are lower than those for [Ru(bpy)2(4,4'-(PO3H2)2bpy)]2+ bound to TiO2 (TiO2–Ru2+), whereas the rates of back electron transfer, TiO2(e–) → RubIII–OH23+ and TiO2(e–) → RubIV=O2+, are significantly decreased compared with TiO2(e–) → Ru3+ back electron transfer.

  7. Electrochromism in sol-gel deposited TiO2 films

    NASA Astrophysics Data System (ADS)

    Bell, John M.; Barczynska, Joanna; Evans, L. A.; MacDonald, Kathleen A.; Wang, J.; Green, David C.; Smith, Geoffrey B.

    1994-09-01

    Electrochromism is sol-gel deposited TiO2 films and films containing TiO2 and WO3 has been observed. The films are deposited by dip-coating from a precursor containing titanium isopropoxide in ethanol or titanium propoxide in ethanol, and after deposition the films are heat treated to between 250 degree(s)C and 300 degree(s)C. The films do not show any signs of crystallinity. However substantial coloration is observed using Li+ ions in a non-aqueous electrolyte, both in pure TiO2 films and in mixed metal oxide films (WO3:TiO2), although the voltage required to produce coloration is different in the two cases. Results will be presented detailing the optical switching and charge transport properties of the films during cyclic voltammetry. These results will be used to compare the performance of the TiO2 films with other electrochromics. The TiO2 and mixed metal films all color cathodically, and the colored state is a neutral greyish color for TiO2, while the bleached state is transparent and colorless, Results on coloration efficiency and the stability under repeated electrochemical cycling will also be presented. The neutral color of the TiO2 films and mixed-metal films means that electrochromic windows based on TiO2 may have significant advantages over WO3-based windows. A detailed analysis of the optical properties of the colored state of the films will be presented. The dynamics of coloration for these films is also under investigation, and preliminary results will be presented.

  8. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins

    PubMed Central

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  9. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  10. Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Das, Soham; Kumar, Dhruva; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Thermal Chemical Vapor Deposition (CVD) deposited Titanium dioxide nanostructures (TiO2-NSs) were grown by using Ti powder and O2 precursors on Si/SiO2 (100) substrate. The microstructure and vibration properties of TiO2-NSs were characterized by Fourier transform infrared (FTIR), SEM, and photoluminescence (PL) spectroscopy. The role of O2 flow rate on TiO2-NSs revealed decreased deposition rate, however, surface roughness has been increased resulted into formation of nanostructure thin films.

  11. Electrolyte/photoanode engineered performance of TiO2 based dye sensitised solar cells

    NASA Astrophysics Data System (ADS)

    Divya, S.; Thankappan, Aparna; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-02-01

    The performance of dye sensitized solar cells (DSSCs) depends on the collective contribution from its constituents which include the nanoparticle film, dye, electrolyte, and the counter electrode. In this report, we have tried to elucidate the varying performance of the TiO2 based DSSCs standardised using N719 dye and Platinum as counter electrode with various electrolytes including quasi static electrolytes. We have also evaluated the photovoltaic characteristics of the cells employing different morphological structured TiO2 photoanode. The DSSC based on the hierarchical anatase TiO2 nanotree photoelectrode showed the highest light-to-electricity conversion efficiency of 10.2%.

  12. Behavior of TiO2 thin film in a nanocapacitor.

    PubMed

    Jia, Dongdong; Shaffer, C; Pickering, S; Goonewardene, A; Wang, Xiao-Jun

    2008-03-01

    Gold and platinum nanocapacitors have been fabricated using a magnetron sputtering technique. TiO2 is used as a dielectric material to separate the metal layers which act as the parallel plates for the capacitors. The thickness for metal films and TiO2 layer is 80 nm and 400 nm, respectively. Capacitance of the nanocapacitors has been measured and dielectric constant of TiO2 calculated. Both capacitance and dielectric constant are observed to have strong frequency dependence. PMID:18468130

  13. Doping of TiO 2 Polymorphs for Altered Optical and Photocatalytic Properties

    DOE PAGESBeta

    Nie, Xiliang; Zhuo, Shuping; Maeng, Gloria; Sohlberg, Karl

    2009-01-01

    Tmore » his paper reviews recent investigations of the influence of dopants on the optical properties of TiO 2 polymorphs.he common undoped polymorphs of TiO 2 are discussed and compared.he results of recent doping efforts are tabulated, and discussed in the context of doping by elements of the same chemical group. Dopant effects on the band gap and photocatalytic activity are interpreted with reference to a simple qualitative picture of the TiO 2 electronic structure, which is supported with first-principles calculations.« less

  14. Effect of Mg ion bioactivity on the TiO2 nano-network surface.

    PubMed

    Jung, Sang-Chul; Lee, Kang; Seo, Ki-Won; Lee, Woo-Geun; Kim, Byung-Hoon

    2013-01-01

    Magnesium (Mg) ion is well known for improving the Ca-P nucleation and growth. TiO2 nano-network (NT) surface was prepared by alkali-treatment. To introduce the Mg ion to TiO2 NT surface, acrylic acid plasma polymerization was used. Bioactivity of the Mg ions coated samples was evaluated by immersed in simulated body fluid (SBF). Surface morphology and chemical composition of all samples were characterized by SEM, XRD and XPS. Mg ion promotes hydroxyapatite (HA) nucleation and growth on TiO2 NT in SBF and improves crystallinity of HA deposited layer. PMID:23646785

  15. Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates

    PubMed Central

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-01-01

    TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior stability and recyclability. PMID:26486994

  16. Improved photocatalytic activity of zeolite- and silica-incorporated TiO2 film.

    PubMed

    Tanaka, K; Fukuyoshi, J; Segawa, H; Yoshida, K

    2006-09-21

    Porous TiO2 film was prepared by sol-gel method from TiO2 sol containing polyvinylpyrolidone (PVP). Photocatalytic activity of the film was evaluated by the elimination rate of ethylene. Several adsorbents including zeolite and silica powders were incorporated into the TiO2 film. All the adsorbents enhanced the activity. The optimum adsorbent content was 0.005-0.01 g/ml of the coating sol solution. Silica provided better activity than zeolite. At high humidity and in dry air the activity decreased. PMID:16704899

  17. TiO2 controlling photoluminescence of AWO4 (A =Ca,Sr,Ba) nanofilms

    NASA Astrophysics Data System (ADS)

    Jia, Runping; Zhang, Guoxin; Wu, Qingsheng; Ding, Yaping

    2006-07-01

    AWO4 (A =Ca,Sr,Ba) nanofilms are prepared by a self-inventive technique using collodion to disperse nanoparticles and form film, and their photoluminescence (PL) properties are controlled by a nano-TiO2 doping method. This cannot only reach the results of uniform film and PL enhancement, but also realize a PL increase/decrease shift effect. The PL behaviors of AWO4 nanofilms doped by TiO2 are in good agreement with Gaussion function relation. In addition, there is a positive correlation between the critical concentrations of TiO2 in AWO4-TiO2 nanofilm series and A's ionic potential.

  18. N-Ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sudhagar, P.; Asokan, K.; Ito, E.; Kang, Yong Soo

    2012-03-01

    Hierarchical nanostructured titanium dioxide (TiO2) clumps were fabricated using electrostatic spray with subsequent nitrogen-ion doping by an ion-implantation technique for improvement of energy conversion efficiency for quantum dot-sensitized solar cells (QDSCs). CdSe quantum dots were directly assembled on the produced N-ion-implanted TiO2 photoanodes by chemical bath deposition, and their photovoltaic performance was evaluated in a polysulfide electrolyte with a Pt counter electrode. We found that the photovoltaic performance of TiO2 electrodes was improved by nearly 145% upon N-ion implantation. The efficiency improvement seems to be due to (1) the enhancement of electron transport through the TiO2 layer by inter-particle necking of primary TiO2 particles and (2) an increase in the recombination resistance at TiO2/QD/electrolyte interfaces by healing the surface states or managing the oxygen vacancies upon N-ion doping. Therefore, N-ion-doped photoanodes offer a viable pathway to develop more efficient QD or dye-sensitized solar cells.Hierarchical nanostructured titanium dioxide (TiO2) clumps were fabricated using electrostatic spray with subsequent nitrogen-ion doping by an ion-implantation technique for improvement of energy conversion efficiency for quantum dot-sensitized solar cells (QDSCs). CdSe quantum dots were directly assembled on the produced N-ion-implanted TiO2 photoanodes by chemical bath deposition, and their photovoltaic performance was evaluated in a polysulfide electrolyte with a Pt counter electrode. We found that the photovoltaic performance of TiO2 electrodes was improved by nearly 145% upon N-ion implantation. The efficiency improvement seems to be due to (1) the enhancement of electron transport through the TiO2 layer by inter-particle necking of primary TiO2 particles and (2) an increase in the recombination resistance at TiO2/QD/electrolyte interfaces by healing the surface states or managing the oxygen vacancies upon N-ion doping. Therefore, N-ion-doped photoanodes offer a viable pathway to develop more efficient QD or dye-sensitized solar cells. Electronic supplementary information (ESI) available: Details of SRIM 2008 simulation, optical absorption, and Bode plots. See DOI: 10.1039/c2nr11953f

  19. Enhanced Photodetection from TiO2-SiO x -TiO2 One-Dimensional Device

    NASA Astrophysics Data System (ADS)

    Choudhuri, Bijit; Mondal, Aniruddha; Saha, Ardhendu

    2016-05-01

    In this work, TiO2 nanowires (NWs)/SiO x zigzag (ZZ) film/TiO2 NWs structure-based devices were fabricated using glancing angle deposition and oblique angle deposition techniques. An investigation of the optoelectronic properties of the devices will be presented. The NWs-ZZ-NWs structure showed an average of 1.6 times enhancement in absorbance value as compared to the absorbance of the structure that contains only NWs. When irradiated with white light, NWs-ZZ-NWs- and only NWs-based devices exhibited a maximum 6.3 and 2.7 times greater light-to-dark current ratio, respectively, at -3 V. The maximum photoresponsivity and internal gain at the wavelength of 370 nm were calculated to be 57 A/W and 191, respectively, for the NWs-ZZ-NWs devices. The rise and fall time for the NWs-ZZ-NWs and NW devices were 16.56 s and 8.2 s, and 8.39 s and 7.31 s, respectively.

  20. Enhanced Photodetection from TiO2-SiO x -TiO2 One-Dimensional Device

    NASA Astrophysics Data System (ADS)

    Choudhuri, Bijit; Mondal, Aniruddha; Saha, Ardhendu

    2016-08-01

    In this work, TiO2 nanowires (NWs)/SiO x zigzag (ZZ) film/TiO2 NWs structure-based devices were fabricated using glancing angle deposition and oblique angle deposition techniques. An investigation of the optoelectronic properties of the devices will be presented. The NWs-ZZ-NWs structure showed an average of 1.6 times enhancement in absorbance value as compared to the absorbance of the structure that contains only NWs. When irradiated with white light, NWs-ZZ-NWs- and only NWs-based devices exhibited a maximum 6.3 and 2.7 times greater light-to-dark current ratio, respectively, at -3 V. The maximum photoresponsivity and internal gain at the wavelength of 370 nm were calculated to be 57 A/W and 191, respectively, for the NWs-ZZ-NWs devices. The rise and fall time for the NWs-ZZ-NWs and NW devices were 16.56 s and 8.2 s, and 8.39 s and 7.31 s, respectively.

  1. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin

    2015-09-01

    TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.

  2. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films. PMID:22869517

  3. Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

    DOE PAGESBeta

    Khromova, Irina; Kužel, Petr; Brener, Igal; Reno, John L.; Chung Seu, U-Chan; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipolemore » resonances in the emerging THz all-dielectric metamaterial technology.« less

  4. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.

    PubMed

    Renault, Christophe; Nicole, Lionel; Sanchez, Clément; Costentin, Cyrille; Balland, Véronique; Limoges, Benoît

    2015-04-28

    In this work, we demonstrate that chronoabsorptometry and more specifically cyclic voltabsorptometry are particularly well suited techniques for acquiring a comprehensive understanding of the dynamics of electron transfer/charge transport within a transparent mesoporous semiconductive metal oxide film loaded with a redox-active dye. This is illustrated with the quantitative analysis of the spectroelectrochemical responses of two distinct heme-based redox probes adsorbed in highly-ordered mesoporous TiO2 thin films (prepared from evaporation-induced self-assembly, EISA). On the basis of a finite linear diffusion-reaction model as well as the establishment of the analytical expressions governing the limiting cases, it was possible to quantitatively analyse, predict and interpret the unusual voltabsorptometric responses of the adsorbed redox species as a function of the potential applied to the semiconductive film (i.e., as a function of the transition from an insulating to a conductive state or vice versa). In particular, we were able to accurately determine the interfacial charge transfer rates between the adsorbed redox species and the porous semiconductor. Another important and unexpected finding, inferred from the voltabsorptograms, is an interfacial electron transfer process predominantly governed by the extended conduction band states of the EISA TiO2 film and not by the localized traps in the bandgap. This is a significant result that contrasts those previously observed for dye-sensitized solar cells formed of randomly sintered TiO2 nanoparticles, a behaviour that was ascribed to a particularly low density of localized surface states in EISA TiO2. The present methodology also provides a unique and straightforward access to an activation-driving force relationship according to the Marcus theory, thus opening new opportunities not only to investigate the driving-force effects on electron recombination dynamics in dye-sensitized solar cells but also to study the

  5. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests.

    PubMed

    Maneerat, Chamorn; Hayata, Yasuyoshi

    2006-03-15

    The antifungal activity of TiO2 photocatalytic reaction in the form of TiO2 powder and TiO2 coated on a plastic film against Penicillium expansum was investigated in vitro and in fruit tests. The mixture of P. expansum conidial suspension and TiO2 powder was added to potato dextrose agar (PDA) plates for vitro test. The TiO2 photocatalytic reaction reduced conidial germination of the fungal pathogen. It was found that the ability of the TiO2 photocatalytic reaction to suppress P. expansum growth correlated to the amount of TiO2 added. Lower numbers of viable colonies of P. expansum were observed with increasing amount of TiO2. Regardless of the kind of selected fruit inoculated with P. expansum, both TiO2 powder and TiO2-coated film exhibited antifungal activity to control fruit rot. Development of Penicillium rot in apple was significantly (P = 0.05) retarded by the TiO2 photocatalytic reaction. Similarly the TiO2 photocatalytic reaction was the only treatment where no tomato fruit rot was noticeable after 1 week of storage. TiO2-coated film also decreased brown lesions and Penicillium rot infection in lemons. The mean severity fruit rot scores (browning and softening flesh) were 3.2 and 1.9 for uncoated and TiO2-coated film, respectively. Our findings suggest that "TiO2 photocatalytic reaction" shows antifungal activity against P. expansum which may have potential for postharvest disease control. PMID:16269195

  6. Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention.

    PubMed

    Silva, Rona M; Teesy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E; Pinkerton, Kent E

    2013-01-01

    Titanium dioxide (TiO2) is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic, and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to (1) establish a lowest-observed-effect level (LOEL) for nano-scale TiO2, (2) determine TiO2 uptake in the lungs, and (3) estimate toxicity based on physicochemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were administered TiO2 (0, 20, 70, or 200 μg) via intratracheal instillation. Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 d post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB displayed any significant degree of inflammation seen in BALF at the 1-d time point. This inflammation resolved by 7 d, although TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB produced cellular changes at d 1 that were still evident at d 7. Data indicate TiO2-NB is the most inflammatory with a LOEL of 200 μg at 1 d post instillation. PMID:24156719

  7. Enhancing photoactivity of TiO2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO2(B) core.

    PubMed

    Yang, Dongjiang; Zhao, Jian; Liu, Hongwei; Zheng, Zhanfeng; Adebajo, Moses O; Wang, Hongxia; Liu, Xiaotang; Zhang, Hongjie; Zhao, Jin-cai; Bell, John; Zhu, Huaiyong

    2013-04-15

    Cerium ions (Ce(3+)) can be selectively doped into the TiO2(B) core of TiO2(B)/anatase core-shell nanofibers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce(3+) ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce(3+) ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce(3+)/Ce(4+) couple (E°(Ce(3+)/Ce(4+))=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce(3+)-doped nanofibers are irradiated by UV light, the doped Ce(3+) ions--in close vicinity to the interface between the TiO2(B) core and anatase nanoshell--can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co(2+/3+) and Cu(+/2+) ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn(2+), Ca(2+), or Mg(2+), does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes. PMID:23417892

  8. Electron channeling in TiO2 coated Cu layers

    NASA Astrophysics Data System (ADS)

    Zheng, Pengyuan; Zhou, Tianji; Gall, Daniel

    2016-05-01

    Electron transport in metal conductors with ∼5–30 nm width is dominated by surface scattering. In situ transport measurements as a function of surface chemistry demonstrate that the primary parameter determining the surface scattering specularity is the localized surface density of states at the Fermi level N(E f ). In particular, the measured sheet resistance of epitaxial Cu(001) layers with thickness d Cu = 9–25 nm increases when coated with d Ti = 0.1–4.0 monolayers (MLs) of Ti, but decreases again during exposure to 37 Pa of O2. These resistivity changes are a function of d Cu and d Ti and are due to a transition from partially specular electron scattering at the Cu surface to completely diffuse scattering at the Cu–Ti interface, and the recovery of surface specularity as the Ti is oxidized. X-ray reflectivity and photoelectron spectroscopy indicate the formation of a 0.47 ± 0.03 nm thick Cu2O surface layer on top of the TiO2–Cu2O during air exposure, while density functional calculations of TiO x cap layers as a function of x = 0–2 and d Ti = 0.25–1.0 ML show a reduction of N(E f ) by up to a factor of four. This reduction is proposed to be the key cause for the recovery of surface specularity and results in electron confinement and channeling in the Cu layer upon Ti oxidation. Transport measurements at 293 and 77 K confirm the channeling and demonstrate the potential for high-conductivity metal nanowires by quantifying the surface specularity parameter p = 0.67 ± 0.05, 0.00 ± 0.05, and 0.35 ± 0.05 at the Cu–vacuum, Cu–Ti, and Cu–TiO2 interfaces.

  9. Electrokinetic Properties of TiO2 Nanotubular Surfaces.

    PubMed

    Lorenzetti, Martina; Gongadze, Ekaterina; Kulkarni, Mukta; Junkar, Ita; Iglič, Aleš

    2016-12-01

    Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO2 nanotubular surfaces, proposed as coating material for Ti body implants. Biologically relevant electrolytes (NaCl, PBS, cell medium) were chosen to simulate the physiological conditions. The measurements were accomplished as titration curves at low electrolytic concentration (10(-3) M) and as single points at fixed pH but at various electrolytic concentrations (up to 0.1 M). The results showed that all the surfaces were negatively charged at physiological pH. However, the zeta potential values were dependent on the electrolytic conditions (electrolyte ion concentration, multivalence of the electrolyte ions, etc.) and on the surface characteristics (nanotubes top diameter, average porosity, exposed surface area, wettability, affinity to specific ions, etc.). Accordingly, various explanations were proposed to support the different experimental data among the surfaces. Theoretical model of electric double layer which takes into account the asymmetric finite size of ions in electrolyte and orientational ordering of water dipoles was modified according to our specific system in order to interpret the experimental data. Experimental results were in agreement with the theoretical predictions. Overall, our results contribute to enrich the state-of-art on the characterisation of nanostructured implant surfaces at the bio-interface, especially in case of topographically porous and rough surfaces. PMID:27562014

  10. A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance

    PubMed Central

    2014-01-01

    TiO2 hierarchical nanostructures with secondary growth have been successfully synthesized on electrospun nanofibers via surfactant-free hydrothermal route. The effect of hydrothermal reaction time on the secondary nanostructures has been studied. The synthesized nanostructures comprise electrospun nanofibers which are polycrystalline with anatase phase and have single crystalline, rutile TiO2 nanorod-like structures growing on them. These secondary nanostructures have a preferential growth direction [110]. UV–vis spectroscopy measurements point to better dye loading capability and incident photon to current conversion efficiency spectra show enhanced light harvesting of the synthesized hierarchical structures. Concomitantly, the dye molecules act as spacers between the conduction band electrons of TiO2 and holes in the hole transporting medium, i.e., spiro-OMeTAD and thus enhance open circuit voltage. The charge transport and recombination effects are characterized by electrochemical impedance spectroscopy measurements. As a result of improved light harvesting, dye loading, and reduced recombination losses, the hierarchical nanofibers yield 2.14% electrochemical conversion efficiency which is 50% higher than the efficiency obtained by plain nanofibers. PMID:24410851

  11. Conversion of Nanocellulose Aerogel into TiO2 and TiO2@C Nano-thorns by Direct Anhydrous Mineralization with TiCl4. Evaluation of Electrochemical Properties in Li Batteries.

    PubMed

    Henry, Aurélien; Plumejeau, Sandrine; Heux, Laurent; Louvain, Nicolas; Monconduit, Laure; Stievano, Lorenzo; Boury, Bruno

    2015-07-15

    Nanostructured TiO2 and TiO2@C nanocomposites were prepared by an original process combining biotemplating and mineralization of aerogels of nanofibrillated cellulose (NFC). A direct one step treatment of NFC with TiCl4 in strictly anhydrous conditions allows TiO2 formation at the outermost part of the nanofibrils while preserving their shape and size. Such TiO2@cellulose composites can be transformed into TiO2 nanotubes (TiO2-NT) by calcination in air at 600 and 900 °C, or into TiO2@C nanocomposites by pyrolysis in argon at 600 and 900 °C. Detailed characterization of these materials is reported here, along with an assessment of their performance as negative electrode materials for Li-ion batteries. PMID:25881329

  12. Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells: Shielding versus Band-Edge Movement

    SciTech Connect

    Frank, A. J.; Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Gratzel, M.

    2005-11-01

    The objective of this research is to determine the operational characteristics key to efficient, low-cost, stable solar cells based on dye-sensitized mesoporous films (in collaboration with DOE's Office of Science Program). Toward this end, we have investigated the mechanism by which the adsorbent chenodeoxycholate, cografted with a sensitizer onto TiO2 nanocrystals, improves the open-circuit photovoltage (VOC) and short-circuit photocurrent density (JSC). We find that adding chenodeoxycholate not only shifts the TiO2 conduction-band edge to negative potentials but also accelerates the rate of recombination. The net effect of these opposing phenomena is to produce a higher photovoltage. It is also found that chenodeoxycholate reduces the dye loading significantly but has only a modest effect on JSC. Implications of these results to developing more efficient cells are discussed.

  13. A high-stability silica-clay composite: synthesis, characterization and combination with TiO2 as a novel photocatalyst for Azo dye.

    PubMed

    Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Sun, Mengmeng; Xue, Bing; Ren, Xuehong

    2009-06-15

    A novel micro-mesopores composite material has successfully been synthesized at basic hydrothermal conditions using natural mineral montmorillonite (MMT) and tetraethoxysilane (TEOS). Two surfactants, cetyltrimethyl ammonium bromide (CTAB) and polyethylene glycol (PEG), have been employed in order to shape the pores in the composite. The resultant silica-clay has large surface area (472m(2)/g) and high hydrothermal stability, which makes it a potentially host-material for catalyst. The molecular size of different surfactant leads to the multi-peak distribution of pore size, and the surfactant of larger size (PEG) corresponds to the formation of larger pores. Moreover, the photocatalytic results show that, comparing with pure TiO(2) particles, the loaded TiO(2) on such silica-clay shows higher photodegradation rate of methyl orange (MO) in aqueous. And another porous aluminosilicate host, zeolite, was also discussed for comparison. PMID:19036502

  14. Preparation of TiO2 hollow spheres for DSSC photoanodes

    NASA Astrophysics Data System (ADS)

    Liao, Chang-Yu; Wang, Shih-Ting; Chang, Fang-Chih; Wang, H. Paul; Lin, Hong-Ping

    2014-01-01

    High crystallinity mesoporous TiO2 hollow spheres (MHS-TiO2) were prepared using the mesoporous carbon hollow sphere template. The MHS-TiO2 contains mainly nanostructured anatase. The mesopore of the MHS-TiO2 has a pore opening in the range of 400-600 nm. The refined extended X-ray absorption fine structure spectra indicate that the MHS-TiO2 possesses less the 1st-shell Ti-O coordination numbers than the nano-TiO2. More surface active species (A2 ((Ti=O)O4)) on the MHS-TiO2 are also observed by the component fitted X-ray absorption near edge structure spectroscopy. The MHS-TiO2 photoanode has a better DSSC conversion efficiency than the nano-TiO2 one by at least 40%. Note that the N3 dye molecules are accessible to the mesopores of the MHS-TiO2, and the loading time for N3 can be reduced by at least 70% if compared with those of the nano-TiO2.

  15. Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag.

    PubMed

    Huo, Xiaohe; Liu, Peipei; Zhu, Jie; Liu, Xiaoqiang; Ju, Huangxian

    2016-11-15

    A ternary TiO2 nanotube (TNT) composite and a signal antibody and horseradish peroxidase (HRP) functionalized TNT were designed as an electrode scaffold for immobilization of high quantity of capture antibody and a tracing tag for immunosensing, respectively. The polyaniline (PANI) was coated on TNTs by chemical oxidative polymerization, and gold nanoparticles were deposited on TNT-PANI with a routine chemical reduction. Various techniques including scanning electron microscopy, energy dispersive X-ray, transmission electron microscope, X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectra, impedance and electrochemical techniques were used to characterize the nano-materials. Using bis(sulfosuccinimidyl) suberate as amino cross-linker, the TNT composite could be further functionalized with protein G' for oriented immobilization of capture antibody on electrode surface. Upon sandwich-type immunoreaction, the signal antibody on the tracing tag was quantitatively captured on the surface to generate sensitive electrochemical response with a H2O2 mediated HRP catalytic reaction. With α-fetoprotein as an analyte model, the immunosensor showed a linear range of 0.01-350ngmL(-1) with a detection limit of 1.5pgmL(-1). The accelerated electron transfer by the ternary composite, oriented immobilization of capture antibody and high loading of HRP on the TNT tracing tag greatly amplified the electrochemical signal, and led to the superior performance of the immunoassay. PMID:27261885

  16. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    PubMed

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. PMID:24488679

  17. Electron transfer in colloidal TiO 2 semiconductors sensitized by hypocrellin A

    NASA Astrophysics Data System (ADS)

    Zhou, Zhixiang; Qian, Suping; Yao, Side; Zhang, Zhiyi

    2002-10-01

    The electron transfer from singlet states of hypocrellin A (HA) to colloidal TiO 2 nanometer-sized particles has been examined by absorption, fluorescence quenching, fluorescence lifetime measurements, laser flash photolysis and pulse radiolysis techniques. Adsorption of HA onto the surface of TiO 2 particles extended its absorption spectrum further into the visible region, and the apparent association constant ( Kapp) for the association between HA and colloidal TiO 2 was 3600 (mol/l) -1 determined by fluorescence quenching method. Fluorescence lifetime measurement was used to elucidate the process of electron transfer from the singlet state of HA to conduction band of TiO 2 ( Ket=4.26×10 9 s -1). Laser flash photolysis and pulse radiolysis studies demonstrated formation of the radical cation of HA.

  18. PCDDs, PCDFs, and PCBs co-occurrence in TiO2 nanoparticles.

    PubMed

    Ctistis, Georgios; Schön, Peter; Bakker, Wouter; Luthe, Gregor

    2016-03-01

    In the present study, we report on the co-occurrence of persistent organic pollutants (POPs) adsorbed on nanoparticular titanium dioxide (TiO2). We report on the finding of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) on the surface of commercially available TiO2 nanoparticles, being formed during the fabrication process of the TiO2. Thereby, the samples comprise PCBs with higher congener numbers or, in the absence of PCBs, a high concentration of PCDDs and PCDFs. This new class of POPs on an active catalytic surface and the great range of applications of nanoparticular TiO2, such as in color pigments, cosmetics, and inks, give rise to great concern due to their potential toxicity. PMID:26545886

  19. Phase stability frustration on ultra-nanosized anatase TiO2

    PubMed Central

    Patra, Snehangshu; Davoisne, Carine; Bouyanfif, Houssny; Foix, Dominique; Sauvage, Frédéric

    2015-01-01

    This work sheds light on the exceptional robustness of anatase TiO2 when it is downsized to an extreme value of 4 nm. Since at this size the surface contribution to the volume becomes predominant, it turns out that the material becomes significantly resistant against particles coarsening with temperature, entailing a significant delay in the anatase to rutile phase transition, prolonging up to 1000 °C in air. A noticeable alteration of the phase stability diagram with lithium insertion is also experienced. Lithium insertion in such nanocrystalline anatase TiO2 converts into a complete solid solution until almost Li1TiO2, a composition at which the tetragonal to orthorhombic transition takes place without the formation of the emblematic and unwished rock salt Li1TiO2 phase. Consequently, excellent reversibility in the electrochemical process is experienced in the whole portion of lithium content. PMID:26042388

  20. Photocatalytic activity of nanosized TiO2 thin film prepared by magnetron sputtering method.

    PubMed

    Kang, Sang-Jun; Kim, Ki-Joong; Chung, Min-Chul; Jung, Sang-Chul; Boo, Su-Il; Cho, Soon Kye; Jeong, Woon-Jo; Ahn, Ho-Geun

    2011-02-01

    Nanosized TiO2 thin film on the substrate such as stainless steel plate and slide glass film were prepared by magnetron sputtering method, and these TiO2 thin films were characterized by field emission-scanning electron microscopy (FE-SEM). Photocatalytic activity for Methyl-ethyl-ketone (MEK) and acetaldehyde were measured using a closed circulating reaction system through the various ultra violet (UV) sources. From the results of SEM images, nanosized TiO2 thin film was uniformly coated on slide glass, ranging from 360 nm to 370 nm. Photocatalytic activity of MEK over TiO2 thin film on stainless steel plate did not occur by UV-A irradiation, but was efficiently decomposed by UV-B and UV-C. Also, acetaldehyde could be decomposed than MEK. The effect of sputtering conditions on their structure and photocatalytic activities were investigated in detail. PMID:21456269

  1. Enhanced optical properties of TiO2 nanoceramic films by oxygen atmosphere.

    PubMed

    Lin, Su-Shia; Wu, Ding-Kun

    2010-02-01

    TiO2 nanoceramic films were deposited on glasses by rf magnetron sputtering and corresponded to nanocrystalline anatase. The porosity and surface roughness decreased with the oxygen pressure. The optical transmission of TiO2 nanoceramic films obviously increased with the decrease of film thickness or the increase of oxygen pressure, especially in the visible region. Moiré deflectometry was used to measure the nonlinear refractive indices of TiO2 films deposited in a mixed Ar-O2 atmosphere. The nonlinear refractive index was measured to be of the order of 10(-8) cm2 W(-1) and the change in refractive index was of the order of 10(-5). As the oxygen pressure increased, the transparent TiO2 film exhibited a high linear refractive index, a low stress and a low stress-optical coefficient. PMID:20352762

  2. Porous Anatase TiO2 Thin Films for NH3 Vapour Sensing

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Dhivya; Madanagurusamy, Sridharan

    2015-12-01

    Anatase titanium dioxide (TiO2) thin films were deposited onto cleaned glass substrates by a direct current (DC) reactive magnetron sputtering technique for different deposition times from 10 min to 40 min, which resulted in films of different thicknesses. Characterization techniques, such as x-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological properties of the TiO2 thin films. XRD patterns showed the formation of (101) crystal anatase facets. The grain size values of the film increased with increased deposition time, and the films deposited at 40 min exhibited a porous structure. Anatase TiO2 thin films exhibited excellent sensing response, fast response and recovery time, as well as good stability and selectivity towards ammonia (NH3). The enhanced NH3 sensing behavior of anatase TiO2 films is attributed to the porous morphology and oxygen vacancies.

  3. Transport properties in single-crystalline rutile TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Chen, C. A.; Wang, W. C.; Tsai, H. Y.; Huang, Y. S.

    2011-11-01

    Electronic transport properties of the single-crystalline titanium dioxide (TiO2) nanorods (NRs) with single rutile phase have been investigated. The conductivity values for the individual TiO2 NRs grown by metal-organic chemical vapor deposition are in the range of 1-10 Ω-1 cm-1. The temperature-dependent measurement shows the presence of two shallow donor levels/bands with activation energies at 8 and 28 meV, respectively. On the photoconductivity (PC), the TiO2 NRs exhibit the much higher normalized PC gain and sensitive excitation-power dependence than the polycrystalline nanotubes. The results demonstrate the superior photoconduction efficiency and distinct mechanism in the monocrystalline one-dimensional TiO2 nanostructures in comparison to the polycrystalline or nanoporous counterparts.

  4. TiO2 hollow microspheres with mesoporous surface: Superior adsorption performance for dye removal

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Cai, Xia; Shen, Fenglei

    2014-06-01

    TiO2 hollow microspheres with mesoporous surface were synthesized by a facile template-assisted solvothermal reaction. The adsorption performance of TiO2 hollow microspheres for removing Methylene Blue from aqueous solution has been investigated. The comparative adsorption study indicated that adsorption capacity of TiO2 hollow microspheres with mesoporous surface is markedly higher than that of solid microsphere. The equilibrium data fitted well with the Langmuir model and the maximum adsorption capacity reached 196.83 mg/g. The kinetics of dye adsorption followed the pseudo-second-order model and the adsorbed dye could be degraded completely by the subsequent photocatalytic process. These TiO2 hollow microspheres can be considered as a low-cost alternative adsorbent for removal of organic pollutants from wastewater.

  5. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-07-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550 °C for 3 h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue.

  6. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning.

    PubMed

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-12-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550 °C for 3 h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue. PMID:26130024

  7. Microwave-assisted synthesis of nanocrystalline TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kuo, Ta-Chuan; Guo, Tzung-Fang; Chen, Peter

    2012-09-01

    The main purposes of this study are replacing conventional hydro-thermal method by microwave heating using water as reaction medium to rapidly synthesize TiO2.Titanium tetraisopropoxide (TTIP) was hydrolyzed in water. The solution is subsequently processed with microwave heating for crystal growth. The reaction time could be shortened into few minutes. Then we chose different acids as dispersion agents to prepare TiO2 paste for investigating the effects of dispersion on the power conversion efficiency of dye-sensitized solar cells (DSCs). The photovoltaic performance of the microwave-assisted synthesized TiO2 achieved power conversion efficiency of 6.31% under AM 1.5 G condition (100 mW/cm2). This PCE value is compatible with that of the devices made from commercial TiO2.

  8. Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes.

    PubMed

    Wang, Rijing; Jiang, Guohua; Ding, Yuanwei; Wang, Yin; Sun, Xinke; Wang, Xiaohong; Chen, Wenxing

    2011-10-01

    A one-step solvothermal method was used to prepare TiO(2)/halloysite composites. TiO(2) nanoparticles were deposited on the platform of the halloysite nanotubes (HNTs). XRD, FT-IR, FE-SEM, and TEM were applied to investigate the structures and morphologies of the resultant samples. The as-prepared TiO(2)/HNTs photocatalyst exhibits pH sensibility on the degradation of methanol and a higher photocatalytic activity on the degradation of acetic acid. The combination of the photocatalytic property of TiO(2) and the unique structure of halloysite endowed this material with a bright perspective in degradation of organic pollutant. PMID:21916434

  9. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    NASA Astrophysics Data System (ADS)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  10. TIO2 ADVANCED PHOTO-OXIDATION TECHNOLOGY: EFFECT OF ELECTRON ACCEPTORS

    EPA Science Inventory

    The effects of electron acceptors (additives) such as hydrogen peroxide, ammonium persulphate, potassium bromate and potassium peroxymonosulphate (ozone) on the TiO2 photocatalytic degradation of various organic pollutants were examined at various conditions. he individual and th...

  11. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays.

    PubMed

    Mun, Kyu-Shik; Alvarez, Sara D; Choi, Won-Youl; Sailor, Michael J

    2010-04-27

    Optical interferometry of a thin film array of titanium dioxide (TiO2) nanotubes allows the label-free sensing of rabbit immunoglobulin G (IgG). A protein A capture probe is used, which is immobilized on the inner pore walls of the nanotubes by electrostatic adsorption. Control experiments using IgG from chicken (which does not bind to protein A) confirms the specificity of the protein A-modified TiO2 nanotube array sensor. The aqueous stability of the TiO2 nanotube array was examined and compared with porous silica (SiO2), a more extensively studied thin film optical biosensor. The TiO2 nanotube array is stable in the pH range 2 to 12, whereas the porous SiO2 sensor displays significant degradation at pH > 8. PMID:20356100

  12. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Li, Hailiang; Yu, Qingjiang; Huang, Yuewu; Yu, Cuiling; Li, Renzhi; Wang, Jinzhong; Guo, Fengyun; Jiao, Shujie; Gao, Shiyong; Zhang, Yong; Zhang, Xitian; Wang, Peng; Zhao, Liancheng

    2016-06-01

    Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9.6%, which is the highest efficiency for rutile TiO2 NWA based DSCs so far. PMID:27097727

  13. Dip coated TiO2 nanostructured thin film: synthesis and application

    NASA Astrophysics Data System (ADS)

    Vanaraja, Manoj; Muthukrishnan, Karthika; Boomadevi, Shanmugam; Karn, Rakesh Kumar; Singh, Vijay; Singh, Pramod K.; Pandiyan, Krishnamoorthy

    2016-02-01

    TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.

  14. Mesoporous Foam TiO2 Nanomaterials for Effective Hydrogen Production.

    PubMed

    Krishnappa, Manjunath; Souza, Virgínia S; Ganganagappa, Nagaraju; Scholten, Jackson D; Teixeira, Sérgio R; Dupont, Jairton; Thippeswamy, Ramakrishnappa

    2015-12-01

    Hydrolysis of TiCl4 in a diether-functionalized imidazolium ionic liquid (IL), namely 1-methyl-3-[2-(2-methoxy(ethoxy)ethyl]imidazolium methane sulfonate (M(MEE)I⋅CH3 SO3 ), results in a heterostructured organic/inorganic and sponge-like porous TiO2 material. The thermal treatment (300 °C) followed by calcination (500 °C) affords highly porous TiO2 . The characterization of the obtained samples (with and without IL, before and after calcination) by XRD, SEM, and TEM reveals TiO2 anatase crystalline phases and irregular-shaped particles with different porous structures. These hierarchical-structured mesoporous TiO2 nanomaterials were employed as efficient photocatalysts in the water-splitting process, yielding up to 1304 μmol g(-1) on hydrogen production. PMID:26492871

  15. Probing interactions between TiO 2 photocatalyst and adsorbing species using quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Morand, R.; Noworyta, K.; Augustynski, J.

    2002-10-01

    Photoactivity of nanocrystalline TiO 2 films is shown to be strongly affected by the presence in aqueous solution of salicylic acid, known to form Ti(IV)salicylate surface complexes. In particular, the photooxidation of methanol - an effective hole scavenger - at TiO 2 appears to be in part, or even completely inhibited by the additions of increasing amounts of salicylic acid. The chemisorption of salicylic and also phthalic acid on TiO 2 was followed using quartz crystal microbalance, QCM. The observed resonant frequency changes of the quartz crystal bearing TiO 2 films, accompanying increasing additions of the benzoic acids to the contacting solutions, indicate large displacement of water as a consequence of the adsorbent-imparted hydrophobicity of the interface.

  16. Preparation TiO2 core-shell nanospheres and application as efficiency drug detection sensor

    PubMed Central

    2014-01-01

    In this paper, we report the facile preparation of monodisperse titanium dioxide-diltiazem/tetrachlorobismuth core-shell nanospheres (TiO2@DTMBi), in which, diltiazem (DTM)/tetrachlorobismuth (BiCl4) complexes were employed as electroactive materials. The morphology, size, formation, and structure of the obtained TiO2@DTMBi spheres were investigated by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffraction. The optimal condition of obtained monodisperse 40-nm TiO2@DTMBi spheres was researched. The results of using TiO2@DTMBi nanospheres as proposed drug sensor indicate a wide linear range (10-7 to 10-1 M) and a very low detection limit of 0.20 μg/mL. PMID:25246870

  17. Synthesis of TiO2/functionalized graphene sheets (FGSs) nanocomposites in super critical CO2

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chen, Bo; Charpentier, Paul A.

    2010-06-01

    Highly ordered TiO2 nanowire arrays were prepared on the surface of Functionalized Graphene sheets (FGSs) by solgel method using titanium isopropoxide monomer with acetic acid as the polycondensation agent in the green solvent, supercritical carbon dioxide (sc-CO2). Morphology of synthesized materials was studied by SEM and TEM. Optical properties of the nanocomposites studied by UV spectroscopy which showed high absorption in visible area as well as reduction in their band gap compared to TiO2. By high resolution XPS, chelating bidentate structure of TiO2 with carboxylic group on the surface of graphene sheets can be confirmed. Improvement in the optical properties of the synthesized composites compared to TiO2 alone was confirmed by photocurrent measurements.

  18. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method.

    PubMed

    Priyanka, Karathan Parakkandi; Sukirtha, Thiruvangium Henry; Balakrishna, Kagalagodu Manjunthiah; Varghese, Thomas

    2016-04-01

    In this study, the authors investigated antimicrobial activity of TiO2 nanoparticles (NPs) synthesised by sol-gel method. As synthesised TiO2 NPs were characterised by X-ray diffraction, scanning electron microscopy and ultraviolet-visible absorption spectroscopy. The antimicrobial activity of calcined TiO2 nanoparticle samples was examined in day light on Gram positive bacteria (Staphylococcus aureus, Streptococcus pneumonia and Bacillus subtilis), Gram negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and fungal test pathogen Candida albicans. The synthesised TiO2 NPs were found to be effective in visible light against Streptococcus pneumonia, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Candida albicans. PMID:27074858

  19. OXYGENATION OF HYDROCARBONS USING NANOSTRUCTURED TIO2 AS A PHOTOCATALYST: A GREEN ALTERNATIVE

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic saturated hydrocarbons by a photocatalytic oxidation process using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxygenated in both aqueous and gaseous...

  20. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    SciTech Connect

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  1. Self-assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion

    SciTech Connect

    Wang, Donghai; Choi, Daiwon; Li, Juan; Yang, Zhenguo; Nie, Zimin; Kou, Rong; Hu, Dehong; Wang, Chong M.; Saraf, Laxmikant V.; Zhang, Jiguang; Aksay, Ilhan A.; Liu, Jun

    2009-04-01

    We used anionic sulfate surfactants to assist the stabilization of graphene in aqueous solutions and facilitate the self-assembly of in-situ grown nanocrystalline TiO2, rutile and anatase, with graphene. These nanostructured TiO2-graphene hybrid materials were used for investigation of Li-ion insertion properties. The hybrid materials showed significantly enhanced Li-ion insertion/extraction in TiO2. The specific capacity was more than doubled at high charge rates, as compared with the pure TiO2 phase. The improved capacity at high charge-discharge rate may be attributed to increased electrode conductivity in presence of a percolated graphene network embedded into the metal oxide electrodes.

  2. Preparation and photoluminescence properties of europium ions doped TiO2 nanocrystals.

    PubMed

    Liu, Hai; Yu, Lixin

    2013-07-01

    In this paper, pure and Eu3+ doped TiO2 nanocrystals (NCs) have been fabricated successfully by a two steps of sol-gel and hydrothermal methods. The microstructures, morphologies and photoluminescent properties of Eu(3+)-TiO2 were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and photoluminescence spectroscopy (PL). XRD and PL results show that the existent of rare earth can inhibit the transformation of TiO2 NCs from anatase to rutile phase and can improve the luminescence intensity of the prepared samples. The room-temperature PL emission of the as-grown samples is dominated by the 5D(0)-7F(j) transitions of Eu3+ ions. But the luminescence intensity drops dramatically when the annealing temperature reaches a relatively high degree because of the formation of the rutile phase of TiO2 NCs hosts. PMID:23901539

  3. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Chattopadhyay, P. P.; Bhattacharyya, P.

    2014-08-01

    Oxygen vacancy (OV) controlled TiO2 nanotubes, having diameters of 50-70 nm and lengths of 200-250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH4F and ethylene glycol with selective H2O content. The structural evolution of TiO2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  4. TiO2 impregnated graphene nanostructures: An effectual photocatalysts for water remediation application

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Durgalakshmi, D.; Balakumar, S.

    2015-06-01

    In this work, we describe the fabrication of nanohybrid TiO2 impregnated Graphene nanostructures by modified Hummer's method. The chemically impregnated TiO2-Graphene hybrid nanostructures drastically enhanced their photodegradation activity of methylene blue (MB) dye in an aqueous medium compare to pure TiO2 nanoparticles. The enhancement in the photocatalytic activity was ascribed by a heterojunction between TiO2-Graphene interfaces. It remarkably decreased the recombination rate and likewise increased the number of holes participating in the photodegradation process, confirmed by XPS analysis. This study can provide a new insight for constructing the hybrid photocatalysts, which can be used in environmental pollution and water treatment applications.

  5. Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110)

    SciTech Connect

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-04-16

    Understanding hydrogen formation on TiO2 surfaces is of great importance as it could provide fundamental insight into water splitting for hydrogen production using solar energy. In this work, hydrogen formation from glycols having different numbers of methyl end-groups have been studied using temperature pro-grammed desorption on reduced, hydroxylated, and oxidized TiO2(110) surfaces. The results from OD-labeled glycols demon-strate that gas-phase molecular hydrogen originates exclusively from glycol hydroxyl groups. The yield is controlled by a combi-nation of glycol coverage, steric hindrance, TiO2(110) order and the amount of subsurface charge. Combined, these results show that proximal pairs of hydroxyl aligned glycol molecules and subsurface charge are required to maximize the yield of this redox reaction. These findings highlight the importance of geometric and electronic effects in hydrogen formation from adsorbates on TiO2(110).

  6. Atomic Structure of the Anatase TiO2(001) Surface

    SciTech Connect

    Xia, Yaobiao; Zhu, Ke; Kaspar, Tiffany C.; Du, Yingge; Birmingham, Blake; Park, Kenneth T.; Zhang, Zhenrong

    2013-08-16

    Understanding the structure of well-defined anatase TiO2 surfaces is critical for deciphering site-specific thermal and photo- reaction mechanisms on anatase TiO2. Using UHV scanning tunneling microscopy (STM), we have studied the atomic structure of anatase TiO2(001) epitaxial thin films grown by oxygen plasma assisted molecular beam epitaxy. Bright rows of the (1×4) reconstructed surface are resolved as three types of features with different sizes. High-resolution STM images taken from the same area at different bias voltages show that these individual features are originated from combinations of two basic atomic building blocks. We propose a modified added molecule model for the anatase TiO2 (001) surface structure.

  7. Phase stability frustration on ultra-nanosized anatase TiO2.

    PubMed

    Patra, Snehangshu; Davoisne, Carine; Bouyanfif, Houssny; Foix, Dominique; Sauvage, Frédéric

    2015-01-01

    This work sheds light on the exceptional robustness of anatase TiO2 when it is downsized to an extreme value of 4 nm. Since at this size the surface contribution to the volume becomes predominant, it turns out that the material becomes significantly resistant against particles coarsening with temperature, entailing a significant delay in the anatase to rutile phase transition, prolonging up to 1000 °C in air. A noticeable alteration of the phase stability diagram with lithium insertion is also experienced. Lithium insertion in such nanocrystalline anatase TiO2 converts into a complete solid solution until almost Li1TiO2, a composition at which the tetragonal to orthorhombic transition takes place without the formation of the emblematic and unwished rock salt Li1TiO2 phase. Consequently, excellent reversibility in the electrochemical process is experienced in the whole portion of lithium content. PMID:26042388

  8. High performance binderless TiO2 nanowire arrays electrode for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Yueming; Lv, Xiaojun; Li, Jinghong

    2009-09-01

    Binderless lithium ion battery electrode fabricated by anodizing Ti foil, in which TiO2 nanowire serves as active materials and unreacted Ti foil as the current collector, exhibited high electrochemical performance.

  9. UV/thermally driven rewritable wettability patterns on TiO2-PDMS composite films.

    PubMed

    Nakata, Kazuya; Kimura, Hiroaki; Sakai, Munetoshi; Ochiai, Tsuyoshi; Sakai, Hideki; Murakami, Taketoshi; Abe, Masahiko; Fujishima, Akira

    2010-09-01

    Composite films of TiO2 and polydimethylsiloxane (PDMS) are prepared by a sol-gel method, cured with UV irradiation, and then treated in hot water to crystallize the TiO2 in the film. The presence of anatase TiO2 contributes to the photoinduced superhydrophilicity of the film under UV irradiation. Contact angle studies reveal that the TiO2-PDMS composite film recovers its original hydrophobic state. Hydrophobic-superhydrophilic patterns are successfully formed on the films. The wettability patterns can be erased by UV irradiation and thermal treatment. New wettability patterns can be reconstructed, demonstrating that the film exhibits rewritable wettability without the need for organic chemicals. PMID:20712336

  10. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3.

    PubMed

    Zhao, Wenru; Tang, Yu; Wan, Yaping; Li, Liang; Yao, Si; Li, Xiaowei; Gu, Jinlou; Li, Yongsheng; Shi, Jianlin

    2014-08-15

    A series of the CeO2-based catalysts loaded on TiO2, TiO2-SiO2, TiO2-Al2O3, and TiO2-SiO2-Al2O3 supports were prepared by incipient impregnation method for the selective catalytic reduction (SCR) of NO by NH3 in the presence of oxygen. The SCR activities of the catalysts with different supports increases in the order of Ce/TiO2 < Ce/TiO2-20SiO2 ≈ Ce/TiO2-3.5Al2O3 < Ce/TiO2-20SiO2-3.5Al2O3. The Ce/TiO2-20SiO2-3.5Al2O3 catalyst showed 100% NO conversion in the temperature range of 250-425°C and 100% N2 selectivity in the whole temperature range. The catalytic activity of Ce/TiO2-20SiO2-3.5Al2O3 exhibited good stability and strong resistance to SO2 and H2O poisoning. The co-introduction of SiO2 and Al2O3 into TiO2 could increase the amount of chemisorbed oxygen and Lewis acid sites on the surface of catalyst, which should be responsible for the excellent SCR activity. PMID:24996153

  11. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.

    PubMed

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S G; Ramakrishna, Seeram

    2012-03-01

    Hollow mesoporous one dimensional (1D) TiO(2) nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO(2) nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO(2) nanofibers possess a high surface area of 118 m(2) g(-1) with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO(2) nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (J(sc)) are measured as 5.6% and 10.38 mA cm(-2) respectively, which are higher than those of DSSC made using regular TiO(2) nanofibers under identical conditions (η = 4.2%, J(sc) = 8.99 mA cm(-2)). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO(2) nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO(2) nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO(2) nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO(2) nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO(2) nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO(2) nanocatalysts. PMID:22315140

  12. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  13. Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst.

    PubMed

    Takeuchi, Masato; Hidaka, Manabu; Anpo, Masakazu

    2012-10-30

    Efficient removal of toluene or benzene molecules thinly diffused in gas phase was achieved by using TiO(2)/Y-zeolite hybrid photocatalysts. TiO(2) of 10 wt% hybridized with a hydrophobic USY zeolite showed higher photocatalytic reactivity as compared to TiO(2) hybridized with hydrophilic H-Y or Na-Y zeolites. This phenomenon can be explained by the fact that the hydrophobic USY zeolite efficiently adsorbs the organic compounds and smoothly supplies them onto the TiO(2) photocatalyst surface. However, the toluene or benzene molecules, which are strongly trapped on the hydrophilic H(+) or Na(+) sites of zeolite, cannot diffuse onto the TiO(2) surfaces, resulting in lower photocatalytic reactivity. Although the adsorption capacity of the pure TiO(2) sample rapidly deteriorated, the TiO(2)/Y-zeolite hybrid system maintained a high adsorption efficiency to remove such aromatic compounds for a long period. PMID:22947182

  14. Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment.

    PubMed

    Ide, Yusuke; Inami, Nozomu; Hattori, Hideya; Saito, Kanji; Sohmiya, Minoru; Tsunoji, Nao; Komaguchi, Kenji; Sano, Tsuneji; Bando, Yoshio; Golberg, Dmitri; Sugahara, Yoshiyuki

    2016-03-01

    Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective. PMID:26891152

  15. Zr-doped rutile TiO2: a nuclear quadrupole interaction study

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Das, S. K.; Das, P.; Thakare, S. V.; Butz, T.

    2010-04-01

    Role of Zr atom on the quadrupole interaction of 181Ta in rutile TiO2 has been investigated by time differential perturbed angular correlation (TDPAC) study. The quadrupole frequency remains same as that in the pure rutile TiO2 but its distribution increases with the amount of Zr. This indicates a metal-metal interaction between probe atom and Zr-atom in the nearest neighbour.

  16. Study of TiO2 nanomembranes obtained by an induction heated MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Crisbasan, A.; Chaumont, D.; Sacilotti, M.; Crisan, A.; Lazar, A. M.; Ciobanu, I.; Lacroute, Y.; Chassagnon, R.

    2015-12-01

    Nanostructures of TiO2 were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO2 nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

  17. Verification of effect of electric field on electron transport in TiO2 electrode

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Ling; Chen, Yi-Jia; Wong, Ming-Show; Ling, Hong Syuan; Tsai, Chih-Hung; Wang, Chien Chin

    2015-09-01

    We demonstrated that the dense TiO2 planar negative electrode is an effective electron transport material in the perovskite solar cells. The highest Voc is 900 mV using negative electrode with a dense TiO2 layer of 400 nm plus a mesoporous TiO2 layer of 400 nm. For conventional dye-sensitized solar cells (DSSCs) the thickness of the mesoporous negative electrode is around 15 μm. The ideal range of film thickness in DSSCs is usually 12~16 μm, suggesting that the electron has comparable diffusion length in the mesoporous negative electrode such that the electron recombination is insignificant below 15 μm. However, design of thicker mesoporous TiO2 negative electrode in perovskite solar cells is not usually encouraged as the solar cell efficiency decreases with electrode thickness greater than 500 nm. In this study, we would like to verify if the efficiency decrease of perovskite solar cells with electrode thickness is really due to the increase of thickness of TiO2 electrode itself or some consequences that come with the increase of thickness, such as increased roughness. We will report the solar cell efficiency dependence on the thickness of dense TiO2 layer in negative electrode so to verify if the electric field does play a role in electron transport in the TiO2 electrode. With this understanding, we will be able to design a novel structure of TiO2 electrode that is suitable for perovskite solar cells.

  18. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    PubMed

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability. PMID:25497036

  19. Magnetic and electrical properties of TiO2:Nb thin films

    NASA Astrophysics Data System (ADS)

    Yu, Chang-Feng; Sun, Shih-Jye; Chen, Jian-Ming

    2014-02-01

    This study investigated the electrical and especially the magnetic properties of Niobium (Nb) doped TiO2 (TiO2:Nb) thin films. Experiments evidently present that both minimum of ferromagnetism and resistivity exist in a same Nb doping ratio (3.0%). The XPS experiments revealed that Nb doping simultaneously increases and compensates for oxygen vacancies. The proposed model explains magnetic and electrical properties by analyzing oxygen vacancies induced by vacuum annealing or by Nb doping.

  20. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting.

    PubMed

    Das, Chittaranjan; Roy, Poulomi; Yang, Min; Jha, Himendra; Schmuki, Patrik

    2011-08-01

    Nanostructured titanium dioxide is one of the classic materials for photoelectrochemical water splitting. In the present work we dope TiO(2) nanotube anodes. For this, various low concentration bulk-Nb-doped TiO(2) nanotube layers were grown by self-organizing anodization of Ti-Nb alloys. At Nb-contents around 0.1 at%, and after an adequate heat-treatment, a strongly increased and stable photoelectrochemical water-splitting rate is obtained. PMID:21761039

  1. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    PubMed

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress. PMID:26846246

  2. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    PubMed Central

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion. PMID:27215703

  3. Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Li, Huayao; Liu, Yuan; Xie, Changsheng

    2011-12-01

    Photoconductivity and trap-related decay were investigated in porous TiO2/ZnO nanocomposites. Photoconductivity responses of TiO2 and ZnO were completely different, which were attributed to electron-scavenging effect and hole trapping effect, respectively. When the mole ratio of TiO2:ZnO was from 9:1 to 6:4, the photoconductivity responses were consistent with TiO2. On the contrary, when the mole ratio of TiO2:ZnO was from 4:6 to 1:9, the photoconductivity responses were controlled by ZnO. Time constants were obtained by fitting the experiment data with an exponential function. We found that they tended to get larger with the percentage of ZnO while a turning point appeared at TiO2:ZnO = 1:9. The pattern was assigned to different carrier trapping mechanisms as well as carrier separation. Composition effect was defined by a quantitative formula to evaluate the recombination processes of composite materials. A mechanism was proposed to explain this phenomenon.

  4. Influence of silver doping on surface defect characteristics of TiO2

    NASA Astrophysics Data System (ADS)

    Tripathi, S. K.; Rani, Mamta

    2015-08-01

    In the present work, we proposed a novel silver doped TiO2 polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO2 photoanodes. Silver doped titanium dioxide (TiO2:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique at 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO2 films are about 548 times more photosensitive as compare to the pure TiO2 sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO2 nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO2 and Ag-TiO2 films keeping intensity of light constant.

  5. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays.

    PubMed

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion. PMID:27215703

  6. Degradation of parathion and the reduction of acute toxicity in TiO2 photocatalysis.

    PubMed

    Zoh, K D; Kim, T S; Kim, J G; Choi, K H

    2005-01-01

    Photocatalytic degradation of methyl parathion was done using a circulating TiO2/UV and TiO2/solar reactor. Indoor experimental results showed that, under the photocatalysis conditions, parathion was more effectively degraded than under the photolysis and TiO2 only conditions. Parathion (38 microM) was completely degraded under photocatalysis within 90 min, and more than 80% TOC decrease after 150 minutes. The main ionic byproducts during the photocatalysis were measured, and almost complete nitrogen recovery was achieved as mainly NO3- NO2-, and NH4+, and 80% of sulfur as recovered as SO4(2)-. Organic intermediates such as nitrophenol and methyl paraoxon were also identified during the photocatalysis of parathion, and these were further degraded after 90 minutes. Microtox bioassay using Vibrio fischeri was used in evaluating the toxicity of solutions treated by photocatalysis and photolysis of parathion. The results showed that the acute toxicity expressed as EC50 almost reduced after 90 min under the photocatalysis condition whereas only 40% reduction of toxicity as EC50 was achieved in photolysis condition. The outdoor results using a TiO2/solar system were similar to the TiO2 indoor system, indicating the possibility of applying TiO2/solar system for the treatment of parathion-contaminated water. PMID:16312950

  7. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    PubMed

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property. PMID:19198362

  8. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  9. Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays.

    PubMed

    Zhang, Qian; Wang, Ling; Feng, Jiangtao; Xu, Hao; Yan, Wei

    2014-11-14

    The efficient utilization of solar spectrum and photo-induced charge transport are critical aspects in improving the light conversion efficiency of solar cells and hydrogen generation. In this work, reduced TiO2 nanotube arrays with CdS decoration were fabricated through the simple cathodic polarization of annealed TiO2 nanotube arrays followed by the chemical deposition of CdS nanoparticles. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy confirmed the successful fabrication of the target material. UV-visible diffuse reflectance spectra showed a Burstein-Moss shift for reduced TiO2 NTs and a red shift of the absorption edge towards ca. 563 nm for CdS-decorated R-TiO2 NTs. Cyclic voltammetry and impedance spectra together demonstrate the decreased charge transport resistance for reduced TiO2 NTs. Under the excitation of monochromatic light at 420 nm, the proposed CdS-decorated reduced TiO2 NTs exhibit the maximum IPCE value of 30.12% in 1 M Na2SO3 electrolyte, which is almost twice higher than that achieved on CdS-decorated pristine TiO2 NTs. Therefore, the results here highlight the significance of charge transport in the light conversion process. The enhanced charge transport properties are ascribed to the increased number of electrons, which is brought about by the lattice oxygen vacancies (Ti(3+)) during the cathodic polarization. PMID:25265452

  10. Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity.

    PubMed

    Ma, Chufan; Nagai, Akiko; Yamazaki, Yuko; Toyama, Takeshi; Tsutsumi, Yusuke; Hanawa, Takao; Wang, Wei; Yamashita, Kimihiro

    2012-02-01

    The use of micro-arc oxidation titania (MAO TiO2) coatings to modify titanium surfaces improves the biocompatibility of implant surfaces. To obtain hydrophilic MAO TiO2 coating surfaces electric polarization, which induces surface electric fields in the materials and produces surface charges, was performed in this study. Electric polarization of the MAO TiO2 coatings was confirmed by measuring the thermally stimulated depolarization current. After electric polarization treatment the MAO TiO2 coatings did not exhibit any obvious changes in surface roughness, morphology, or phase components. X-ray photoelectron spectroscopy results indicated that electric polarization resulted in oxidation of the cathodic-faced surfaces and reduction of the anodic-faced surfaces. This result suggests that the existence of a concentration gradient of oxide ions/oxygen vacancies produced the stored space charge in the coatings. Reduction of the deionized water contact angle on the polarized MAO TiO2 surfaces was maintained for longer periods compared with the non-polarized surface. Our study demonstrated that metastable electric fields across the MAO TiO2 coating produced by electric polarization made it durably wettable by reducing the interfacial surface tension between the material and water. PMID:21971419

  11. Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO2.

    PubMed

    Nolan, Michael; Iwaszuk, Anna; Lucid, Aoife K; Carey, John J; Fronzi, Marco

    2016-07-01

    Work on the design of new TiO2 based photocatalysts is described. The key concept is the formation of composite structures through the modification of anatase and rutile TiO2 with molecular-sized nanoclusters of metal oxides. Density functional theory (DFT) level simulations are compared with experimental work synthesizing and characterizing surface modified TiO2 . DFT calculations are used to show that nanoclusters of metal oxides such as TiO2 , SnO/SnO2 , PbO/PbO2 , ZnO and CuO are stable when adsorbed at rutile and anatase surfaces, and can lead to a significant red shift in the absorption edge which will induce visible light absorption; this is the first requirement for a useful photocatalyst. The origin of the red shift and the fate of excited electrons and holes are determined. For p-block metal oxides the oxidation state of Sn and Pb can be used to modify the magnitude of the red shift and its mechanism. Comparisons of recent experimental studies of surface modified TiO2 that validate our DFT simulations are described. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with a correct choice of nanocluster modified can be applied to other reactions. PMID:26833714

  12. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode

    PubMed Central

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light. PMID:27055277

  13. Location Of Hole And Electron Traps On Nanocrystalline Anatase TiO2

    SciTech Connect

    Mercado, Candy C.; Knorr, Fritz J.; McHale, Jeanne L.; Usmani, Shirin M.; Ichimura, Andrew S.; Saraf, Laxmikant V.

    2012-05-17

    The defect photoluminescence from TiO2 nanoparticles in the anatase phase is reported for nanosheets which expose predominantly (001) surfaces, and compared to that from conventional anatase nanoparticles which expose mostly (101) surfaces. Also reported is the weak defect photoluminescence of TiO2 nanotubes, which we find using electron back-scattered diffraction to consist of walls which expose (110) and (100) facets. The nanotubes exhibit photoluminescence that is blue-shifted and much weaker than that from conventional TiO2 nanoparticles. Despite the preponderance of (001) surfaces in the nanosheet samples, they exhibit photoluminescence similar to that of conventional nanoparticles. We assign the broad visible photoluminescence of anatase nanoparticles to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission extending into the red which results from electron traps on under-coordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how morphology of TiO2 nanoparticles could be optimized to control the distribution and activity of surface traps. Our results also shed light on the mechanism by which the TiCl4 surface treatment heals traps on anatase and mixed-phase TiO2 films, and reveals distinct differences in the trap-state distributions of TiO2 nanoparticles and nanotubes. The molecular basis for electron and hole traps and their spatial separation on different facets is discussed.

  14. Degradability of Treated Ethion Insecticide by TiO2 Photocatalysis.

    PubMed

    Hassarangsee, Siriporn; Uthaibutra, Jamnong; Nomura, Nakao; Whangchai, Kanda

    2015-01-01

    Ethion, an insecticide, is widely used with fruit and vegetable crops. This research studied the reduction and oxidative degradation of standard ethion by TiO2 photocatalysis. A standard ethion solution (1 mg L(-1)) was treated with different concentrations of TiO2 powder (5, 10, 20, 40 and 60 mg mL(-1)) for 0, 15, 30, 45 and 60 min. The amount of ethion residue was detected by gas chromatography with flame photometric detection (GC-FPD) and the concentration of anions produced as major degradation products was determined by Ion Chromatography (IC). The TiO2 photocatalysis efficiently reduced ethion concentrations, with the highest degradation rate occurring within the first 15 min of reaction. The reaction produced sulphate and phosphate anions. The TiO2photocatalysis reduced 1 mg L(-1) ethion to 0.18 mg L(-1) when treated with 60 mg mL(-1) TiO2 powder for 60 min. The lethal concentration (LC50) of standard ethion was also estimated and compared to the treated ethion. All treatments, especially 60 mg mL(-1) TiO2 powder, markedly detoxified ethion, as tested with brine shrimp (Artemia salina L.), with an LC50 value of 765.8 mg mL(-1), compared to the control of 1.01 mg mL(-1). PMID:26353413

  15. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  16. Composite WO3/TiO2 nanostructures for high electrochromic activity

    DOE PAGESBeta

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; Robinson, David B.

    2015-01-06

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performancemore » were studied. As a result, the composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials« less

  17. [Fluorescence spectra and quantum yield of TiO2 nanocrystals synthesized by alcohothermal method].

    PubMed

    Song, Cui-Hong; Li, Yan-Ting; Li, Jing; Wei, Yong-Ju; Hu, Yu-Zhu; Wei, Yu

    2008-01-01

    Fluorescence spectra and fluorescence quantum yield of TiO2 nanocrystals were studied. Using tetra n-butyl titanate as a starting material, a facile alcohothermal technique was used to synthesize TiO2 nanocrystals. As can be seen from the transmittance electron microscopy (TEM) image, TiO2 nanocrystals with a relatively uniform particle size distribution of < 10 nm are present in the transparent sol. The transparent sol presents a strong stable fluorescence emission with a maximum at 450 nm, which is greatly dependent on the size quantization effects, defect energy level and the surface state of TiO2 nanocrystals. The quantum yield (gamma) of TiO2 was determined by the relative comparison procedure, using freshly prepared analytical purity quinine sulfate in 0.05 mol x L(-1) H2SO4 as a relative quantum yield standard. The emission quantum yield of TiO2 nanocrystals prepared in alcoholic media was calculated to be about 0.20 at wavelengths ranging from 330 to 370 nm, which was much higher than the values reported in previous works. So, it is supposed that nano-TiO2 will be applied as a potential quantum dots fluorescence probe in biological analysis. PMID:18422145

  18. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    NASA Astrophysics Data System (ADS)

    Guo, Wenlu; Liu, Xiaolin; Huo, Pengwei; Gao, Xun; Wu, Di; Lu, Ziyang; Yan, Yongsheng

    2012-07-01

    Anatase TiO2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h).

  19. Methanol Conversion into Dimethyl Ether on the Anatase TiO2(001) Surface.

    PubMed

    Xiong, Feng; Yu, Yan-Yan; Wu, Zongfang; Sun, Guanghui; Ding, Liangbing; Jin, Yuekang; Gong, Xue-Qing; Huang, Weixin

    2016-01-11

    Exploring reactions of methanol on TiO2 surfaces is of great importance in both C1 chemistry and photocatalysis. Reported herein is a combined experimental and theoretical calculation study of methanol adsorption and reaction on a mineral anatase TiO2(001)-(1×4) surface. The methanol-to-dimethyl ether (DME) reaction was unambiguously identified to occur by the dehydration coupling of methoxy species at the fourfold-coordinated Ti(4+) sites (Ti(4c)), and for the first time confirms the predicted higher reactivity of this facet compared to other reported TiO2 facets. Surface chemistry of methanol on the anatase TiO2(001)-(1×4) surface is seldom affected by co-chemisorbed water. These results not only greatly deepen the fundamental understanding of elementary surface reactions of methanol on TiO2 surfaces but also show that TiO2 with a high density of Ti(4c) sites is a potentially active and selective catalyst for the important methanol-to-DME reaction. PMID:26593777

  20. Doping mode, band structure and photocatalytic mechanism of B-N-codoped TiO 2

    NASA Astrophysics Data System (ADS)

    Yuan, Jixiang; Wang, Enjun; Chen, Yongmei; Yang, Wensheng; Yao, Jianghong; Cao, Yaan

    2011-06-01

    The photocatalyst B and N codoped TiO 2 (B-N-TiO 2) was prepared via the sol-gel method by using boric acid and ammonia as B and N precursors. The doping mode, band structure and photocatalytic mechanism of B-N-TiO 2 were investigated well and elucidated in detail. B-N-TiO 2 showed the narrowed band gap and thus extended the optical absorption due to interstitial N and [NOB] species in the TiO 2 crystal lattice. The coexistence of interstitial N and [NOB] species in the TiO 2 crystal lattice and surface NO x species allowed the more efficient utilization of visible light. Simultaneously, interstitial [NOB] and N species and surface B 2O 3 and NO x species facilitated the separation of photo generated electrons and holes and suppress their recombination effectively. Hence, B-N-TiO 2 showed a higher photocatalytic activity than pure TiO 2, N-doped TiO 2 (N-TiO 2) and B-doped TiO 2 (B-TiO 2) under both UV and visible light irradiation.