Nasi, Davide; Servadei, Franco; Romano, Antonio
2017-08-01
We report a case in which common radiologic images masked a rare case of supratentorial hemangioblastoma (HBL). Other peculiarities of this case are the clinical presentation with status epilepticus and the occurrence of a supratentorial HBL unrelated to von Hippel-Lindau syndrome. Based on clinical and radiologic findings, including massive cerebral edema and hemorrhagic presentation, our preoperative diagnosis was a cerebral metastasis. In this scenario, physicians must take into account the words of the Roman fabulist Phaedrus: "Non semper ea sunt, quae videntur, decipit frons prima multos" (things are not always what they seem; the first appearance deceives many). Copyright © 2017 Elsevier Inc. All rights reserved.
Smartcards in Libraries: A Brave New World.
ERIC Educational Resources Information Center
Myhill, Martin
1998-01-01
Describes the University of Exeter (UK), Mondex, and NatWest UK smartcard-based campus card system project. Smartcards, wallet-sized plastic cards with microprocessors, interface with network terminal devices and are programmable as data, identity, and finance cards. International standard multiple operating system (MULTOS) increases current…
Theodor Hellbrügge: 85 years of age – Ad multos transannos, sanos, fortunatos et beatos
Halberg, Franz; Cornélissen, Germaine; Katinas, George; Schwartzkopff, Othild; Johnson, Dana
2005-01-01
We honor Theo Hellbrügge's acclaimed endeavors in the rehabilitation, or rather the prehabilitation of handicapped children. So far, he has focused on obvious handicaps, and we trust that he will include concern for everybody's silent handicaps in the future by screening for abnormal variability inside the physiological range. Therein, we introduce cis- and trans-years, components of transdisciplinary spectra that are novel for biology and also in part for physics. These components have periods, respectively, shorter and longer than the calendar year, with a counterpart in magnetoperiodism. Transyears characterize indices of geomagnetic activity and the solar wind's speed and proton density. They are detected, alone or together with circannuals, in physiology as well as in pathology, as illustrated for sudden cardiac death and myocardial infarction, a finding calling for similar studies in sudden infant death syndrome (SIDS). As transyears can beat with circannuals, and depend on local factors, their systematic mapping in space and time by transdisciplinary chronomics may serve a better understanding of their putative influence upon the circadian system. Longitudinal monitoring of blood pressure and heart rate detects chronome alterations underlying cardiovascular disease risk, such as that of myocardial infarction and sudden cardiac death. The challenge is to intervene in a timely fashion, preferably at birth, an opportunity for pediatricians in Theo Hellbrügge's footsteps. PMID:15748294
1988-12-01
cegracation cf grapnite f cers in a~umnum was stuciea by Kohara arC Muto [201. reir stucv snowed a cecrease of 10 to 500, In ,n7e strenat cf cracn::e...eact:on procucts were identified by Kohara and MuLto (20] As an ,ustratLon one of the fibers from ,heir investigation is sin n -. 23. :2 t7elr -7...with puoishea worK. Kohara and Muto [20] suggested that the reaction procuct was A14C 3. 5.2 Mechanical Property Characterization of Fiber Reinforced
The Tenth Frederick H. Verhoeff lecture. What else did 1864 contribute to ophthalmology?
Blodi, F C
1989-01-01
In summary we can say that the AOS was founded at a time when ophthalmology established itself as an independent scientific medical specialty. A hundred years earlier, in 1750, ophthalmology became an independent surgical specialty when Jacques Daviel of Marseille had begun extracting a cataract instead of merely couching or dislocating the lens. Now in the middle of the 19th century a new era dawned on the ophthalmic horizon. An era which Julius Hirschberg calls "the reform of ophthalmology." It was effected mainly by a group of unusual, gifted and genial scholars. Hermann v. Helmholtz, who not only invented the ophthalmoscope, but established with his handbook physiologic optics as an advanced, sophisticated branch of optics and mathematics; F.C. Donders, who put refraction, refractive errors and accommodation on a sound scientific footing, the great A. v. Graefe, who contributed so much to the concept and treatment of glaucoma, to strabismus, to various diseases of the fundus, to neuro-ophthalmology and to many other fields and finally William Bowman, the great investigator, clinician and surgeon. It was during this time of reform, of fermentation, of maturation, that a group of farsighted American ophthalmologists decided to establish a society to further the aims and objectives of our specialty in America. The time was right; the effort succeeded and our society developed into one of the decisive forces of American ophthalmology. I hope that my address has met the objectives which I had outlined earlier: To present and illuminate the circumstances and external conditions which were effective in 1864 when our society was founded. At the same time I hope I have done justice to the memory of this outstanding American ophthalmologist, Frederick Verhoeff, who contributed so much to the American Ophthalmological Society. On this the quasquicentennial jubilee of the AOS we find the Society healthy and flourishing. May it continue as an association of the most prominent and most promising American ophthalmologists who consider the practice of our specialty a scholarly profession and not a mercenary trade. I can only conclude with wishing the AOS a happy birthday, many successful returns, ad multos annos!
Woodward, Matthew R; Hafeez, Muhammad Ubaid; Qi, Qianya; Riaz, Ahmed; Benedict, Ralph H B; Yan, Li; Szigeti, Kinga
2018-04-19
To explore whether the ability to recognize specific odorant items is differentially affected in aging versus Alzheimer disease (AD); to refine olfactory identification deficit (OID) as a biomarker of prodromal and early AD. Prospective multicenter cross-sectional study with a longitudinal arm. Outpatient memory diagnostic clinics in New York and Texas. Adults aged 65 and older with amnestic mild cognitive impairment (aMCI) and AD and healthy aging (HA) subjects in the comparison group. Participants completed the University of Pennsylvania Smell Identification Test (UPSIT) and neuropsychological testing. AD-associated odorants (AD-10) were selected based on a model of ordinal logistic regression. Age-associated odorants (Age-10) were identified using a linear model. For the 841 participants (234 HA, 192 aMCI, 415 AD), AD-10 was superior to Age-10 in separating HA and AD. AD-10 was associated with a more widespread cognitive deficit across multiple domains, in contrast to Age-10. The disease- and age-associated odorants clustered separately in age and AD. AD-10 predicted conversion from aMCI to AD. Nonoverlapping UPSIT items were identified that were individually associated with age and disease. Despite a modest predictive value of the AD-specific items for conversion to AD, the AD-specific items may be useful in enriching samples to better identify those at risk for AD. Further studies are needed with monomolecular and unilateral stimulation and orthogonal biomarker validation to further refine disease- and age-associated signals. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Role of familial factors in late-onset Alzheimer disease as a function of age.
Wu, Z; Kinslow, C; Pettigrew, K D; Rapoport, S I; Schapiro, M B
1998-09-01
Whereas early-onset Alzheimer disease (AD; usually onset at age < 50 years) has been defined with genetic mutation on chromosomes 1, 14, and 21, the degree of familial contribution to late-onset AD is unclear. Further, it is uncertain if subgroups of late-onset AD exist. To examine the influence of familial factors as a function of age in late-onset AD we investigated lifetime risks and age-specific hazard rates of AD-like illness among late-onset AD probands' and controls' first-degree relatives, using questionnaires and medical records. As part of a longitudinal study on aging and AD, we studied 78 AD probands with age of onset > or =50 years (28 "definite" and 50 "probable" AD according to NINCDS/ADRDA criteria) and 101 healthy old controls seen since 1981. Both probands and controls were screened rigorously with medical tests and brain imaging and seen regularly until autopsy. Multiple informants and medical records were used for first-degree relatives. Among first-degree relatives, 49 secondary cases of AD-like illness were found for the AD probands' relatives (391 relatives 40 years old or older) compared with 20 cases among controls' relatives (456 relatives 40 years old or older). Relatives of AD probands had a significantly increased lifetime risk of AD-like illness of 52.8+/-11.4% by age 94 years compared with a lifetime risk in relatives of controls of 22.1+/-5.8% by age 90 years. Age-specific hazard rates in relatives of AD probands increased until the 75-79-year age interval and then decreased; in contrast the age-specific hazard rates increased in relatives of controls after the 80-84-year age interval. To determine if a dividing line exist among late-onset AD, several cutoff ages were used in our study to compare cumulative risk curves of AD-like illness between relatives of late-onset probands and relatives of late-late-onset probands. Differences in the pattern of cumulative incidence of AD in relatives showed that 67-71 years is the range for a dividing line between late- and late-late-onset AD. Age-specific hazard rates of AD in relatives supported a difference between late- and late-late-onset. Whereas these rates increased until the 75-79-year age interval and then decreased in late-onset AD, the rates began increasing after the 65-69-year age interval and through the oldest age interval in both late-late-onset AD and control groups. Our results support the concept that familial factors exist in late-onset AD and that different familial factors may exist in late-onset AD subgroups.
Brain aging, Alzheimer's disease, and mitochondria
Swerdlow, Russell H.
2011-01-01
The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. PMID:21920438
The Tenth Frederick H. Verhoeff lecture. What else did 1864 contribute to ophthalmology?
Blodi, F C
1989-01-01
In summary we can say that the AOS was founded at a time when ophthalmology established itself as an independent scientific medical specialty. A hundred years earlier, in 1750, ophthalmology became an independent surgical specialty when Jacques Daviel of Marseille had begun extracting a cataract instead of merely couching or dislocating the lens. Now in the middle of the 19th century a new era dawned on the ophthalmic horizon. An era which Julius Hirschberg calls "the reform of ophthalmology." It was effected mainly by a group of unusual, gifted and genial scholars. Hermann v. Helmholtz, who not only invented the ophthalmoscope, but established with his handbook physiologic optics as an advanced, sophisticated branch of optics and mathematics; F.C. Donders, who put refraction, refractive errors and accommodation on a sound scientific footing, the great A. v. Graefe, who contributed so much to the concept and treatment of glaucoma, to strabismus, to various diseases of the fundus, to neuro-ophthalmology and to many other fields and finally William Bowman, the great investigator, clinician and surgeon. It was during this time of reform, of fermentation, of maturation, that a group of farsighted American ophthalmologists decided to establish a society to further the aims and objectives of our specialty in America. The time was right; the effort succeeded and our society developed into one of the decisive forces of American ophthalmology. I hope that my address has met the objectives which I had outlined earlier: To present and illuminate the circumstances and external conditions which were effective in 1864 when our society was founded. At the same time I hope I have done justice to the memory of this outstanding American ophthalmologist, Frederick Verhoeff, who contributed so much to the American Ophthalmological Society. On this the quasquicentennial jubilee of the AOS we find the Society healthy and flourishing. May it continue as an association of the most prominent and most promising American ophthalmologists who consider the practice of our specialty a scholarly profession and not a mercenary trade. I can only conclude with wishing the AOS a happy birthday, many successful returns, ad multos annos! Images FIGURE 6 FIGURE 31 FIGURE 32 FIGURE 39 FIGURE 64 PMID:2562542
Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia
Jack, Clifford R.; Wiste, Heather J.; Weigand, Stephen D.; Vemuri, Prashanthi; Lowe, Val J.; Kantarci, Kejal; Gunter, Jeffrey L.; Senjem, Matthew L.; Mielke, Michelle M.; Machulda, Mary M.; Roberts, Rosebud O.; Boeve, Bradley F.; Jones, David T.; Petersen, Ronald C.
2016-01-01
Objective: To examine neurodegenerative imaging biomarkers in Alzheimer disease (AD) dementia from middle to old age. Methods: Persons with AD dementia and elevated brain β-amyloid with Pittsburgh compound B (PiB)-PET imaging underwent [18F]-fluorodeoxyglucose (FDG)-PET and structural MRI. We evaluated 3 AD-related neurodegeneration biomarkers: hippocampal volume adjusted for total intracranial volume (HVa), FDG standardized uptake value ratio (SUVR) in regions of interest linked to AD, and cortical thickness in AD-related regions of interest. We examined associations of each biomarker with age and evaluated age effects on cutpoints defined by the 90th percentile in AD dementia. We assembled an age-, sex-, and intracranial volume-matched group of 194 similarly imaged clinically normal (CN) persons. Results: The 97 participants with AD dementia (aged 49–93 years) had PiB SUVR ≥1.8. A nonlinear (inverted-U) relationship between FDG SUVR and age was seen in the AD group but an inverse linear relationship with age was seen in the CN group. Cortical thickness had an inverse linear relationship with age in AD but a nonlinear (flat, then inverse linear) relationship in the CN group. HVa showed an inverse linear relationship with age in both AD and CN groups. Age effects on 90th percentile cutpoints were small for FDG SUVR and cortical thickness, but larger for HVa. Conclusions: In persons with AD dementia with elevated PiB SUVR, values of each neurodegeneration biomarker were associated with age. Cortical thickness had the smallest differences in 90th percentile cutpoints from middle to old age, and HVa the largest differences. PMID:27421543
Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia.
Knopman, David S; Jack, Clifford R; Wiste, Heather J; Weigand, Stephen D; Vemuri, Prashanthi; Lowe, Val J; Kantarci, Kejal; Gunter, Jeffrey L; Senjem, Matthew L; Mielke, Michelle M; Machulda, Mary M; Roberts, Rosebud O; Boeve, Bradley F; Jones, David T; Petersen, Ronald C
2016-08-16
To examine neurodegenerative imaging biomarkers in Alzheimer disease (AD) dementia from middle to old age. Persons with AD dementia and elevated brain β-amyloid with Pittsburgh compound B (PiB)-PET imaging underwent [(18)F]-fluorodeoxyglucose (FDG)-PET and structural MRI. We evaluated 3 AD-related neurodegeneration biomarkers: hippocampal volume adjusted for total intracranial volume (HVa), FDG standardized uptake value ratio (SUVR) in regions of interest linked to AD, and cortical thickness in AD-related regions of interest. We examined associations of each biomarker with age and evaluated age effects on cutpoints defined by the 90th percentile in AD dementia. We assembled an age-, sex-, and intracranial volume-matched group of 194 similarly imaged clinically normal (CN) persons. The 97 participants with AD dementia (aged 49-93 years) had PiB SUVR ≥1.8. A nonlinear (inverted-U) relationship between FDG SUVR and age was seen in the AD group but an inverse linear relationship with age was seen in the CN group. Cortical thickness had an inverse linear relationship with age in AD but a nonlinear (flat, then inverse linear) relationship in the CN group. HVa showed an inverse linear relationship with age in both AD and CN groups. Age effects on 90th percentile cutpoints were small for FDG SUVR and cortical thickness, but larger for HVa. In persons with AD dementia with elevated PiB SUVR, values of each neurodegeneration biomarker were associated with age. Cortical thickness had the smallest differences in 90th percentile cutpoints from middle to old age, and HVa the largest differences. © 2016 American Academy of Neurology.
Fjell, Anders M.; McEvoy, Linda; Holland, Dominic; Dale, Anders M.; Walhovd, Kristine B
2015-01-01
What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer’s Disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in fronto-temporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology. PMID:24548606
Head, Elizabeth; Schmitt, Frederick A.; Davis, Paulina R.; Neltner, Janna H.; Jicha, Gregory A.; Abner, Erin L.; Smith, Charles D.; Van Eldik, Linda J.; Kryscio, Richard J.; Scheff, Stephen W.
2011-01-01
Human studies are reviewed concerning whether “aging”-related mechanisms contribute to Alzheimer’s disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human “accelerated aging” diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical “dementia” and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an “aging-linked” disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging. PMID:21516511
Perrone, Lorena; Grant, William B
2015-01-01
Considerable evidence indicates that diet is an important risk-modifying factor for Alzheimer's disease (AD). Evidence is also mounting that dietary advanced glycation end products (AGEs) are important risk factors for AD. This study strives to determine whether estimated dietary AGEs estimated from national diets and epidemiological studies are associated with increased AD incidence. We estimated values of dietary AGEs using values in a published paper. We estimated intake of dietary AGEs from the Washington Heights-Inwood Community Aging Project (WHICAP) 1992 and 1999 cohort studies, which investigated how the Mediterranean diet (MeDi) affected AD incidence. Further, AD prevalence data came from three ecological studies and included data from 11 countries for 1977-1993, seven developing countries for 1995-2005, and Japan for 1985-2008. The analysis used dietary AGE values from 20 years before the AD prevalence data. Meat was always the food with the largest amount of AGEs. Other foods with significant AGEs included fish, cheese, vegetables, and vegetable oil. High MeDi adherence results in lower meat and dairy intake, which possess high AGE content. By using two different models to extrapolate dietary AGE intake in the WHICAP 1992 and 1999 cohort studies, we showed that reduced dietary AGE significantly correlates with reduced AD incidence. For the ecological studies, estimates of dietary AGEs in the national diets corresponded well with AD prevalence data even though the cooking methods were not well known. Dietary AGEs appear to be important risk factors for AD.
Doan, Nhat Trung; Engvig, Andreas; Zaske, Krystal; Persson, Karin; Lund, Martina Jonette; Kaufmann, Tobias; Cordova-Palomera, Aldo; Alnæs, Dag; Moberget, Torgeir; Brækhus, Anne; Barca, Maria Lage; Nordvik, Jan Egil; Engedal, Knut; Agartz, Ingrid; Selbæk, Geir; Andreassen, Ole A; Westlye, Lars T
2017-09-01
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative disorder. Accurate identification of individuals at risk is complicated as AD shares cognitive and brain features with aging. We applied linked independent component analysis (LICA) on three complementary measures of gray matter structure: cortical thickness, area and gray matter density of 137 AD, 78 mild (MCI) and 38 subjective cognitive impairment patients, and 355 healthy adults aged 18-78 years to identify dissociable multivariate morphological patterns sensitive to age and diagnosis. Using the lasso classifier, we performed group classification and prediction of cognition and age at different age ranges to assess the sensitivity and diagnostic accuracy of the LICA patterns in relation to AD, as well as early and late healthy aging. Three components showed high sensitivity to the diagnosis and cognitive status of AD, with different relationships with age: one reflected an anterior-posterior gradient in thickness and gray matter density and was uniquely related to diagnosis, whereas the other two, reflecting widespread cortical thickness and medial temporal lobe volume, respectively, also correlated significantly with age. Repeating the LICA decomposition and between-subject analysis on ADNI data, including 186 AD, 395 MCI and 220 age-matched healthy controls, revealed largely consistent brain patterns and clinical associations across samples. Classification results showed that multivariate LICA-derived brain characteristics could be used to predict AD and age with high accuracy (area under ROC curve up to 0.93 for classification of AD from controls). Comparison between classifiers based on feature ranking and feature selection suggests both common and unique feature sets implicated in AD and aging, and provides evidence of distinct age-related differences in early compared to late aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Mitochondria, Cybrids, Aging, and Alzheimer’s Disease
Swerdlow, Russell H.; Koppel, Scott; Weidling, Ian; Hayley, Clay; Ji, Yan; Wilkins, Heather M.
2018-01-01
Mitochondrial and bioenergetic function change with advancing age and may drive aging phenotypes. Mitochondrial and bioenergetic changes are also documented in various age-related neurodegenerative diseases, including Alzheimer’s disease (AD). In some instances AD mitochondrial and bioenergetic changes are reminiscent of those observed with advancing age, but are greater in magnitude. Mitochondrial and bioenergetic dysfunction could, therefore, link neurodegeneration to brain aging. Interestingly, mitochondrial defects in AD patients are not brain-limited, and mitochondrial function can be linked to classic AD histologic changes including amyloid precursor protein processing to beta amyloid. Also, transferring mitochondria from AD subjects to cell lines depleted of endogenous mitochondrial DNA (mtDNA) creates cytoplasmic hybrid (cybrid) cell lines that recapitulate specific biochemical, molecular, and histologic AD features. Such findings have led to the formulation of a “mitochondrial cascade hypothesis” that places mitochondrial dysfunction at the apex of the AD pathology pyramid. Data pertinent to this premise are reviewed. PMID:28253988
Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire
2017-11-01
Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.
Drug use in persons with and without Alzheimer's disease aged 90 years or more.
Taipale, Heidi; Koponen, Marjaana; Tanskanen, Antti; Tolppanen, Anna-Maija; Tiihonen, Jari; Hartikainen, Sirpa
2016-11-01
increasing number of persons reach very high age but few studies have investigated their drug use patterns. to compare drug use among persons with Alzheimer's disease (AD) aged ≥90 years to persons without AD with similar age and to younger persons with AD. register-based data were from the MEDALZ cohort including all community-dwelling persons diagnosed with AD 2005-11 in Finland. They were identified from Special Reimbursement register. One comparison person without AD was matched with age-, gender- and region of residence. Persons with AD were divided to those aged ≥90 years (N = 3,319) and <90 years (N = 63,896) at the time of AD diagnoses. Drug use was analysed during a 6-month period after AD diagnosis. Logistic regression models were constructed to compare prevalence of drug use. compared to comparison persons without AD with similar age, persons with AD aged ≥90 years were more likely to use antipsychotics (comorbidity adjusted odds ratio [aOR] 4.84, 95% CI 4.07-5.75; CI, confidence intervals) and antidepressants (aOR 2.45, 95% CI 2.14-2.80). In addition, persons with AD used more likely preventive drugs such as statins (aOR 1.20, 95% CI 1.04-1.38) and bisphosphonates (aOR 1.33, 95% CI 1.13-1.57). Compared to younger persons with AD, those aged ≥90 years were more likely to use psychotropic drugs (55.6% vs. 48.4%, aOR 1.30, 95% CI 1.21-1.39), including antipsychotics (aOR 1.40, 95% CI 1.28-1.52) and BZDRs (aOR 1.34, 95% CI 1.25-1.45). the vulnerable oldest persons with AD receive a substantial burden of psychotropics. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Xie, Fang; Peng, Fangyu
2017-01-01
Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.
Reiter, Katherine; Alpert, Kathryn I; Cobia, Derin J; Kwasny, Mary J; Morris, John C; Csernansky, John C; Wang, Lei
2012-07-02
Children of Alzheimer's disease (AD) patients are at heightened risk of developing AD due to genetic influences, including the apolipoprotein E4 (ApoE4) allele. In this study, we assessed the earliest cortical changes associated with AD in 71 cognitively healthy, adult children of AD patients (AD offspring) as compared with 69 with no family history of AD (non-AD offspring). Cortical thickness measures were obtained using FreeSurfer from 1.5T magnetic resonance (MR) scans. ApoE genotyping was obtained. Primary analyses examined family history and ApoeE4 effects on cortical thickness. Secondary analyses examined age effects within groups. All comparisons were adjusted using False Discovery Rate at a significance threshold of p<0.05. There were no statistically significant differences between family history and ApoE4 groups. Within AD offspring, increasing age was related to reduced cortical thickness (atrophy) over large areas of the precuneus, superior frontal and superior temporal gyri, starting at around age 60. Further, these patterns existed within female and maternal AD offspring, but were absent in male and paternal AD offspring. Within non-AD offspring, negative correlations existed over small regions of the superior temporal, insula and lingual cortices. These results suggest that as AD offspring age, cortical atrophy is more prominent, particularly if the parent with AD is mother or if the AD offspring is female. Copyright © 2012 Elsevier Inc. All rights reserved.
Reiter, Katherine; Alpert, Kathryn I.; Cobia, Derin J.; Kwasny, Mary J.; Morris, John C.; Csernansky, John C.; Wang, Lei
2012-01-01
Children of Alzheimer's Disease (AD) patients are at heightened risk of developing AD due to genetic influences, including the apolipoprotein E4 (ApoE4) allele. In this study, we assessed the earliest cortical changes associated with AD in 71 cognitively healthy, adult children of AD patients (AD offspring) as compared with 69 with no family history of AD (non-AD offspring). Cortical thickness measures were obtained using FreeSurfer from 1.5T magnetic resonance (MR) scans. ApoE genotyping was obtained. Primary analyses examined family history and ApoeE4 effects on cortical thickness. Secondary analyses examined age effects within groups. All comparisons were adjusted using False Discovery Rate at a significance threshold of p < 0.05. There were no statistically significant differences between family history and ApoE4 groups. Within AD offspring, increasing age was related to reduced cortical thickness (atrophy) over large areas of the precuneus, superior frontal and superior temporal gyri, starting at around age 60. Further, these patterns existed within female and maternal AD offspring, but were absent in male and paternal AD offspring. Within non-AD offspring, negative correlations existed over small regions of the superior temporal, insula and lingual cortices. These results suggest that as AD offspring age, cortical atrophy is more prominent, particularly if the parent with AD is mother or if the AD offspring is female. PMID:22503937
At the interface of sensory and motor dysfunctions and Alzheimer's disease.
Albers, Mark W; Gilmore, Grover C; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A; Boxer, Adam L; Buchman, Aron S; Cruickshanks, Karen J; Devanand, Davangere P; Duffy, Charles J; Gall, Christine M; Gates, George A; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T; Lin, Frank R; McKee, Ann C; Morris, John C; Petersen, Ronald C; Silbert, Lisa C; Struble, Robert G; Trojanowski, John Q; Verghese, Joe; Wilson, Donald A; Xu, Shunbin; Zhang, Li I
2015-01-01
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer's disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled "Sensory and Motor Dysfunctions in Aging and AD." The scientific sessions of the workshop focused on age-related and neuropathologic changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the central nervous system are affected by AD pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
An overview of the etiology, diagnosis, and treatment of Alzheimer disease.
Forsyth, E; Ritzline, P D
1998-12-01
Alzheimer disease (AD) is the most common form of dementia affecting elderly people. It is the fourth leading cause of death among adults in the United States, following heart disease, cancer, and stroke. The prevalence of AD increases with increasing age. An estimated 10% of people aged 65 years have this progressive, degenerative disease, and this percentage increases to 47.2% for people aged 85 years and older. An early-onset form of AD can affect individuals who are middle-aged, with the youngest documented case being that of a 28-year-old. In the Framingham cohort, women with AD outnumbered men by a ratio of 2.8:1 for those aged 75 years or older. Undoubtedly, as our population continues to age, the increasing prevalence of AD will have an even greater impact on society than it does today. Approximately 4 million Americans have AD, and it is projected that the number will rise to 14 million by the middle of the next century. The financial impact of AD is staggering, with the average lifetime cost for an individual with AD exceeding $170,000. Although the majority of individuals with AD are cared for by family and friends at home, individuals with AD constitute half of all nursing home residents. The average cost of a year of nursing home care for an individual with AD is $42,000, and this cost can exceed $70,000. The purpose of this article is to provide an overview of the etiology of AD, the tools used in the diagnosis of AD, and the treatment of individuals with AD. In addition, the clinical presentation of the various stages of AD is described, and the psychosocial implications of this disease are discussed.
Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B
2014-01-01
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.
Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer's disease.
Grimm, Amandine; Friedland, Kristina; Eckert, Anne
2016-04-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease that represents the most common form of dementia among the elderly. Despite the fact that AD was studied for decades, the underlying mechanisms that trigger this neuropathology remain unresolved. Since the onset of cognitive deficits occurs generally within the 6th decade of life, except in rare familial case, advancing age is the greatest known risk factor for AD. To unravel the pathogenesis of the disease, numerous studies use cellular and animal models based on genetic mutations found in rare early onset familial AD (FAD) cases that represent less than 1 % of AD patients. However, the underlying process that leads to FAD appears to be distinct from that which results in late-onset AD. As a genetic disorder, FAD clearly is a consequence of malfunctioning/mutated genes, while late-onset AD is more likely due to a gradual accumulation of age-related malfunction. Normal aging and AD are both marked by defects in brain metabolism and increased oxidative stress, albeit to varying degrees. Mitochondria are involved in these two phenomena by controlling cellular bioenergetics and redox homeostasis. In the present review, we compare the common features observed in both brain aging and AD, placing mitochondrial in the center of pathological events that separate normal and pathological aging. We emphasize a bioenergetic model for AD including the inverse Warburg hypothesis which postulates that AD is a consequence of mitochondrial deregulation leading to metabolic reprogramming as an initial attempt to maintain neuronal integrity. After the failure of this compensatory mechanism, bioenergetic deficits may lead to neuronal death and dementia. Thus, mitochondrial dysfunction may represent the missing link between aging and sporadic AD, and represent attractive targets against neurodegeneration.
Currais, Antonio; Goldberg, Joshua; Farrokhi, Catherine; Chang, Max; Prior, Marguerite; Dargusch, Richard; Daugherty, Daniel; Armando, Aaron; Quehenberger, Oswald; Maher, Pamela; Schubert, David
2015-11-01
Because age is the greatest risk factor for sporadic Alzheimer's disease (AD), phenotypic screens based upon old age-associated brain toxicities were used to develop the potent neurotrophic drug J147. Since certain aspects of aging may be primary cause of AD, we hypothesized that J147 would be effective against AD-associated pathology in rapidly aging SAMP8 mice and could be used to identify some of the molecular contributions of aging to AD. An inclusive and integrative multiomics approach was used to investigate protein and gene expression, metabolite levels, and cognition in old and young SAMP8 mice. J147 reduced cognitive deficits in old SAMP8 mice, while restoring multiple molecular markers associated with human AD, vascular pathology, impaired synaptic function, and inflammation to those approaching the young phenotype. The extensive assays used in this study identified a subset of molecular changes associated with aging that may be necessary for the development of AD.
Age and diagnostic performance of Alzheimer disease CSF biomarkers.
Mattsson, N; Rosén, E; Hansson, O; Andreasen, N; Parnetti, L; Jonsson, M; Herukka, S-K; van der Flier, W M; Blankenstein, M A; Ewers, M; Rich, K; Kaiser, E; Verbeek, M M; Olde Rikkert, M; Tsolaki, M; Mulugeta, E; Aarsland, D; Visser, P J; Schröder, J; Marcusson, J; de Leon, M; Hampel, H; Scheltens, P; Wallin, A; Eriksdotter-Jönhagen, M; Minthon, L; Winblad, B; Blennow, K; Zetterberg, H
2012-02-14
Core CSF changes in Alzheimer disease (AD) are decreased amyloid β(1-42), increased total tau, and increased phospho-tau, probably indicating amyloid plaque accumulation, axonal degeneration, and tangle pathology, respectively. These biomarkers identify AD already at the predementia stage, but their diagnostic performance might be affected by age-dependent increase of AD-type brain pathology in cognitively unaffected elderly. We investigated effects of age on the diagnostic performance of CSF biomarkers in a uniquely large multicenter study population, including a cross-sectional cohort of 529 patients with AD dementia (median age 71, range 43-89 years) and 304 controls (67, 44-91 years), and a longitudinal cohort of 750 subjects without dementia with mild cognitive impairment (69, 43-89 years) followed for at least 2 years, or until dementia diagnosis. The specificities for subjects without AD and the areas under the receiver operating characteristics curves decreased with age. However, the positive predictive value for a combination of biomarkers remained stable, while the negative predictive value decreased only slightly in old subjects, as an effect of the high AD prevalence in older ages. Although the diagnostic accuracies for AD decreased with age, the predictive values for a combination of biomarkers remained essentially stable. The findings highlight biomarker variability across ages, but support the use of CSF biomarkers for AD even in older populations.
Age and diagnostic performance of Alzheimer disease CSF biomarkers
Rosén, E.; Hansson, O.; Andreasen, N.; Parnetti, L.; Jonsson, M.; Herukka, S.-K.; van der Flier, W.M.; Blankenstein, M.A.; Ewers, M.; Rich, K.; Kaiser, E.; Verbeek, M.M.; Olde Rikkert, M.; Tsolaki, M.; Mulugeta, E.; Aarsland, D.; Visser, P.J.; Schröder, J.; Marcusson, J.; de Leon, M.; Hampel, H.; Scheltens, P.; Wallin, A.; Eriksdotter-Jönhagen, M.; Minthon, L.; Winblad, B.; Blennow, K.; Zetterberg, H.
2012-01-01
Objectives: Core CSF changes in Alzheimer disease (AD) are decreased amyloid β1–42, increased total tau, and increased phospho-tau, probably indicating amyloid plaque accumulation, axonal degeneration, and tangle pathology, respectively. These biomarkers identify AD already at the predementia stage, but their diagnostic performance might be affected by age-dependent increase of AD-type brain pathology in cognitively unaffected elderly. Methods: We investigated effects of age on the diagnostic performance of CSF biomarkers in a uniquely large multicenter study population, including a cross-sectional cohort of 529 patients with AD dementia (median age 71, range 43–89 years) and 304 controls (67, 44–91 years), and a longitudinal cohort of 750 subjects without dementia with mild cognitive impairment (69, 43–89 years) followed for at least 2 years, or until dementia diagnosis. Results: The specificities for subjects without AD and the areas under the receiver operating characteristics curves decreased with age. However, the positive predictive value for a combination of biomarkers remained stable, while the negative predictive value decreased only slightly in old subjects, as an effect of the high AD prevalence in older ages. Conclusion: Although the diagnostic accuracies for AD decreased with age, the predictive values for a combination of biomarkers remained essentially stable. The findings highlight biomarker variability across ages, but support the use of CSF biomarkers for AD even in older populations. PMID:22302554
Perceptions of competence: age moderates views of healthy aging and Alzheimer's disease.
Berry, Jane M; Williams, Helen L; Thomas, Kevin D; Blair, Jamie
2015-01-01
BACKGROUND/STUDY CONTEXT: Older adults have more complex and differentiated views of aging than do younger adults, but less is known about age-related perceptions of Alzheimer's disease. This study investigated age-related perceptions of competence of an older adult labeled as "in good health" (healthy) or "has Alzheimer's disease" (AD), using a person-perception paradigm. It was predicted that older adults would provide more differentiated assessments of the two targets than would younger adults. Younger (n=86; 18-36 years) and older (n=66; 61-95 years) adults rated activities of daily living (ADL), instrumental activities of daily living (IADL), and memory abilities of a female target aged 75 years, described as healthy or with AD. Data on anxiety about aging, knowledge of and experience with aging and AD, knowledge of memory aging, and positive and negative biases toward aging and AD were also collected. Older adults perceived the healthy target as more capable of cognitively effortful activities (e.g., managing finances) and as possessing better memory abilities than the AD target. As predicted, these differences were greater than differences between targets perceived by younger adults. The interaction effect remained significant after statistically controlling for relevant variables, including education and gender. Additionally, exploratory analyses revealed that older adults held less positively biased views of AD than younger adults, but negatively biased views were equivalent between age groups. The results demonstrate that mere labels of "healthy" and "Alzheimer's disease" produce significant and subtle age differences in perceived competencies of older adults, and that biases towards AD vary by age group and valence. Our findings extend the person-perception paradigm to an integrative analysis of aging and AD, are consistent with models of adult development, and complement current research and theory on stereotypes of aging. Future directions for research on perceptions of aging are suggested.
Sex and the development of Alzheimer’s disease
Pike, Christian J.
2016-01-01
Men and women exhibit differences in the development and progression of Alzheimer’s disease (AD). The factors underlying the sex differences in AD are not well understood. This review emphasizes the contributions of sex steroid hormones to the relationship between sex and AD. In women, events that decrease lifetime exposure to estrogens are generally associated with increased AD risk, whereas estrogen-based hormone therapy administered near the time of menopause may reduce AD risk. In men, estrogens do not exhibit age-related reduction and are not significantly associated with AD risk. Rather, normal age-related depletions of testosterone in plasma and brain predict enhanced vulnerability to AD. Both estrogens and androgens exert numerous protective actions in the adult brain that increase neural functioning and resilience as well as specifically attenuate multiple aspects of AD-related neuropathology. Aging diminishes the activational effects of sex hormones in sex-specific manners, which is hypothesized to contribute to the relationship between aging and AD. Sex steroid hormones may also drive sex differences in AD through their organizational effects during developmental sexual differentiation of the brain. Specifically, sex hormone actions during early development may confer inherent vulnerability of the female brain to development of AD in advanced age. The combined effects of organizational and activational effects of sex steroids yield distinct sex differences in AD pathogenesis, a significant variable that must be more rigorously considered in future research. PMID:27870425
Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging.
Kim, Jina; Kang, Sujin; Kwon, HanJin; Moon, HoSang; Park, Min Chul
2018-06-19
Human skin aging is caused by several factors, such as UV irradiation, stress, hormone, and pollution. Wrinkle formation and skin pigmentation are representative features of skin aging. Although EGF and arbutin are used as anti-wrinkle and skin whitening agents, respectively, they have adverse effects on skin. When more cosmeceutical ingredients are added to cosmetic product, adverse effects are also accumulated. For these reasons, multifunctional and safe cosmetic ingredients are in demand. The aim of the present study is to investigate the novel anti-aging agents, AIMP1-derived peptide (AdP, INCI name: sh-oligopeptide-5/sh-oligopeptide SP) for cosmetic products. To assess the anti-wrinkle effect of AdP, collagen type I synthesis and fibroblast proliferation were determined on human fibroblasts. The anti-wrinkle effect of AdP was examined by ELISA and cell titer glo assay. To assess the whitening, melanin content and tyrosinase activity were determined on melanocytes. The whitening effect of AdP was examined by melanin measurement and enzyme activity assay. The safety of AdP was determined by cytotoxicity and immunogenicity, CCK-8 and TNF-α ELISA assay, respectively. AdP treatment induced the collagen type I synthesis and fibroblast proliferation. Also, AdP treatment inhibited melanin synthesis by regulating tyrosinase activity. The anti-aging effect of AdP is more potent than EGF and albutin. AdP did not show adverse effects. These results show that AdP can be dual functional and safe cosmeceutical agent to prevent skin aging. © 2018 Wiley Periodicals, Inc.
Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.
2013-01-01
SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021
Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B
2013-01-01
Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.
At the interface of sensory and motor dysfunctions and Alzheimer’s Disease
Albers, Mark W.; Gilmore, Grover C.; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A.; Boxer, Adam L.; Buchman, Aron S.; Cruickshanks, Karen J.; Devanand, Davangere P.; Duffy, Charles J.; Gall, Christine M.; Gates, George A.; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T.; Lin, Frank R.; McKee, Ann C.; Morris, John C.; Petersen, Ronald C.; Silbert, Lisa C.; Struble, Robert G.; Trojanowski, John Q.; Verghese, Joe; Wilson, Donald A.; Xu, Shunbin; Zhang, Li I.
2014-01-01
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer’s disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled “Sensory and Motor Dysfunctions in Aging and Alzheimer’s Disease”. The scientific sessions of the workshop focused on age-related and neuropathological changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the CNS are affected by Alzheimer pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. PMID:25022540
Rates of decline in Alzheimer disease decrease with age.
Holland, Dominic; Desikan, Rahul S; Dale, Anders M; McEvoy, Linda K
2012-01-01
Age is the strongest risk factor for sporadic Alzheimer disease (AD), yet the effects of age on rates of clinical decline and brain atrophy in AD have been largely unexplored. Here, we examined longitudinal rates of change as a function of baseline age for measures of clinical decline and structural MRI-based regional brain atrophy, in cohorts of AD, mild cognitive impairment (MCI), and cognitively healthy (HC) individuals aged 65 to 90 years (total n = 723). The effect of age was modeled using mixed effects linear regression. There was pronounced reduction in rates of clinical decline and atrophy with age for AD and MCI individuals, whereas HCs showed increased rates of clinical decline and atrophy with age. This resulted in convergence in rates of change for HCs and patients with advancing age for several measures. Baseline cerebrospinal fluid densities of AD-relevant proteins, Aβ(1-42), tau, and phospho-tau(181p) (ptau), showed a similar pattern of convergence with advanced age across cohorts, particularly for ptau. In contrast, baseline clinical measures did not differ by age, indicating uniformity of clinical severity at baseline. These results imply that the phenotypic expression of AD is relatively mild in individuals older than approximately 85 years, and this may affect the ability to distinguish AD from normal aging in the very old. Our findings show that inclusion of older individuals in clinical trials will substantially reduce the power to detect disease-modifying therapeutic effects, leading to dramatic increases in required clinical trial sample sizes with age of study sample.
Foterek, Kristina; Buyken, Anette E; Bolzenius, Katja; Hilbig, Annett; Nöthlings, Ute; Alexy, Ute
2016-06-01
Given that commercial complementary food (CF) can contain high levels of added sugar, a high consumption may predispose to a preference for sweet taste later in life. This study examined cross-sectional associations between commercial CF consumption and added sugar intake in infancy as well as its prospective relation to added sugar intake in pre-school and primary-school age children. In all, 288 children of the Dortmund Nutritional and Anthropometric Longitudinally Designed Study with 3-d weighed dietary records at 0·5 and 0·75 (infancy), 3 and 4 (pre-school age) and 6 and 7 years of age (primary-school age) were included in this analysis. Individual commercial CF consumption as percentage of total commercial CF (%cCF) was averaged at 0·5 and 0·75 years. Individual total added sugar intake (g/d, energy percentage/d) was averaged for all three age groups. Multivariable logistic and linear regression models were used to analyse associations between %cCF and added sugar intake. In infancy, a higher %cCF was associated with odds for high added sugar intake from CF and for high total added sugar intake (>75th percentile, P<0·033). Prospectively, a higher %cCF was related to higher added sugar intake in both pre-school (P<0·041) and primary-school age children (P<0·039), although these associations were attenuated in models adjusting for added sugar intake in infancy. A higher %cCF in infancy may predispose to higher added sugar intake in later childhood by virtue of its added sugar content. Therefore, offering home-made CF or carefully chosen commercial CF without added sugar might be one strategy to reduce sugar intake in infancy and later on.
Brenowitz, Willa D; Monsell, Sarah E; Schmitt, Frederick A; Kukull, Walter A; Nelson, Peter T
2014-01-01
Hippocampal sclerosis of aging (HS-Aging) neuropathology was observed in more than 15% of aged individuals in prior studies. However, much remains unknown about the clinical correlates of HS-Aging pathology or the association(s) between HS-Aging, Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD) pathology. Clinical and comorbid pathological features linked to HS-Aging pathology were analyzed using National Alzheimer's Coordinating Center (NACC) data. From autopsy data extending back to 1990 (n = 9,817 participants), the neuropathological diagnoses were evaluated from American AD Centers (ADCs). Among participants who died between 2005-2012 (n = 1,422), additional analyses identified clinical and pathological features associated with HS-Aging pathology. We also compared cognitive testing and longevity outcomes between HS-Aging cases and a subsample with non-tauopathy FTLD (n = 210). Reporting of HS-Aging pathology increased dramatically among ADCs in recent years, to nearly 20% of autopsies in 2012. Participants with relatively "pure" HS-Aging pathology were often diagnosed clinically as having probable (68%) or possible (15%) AD. However, the co-occurrence of HS-Aging pathology and AD neuropathology (AD-NP) did not indicate any pattern of correlation between the two pathologies. Compared with other pathologies, participants with HS-Aging pathology had higher overall cognitive/functional ability (versus AD-NP) and verbal fluency (versus both AD-NP and FTLD) but similar episodic memory impairment at one clinic visit 2-5 years prior to death. Patients with HS-Aging live considerably longer than patients with non-tauopathy FTLD. We conclude that the manifestations of HS-Aging, increasingly recognized in recent years, probably indicate a separate disease process of direct relevance to patient care, dementia research, and clinical trials.
Grothe, Michel; Heinsen, Helmut; Teipel, Stefan J.
2013-01-01
Background The basal forebrain cholinergic system (BFCS) is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer´s disease (AD). However, there is a controversy on how the cholinergic lesion in AD relates to early and incipient stages of the disease. In-vivo imaging studies on the structural integrity of the BFCS in normal and pathological aging are still rare. Methods We applied automated morphometry techniques in combination with high-dimensional image warping and a cytoarchitectonic map of BF cholinergic nuclei to a large cross-sectional dataset of high-resolution MRI scans, covering the whole adult age-range (20–94 years; N=211) as well as patients with very mild AD (vmAD; CDR=0.5; N=69) and clinically manifest AD (AD; CDR=1; N=28). For comparison, we investigated hippocampus volume using automated volumetry. Results Volume of the BFCS declined from early adulthood on and atrophy aggravated in advanced age. Volume reductions in vmAD were most pronounced in posterior parts of the nucleus basalis Meynert, while in AD atrophy was more extensive and included the whole BFCS. In clinically manifest AD, the diagnostic accuracy of BFCS volume reached the diagnostic accuracy of hippocampus volume. Conclusions Our findings indicate that cholinergic degeneration in AD occurs against a background of age-related atrophy and that exacerbated atrophy in AD can be detected at earliest stages of cognitive impairment. Automated in-vivo morphometry of the BFCS may become a useful tool to assess BF cholinergic degeneration in normal and pathological aging. PMID:21816388
ERIC Educational Resources Information Center
Rust, Tiana B.; See, Sheree Kwong
2007-01-01
This study assessed professional caregivers of persons with Alzheimer disease (AD) and non-caregivers' knowledge about aging and AD. Participants completed modified versions of the Alzheimer Disease Knowledge Test and the multiple-choice version of the Facts on Aging Quiz #1. Overall, knowledge levels about AD and aging were low. Caregivers were…
Brenowitz, Willa D.; Monsell, Sarah E.; Schmitt, Frederick A.; Kukull, Walter A.; Nelson, Peter T.
2013-01-01
Hippocampal sclerosis of aging (HS-Aging) neuropathology was observed in more than 15% of aged individuals in prior studies. However, much remains unknown about the clinical correlates of HS-Aging pathology or the association(s) between HS-Aging, Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD) pathology. Clinical and comorbid pathological features linked to HS-Aging pathology were analyzed using National Alzheimer's Coordinating Center (NACC) data. From autopsy data extending back to 1990 (N=9,817 participants), the neuropathologic diagnoses were evaluated from American AD Centers (ADCs). Among participants who died between 2005-2012 (N=1,422), additional analyses identified clinical and pathological features associated with HS-Aging pathology. We also compared cognitive testing and longevity outcomes between HS-Aging cases and a subsample with non-tauopathy FTLD (N=210). Reporting of HS pathology increased dramatically among ADCs in recent years, to nearly 20% of autopsies in 2012. Participants with relatively “pure” HS-Aging pathology were often diagnosed clinically as having probable (68%) or possible (15%) AD. However, the co-occurrence of HS-Aging pathology and AD neuropathology (AD-NP) did not indicate any pattern of correlation between the two pathologies. Compared other pathologies, participants with HS-Aging pathology had higher overall cognitive/functional ability (versus AD-NP) and verbal fluency (versus both AD-NP and FTLD) but similar episodic memory impairment at one clinic visit 2 -5 years prior to death. Patients with HS-Aging live considerably longer than patients with non-tauopathy FTLD. We conclude that the manifestations of HS-Aging, increasingly recognized in recent years, probably indicate a separate disease process of direct relevance to patient care, dementia research, and clinical trials. PMID:24270205
Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience
Toepper, Max
2017-01-01
Both normal aging and Alzheimer’s disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity. PMID:28269778
de Carvalho, Wellington Roberto Gomes; de Moraes, Anderson Marques; Roman, Everton Paulo; Santos, Keila Donassolo; Medaets, Pedro Augusto Rodrigues; Veiga-Junior, Nélio Neves; Coelho, Adrielle Caroline Lace de Moraes; Krahenbühl, Tathyane; Sewaybricker, Leticia Esposito; Barros-Filho, Antonio de Azevedo; Morcillo, Andre Moreno; Guerra-Júnior, Gil
2015-01-01
Aims To establish normative data for phalangeal quantitative ultrasound (QUS) measures in Brazilian students. Methods The sample was composed of 6870 students (3688 females and 3182 males), aged 6 to 17 years. The bone status parameter, Amplitude Dependent Speed of Sound (AD-SoS) was assessed by QUS of the phalanges using DBM Sonic BP (IGEA, Carpi, Italy) equipment. Skin color was obtained by self-evaluation. The LMS method was used to derive smoothed percentiles reference charts for AD-SoS according to sex, age, height and weight and to generate the L, M, and S parameters. Results Girls showed higher AD-SoS values than boys in the age groups 7–16 (p<0.001). There were no differences on AD-SoS Z-scores according to skin color. In both sexes, the obese group showed lower values of AD-SoS Z-scores compared with subjects classified as thin or normal weight. Age (r2 = 0.48) and height (r2 = 0.35) were independent predictors of AD-SoS in females and males, respectively. Conclusion AD-SoS values in Brazilian children and adolescents were influenced by sex, age and weight status, but not by skin color. Our normative data could be used for monitoring AD-SoS in children or adolescents aged 6–17 years. PMID:26043082
Taste detection and recognition thresholds in Japanese patients with Alzheimer-type dementia.
Ogawa, Takao; Irikawa, Naoya; Yanagisawa, Daijiro; Shiino, Akihiko; Tooyama, Ikuo; Shimizu, Takeshi
2017-04-01
Alzheimer-type dementia (AD) is pathologically characterized by massive neuronal loss in the brain, and the taste cortex is thought to be affected. However, there are only a few reports regarding the gustatory function of AD patients, and the conclusions of this research are inconsistent. This prospective study enrolled 22 consecutive patients with mild to moderately severe Alzheimer-type dementia (AD) with mean age of 84.0 years, and 49 elderly volunteers without dementia with mean age of 71.0 years as control subjects. The control subjects were divided into two groups according to age: a younger group (N=28, mean age: 68.5) and an older group (N=21, mean age: 83.0). The gustatory function was investigated using the filter paper disc method (FPD) and electrogustometry (EGM). The gustatory function as measured by the FPD was significantly impaired in patients with AD as compared with age-matched control subjects; no such difference was found between the younger and the older control groups. On the other hand, as for the EGM thresholds, there were no differences between the AD patient group and the age-matched controls. The FPD method demonstrated decreased gustatory function in AD patients beyond that of aging. On the other hand, EGM thresholds did not differ between the AD patient group and the age-matched controls. These results suggest that failure of taste processing in the brain, but not taste transmission in the peripheral taste system, occurs in patients with AD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mild cognitive impairment due to alzheimer disease is less likely under the age of 65.
Shin, Soojeong; Kim, Jong Hun; Cho, Jeong Hee; Kim, Gyu Sik; Choi, Sun-Ah; Lee, Jun Hong
2015-01-01
Patients with amnestic mild cognitive impairment (aMCI) are considered to have a high risk for Alzheimer dementia (AD). Even high positive predictive values, however, cannot be guaranteed even by tests with high sensitivity and specificity when disease prevalence is low. If we regard the clinical criteria for aMCI as a test for predicting aMCI due to AD, the positive predictive value of the criteria will be low by definition in young patients with aMCI (age below 65 years) because of the low prevalence of AD in this age group. To test this hypothesis, we compared CSF biomarkers for AD between young (age below 65 years) and old (age 65 years or older) age groups of normal cognition, aMCI, and AD of the Alzheimer's Disease Neuroimaging Initiative database. Using these biomarkers, we observed that the prevalence of aMCI due to AD differed significantly between the young and the old. For example, only 28.2% young aMCI, but 63.2% old aMCI, had abnormal CSF amyloid measures consistent with AD pathology. As posited, the presence of aMCI due to AD was lower in young aMCI than in old aMCI. Given that the likelihood of aMCI due to AD is reduced in younger subjects, more attention to and evaluation of alternative diagnoses need to be considered in this group.
Linking brain imaging and genomics in the study of Alzheimer's disease and aging.
Reiman, Eric M
2007-02-01
My colleagues and I have been using positron emission tomography (PET) and magnetic resonance imaging (MRI) to detect and track the brain changes associated with Alzheimer's disease (AD) and normal brain aging in cognitively normal persons with two copies, one copy, and no copies of the apolipoprotein E (APOE) epsilon4 allele, a common AD susceptibility gene. In this review article, I consider how brain imaging techniques could be used to evaluate putative AD prevention therapies in cognitively normal APOE epsilon4 carriers and putative age-modifying therapies in cognitively normal APOE epsilon4 noncarriers, how they could help investigate the individual and aggregate effects of putative AD risk modifiers, and how they could help guide the investigation of a molecular mechanism associated with AD vulnerability and normal neurological aging. I suggest how high-resolution genome-wide genetic and transcriptomic studies could further help in the scientific understanding of AD, aging, and other common and genetically complex phenotypes, such as variation in normal human memory performance, and in the discovery and evaluation of promising treatments for these phenotypes. Finally, I illustrate the push-pull relationship between brain imaging, genomics research, and other neuroscientific research in the study of AD and aging.
High blood pressure, Alzheimer disease and antihypertensive treatment.
Marfany, Agustí; Sierra, Cristina; Camafort, Miguel; Doménech, Mónica; Coca, Antonio
2018-03-01
Alzheimer's disease (AD), the most common form of dementia, is a complex disease, the mechanisms of which are poorly understood. AD represents 70% of all dementia cases, affecting up to 50% of elderly persons aged 85 or older, with functional dependence, poor quality of life, institutionalization and mortality. Advanced age is the main risk factor of AD, that is why population ageing, due to life expectancy improvements, increases AD incidence and prevalence, as well as the economic, social, and emotional costs associated with this illness. Existing anti-AD drugs present some limitations, as they target specific downstream neurochemical abnormalities while the upstream underlying pathology continues unchecked. Chronic hypertension has been suggested as one of the largest modifiable risk factors for developing AD. At least 25% of all adults and more than 50% of those over 60 years of age have hypertension. Epidemiological studies have shown that hypertension is a risk factor for dementia and AD, but the association is complex. Some studies have demonstrated that antihypertensive drugs can reduce the risk of AD. This review focuses on current knowledge about the relationship between chronic hypertension and AD as well as antihypertensive treatment effect on AD pathogenesis and its clinical outcomes.
Cortical Iron Reflects Severity of Alzheimer’s Disease
van Duijn, Sara; Bulk, Marjolein; van Duinen, Sjoerd G.; Nabuurs, Rob J.A.; van Buchem, Mark A.; van der Weerd, Louise; Natté, Remco
2017-01-01
Abnormal iron distribution in the isocortex is increasingly recognized as an in vivo marker for Alzheimer’s disease (AD). However, the contribution of iron accumulation to the AD pathology is still poorly understood. In this study, we investigated: 1) frontal cortical iron distribution in AD and normal aging and 2) the relation between iron distribution and degree of AD pathology. We used formalin fixed paraffin embedded frontal cortex from 10 AD patients, 10 elder, 10 middle aged, and 10 young controls and visualized iron with a modified Perl’s histochemical procedure. AD and elderly subjects were not different with respect to age and sex distribution. Iron distribution in the frontal cortex was not affected by normal aging but was clearly different between AD and controls. AD showed accumulation of iron in plaques, activated microglia, and, in the most severe cases, in the mid-cortical layers along myelinated fibers. The degree of altered iron accumulations was correlated to the amount of amyloid-β plaques and tau pathology in the same block, as well as to Braak stage (p < 0.001). AD and normal aging show different iron and myelin distribution in frontal cortex. These changes appear to occur after the development of the AD pathological hallmarks. These findings may help the interpretation of high resolution in vivo MRI and suggest the potential of using changes in iron-based MRI contrast to indirectly determine the degree of AD pathology in the frontal cortex. PMID:29081415
Age-dependent phenotypic characteristics of a triple transgenic mouse model of Alzheimer disease.
Pietropaolo, Susanna; Feldon, Joram; Yee, Benjamin K
2008-08-01
The triple-transgenic mouse line (3 x Tg-AD) harboring PS1M146V, APPSwe, and taup301L transgenes represents the only transgenic model for Alzheimer's disease (AD) to date capturing both beta-amyloid and tau neuropathology. The present study provides an extensive behavioral characterization of the 3 x Tg-AD mouse line, evaluating the emergence of noncognitive and cognitive AD-like symptoms at two ages corresponding to the early (6-7 months) and advanced (12-13 months) stages of AD-pathology. Enhanced responsiveness to aversive stimulation was detected in mutant mice at both ages: the 3 x Tg-AD genotype enhanced acoustic startle response and facilitated performance in the cued-version of the water maze. These noncognitive phenotypes were accompanied by hyperactivity and reduced locomotor habituation in the open field at the older age. Signs of cognitive aberrations were also detected at both ages, but they were limited to associative learning. The present study suggests that this popular transgenic mouse model of AD has clear phenotypes beyond the cognitive domain, and their potential relationship to the cognitive phenotypes should be further explored.
Foster, T C; Kyritsopoulos, C; Kumar, A
2017-03-30
Increased human longevity has magnified the negative impact that aging can have on cognitive integrity of older individuals experiencing some decline in cognitive function. Approximately 30% of the elderly will have cognitive problems that influence their independence. Impaired executive function and memory performance are observed in normal aging and yet can be an early sign of a progressive cognitive impairment of Alzheimer's disease (AD), the most common form of dementia. Brain regions that are vulnerable to aging exhibit the earliest pathology of AD. Senescent synaptic function is observed as a shift in Ca 2+ -dependent synaptic plasticity and similar mechanisms are thought to contribute to the early cognitive deficits associated with AD. In the case of aging, intracellular redox state mediates a shift in Ca 2+ regulation including N-methyl-d-aspartate (NMDA) receptor hypofunction and increased Ca 2+ release from intracellular stores to alter synaptic plasticity. AD can interact with these aging processes such that molecules linked to AD, β-amyloid (Aβ) and mutated presenilin 1 (PS1), can also degrade NMDA receptor function, promote Ca 2+ release from intracellular stores, and may increase oxidative stress. Thus, age is one of the most important predictors of AD and brain aging likely contributes to the onset of AD. The focus of this review article is to provide an update on mechanisms that contribute to the senescent synapse and possible interactions with AD-related molecules, with special emphasis on regulation of NMDA receptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Odor identification as a biomarker of preclinical AD in older adults at risk
Poirier, Judes; Etienne, Pierre; Tremblay-Mercier, Jennifer; Frenette, Joanne; Rosa-Neto, Pedro; Breitner, John C.S.
2017-01-01
Objective: To assess odor identification (OI) as an indicator of presymptomatic Alzheimer disease (AD) pathogenesis in cognitively normal aging individuals at increased risk of AD dementia. Methods: In 274 members of the PREVENT-AD cohort of healthy aging persons with a parental or multiple-sibling history of AD dementia, we assessed the cross-sectional association of OI with potential indicators of presymptomatic AD. Some 101 participants donated CSF, thus enabling assessment of AD pathology with the biomarkers total tau (t-tau), phospho-tau (P181-tau), and their ratios with β-amyloid (Aβ1-42). Adjusted analyses considered age, cognition, APOE ε4 status, education, and sex as covariates. We measured OI using the University of Pennsylvania Smell Identification Test and cognitive performance using the Repeatable Battery for Assessment of Neuropsychological Status. Standard kits provided assays of the AD biomarkers. Analyses used robust-fit linear regression models. Results: Reduced OI was associated with lower cognitive score and older age, as well as increased ratios of CSF t-tau and P181-tau to Aβ1-42 (all p < 0.02). However, the observed associations of OI with age and cognition were unapparent in adjusted models that restricted observations to CSF donors and included AD biomarkers. OI showed little association with CSF Aβ1-42 alone except in APOE ε4 carriers having lowest-quartile Aβ1-42 levels. Conclusions: These findings from healthy high-risk older individuals suggest that OI reflects degree of preclinical AD pathology, while its relationships with age and cognition result from the association of these latter variables with such pathology. Diminished OI may be a practical and affordable biomarker of AD pathology. PMID:28659431
Savioz, Armand; Leuba, Geneviève; Vallet, Philippe G
2014-11-01
The postsynaptic density protein PSD-95 is a major element of synapses. PSD-95 is involved in aging, Alzheimer's disease (AD) and numerous psychiatric disorders. However, contradictory data about PSD-95 expression in aging and AD have been reported. Indeed in AD versus control brains PSD-95 varies according to regions, increasing in the frontal cortex, at least in a primary stage, and decreasing in the temporal cortex. In contrast, in transgenic mouse models of aging and AD PSD-95 expression is decreased, in behaviorally aged impaired versus unimpaired rodents it can decrease or increase and finally, it is increased in rodents grown in enriched environments. Different factors explain these contradictory results in both animals and humans, among others concomitant psychiatric endophenotypes, such as depression. The possible involvement of PSD-95 in reactive and/or compensatory mechanisms during AD progression is underscored, at least before the occurrence of important synaptic elimination. Thus, in AD but not in AD transgenic mice, enhanced expression might precede the diminution commonly observed in advanced aging. A two-compartments cell model, separating events taking place in cell bodies and synapses, is presented. Overall these data suggest that AD research will progress by untangling pathological from protective events, a prerequisite for effective therapeutic strategies. Copyright © 2014 Elsevier B.V. All rights reserved.
Berchtold, Nicole C.; Coleman, Paul D.; Cribbs, David H.; Rogers, Joseph; Gillen, Daniel L.; Cotman, Carl W.
2014-01-01
Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer’s disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20–99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD. PMID:23273601
Effect of prolonged breast-feeding on risk of atopic dermatitis in early childhood.
Hong, Soyoung; Choi, Won-Jun; Kwon, Ho-Jang; Cho, Yoon Hee; Yum, Hye Yung; Son, Dong Koog
2014-01-01
The effect of breast-feeding on the risk of developing atopic disease remains controversial. This study is an investigation of the effect of breast-feeding on current atopic dermatitis (AD) among Korean children. This cross-sectional study of children's histories of current AD and environmental factors was completed by the subjects' parents. The subjects included 10,383 children aged 0-13 years in Seoul, Korea, in 2008. The diagnostic criteria of the International Study of Asthma and Allergies in Childhood were applied in this study. Adjustments were performed for age, gender, maternal education, smoking in the household, relocation to a new house within 1 year of birth, and parental history of atopic disease. After adjustment for confounders, age and duration of maternal education were found to be inversely associated with the prevalence of AD. Among subjects aged ≤5 years, the prevalence of AD was positively associated with the duration of breast-feeding (p < 0.001). However, there was no significant association between AD and breast-feeding among children >5 years of age. Regardless of parental history of atopic diseases, breast-feeding >12 months was a significant risk factor for AD. The effect of breast-feeding differed by age group. Prolonged breast-feeding increased the risk of AD in children <5 years of age, regardless of parental history of atopic diseases.
Aging, cortical injury and Alzheimer's disease-like pathology in the guinea pig brain.
Bates, Kristyn; Vink, Robert; Martins, Ralph; Harvey, Alan
2014-06-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized histopathologically by the abnormal deposition of the proteins amyloid-beta (Aβ) and tau. A major issue for AD research is the lack of an animal model that accurately replicates the human disease, thus making it difficult to investigate potential risk factors for AD such as head injury. Furthermore, as age remains the strongest risk factor for most of the AD cases, transgenic models in which mutant human genes are expressed throughout the life span of the animal provide only limited insight into age-related factors in disease development. Guinea pigs (Cavia porcellus) are of interest in AD research because they have a similar Aβ sequence to humans and thus may present a useful non-transgenic animal model of AD. Brains from guinea pigs aged 3-48 months were examined to determine the presence of age-associated AD-like pathology. In addition, fluid percussion-induced brain injury was performed to characterize mechanisms underlying the association between AD risk and head injury. No statistically significant changes were detected in the overall response to aging, although we did observe some region-specific changes. Diffuse deposits of Aβ were found in the hippocampal region of the oldest animals and alterations in amyloid precursor protein processing and tau immunoreactivity were observed with age. Brain injury resulted in a strong and sustained increase in amyloid precursor protein and tau immunoreactivity without Aβ deposition, over 7 days. Guinea pigs may therefore provide a useful model for investigating the influence of environmental and non-genetic risk factors on the pathogenesis of AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Reiman, Eric M.; Chen, Kewei; Langbaum, Jessica B.S.; Lee, Wendy; Reschke, Cole; Bandy, Daniel; Alexander, Gene E.; Caselli, Richard J.
2010-01-01
Epidemiological studies suggest that higher midlife serum total cholesterol levels are associated with an increased risk of Alzheimer’s disease (AD). Using fluorodeoxyglucose positron emission tomography (PET) in the study of cognitively normal late-middle-aged people, we demonstrated an association between apolipoprotein E (APOE) ε4 gene dose, the major genetic risk factor for late-onset AD, and lower measurements of the cerebral metabolic rate for glucose (CMRgl) in AD-affected brain regions, we proposed using PET as a presymptomatic endophenotype to evaluate other putative AD risk modifiers, and we then used it to support an aggregate cholesterol-related genetic risk score in the risk of AD. In the present study, we used PET to investigate the association between serum total cholesterol levels and cerebral metabolic rate for glucose metabolism (CMRgl) in 117 cognitively normal late middle-aged APOE ε4 homozygotes, heterozygotes and noncarriers. Higher serum total cholesterol levels were associated with lower CMRgl bilaterally in precuneus, parietotemporal and prefrontal regions previously found to be preferentially affected by AD, and in additional frontal regions previously found to be preferentially affected by normal aging. The associations were greater in APOE ε4 carriers than non-carriers in some of the AD-affected brain regions. We postulate the higher midlife serum total cholesterol levels accelerate brain processes associated with normal aging and conspire with other risk factors in the predisposition to AD. We propose using PET in proof-of-concept randomized controlled trials to rapidly evaluate the effects of midlife cholesterol-lowering treatments on the brain changes associated with normal aging and AD. PMID:19631758
Boomsma, D I; van Beijsterveldt, C E M; Hudziak, J J
2005-11-01
For a large sample of twin pairs from the Netherlands Twins Register who were recruited at birth and followed through childhood, we obtained parental ratings of Anxious/Depression (A/D). Maternal ratings were obtained at ages 3 years (for 9025 twin pairs), 5 years (9222 pairs), 7 years (7331 pairs), 10 years (4430 pairs) and 12 years (2363 pairs). For 60-90% of the pairs, father ratings were also available. Multivariate genetic models were used to test for rater-independent and rater-specific assessments of A/D and to determine the genetic and environmental influences on individual differences in A/D at different ages. At all ages, monozygotic twins resembled each other more closely for A/D than dizygotic twins, implying genetic influences on variation in A/D. Opposite sex twin pairs resembled each other to same extent as same-sex dizygotic twins, suggesting that the same genes are expressed in boys and girls. Heritability estimates for rater-independent A/D were high in 3-year olds (76%) and decreased in size as children grew up [60% at age 5, 67% at age 7, 53% at age 10 (60% in boys) and 48% at age 12 years]. The decrease in genetic influences was accompanied by an increase in the influence of the shared family environment [absent at ages 3 and 7, 16% at age 5, 20% at age 10 (5% in boys) and 18% at age 12 years]. The agreement between parental A/D ratings was between 0.5 and 0.7, with somewhat higher correlations for the youngest group. Disagreement in ratings between the parents was not merely the result of unreliability or rater bias. Both the parents provided unique information from their own perspective on the behavior of their children. Significant influences of genetic and shared environmental factors were found for the unique parental views. At all ages, the contribution of shared environmental factors to variation in rater-specific views was higher for father ratings. Also, at all ages except age 12, the heritability estimates for the rater-specific phenotype were higher for mother ratings (59% at age 3 and decreasing to 27% at age 12 years) than for father ratings (between 14 and 29%). Differences between children, even as young as 3 years, in A/D are to a large extent due to genetic differences. As children grow up, the variation in A/D is due in equal parts to genetic and environmental influences. Anxious/Depression, unlike many other common childhood psychopathologies, is influenced by the shared family environment. These findings may provide support for why certain family therapeutic approaches are effective in the A/D spectrum of illnesses.
2015 Alzheimer's disease facts and figures.
2015-03-01
This report discusses the public health impact of Alzheimer’s disease (AD), including incidence and prevalence, mortality rates, costs of care and the overall effect on caregivers and society. It also examines the challenges encountered by health care providers when disclosing an AD diagnosis to patients and caregivers. An estimated 5.3 million Americans have AD; 5.1 million are age 65 years, and approximately 200,000 are age <65 years and have younger onset AD. By mid-century, the number of people living with AD in the United States is projected to grow by nearly 10 million, fueled in large part by the aging baby boom generation. Today, someone in the country develops AD every 67 seconds. By 2050, one new case of AD is expected to develop every 33 seconds, resulting in nearly 1 million new cases per year, and the estimated prevalence is expected to range from 11 million to 16 million. In 2013, official death certificates recorded 84,767 deaths from AD, making AD the sixth leading cause of death in the United States and the fifth leading cause of death in Americans age 65 years. Between 2000 and 2013, deaths resulting from heart disease, stroke and prostate cancer decreased 14%, 23% and 11%, respectively, whereas deaths from AD increased 71%. The actual number of deaths to which AD contributes (or deaths with AD) is likely much larger than the number of deaths from AD recorded on death certificates. In 2015, an estimated 700,000 Americans age 65 years will die with AD, and many of them will die from complications caused by AD. In 2014, more than 15 million family members and other unpaid caregivers provided an estimated 17.9 billion hours of care to people with AD and other dementias, a contribution valued at more than $217 billion. Average per-person Medicare payments for services to beneficiaries age 65 years with AD and other dementias are more than two and a half times as great as payments for all beneficiaries without these conditions, and Medicaid payments are 19 times as great. Total payments in 2015 for health care, long-term care and hospice services for people age 65 years with dementia are expected to be $226 billion. Among people with a diagnosis of AD or another dementia, fewer than half report having been told of the diagnosis by their health care provider. Though the benefits of a prompt, clear and accurate disclosure of an AD diagnosis are recognized by the medical profession, improvements to the disclosure process are needed. These improvements may require stronger support systems for health care providers and their patients.
Marden, Jessica R; Mayeda, Elizabeth R; Walter, Stefan; Vivot, Alexandre; Tchetgen Tchetgen, Eric J; Kawachi, Ichiro; Glymour, M Maria
2016-01-01
Evidence on whether genetic predictors of Alzheimer disease (AD) also predict memory decline is inconsistent, and limited data are available for African ancestry populations. For 8253 non-Hispanic white (NHW) and non-Hispanic black (NHB) Health and Retirement Study participants with memory scores measured 1 to 8 times between 1998 and 2012 (average baseline age=62), we calculated weighted polygenic risk scores [AD Genetic Risk Score (AD-GRS)] using the top 22 AD-associated loci, and an alternative score excluding apolipoprotein E (APOE) (AD-GRSexAPOE). We used generalized linear models with AD-GRS-by-age and AD-GRS-by-age interactions (age centered at 70) to predict memory decline. Average NHB decline was 26% faster than NHW decline (P<0.001). Among NHW, 10% higher AD-GRS predicted faster memory decline (linear β=-0.058 unit decrease over 10 y; 95% confidence interval,-0.074 to -0.043). AD-GRSexAPOE also predicted faster decline for NHW, although less strongly. Among NHB, AD-GRS predicted faster memory decline (linear β=-0.050; 95% confidence interval, -0.106 to 0.006), but AD-GRSexAPOE did not. Our nonsignificant estimate among NHB may reflect insufficient statistical power or a misspecified AD-GRS among NHB as an overwhelming majority of genome-wide association studies are conducted in NHW. A polygenic score based on previously identified AD loci predicts memory loss in US blacks and whites.
Neuropathology of Nondemented Aging: Presumptive Evidence for Preclinical Alzheimer Disease
Price, Joseph L.; McKeel, Daniel W.; Buckles, Virginia D.; Roe, Catherine M.; Xiong, Chengjie; Grundman, Michael; Hansen, Lawrence A.; Petersen, Ronald C.; Parisi, Joseph E.; Dickson, Dennis W.; Smith, Charles D.; Davis, Daron G.; Schmitt, Frederick A.; Markesbery, William R.; Kaye, Jeffrey; Kurlan, Roger; Hulette, Christine; Kurland, Brenda F.; Higdon, Roger; Kukull, Walter; Morris, John C.
2009-01-01
Objective To determine the frequency and possible cognitive effect of histological Alzheimer’s disease (AD) in autopsied older nondemented individuals. Design Senile plaques (SPs) and neurofibrillary tangles (NFTs) were assessed quantitatively in 97 cases from 7 Alzheimer’s Disease Centers (ADCs). Neuropathological diagnoses of AD (npAD) were also made with four sets of criteria. Adjusted linear mixed models tested differences between participants with and without npAD on the quantitative neuropathology measures and psychometric test scores prior to death. Spearman rank-order correlations between AD lesions and psychometric scores at last assessment were calculated for cases with pathology in particular regions. Setting Washington University Alzheimer’s Disease Research Center. Participants Ninety-seven nondemented participants who were age 60 years or older at death (mean = 84 years). Results About 40% of nondemented individuals met at least some level of criteria for npAD; when strict criteria were used, about 20% of cases had npAD. Substantial overlap of Braak neurofibrillary stages occurred between npAD and no-npAD cases. Although there was no measurable cognitive impairment prior to death for either the no-npAD or npAD groups, cognitive function in nondemented aging appears to be degraded by the presence of NFTs and SPs. Conclusions Neuropathological processes related to AD in persons without dementia appear to be associated with subtle cognitive dysfunction and may represent a preclinical stage of the illness. By age 80–85 years, many nondemented older adults have substantial AD pathology. PMID:19376612
Glio-vascular changes during ageing in wild-type and Alzheimer's disease-like APP/PS1 mice.
Janota, C S; Brites, D; Lemere, C A; Brito, M A
2015-09-16
Vascular and glial involvement in the development of neurodegenerative disorders, such as Alzheimer's disease (AD), and age-related brain vulnerabilities have been suggested. Therefore, we sought to: (i) investigate which vascular and glial events are evident in ageing and/or AD, (ii) to establish the temporal evolution of vascular and glial changes in AD-like and wild-type (WT) mice and (iii) to relate them to amyloid-β (Aβ) peptide accumulation. We examined immunohistochemically hippocampi and cortex from APP/PS1dE9 and WT C57BL/6 mice along ageing and disease progression (young-adulthood, middle- and old-age). Ageing resulted in the increase in receptor for advanced glycation endproducts expression, as well as the entrance of thrombin and albumin in hippocampal parenchyma. In contrast, the loss of platelet-derived growth factor receptor-β (PDGFR-β) positive cells, in both regions, was only related to AD pathogenesis. Hypovascularization was affected by both ageing and AD in the hippocampus, but resulted from the interaction between both factors in the cortex. Astrogliosis was a result of AD in hippocampus and of both factors in cortex, while microgliosis was associated with fibrillar amyloid plaques in AD-like mice and with the interaction between both factors in each of the studied regions. In sum, these data show that senile plaques precede vascular and glial alterations only in hippocampus, whereas in cortex, vascular and glial alterations, namely the loss of PDGFR-β-positive cells and astrogliosis, accompanied the first senile plaques. Hence, this study points to vascular and glial events that co-exist in AD pathogenesis and age-related brain vulnerabilities. Copyright © 2015 Elsevier B.V. All rights reserved.
Inzelberg, Rivka; Massarwa, Magda; Schechtman, Edna; Strugatsky, Rosa; Farrer, Lindsay A; Friedland, Robert P
2015-01-01
Vascular risk factors and lack of formal education may increase the risk of Alzheimer's disease (AD). To determine the contribution of vascular risk factors and education to the risk of mild cognitive impairment (MCI) and AD and to estimate the risk for conversion from MCI to AD. This door-to-door survey was performed by an Arab-speaking team in Wadi Ara villages in Israel. All consenting residents aged ≥ 65 years were interviewed for medical history and underwent neurological and cognitive examinations. Individuals were cognitively classified as normal (CN), MCI, AD, vascular dementia, or unclassifiable. MCI patients were re-examined at least one year later to determine conversion to AD. The contributions of age, gender, school years, and vascular risk factors to the probability of conversion were estimated using logistic regression models. Of the 906 participants, 297 (33%) had MCI and 95 (10%) had AD. Older age (p = 0.0008), female gender (p = 0.023), low schooling (p < 0.0001), and hypertension (p = 0.0002) significantly accounted for risk of MCI versus CN, and diabetes was borderline (p = 0.051). The risk of AD versus CN was significantly associated with age (p < 0.0001), female gender (p < 0.0001), low schooling (p = 0.004) and hypertension (p = 0.049). Of the 231 subjects with MCI that were re-examined, 65 converted to AD. In this population, age, female gender, lack of formal education, and hypertension are risk factors for both AD and MCI. Conversion risk from MCI to AD could be estimated as a function of age, time interval between examinations, and hypertension.
Neuropathologic features associated with Alzheimer disease diagnosis
Grinberg, L.T.; Miller, B.; Kawas, C.; Yaffe, K.
2011-01-01
Objective: To examine whether the association between clinical Alzheimer disease (AD) diagnosis and neuropathology and the precision by which neuropathology differentiates people with clinical AD from those with normal cognition varies by age. Methods: We conducted a cross-sectional analysis of 2,014 older adults (≥70 years at death) from the National Alzheimer's Coordinating Center database with clinical diagnosis of normal cognition (made ≤1 year before death, n = 419) or AD (at ≥65 years, n = 1,595) and a postmortem neuropathologic examination evaluating AD pathology (neurofibrillary tangles, neuritic plaques) and non-AD pathology (diffuse plaques, amyloid angiopathy, Lewy bodies, macrovascular disease, microvascular disease). We used adjusted logistic regression to analyze the relationship between clinical AD diagnosis and neuropathologic features, area under the receiver operating characteristic curve (c statistic) to evaluate how precisely neuropathology differentiates between cognitive diagnoses, and an interaction to identify effect modification by age group. Results: In a model controlling for coexisting neuropathologic features, the relationship between clinical AD diagnosis and neurofibrillary tangles was significantly weaker with increasing age (p < 0.001 for interaction). The aggregate of all neuropathologic features more strongly differentiated people with clinical AD from those without in younger age groups (70–74 years: c statistic, 95% confidence interval: 0.93, 0.89–0.96; 75–84 years: 0.95, 0.87–0.95; ≥85 years: 0.83, 0.80–0.87). Non-AD pathology significantly improved precision of differentiation across all age groups (p < 0.004). Conclusion: Clinical AD diagnosis was more weakly associated with neurofibrillary tangles among the oldest old compared to younger age groups, possibly due to less accurate clinical diagnosis, better neurocompensation, or unaccounted pathology among the oldest old. PMID:22031532
Nakano, Yuya; Itabashi, Kazuo; Sakurai, Motoichiro; Aizawa, Madoka; Dobashi, Kazushige; Mizuno, Katsumi
2014-05-01
Preterm infants have altered fat tissue development, including a higher percentage of fat mass and increased volume of visceral fat. They also have altered adiponectin levels, including a lower ratio of high-molecular-weight adiponectin (HMW-Ad) to total adiponectin (T-Ad) at term-equivalent age, compared with term infants. The objective of this study was to investigate the association between adiponectin levels and fat tissue accumulation or distribution in preterm infants at term-equivalent age. Cross-sectional clinical study. Study subjects were 53 preterm infants born at ≤34weeks gestation with a mean birth weight of 1592g. Serum levels of T-Ad and HMW-Ad were measured and a computed tomography (CT) scan was performed at the level of the umbilicus at term-equivalent age to analyze how fat tissue accumulation or distribution was correlated with adiponectin levels. T-Ad (r=0.315, p=0.022) and HMW-Ad levels (r=0.338, p=0.013) were positively associated with subcutaneous fat area evaluated by performing CT scan at term-equivalent age, but were not associated with visceral fat area in simple regression analyses. In addition, T-Ad (β=0.487, p=0.003) and HMW-Ad levels (β=0.602, p<0.001) were positively associated with subcutaneous fat tissue area, but they were not associated with visceral fat area also in multiple regression analyses. Subcutaneous fat accumulation contributes to increased levels of T-Ad and HMW-Ad, while visceral fat accumulation does not influence adiponectin levels in preterm infants at term-equivalent age. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cupples, L. Adrienne; Thompson, Wesley K.; Besser, Lilah; Kukull, Walter A.; Holland, Dominic; Chen, Chi-Hua; Brewer, James B.; Karow, David S.; Kauppi, Karolina; Bonham, Luke W.; Rosen, Howard J.; Miller, Bruce L.; Dillon, William P.; Wilson, David M.; Pericak-Vance, Margaret; Haines, Jonathan L.; Farrer, Lindsay A.; Mayeux, Richard; Hardy, John; Goate, Alison M.; Schellenberg, Gerard D.; Andreassen, Ole A.
2017-01-01
Background Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance. Although genetic studies have identified AD-associated SNPs in APOE and other genes, genetic information has not been integrated into an epidemiological framework for risk prediction. Methods and findings Using genotype data from 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer’s Project (IGAP Stage 1), we identified AD-associated SNPs (at p < 10−5). We then integrated these AD-associated SNPs into a Cox proportional hazard model using genotype data from a subset of 6,409 AD patients and 9,386 older controls from Phase 1 of the Alzheimer’s Disease Genetics Consortium (ADGC), providing a polygenic hazard score (PHS) for each participant. By combining population-based incidence rates and the genotype-derived PHS for each individual, we derived estimates of instantaneous risk for developing AD, based on genotype and age, and tested replication in multiple independent cohorts (ADGC Phase 2, National Institute on Aging Alzheimer’s Disease Center [NIA ADC], and Alzheimer’s Disease Neuroimaging Initiative [ADNI], total n = 20,680). Within the ADGC Phase 1 cohort, individuals in the highest PHS quartile developed AD at a considerably lower age and had the highest yearly AD incidence rate. Among APOE ε3/3 individuals, the PHS modified expected age of AD onset by more than 10 y between the lowest and highest deciles (hazard ratio 3.34, 95% CI 2.62–4.24, p = 1.0 × 10−22). In independent cohorts, the PHS strongly predicted empirical age of AD onset (ADGC Phase 2, r = 0.90, p = 1.1 × 10−26) and longitudinal progression from normal aging to AD (NIA ADC, Cochran–Armitage trend test, p = 1.5 × 10−10), and was associated with neuropathology (NIA ADC, Braak stage of neurofibrillary tangles, p = 3.9 × 10−6, and Consortium to Establish a Registry for Alzheimer’s Disease score for neuritic plaques, p = 6.8 × 10−6) and in vivo markers of AD neurodegeneration (ADNI, volume loss within the entorhinal cortex, p = 6.3 × 10−6, and hippocampus, p = 7.9 × 10−5). Additional prospective validation of these results in non-US, non-white, and prospective community-based cohorts is necessary before clinical use. Conclusions We have developed a PHS for quantifying individual differences in age-specific genetic risk for AD. Within the cohorts studied here, polygenic architecture plays an important role in modifying AD risk beyond APOE. With thorough validation, quantification of inherited genetic variation may prove useful for stratifying AD risk and as an enrichment strategy in therapeutic trials. PMID:28323831
Desikan, Rahul S; Fan, Chun Chieh; Wang, Yunpeng; Schork, Andrew J; Cabral, Howard J; Cupples, L Adrienne; Thompson, Wesley K; Besser, Lilah; Kukull, Walter A; Holland, Dominic; Chen, Chi-Hua; Brewer, James B; Karow, David S; Kauppi, Karolina; Witoelar, Aree; Karch, Celeste M; Bonham, Luke W; Yokoyama, Jennifer S; Rosen, Howard J; Miller, Bruce L; Dillon, William P; Wilson, David M; Hess, Christopher P; Pericak-Vance, Margaret; Haines, Jonathan L; Farrer, Lindsay A; Mayeux, Richard; Hardy, John; Goate, Alison M; Hyman, Bradley T; Schellenberg, Gerard D; McEvoy, Linda K; Andreassen, Ole A; Dale, Anders M
2017-03-01
Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance. Although genetic studies have identified AD-associated SNPs in APOE and other genes, genetic information has not been integrated into an epidemiological framework for risk prediction. Using genotype data from 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer's Project (IGAP Stage 1), we identified AD-associated SNPs (at p < 10-5). We then integrated these AD-associated SNPs into a Cox proportional hazard model using genotype data from a subset of 6,409 AD patients and 9,386 older controls from Phase 1 of the Alzheimer's Disease Genetics Consortium (ADGC), providing a polygenic hazard score (PHS) for each participant. By combining population-based incidence rates and the genotype-derived PHS for each individual, we derived estimates of instantaneous risk for developing AD, based on genotype and age, and tested replication in multiple independent cohorts (ADGC Phase 2, National Institute on Aging Alzheimer's Disease Center [NIA ADC], and Alzheimer's Disease Neuroimaging Initiative [ADNI], total n = 20,680). Within the ADGC Phase 1 cohort, individuals in the highest PHS quartile developed AD at a considerably lower age and had the highest yearly AD incidence rate. Among APOE ε3/3 individuals, the PHS modified expected age of AD onset by more than 10 y between the lowest and highest deciles (hazard ratio 3.34, 95% CI 2.62-4.24, p = 1.0 × 10-22). In independent cohorts, the PHS strongly predicted empirical age of AD onset (ADGC Phase 2, r = 0.90, p = 1.1 × 10-26) and longitudinal progression from normal aging to AD (NIA ADC, Cochran-Armitage trend test, p = 1.5 × 10-10), and was associated with neuropathology (NIA ADC, Braak stage of neurofibrillary tangles, p = 3.9 × 10-6, and Consortium to Establish a Registry for Alzheimer's Disease score for neuritic plaques, p = 6.8 × 10-6) and in vivo markers of AD neurodegeneration (ADNI, volume loss within the entorhinal cortex, p = 6.3 × 10-6, and hippocampus, p = 7.9 × 10-5). Additional prospective validation of these results in non-US, non-white, and prospective community-based cohorts is necessary before clinical use. We have developed a PHS for quantifying individual differences in age-specific genetic risk for AD. Within the cohorts studied here, polygenic architecture plays an important role in modifying AD risk beyond APOE. With thorough validation, quantification of inherited genetic variation may prove useful for stratifying AD risk and as an enrichment strategy in therapeutic trials.
Song, Dae Kwang; Sawada, Masayuki; Yokota, Shingo; Kuroda, Kenji; Uenishi, Hiroyuki; Kanazawa, Tetsufumi; Ogata, Hiroyuki; Ihara, Hiroshi; Nagai, Toshiro; Shimoda, Kazutaka
2015-01-01
Prader-Willi syndrome (PWS) is a neuro-genetic disorder caused by the absence/loss of expression of one or more paternally expressed genes on chromosome 15 (q11-13). In this study, a comparative analysis of intelligence level and autistic traits was conducted between children with PWS (n = 30; 18 males, 12 females; age = 10.6 ± 2.8 years) and those with Asperger disorder (AD; n = 31; 24 males, 7 females; age = 10.5 ± 3.1 years). The children were compared by age group: lower elementary school age (6-8 years), upper elementary school age (9-12 years), and middle school age (13-15 years). As results, the intelligence levels of children with PWS were significantly lower than those with AD across all age groups. Autistic traits, assessed using the Pervasive Developmental Disorders Autism Society Japan Rating Scale (PARS), revealed that among elementary school age children, those with PWS had less prominent autistic traits than those with AD, however, among middle school age children, those with PWS and AD showed similar prominence. An analysis of the PARS subscale scores by age group showed that while the profiles of autistic traits for children with PWS differed from those of children with AD at elementary school age, the profiles showed no significant differences between the groups at middle school age. The findings suggest that autistic traits in PWS become gradually more prominent with increasing of age and that these autistic traits differ in their fundamental nature from those observed in AD. © 2014 Wiley Periodicals, Inc.
Yusen, Roger D; Hull, Russell D; Schellong, Sebastian M; Tapson, Victor F; Monreal, Manuel; Samama, Meyer-Michel; Chen, Min; Deslandes, Bruno; Turpie, Alexander G G
2013-12-01
The EXCLAIM study enrolled hospitalised acutely ill medical patients with age >40 years and recently-reduced mobility into a trial of extended-duration anticoagulant thromboprophylaxis. This post-hocanalysis evaluated the impact of age on patient outcomes. After completion of open-label therapy with enoxaparin 40 mg once-daily (10 ± 4 days), eligible patients underwent randomisation to receive double-blind therapy of enoxaparin (n=2,975) or placebo (n=2,988) for 28 ± 4 days. During follow-up, the venous thromboembolism (VTE) risk increased with age in both treatment groups. In patients with age >75 years, those who received extended-duration enoxaparin had lower incidence of VTE (2.5% vs 6.7%; absolute difference [AD] [95% confidence interval]: -4.2% [-6.5, -2.0]), proximal deep-vein thrombosis (2.5% vs 6.6%; AD -4.1% [-6.2, -2.0]), and symptomatic VTE (0.3% vs 1.5%; AD -1.2% [-2.2, -0.3]), in comparison to those who received placebo. In patients with age ≤75 years, those who received enoxaparin had reduced VTE (2.4% vs 2.8%; AD -0.4% [-1.5, 0.7]) and symptomatic VTE (0.2% vs 0.7%; AD -0.6% [-1.0, -0.1]) in comparison to those who received placebo. In both age subgroups, patients who received enoxaparin had increased rates of major bleeding versus those who received placebo: age >75 years (0.6% vs 0.2%; AD +0.3% [-0.2, 0.9], respectively); age ≤75 years (0.7% vs 0.2%; AD +0.5% [0.1, 0.9]). Patients in both age subgroups that received enoxaparin had similar low bleeding rates (0.6% and 0.7%, respectively). VTE risk increased with age, though the bleeding risk did not. Patients with age >75 years had a more favourable benefit-to-harm profile than younger patients.
Gulyás, Balázs; Vas, Adám; Tóth, Miklós; Takano, Akihiro; Varrone, Andrea; Cselényi, Zsolt; Schain, Martin; Mattsson, Patrik; Halldin, Christer
2011-06-01
The main objectives of the present study were (i) to measure density changes of activated microglia and the peripheral benzodiazepine receptor/translocator protein (TSPO) system during normal ageing in the human brain with positron emission tomography (PET) using the TSPO molecular imaging biomarker [(11)C]vinpocetine and (ii) to compare the level and pattern of TSPO in Alzheimer (AD) patients with age matched healthy subjects, in order to assess the biomarker's usefulness as a diagnostic imaging marker in normal (ageing) and pathological (AD) up-regulation of microglia. PET measurements were made in healthy volunteers, aged between 25 and 78 years, and AD patients, aged between 67 and 82 years, using [(11)C]vinpocetine as the tracer. Global and regional quantitative parameters of tracer uptake and binding, including time activity curves (TAC) of standard uptake values (%SUV), binding affinity parameters, intensity spectrum and homogeneity of the uptake distribution were measured and analysed. Both %SUV and binding values increased with age linearly in the whole brain and in all brain regions. There were no significant differences between the %SUV values of the AD patients and age matched control subjects. There were, however, significant differences in %SUV values in a large number of brain regions between young subjects and old subjects, as well as young subjects and AD patients. The intensity spectrum analysis and homogeneity analysis of the voxel data show that the homogeneity of the %SUV values decreases with ageing and during the disease, whereas the centre of the intensity spectrum is shifted to higher %SUV values. These data indicate an inhomogeneous up-regulation of the TSPO system during ageing and AD. These changes were significant between the group of young subjects and old subjects, as well as young subjects and AD patients, but not between old subjects and AD patients. The present data indicate that [(11)C]vinpocetine may serve as a molecular imaging biomarker of the activity of the TSPO system and, consequently, of the up-regulation of microglia during ageing and in neuroinflammatory diseases. However, the global and regional brain %SUV values between AD patients and age matched controls are not different from each other. The disease specific changes, measured with [(11)C]vinpocetine in AD, are significantly different from those measured in age matched controls only if the inhomogeneities in the uptake pattern are explored with advanced mathematical techniques. For this reason, PET studies using [(11)C]vinpocetine, as molecular imaging biomarker, can efficiently visualise the activation of microglia and the up-regulation of TSPO during ageing and in diseased brains with the help of an appropriate inhomogeneity analysis of the radioligand's brain uptake pattern. Copyright © 2011 Elsevier Inc. All rights reserved.
Age and rate of cognitive decline in Alzheimer disease: implications for clinical trials.
Bernick, Charles; Cummings, Jeffrey; Raman, Rema; Sun, Xiaoying; Aisen, Paul
2012-07-01
Factors that affect the rate of progression of Alzheimer disease (AD) need to be considered in the clinical trial designs of potential disease-modifying therapies. To determine the influence of age on AD course in a clinical trial setting. Pooled cohort study from 3 AD clinical trials of 18-month duration conducted by the Alzheimer Disease Cooperative Study group. Alzheimer disease research centers from across the United States. Four hundred seventy-one subjects with mild to moderate AD assigned to the placebo arm of 3 clinical trials. The relationships between baseline age and rate of change in the Alzheimer Disease Assessment Scale–cognitive subscale (ADAS-cog) 11, Mini-Mental State Examination, Clinical Dementia Rating scale Sum of Boxes score, Alzheimer Disease Cooperative Study–activities of daily living scale, and Neuropsychiatric Inventory were analyzed using a mixed-effect regression model. Sample size calculation for possible future AD clinical trials lasting 18 months using the results of the change in ADAS-cog 11 by tertiles of age groups. Older age at baseline was associated with a slower rate of decline in the ADAS-cog 11 and the Mini-Mental State Examination scores. Almost twice as many subjects aged 80 years and older compared with those aged younger than 70 years would be required to demonstrate a 30% treatment effect on the ADAS-cog 11 in an 18-month AD trial. Subject age is an important factor to consider when defining the study population in and analyzing data from AD trials of potential disease-modifying therapies.
Simplified and age-appropriate recommendations for added sugars in children.
Goran, M I; Riemer, S L; Alderete, T L
2018-04-01
Excess sugar intake increases risk for obesity and related comorbidities among children. The World Health Organization (WHO), American Heart Association (AHA) and the 2015 USDA dietary recommendations have proposed guidelines for added sugar intake to reduce risk for disease. WHO and USDA recommendations are presented as a percentage of daily calories from added sugar. This approach is not easily understood or translated to children, where energy needs increase with age. The AHA recommendation is based on a fixed value of 25 g of added sugar for all children 2-19 years of age. This approach does not take into account the different levels of intake across this wide age range. Due to these limitations, we adapted current recommendations for added sugars based on daily energy needs of children 2-19 years. We used those values to derive simple regression equations to predict grams or teaspoons of added sugars per day based on age that would be equivalent to 10% of daily energy needs. This proposed approach aligns with the changing nutritional needs of children and adolescents during growth. © 2017 World Obesity Federation.
Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J
2017-01-01
Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z = -2.89; P = .004) and was preserved among eldest individuals older than 85 years of age who remained cognitively intact. When controlling for age, loss of perivascular AQP4 localization was associated with increased amyloid-β burden (R2 = 0.15; P = .003) and increasing Braak stage (R2 = 0.14; P = .006). In this study, altered AQP4 expression was associated with aging brains. Loss of perivascular AQP4 localization may be a factor that renders the aging brain vulnerable to the misaggregation of proteins, such as amyloid-β, in neurodegenerative conditions such as AD.
Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C
2016-04-05
We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.
Plasma testosterone levels in Alzheimer and Parkinson diseases.
Okun, M S; DeLong, M R; Hanfelt, J; Gearing, M; Levey, A
2004-02-10
Testosterone deficiency, a treatable condition commonly seen in aging men, has been linked to Parkinson disease (PD) and Alzheimer disease (AD). In normal subjects, low testosterone levels are associated with cognitive and neuropsychiatric symptoms, yet the relationship between testosterone levels and cognitive function in PD and AD remains unclear. To examine the relationship of testosterone levels to age and cognitive function in PD and AD. Plasma testosterone levels were determined in men enrolled in a clinical registry of subjects with PD and AD, and neuropsychological testing was performed on subjects who consented. Testosterone levels in men with PD were compared with those in men with AD. In both groups, the relationship between testosterone levels and neuropsychological test scores was analyzed, adjusting for age and education. Linear regression analysis revealed that testosterone levels decreased with age in male PD patients (p < 0.03) and male AD patients (p < 0.07). The rate of decline was similar for the two groups. In PD patients, lower testosterone levels were associated with poorer performance on Trails B Seconds (p < 0.02). There is a similar age-related decline in plasma testosterone levels in men with either PD or AD. Previously described associations between low testosterone levels and frontal lobe dysfunction in normal aged men, together with these results, suggest that the hormonal deficiency may act as a "second hit" to impair cognitive function in neurodegenerative disease.
Bodacious Berry, Potency Wood and the Aging Monster: Gender and Age Relations in Anti-Aging Ads
ERIC Educational Resources Information Center
Calasanti, Toni
2007-01-01
This paper situates age discrimination within a broader system of age relations that intersects with other inequalities, and then uses that framework to analyze internet advertisements for the anti-aging industry. Such ads reinforce age and gender relations by positing old people as worthwhile only to the extent that they look and act like those…
Brewer, Alyssa A.; Barton, Brian
2012-01-01
Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD. PMID:24570669
Oxidative stress in Alzheimer disease
Durany, Nuria
2009-01-01
Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765
Oxidative stress in Alzheimer disease.
Gella, Alejandro; Durany, Nuria
2009-01-01
Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.
Fisetin Reduces the Impact of Aging on Behavior and Physiology in the Rapidly Aging SAMP8 Mouse.
Currais, Antonio; Farrokhi, Catherine; Dargusch, Richard; Armando, Aaron; Quehenberger, Oswald; Schubert, David; Maher, Pamela
2018-03-02
Alzheimer's disease (AD) is rarely addressed in the context of aging even though there is an overlap in pathology. We previously used a phenotypic screening platform based on old age-associated brain toxicities to identify the flavonol fisetin as a potential therapeutic for AD and other age-related neurodegenerative diseases. Based on earlier results with fisetin in transgenic AD mice, we hypothesized that fisetin would be effective against brain aging and cognitive dysfunction in rapidly aging senescence-accelerated prone 8 (SAMP8) mice, a model for sporadic AD and dementia. An integrative approach was used to correlate protein expression and metabolite levels in the brain with cognition. It was found that fisetin reduced cognitive deficits in old SAMP8 mice while restoring multiple markers associated with impaired synaptic function, stress, and inflammation. These results provide further evidence for the potential benefits of fisetin for the treatment of age-related neurodegenerative diseases.
Appetite and Weight Loss Symptoms in Late-Life Depression Predict Dementia Outcomes.
Saha, Sayoni; Hatch, Daniel J; Hayden, Kathleen M; Steffens, David C; Potter, Guy G
2016-10-01
Identify depression symptoms during active late-life depression (LLD) that predict conversion to dementia. The authors followed a cohort of 290 participants from the Neurocognitive Outcomes of Depression in the Elderly study. All participants were actively depressed and cognitively normal at enrollment. Depression symptom factors were derived from prior factor analysis: anhedonia and sadness, suicidality and guilt, appetite and weight loss, sleep disturbance, and anxiety and tension. Cox regression analysis modeled time to Alzheimer disease (AD) and non-AD dementia onset on depression symptom factors, along with age, education, sex, and race. Significant dementia predictors were tested for interaction with age at depression onset. Higher scores on the appetite and weight loss symptom factor were associated with an increased hazard of both AD and non-AD dementia. This factor was moderated by age at first depression onset, such that higher scores were associated with higher risk of non-AD dementia when depression first occurred earlier in life. Other depression symptom factors and overall depression severity were not related to risk of AD or non-AD dementia. Results suggest greater appetite/weight loss symptoms in active episodes of LLD are associated with increased likelihood of AD and non-AD dementia, but possibly via different pathways moderated by age at first depression onset. Results may help clinicians identify individuals with LLD at higher risk of developing AD and non-AD dementia and design interventions that reduce this risk. Copyright © 2016. Published by Elsevier Inc.
Kikis, Elise A
2017-08-22
Aging is a risk factor for a number of "age-related diseases", including Alzheimer's disease (AD). AD affects more than a third of all people over the age of 85, and is the leading cause of dementia worldwide. Symptoms include forgetfulness, memory loss, and cognitive decline, ultimately resulting in the need for full-time care. While there is no cure for AD, pharmacological approaches to alleviate symptoms and target underlying causes of the disease have been developed, albeit with limited success. This review presents the age-related, genetic, and environmental risk factors for AD and proposes a hypothesis for the mechanistic link between genetics and the environment. In short, much is known about the genetics of early-onset familial AD (EO-FAD) and the central role played by the Aβ peptide and protein misfolding, but late-onset AD (LOAD) is not thought to have direct genetic causes. Nonetheless, genetic risk factors such as isoforms of the protein ApoE have been identified. Additional findings suggest that air pollution caused by the combustion of fossil fuels may be an important environmental risk factor for AD. A hypothesis suggesting that poor air quality might act by disrupting protein folding homeostasis (proteostasis) is presented.
Chantzichristos, Dimitrios; Persson, Anders; Eliasson, Björn; Miftaraj, Mervete; Franzén, Stefan; Svensson, Ann-Marie; Johannsson, Gudmundur
2018-01-01
We determined the incidence and prevalence of Addison's disease (AD) among persons with or without type 1 diabetes mellitus (T1DM) in nationwide, matched cohort studies. Persons with T1DM were identified from the Swedish National Diabetes Register and each was matched for age, sex, year and county to five controls randomly selected from the general population. Persons with AD were identified from the Swedish National Inpatient Register. Baseline demographics and seasonal onset variation of AD were presented by descriptive statistics. Prevalence and incidence were estimated by proportions and incidence rates, respectively. Times to AD were analyzed using the Cox proportional hazard model. Between 1998 and 2013, 66 persons with T1DM were diagnosed with AD at a mean age (s.d.) of 36.4 (13.0) years among 36 514 persons with T1DM, while 32 were diagnosed with AD at a mean age of 42.7 (15.2) years among 182 570 controls. The difference in mean age at diagnosis of AD between the groups was 6.3 years ( P value = 0.036). The incidence of AD for a person with or without T1DM was therefore 193 and 18 per million person-years, respectively. The adjusted relative risk increase of developing AD in T1DM was 10.8 (95% CI: 7.1-16.5). The highest incidence of AD was observed during February-March and September-October. The prevalence of AD in persons with or without T1DM in December 2012 was 3410 and 208 per million, respectively. The odds ratio for AD in persons with T1DM vs controls was 16.5 (95% CI: 11.1-24.5). The risk to develop AD among persons with T1DM is more than 10 times higher than in persons without T1DM. Persons with T1DM develop AD at a younger age. The incidence of AD may have a seasonal pattern. © 2018 European Society of Endocrinology.
Mecocci, Patrizia; Boccardi, Virginia; Cecchetti, Roberta; Bastiani, Patrizia; Scamosci, Michela; Ruggiero, Carmelinda; Baroni, Marta
2018-01-01
The Editors of the Journal of Alzheimer’s Disease invited Professor Patrizia Mecocci to contribute a review article focused on the importance and implications of her research on aging, brain aging, and senile dementias over the last years. This invitation was based on an assessment that she was one of the journal’s top authors and a strong supporter of the concept that oxidative stress is a major contributor to several alterations observed in age-related conditions (sarcopenia, osteoporosis) and, more significantly, in brain aging suggesting a pivotal role in the pathogenesis and progression of one of the most dramatic age-related diseases, Alzheimer’s disease (AD). Her first pioneering research was on the discovery of high level of 8-hydroxy-2’-deoxyguanosine (OH8dG), a marker of oxidation in nucleic acids, in mitochondrial DNA isolated from cerebral cortex. This molecule increases progressively with aging and more in AD brain, supporting the hypothesis that oxidative stress, a condition of unbalance between the production of reactive oxygen species and antioxidants, gives a strong contribution to the high incidence of AD in old age subjects. OH8dG also increases in peripheral lymphocyte from AD subjects, suggesting that AD is not only a cerebral but also a systemic disease. The role of antioxidants, particularly vitamin E and zinc, were also studied in longevity and in cognitive decline and dementia. This review shows the main findings from Mecocci’s laboratory related to oxidative stress in aging, brain aging, and AD and discusses the importance and implications of some of the major achievements in this field of research. PMID:29562533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamboh, M.I.; DeKosky, S.T.; Ferrell, R.E.
1994-09-01
Apolipoprotein E binds to {beta}-amyloid peptide in senile plaques and neurofibrillary tangles in Alzheimer`s disease (AD). Recent studies have identified the APOE*4 allele as a major predisposing genetic factor for late-onset familial AD as well as in sporadic AD. Most of these association studies are based on clinically diagnosed AD cases with little data available on autopsy confirmed, definite AD. To characterize the distribution of APOE polymorphism in autopsy confirmed sporadic AD cases, we determined APOE genotypes in 111 DNA samples (aged 51-101 years) extracted from brain tissues which were available from the University of Pittsburgh Alzheimer`s Disease Research Center.more » The APOE data was compared between the AD group and 3 samples of population controls from Western Pennsylvania consisting of a young cohort (N=473, aged 18-48 years), middle cohort (N=473, aged 42-50 years) and an old cohort (N=870, aged 65-90 years). The frequency of the APOE*4 allele was similar in the young and middle cohorts (0.12) and slightly lower in the old cohort (0.10). However, the frequency of the APOE*4 allele was three times higher in both early-onset (<65 years; 0.36) and late-onset ({ge}65 years; 0.38) sporadic AD cases compared to the control groups (p<0.0001). In the AD cohort the frequency of the APOE*4 allele was similar across all age groups (<65, 65-75, 76-85, 86+) and so was in men and women (0.40 vs. 0.37). The E*4 homozygosity was observed in 18% of AD cases compared to 1% in each of the three control groups. The E*4 heterozygosity was present in 50% of AD cases compared to 17% in the control old cohort and 22% in both the young and middle control cohorts. These data confirm that the APOE*4 allele is a major risk factor for AD regardless of age-at-diagnosis or family history.« less
Less common clinical manifestations of atopic dermatitis: prevalence by age.
Julián-Gónzalez, Rolando Elias; Orozco-Covarrubias, Luz; Durán-McKinster, Carola; Palacios-Lopez, Carolina; Ruiz-Maldonado, Ramon; Sáez-de-Ocariz, Marimar
2012-01-01
The common manifestations of atopic dermatitis (AD) appear sequentially with involvement of the cheeks in infancy, flexural extremities in childhood, and hands in adulthood. Although less common clinical manifestations are well described, they have not been the subject of epidemiologic studies to describe their prevalence in specific age groups. This observational, cross-sectional, comparative study included 131 children younger than 18 of both sexes with AD who attended the clinics of the Dermatology Department of the National Institute of Pediatrics in Mexico City. Patients were examined to determine the presence of infrequent clinical manifestations of AD during infancy, preschool and school age, and adolescence and stratified according to sex, age, and number of clinical signs. A chi-square test was used to detect differences according to age and sex. Logistic regression analysis was also performed. The main findings according to age were genital dermatitis and papular-lichenoid dermatitis variant in infants; atopic feet, prurigo-like, nummular pattern, and erythroderma in preschool and school-aged children; and eyelid eczema and nipple dermatitis in adolescents. The risk of development of nipple dermatitis and eyelid eczema increased with age, and the development of genital dermatitis decreased with age. The knowledge of the prevalence of less common clinical manifestations of AD according to age in different populations might be helpful in diagnosing incipient cases of AD. © 2012 Wiley Periodicals, Inc.
Podtelezhnikov, Alexei A; Tanis, Keith Q; Nebozhyn, Michael; Ray, William J; Stone, David J; Loboda, Andrey P
2011-01-01
Alzheimer's disease (AD) is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional biomarkers that we named BioAge (biological age), Alz (Alzheimer), Inflame (inflammation), and NdStress (neurodegenerative stress). BioAge captures the first principal component of variation and includes genes statistically associated with neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients, which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes during the epithelial to mesenchymal (EMT) transition. Together these biomarkers provide detailed description of the aging process and its contribution to Alzheimer's disease progression. © 2011 Podtelezhnikov et al.
Molecular Insights into the Pathogenesis of Alzheimer's Disease and Its Relationship to Normal Aging
Podtelezhnikov, Alexei A.; Tanis, Keith Q.; Nebozhyn, Michael; Ray, William J.
2011-01-01
Alzheimer's disease (AD) is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional biomarkers that we named BioAge (biological age), Alz (Alzheimer), Inflame (inflammation), and NdStress (neurodegenerative stress). BioAge captures the first principal component of variation and includes genes statistically associated with neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients, which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes during the epithelial to mesenchymal (EMT) transition. Together these biomarkers provide detailed description of the aging process and its contribution to Alzheimer's disease progression. PMID:22216330
Osteoporosis in adult patients with atopic dermatitis: A nationwide population-based study
Lu, Chun-Ching; Su, Yu-Feng; Tsai, Tai-Hsin; Wu, Chieh-Hsin
2017-01-01
The aim of this study was to investigate osteoporosis risk in atopic dermatitis (AD) patients. This study included patients in the Taiwan National Health Insurance Research dataset. The population-based study included all patients aged 20–49 years who had been diagnosed with AD during 1996–2010. In total, 35,229 age and gender-matched patients without AD in a 1:1 ratio were randomly selected as the non-AD group. Cox proportional-hazards regression and Kaplan–Meier analyses were used to measure the hazard ratios and the cumulative incidences of osteoporosis, respectively. During the follow-up period, 360(1.02%) AD patients and 127(0.36%) non-AD patients developed osteoporosis. The overall incidence of osteoporosis was4.72-fold greater in the AD patients compared to the non-AD patients (1.82 vs. 0.24 per 1,000 person-years, respectively) after adjusting for potential confounding factors. Osteoporosis risk factors included female gender, age, advanced Charlson Comorbidity Index, depression and use of corticosteroids. The dataset analysis showed that AD was significantly associated with subsequent risk of osteoporosis. PMID:28207767
Sex differences in Alzheimer risk: Brain imaging of endocrine vs chronologic aging.
Mosconi, Lisa; Berti, Valentina; Quinn, Crystal; McHugh, Pauline; Petrongolo, Gabriella; Varsavsky, Isabella; Osorio, Ricardo S; Pupi, Alberto; Vallabhajosula, Shankar; Isaacson, Richard S; de Leon, Mony J; Brinton, Roberta Diaz
2017-09-26
This observational multimodality brain imaging study investigates emergence of endophenotypes of late-onset Alzheimer disease (AD) risk during endocrine transition states in a cohort of clinically and cognitively normal women and age-matched men. Forty-two 40- to 60-year-old cognitively normal women (15 asymptomatic perimenopausal by age [CNT], 13 perimenopausal [PERI], and 14 postmenopausal [MENO]) and 18 age- and education-matched men were examined. All patients had volumetric MRI, 18 F-fluoro-2-deoxyglucose (FDG)-PET (glucose metabolism), and Pittsburgh compound B-PET scans (β-amyloid [Aβ] deposition, a hallmark of AD pathology). As expected, the MENO group was older than the PERI and CNT groups. Otherwise, groups were comparable on clinical and neuropsychological measures and APOE4 distribution. Compared to CNT women and to men, and controlling for age, PERI and MENO groups exhibited increased indicators of AD endophenotype, including hypometabolism, increased Aβ deposition, and reduced gray and white matter volumes in AD-vulnerable regions ( p < 0.001). AD biomarker abnormalities were greatest in MENO, intermediate in PERI, and lowest in CNT women ( p < 0.001). Aβ deposition was exacerbated in APOE4 -positive MENO women relative to the other groups ( p < 0.001). Multimodality brain imaging indicates sex differences in development of the AD endophenotype, suggesting that the preclinical AD phase is early in the female aging process and coincides with the endocrine transition of perimenopause. These data indicate that the optimal window of opportunity for therapeutic intervention in women is early in the endocrine aging process. © 2017 American Academy of Neurology.
Ishihara, Y; Itoh, K; Mitsuda, Y; Shimada, T; Kubota, T; Kato, C; Song, S Y; Kobayashi, Y; Mori-Yasumoto, K; Sekita, S; Kirino, Y; Yamazaki, T; Shimamoto, N
2013-09-01
Oxidative stress is considered to be related to the onset and/or progression of Alzheimer's disease (AD), but there is insufficient evidence of its role(s). In this study, we evaluated the relationships between the brain redox state and cognitive function using a triple transgenic mouse model of AD (3 × Tg-AD mouse). One group of 3 × Tg-AD mice started to receive an α-tocopherol-supplemented diet at 2 months of age and another group of 3 × Tg-AD mice was fed a normal diet. The levels of α-tocopherol, reduced glutathione, oxidized glutathione, and lipid peroxidation were decreased in the cerebral cortex and hippocampus at 4 months of age in the 3 × Tg-AD mice fed a normal diet. These reductions were abrogated by the supplementation of α-tocopherol in the diet. During Morris water maze testing, the 3 × Tg-AD mice did not exhibit cognitive impairment at 4 months of age, but started to show cognitive dysfunction at 6 months of age, and α-tocopherol supplementation suppressed this dysfunction. Magnetic resonance imaging (MRI) using 3-hydroxymethyl-proxyl as a probe showed decreases in the signal intensity in the brains of 3 × Tg-AD mice at 4 months of age, and this reduction was clearly attenuated by α-tocopherol supplementation. Taken together, these findings suggest that oxidative stress can be associated with the cognitive impairment in 3 × Tg-AD mice. Furthermore, MRI might be a powerful tool to noninvasively evaluate the increases in reactive radicals, especially those occurring during the early stages of AD.
Autoimmune Manifestations in the 3xTg-AD Model of Alzheimer's Disease
Marchese, Monica; Cowan, David; Head, Elizabeth; Ma, Donglai; Karimi, Khalil; Ashthorpe, Vanessa; Kapadia, Minesh; Zhao, Hui; Davis, Paulina; Sakic, Boris
2015-01-01
Background Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. Objective The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. Methods A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. Results Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory disease, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired “cognitive” flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. Conclusion The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD. PMID:24150111
Nunomura, Akihiko; Tamaoki, Toshio; Motohashi, Nobutaka; Nakamura, Masao; McKeel, Daniel W.; Tabaton, Massimo; Lee, Hyoung-gon; Smith, Mark A.; Perry, George; Zhu, Xiongwei
2012-01-01
Although neuronal RNA oxidation is a prominent and established feature in age-associated neurodegenerative disorders such as Alzheimer disease (AD), oxidative damage to neuronal RNA in aging and in the transitional stages from normal elderly to the onset of AD has not been fully examined. In this study, we used an in situ approach to identify an oxidized RNA nucleoside 8-hydroxyguanosine (8OHG) in the cerebral cortex of 65 individuals without dementia ranging in age from 0.3 to 86 years. We also examined brain samples from 20 elderly who were evaluated for their premortem clinical dementia rating score and postmortem brain pathological diagnoses to investigate preclinical AD and mild cognitive impairment. Relative density measurements of 8OHG-immunoreactivity revealed a statistically significant increase in neuronal RNA oxidation during aging in the hippocampus and the temporal neocortex. In subjects with mild cognitive impairment but not preclinical AD, neurons of the temporal cortex showed a higher burden of oxidized RNA compared to age-matched controls. These results indicate that although neuronal RNA oxidation fundamentally occurs as an age-associated phenomenon, more prominent RNA damage than in normal aging correlates with the onset of cognitive impairment in the prodromal stage of AD. PMID:22318126
Duarte, A I; Santos, M S; Oliveira, C R; Moreira, P I
2018-02-20
Alzheimer's disease (AD) constitutes a major socioeconomic challenge due to its disabling features and the rise in prevalence (especially among (peri)menopausal women and type 2 diabetes patients). The precise etiopathogenesis of AD remains poorly understood. Importantly, its neurodegenerative perspective has been challenged towards a more "systemic" view. Amyloid-β (Aβ) and hyperphosphorylated Tau protein (P-Tau) (the main AD neuropathological features) affect and are affected by peripheral and brain insulin signalling dysfunction, leading to glucose dysmetabolism, synaptic loss and AD-related cognitive deficits. This may be anticipated and exacerbated by the progressive loss of estrogen (and interactions, e.g., with insulin) during females' aging, increasing their risk for AD, especially during menopause. Under this perspective, we aimed to discuss the recent findings (and controversies) behind the peripheral view of AD, and the role for insulin deficits and brain glucose dysmetabolism in such diseased brain. We also focused on the metabolic shift and the putative effects of gender (especially during midlife/perimenopause) herein. We finally discussed AD as the potential "type 3 diabetes", and the therapeutic potential of restoring brain insulin levels or glucose energy metabolism via administration of intranasal insulin and use of ketogenic diets. In sum, AD appears to lie on an intricate crosstalk between age-related metabolic, hormonal and specific genetic changes that challenge its traditional view. Hence, clarification of AD risk factors (besides aging and gender) and pathophysiological mechanisms will allow to establish accurate preventive strategies, biomarkers and more efficient drugs - all urgent medical needs in our increasingly aged societies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cribbs, David H; Berchtold, Nicole C; Perreau, Victoria; Coleman, Paul D; Rogers, Joseph; Tenner, Andrea J; Cotman, Carl W
2012-07-23
This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer's disease (AD). In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.
2012-01-01
Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Conclusions Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife. PMID:22824372
Cadena-del-Castillo, Carla; Valdes-Quezada, Christian; Carmona-Aldana, Francisco; Arias, Clorinda; Bermúdez-Rattoni, Federico; Recillas-Targa, Félix
2014-01-01
Alzheimer's disease (AD) is a complex disorder whose etiology is associated with environmental and genetic factors. Recently there have been several attempts to analyze the role of epigenetic alterations in the origin and progression of this neurodegenerative condition. To evaluate the potential participation of the methylation status of the genome that may contribute to AD progression, we have studied the levels and distribution of the 5-methylcytosine and 5-hydroxymethylcytosine in different brain regions at different ages. We analyzed and quantified the immunosignal of these two epigenetic marks in young versus old wild-type mice and in the triple-transgenic mouse model of AD (3xTg-AD). The results show a decline in global 5-methylcytosine mark over time in all studied brain regions concomitant with a significant and widespread increase in 5-hydroxymethylcytosine mark in the aged transgenic mice in contrast to the age-matched controls. These differences in the methylation pattern of brain DNA in the 3xTg-AD that accumulates along age indicates abnormal formation of permissive chromatin structure associated with the increase in AD-related markers.
Bergem, A L; Lannfelt, L
1997-11-01
The apolipoprotein E (APOE) epsilon4 allele is a risk factor in Alzheimer disease (AD), but not in vascular dementia (VaD). We have investigated whether the epsilon4 allele is more common in twin pairs concordant for AD, compared with those discordant for AD, and whether the epsilon4 allele is more common in AD twins than in VaD twins. In addition, we have investigated the relationship of the epsilon4 allele and the age at onset in AD and VaD. APOE genotype was analysed in 29 senile demented twin pairs. The epsilon4 allele was associated with AD and not with VaD. However, there was no difference in the frequency of the APOE epsilon4 allele in concordant (33.3%) and discordant (31.3%) AD dizygotic twin pairs. Age at onset in AD was significantly lower in epsilon4 homozygotes than in individuals with one or no copies of epsilon4 (62.4 vs. 73.5, p<0.01). In concordant AD twin pairs, the epsilon4 allele frequency was somewhat higher in the twins with earlier onset (41.7% vs. 25%), but the difference was not statistically significant. In the VaD group the age at onset was not significantly different between individuals with or without epsilon4 in their genotypes.
Stigmatization and self-perception in children with atopic dermatitis
Chernyshov, Pavel V
2016-01-01
Atopic dermatitis (AD) is one of the most common skin diseases. Prevalence of AD is highest in childhood. Because of chronicity and often visible lesions, AD may lead to stigmatization and problems with self-perception. However, problems of self-perception and stigmatization in AD children are poorly studied. Literature data on general tendencies of children’s development, clinical course, and epidemiologic tendencies of AD in different age groups make it possible to highlight three main periods in the formation of self-perception and stigmatization. The first period is from early infancy till 3 years of age. The child’s problems in this period depend on parental exhaustion, emotional distress, and security of the mother–child attachment. The child’s AD may form a kind of vicious circle in which severe AD causes parental distress and exhaustion that in turn lead to exacerbation of AD and psychological problems in children. The second period is from 3 till 10 years of age. During this period, development of AD children may be influenced by teasing, bullying, and avoiding by their peers. However, the majority of children in this age group are very optimistic. The third period is from 10 years till adulthood. Problems related to low self-esteem are characteristic during this period. It is important to identify children with AD and their parents who need psychological help and provide them with needs-based consultation and care. Appropriate treatment, medical consultations, and educational programs may help to reduce emotional problems in AD children and their parents. PMID:27499642
Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study.
Musicco, Massimo; Adorni, Fulvio; Di Santo, Simona; Prinelli, Federica; Pettenati, Carla; Caltagirone, Carlo; Palmer, Katie; Russo, Antonio
2013-07-23
To evaluate the incidence of cancer in persons with Alzheimer disease (AD) and the incidence of AD dementia in persons with cancer. This was a cohort study in Northern Italy on more than 1 million residents. Cancer incidence was derived from the local health authority (ASL-Mi1) tumor registry and AD dementia incidence from registries of drug prescriptions, hospitalizations, and payment exemptions. Expected cases of AD dementia were calculated by applying the age-, sex-, and calendar year-specific incidence rates observed in the whole population to the subgroup constituted of persons with newly diagnosed cancers during the observation period (2004-2009). The same calculations were carried out for cancers in patients with AD dementia. Separate analyses were carried out for the time period preceding or following the index diagnosis for survivors and nonsurvivors until the end of 2009 and for different types and sites of cancer. The risk of cancer in patients with AD dementia was halved, and the risk of AD dementia in patients with cancer was 35% reduced. This relationship was observed in almost all subgroup analyses, suggesting that some anticipated potential confounding factors did not significantly influence the results. The occurrence of both cancer and AD dementia increases exponentially with age, but with an inverse relationship; older persons with cancer have a reduced risk of AD dementia and vice versa. As AD dementia and cancer are negative hallmarks of aging and senescence, we suggest that AD dementia, cancer, and senescence could be manifestations of a unique phenomenon related to human aging.
NASA Astrophysics Data System (ADS)
Miller, Gifford H.; Landvik, Jon Y.; Lehman, Scott J.; Southon, John R.
2017-01-01
The response of the Northern Hemisphere cryosphere to the monotonic decline in summer insolation and variable radiative forcing during the Holocene has been one of irregular expansion culminating in the Little Ice Age, when most glaciers attained their maximum late Holocene dimensions. Although periods of intervening still-stand or ice-retreat can be reconstructed by direct dating of ice-recessional features, defining times of Neoglacial ice growth has been limited to indirect proxies preserved in distal archives. Here we report 45 precise radiocarbon dates on in situ plants emerging from beneath receding glaciers on Svalbard that directly date the onset of snowline descent and glacier expansion, entombing the plants. Persistent snowline lowering occurred between 4.0 and 3.4 ka, but with little additional persistent lowering until early in the first millennium AD. Populations of individual 14C calendar age results and their aggregate calendar age probabilities define discrete episodes of vegetation kill and snowline lowering 240-340 AD, 410-540 AD and 670-750 AD, each with a lower snowline than the preceding episode, followed by additional snowline lowering between 1000 and 1220 AD, and between 1300 and 1450 AD. Snowline changes after 1450 AD, including the maximum ice extent of the Little Ice Age are not resolved by our collections, although snowlines remained lower than their 1450 AD level until the onset of modern warming. A time-distance diagram derived from a 250-m-long transect of dated ice-killed plants documents ice-margin advances ∼750, ∼1100 and after ∼1500 AD, concordant with distributed vegetation kill ages seen in the aggregate data set, supporting our central thesis that vegetation kill ages provide direct evidence of snowline lowering and cryospheric expansion. The mid- to late-Holocene history of snowline lowering on Svalbard is similar to ELA reconstructions of Norwegian and Svalbard cirque glaciers, and consistent with a cryospheric response to the secular decline of regional summertime insolation and stepped changes in nearby surface ocean environments. The widespread exposure of entombed plants dating from the first millennium AD suggests that Svalbard's average summer temperatures of the past century now exceed those of any century since at least 700 AD, including medieval times.
Keleshian, Vasken L.; Modi, Hiren R.; Rapoport, Stanley I.; Rao, Jagadeesh S.
2013-01-01
Aging is a risk factor for Alzheimer’s disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, since DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro- and anti-apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle-aged (41 ± 1 (SEM) years) and ten aged subjects (70 ± 3 years). The aged compared with middle-aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti-apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of BDNF, CREB, and synaptophysin and hypomethylation of BAX. These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated. PMID:23336521
AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation.
Li, Xiao-Hong; Lv, Bing-Ling; Xie, Jia-Zhao; Liu, Jing; Zhou, Xin-Wen; Wang, Jian-Zhi
2012-07-01
Accumulation of β-amyloid and hyperphosphorylated tau with synapse damage and memory deterioration are hallmark lesions of Alzheimer disease (AD), but the upstream causative factors are elusive. The advanced glycation endproducts (AGEs) are elevated in AD brains and the AGEs can stimulate β-amyloid production. Whether and how AGEs may cause AD-like tau hyperphosphorylation and memory-related deficits is not known. Here we report that AGEs induce tau hyperphosphorylation, memory deterioration, decline of synaptic proteins, and impairment of long-term potentiation (LTP) in rats. In SK-NS-H cells, upregulation of AGEs receptor (RAGE), inhibition of Akt, and activation of glycogen synthase kinase-3 (GSK-3), Erk1/2, and p38 were observed after treatment with AGEs. In rats, blockage of RAGE attenuated the AGE-induced GSK-3 activation, tau hyperphosphorylation, and memory deficit with restoration of synaptic functions, and simultaneous inhibition of GSK-3 also antagonized the AGE-induced impairments. Our data reveal that AGEs can induce tau hyperphosphorylation and impair synapse and memory through RAGE-mediated GSK-3 activation and targeting RAGE/GSK-3 pathway can efficiently improve the AD-like histopathological changes and memory deterioration. Copyright © 2012 Elsevier Inc. All rights reserved.
Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome
Hoffman, Jared D.; Parikh, Ishita; Green, Stefan J.; Chlipala, George; Mohney, Robert P.; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M. S.; Lin, Ai-Ling
2017-01-01
Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age) and compared those to old mice (18–20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the mechanisms underlying the shift from normal aging to pathological processes in the etiology of AD. PMID:28993728
Rahman, Safikur; Archana, Ayyagari; Jan, Arif Tasleem; Minakshi, Rinki
2018-01-01
Alzheimer’s disease (AD), a neurodegenerative disorder, is most common cause of dementia witnessed among aged people. The pathophysiology of AD develops as a consequence of neurofibrillary tangle formation which consists of hyperphosphorylated microtubule associated tau protein and senile plaques of amyloid-β (Aβ) peptide in specific brain regions that result in synaptic loss and neuronal death. The feeble buffering capacity of endoplasmic reticulum (ER) proteostasis in AD is evident through alteration in unfolded protein response (UPR), where UPR markers express invariably in AD patient’s brain samples. Aging weakens UPRER causing neuropathology and memory loss in AD. This review highlights molecular signatures of UPRER and its key molecular alliance that are affected in aging leading to the development of intriguing neuropathologies in AD. We present a summary of recent studies reporting usage of small molecules as inhibitors or activators of UPRER sensors/effectors in AD that showcase avenues for therapeutic interventions. PMID:29467648
Sex steroid levels and AD-like pathology in 3xTgAD mice
Ma, Chunqi; Taves, Matthew D.; Soma, Kiran K.; Mufson, Elliott J.
2014-01-01
Decreases in testosterone (T) and 17β-oestradiol (E2) are associated with an increased risk for Alzheimer's disease (AD), which has been attributed to an increase in beta amyloid (Aβ) and tau pathologic lesions. While recent studies have used transgenic animal models to test the effects of sex steroid manipulations on AD-like pathology, virtually none have systematically characterised the associations between AD lesions and sex steroid levels in the blood or brain in any mutant model. The present study evaluated age-related changes in T and E2 concentrations, as well as androgen receptor (AR) and oestrogen receptor (ER) α and β expression, in brain regions displaying AD pathology in intact male and female 3xTgAD and non-transgenic (ntg) mice. We report for the first time that circulating and brain T levels significantly increase in male 3xTgAD mice with age, but without changes in AR-immunoreactive (ir) cell number in either the hippocampal CA1 or medial amygdala. The age-related increase in hippocampal T levels correlated positively with increases in the conformational tau isoform, Alz50. These data suggest that the over-expression of human tau may up regulate the hypothalamic-pituitary-gonadal axis in these mice. Although circulating and brain E2 levels remained stable with age in both male and female 3xTgAD and ntg mice, ER-ir cell number in the hippocampus and medial amygdala decreased with age in female transgenic mice. Further, E2 levels were significantly higher in the hippocampus than in serum, suggesting local production of E2. Although triple transgenic mice mimic AD-like pathology, they do not fully replicate changes in human sex steroid levels, and may not be the best model for studying the effects of sex steroids on AD lesions. PMID:22889357
Falls and age in patients with Alzheimer's disease.
Bassiony, Medhat M; Rosenblatt, Adam; Baker, Alva; Steinberg, Martin; Steele, Cynthia D; Sheppard, Jeanie-Marie E; Lyketsos, Constantine G
2004-08-01
The study's objective was to estimate the prevalence of falls in community-residing patients with Alzheimer's disease (AD) and to investigate the relationship between falls and age in AD. This was a study of 326 community-residing patients with AD according to National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and Related Disorders Association criteria. The patients and their caregivers were asked about falls, behavioral disturbances, and medication use within the last 2 weeks. The patients were also rated on standardized measures of cognitive impairment, stage of dementia, depression, daily activities, general health, and extrapyramidal symptoms. Falls occurred in 24 (7.4%) patients with AD during the last 2 weeks. Using multiple logistic regression analyses, falls were independently associated with old age (odds ratio = 1.2; p = .03; 95% confidence interval = 1.0 to 1.4) but not with other variables examined. The authors conclude that falls in community-residing patients with AD are significantly associated with old age. Population-based prospective studies are needed to investigate further the risk factors for falls in AD.
Air Pollution, Oxidative Stress, and Alzheimer's Disease
Moulton, Paula Valencia; Yang, Wei
2012-01-01
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide and will continue to affect millions more with population aging on the rise. AD causality is multifactorial. Known causal factors include genetic predisposition, age, and sex. Environmental toxins such as air pollution (AP) have also been implicated in AD causation. Exposure to AP can lead to chronic oxidative stress (OS), which is involved in the pathogenesis of AD. Whereas AP plays a role in AD pathology, the epidemiological evidence for this association is limited. Given the significant prevalence of AP exposure combined with increased population aging, epidemiological evidence for this link is important to consider. In this paper, we examine the existing evidence supporting the relationship between AP, OS, and AD and provide recommendations for future research on the population level, which will provide evidence in support of public health interventions. PMID:22523504
Liang, Winnie S.; Dunckley, Travis; Beach, Thomas G.; Grover, Andrew; Mastroeni, Diego; Walker, Douglas G.; Caselli, Richard J.; Kukull, Walter A.; McKeel, Daniel; Morris, John C.; Hulette, Christine; Schmechel, Donald; Alexander, Gene E.; Reiman, Eric M.; Rogers, Joseph; Stephan, Dietrich A.
2008-01-01
In this article, we have characterized and compared gene expression profiles from laser capture microdissected neurons in six functionally and anatomically distinct regions from clinically and histopathologically normal aged human brains. These regions, which are also known to be differentially vulnerable to the histopathological and metabolic features of Alzheimer’s disease (AD), include the entorhinal cortex and hippocampus (limbic and paralimbic areas vulnerable to early neurofibrillary tangle pathology in AD), posterior cingulate cortex (a paralimbic area vulnerable to early metabolic abnormalities in AD), temporal and prefrontal cortex (unimodal and heteromodal sensory association areas vulnerable to early neuritic plaque pathology in AD), and primary visual cortex (a primary sensory area relatively spared in early AD). These neuronal profiles will provide valuable reference information for future studies of the brain, in normal aging, AD and other neurological and psychiatric disorders. PMID:17077275
NASA Astrophysics Data System (ADS)
Li, Yongming; Li, Fan; Wang, Pin; Zhu, Xueru; Liu, Shujun; Qiu, Mingguo; Zhang, Jingna; Zeng, Xiaoping
2016-10-01
Traditional age estimation methods are based on the same idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to accelerated brain aging. This paper considers this deviation and searches for it by maximizing the separability distance value rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to prior knowledge. Secondly, use the support vector regression (SVR) as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the separability distance criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. The experimental results showed that the separability was apparently improved. For normal control-Alzheimer’s disease (NC-AD), normal control-mild cognition impairment (NC-MCI), and MCI-AD, the average improvements were 0.178 (35.11%), 0.033 (14.47%), and 0.017 (39.53%), respectively. For NC-MCI-AD, the average improvement was 0.2287 (64.22%). The estimated brain pathological age could be not only more helpful to the classification of AD but also more precisely reflect accelerated brain aging. In conclusion, this paper offers a new method for brain age estimation that can distinguish different states of AD and can better reflect the extent of accelerated aging.
Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice
García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.
2016-01-01
Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234
Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.
García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L
2016-01-01
Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.
Shaw, Jillian L.; Zhang, Shixing
2015-01-01
Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functional interactions between Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. Using Drosophila as a model, we find that overexpression of nebula (fly homolog of DSCR1) initially protects against APP-induced memory defects by correcting calcineurin and cAMP signaling pathways but accelerates the rate of memory loss and exacerbates mitochondrial dysfunction in older animals. We report that transient upregulation of Nebula/DSCR1 or acute pharmacological inhibition of calcineurin in aged flies protected against APP-induced memory loss. Our data suggest that calcineurin dyshomeostasis underlies age-dependent memory impairments and further imply that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory impairments in AD in DS. SIGNIFICANCE STATEMENT Most Down syndrome (DS) individuals eventually develop Alzheimer's disease (AD)-like dementia, but mechanisms underlying this age-dependent memory impairment remain poorly understood. This study examines Nebula/Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. We uncover a previously unidentified role for Nebula/DSCR1 in modulating APP-induced memory defects during aging. We show that upregulation of Nebula/DSCR1, an inhibitor of calcineurin, rescues APP-induced memory defects in young flies but enhances memory loss of older flies. Excitingly, transient Nebula/DSCR1 overexpression or calcineurin inhibition in aged flies ameliorates APP-mediated memory problems. These results suggest that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory loss in DS and AD and points to correcting calcineurin signaling as a means to improve memory during aging. PMID:26269644
Shaw, Jillian L; Zhang, Shixing; Chang, Karen T
2015-08-12
Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functional interactions between Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. Using Drosophila as a model, we find that overexpression of nebula (fly homolog of DSCR1) initially protects against APP-induced memory defects by correcting calcineurin and cAMP signaling pathways but accelerates the rate of memory loss and exacerbates mitochondrial dysfunction in older animals. We report that transient upregulation of Nebula/DSCR1 or acute pharmacological inhibition of calcineurin in aged flies protected against APP-induced memory loss. Our data suggest that calcineurin dyshomeostasis underlies age-dependent memory impairments and further imply that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory impairments in AD in DS. Most Down syndrome (DS) individuals eventually develop Alzheimer's disease (AD)-like dementia, but mechanisms underlying this age-dependent memory impairment remain poorly understood. This study examines Nebula/Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. We uncover a previously unidentified role for Nebula/DSCR1 in modulating APP-induced memory defects during aging. We show that upregulation of Nebula/DSCR1, an inhibitor of calcineurin, rescues APP-induced memory defects in young flies but enhances memory loss of older flies. Excitingly, transient Nebula/DSCR1 overexpression or calcineurin inhibition in aged flies ameliorates APP-mediated memory problems. These results suggest that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory loss in DS and AD and points to correcting calcineurin signaling as a means to improve memory during aging. Copyright © 2015 the authors 0270-6474/15/3511374-10$15.00/0.
[Premature immunosenescence in triple-transgenic mice for Alzheimer's disease].
Mate, Ianire; Cruces, Julia; Vida, Carmen; Sanfeliu, Coral; Manassra, Rashed; Giménez-Llort, Lydia; De la Fuente, Mónica
2014-01-01
A deterioration of the neuroimmunoendocrine network has been observed in Alzheimer's disease (AD). However, the peripheral immune response has hardly been investigated in this pathology. Since some immune function parameters have been established as good markers of the rate of ageing, and can predict longevity, the aim of the present work was to study some of these functions in splenic leucocytes in transgenic mice for AD of different ages. Young female (4 ± 1 months), adult (9 ± 1 months), and mature (12 ± 1 months) triple-transgenic mice for AD (3 xTgAD) and non-transgenic (NTg) control mice of the same ages were used. The chemotaxis, the anti-tumour activity of « natural killer » (NK) cells and the lymphoproliferative response in the presence of the mitogens concanavalin A and lipopolysaccharide, functions that decrease with age, were determined in splenic leucocytes. In addition, the differences in lifespan between 3 xTgAD and NTg were studied in parallel using other animals, until their death through natural causes. In 3 xTgAD, with respect to NTg, chemotaxis decreased at all ages studied, whereas in lymphoproliferative response this reduction was shown at 4 months and 9 months. NK activity was diminished only in young 3 xTgAD with respect to NTg. The 3 xTgAD showed a shorter lifespan than the NTg control group. The 3 xTgAD mice show a premature immunosenescence, which could explain their early mortality. The determination of these immune functions at peripheral level could serve as a marker of the progression of the Alzheimer's disease. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.
Age-Related Neurodegeneration and Memory Loss in Down Syndrome
Lockrow, Jason P.; Fortress, Ashley M.; Granholm, Ann-Charlotte E.
2012-01-01
Down syndrome (DS) is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD) by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS. PMID:22545043
Age-related defects in erythrocyte 2,3-diphosphoglycerate metabolism in dementia.
Kaminsky, Yury G; Reddy, V Prakash; Ashraf, Ghulam Md; Ahmad, Ausaf; Benberin, Valery V; Kosenko, Elena A; Aliev, Gjumrakch
2013-01-01
Alzheimer disease (AD) is the most common dementing illness. Metabolic defects in the brain with aging contribute to the pathogenesis of AD. These changes can be found systematically and thus can be used as potential biomarkers. Erythrocytes (RBCs) are passive "reporter cells" that are not well studied in AD. In the present study, we analyzed an array of glycolytic and related enzymes and intermediates in RBCs from patients with AD and non-Alzheimer dementia (NA), age-matched controls (AC) and young adult controls (YC). AD is characterized by higher activities of hexokinase, phosphofructokinase, and bisphosphoglycerate mutase and bisphosphoglycerate phosphatase in RBCs. In our study, we observed that glycolytic and related enzymes displayed significantly lower activities in AC. However, similar or significantly higher activities were observed in AD and NA groups as compared to YC group. 2,3-diphosphoglycerate (2,3-DPG) levels were significantly decreased in AD and NA patients. The pattern of changes between groups in the above indices strongly correlates with each other. Collectively, our data suggested that AD and NA patients are associated with chronic disturbance of 2,3-DPG metabolism in RBCs. These defects may play a pivotal role in physiological processes, which predispose elderly subjects to AD and NA.
Anxiety Disorders and Rapid Cycling Data From a Cohort of 8129 Youths With Bipolar Disorder
Castilla-Puentes, Ruby; Sala, Regina; Ng, Bernardo; Galvez, Juan; Camacho, Alvaro
2014-01-01
Anxiety disorders (ADs) are common in youths with bipolar disorder (BD). We examine psychiatric comorbidity, hospitalization, and treatment in youths with versus without AD and rapid cycling (four or more cycles per year). Data from the Integrated Healthcare Information Services cohort were used and included 8129 youths (ages ≤18 years). Prevalence of AD, demographic, type of AD, hospitalization, and use of psychotropics were compared between rapid and nonrapid cycling. Overall, 51% of the youths met criteria for at least one comorbid AD; they were predominantly female and were between 12 and 17 years of age. The most common comorbid ADs were generalized ADs and separation ADs. In the patients with rapid cycling, 65.5%met criteria for comorbid AD. The BD youths with AD were more likely to have major depressive disorders and other comorbid ADs, to be given more psychotropics, and to be hospitalized for depression and medical conditions more often than were those without AD. PMID:24284641
de Oliveira, Fabricio Ferreira; Bertolucci, Paulo Henrique Ferreira; Chen, Elizabeth Suchi; Smith, Marilia Cardoso
2014-10-01
In view of the mild effects of pharmacological treatment for dementia due to Alzheimer's disease (AD), the search for modifiable risk factors is an important challenge. Although risk factors for AD are widely recognized, elements that influence the time of onset of the dementia syndrome have not been comprehensively reported. We aimed to investigate which risk factors might be associated with the age at onset of AD in a sample of patients with low mean schooling from São Paulo, Brazil. We included 210 consecutive patients with late-onset AD to investigate whether education, gender, nationality, urban living and sanitation, occupation, cognitive and physical inactivity, head trauma, depression, systemic infections, surgical interventions, cerebrovascular risk factors, family history of neurodegenerative diseases or cardiovascular diseases and apolipoprotein E gene (APOE) haplotypes might be related to the age at AD onset. Each copy of APOE-ε4 led to onset of AD almost 2 years earlier, while depression, smoking, higher body mass index and family history of cardiovascular diseases were also highly significant. Protective factors included non-Brazilian nationality, use of a pacemaker and waist circumference. Cerebrovascular risk factors had a mild combined effect for earlier onset of AD. APOE haplotypes, depression, nationality and cerebrovascular risk factors were the most important elements to influence the age at AD onset in this sample, whereas gender, education, occupation and physical activities had no isolated effects over the age at onset of this dementia syndrome. Copyright © 2014 John Wiley & Sons, Ltd.
Reddy, P Hemachandra; Blackmon, Joan; Molinar-Lopez, Veronica; Ament, Clay; Manczak, Maria; Kandimalla, Ramesh; Yin, Xianglin; Pandey, Akhilesh; Kuruva, Chandra Sekhar; Wang, Rui; Fry, David; Osborn, Carrah; Stonum, Kathleen; Quesada, Kandi; Gonzales, Ruben; Boles, Annette
2015-01-01
The Garrison Institute on Aging (GIA) is an established institute within Texas Tech University Health Sciences Center, whose mission is to promote healthy aging through cutting-edge research on Alzheimer's disease (AD) and other diseases of aging through innovative educational opportunities for students, clinicians, researchers, health care professionals, and the public. The GIA has multiple programs, including both research and education on healthy aging and AD, community outreach, caregiving, the Retired Senior Volunteer Program, Healthy Lubbock, the GIA Brain Bank, healthy aging seminars, research seminars, and collaborations and scholarships. The GIA programs connect basic and clinical researchers and health care professionals, and provide a unique environment to help our growing elderly population and patients with AD and their families.
Risk of hip fracture in Addison's disease: a population-based cohort study.
Björnsdottir, S; Sääf, M; Bensing, S; Kämpe, O; Michaëlsson, K; Ludvigsson, J F
2011-08-01
The results of studies of bone mineral density in Addison's disease (AD) are inconsistent. There are no published data on hip fracture risk in patients with AD. In this study, we compare hip fracture risk in adults with and without AD. A population-based cohort study. Through the Swedish National Patient Register and the Total Population Register, we identified 3219 patients without prior hip fracture who were diagnosed with AD at the age of ≥30 years during the period 1964-2006 and 31 557 age- and sex-matched controls. Time to hip fracture was measured. We observed 221 hip fractures (6.9%) in patients with AD and 846 (2.7%) in the controls. Patients with AD had a higher risk of hip fracture [hazard ratio (HR) = 1.8; 95% confidence interval (CI), 1.6-2.1; P < 0.001]. This risk increase was independent of sex and age at or calendar period of diagnosis. Risk estimates did not change with adjustment for type 1 diabetes, autoimmune thyroid disease, rheumatoid arthritis or coeliac disease. Women diagnosed with AD ≤50 years old had the highest risk of hip fracture (HR = 2.7; 95 % CI, 1.6-4.5). We found a positive association between hip fracture and undiagnosed AD [odds ratio (OR) = 2.4; 95 % CI, 2.1-3.0] with the highest risk estimates in the last year before AD diagnosis (OR = 2.8; 95 % CI, 1.8-4.2). Both clinically undiagnosed and diagnosed AD was associated with hip fractures, with the highest relative risk seen in women diagnosed with AD ≤50 years of age. © 2011 The Association for the Publication of the Journal of Internal Medicine.
Genewick, Joanne E; Lipski, Dorothy M; Schupack, Katherine M; Buffington, Angela L H
2018-04-01
Although 80% of patients endorse an advance directive (AD), less than 35% of American adults have a documented AD. Much research has been done on barriers to creating ADs; however, there is a paucity of research addressing motivations for creating ADs. Previous research has identified 4 categories of influence for engaging in advance care planning (ACP). This study aimed to quantify the influence of these 4 motivating categories in creating an AD. Participants included 238 adults with documented ADs. Participants completed an 11-item questionnaire addressing 1 of the 4 hypothesized categories of influence in addressing ACP: concern for self; concern for others; expectations about the impact of ACP; and anecdotes, stories, and experiences. Principle component analysis yielded 2 factors representing dignity and personal control (intrinsic factors) and societal and familial influence (extrinsic factors). Intrinsic factors were the primary and most influential motivating factors among participants. A regression analysis of individual motivating factors showed that prior to age 50, the desire to provide guidance about personal preferences for end-of-life care significantly predicted the creation of an AD, whereas after age 50, the urging of family members significantly predicted the creation of an AD. Results indicated that intrinsic factors were the most influential motivator among participants of all ages. Extrinsic factors appeared to be less influential in the decision to create an AD. Motivating factors were also found to vary by age. These results may help physicians be more targeted in discussions surrounding ADs, thus saving time, which physicians identify as the main barrier in engaging in such discussions, while meeting patients' wishes for their physicians to bring up the topic of ADs.
Hyttinen, Virva; Taipale, Heidi; Tanskanen, Antti; Tiihonen, Jari; Tolppanen, Anna-Maija; Hartikainen, Sirpa; Valtonen, Hannu
2017-01-01
Various criteria have been created to define potentially inappropriate medications (PIMs) to help improve the quality and safety of medicine use in older patients. Individuals with Alzheimer's disease (AD) may be at higher risk of adverse drug events associated with PIMs (such as falls). Our objective was to determine the risk factors for PIM initiation in a nationwide cohort of community dwellers aged ≥65 years with and without AD. The Finnish nationwide MEDALZ cohort includes all patients diagnosed with AD in 2005-2011 (n = 70,718) and two comparison individuals without AD (non-AD) matched for age, sex and region of residence for each person with AD. After a 1-year washout period for PIM use and exclusion of those aged <65 years, we included 50,494 patients with AD and 106,306 comparison subjects. PIM use was defined according to Finnish criteria. Subjects without AD initiated PIMs more frequently than those with AD (16.4 vs. 12.2%, respectively; p < 0.001). The most common PIMs were muscle relaxants and urinary antispasmodics. Older individuals (aged ≥75 years) were less likely to initiate PIMs. In the AD group, women were less likely to initiate PIMs than men. More comorbidities were associated with PIM initiation, especially in the non-AD group. The use of opioids or psychotropic medicines was associated with PIM initiation in both cohorts. Regional differences between university hospital districts were observed. PIM initiation was dependent on patient characteristics and possibly also some healthcare system-related factors such as differing regional treatment practices. It is important that medicines prescribed to the older vulnerable population are assessed regularly to avoid adverse effects and ensure safe pharmacotherapy, especially in those with multiple comorbidities.
Caccamo, Antonella; Branca, Caterina; Talboom, Joshua S.; Shaw, Darren M.; Turner, Dharshaun; Ma, Luyao; Messina, Angela; Huang, Zebing; Wu, Jie
2015-01-01
Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-β and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the β-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-β. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-β and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of β-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases. PMID:26468204
Fibrinogen gamma-A chain precursor in CSF: a candidate biomarker for Alzheimer's disease
Lee, Joung Wook; Namkoong, Hong; Kim, Hyun Kee; Kim, Sanghee; Hwang, Dong Whi; Na, Hae Ri; Ha, Seon-Ah; Kim, Jae-Ryong; Kim, Jin Woo
2007-01-01
Background Cerebrospinal fluid (CSF) may be valuable for exploring protein markers for the diagnosis of Alzheimer's disease (AD). The prospect of early detection and treatment, to slow progression, holds hope for aging populations with increased average lifespan. The aim of the present study was to investigate candidate CSF biological markers in patients with mild cognitive impairment (MCI) and AD and compare them with age-matched normal control subjects. Methods We applied proteomics approaches to analyze CSF samples derived from 27 patients with AD, 3 subjects with MCI and 30 controls. The AD group was subdivided into three groups by clinical severity according to clinical dementia rating (CDR), a well known clinical scale for dementia. Results We demonstrated an elevated level of fibrinogen gamma-A chain precursor protein in CSF from patients with mild cognitive impairment and AD compared to the age-matched normal subjects. Moreover, its expression was more prominent in the AD group than in the MCI and correlated with disease severity and progression. In contrast, fibrinogen gamma-A chain precursor protein was detected very low in the age-matched normal group. Conclusion These findings suggest that the CSF level of fibrinogen gamma-A chain precursor may be a candidate biomarker for AD. PMID:17565664
Role of family history for Alzheimer biomarker abnormalities in the adult children study
Xiong, Chengjie; Roe, Catherine M.; Buckles, Virginia; Fagan, Anne; Holtzman, David; Balota, David; Duchek, Janet; Storandt, Martha; Mintun, Mark; Grant, Elizabeth; Snyder, Abraham Z.; Head, Denise; Benzinger, Tammie L.S.; Mettenburg, Joseph; Csernansky, John; Morris, John C.
2012-01-01
Objective To assess whether family history (FH) of Alzheimer’s disease (AD) alone influences AD biomarker abnormalities. Design Adult Children Study (ACS). Setting Washington University's Knight Alzheimer's Disease Research Center. Participants Cognitively normal middle to older age individuals with and without a FH for AD (n=269). Main Outcome Measures Clinical and cognitive measures, magnetic resonance imaging (MRI)-based brain volumes, diffusion tensor imaging (DTI)-based white matter microstructure, cerebrospinal fluid (CSF) biomarkers, and molecular imaging of cerebral fibrillar amyloid with positron emission tomography (PET) using the [11C] benzothiazole tracer, Pittsburgh Compound-B (PIB). Results A positive FH for AD was associated with an age-related decrease of CSF Aβ42; the ε4 allele of apolipoprotein E (APOE4) did not alter this effect. Age-adjusted CSF Aβ42 was decreased for individuals with APOE4 compared with those without, and the decrease was larger for individuals with a positive FH compared with those without. The variation of CSF tau and PIB mean cortical binding potential (MCBP) increased by age. For individuals younger than 55, an age-related increase in MCBP was associated with APOE4, but not FH. For individuals older than 55, a positive FH and a positive APOE4 implied the fastest age-related increase in MCBP. A positive FH was associated with decreased fractional anisotropy from DTI in the genu and splenium of the corpus callosum. Conclusion Independent of APOE4, FH is associated with age-related change of several CSF, PIB and DTI biomarkers in cognitively normal middle to older age individuals, suggesting that non-APOE susceptibility genes for AD influence AD biomarkers. PMID:21987546
Brain arterial aging and its relationship to Alzheimer dementia
Honig, Lawrence; Elkind, Mitchell S.V.; Mohr, Jay P.; Goldman, James; Dwork, Andrew J.; Morgello, Susan; Marshall, Randolph S.
2016-01-01
Objective: To test the hypothesis that brain arterial aging is associated with the pathologic diagnosis of Alzheimer disease (AD). Methods: Brain large arteries were assessed for diameter, gaps in the internal elastic lamina (IEL), luminal stenosis, atherosclerosis, and lumen-to-wall ratio. Elastin, collagen, and amyloid were assessed with Van Gieson, trichrome, and Congo red staining intensities, and quantified automatically. Brain infarcts and AD (defined pathologically) were assessed at autopsy. We created a brain arterial aging (BAA) score with arterial characteristics associated with aging after adjusting for demographic and clinical variables using cross-sectional generalized linear models. Results: We studied 194 autopsied brains, 25 (13%) of which had autopsy evidence of AD. Brain arterial aging consisted of higher interadventitial and lumen diameters, thickening of the wall, increased prevalence of IEL gaps, concentric intima thickening, elastin loss, increased amyloid deposition, and a higher IEL proportion without changes in lumen-to-wall ratio. In multivariable analysis, a high IEL proportion (B = 1.96, p = 0.030), thick media (B = 3.50, p = 0.001), elastin loss (B = 6.16, p < 0.001), IEL gaps (B = 3.14, p = 0.023), and concentric intima thickening (B = 7.19, p < 0.001) were used to create the BAA score. Adjusting for demographics, vascular risk factors, atherosclerosis, and brain infarcts, the BAA score was associated with AD (B = 0.022, p = 0.002). Conclusions: Aging of brain large arteries is characterized by arterial dilation with a commensurate wall thickening, elastin loss, and IEL gaps. Greater intensity of arterial aging was associated with AD independently of atherosclerosis and brain infarcts. Understanding the drivers of arterial aging may advance the knowledge of the pathophysiology of AD. PMID:26984942
Brain arterial aging and its relationship to Alzheimer dementia.
Gutierrez, Jose; Honig, Lawrence; Elkind, Mitchell S V; Mohr, Jay P; Goldman, James; Dwork, Andrew J; Morgello, Susan; Marshall, Randolph S
2016-04-19
To test the hypothesis that brain arterial aging is associated with the pathologic diagnosis of Alzheimer disease (AD). Brain large arteries were assessed for diameter, gaps in the internal elastic lamina (IEL), luminal stenosis, atherosclerosis, and lumen-to-wall ratio. Elastin, collagen, and amyloid were assessed with Van Gieson, trichrome, and Congo red staining intensities, and quantified automatically. Brain infarcts and AD (defined pathologically) were assessed at autopsy. We created a brain arterial aging (BAA) score with arterial characteristics associated with aging after adjusting for demographic and clinical variables using cross-sectional generalized linear models. We studied 194 autopsied brains, 25 (13%) of which had autopsy evidence of AD. Brain arterial aging consisted of higher interadventitial and lumen diameters, thickening of the wall, increased prevalence of IEL gaps, concentric intima thickening, elastin loss, increased amyloid deposition, and a higher IEL proportion without changes in lumen-to-wall ratio. In multivariable analysis, a high IEL proportion (B = 1.96, p = 0.030), thick media (B = 3.50, p = 0.001), elastin loss (B = 6.16, p < 0.001), IEL gaps (B = 3.14, p = 0.023), and concentric intima thickening (B = 7.19, p < 0.001) were used to create the BAA score. Adjusting for demographics, vascular risk factors, atherosclerosis, and brain infarcts, the BAA score was associated with AD (B = 0.022, p = 0.002). Aging of brain large arteries is characterized by arterial dilation with a commensurate wall thickening, elastin loss, and IEL gaps. Greater intensity of arterial aging was associated with AD independently of atherosclerosis and brain infarcts. Understanding the drivers of arterial aging may advance the knowledge of the pathophysiology of AD. © 2016 American Academy of Neurology.
Ghosh, Debolina; LeVault, Kelsey R; Brewer, Gregory J
2014-01-01
To determine whether glutathione (GSH) loss or increased reactive oxygen species (ROS) are more important to neuron loss, aging, and Alzheimer's disease (AD), we stressed or boosted GSH levels in neurons isolated from aging 3xTg-AD neurons compared with those from age-matched nontransgenic (non-Tg) neurons. Here, using titrating with buthionine sulfoximine, an inhibitor of γ-glutamyl cysteine synthetase (GCL), we observed that GSH depletion increased neuronal death of 3xTg-AD cultured neurons at increasing rates across the age span, whereas non-Tg neurons were resistant to GSH depletion until old age. Remarkably, the rate of neuron loss with ROS did not increase in old age and was the same for both genotypes, which indicates that cognitive deficits in the AD model were not caused by ROS. Therefore, we targeted for neuroprotection activation of the redox sensitive transcription factor, nuclear erythroid-related factor 2 (Nrf2) by 18 alpha glycyrrhetinic acid to stimulate GSH synthesis through GCL. This balanced stimulation of a number of redox enzymes restored the lower levels of Nrf2 and GCL seen in 3xTg-AD neurons compared with those of non-Tg neurons and promoted translocation of Nrf2 to the nucleus. By combining the Nrf2 activator together with the NADH precursor, nicotinamide, we increased neuron survival against amyloid beta stress in an additive manner. These stress tests and neuroprotective treatments suggest that the redox environment is more important for neuron survival than ROS. The dual neuroprotective treatment with nicotinamide and an Nrf2 inducer indicates that these age-related and AD-related changes are reversible. Copyright © 2014 Elsevier Inc. All rights reserved.
Trends in exposure to television food advertisements in South Korea.
Han, Euna; Powell, Lisa M; Kim, Tae Hyun
2013-03-01
Given the increased concern about the impact of TV food advertisements (ads) on individual food choices, we provide important evidence on TV food ad exposure between 2004 and 2009 in South Korea. We used monthly targeted ratings data by age group as the number of ads seen daily from Korean Nielsen Media Research. We generated six food groups: beverages (milk, soda, fruit drinks, sports/energy drinks, water, coffee/tea products, and other); snacks/sweets (cookies/chips, candy, and chewing gum); fast food (Domino's pizza, Lotteria, McDonald's, Mr. Pizza, Pizza Hut, local chicken and pizza franchises, and other); instant noodle; full-service restaurants; and other. From 2004 to 2009, overall exposure to television food ads fell by 19.0% (from 6.8 to 5.5 ads daily), although exposure to full-service restaurant ads increased over that time period by 45.7%. While fast-food ad exposure fell overall, exposure to ads for local fried chicken franchises nearly doubled, making them the most commonly seen fast-food ads by 2009. Fast-food and instant noodle ads made up larger proportions of total ad exposure in 2009 than in 2004 in all age groups, with the largest increase among adolescents. Beverage ads continue to be the most prevalent food ads seen in South Korea. Differential trends found in exposure across and within food product categories and differences by age groups highlight the need for continued monitoring to help inform the regulatory policy debate on food advertising, particularly with regards to ads directed at children and adolescents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hong, Yan; Shen, Chao; Yin, Qingqing; Sun, Menghan; Ma, Yingjuan; Liu, Xueping
2016-05-01
An increased level of advanced glycation end products (AGEs) is observed in brains of patients with Alzheimer's disease (AD). AGEs and receptor for AGEs (RAGE) play important roles in the pathogenesis of AD. FPS-ZM1 is a high-affinity RAGE-specific blocker that inhibits amyloid-β binding to RAGE, neurological damage and inflammation in the APP(sw/0) transgenic mouse model of AD. FPS-ZM1 is not toxic to mice and can easily cross the blood-brain barrier. In this study, an AGEs-RAGE-activated rat model were established by intrahippocampal injection of AGEs, then these rats were treated with intraperitoneal administration of FPS-ZM1 and the possible neuroprotective effects were investigated. We found that AGEs administration induced an-regulation of Abeta production, inflammation, and oxidative stress, and an increased escape latency of rats in the Morris water maze test, all of these are significantly reduced by FPS-ZM1 treatment. Our results suggest that the AGEs-RAGE pathway is responsible for cognitive deficits, and therefore may be a potential treatment target. FPS-ZM1 might be a novel therapeutic agent to treat AD patients.
NASA Astrophysics Data System (ADS)
Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric
2018-02-01
Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.
Powell, Lisa M; Szczypka, Glen; Chaloupka, Frank J
2010-09-01
To examine the trends in food advertising seen by American children and adolescents. Trend analysis of children's and adolescents' exposure to food advertising in 2003, 2005, and 2007, including separate analyses by race. Children aged 2 to 5 years and 6 to 11 years and adolescents aged 12 to 17 years. Television ratings. Exposure to total food advertising and advertising by food category. Between 2003 and 2007 daily average exposure to food ads fell by 13.7% and 3.7% among young children aged 2 to 5 and 6 to 11 years, respectively, but increased by 3.7% among adolescents aged 12 to 17 years. Exposure to sweets ads fell 41%, 29.3%, and 12.1%, respectively, for 2- to 5-, 6- to 11-, and 12- to 17-year-olds and beverage ads were down by about 27% to 30% across these age groups, with substantial decreases in exposure to ads for the most heavily advertised sugar-sweetened beverages-fruit drinks and regular soft drinks. Exposure to fast food ads increased by 4.7%, 12.2%, and 20.4% among children aged 2 to 5, 6 to 11, and 12 to 17 years, respectively, between 2003 and 2007. The racial gap in exposure to food advertising grew between 2003 and 2007, particularly for fast food ads. A number of positive changes have occurred in children's exposure to food advertising. Continued monitoring of food advertising exposure along with nutritional analyses is needed to further assess self-regulatory pledges.
Consumption of added sugars among US children and adults by food purchase location and food source.
Drewnowski, Adam; Rehm, Colin D
2014-09-01
The proposed changes to the Nutrition Facts Label by the US Food and Drug Administration will include information on added sugars for the first time. The objective was to evaluate the sources of added sugars in the diets of a representative sample of US children and adults by food purchase location and food source (eg, food group). This cross-sectional study among 31,035 children, adolescents, and adults aged ≥6 y from the 2003-2004, 2005-2006, 2007-2008, and 2009-2010 NHANES used data from a 24-h dietary recall to evaluate consumption of added sugars. Food locations of origin were identified as stores (supermarket or grocery store), quick-service restaurants/pizza (QSRs), full-service restaurants (FSRs), schools, and others (eg, vending machines or gifts). Added sugars consumption by food purchase location was evaluated by age, family income-to-poverty ratio, and race-ethnicity. Food group sources of added sugars were identified by using the National Cancer Institute food categories. Added sugars accounted for ∼14.1% of total dietary energy. Between 65% and 76% of added sugars came from stores, 6% and 12% from QSRs, and 4% and 6% from FSRs, depending on age. Older adults (aged ≥51 y) obtained a significantly greater proportion of added sugars from stores than did younger adults. Lower-income adults obtained a significantly greater proportion of added sugars from stores than did higher-income adults. Intake of added sugars did not vary by family income among children/adolescents. Soda and energy and sports drinks were the largest food group sources of added sugars (34.4%), followed by grain desserts (12.7%), fruit drinks (8.0%), candy (6.7%), and dairy desserts (5.6%). Most added sugars came from foods obtained from stores. The proposed changes to the Nutrition Facts Label should capture the bulk of added sugars in the US food supply, which suggests that the recommended changes have the potential to reduce added sugars consumption. © 2014 American Society for Nutrition.
Drewnowski, Adam; Rehm, Colin D
2014-01-01
Background: The proposed changes to the Nutrition Facts Label by the US Food and Drug Administration will include information on added sugars for the first time. Objective: The objective was to evaluate the sources of added sugars in the diets of a representative sample of US children and adults by food purchase location and food source (eg, food group). Design: This cross-sectional study among 31,035 children, adolescents, and adults aged ≥6 y from the 2003–2004, 2005–2006, 2007–2008, and 2009–2010 NHANES used data from a 24-h dietary recall to evaluate consumption of added sugars. Food locations of origin were identified as stores (supermarket or grocery store), quick-service restaurants/pizza (QSRs), full-service restaurants (FSRs), schools, and others (eg, vending machines or gifts). Added sugars consumption by food purchase location was evaluated by age, family income-to-poverty ratio, and race-ethnicity. Food group sources of added sugars were identified by using the National Cancer Institute food categories. Results: Added sugars accounted for ∼14.1% of total dietary energy. Between 65% and 76% of added sugars came from stores, 6% and 12% from QSRs, and 4% and 6% from FSRs, depending on age. Older adults (aged ≥51 y) obtained a significantly greater proportion of added sugars from stores than did younger adults. Lower-income adults obtained a significantly greater proportion of added sugars from stores than did higher-income adults. Intake of added sugars did not vary by family income among children/adolescents. Soda and energy and sports drinks were the largest food group sources of added sugars (34.4%), followed by grain desserts (12.7%), fruit drinks (8.0%), candy (6.7%), and dairy desserts (5.6%). Conclusions: Most added sugars came from foods obtained from stores. The proposed changes to the Nutrition Facts Label should capture the bulk of added sugars in the US food supply, which suggests that the recommended changes have the potential to reduce added sugars consumption. PMID:25030785
Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease.
Winick-Ng, Warren; Rylett, R Jane
2018-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
Prevalence of Atopic Dermatitis in Chinese Children aged 1–7 ys
Guo, Yifeng; Li, Ping; Tang, Jianping; Han, Xiuping; Zou, Xiaoyan; Xu, Gang; Xu, Zigang; Wei, Fenglei; Liu, Qiang; Wang, Min; Xiao, Fengli; Zong, Wenkai; Shen, Chunping; Li, Jianhong; Liu, Jianzhong; Luo, Yongqi; Chang, Jing; Sheng, Nan; Dong, Chun; Zhang, Duo; Dai, Xing; Zhou, Jinjie; Meng, Chi; Niu, Hongxi; Shi, Xuemei; Zhang, Xinglian; Xiang, Juan; Xu, Haitao; Ran, Qin; Zhou, Yi; Li, Ming; Zhang, Hui; Cheng, Ruhong; Gao, Xinghua; Wang, Hua; Gu, Heng; Ma, Lin; Yao, Zhirong
2016-01-01
Prevalence of atopic dermatitis (AD) is increasing worldwide. Up to date, there has been no face-to-face nation-wide study in China. We aim to explore the prevalence of clinical diagnosed AD in children aged 1–7 ys in China. Twelve metropolises were chosen from different areas of China. In each region, we selected 4–10 kindergartens and 2–5 vaccination clinics randomly. A complete history-taking and skin examination were performed by dermatologists. The definite diagnosis of AD and the severity were determined by two or three dermatologists. All criteria concerned in UK diagnosis criteria, characteristic presentation of AD and atypical manifestations were recorded in detail. A total of 13998 children from 84 kindergartens and 40 vaccination clinics were included. The prevalence of AD was 12.94% by clinical diagnosis of dermatologists overall, with 74.6% of mild AD. Comparatively, prevalence of AD based on UK diagnostic criteria was 4.76%. This is the first face-to-face nation-wide study in Chinese children aged 1–7 ys, revealing that the prevalence of AD in children is closer to that of wealthier nations. PMID:27432148
Cenini, Giovanna; Fiorini, Ada; Sultana, Rukhsana; Perluigi, Marzia; Cai, Jian; Klein, Jon B; Head, Elizabeth; Butterfield, D Allan
2014-11-01
Down syndrome (DS) is one of the most common causes of intellectual disability, owing to trisomy of all or part of chromosome 21. DS is also associated with the development of Alzheimer disease (AD) neuropathology after the age of 40 years. To better clarify the cellular and metabolic pathways that could contribute to the differences in DS brain, in particular those involved in the onset of neurodegeneration, we analyzed the frontal cortex of DS subjects with or without significant AD pathology in comparison with age-matched controls, using a proteomics approach. Proteomics represents an advantageous tool to investigate the molecular mechanisms underlying the disease. From these analyses, we investigated the effects that age, DS, and AD neuropathology could have on protein expression levels. Our results show overlapping and independent molecular pathways (including energy metabolism, oxidative damage, protein synthesis, and autophagy) contributing to DS, to aging, and to the presence of AD pathology in DS. Investigation of pathomechanisms involved in DS with AD may provide putative targets for therapeutic approaches to slow the development of AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Family member deaths across adulthood predict Alzheimer's disease risk: The Cache County Study.
Norton, Maria C; Fauth, Elizabeth; Clark, Christine J; Hatch, Dan; Greene, Daylee; Pfister, Roxane; Tschanz, JoAnn T; Smith, Ken R
2016-03-01
Parental death during childhood, and offspring and spouse death during adulthood have individually been associated with faster cognitive decline and higher Alzheimer's disease (AD) risk in late life. However, the cumulative effect of childhood and adulthood family deaths on AD risk among different age cohorts has not been studied. To examine these associations, this prospective cohort study uses a population-based sample of 4545 initially non-demented participants (56.7% female; age M = 75.0/SD = 6.9 years) observed at four triennial waves, linked with objective Utah Population Database data on cumulative mother, father, sibling, spouse, and offspring death experienced during childhood and adulthood. Cox regression modeled survival time from baseline interview to AD onset, as a function of family deaths during childhood or adulthood, among different age groups, along with gender and presence of ε4 allele at apolipoprotein E (APOE) polymorphic genetic locus. Age group significantly moderated the relationship between family death and AD; among persons aged 65-69 years at baseline (children of the Great Depression), those exposed to 3-4 deaths and 5+ deaths during adulthood exhibited a doubling of AD risk (adjusted hazard ratio, aHR = 2.25, p = .038, and aHR = 2.72, p = .029), while among persons aged 80 years and older, those exposed to 3-4 deaths during adulthood exhibited lower AD risk (HR = 0.539, p = 0.014). In a combined model of childhood and adulthood deaths, these findings persisted. Results suggest a cohort effect in the link between family member deaths during adulthood and AD risk later in life. Copyright © 2015 John Wiley & Sons, Ltd.
Prevalence of Dementia and Main Subtypes in Rural Northern China
Ji, Yong; Shi, Zhihong; Zhang, Ying; Liu, Shuling; Liu, Shuai; Yue, Wei; Liu, Mengyuan; Huo, Ya Ruth; Wang, Jinhuan; Wisniewski, Thomas
2016-01-01
Background/Aims The aim of this article was to estimate the prevalence of and to determine the sociodemographic risk factors for dementia, Alzheimer’s disease (AD) and vascular dementia (VaD) among individuals residing in rural northern China. Methods Between 2011 and 2012, residents aged ≥ 60 years and residing in rural areas of northern China were clinically assessed for symptoms of dementia, AD and VaD. Diagnoses were made using established criteria and standard procedures. Results Among 5,578 enrolled study participants aged ≥ 60 years, the prevalence rates of dementia, AD and VaD were 7.7, 5.4 and 1.7%, respectively. Older age (OR = 1.17; 95% CI: 1.14–1.19) and female gender (OR = 2.13; 95% CI: 1.51–3.00) were identified as independent risk factors for AD. In turn, a higher educational level (OR = 0.36; 95% CI: 0.21–0.60) and engagement in social activities (OR = 0.219; 95% CI: 0.163–0.295) were protective factors. Risk factors associated with VaD were older age (OR = 1.11; 95% CI: 1.1– 1.12) and hypertension (OR = 1.83; 95% CI: 1.18–2.86), while a higher educational level (OR = 0.53, 95% CI: 0.44–0.65) and engagement in social activities (OR = 0.34; 95% CI: 0.29–0.41) were protective factors. Conclusion High rates of dementia (7.7%) and AD (5.4%) were found in the rural areas of northern China. Older age and female gender were identified as risk factors for AD, while older age and hypertension were risk factors for VaD. A higher educational level and engagement in social activities were identified as protective factors against both AD and VaD. PMID:25792116
De Vreese, Luc Pieter; Pradelli, Samantha; Massini, Giulia; Buscema, Massimo; Savarè, Rita; Grossi, Enzo
2005-12-01
In the clinical setting, brief general mental status tests tend to detect early-stage Alzheimer's disease (AD) less well than more specific cognitive tests. Some preliminary information was collected on the diagnostic accuracy of the Traveling Salesman Problem (TSP) compared with the Mini-Mental State Examination (MMSE) in recognizing early AD from normal aging. Fifteen AD outpatients (mean +/- SD MMSE: 24.45 +/- 2.61) and 30 age- and education-matched controls were submitted in a single blind protocol to a paper-and-pencil visually-presented version of the TSP, containing a random array of 30 points (TSP30). The task consisted of drawing the shortest continuous path, passing through each point once and only once, and returning to the starting point. Path lengths for subjects' solutions were computed and compared with the optimal solution given by a specific evolutionary algorithm called GenD. TP30 discriminated significantly better between AD subjects and controls (ROC curve AUC = 0.976; 95% CI 0.94-1.01) compared with the MMSE corrected for age and education (ROC curve AUC = 0.877; 95% CI 0.74-1.005). A path length of 478.2354, taken as "cut-off point", classified correctly subjects with a sensitivity of 93.3% and a specificity of 99.3%, whereas a score corrected for age and education of 25.85 on the MMSE had a sensitivity of 73.3% and a specificity of 96.7%. The TSP seems to be particularly sensitive to early AD and independent of patient's age and educational level. The high diagnostic ability, simplicity, and independence of age and education make the TSP promising as a screening test for early AD.
Reddy, P. Hemachandra; Blackmon, Joan; Molinar-Lopez, Veronica; Ament, Clay; Manczak, Maria; Kandimalla, Ramesh; Yin, Xianglin; Pandey, Akhilesh; Kuruva, Chandra Sekhar; Wang, Rui; Fry, David; Osborn, Carrah; Stonum, Kathleen; Quesada, Kandi; Gonzales, Ruben; Boles, Annette
2016-01-01
The Garrison Institute on Aging (GIA) is an established institute within Texas Tech University Health Sciences Center, whose mission is to promote healthy aging through cutting-edge research on Alzheimer’s disease (AD) and other diseases of aging through innovative educational opportunities for students, clinicians, researchers, health care professionals, and the public. The GIA has multiple programs, including both research and education on healthy aging and AD, community outreach, caregiving, the Retired Senior Volunteer Program, Healthy Lubbock, the GIA Brain Bank, healthy aging seminars, research seminars, and collaborations and scholarships. The GIA programs connect basic and clinical researchers and health care professionals, and provide a unique environment to help our growing elderly population and patients with AD and their families. PMID:26402018
Wang, Huifen; Zhou, Xia; Harnack, Lisa; Luepker, Russell V.
2013-01-01
Objectives. We described 27-year secular trends in added-sugar intake and body mass index (BMI) among Americans aged 25 to 74 years. Methods. The Minnesota Heart Survey (1980–1982 to 2007–2009) is a surveillance study of cardiovascular risk factors among residents of the Minneapolis–St Paul area. We used generalized linear mixed regressions to describe trends in added-sugar intake and BMI by gender and age groups and intake trends by weight status. Results. BMI increased concurrently with added-sugar intake in both genders and all age and weight groups. Percentage of energy intake from added sugar increased by 54% in women between 1980 to 1982 and 2000 to 2002, but declined somewhat in 2007 to 2009; men followed the same pattern (all P < .001). Added-sugar intake was lower among women than men and higher among younger than older adults. BMI in women paralleled added-sugar intake, but men's BMI increased through 2009. Percentage of energy intake from added sugar was similar among weight groups. Conclusions. Limiting added-sugar intake should be part of energy balance strategies in response to the obesity epidemic. PMID:22698050
Age-Related Defects in Erythrocyte 2,3-Diphosphoglycerate Metabolism in Dementia
Kaminsky, Yury G.; Reddy, V. Prakash; Ashraf, Ghulam Md; Ahmad, Ausaf; Benberin, Valery V.; Kosenko, Elena A.; Aliev, Gjumrakch
2013-01-01
Alzheimer disease (AD) is the most common dementing illness. Metabolic defects in the brain with aging contribute to the pathogenesis of AD. These changes can be found systematically and thus can be used as potential biomarkers. Erythrocytes (RBCs) are passive “reporter cells” that are not well studied in AD. In the present study, we analyzed an array of glycolytic and related enzymes and intermediates in RBCs from patients with AD and non-Alzheimer dementia (NA), age-matched controls (AC) and young adult controls (YC). AD is characterized by higher activities of hexokinase, phosphofructokinase, and bisphosphoglycerate mutase and bisphosphoglycerate phosphatase in RBCs. In our study, we observed that glycolytic and related enzymes displayed significantly lower activities in AC. However, similar or significantly higher activities were observed in AD and NA groups as compared to YC group. 2,3-diphosphoglycerate (2,3-DPG) levels were significantly decreased in AD and NA patients. The pattern of changes between groups in the above indices strongly correlates with each other. Collectively, our data suggested that AD and NA patients are associated with chronic disturbance of 2,3-DPG metabolism in RBCs. These defects may play a pivotal role in physiological processes, which predispose elderly subjects to AD and NA. PMID:24124630
Deaths in the United States among persons with Alzheimer's disease (2010-2050).
Weuve, Jennifer; Hebert, Liesi E; Scherr, Paul A; Evans, Denis A
2014-03-01
Alzheimer's disease (AD) profoundly affects the end-of-life experience. Yet, counts of deaths attributable to AD understate this burden of AD in the population. Therefore, we estimated the annual number of deaths in the United States among older adults with AD from 2010 to 2050. We calculated probabilities of AD incidence and mortality from a longitudinal population-based study of 10,802 participants. From this population, 1913 previously disease-free individuals, selected via stratified random sampling, underwent 2577 detailed clinical evaluations. Over the course of follow-up, 990 participants died. We computed age-, sex-, race-, and education-specific AD incidences and education-adjusted AD mortality proportions specific to age, sex, and race group. We then combined these probabilities with US-wide census, education, and mortality data. In 2010, approximately 600,000 deaths occurred among individuals aged 65 years or older with AD, comprising 32% of all older adult deaths. By 2050, this number is projected to be 1.6 million, 43% of all older adult deaths. Individuals with AD comprise a substantial number of older adult deaths in the United States, a number expected to rise considerably in coming decades. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Atherosclerosis risk factors in American Indians with Alzheimer disease: preliminary findings.
Weiner, Myron F; Rosenberg, Roger N; Womack, Kyle B; Svetlik, Doris A; Fuller, Carey; Fields, Julie; Hynan, Linda S
2008-01-01
Factors predisposing to and associated with atherosclerosis may impact the onset and progression of Alzheimer disease (AD). The high prevalence of atherosclerosis and associated risk factors in American Indians makes them ideal subjects to test this association. We compared frequency of history of hypertension, myocardial infarction, stroke, diabetes, and high cholesterol in 34 American Indians with AD with 34 age-matched American Indian controls, and 34 age-matched whites with probable AD. We also measured waist size, height, and weight, and acquired blood for determination of plasma homocysteine and apolipoprotein E genotype. The 3 groups did not differ significantly in age or sex. History of hypertension and diabetes was significantly more common among American Indian AD patients than Indian controls or whites with AD. The 3 groups did not differ in history of stroke or myocardial infarction. Body mass index was significantly greater in both Indian groups than the white AD group. Plasma homocysteine levels were greater, but not significantly so, in the Indian AD than the Indian control group. Thus, there is preliminary evidence of a modest association between history of hypertension and diabetes and AD in a small sample of American Indians. This suggests that changes in lifestyle factors could influence the expression of AD in American Indians.
Change blindness, aging, and cognition
Rizzo, Matthew; Sparks, JonDavid; McEvoy, Sean; Viamonte, Sarah; Kellison, Ida; Vecera, Shaun P.
2011-01-01
Change blindness (CB), the inability to detect changes in visual scenes, may increase with age and early Alzheimer’s disease (AD). To test this hypothesis, participants were asked to localize changes in natural scenes. Dependent measures were response time (RT), hit rate, false positives (FP), and true sensitivity (d′). Increased age correlated with increased sensitivity and RT; AD predicted even slower RT. Accuracy and RT were negatively correlated. Differences in FP were nonsignificant. CB correlated with impaired attention, working memory, and executive function. Advanced age and AD were associated with increased CB, perhaps due to declining memory and attention. CB could affect real-world tasks, like automobile driving. PMID:19051127
Change blindness, aging, and cognition.
Rizzo, Matthew; Sparks, Jondavid; McEvoy, Sean; Viamonte, Sarah; Kellison, Ida; Vecera, Shaun P
2009-02-01
Change blindness (CB), the inability to detect changes in visual scenes, may increase with age and early Alzheimer's disease (AD). To test this hypothesis, participants were asked to localize changes in natural scenes. Dependent measures were response time (RT), hit rate, false positives (FP), and true sensitivity (d'). Increased age correlated with increased sensitivity and RT; AD predicted even slower RT. Accuracy and RT were negatively correlated. Differences in FP were nonsignificant. CB correlated with impaired attention, working memory, and executive function. Advanced age and AD were associated with increased CB, perhaps due to declining memory and attention. CB could affect real-world tasks, like automobile driving.
Epidemiology and Clinical Features of Atopic Dermatitis in Kerman, a Desert Area of Iran
Esfandiarpour, Iraj; Sedaghatmanesh, Maryam; Saviz, Mahdieh
2014-01-01
Background Epidemiologic studies of atopic dermatitis (AD) in desert areas are still lacking. Objective The aim of this study was to investigate the epidemiology of AD in children in Kerman city, a desert area in Iran. Methods We evaluated preschool children (age, 2 to 7 years) and primary school students (age, greater than 7 up to 12 years) in Kerman. We selected 865 students to estimate the prevalence and assess other features of AD such as distribution of lesions, personal history, family history of atopy, aggravating factors, associated symptoms, and morphological variants. Results The prevalence of AD was 9.1% in our study population. The prevalence of AD was 9.17% and 9.09% in males and females, respectively. The prevalence of AD in the age range of 2 to 7 years was 13.53% and 8.33% among children aged greater than 7 up to 12 years. In total, 82.27% of the patients were in chronic stage of the disease, and 31.6% had a personal history of other atopic diseases. At least one first-degree family member with atopy was seen in 46.83% of the patients. The most common sites of involvement were the head and neck. The most involved areas in the limbs were extensor surfaces. The most frequent morphological variant of AD was the common type. Conclusion The prevalence of AD in Kerman was higher than in other Iranian cities but lower than that in developed countries. Diversity in the clinical features of AD has been observed among different studies, and the diagnostic criteria of AD should be adapted in proportion to the studied area. PMID:24648683
Noble, James M; Hedmann, Monique G; Williams, Olajide
2015-02-01
Dementia health literacy is low among the public and likely poses a significant barrier to Alzheimer's disease (AD) symptom recognition and treatment, particularly among minority populations already facing higher AD burden. We evaluated the pilot phase of a novel AD health education program, Old SCHOOL (Seniors Can Have Optimal Aging and Ongoing Longevity) Hip-Hop (OSHH), which is designed to enable children to be AD health educational conduits in the home ("child-mediated health communication"). OSHH applied our stroke-validated model of engaging, dynamic, and age- and culturally appropriate curriculum delivered to elementary school-age children (fourth/fifth grades, ages 9-11 years). We assessed AD knowledge among the children at baseline, immediately following the intervention (1-hour program delivered daily over 3 consecutive days), and 3 months later. For key AD symptoms, we developed the FLOW mnemonic (forget, lose, overlook, write/wander); students were additionally taught action plans for recognized symptoms. Seventy-five students completed baseline assessments, and 68 completed posttesting. AD symptoms in FLOW were not well known at baseline (individually ranging from 16% to 71% correct) but were highly learned after 3 days (89% to 98% correct) and retained well after 3 months (80% to 95% correct, p ≤ .01 for all comparisons vs. baseline). AD localization, including its effect on memory and the hippocampus, was also highly learned and retained (p < .001). Eighteen students (24%) reported having a close friend/family member with AD. This study suggests our hip-hop health education model may be an effective method to improve AD health literacy. © 2014 Society for Public Health Education.
Rafii, Michael S; Lukic, Ana S; Andrews, Randolph D; Brewer, James; Rissman, Robert A; Strother, Stephen C; Wernick, Miles N; Pennington, Craig; Mobley, William C; Ness, Seth; Matthews, Dawn C
2017-01-01
Adults with Down syndrome (DS) represent an enriched population for the development of Alzheimer's disease (AD), which could aid the study of therapeutic interventions, and in turn, could benefit from discoveries made in other AD populations. 1) Understand the relationship between tau pathology and age, amyloid deposition, neurodegeneration (MRI and FDG PET), and cognitive and functional performance; 2) detect and differentiate AD-specific changes from DS-specific brain changes in longitudinal MRI. Twelve non-demented adults, ages 30 to 60, with DS were enrolled in the Down Syndrome Biomarker Initiative (DSBI), a 3-year, observational, cohort study to demonstrate the feasibility of conducting AD intervention/prevention trials in adults with DS. We collected imaging data with 18F-AV-1451 tau PET, AV-45 amyloid PET, FDG PET, and volumetric MRI, as well as cognitive and functional measures and additional laboratory measures. All amyloid negative subjects imaged were tau-negative. Among the amyloid positive subjects, three had tau in regions associated with Braak stage VI, two at stage V, and one at stage II. Amyloid and tau burden correlated with age. The MRI analysis produced two distinct volumetric patterns. The first differentiated DS from normal (NL) and AD, did not correlate with age or amyloid, and was longitudinally stable. The second pattern reflected AD-like atrophy and differentiated NL from AD. Tau PET and MRI atrophy correlated with several cognitive and functional measures. Tau accumulation is associated with amyloid positivity and age, as well as with progressive neurodegeneration measurable using FDG and MRI. Tau correlates with cognitive decline, as do AD-specific hypometabolism and atrophy.
Hutton, Craig P; Lemon, Jennifer A; Sakic, Boris; Rollo, C David; Boreham, Douglas R; Fahnestock, Margaret; Wojtowicz, J Martin; Becker, Suzanna
2018-06-09
The increasing global burden of Alzheimer's disease (AD) and failure of conventional treatments to stop neurodegeneration necessitates an alternative approach. Evidence of inflammation, mitochondrial dysfunction, and oxidative stress prior to the accumulation of amyloid-β in the prodromal stage of AD (mild cognitive impairment; MCI) suggests that early interventions which counteract these features, such as dietary supplements, may ameliorate the onset of MCI-like behavioral symptoms. We administered a polyphenol-containing multiple ingredient dietary supplement (MDS), or vehicle, to both sexes of triple transgenic (3xTg-AD) mice and wildtype mice for 2 months from 2-4 months of age. We hypothesized that the MDS would preserve spatial learning, which is known to be impaired in untreated 3xTg-AD mice by 4 months of age. Behavioral phenotyping of animals was done at 1-2 and 3-4 months of age using a comprehensive battery of tests. As previously reported in males, both sexes of 3xTg-AD mice exhibited increased anxiety-like behavior at 1-2 months of age, prior to deficits in learning and memory, which did not appear until 3-4 months of age. The MDS did not reduce this anxiety or prevent impairments in novel object recognition (both sexes) or on the water maze probe trial (females only). Strikingly, the MDS specifically prevented 3xTg-AD mice (both sexes) from developing impairments (exhibited by untreated 3xTg-AD controls) in working memory and spatial learning. The MDS also increased sucrose preference, an indicator of hedonic tone. These data show that the MDS can prevent some, but not all, psychopathology in an AD model.
Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease.
Donovan, Michael H; Yazdani, Umar; Norris, Rebekah D; Games, Dora; German, Dwight C; Eisch, Amelia J
2006-03-01
Abnormal subgranular zone (SGZ) neurogenesis is proposed to contribute to Alzheimer's disease (AD)-related decreases in hippocampal function. Our goal was to examine hippocampal neurogenesis in the PDAPP mouse, a model of AD with age-dependent accumulation of amyloid-beta(42) (Abeta(42))-containing plaques that is well studied with regard to AD therapies. A secondary goal was to determine whether altered neurogenesis in the PDAPP mouse is associated with abnormal maturation or number of mature cells. A tertiary goal was to provide insight into why hippocampal neurogenesis appears to be increased in AD post-mortem tissue and decreased in most AD mouse models. We report an age-dependent decrease in SGZ proliferation in homozygous PDAPP mice. At 1 year of age, PDAPP mice also had new dentate gyrus granule neurons with abnormal maturation and fewer dying cells relative to control mice. In contrast to decreased SGZ cell birth, PDAPP mice had increased birth of immature neurons in the outer portion of the granule cell layer (oGCL), providing insight into why some studies link AD with increased neurogenesis. However, these ectopic oGCL cells were still rare compared with SGZ proliferating cells, emphasizing that the primary characteristic of PDAPP mice is decreased neurogenesis. The decrease in SGZ neurogenesis was not associated with an age-dependent loss of dentate granule neurons. The altered neurogenesis in the PDAPP mouse may contribute to the age-related cognitive deficits reported in this model of AD and may be a useful adjunct target for assessing the impact of AD therapies. J. Comp. Neurol. 495:70-83, 2006. (c) 2006 Wiley-Liss, Inc.
Neuronal exosomes reveal Alzheimer’s disease biomarkers in Down syndrome
Hamlett, Eric D.; Goetzl, Edward J.; Ledreux, Aurélie; Vasilevko, Vitaly; Boger, Heather A.; LaRosa, Angela; Clark, David; Carroll, Steven L.; Iragui, Maria Carmona; Fortea, Juan; Mufson, Elliott J.; Sabbagh, Marwan; Mohammed, Abdul H.; Hartley, Dean; Doran, Eric; Lott, Ira T.; Granholm, Ann-Charlotte
2018-01-01
INTRODUCTION Individuals with Down syndrome (DS) exhibit Alzheimer’s disease (AD) neuropathology and dementia early in life. Blood biomarkers of AD neuropathology would be valuable, as non-AD intellectual disabilities of DS and AD dementia overlap clinically. We hypothesized that elevations of amyloid-beta (Aβ) peptides and phosphorylated-Tau (P-Tau) in neuronal exosomes may document preclinical AD. METHODS AD neuropathogenic proteins Aβ1-42, P-T181-Tau and P-S396-Tau were quantified by enzyme-linked immunosorbent assays in extracts of neuronal exosomes purified from blood of individuals with DS and age-matched controls. RESULTS Neuronal exosome levels of Aβ1-42, P-T181-Tau and P-S396-Tau were significantly elevated in individuals with DS compared to age-matched controls at an early age. No significant gender differences were observed. DISCUSSION These early increases in Aβ1-42, P-T181-Tau, and P-S396-Tau in individuals with DS may provide a basis for early intervention as targeted treatments become available. PMID:27755974
Greenaway, Melanie C; Lacritz, Laura H; Binegar, Dani; Weiner, Myron F; Lipton, Anne; Munro Cullum, C
2006-06-01
Individuals with mild cognitive impairment (MCI) typically demonstrate memory loss that falls between normal aging (NA) and Alzheimer disease (AD), but little is known about the pattern of memory dysfunction in MCI. To explore this issue, California Verbal Learning Test (CVLT) performance was examined across groups of MCI, AD, and NA. MCI subjects displayed a pattern of deficits closely resembling that of AD, characterized by reduced learning, rapid forgetting, increased recency recall, elevated intrusion errors, and poor recognition discriminability with increased false-positives. MCI performance was significantly worse than that of controls and better than that of AD patients across memory indices. Although qualitative analysis of CVLT profiles may be useful in individual cases, discriminant function analysis revealed that delayed recall and total learning were the best aspects of learning/memory on the CVLT in differentiating MCI, AD, and NA. These findings support the position that amnestic MCI represents an early point of decline on the continuum of AD that is different from normal aging.
Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation.
Li, Xiao-Hong; Xie, Jia-Zhao; Jiang, Xia; Lv, Bing-Ling; Cheng, Xiang-Shu; Du, Lai-Ling; Zhang, Jia-Yu; Wang, Jian-Zhi; Zhou, Xin-Wen
2012-12-01
The hyperphosphorylated tau is a major protein component of neurofibrillary tangle, which is one of hallmarks of Alzheimer's disease (AD). While the level of methylglyoxal (MG) is significantly increased in the AD brains, the role of MG in tau phosphorylation is still not reported. Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). Glycogen synthesis kinase-3β (GSK-3β) and p38 MAPK were activated, whereas the level and activity of JNK, Erk1/2, cdk5, and PP2A were not altered after MG treatment. Simultaneous inhibition of GSK-3β or p38 attenuated the MG-induced tau hyperphosphorylation. Aminoguanidine, a blocker of AGEs formation, could effectively reverse the MG-induced tau hyperphosphorylation. These data suggest that MG induces AD-like tau hyperphosphorylation through AGEs formation involving RAGE up-regulation and GSK-3β activation and p38 activation is also partially involved in MG-induced tau hyperphosphorylation. Thus, targeting MG may be a promising therapeutic strategy to prevent AD-like tau hyperphosphorylation.
A population-based study of familial Alzheimer disease: linkage to chromosomes 14, 19, and 21.
van Duijn, C M; Hendriks, L; Farrer, L A; Backhovens, H; Cruts, M; Wehnert, A; Hofman, A; Van Broeckhoven, C
1994-10-01
Linkage of Alzheimer disease (AD) to DNA markers on chromosomes 14, 19, and 21 was studied in 10 families in which the disease was apparently inherited as an autosomal dominant trait. Families were derived from a Dutch population-based epidemiologic study of early-onset AD. Although in all probands the onset of AD was at or before age 65 years, the mean age at onset was after age 65 years in four families (referred to as "LOAD"). Among the six families with early-onset AD (referred to as "EOAD," i.e., mean age of onset of AD of relatives was at or before age 65 years), conclusive linkage to 14q24.3 was found in one family with a very early onset (around 47 years), while linkage to the same region was excluded in two other families. For the LOAD families, predominantly negative lod scores were obtained, and the overall lod score excluded linkage to chromosome 14. The results with markers on chromosome 19 and chromosome 21 were not conclusive for EOAD and LOAD. The findings of our study confirm genetic heterogeneity within familial EOAD.
Assessment of risk factors for earlier onset of sporadic Alzheimer's disease dementia.
de Oliveira, Fabricio Ferreira; Bertolucci, Paulo Henrique Ferreira; Chen, Elizabeth Suchi; Smith, Marilia Cardoso
2014-01-01
Pharmacological treatment has mild effects for patients with Alzheimer's disease dementia (AD); therefore, the search for modifiable risk factors is an important challenge. Though risk factors for AD are widely recognized, elements that influence the time of dementia onset have not been comprehensively reported. We aimed to investigate which risk factors might be related to the age of onset of AD in a sample of patients with highly variable educational levels, taking into account the Framingham risk scoring as the sole measure of vascular risk. We included 209 consecutive late-onset AD patients to find out which factors among educational levels, coronary heart disease risk estimated by way of Framingham risk scores, history of head trauma or depression, surgical procedures under general anesthesia, family history of neurodegenerative diseases, gender, marital status and APOE haplotypes might be related to the age of dementia onset in this sample of patients with low mean schooling. Mean age of AD onset was 73.38±6.5 years old, unaffected by schooling or family history of neurodegenerative diseases. Patients who were APOE-ε4 carriers, married, or with history of depression, had earlier onset of AD, particularly when they were women. Coronary heart disease risk was marginally significant for later onset of AD. APOE haplotypes, marital status and history of depression were the most important factors to influence the age of AD onset in this sample. While midlife cerebrovascular risk factors may increase incidence of AD, they may lead to later dementia onset when present in late life.
Hand eczema and atopic dermatitis in adolescents: a prospective cohort study from the BAMSE project.
Grönhagen, C; Lidén, C; Wahlgren, C-F; Ballardini, N; Bergström, A; Kull, I; Meding, B
2015-11-01
There is a well-known association between atopic dermatitis (AD) and hand eczema but less is known about how age at onset, persistence and severity of AD influence the risk of developing hand eczema. To examine the role of AD in the occurrence of hand eczema in adolescence. In addition, associations between asthma and rhinoconjunctivitis, sensitization to common airborne and food allergens, and hand eczema were studied. From the population-based birth cohort BAMSE, 2927 adolescents who had been followed up repeatedly concerning allergy-related disease were included. Questionnaires identified adolescents with hand eczema at 16 years, and their blood was analysed for specific IgE. A total of 152 (5·2%) adolescents had hand eczema at the age of 16 years. Many of these adolescents had a history of AD (n = 111; 73·0%) and asthma and/or rhinitis (n = 83; 54·6%), respectively. Children with AD (aged 0-16 years) had more than threefold increased odds ratios (OR) for having hand eczema; those with persistent or severe AD had a crude OR of 6·1 [95% confidence interval (CI) 4·0-9·1] and 5·3 (95% CI 2·9-9·6), respectively. We confirm a strong association between AD during childhood and hand eczema in adolescence. Children with persistent or more severe AD are at greater risk of developing hand eczema. Asthma and/or rhinoconjunctivitis, positive specific IgE or age at onset of AD are not associated with hand eczema in adolescence. © 2015 British Association of Dermatologists.
Korthauer, Laura E; Awe, Elizabeth; Frahmand, Marijam; Driscoll, Ira
2018-05-26
Alzheimer's disease (AD) is characterized by memory loss and executive dysfunction, which correspond to structural changes to the medial temporal lobes (MTL) and prefrontal cortex (PFC), respectively. Given the overlap in cognitive deficits between healthy aging and the earliest stages of AD, early detection of AD remains a challenge. The goal of the present study was to study MTL- and PFC-dependent cognitive functioning in middle-aged individuals at genetic risk for AD or cognitive impairment who do not currently manifest any clinical symptoms. Participants (N = 150; aged 40-60 years) underwent genotyping of 47 single nucleotide polymorphisms (SNPs) in six genes previously associated with memory or executive functioning: APOE, SORL1, BDNF, TOMM40, KIBRA, and COMT. They completed two MTL-dependent tasks, the virtual Morris Water Task (vMWT) and transverse patterning discriminations task (TPDT), and the PFC-dependent reversal learning task. Although age was associated with poorer performance on the vMWT and TPDT within this middle-aged sample, there were no genotype-associated differences in cognitive performance. Although the vMWT and TPDT may be sensitive to age-related changes in cognition, carriers of APOE, SORL1, BDNF, TOMM40, KIBRA, and COMT risk alleles do not exhibit alteration in MTL- and PFC-dependent functioning in middle age compared to non-carriers.
The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer’s Disease
Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing
2015-01-01
Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer’s disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD. PMID:26587989
The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer's Disease.
Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing
2015-01-01
Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer's disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD.
Sex hormones, aging, and Alzheimer’s disease
Barron, Anna M.; Pike, Christian J.
2012-01-01
A promising strategy to delay and perhaps prevent Alzheimer’s disease (AD) is to identify the age-related changes that put the brain at risk for the disease. A significant normal age change known to result in tissue-specific dysfunction is the depletion of sex hormones. In women, menopause results in a relatively rapid loss of estradiol and progesterone. In men, aging is associated with a comparatively gradual yet significant decrease in testosterone. We review a broad literature that indicates age-related losses of estrogens in women and testosterone in men are risk factors for AD. Both estrogens and androgens exert a wide range of protective actions that improve multiple aspects of neural health, suggesting that hormone therapies have the potential to combat AD pathogenesis. However, translation of experimental findings into effective therapies has proven challenging. One emerging treatment option is the development of novel hormone mimetics termed selective estrogen and androgen receptor modulators. Continued research of sex hormones and their roles in the aging brain is expected to yield valuable approaches to reducing the risk of AD. PMID:22201929
Pan, Yijun; Nicolazzo, Joseph A
2018-04-14
Older people are at a greater risk of medicine-induced toxicity resulting from either increased drug sensitivity or age-related pharmacokinetic changes. The scenario is further complicated with the two most prevalent age-related neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD). With aging, AD and PD, there is growing evidence of altered structure and function of the blood-brain barrier (BBB), including modifications to tight junctions and efflux transporters, such as P-glycoprotein. The subsequent impact on CNS drug exposure and risk of neurotoxicity from systemically-acting medicines is less well characterized. The purpose of this review, therefore, is to provide an overview of the multiple changes that occur to the BBB as a result of aging, AD and PD, and the impact that such changes have on CNS exposure of drugs, based on studies conducted in aged rodents or rodent models of disease, and in elderly people with and without AD or PD. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Hayden, Kathleen M; Welsh-Bohmer, Kathleen A
2012-01-01
Epidemiological studies of Alzheimer's disease (AD) provide insights into changing public health trends and their contribution to disease incidence. The current chapter considers how the population-based approach has contributed to our understanding of lifetime exposures that contribute to later disease risk and may act to modify onset of symptoms. We focus on the findings from a recent survey of an exceptionally long-lived population, the Cache County Utah Study of Memory, Health, and Aging. This study is confined to a single geographic population has allowed estimation of the genetic and environmental influences on AD expression across the expected human lifespan of 95+ years. Given the emphasis of this text on the behavioral neurosciences of aging, we highlight within the current chapter the particular contributions of this population-based study to the neuropsychology of aging and AD. We also discuss hypotheses generated from this survey with respect to factors that may either accelerate or delay symptom onset in AD and the conditions that appear to be associated with successful cognitive aging.
The relationship of cardiovascular risk factors to Alzheimer disease in Choctaw Indians.
Weiner, Myron F; Hynan, Linda S; Rossetti, Heidi; Womack, Kyle B; Rosenberg, Roger N; Gong, Yun-Hua; Qu, Bao-Xi
2011-05-01
To test the hypothesis that cardiovascular risk factors (CRFs) influence predisposition to and the clinical course of Alzheimer disease (AD), the authors compared Choctaw Indians, a group with known high CRF with white persons with AD. In addition to CRF history, the authors investigated the frequency of apolipoprotein E4 (apoE4) genotype andplasma homocysteine (HC) levels. The authors compared 39 Choctaw Indians with AD and 39 Choctaw Indians without AD to 39 white persons with AD with all groups similar in age. CRF history included diabetes, hypertension, high cholesterol or hypolipidemic agent use, or myocardial infarction. The authors also compared plasma HC concentration and apoE4 allele frequency. Choctaw persons with AD differed significantly from white persons with AD in history of hypertension, diabetes, and in HC values but not from Indians without AD. There was a significantly lower apoE4 allele frequency in Choctaw Indian AD than white persons with AD, and both AD groups had an affected first degree relative significantly more often than Indian controls. There was no relationship between the number of CRF and age at onset among Indians or whites, whereas HC concentration was associated with significantly earlier age of onset for Choctaw Indians but not for whites. This small study suggests that in Choctaw Indians modifiable risk factors may play more of a role in disease pathogenesis than in whites and that nonmodifiable risk factors such as apoE4 may play less of a role.
Gredilla, Ricardo; Weissman, Lior; Yang, Jenq-Lin; Bohr, Vilhelm A.; Stevnsner, Tinna
2010-01-01
Brain aging is associated with synaptic decline and cognitive impairment. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging process and the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD). In mitochondria, base excision repair (BER) is the main DNA repair pathway for base modifications such as deamination and oxidation, and constitutes an important mechanism to avoid accumulation of mtDNA mutations. Synaptic function is highly dependent on mitochondria, and in the current study we have investigated BER in synaptosomes of mouse brain during normal aging and in an AD model. Synaptosomes are isolated synapses in membranous structures produced by subcellular fractionation of brain tissue. They include the whole presynaptic terminal as well as portions of the postsynaptic terminal. Synaptosomes contain the molecular machinery necessary for uptake, storage, and release of neurotransmitters, including synaptic vesicles and mitochondria. BER activities were measured in synaptosomal fractions from young and old mice and from pre-symptomatic and symptomatic AD mice harboring mutated APP, Tau and PS1 (3xTgAD). During normal aging, a reduction in the BER capacity was observed in the synaptosomal fraction, which was associated with a decrease in the level of BER proteins. However, we did not observe changes between the synaptosomal BER activities of pre-symptomatic and symptomatic AD mice. Our findings suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms in the synaptosomal fraction when the whole brain was analyzed. PMID:20708822
Atopic Dermatitis: A Common Pediatric Condition and Its Evolution in Adulthood.
Gupta, Deepti
2015-11-01
Atopic dermatitis (AD) is a chronic and pruritic inflammatory skin disorder that has a relapsing course and can affect any age group. Patients with AD have higher rates of other allergic disorders, mental health disorders, and skin infections. An important feature of AD for practitioners to recognize is that the clinical presentation varies by age from infancy into adulthood. The goals of treatment and management of AD focuses on restoring and maintaining the skin barrier function, minimizing inflammation, breaking the itch-scratch cycle, and treating possible external triggers and secondary infections that may propagate AD. Copyright © 2015 Elsevier Inc. All rights reserved.
Polygenic Scores for Major Depressive Disorder and Risk of Alcohol Dependence.
Andersen, Allan M; Pietrzak, Robert H; Kranzler, Henry R; Ma, Li; Zhou, Hang; Liu, Xiaoming; Kramer, John; Kuperman, Samuel; Edenberg, Howard J; Nurnberger, John I; Rice, John P; Tischfield, Jay A; Goate, Alison; Foroud, Tatiana M; Meyers, Jacquelyn L; Porjesz, Bernice; Dick, Danielle M; Hesselbrock, Victor; Boerwinkle, Eric; Southwick, Steven M; Krystal, John H; Weissman, Myrna M; Levinson, Douglas F; Potash, James B; Gelernter, Joel; Han, Shizhong
2017-11-01
Major depressive disorder (MDD) and alcohol dependence (AD) are heritable disorders with significant public health burdens, and they are frequently comorbid. Common genetic factors that influence the co-occurrence of MDD and AD have been sought in family, twin, and adoption studies, and results to date have been promising but inconclusive. To examine whether AD and MDD overlap genetically, using a polygenic score approach. Association analyses were conducted between MDD polygenic risk score (PRS) and AD case-control status in European ancestry samples from 4 independent genome-wide association study (GWAS) data sets: the Collaborative Study on the Genetics of Alcoholism (COGA); the Study of Addiction, Genetics, and Environment (SAGE); the Yale-Penn genetic study of substance dependence; and the National Health and Resilience in Veterans Study (NHRVS). Results from a meta-analysis of MDD (9240 patients with MDD and 9519 controls) from the Psychiatric Genomics Consortium were applied to calculate PRS at thresholds from P < .05 to P ≤ .99 in each AD GWAS data set. Association between MDD PRS and AD. Participants analyzed included 788 cases (548 [69.5%] men; mean [SD] age, 38.2 [10.8] years) and 522 controls (151 [28.9.%] men; age [SD], 43.9 [11.6] years) from COGA; 631 cases (333 [52.8%] men; age [SD], 35.0 [7.7] years) and 756 controls (260 [34.4%] male; age [SD] 36.1 [7.7] years) from SAGE; 2135 cases (1375 [64.4%] men; age [SD], 39.4 [11.5] years) and 350 controls (126 [36.0%] men; age [SD], 43.5 [13.9] years) from Yale-Penn; and 317 cases (295 [93.1%] men; age [SD], 59.1 [13.1] years) and 1719 controls (1545 [89.9%] men; age [SD], 64.5 [13.3] years) from NHRVS. Higher MDD PRS was associated with a significantly increased risk of AD in all samples (COGA: best P = 1.7 × 10-6, R2 = 0.026; SAGE: best P = .001, R2 = 0.01; Yale-Penn: best P = .035, R2 = 0.0018; and NHRVS: best P = .004, R2 = 0.0074), with stronger evidence for association after meta-analysis of the 4 samples (best P = 3.3 × 10-9). In analyses adjusted for MDD status in 3 AD GWAS data sets, similar patterns of association were observed (COGA: best P = 7.6 × 10-6, R2 = 0.023; Yale-Penn: best P = .08, R2 = 0.0013; and NHRVS: best P = .006, R2 = 0.0072). After recalculating MDD PRS using MDD GWAS data sets without comorbid MDD-AD cases, significant evidence was observed for an association between the MDD PRS and AD in the meta-analysis of 3 GWAS AD samples without MDD cases (best P = .007). These results suggest that shared genetic susceptibility contributes modestly to MDD and AD comorbidity. Individuals with elevated polygenic risk for MDD may also be at risk for AD.
Modifiable risk factors for Alzheimer disease and subjective memory impairment across age groups.
Chen, Stephen T; Siddarth, Prabha; Ercoli, Linda M; Merrill, David A; Torres-Gil, Fernando; Small, Gary W
2014-01-01
Previous research has identified modifiable risk factors for Alzheimer's disease (AD) in older adults. Research is limited on the potential link between these risk factors and subjective memory impairment (SMI), which may precede AD and other dementias. Examination of these potential relationships may help identify those at risk for AD at a stage when interventions may delay or prevent further memory problems. The objective of this study was to determine whether risk factors for AD are associated with SMI among different age groups. Trained interviewers conducted daily telephone surveys (Gallup-Healthways) of a representative community sample of 18,614 U.S. respondents, including 4,425 younger (age 18 to 39 years), 6,365 middle-aged (40 to 59 years), and 7,824 older (60 to 99 years) adults. The surveyors collected data on demographics, lifestyles, and medical information. Less education, smoking, hypertension, diabetes, less exercise, obesity and depression, and interactions among them, were examined for associations with SMI. Weighted logistic regressions and chi-square tests were used to calculate odds ratios and confidence intervals for SMI with each risk factor and pairwise interactions across age groups. Depression, less education, less exercise, and hypertension were significantly associated with SMI in all three age groups. Several interactions between risk factors were significant in younger and middle-aged adults and influenced their associations with SMI. Frequency of SMI increased with age and number of risk factors. Odds of having SMI increased significantly with just having one risk factor. These results indicate that modifiable risk factors for AD are also associated with SMI, suggesting that these relationships occur in a broad range of ages and may be targeted to mitigate further memory problems. Whether modifying these risk factors reduces SMI and the eventual incidence of AD and other dementias later in life remains to be determined.
Effect of aging of chemicals in soil on their biodegradability and extractability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzinger, P.B.; Alexander, M.
1995-11-01
A study was conducted to determine whether the time that a compound remains in a soil affects its biodegradability and the ease of its extraction. Phenanthrene and 4-nitrophenol were aged in sterilized loam and muck, and bacteria able to degrade the compounds were then added to the soils. increasingly smaller amounts of phenanthrene in the muck and 4-nitrophenol in both soils were mineralized with increasing duration of aging. Aging also increased the resistance of phenanthrene to biodegradation in nutrient-amended aquifer sand. The rate of miner- alization of the two compounds in both soils declined with increasing periods of aging. Themore » amount of phenanthrene and 4-nitrophenol added to sterile soils that was recovered by butanol extraction declined with duration of aging, but subsequent Soxhlet extraction recovered phenanthrene from the loam but not the muck. The extents of mineralization of phenanthrene previously incubated for up to 27 days with soluble or insoluble organic matter from the muck were similar. Less aged than freshly added phenanthrene was biodegraded if aggregates in the muck were sonically disrupted. The data show that phenanthrene and 4-nitrophenol added to soil become increasingly more resistant with time to biodegradation and extraction.« less
Malpetti, Maura; Ballarini, Tommaso; Presotto, Luca; Garibotto, Valentina; Tettamanti, Marco; Perani, Daniela
2017-08-01
Cognitive reserve (CR) and brain reserve (BR) are protective factors against age-associated cognitive decline and neurodegenerative disorders. Very limited evidence exists about gender effects on brain aging and on the effect of CR on brain modulation in healthy aging and Alzheimer's Dementia (AD). We investigated gender differences in brain metabolic activity and resting-state network connectivity, as measured by 18 F-FDG-PET, in healthy aging and AD, also considering the effects of education and occupation. The clinical and imaging data were retrieved from large datasets of healthy elderly subjects (HE) (225) and AD patients (282). In HE, males showed more extended age-related reduction of brain metabolism than females in frontal medial cortex. We also found differences in brain modulation as metabolic increases induced by education and occupation, namely in posterior associative cortices in HE males and in the anterior limbic-affective and executive networks in HE females. In AD patients, the correlations between education and occupation levels and brain hypometabolism showed gender differences, namely a posterior temporo-parietal association in males and a frontal and limbic association in females, indicating the involvement of different networks. Finally, the metabolic connectivity in both HE and AD aligned with these results, suggesting greater efficiency in the posterior default mode network for males, and in the anterior frontal executive network for females. The basis of these brain gender differences in both aging and AD, obtained exploring cerebral metabolism, metabolic connectivity and the effects of education and occupation, is likely at the intersection between biological and sociodemographic factors. Hum Brain Mapp 38:4212-4227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ikonomovic, Milos D; Mi, Zhiping; Abrahamson, Eric E
2017-03-01
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function. Published by Elsevier B.V.
Electroencephalographic Fractal Dimension in Healthy Ageing and Alzheimer’s Disease
Cottone, Carlo; Cancelli, Andrea; Rossini, Paolo Maria; Tecchio, Franca
2016-01-01
Brain activity is complex; a reflection of its structural and functional organization. Among other measures of complexity, the fractal dimension is emerging as being sensitive to neuronal damage secondary to neurological and psychiatric diseases. Here, we calculated Higuchi’s fractal dimension (HFD) in resting-state eyes-closed electroencephalography (EEG) recordings from 41 healthy controls (age: 20–89 years) and 67 Alzheimer’s Disease (AD) patients (age: 50–88 years), to investigate whether HFD is sensitive to brain activity changes typical in healthy aging and in AD. Additionally, we considered whether AD-accelerating effects of the copper fraction not bound to ceruloplasmin (also called “free” copper) are reflected in HFD fluctuations. The HFD measure showed an inverted U-shaped relationship with age in healthy people (R2 = .575, p < .001). Onset of HFD decline appeared around the age of 60, and was most evident in central-parietal regions. In this region, HFD decreased with aging stronger in the right than in the left hemisphere (p = .006). AD patients demonstrated reduced HFD compared to age- and education-matched healthy controls, especially in temporal-occipital regions. This was associated with decreasing cognitive status as assessed by mini-mental state examination, and with higher levels of non-ceruloplasmin copper. Taken together, our findings show that resting-state EEG complexity increases from youth to maturity and declines in healthy, aging individuals. In AD, brain activity complexity is further reduced in correlation with cognitive impairment. In addition, elevated levels of non-ceruloplasmin copper appear to accelerate the reduction of neural activity complexity. Overall, HDF appears to be a proper indicator for monitoring EEG-derived brain activity complexity in healthy and pathological aging. PMID:26872349
Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice
Gauba, Esha; Guo, Lan; Du, Heng
2017-01-01
Brain aging is the known strongest risk factor for Alzheimer’s disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD. PMID:27834780
Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.
Gauba, Esha; Guo, Lan; Du, Heng
2017-01-01
Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.
Quantitative T2 mapping of white matter: applications for ageing and cognitive decline
NASA Astrophysics Data System (ADS)
Knight, Michael J.; McCann, Bryony; Tsivos, Demitra; Dillon, Serena; Coulthard, Elizabeth; Kauppinen, Risto A.
2016-08-01
In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer’s disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia.
Beneficial effect of bilingualism on Alzheimer's disease CSF biomarkers and cognition.
Estanga, Ainara; Ecay-Torres, Mirian; Ibañez, Almudena; Izagirre, Andrea; Villanua, Jorge; Garcia-Sebastian, Maite; Iglesias Gaspar, M Teresa; Otaegui-Arrazola, Ane; Iriondo, Ane; Clerigue, Monserrat; Martinez-Lage, Pablo
2017-02-01
Bilingualism as a component of cognitive reserve has been claimed to delay the onset of Alzheimer's disease (AD). However, its effect on cerebrospinal fluid (CSF) AD-biomarkers has not been investigated. We assessed cognitive performance and CSF AD-biomarkers, and potential moderation effect of bilingualism on the association between age, CSF AD-biomarkers, and cognition. Cognitively healthy middle-aged participants classified as monolinguals (n = 100, n CSF = 59), early (n = 81, n CSF = 55) and late bilinguals (n = 97, n CSF = 52) were evaluated. Models adjusted for confounders showed that bilinguals performed better than monolinguals on digits backwards (early-bilinguals p = 0.003), Judgment of Line Orientation (JLO) (early-bilinguals p = 0.018; late-bilinguals p = 0.004), and Trail Making Test-B (late-bilinguals p = 0.047). Early bilingualism was associated with lower CSF total-tau (p = 0.019) and lower prevalence of preclinical AD (NIA-AA classification) (p = 0.02). Bilingualism showed a moderation effect on the relationship between age and CSF AD-biomarkers and the relationship between age and executive function. We conclude that bilingualism contributes to cognitive reserve enhancing executive and visual-spatial functions. For the first time, this study reveals that early bilingualism is associated with more favorable CSF AD-biomarker profile. Copyright © 2016 Elsevier Inc. All rights reserved.
Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio
2017-07-01
Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of 18 F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of 18 F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Association of Cancer History with Alzheimer's Disease Dementia and Neuropathology.
Yarchoan, Mark; James, Bryan D; Shah, Raj C; Arvanitakis, Zoe; Wilson, Robert S; Schneider, Julie; Bennett, David A; Arnold, Steven E
2017-01-01
Cancer and Alzheimer's disease (AD) are common diseases of aging and share many risk factors. Surprisingly, however, epidemiologic data from several recent independent cohort studies suggest that there may be an inverse association between these diseases. To determine the relationship between history of cancer and odds of dementia proximate to death and neuropathological indices of AD. Using data from two separate clinical-pathologic cohort studies of aging and AD, the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP), we compared odds of AD dementia proximate to death among participants with and without a history of cancer. We then examined the relation of history of cancer with measures of AD pathology at autopsy, i.e., paired helical filament tau (PHFtau) neurofibrillary tangles and amyloid-β load. Participants reporting a history of cancer had significantly lower odds of AD (OR 0.70 [0.55-0.89], p = 0.0040) proximate to death as compared to participants reporting no prior history of cancer. The results remained significant after adjusting for multiple risk factors including age, sex, race, education, and presence of an APOEɛ4 allele. At autopsy, participants with a history of cancer had significantly fewer PHFtau tangles (p < 0.001) than participants without a history of cancer, but similar levels of amyloid-β. Cancer survivors have reduced odds of developing AD and a lower burden of neurofibrillary tangle deposition.
Sheng, Jian-Hua; Ng, Tze-Pin; Li, Chun-Bo; Lu, Guang-Hua; He, Wei; Qian, Yi-Ping; Wang, Jing-Hua; Yu, Shun-Ying
2012-12-01
To explore the peripheral leucocytic messenger RNA (mRNA) expression of glycogen synthase kinase-3β (GSK-3β) gene in Alzheimer's disease (AD) patients. Using TaqMan relative quantitative real-time polymerase chain reaction, we analyzed leucocytic gene expression of GSK-3β in 48 AD patients and 49 healthy controls. Clinical data of AD patients were also collected. The mRNA expression level of the GSK-3β gene was significantly higher in the AD group (3.13±0.62) than in the normal group (2.77±0.77). Correlational analyses showed that the mRNA expression level of GSK-3β gene in AD patients was associated with the age of onset (P=0.047), age (P=0.055), and Behavioral Pathology in Alzheimer's Disease Rating Scale total score (P=0.062) and subscores: aggressiveness score (P=0.073) and anxieties and phobias score (P=0.067). Through multivariate regression model, older age, higher anxieties and phobias score and aggressiveness score were associated with higher mRNA expression level of GSK-3β gene. In AD patients, the mRNA expression level of the GSK-3β gene is increased and may be related to age and behavioural pathology in AD. © 2012 The Authors. Psychogeriatrics © 2012 Japanese Psychogeriatric Society.
Ozturk, Ayla; Desai, Purnima P; Minster, Ryan L; Dekosky, Steven T; Kamboh, M Ilyas
2005-01-01
Linkage studies suggest the presence of putative risk and/or age-at-onset genes for Alzheimer's disease on Chromosome 10. Recently, a genomic converging approach using a combination of linkage, expression and association studies has reported significant associations of the glutathione S-transferase omega 1 and 2 (GSTO1 and GSTO2) genes and possibly the protease serine 11 (PRSS11) gene on chromosome 10 with age-at-onset, but not risk, for Alzheimer's disease (AD) and Parkinson disease. We investigated the association of the reported three polymorphisms in 990 sporadic late-onset AD cases (26% autopsy confirmed) and 735 controls. In our sample, we found no association either with age-at-onset in AD cases or with disease risk in the case-control cohort. However, haplotype analysis revealed a modest association of one haplotype with AD risk (p = 0.04). Additional markers in these genes need to be screened to explore their role in the etiology of AD.
Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2010-01-01
Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823
Exercise counteracts declining hippocampal function in aging and Alzheimer's disease.
Intlekofer, Karlie A; Cotman, Carl W
2013-09-01
Alzheimer's disease (AD) afflicts more than 5.4 million Americans and ranks as the most common type of dementia (Thies and Bleiler, 2011), yet effective pharmacological treatments have not been identified. Substantial evidence indicates that physical activity enhances learning and memory for people of all ages, including individuals that suffer from cognitive impairment. The mechanisms that underlie these benefits have been explored using animal models, including transgenic models of AD. Accumulating research shows that physical activity reinstates hippocampal function by enhancing the expression of brain-derived neurotrophic factor (BDNF) and other growth factors that promote neurogenesis, angiogenesis, and synaptic plasticity. In addition, several studies have found that physical activity counteracts age- and AD-associated declines in mitochondrial and immune system function. A growing body of evidence also suggests that exercise interventions hold the potential to reduce the pathological features associated with AD. Taken together, animal and human studies indicate that exercise provides a powerful stimulus that can countervail the molecular changes that underlie the progressive loss of hippocampal function in advanced age and AD. 2012 Published by Elsevier Inc
Yu, Lei; Chibnik, Lori B; Srivastava, Gyan P; Pochet, Nathalie; Yang, Jingyun; Xu, Jishu; Kozubek, James; Obholzer, Nikolaus; Leurgans, Sue E; Schneider, Julie A; Meissner, Alexander; De Jager, Philip L; Bennett, David A
2015-01-01
Recent large-scale genome-wide association studies have discovered several genetic variants associated with Alzheimer disease (AD); however, the extent to which DNA methylation in these AD loci contributes to the disease susceptibility remains unknown. To examine the association of brain DNA methylation in 28 reported AD loci with AD pathologies. Ongoing community-based clinical pathological cohort studies of aging and dementia (the Religious Orders Study and the Rush Memory and Aging Project) among 740 autopsied participants 66.0 to 108.3 years old. DNA methylation levels at individual CpG sites generated from dorsolateral prefrontal cortex tissue using a bead assay. Pathological diagnosis of AD by National Institute on Aging-Reagan criteria following a standard postmortem examination. Overall, 447 participants (60.4%) met the criteria for pathological diagnosis of AD. Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 was associated with pathological AD. The association was robustly retained after replacing the binary trait of pathological AD with 2 quantitative and molecular specific hallmarks of AD, namely, Aβ load and paired helical filament tau tangle density. Furthermore, RNA expression of transcripts of SORL1 and ABCA7 was associated with paired helical filament tau tangle density, and the expression of BIN1 was associated with Aβ load. Brain DNA methylation in multiple AD loci is associated with AD pathologies. The results provide further evidence that disruption of DNA methylation is involved in the pathological process of AD.
Vaitkevičius, Arūnas; Kaubrys, Gintaras; Audronytė, Eglė
2015-07-03
Latency of P300 subcomponent of event-related potentials (ERPs) increases in Alzheimer disease (AD) patients, which correlate well with cognitive impairment. Cholinesterase inhibitors (ChEIs) reduce P300 latency in AD patients with parallel improvement in cognition. It is not known whether N200 response to ChEIs is similar to that of P300. The aim of this study was to evaluate and compare characteristics of P300 and N200 in AD patients, treatment-naïve and on stable donepezil treatment, matched by age, education, sex, and cognitive function. We recruited 22 consecutive treatment-naïve AD patients (AD-N group), 22 AD patients treated with a stable donepezil dose of 10 mg/day for at least 3 months (AD-T group), and 50 healthy controls were recruited. Neuropsychological testing (MMSE, ADAS-Cog, and additional tests) and ERP recording was performed and analyzed. All groups did not differ according to age, duration of education, or sex (p>0.05). AD-N and AD-T groups did not differ according to cognitive function. The AD-T group had longer duration of disease than the AD-N group (p<0.001). The AD-T and AD-N groups did not differ in P300 latencies (p=0.49). N200 latency was longer in the AD-T group (p<0.001). The general linear model showed that significant predictors of P300 latency were age (p=0.019) and AD treatment status (p<0.001). Duration of AD was a significant predictor of N200 latency (p=0.004). The response of N200 latency to donepezil treatment differs from the response of P300. P300 is a better marker of ChEI treatment-dependent cognitive functions. N200 is more dependent on the duration of AD.
Traumatic Brain Injury History is Associated with Earlier Age of Onset of Alzheimer Disease
LoBue, Christian; Wadsworth, Hannah; Wilmoth, Kristin; Clem, Matthew; Hart, John; Womack, Kyle B.; Didehbani, Nyaz; Lacritz, Laura H.; Rossetti, Heidi C.; Cullum, C. Munro
2016-01-01
Objective This study examined whether a history of traumatic brain injury (TBI) is associated with earlier onset of Alzheimer disease (AD), independent of apolipoprotein ε4 status (Apoe4) and gender. Method Participants with a clinical diagnosis of AD (n=7625) were obtained from the National Alzheimer’s Coordinating Center Uniform Data Set, and categorized based on self-reported lifetime TBI with loss of consciousness (LOC) (TBI+ vs TBI-) and presence of Apoe4. ANCOVAs, controlling for gender, race, and education were used to examine the association between history of TBI, presence of Apoe4, and an interaction of both risk factors on estimated age of AD onset. Results Estimated AD onset differed by TBI history and Apoe4 independently (p’s <.001). The TBI+ group had a mean age of onset 2.5 years earlier than the TBI- group. Likewise, Apoe4 carriers had a mean age of onset 2.3 years earlier than non-carriers. While the interaction was non-significant (p = .34), participants having both a history of TBI and Apoe4 had the earliest mean age of onset compared to those with a TBI history or Apoe4 alone (MDifference = 2.8 & 2.7 years, respectively). These results remained unchanged when stratified by gender. Conclusions History of self-reported TBI can be associated with an earlier onset of AD-related cognitive decline, regardless of Apoe4 status and gender. TBI may be related to an underlying neurodegenerative process in AD, but the implications of age at time of injury, severity, and repetitive injuries remain unclear. PMID:27855547
Moallem, U; Dahl, G E; Duffey, E K; Capuco, A V; Erdman, R A
2004-11-01
The objectives of this study were to determine the effects of dietary rumen-undegradable protein (RUP) and bovine somatotropin (bST) during the period from weaning until puberty on body weight (BW) and skeletal growth rates and age at puberty. Fifty-one Holstein heifers at 90 d of age were randomly assigned to 4 treatment groups consisting of 0.1 mg/kg BW per day of bST and 2% added dietary RUP (dry matter basis) applied in a 2 x 2 factorial design (n = 13 per group, except bST with no RUP group, n = 12). From 90 to 314 d, bST increased average daily gain (ADG) by 0.07 kg/d and BW by 16.2 kg, while added RUP increased ADG by 0.10 kg/d and BW by 21.4 kg. Both bST and added RUP effects on BW and ADG were additive. Skeletal growth rates, as measured by withers height (WH) and hip height (HH) were increased by both bST and added RUP. Somatotropin and RUP increased WH by 1.8 and 2.7 cm and hip height by 2.5 and 4.0 cm, respectively, at 314 d of age. Growth curves showed that added RUP effects on rates of BW, WH, and HH growth were greatest from 90 to 150 d age and diminished thereafter, suggesting that protein was limiting during this time period. Conversely, bST effects tended to be greater as the heifers approached puberty, but only in the presence of added RUP. Age at puberty was not affected by treatment, averaging 314 d of age across treatments. From 314 to 644 d of age, rates of BW, WH, and HH growth were similar among treatment groups. However, treatment differences present at 314 d of age persisted through 644 d of age, more than 10 mo after treatments ceased. These results suggest that protein during the early postweaning period and bST during the 200 to 300 d of age period just prior to puberty could be used to accelerate simultaneous increases in both BW and skeletal growth rates in dairy heifers without reducing age at puberty.
Clinical Features of Alzheimer Disease With and Without Lewy Bodies.
Chung, Eun Joo; Babulal, Ganesh M; Monsell, Sarah E; Cairns, Nigel J; Roe, Catherine M; Morris, John C
2015-07-01
Lewy bodies are a frequent coexisting pathology in late-onset Alzheimer disease (AD). Previous studies have examined the contribution of Lewy bodies to the clinical phenotype of late-onset AD with variable findings. To determine whether the presence of Lewy body pathology influences the clinical phenotype and progression of symptoms in longitudinally assessed participants with AD. Retrospective clinical and pathological cohort study of 531 deceased participants who met the neuropathologic criteria for intermediate or high likelihood of AD according to the National Institute on Aging-Ronald Reagan Institute guidelines for the neuropathologic diagnosis of AD. All participants had a clinical assessment within 2 years of death. The data were obtained from 34 AD centers maintained by the National Alzheimer Coordinating Center and spanned from September 12, 2005, to April 30, 2013. Standardized neuropathologic assessment and then brain autopsy after death. Clinical and neuropsychiatric test scores. The mean (SD) age at death was statistically significantly younger for participants who had AD with Lewy bodies (77.9 [9.5] years) than for participants who had AD without Lewy bodies (80.2 [11.1] years) (P = .01). The mean (SD) age at onset of dementia symptoms was also younger for participants who had AD with Lewy bodies (70.0 [9.9] years) than for participants who had AD without Lewy bodies (72.2 [12.3] years) (P = .03). More men than women had AD with Lewy bodies (P = .01). The frequency of having at least 1 APOE ε4 allele was higher for participants who had AD with Lewy bodies than for participants who had AD without Lewy bodies (P = .03). After adjusting for age, sex, education, frequency of plaques (neuritic and diffuse), and tangle stage, we found that participants who had AD with Lewy bodies had a statistically significantly higher mean (SD) Neuropsychiatric Inventory Questionnaire score (6.59 [1.44] [95% CI, 3.75-9.42] vs 5.49 [1.39] [95% CI, 2.76-8.23]; P = .04) and a statistically significantly higher mean (SD) Unified Parkinson Disease Rating Scale motor score (0.81 [0.18] [95% CI, 0.45-1.17] vs 0.54 [0.18] [95% CI, 0.19-0.88]; P < .001) than did participants who had AD without Lewy bodies. Participants with both AD and Lewy body pathology have a clinical phenotype that may be distinguished from AD alone. The frequency of Lewy bodies in AD and the association of Lewy bodies with the APOE ε4 allele suggest potential common mechanisms for AD and Lewy body pathologies.
Monophasic demyelination reduces brain growth in children
Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis
2017-01-01
Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515
Monophasic demyelination reduces brain growth in children.
Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis
2017-05-02
To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.
Ortner, Marion; Kurz, Alexander; Alexopoulos, Panagiotis; Auer, Florian; Diehl-Schmid, Janine; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Perneczky, Robert; Sorg, Christian; Yousefi, Behrooz H; Grimmer, Timo
2015-04-15
There is controversy concerning whether Alzheimer's disease (AD) with early onset is distinct from AD with late onset with regard to amyloid pathology and neuronal metabolic deficit. We hypothesized that compared with patients with early-onset AD, patients with late-onset AD have more comorbid small vessel disease (SVD) contributing to clinical severity, whereas there are no differences in amyloid pathology and neuronal metabolic deficit. The study included two groups of patients with probable AD dementia with evidence of the AD pathophysiologic process: 24 patients with age at onset <60 years old and 36 patients with age at onset >70 years old. Amyloid deposition was assessed using carbon-11-labeled Pittsburgh compound B positron emission tomography, comorbid SVD was assessed using magnetic resonance imaging, and neuronal metabolic deficit was assessed using fluorodeoxyglucose positron emission tomography. Group differences of global and regional distribution of pathology were explored using region of interest and voxel-based analyses, respectively, carefully controlling for the influence of dementia severity, apolipoprotein E genotype, and in particular SVD. The pattern of cognitive impairment was determined using z scores of the subtests of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery. Patients with late-onset AD showed a significantly greater amount of SVD. No statistically significant differences in global or regional amyloid deposition or neuronal metabolic deficit between the two groups were revealed. However, when not controlling for SVD, subtle differences in fluorodeoxyglucose uptake between early-onset AD and late-onset AD groups were detectable. There were no significant differences regarding cognitive functioning. Age at onset does not influence amyloid deposition or neuronal metabolic deficit in AD. The greater extent of SVD in late-onset AD influences the association between neuronal metabolic deficit and clinical symptoms. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Exposure and perceptions of marketing for caffeinated energy drinks among young Canadians.
Hammond, David; Reid, Jessica L
2018-02-01
To examine exposure to energy drink marketing among youth and young adults, and test perceptions of energy drink advertisements (ads) regarding target audience age and promoting energy drink use during sports. A between-group experiment randomly assigned respondents to view one of four energy drink ads (sport-themed or control) and assessed perceptions of the ad. Regression models examined marketing exposure and perceptions. Online survey (2014). Canadians aged 12-24 years (n 2040) from a commercial panel. Overall, 83 % reported ever seeing energy drink ads through at least one channel, including on television (60 %), posters/signs in stores (49 %) and online (44 %). Across experimental conditions, most respondents (70·1 %) thought the ad they viewed targeted people their age or younger, including 42·2 % of those aged 12-14 years. Two sport-themed ads were more likely to be perceived as targeting a younger audience (adjusted OR (95 % CI): 'X Games' 36·5 %, 4·16 (3·00, 5·77); 'snowboard' 19·2 %, 1·50 (1·06, 2·13)) v. control (13·3 %). Participants were more likely to believe an ad promoted energy drink use during sports if they viewed any sport-themed ad ('X Games' 69·9 %, 8·29 (6·24, 11·02); 'snowboard' 76·7 %, 11·85 (8·82, 15·92); 'gym' 66·8 %, 7·29 (5·52, 9·64)) v. control (22·0 %). Greater reported exposure to energy drink marketing was associated with perceiving study ads as promoting energy drink use during sports. Energy drink marketing has a high reach among young people. Ads for energy drinks were perceived as targeting youth and promoting use during sports. Such ads may be perceived as making physical performance claims, counter to Canadian regulations.
Fatty aspirin: a new perspective in the prevention of dementia of Alzheimer's type?
Pomponi, M; Di Gioia, A; Bria, P; Pomponi, M F L
2008-10-01
Alzheimer's disease (AD) leads to a dramatic decline in cognitive abilities and memory. A more modest disruption of memory often occurs in normal aging and the same circuits that are devastated through degeneration in AD are vulnerable to sub-lethal age-related changes that alter synaptic transmission. There are numerous indications that aberrant plasticity is critically involved in Alzheimer's. Is ageing itself the major risk factor for AD? Is AD an acceleration of normal ageing? We assume that the ability of the brain is to modify its own structural organization and functioning which is liable to become impaired in ageing until it becomes dramatically impaired in Alzheimer's. Moreover, ageing can compromise the conversion of dietary alpha-linolenic acid (ALA) to docosahexaenoic acid (DHA). DHA regulates synaptogenesis and affects the synaptic structure, and synapse density is reduced in ageing. DHA and newly identified DHA-derived messenger, neuroprotecting D1 (NPD1), protect synapses and decrease the number of activated microglia in the hippocampal system. Delaying AD onset by a few years would reduce the number of the cases of dementia in the community. DHA (and NPD1?) and aspirin induce brain-derived neurotrophic factor (BDNF) protein expression and this protein has a crucial role in neuronal survival. The authors--in view of the increased neuroinflammatory reaction frequently observed during normal brain ageing--suggest the long-term use of "fatty aspirin", an association of DHA and/or NPD1 and aspirin (or nitroaspirin), to postpone, or prevent, the structural neurodegeneration of the brain.
Ott, H; Wilke, J; Baron, J M; Höger, P H; Fölster-Holst, R
2010-04-01
Soluble immune receptors (SIRs) have been proposed as biomarkers in patients with atopic dermatitis (AD). However, their clinical applicability in affected children has rarely been studied. To assess the diagnostic usefulness of serum SIRs in childhood AD by correlating the obtained receptor profiles with serological parameters and clinical features such as age, AD phenotype and disease severity. We investigated 100 children with AD. The sCD14, sCD23, sCD25, sCD30, total IgE (tIgE) and eosinophilic cationic protein (ECP) were determined using sera of all children. The clinical phenotype was classified as extrinsic AD (ADe) or intrinsic AD (ADi) by the presence of allergen-specific IgE antibodies. A total of 55 male and 45 female children were recruited. The sCD23, sCD25 and sCD30 serum levels revealed significant age-dependency. At a mean SCORAD of 40 (range 8-98), none of the evaluated SIRs was correlated to disease severity. In all, 73% of patients suffered from ADe while 27% showed the ADi phenotype. None of the analysed SIRs differed significantly between ADe and ADi patients, while tIgE and ECP levels were elevated in the ADe subgroup. The current study provides evidence that sCD23, sCD25 and sCD30 serum levels are highly age-dependent. Serum concentrations of all investigated SIRs did not significantly correlate with disease severity in children with AD and were not differentially expressed in patients of different AD phenotypes. Therefore, we believe that the studied SIRs cannot be regarded as clinically useful biomarkers for the assessment of childhood AD.
Shafi, Ovais
2016-11-22
The AD etiology is yet not properly known. Interactions among environmental factors, multiple susceptibility genes and aging, contribute to AD. This study investigates the factors that play role in causing AD and how changes in cellular pathways contribute to AD. PUBMED database, MEDLINE database and Google Scholar were searched with no date restrictions for published articles involving cellular pathways with roles in cancers, cell survival, growth, proliferation, development, aging, and also contributing to Alzheimer's disease. This research explores inverse relationship between AD and cancer, also investigates other factors behind AD using several already published research literature to find the etiology of AD. Cancer and Alzheimer's disease have inverse relationship in many aspects such as P53, estrogen, neurotrophins and growth factors, growth and proliferation, cAMP, EGFR, Bcl-2, apoptosis pathways, IGF-1, HSV, TDP-43, APOE variants, notch signals and presenilins, NCAM, TNF alpha, PI3K/AKT/MTOR pathway, telomerase, ROS, ACE levels. AD occurs when brain neurons have weakened growth, cell survival responses, maintenance mechanisms, weakened anti-stress responses such as Vimentin, Carbonic anhydrases, HSPs, SAPK. In cancer, these responses are upregulated and maintained. Evolutionarily conserved responses and maintenance mechanisms such as FOXO are impaired in AD. Countermeasures or compensatory mechanisms by AD affected neurons such as Tau, Beta Amyloid, S100, are last attempts for survival which may be protective for certain time, or can speed up AD in Alzheimer's microenvironment via C-ABL activation, GSK3, neuro-inflammation. Alzheimer's disease and Cancer have inverse relationship; many factors that are upregulated in any cancer to sustain growth and survival are downregulated in Alzheimer's disease contributing to neuro-degeneration. When aged neurons or genetically susceptible neurons have weakened growth, cell survival and anti-stress responses, age related gene expression changes, altered regulation of cell death and maintenance mechanisms, they contribute to Alzheimer's disease. Countermeasures by AD neurons such as Beta Amyloid Plaques, NFTs, S100, are last attempts for survival and this provides neuroprotection for certain time and ultimately may become pathological and speed up AD. This study may contribute in developing new potential diagnostic tests, interventions and treatments.
Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer’s Disease
Winick-Ng, Warren; Rylett, R. Jane
2018-01-01
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed. PMID:29541020
Physiological falls risk assessment in older people with Alzheimer's disease.
Lorbach, Edwina R; Webster, Kate E; Menz, Hylton B; Wittwer, Joanne E; Merory, John R
2007-01-01
Falls are common in people with Alzheimer's disease (AD). There is some evidence that deficits in vision, peripheral sensation, strength, reaction time and balance may be partly responsible for this increased risk. To determine the feasibility and test-retest reliability of a physiological test battery designed to assess falls risk [the Physiological Profile Assessment (PPA)] in people with AD, and to compare their PPA scores to age- and sex-matched controls. Twenty-one community-dwelling people with probable, mild to moderate AD aged 63-91 years, and 21 age- and sex-matched controls underwent the PPA tests and the Mini-Mental State Examination. All tests were then repeated in the AD group to determine test-retest reliability. Most of the PPA tests could be successfully administered to participants with AD. The AD group had a significantly higher overall falls risk score (t(40) = -2.41, p < 0.02), slower hand (t(40) = -4.86, p < 0.01) and foot reaction time (t(40) = -2.26, p < 0.05) and worse coordinated stability (t(40) = -2.40, p < 0.05) than the controls. Physiological falls risk assessment is feasible in older people with mild to moderate AD. Older people with AD demonstrate significant impairments in several physiological domains, particularly reaction time, compared to controls.
TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice.
Christensen, Amy; Pike, Christian J
2018-06-17
Alzheimer's disease (AD) pathogenesis is a multifactorial process that involves numerous pathways within the central nervous system. Thus, interventions that interact with several disease-related pathways may offer an increased opportunity for successful prevention and treatment of AD. Translocator protein 18 kD (TSPO) is a mitochondrial protein that is associated with regulation of many cellular processes including inflammation, steroid synthesis, apoptosis, and mitochondrial respiration. Although TSPO ligands have been shown to be protective in several neurodegenerative paradigms, little work has been done to assess their potential as treatments for AD. Female 3xTg-AD mice were administered the TSPO ligand PK11195 once weekly for 5 weeks beginning at an age 16 months, an age characterized by extensive β-amyloid pathology and behavioral impairments. Animals treated with PK11195 showed improvements in behavior and modest reductions of in both soluble and deposited β-amyloid. The finding that short-term PK11195 treatment was effective in improving both behavioral and pathological outcomes in a model of late-stage AD supports further investigation of TSPO ligands as potential therapeutics for the treatment of AD. Copyright © 2018. Published by Elsevier B.V.
Bachstetter, Adam D; Van Eldik, Linda J; Schmitt, Frederick A; Neltner, Janna H; Ighodaro, Eseosa T; Webster, Scott J; Patel, Ela; Abner, Erin L; Kryscio, Richard J; Nelson, Peter T
2015-05-23
Neuropathological, genetic, and biochemical studies have provided support for the hypothesis that microglia participate in Alzheimer's disease (AD) pathogenesis. Despite the extensive characterization of AD microglia, there are still many unanswered questions, and little is known about microglial morphology in other common forms of age-related dementia: particularly, dementia with Lewy bodies (DLB) and hippocampal sclerosis of aging (HS-Aging). In addition, no prior studies have attempted to compare and contrast the microglia morphology in the hippocampus of various neurodegenerative conditions. Here we studied cases with pathologically-confirmed AD (n = 7), HS-Aging (n = 7), AD + HS-aging (n = 4), DLB (n = 12), and normal (cognitively intact) controls (NC) (n = 9) from the University of Kentucky Alzheimer's Disease Center autopsy cohort. We defined five microglia morphological phenotypes in the autopsy samples: ramified, hypertrophic, dystrophic, rod-shaped, and amoeboid. The Aperio ScanScope digital neuropathological tool was used along with two well-known microglial markers: IBA1 (a marker for both resting and activated microglia) and CD68 (a lysosomal marker in macrophages/microglia associated with phagocytic cells). Hippocampal staining analyses included studies of subregions within the hippocampal formation and nearby white matter. Using these tools and methods, we describe variation in microglial characteristics that show some degree of disease specificity, including, (1) increased microglia density and number in HS-aging and AD + HS-aging; (2) low microglia density in DLB; (3) increased number of dystrophic microglia in HS-aging; and (4) increased proportion of dystrophic to all microglia in DLB. We conclude that variations in morphologies among microglial cells, and cells of macrophage lineage, can help guide future work connecting neuroinflammatory mechanisms with specific neurodegenerative disease subtypes.
Ghosh, Debolina; Levault, Kelsey R; Brewer, Gregory J
2014-08-01
Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Roy, Maggie; Cardoso, Cécile; Dorieux, Olène; Malgorn, Carole; Epelbaum, Stephane; Petit, Fanny; Kraska, Audrey; Brouillet, Emmanuel; Delatour, Benoît; Perret, Martine; Aujard, Fabienne; Dhenain, Marc
2014-01-01
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β peptide (Aβ) deposition in the brain is one of its hallmarks and the measure of plasma Aβ is considered to be a biomarker for anti-amyloid drug efficacy in animal models of AD. However, age-associated plasmatic Aβ modulation in animal models is practically never addressed in the literature. Mouse lemur primates are used as a model of normal and AD-like cerebral aging. Here, we studied the effect of age on plasmatic Aβ in 58 mouse lemurs aged from 1 to 10 years. A subset of animals presented high plasmatic Aβ and the proportion of animals with high plasmatic Aβ was higher in aged animals as compared to young ones. Histological evaluation of the brain of some of these animals was carried out to assess extracellular and intracellular amyloid load. In aged lemurs, plasmatic Aβ was negatively correlated with the density of neurons accumulating deposits of Aβ. PMID:25131002
Ma, Jing; Gao, Yuan; Jiang, Lin; Chao, Feng-Lei; Huang, Wei; Zhou, Chun-Ni; Tang, Wei; Zhang, Lei; Huang, Chun-Xia; Zhang, Yi; Luo, Yan-Min; Xiao, Qian; Yu, Hua-Rong; Jiang, Rong; Tang, Yong
2017-04-25
Selective serotonin reuptake inhibitors (SSRIs) have been reported to increase cognitive performance in some clinical studies of Alzheimer's disease (AD). However, there is a lack of evidence supporting the efficacy of SSRIs as cognition enhancers in AD, and the role of SSRIs as a treatment for AD remains largely unclear. Here, we characterized the impact of fluoxetine (FLX), a well-known SSRI, on neurons in the dentate gyrus (DG) and in CA1 and CA3 of the hippocampus of middle-aged (16 to 17 months old) APPswe/PSEN1dE9 (APP/PS1) transgenic AD model mice. We found that intraperitoneal (i.p.) injection of FLX (10 mg/kg/day) for 5 weeks effectively alleviated the impairment of spatial learning ability in middle-aged APP/PS1 mice as evaluated using the Morris water maze. More importantly, the number of neurons in the hippocampal DG was significantly increased by FLX. Additionally, FLX reduced the deposition of beta amyloid, inhibited GSK-3β activity and increased the level of β-catenin in middle-aged APP/PS1 mice. Collectively, the results of this study indicate that FLX delayed the progression of neuronal loss in the hippocampal DG in middle-aged AD mice, and this effect may underlie the FLX-induced improvement in learning ability. FLX may therefore serve as a promising therapeutic drug for AD.
Penney, T. L.; Corder, K.; White, M.; van Sluijs, E. M. F.
2017-01-01
Summary Added sugar intake during adolescence has been associated with weight gain and cardiometabolic risk factors. Moreover, dietary habits may persist into adulthood, increasing chronic disease risk in later life. This systematic review investigated changes in intake of added sugars between the ages of 13 and 30 years. Literature databases were searched for longitudinal studies of diet during adolescence or early adulthood. Retrieved articles were screened for studies including multiple measures of intake of sugars or sugary foods from cohort participants between the ages of 13 and 30. Data were analysed using random‐effects meta‐analysis, by the three main nutrient and food group categories identified (PROSPERO: CRD42015030126). Twenty‐four papers reported longitudinal data on intake of added sugar or sucrose (n = 6), sugar‐sweetened beverages (SSBs) (n = 20) and/or confectionery (n = 9). Meta‐analysis showed a non‐significant per year of age decrease in added sugar or sucrose intake (−0.15% total energy intake (95%CI −0.41; 0.12)), a decrease in confectionery consumption (−0.20 servings/week (95%CI −0.41; −0.001)) and a non‐significant decrease in SSB consumption (−0.15 servings/week (95%CI −0.32; 0.02)). Taken together, the overall decrease in added sugar intake observed from adolescence to early adulthood may suggest opportunities for intervention to further improve dietary choices within this age range. PMID:28869998
Ma, Jing; Gao, Yuan; Jiang, Lin; Chao, Feng-lei; Huang, Wei; Zhou, Chun-ni; Tang, Wei; Zhang, Lei; Huang, Chun-xia; Zhang, Yi; Luo, Yan-min; Xiao, Qian; Yu, Hua-rong; Jiang, Rong; Tang, Yong
2017-01-01
Selective serotonin reuptake inhibitors (SSRIs) have been reported to increase cognitive performance in some clinical studies of Alzheimer’s disease (AD). However, there is a lack of evidence supporting the efficacy of SSRIs as cognition enhancers in AD, and the role of SSRIs as a treatment for AD remains largely unclear. Here, we characterized the impact of fluoxetine (FLX), a well-known SSRI, on neurons in the dentate gyrus (DG) and in CA1 and CA3 of the hippocampus of middle-aged (16 to 17 months old) APPswe/PSEN1dE9 (APP/PS1) transgenic AD model mice. We found that intraperitoneal (i.p.) injection of FLX (10 mg/kg/day) for 5 weeks effectively alleviated the impairment of spatial learning ability in middle-aged APP/PS1 mice as evaluated using the Morris water maze. More importantly, the number of neurons in the hippocampal DG was significantly increased by FLX. Additionally, FLX reduced the deposition of beta amyloid, inhibited GSK-3β activity and increased the level of β-catenin in middle-aged APP/PS1 mice. Collectively, the results of this study indicate that FLX delayed the progression of neuronal loss in the hippocampal DG in middle-aged AD mice, and this effect may underlie the FLX-induced improvement in learning ability. FLX may therefore serve as a promising therapeutic drug for AD. PMID:28430602
Wang, Zhi-Hao; Gong, Ke; Liu, Xia; Zhang, Zhentao; Sun, Xiaoou; Wei, Zheng Zachory; Yu, Shan Ping; Manfredsson, Fredric P; Sandoval, Ivette M; Johnson, Peter F; Jia, Jianping; Wang, Jian-Zhi; Ye, Keqiang
2018-05-03
Delta-secretase cleaves both APP and Tau to mediate the formation of amyloid plaques and neurofibrillary tangle in Alzheimer's disease (AD). However, how aging contributes to an increase in delta-secretase expression and AD pathologies remains unclear. Here we show that a CCAAT-enhancer-binding protein (C/EBPβ), an inflammation-regulated transcription factor, acts as a key age-dependent effector elevating both delta-secretase (AEP) and inflammatory cytokines expression in mediating pathogenesis in AD mouse models. We find that C/EBPβ regulates delta-secretase transcription and protein levels in an age-dependent manner. Overexpression of C/EBPβ in young 3xTg mice increases delta-secretase and accelerates the pathological features including cognitive dysfunctions, which is abolished by inactive AEP C189S. Conversely, depletion of C/EBPβ from old 3xTg or 5XFAD mice diminishes delta-secretase and reduces AD pathologies, leading to amelioration of cognitive impairment in these AD mouse models. Thus, our findings support that C/EBPβ plays a pivotal role in AD pathogenesis via increasing delta-secretase expression.
Genetic dissection of Alzheimer disease, a heterogeneous disorder.
Schellenberg, G D
1995-09-12
The genetics of Alzheimer disease (AD) are complex and not completely understood. Mutations in the amyloid precursor protein gene (APP) can cause early-onset autosomal dominant AD. In vitro studies indicate that cells expressing mutant APPs overproduce pathogenic forms of the A beta peptide, the major component of AD amyloid. However, mutations in the APP gene are responsible for 5% or less of all early-onset familial AD. A locus on chromosome 14 is responsible for AD in other early-onset AD families and represents the most severe form of the disease in terms of age of onset and rate of decline. Attempts to identify the AD3 gene by positional cloning methods are underway. At least one additional early-onset AD locus remains to be located. In late-onset AD, the apolipoprotein E gene allele epsilon 4 is a risk factor for AD. This allele appears to act as a dose-dependent age-of-onset modifier. The epsilon 2 allele of this gene may be protective. Other late-onset susceptibility factors remain to be identified.
Familial occurrence of cervical artery dissection--coincidence or sign of familial predisposition?
Grond-Ginsbach, Caspar; de Freitas, Gabriel R; Campos, Cynthia R; Thie, Andreas; Caso, Valeria; Machetanz, Jochen; Kloss, Manja
2012-01-01
BACKGROUNDAND PURPOSE: The etiology of spontaneous cervical artery dissection (CeAD) is poorly understood in most patients. Mild cervical trauma preceding the dissection event is a common finding, but many CeAD occur spontaneously. It is likely that genetic factors may increase the risk for CeAD. However, familial cases are excedingly rare. Familial clustering of CeAD may be accidental or associated with genetic or environmental risk factors shared between affected relatives. In this explorative study, we aim to show that specific risk factors for familial CeAD exist. Age of onset, sex, affected artery and number of recurrent CeAD were documented for familial patients and compared with published findings from patients with sporadic CeAD. Concordance of age, sex and dissected artery within the families was analyzed by correlation analysis and by analysis of variance or Kruskal-Wallis testing. The study sample consisted of 9 new patients with a family history of CeAD enrolled in the Neurology Department of the University of Heidelberg or referred to Heidelberg from other centers. The study sample also included published findings from another 23 patients, in total 32 patients. The mean age of the patients with familial CeAD at their first dissections was 38.4 ± 13.3 years. Twenty (62.5%) patients were female and 12 patients (37.5%) suffered multiple dissections. Four patients (12.5%) presented with recurrent dissections after >1 year. Patients with a familial history of CeAD were younger (p = 0.023) and presented more often with multiple dissections (p = 0.024) and recurrent dissections (p = 0.018). Age at the first event (correlation analysis p = 0.026; analysis of variance p = 0.029) and site of the dissection (correlation analysis p = 0.032; Kruskal-Wallis test p = 0.018) differed between the families, and there was no concordance of gender of affected family members (correlation analysis p = 0.500; Kruskal-Wallis test p = 0.211). The high prevalence of multiple dissection events and of long-term (>1 year) recurrent dissections in patients with a familial history of CeAD indicates that a specific predisposition for familial CeAD exists. Since age of onset and affected vessel differ between families, the risk profile for familial CeAD is heterogeneous. A large-scale (whole exome) sequencing analysis of 14 patients from 7 of the analyzed families is currently being performed in order to identify causative genetic variants. Copyright © 2012 S. Karger AG, Basel.
Peripapillary Choroidal Thickness Variation With Age and Race in Normal Eyes
Rhodes, Lindsay A.; Huisingh, Carrie; Johnstone, John; Fazio, Massimo A.; Smith, Brandon; Wang, Lan; Clark, Mark; Downs, J. Crawford; Owsley, Cynthia; Girard, Michael J. A.; Mari, Jean Martial; Girkin, Christopher A.
2015-01-01
Purpose. This study examined the association between peripapillary choroidal thickness (PCT) with age and race in a group of African descent (AD) and European descent (ED) subjects with normal eyes. Methods. Optic nerve head images from enhanced depth imaging spectral-domain optical coherence tomography of 166 normal eyes from 84 subjects of AD and ED were manually delineated to identify the principal surfaces of Bruch's membrane (BM), Bruch's membrane opening (BMO), and anterior sclera (AS). Peripapillary choroidal thickness was measured between BM and AS at increasing distance away from BMO. The mean PCT was compared between AD and ED subjects and generalized estimating equation (GEE) regression analysis was used to examine the association between race and PCT overall, in each quadrant, and by distance from BMO. Models were adjusted for age, BMO area, and axial length in the regression analysis. Results. Overall, the mean PCT increased from 63.9 μm ± 18.1 at 0 to 250 μm to 170.3 μm ± 56.7 at 1500 to 2000 μm from BMO. Individuals of AD had a greater mean PCT than those of ED at all distances from BMO (P < 0.05 at each distance) and in each quadrant (P < 0.05 in each quadrant). Results from multivariate regression indicate that ED subjects had significantly lower PCT compared to AD overall and in all quadrants and distances from BMO. Increasing age was also significantly associated with a lower PCT in both ED and AD participants. Conclusions. Peripapillary choroidal thickness varies with race and age, as individuals of AD have a thicker peripapillary choroid than those of ED. (ClinicalTrials.gov number, NCT00221923.) PMID:25711640
Chernyshov, Pavel V; Ho, Roger C; Monti, Fiorella; Jirakova, Anna; Velitchko, Svitlana S; Hercogova, Jana; Neri, Erica
2015-01-01
Atopic dermatitis (AD) is a common childhood chronic inflammatory skin condition that greatly affects the quality of life (QoL) of affected children and their families. The aim of our study was to assess QoL and family QoL of children with AD from 4 different countries and then compare the data, evaluating the effects of AD severity and age of children. Data on the Children's Dermatology Life Quality Index (CDLQI) and the Dermatitis Family Impact (DFI) questionnaires and the SCORAD index of 167 AD children 5-16 years old from Ukraine, Czech Republic, Singapore, and Italy was used for the study. SCORAD correlated with the CDLQI in all 4 countries and with DFI in all countries except Singapore. Only in Czech children did the CDLQI correlate with their age. No significant correlations between age and DFI results were found. AD symptoms and expenditures related to AD were highly scored in all countries. Impact of AD on friendship and relations between family members were among the lower scored items, and family problems did not increase proportionately with duration of AD in any of the four countries. Self-assessed health-related QoL of children with AD in our study correlated better in most cases with disease severity than family QoL results. Parents of school children with AD were generally less stressed, tired, and exhausted than parents of preschool children. These data together with results showing that duration of AD in children does not affect relations between parents and other family members is optimistic news for families with children with AD who did not recover until adolescence.
Alzheimer's disease and diet: a systematic review.
Yusufov, Miryam; Weyandt, Lisa L; Piryatinsky, Irene
2017-02-01
Purpose/Aim: Approximately 44 million people worldwide have Alzheimer's disease (AD). Numerous claims have been made regarding the influence of diet on AD development. The aims of this systematic review were to summarize the evidence considering diet as a protective or risk factor for AD, identify methodological challenges and limitations, and provide future research directions. Medline, PsycINFO and PsycARTICLES were searched for articles that examined the relationship between diet and AD. On the basis of the inclusion and exclusion criteria, 64 studies were included, generating a total of 141 dietary patterns or "models". All studies were published between 1997 and 2015, with a total of 132 491 participants. Twelve studies examined the relationship between a Mediterranean (MeDi) diet and AD development, 10 of which revealed a significant association. Findings were inconsistent with respect to sample size, AD diagnosis and food measures. Further, the majority of studies (81.3%) included samples with mean baseline ages that were at risk for AD based on age (>65 years), ranging from 52.0 to 85.4 years. The range of follow-up periods was 1.5-32.0 years. The mean age of the samples poses a limitation in determining the influence of diet on AD; given that AD has a long prodromal phase prior to the manifestation of symptoms and decline. Further studies are necessary to determine whether diet is a risk or protective factor for AD, foster translation of research into clinical practice and elucidate dietary recommendations. Despite the methodological limitations, the finding that 50 of the 64 reviewed studies revealed an association between diet and AD incidence offers promising implications for diet as a modifiable risk factor for AD.
Ordered-subsets linkage analysis detects novel Alzheimer disease loci on chromosomes 2q34 and 15q22.
Scott, William K; Hauser, Elizabeth R; Schmechel, Donald E; Welsh-Bohmer, Kathleen A; Small, Gary W; Roses, Allen D; Saunders, Ann M; Gilbert, John R; Vance, Jeffery M; Haines, Jonathan L; Pericak-Vance, Margaret A
2003-11-01
Alzheimer disease (AD) is a complex disorder characterized by a wide range, within and between families, of ages at onset of symptoms. Consideration of age at onset as a covariate in genetic-linkage studies may reduce genetic heterogeneity and increase statistical power. Ordered-subsets analysis includes continuous covariates in linkage analysis by rank ordering families by a covariate and summing LOD scores to find a subset giving a significantly increased LOD score relative to the overall sample. We have analyzed data from 336 markers in 437 multiplex (>/=2 sampled individuals with AD) families included in a recent genomic screen for AD loci. To identify genetic heterogeneity by age at onset, families were ordered by increasing and decreasing mean and minimum ages at onset. Chromosomewide significance of increases in the LOD score in subsets relative to the overall sample was assessed by permutation. A statistically significant increase in the nonparametric multipoint LOD score was observed on chromosome 2q34, with a peak LOD score of 3.2 at D2S2944 (P=.008) in 31 families with a minimum age at onset between 50 and 60 years. The LOD score in the chromosome 9p region previously linked to AD increased to 4.6 at D9S741 (P=.01) in 334 families with minimum age at onset between 60 and 75 years. LOD scores were also significantly increased on chromosome 15q22: a peak LOD score of 2.8 (P=.0004) was detected at D15S1507 (60 cM) in 38 families with minimum age at onset >/=79 years, and a peak LOD score of 3.1 (P=.0006) was obtained at D15S153 (62 cM) in 43 families with mean age at onset >80 years. Thirty-one families were contained in both 15q22 subsets, indicating that these results are likely detecting the same locus. There is little overlap in these subsets, underscoring the utility of age at onset as a marker of genetic heterogeneity. These results indicate that linkage to chromosome 9p is strongest in late-onset AD and that regions on chromosome 2q34 and 15q22 are linked to early-onset AD and very-late-onset AD, respectively.
Marketing pharmaceutical drugs to women in magazines: a content analysis.
Sokol, Jennifer; Wackowski, Olivia; Lewis, M J
2010-01-01
To examine the prevalence and content of pharmaceutical ads in demographically different women's magazines. A content analysis was conducted using one year's worth of 5 different women's magazines of varying age demographics. Magazines differed in the proportion of drug ads for different health conditions (eg, cardiovascular) and target audience by age demographic. Use of persuasive elements (types of appeals, evidence) varied by condition promoted (eg, mental-health drug ads more frequently used emotional appeals). Ads placed greater emphasis on direction to industry information resources than on physician discussions. Prevalence of pharmaceutical advertising in women's magazines is high; continued surveillance is recommended.
Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T. V.
2010-12-01
Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.
Allen, Mariet; Zou, Fanggeng; Chai, High Seng; Younkin, Curtis S; Miles, Richard; Nair, Asha A; Crook, Julia E; Pankratz, V Shane; Carrasquillo, Minerva M; Rowley, Christopher N; Nguyen, Thuy; Ma, Li; Malphrus, Kimberly G; Bisceglio, Gina; Ortolaza, Alexandra I; Palusak, Ryan; Middha, Sumit; Maharjan, Sooraj; Georgescu, Constantin; Schultz, Debra; Rakhshan, Fariborz; Kolbert, Christopher P; Jen, Jin; Sando, Sigrid B; Aasly, Jan O; Barcikowska, Maria; Uitti, Ryan J; Wszolek, Zbigniew K; Ross, Owen A; Petersen, Ronald C; Graff-Radford, Neill R; Dickson, Dennis W; Younkin, Steven G; Ertekin-Taner, Nilüfer
2012-04-11
Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these diseases, although inconsistent follow-up study designs make interpretation of results difficult. We assessed two previously reported SNPs, GSTO1 rs4925 and GSTO2 rs156697, in AD (3,493 ADs vs. 4,617 controls) and PD (678 PDs vs. 712 controls) for association with disease risk (case-controls), age-at-diagnosis (cases) and brain gene expression levels (autopsied subjects). We found that rs156697 minor allele associates with significantly increased risk (odds ratio = 1.14, p = 0.038) in the older ADs with age-at-diagnosis > 80 years. The minor allele of GSTO1 rs4925 associates with decreased risk in familial PD (odds ratio = 0.78, p = 0.034). There was no other association with disease risk or age-at-diagnosis. The minor alleles of both GSTO SNPs associate with lower brain levels of GSTO2 (p = 4.7 × 10-11-1.9 × 10-27), but not GSTO1. Pathway analysis of significant genes in our brain expression GWAS, identified significant enrichment for glutathione metabolism genes (p = 0.003). These results suggest that GSTO locus variants may lower brain GSTO2 levels and consequently confer AD risk in older age. Other glutathione metabolism genes should be assessed for their effects on AD and other chronic, neurologic diseases.
De Beaumont, Louis; Pelleieux, Sandra; Lamarre-Théroux, Louise; Dea, Doris; Poirier, Judes
2016-10-04
Genetic heterogeneity in amnestic mild cognitively impaired (aMCI) subjects could lead to variations in progression rates and response to cholinomimetic agents. Together with the apolipoprotein E4 (APOE-ɛ4) gene, butyrylcholinesterase (BCHE) has become recently one of the few Alzheimer's disease (AD) susceptibility genes with distinct pharmacogenomic properties. To validate candidate genes (APOE/BCHE) which display associations with age of onset of AD and donepezil efficacy in aMCI subjects. Using the Petersen et al. (2005) study on vitamin E and donepezil efficacy in aMCI, we contrasted the effects of BCHE and APOE variants on donepezil drug response using the Alzheimer's Disease Assessment Score-Cognition (ADAS-Cog) scale. Independently, we assessed the effects of APOE/BCHE genotypes on age of onset and cortical choline acetyltransferase activity in autopsy-confirmed AD and age-matched control subjects. Statistical analyses revealed a significant earlier age of onset in AD for APOE-ɛ4, BCHE-K*, and APOE-ɛ4/BCHE-K* carriers. Among the carriers of APOE-ɛ4 and BCHE-K*, the benefit of donepezil was evident at the end of the three-year follow-up. The responder's pharmacogenomic profile is consistent with reduced brain cholinergic activity measured in APOE-ɛ4 and BCHE-K* positive subjects. APOE-ɛ4 and BCHE-K* positive subjects display an earlier age of onset of AD, an accelerated cognitive decline and a greater cognitive benefits to donepezil therapy. These results clearly emphasize the necessity of monitoring potential pharmacogenomic effects in this population of subjects, and suggest enrichment strategies for secondary prevention trials involving prodromal AD subjects.
Katz, Mindy J; Lipton, Richard B; Hall, Charles B; Zimmerman, Molly E; Sanders, Amy E; Verghese, Joe; Dickson, Dennis W; Derby, Carol A
2012-01-01
As the population ages, the need to characterize rates of cognitive impairment and dementia within demographic groups defined by age, sex, and race becomes increasingly important. There are limited data available on the prevalence and incidence of amnestic mild cognitive impairment (aMCI) and nonamnestic mild cognitive impairment (naMCI) from population-based studies. The Einstein Aging Study, a systematically recruited community-based cohort of 1944 adults aged 70 or older (1168 dementia free at baseline; mean age, 78.8 y; average follow-up, 3.9 y), provides the opportunity to examine the prevalence and incidence rates for dementia, Alzheimer dementia (AD), aMCI, and naMCI by demographic characteristics. Dementia prevalence was 6.5% (4.9% AD). Overall dementia incidence was 2.9/100 person-years (2.3/100 person-years for AD). Dementia and AD rates increased with age but did not differ by sex. Prevalence of aMCI was 11.6%, and naMCI prevalence was 9.9%. aMCI incidence was 3.8 and naMCI incidence was 3.9/100 person-years. Rates of aMCI increased significantly with age in men and in blacks; sex, education, and race were not significant risk factors. In contrast, naMCI incidence did not increase with age; however, blacks were at higher risk compared with whites, even when controlling for sex and education. Results highlight the public health significance of preclinical cognitive disease.
Alzheimer, mitochondria and gender.
Grimm, Amandine; Mensah-Nyagan, Ayikoe Guy; Eckert, Anne
2016-08-01
Epidemiological studies revealed that two-thirds of Alzheimer's disease (AD) patients are women and the drop of sex steroid hormones after the menopause has been proposed to be one risk factor in AD. Similarly, the decrease of circulating testosterone levels with aging may also increase the risk of AD in men. Studies attest the neuroprotective effects of sex hormones in animal models of AD, but clinical trial data remain controversial. Here, we discuss the implication of mitochondria in gender differences observed in AD patients and animal models of AD. We summarize the role of mitochondria in aging and AD, pointing to the potential correlation between the loss of sex hormones and changes in the brain redox status. We discuss the protective effects of the sex hormones, estradiol, progesterone and testosterone with a specific focus on mitochondrial dysfunction in AD. The understanding of pathological processes linking the loss of sex hormones with mitochondrial dysfunction and mechanisms that initiate the disease onset may open new avenues for the development of gender-specific therapeutic approaches. Copyright © 2016. Published by Elsevier Ltd.
Interactions between inflammation, sex steroids, and Alzheimer’s disease risk factors
Uchoa, Mariana F.; Moser, V. Alexandra; Pike, Christian J.
2016-01-01
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution. PMID:27651175
Variability of age at onset in siblings with familial Alzheimer disease.
Gómez-Tortosa, Estrella; Barquero, M Sagrario; Barón, Manuel; Sainz, M Jose; Manzano, Sagrario; Payno, Maria; Ros, Raquel; Almaraz, Carmen; Gómez-Garré, Pilar; Jiménez-Escrig, Adriano
2007-12-01
Variability of age at onset (AO) of Alzheimer disease (AD) among members of the same family is important as a biological clue and because of its clinical effects. To evaluate which clinical variables influence the discrepancy in AO among affected relatives with familial AD. Clinical genetic project of Spanish kindred with AD conducted by 4 academic hospitals in Madrid, Spain. Age at onset of AD in 162 families and discrepancy in AO in intragenerational and intergenerational affected pairs were analyzed in relation to age, sex, maternal or paternal transmission, pattern of inheritance, and apolipoprotein E genotype. Maternal transmission of AD was significantly more frequent than paternal transmission (P < .001). In 27% of the affected individuals, AO occurred before the patient was 65 years old. Discrepancy in AO among siblings was within 5 years in 44% of the families, 6 to 10 years in 29%, and more than 10 years in 27% (range, 0-22). This discrepancy was independent of the sex of the sibling pairs and was significantly lower with maternal transmission of AD (P = .02). Segregation analysis showed no differences in the inheritance pattern between families with low (< or =5 years) or high (>5 years) AO discrepancy. Age at onset in carriers of the apolipoprotein E epsilon4 allele was slightly younger. However, among siblings, an extra apolipoprotein E epsilon4 allele was not consistently associated with earlier onset of AD. Eighty percent of patients, independent of sex or mode of transmission, were already affected at their parents' reported AO. There is a wide discrepancy in AO in affected siblings that is not clearly explained by a single clinical variable or apolipoprotein E genotype. The interaction of many factors probably determines AO in each affected individual. However, maternal transmission of AD seems to result in a similar AO in offspring, and the risk of developing dementia after the parent's reported AO decreases significantly.
Age differences in how consumers behave following exposure to DTC advertising.
DeLorme, Denise E; Huh, Jisu; Reid, Leonard N
2006-01-01
This study was conducted to provide additional evidence on how consumers behave following direct-to-consumer (DTC) advertising exposure and to determine if there are differences in ad-prompted acts (drug inquiry and drug requests) between different age groups (i.e., older, mature, and younger adults). The results suggest that younger, mature, and older consumers are all moved to act by DTC drug ads, but that each age group behaves in different ways. Somewhat surprisingly, age was not predictive of ad-prompted behavior. DTC advertising was no more effective at moving older consumers to behave than their younger counterparts. These results suggest that age does not matter that much when it comes to the "moving power" of prescription drug advertising, even though research indicates that older consumers are more vulnerable to the persuasive effects of communication.
Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.
Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André
2015-11-01
Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice.
Huang, Huang; Nie, Sipei; Cao, Min; Marshall, Charles; Gao, Junying; Xiao, Na; Hu, Gang; Xiao, Ming
2016-08-01
Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.
Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults
Ponomareva, Natalya; Andreeva, Tatiana; Protasova, Maria; Shagam, Lev; Malina, Daria; Goltsov, Andrei; Fokin, Vitaly; Mitrofanov, Andrei; Rogaev, Evgeny
2013-01-01
Polymorphism in the genomic region harboring the CLU gene (rs11136000) has been associated with the risk for Alzheimer’s disease (AD). CLU C allele is assumed to confer risk for AD and the allele T may have a protective effect. We investigated the influence of the AD-associated CLU genotype on a common neurophysiological trait of brain activity (resting-state alpha-rhythm activity) in non-demented adults and elucidated whether this influence is modified over the course of aging. We examined quantitative electroencephalography (EEG) in a cohort of non-demented individuals (age range 20–80) divided into young (age range 20–50) and old (age range 51–80) cohorts and stratified by CLU polymorphism. To rule out the effect of the apolipoprotein E (ApoE) genotype on EEG characteristics, only subjects without the ApoE ε4 allele were included in the study. The homozygous presence of the AD risk variant CLU CC in non-demented subjects was associated with an increase of alpha3 absolute power. Moreover, the influence of CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of age. The study also showed age-dependent alterations of alpha topographic distribution that occur independently of the CLU genotype. The increase of upper alpha power has been associated with hippocampal atrophy in patients with mild cognitive impairment (Moretti etal., 2012a). In our study, the CLU CC-dependent increase in upper alpha rhythm, particularly enhanced in elderly non-demented individuals, may imply that the genotype is related to preclinical dysregulation of hippocampal neurophysiology in aging and that this factor may contribute to the pathogenesis of AD. PMID:24379779
Microglial Dysfunction in Brain Aging and Alzheimer’s Disease
Mosher, Kira Irving; Wyss-Coray, Tony
2014-01-01
Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer’s disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial “activation” and “neuroinflammation” are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms. PMID:24445162
Castiblanco, John; Sarmiento-Monroy, Juan Camilo; Mantilla, Ruben Dario; Rojas-Villarraga, Adriana; Anaya, Juan-Manuel
2015-01-01
Studies documenting increased risk of developing autoimmune diseases (ADs) have shown that these conditions share several immunogenetic mechanisms (i.e., the autoimmune tautology). This report explored familial aggregation and segregation of AD, polyautoimmunity, and multiple autoimmune syndrome (MAS) in 210 families. Familial aggregation was examined for first-degree relatives. Segregation analysis was implemented as in S.A.G.E. release 6.3. Data showed differences between late- and early-onset families regarding their age, age of onset, and sex. Familial aggregation of AD in late- and early-onset families was observed. For polyautoimmunity as a trait, only aggregation was observed between sibling pairs in late-onset families. No aggregation was observed for MAS. Segregation analyses for AD suggested major gene(s) with no clear discernible classical known Mendelian transmission in late-onset families, while for polyautoimmunity and MAS no model was implied. Data suggest that polyautoimmunity and MAS are not independent traits and that gender, age, and age of onset are interrelated factors influencing autoimmunity. PMID:26697508
Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease.
Dean, Douglas C; Hurley, Samuel A; Kecskemeti, Steven R; O'Grady, J Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J; Carlsson, Cynthia M; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B
2017-01-01
The accumulation of aggregated β-amyloid and tau proteins into plaques and tangles is a central feature of Alzheimer disease (AD). While plaque and tangle accumulation likely contributes to neuron and synapse loss, disease-related changes to oligodendrocytes and myelin are also suspected of playing a role in development of AD dementia. Still, to our knowledge, little is known about AD-related myelin changes, and even when present, they are often regarded as secondary to concomitant arteriosclerosis or related to aging. To assess associations between hallmark AD pathology and novel quantitative neuroimaging markers while being sensitive to white matter myelin content. Magnetic resonance imaging was performed at an academic research neuroimaging center on a cohort of 71 cognitively asymptomatic adults enriched for AD risk. Lumbar punctures were performed and assayed for cerebrospinal fluid (CSF) biomarkers of AD pathology, including β-amyloid 42, total tau protein, phosphorylated tau 181, and soluble amyloid precursor protein. We measured whole-brain longitudinal and transverse relaxation rates as well as the myelin water fraction from each of these individuals. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between age, CSF biomarkers of AD pathology, and quantitative magnetic resonance imaging relaxometry measures, including the longitudinal and transverse relaxation rates and the myelin water fraction. The mean (SD) age for the 19 male participants and 52 female participants in the study was 61.6 (6.4) years. Widespread age-related changes to myelin were observed across the brain, particularly in late myelinating brain regions such as frontal white matter and the genu of the corpus callosum. Quantitative relaxometry measures were negatively associated with levels of CSF biomarkers across brain white matter and in areas preferentially affected in AD. Furthermore, significant age-by-biomarker interactions were observed between myelin water fraction and phosphorylated tau 181/β-amyloid 42, suggesting that phosphorylated tau 181/β-amyloid 42 levels modulate age-related changes in myelin water fraction. These findings suggest amyloid pathologies significantly influence white matter and that these abnormalities may signify an early feature of the disease process. We expect that clarifying the nature of myelin damage in preclinical AD may be informative on the disease's course and lead to new markers of efficacy for prevention and treatment trials.
Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease
Dean, Douglas C.; Hurley, Samuel A.; Kecskemeti, Steven R.; O’Grady, J. Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J.; Carlsson, Cynthia M.; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A.; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.
2016-01-01
IMPORTANCE The accumulation of aggregated β-amyloid and tau proteins into plaques and tangles is a central feature of Alzheimer disease (AD). While plaque and tangle accumulation likely contributes to neuron and synapse loss, disease-related changes to oligodendrocytes and myelin are also suspected of playing a role in development of AD dementia. Still, to our knowledge, little is known about AD-related myelin changes, and even when present, they are often regarded as secondary to concomitant arteriosclerosis or related to aging. OBJECTIVE To assess associations between hallmark AD pathology and novel quantitative neuroimaging markers while being sensitive to white matter myelin content. DESIGN, SETTING, AND PARTICIPANTS Magnetic resonance imaging was performed at an academic research neuroimaging center on a cohort of 71 cognitively asymptomatic adults enriched for AD risk. Lumbar punctures were performed and assayed for cerebrospinal fluid (CSF) biomarkers of AD pathology, including β-amyloid 42, total tau protein, phosphorylated tau 181, and soluble amyloid precursor protein. We measured whole-brain longitudinal and transverse relaxation rates as well as the myelin water fraction from each of these individuals. MAIN OUTCOMES AND MEASURES Automated brain mapping algorithms and statistical models were used to evaluate the relationships between age, CSF biomarkers of AD pathology, and quantitative magnetic resonance imaging relaxometry measures, including the longitudinal and transverse relaxation rates and the myelin water fraction. RESULTS The mean (SD) age for the 19 male participants and 52 female participants in the study was 61.6 (6.4) years. Widespread age-related changes to myelin were observed across the brain, particularly in late myelinating brain regions such as frontal white matter and the genu of the corpus callosum. Quantitative relaxometry measures were negatively associated with levels of CSF biomarkers across brain white matter and in areas preferentially affected in AD. Furthermore, significant age-by-biomarker interactions were observed between myelin water fraction and phosphorylated tau 181/β-amyloid 42, suggesting that phosphorylated tau 181/β-amyloid 42 levels modulate age-related changes in myelin water fraction. CONCLUSIONS AND RELEVANCE These findings suggest amyloid pathologies significantly influence white matter and that these abnormalities may signify an early feature of the disease process. We expect that clarifying the nature of myelin damage in preclinical AD may be informative on the disease’s course and lead to new markers of efficacy for prevention and treatment trials. PMID:27842175
Wolf, Dominik; Fischer, Florian Udo; Fellgiebel, Andreas
2018-05-01
The present work aims at providing a methodological approach for the investigation of resilience factors and mechanisms in normal aging, Alzheimer's disease (AD) and other neurodegenerative disorders. By expanding and re-conceptualizing traditional regression approaches, we propose an approach that not only aims at identifying potential resilience factors but also allows for a differentiation between general and dynamic resilience factors in terms of their association with pathology. Dynamic resilience factors are characterized by an increasing relevance with increasing levels of pathology, while the relevance of general resilience factors is independent of the amount of pathology. Utility of the approach is demonstrated in age and AD-related brain pathology by investigating widely accepted resilience factors, including education and brain volume. Moreover, the approach is used to test hippocampal volume as potential resilience factor. Education and brain volume could be identified as general resilience factors against age and AD-related pathology. Beyond that, analyses highlighted that hippocampal volume may not only be disease target but also serve as a potential resilience factor in age and AD-related pathology, particularly at higher levels of tau-pathology (i.e. dynamic resilience factor). Given its unspecific and superordinate nature the approach is suitable for the investigation of a wide range of potential resilience factors in normal aging, AD and other neurodegenerative disorders. Consequently, it may find a wide application and thereby promote the comparability between studies.
Zhao, Liqin; Mao, Zisu; Woody, Sarah K; Brinton, Roberta D
2016-06-01
Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These findings provide a mechanistic rationale for female susceptibility to AD and suggest a potential window of opportunity for AD prevention and risk reduction in women. Copyright © 2016 Elsevier Inc. All rights reserved.
Duberstein, Paul R.; Chapman, Benjamin P.; Tindle, Hilary A.; Sink, Kaycee M.; Bamonti, Patricia; Robbins, John; Jerant, Anthony F.; Franks, Peter
2010-01-01
We conducted secondary analyses to determine the relationship between longstanding personality traits and risk for Alzheimer’s disease (AD) among 767 participants 72 years of age or older who were followed for more than 6 years. Personality was assessed with the NEO-FFI. We hypothesized that elevated Neuroticism, lower Openness, and lower Conscientiousness would be independently associated with risk of AD. Hypotheses were supported. The finding that AD risk is associated with elevated Neuroticism and lower Conscientiousness can be added to the accumulating literature documenting the pathogenic effects of these two traits. The link between lower Openness and AD risk is consistent with recent findings on cognitive activity and AD risk. Findings have implications for prevention research and for the conceptualization of the etiology of Alzheimer’s Disease. PMID:20973606
Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice.
Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Lütjohann, Dieter; Veltien, Andor; Heerschap, Arend; Kiliaan, Amanda J
2017-01-01
Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPP swe /PS1 dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.
Non-Alzheimer's contributions to dementia and cognitive resilience in The 90+ Study.
Robinson, John L; Corrada, Maria M; Kovacs, Gabor G; Dominique, Myrna; Caswell, Carrie; Xie, Sharon X; Lee, Virginia M-Y; Kawas, Claudia H; Trojanowski, John Q
2018-06-18
The diagnosis of Alzheimer's disease (AD) in the oldest-old is complicated by the increasing prevalence of age-related neurofibrillary tangles, plaques and non-AD pathologies such as cerebrovascular disease (CVD), hippocampal sclerosis (HS), aging-related tau astrogliopathy (ARTAG), as well as TDP-43 and Lewy pathology. The contribution of these non-AD pathologies to dementia and cognitive resilience is unclear. We assessed the level of AD neuropathologic change (ADNPC) and non-AD pathology in 185 participants enrolled in The 90+ Study with available cognitive assessments and brain tissue. Logistic regression models-adjusting for age, sex and education-determined the association between each pathology and dementia or between subgroups. 53% had dementia, primarily AD or mixed AD; 23% had cognitive impairment without dementia (CIND); 23% were not impaired. Both AD and non-AD pathology was prevalent. 100% had tangles, 81% had plaques, and both tangles and plaques associated with dementia. ARTAG distributed across limbic (70%), brainstem (39%) and cortical regions (24%). 49% had possible CVD and 26% had definite CVD, while HS was noted in 15%. Cortical ARTAG, CVD and HS were each associated with dementia, but limbic and brainstem ARTAGs were not. TDP-43 and Lewy pathologies were found in 36 and 17% and both associated with dementia. No pathology distinguished CIND and the not impaired. By NIA-AA criteria and dementia status, the cohort was subdivided into four groups: those with minimal ADNPC included the not dementia (ND) and Not AD dementia groups; and those with significant ADNPC included the Resilient without dementia and AD dementia groups. Compared to the ND group, the Not AD dementia group had more HS, cortical ARTAG, TDP-43, and Lewy pathology. Compared to the AD dementia group, the Resilient group had less CVD, no HS and less cortical ARTAG, TDP-43 and Lewy pathology. Our findings imply that reductions in non-AD pathologies including CVD contribute to cognitive resilience in the oldest-old.
Clinical epidemiology of Alzheimer's disease: assessing sex and gender differences.
Mielke, Michelle M; Vemuri, Prashanthi; Rocca, Walter A
2014-01-01
With the aging of the population, the burden of Alzheimer's disease (AD) is rapidly expanding. More than 5 million people in the US alone are affected with AD and this number is expected to triple by 2050. While men may have a higher risk of mild cognitive impairment (MCI), an intermediate stage between normal aging and dementia, women are disproportionally affected with AD. One explanation is that men may die of competing causes of death earlier in life, so that only the most resilient men may survive to older ages. However, many other factors should also be considered to explain the sex differences. In this review, we discuss the differences observed in men versus women in the incidence and prevalence of MCI and AD, in the structure and function of the brain, and in the sex-specific and gender-specific risk and protective factors for AD. In medical research, sex refers to biological differences such as chromosomal differences (eg, XX versus XY chromosomes), gonadal differences, or hormonal differences. In contrast, gender refers to psychosocial and cultural differences between men and women (eg, access to education and occupation). Both factors play an important role in the development and progression of diseases, including AD. Understanding both sex- and gender-specific risk and protective factors for AD is critical for developing individualized interventions for the prevention and treatment of AD.
Kosenko, Elena A; Aliev, Gjumrakch; Kaminsky, Yury G
2016-01-01
Alzheimer disease (AD) is one of the most common neurodegenerative disorders widely occurring among the elderly. The pathogenic mechanisms involved in the development of this disease are still unknown. In AD, in addition to brain, a number of peripheral tissues and cells are affected, including erythrocytes. In this study, we analyzed glycolytic energy metabolism, antioxidant status, glutathione, adenylate and proteolytic systems in erythrocytes from patients with AD and compared with those from age-matched controls and young adult controls. Glycolytic enzymes hexokinase, phosphofructokinase, bisphosphoglycerate mutase and bisphosphoglycerate phosphatase displayed lower activities in agematched controls, and higher activities in AD patients, as compared to those in young adult control subjects. In both aging and AD, oxidative stress is increased in erythrocytes whereas elevated concentrations of hydrogen peroxide and organic hydroperoxides as well as decreased glutathione/glutathione disulfide ratio and glutathione transferase activity can be detected. These oxidative disturbances are also accompanied by reductions in ATP levels, adenine nucleotide pool size and adenylate energy charge. Caspase-3 and calpain activities in age-matched controls and AD patients were about three times those of young adult controls. 2,3-diphosphoglycerate levels were significantly decreased in AD patients. Taken together these data suggest that AD patients are associated with chronic disturbance of 2,3-diphosphoglycerate metabolism in erythrocytes. These defects may play a central role in pathophysiological processes predisposing elderly subjects to dementia.
Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences
Mielke, Michelle M; Vemuri, Prashanthi; Rocca, Walter A
2014-01-01
With the aging of the population, the burden of Alzheimer’s disease (AD) is rapidly expanding. More than 5 million people in the US alone are affected with AD and this number is expected to triple by 2050. While men may have a higher risk of mild cognitive impairment (MCI), an intermediate stage between normal aging and dementia, women are disproportionally affected with AD. One explanation is that men may die of competing causes of death earlier in life, so that only the most resilient men may survive to older ages. However, many other factors should also be considered to explain the sex differences. In this review, we discuss the differences observed in men versus women in the incidence and prevalence of MCI and AD, in the structure and function of the brain, and in the sex-specific and gender-specific risk and protective factors for AD. In medical research, sex refers to biological differences such as chromosomal differences (eg, XX versus XY chromosomes), gonadal differences, or hormonal differences. In contrast, gender refers to psychosocial and cultural differences between men and women (eg, access to education and occupation). Both factors play an important role in the development and progression of diseases, including AD. Understanding both sex- and gender-specific risk and protective factors for AD is critical for developing individualized interventions for the prevention and treatment of AD. PMID:24470773
Fajardo, Val Andrew; Fajardo, Val Andrei; LeBlanc, Paul J; MacPherson, Rebecca E K
2018-01-01
Alzheimer's disease (AD) mortality rates have steadily increased over time. Lithium, the current gold standard treatment for bipolar disorder, can exert neuroprotective effects against AD. We examined the relationship between trace levels of lithium in drinking water and changes in AD mortality across several Texas counties. 6,180 water samples from public wells since 2007 were obtained and averaged for 234 of 254 Texas counties. Changes in AD mortality rates were calculated by subtracting aggregated age-adjusted mortality rates obtained between 2000-2006 from those obtained between 2009-2015. Using aggregated rates maximized the number of counties with reliable mortality data. Correlational analyses between average lithium concentrations and changes in AD mortality were performed while also adjusting for gender, race, education, rural living, air pollution, physical inactivity, obesity, and type 2 diabetes. Age-adjusted AD mortality rate was significantly increased over time (+27%, p < 0.001). Changes in AD mortality were negatively correlated with trace lithium levels (p = 0.01, r = -0.20), and statistical significance was maintained after controlling for most risk factors except for physical inactivity, obesity, and type 2 diabetes. Furthermore, the prevalence of obesity and type 2 diabetes positively correlated with changes in AD mortality (p = 0.01 and 0.03, respectively), but also negatively correlated with trace lithium in drinking water (p = 0.05 and <0.0001, respectively). Trace lithium in water is negatively linked with changes in AD mortality, as well as obesity and type 2 diabetes, which are important risk factors for AD.
Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.
Hardas, Sarita S; Sultana, Rukhsana; Clark, Amy M; Beckett, Tina L; Szweda, Luke I; Murphy, M Paul; Butterfield, D Allan
2013-01-01
Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.
Studying Arterial Stiffness Using High-Frequency Ultrasound in Mice with Alzheimer Disease.
Huang, Chin-Chia; Cheng, Hsiang-Fan; Zhu, Ben-Peng; Chen, Pei-Yu; Beh, Suet Theng; Kuo, Yu-Min; Huang, Chih-Chung
2017-09-01
Alzheimer disease (AD) is an irreversible, progressive brain disorder that causes slow loss of memory and thinking skills, normally leading to death in 3-9 y. The etiology of AD is not fully understood but is widely believed to be induced by the production and deposition of amyloid-β peptide in the brain. Recently, a correlation was discovered between amyloid-β deposition and atherosclerosis in the cerebral arteries of postmortem brains, indicating that amyloid-β promotes atherogenesis and that in turn atherosclerosis promotes brain amyloid-β accumulation. However, a direct measurement of arterial stiffness for AD is lacking. In the present study, the pulse wave velocity (PWV) of the carotid artery was measured non-invasively in young (3-mo-old) and middle-aged (9-mo-old) wild-type (WT) and modeled AD mice to obtain quantitative data of arterial stiffness by using a 35-MHz high-frequency dual-element transducer. Experimental results show that the PWVs were 1.6 ± 0.5 m/s for young and 2.4 ± 0.4 m/s for middle-aged WT mice and 1.7 ± 0.4 m/s for young and 3.2 ± 0.6 m/s for middle-aged AD mice. Middle-aged groups had higher PWVs (p < 0.0001), which were more pronounced in the AD mice (p < 0.001). The differences in PWVs were not caused by arterial lumen diameter, wall thickness or contents of elastin or collagen. These results imply that AD increases the stiffness of the carotid artery and introduce ultrasound as a potential tool for AD research and diagnosis. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Effects of normal aging and Alzheimer's disease on emotional memory.
Kensinger, Elizabeth A; Brierley, Barbara; Medford, Nick; Growdon, John H; Corkin, Suzanne
2002-06-01
Recall is typically better for emotional than for neutral stimuli. This enhancement is believed to rely on limbic regions. Memory is also better for neutral stimuli embedded in an emotional context. The neural substrate supporting this effect has not been thoroughly investigated but may include frontal lobe, as well as limbic circuits. Alzheimer's disease (AD) results in atrophy of limbic structures, whereas normal aging relatively spares limbic regions but affects prefrontal areas. The authors hypothesized that AD would reduce all enhancement effects, whereas aging would disproportionately affect enhancement based on emotional context. The results confirmed the authors' hypotheses: Young and older adults, but not AD patients, showed better memory for emotional versus neutral pictures and words. Older adults and AD patients showed no benefit from emotional context, whereas young adults remembered more items embedded in an emotional versus neutral context.
Progranulin mutations as risk factors for Alzheimer disease.
Perry, David C; Lehmann, Manja; Yokoyama, Jennifer S; Karydas, Anna; Lee, Jason Jiyong; Coppola, Giovanni; Grinberg, Lea T; Geschwind, Dan; Seeley, William W; Miller, Bruce L; Rosen, Howard; Rabinovici, Gil
2013-06-01
Mutations in the progranulin gene are known to cause diverse clinical syndromes, all attributed to frontotemporal lobar degeneration. We describe 2 patients with progranulin gene mutations and evidence of Alzheimer disease (AD) pathology. We also conducted a literature review. This study focused on case reports of 2 unrelated patients with progranulin mutations at the University of California, San Francisco, Memory and Aging Center. One patient presented at age 65 years with a clinical syndrome suggestive of AD and showed evidence of amyloid aggregation on positron emission tomography. Another patient presented at age 54 years with logopenic progressive aphasia and, at autopsy, showed both frontotemporal lobar degeneration with TDP-43 inclusions and AD. In addition to autosomal-dominant frontotemporal lobar degeneration, mutations in the progranulin gene may be a risk factor for AD clinical phenotypes and neuropathology.
Medical care of children during the golden age of Islamic medicine.
Modanlou, Houchang D
2015-04-01
During the Sassanid Empire in Persia (226-652 AD), there was a renaissance of humanistic sciences, including medicine, in the city of Gondi-Shapur. When the Islamic center of power moved to Baghdad in about 750 AD, physicians of Gondi-Shapur, including the dean of the medical school (a Nestorian Christian), gradually moved to Baghdad constructing hospitals and medical schools. Aided by the Persian and Nestorian Christians, the Islamic civilization ushered in what is considered to be the Golden Age of Islam from the 8th to 13th century AD. During this period, there were remarkable achievements in humanistic sciences including medicine by many physicians/authors whose medical textbooks were used for centuries in burgeoning medical schools in Europe. The medical texts written during the Golden Age of Islamic Medicine contain sections and chapters about the clinical conditions, diseases and medical care of children. It was during this era that the first treatise was written on the diseases of children and their care. This essay will describe, in brief, the writings about the conditions and diseases of children and their medical care, by three prominent Persian physicians of the Golden Age of Islamic Medicine: 1) Abubakr Muhammad Ibn Zakaria Razi, Rhazes (865-925 AD); 2) Ali ibn-al-Abbas al-Majusi or Haly Abbas (949-994 AD); and 3) Abu Ali al-Husayn ibn Abd Allah ibn Sina or Avicenna (980-1037 AD).
Zhang, Hua; Sun, Suya; Wu, Lili; Pchitskaya, Ekaterina; Zakharova, Olga; Fon Tacer, Klementina; Bezprozvanny, Ilya
2016-11-23
Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in aging and Alzheimer's disease (AD). The stability of mushroom spines depends on stromal interaction molecule 2 (STIM2)-mediated neuronal-store-operated Ca 2+ influx (nSOC) pathway, which is compromised in AD mouse models, in aging neurons, and in sporadic AD patients. Here, we demonstrate that the Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 channels form a STIM2-regulated nSOC Ca 2+ channel complex in hippocampal mushroom spines. We further demonstrate that a known TRPC6 activator, hyperforin, and a novel nSOC positive modulator, NSN21778 (NSN), can stimulate activity of nSOC pathway in the spines and rescue mushroom spine loss in both presenilin and APP knock-in mouse models of AD. We further show that NSN rescues hippocampal long-term potentiation impairment in APP knock-in mouse model. We conclude that the STIM2-regulated TRPC6/Orai2 nSOC channel complex in dendritic mushroom spines is a new therapeutic target for the treatment of memory loss in aging and AD and that NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD. Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in Alzheimer's disease (AD). This study demonstrated that Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 form stromal interaction molecule 2 (STIM2)-regulated neuronal-store-operated Ca 2+ influx (nSOC) channel complex in hippocampal synapse and the resulting Ca 2+ influx is critical for long-term maintenance of mushroom spines in hippocampal neurons. A novel nSOC-positive modulator, NSN21778 (NSN), rescues mushroom spine loss and synaptic plasticity impairment in AD mice models. The TRPC6/Orai2 nSOC channel complex is a new therapeutic target and NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD. Copyright © 2016 the authors 0270-6474/16/3611837-14$15.00/0.
Wisniewski, J A; Agrawal, R; Minnicozzi, S; Xin, W; Patrie, J; Heymann, P W; Workman, L; Platts-Mills, T A; Song, T W; Moloney, M; Woodfolk, J A
2013-10-01
Atopic dermatitis (AD) is common in children; however, persistence of AD with or without asthma is less common. Longitudinal studies remain limited in their ability to characterize how IgE antibody responses evolve in AD, and their relationship with asthma. To use a cross-sectional study design of children with active AD to analyse age-related differences in IgE antibodies and relation to wheeze. IgE antibodies to food and inhalant allergens were measured in children with active AD (5 months to 15 years of age, n = 66), with and without history of wheeze. Whereas IgE antibodies to foods persisted at a similar prevalence and titre throughout childhood, IgE antibodies to all aeroallergens rose sharply into adolescence. From birth, the chance of sensitization for any aeroallergen increased for each 12-month increment in age (OR ≥ 1.21, P < 0.01), with the largest effect observed for dust mite (OR = 1.56, P < 0.001). A steeper age-related rise in IgE antibody titre to dust mite, but no other allergen was associated with more severe disease. Despite this, sensitization to cat was more strongly associated with wheeze (OR = 4.5, P < 0.01), and linked to Fel d 1 and Fel d 4, but not Fel d 2. Comparison of cat allergic children with AD to those without, revealed higher IgE levels to Fel d 2 and Fel d 4 (P < 0.05), but not Fel d 1. Differences in sensitization to cat and dust mite among young children with AD may aid in identifying those at increased risk for disease progression and development of asthma. Early sensitization to cat and risk for wheeze among children with AD may be linked to an increased risk for sensitization to a broader spectrum of allergen components from early life. Collectively, our findings argue for early intervention strategies designed to mitigate skin inflammation in children with AD. © 2013 John Wiley & Sons Ltd.
Wisniewski, Julia; Agrawal, Rachana; Minnicozzi, Samantha; Xin, Wenjun; Patrie, James; Heymann, Peter; Workman, Lisa; Platts-Mills, Thomas; Song, Tae Won; Moloney, Marla; Woodfolk, Judith A.
2013-01-01
Background Atopic dermatitis (AD) is common in children; however, persistence of AD with or without asthma, is less common. Longitudinal studies remain limited in their ability to characterize how IgE antibody responses evolve in AD, and their relationship to asthma. Objective To use a cross-sectional study design of children with active AD to analyze age-related differences in IgE antibodies and relation to wheeze. Methods IgE antibodies to food and inhalant allergens were measured in children with active AD (5 months to 15 years of age, n=66), with and without history of wheeze. Results Whereas IgE antibodies to foods persisted at a similar prevalence and titer throughout childhood, IgE antibodies to all aeroallergens rose sharply into adolescence. From birth, the chance of sensitization for any aeroallergen increased for each 12-month increment in age (OR≥1.21, p≤0.01), with the largest effect observed for dust mite (OR=1.56, p<0.001). A steeper age-related rise in IgE antibody titer to dust mite, but no other allergen, was associated with more severe disease. Despite this, sensitization to cat was more strongly associated with wheeze (OR=4.5, p<0.01), and linked to Fel d 1 and Fel d 4, but not Fel d 2. Comparison of cat allergic children with AD to those without, revealed higher titers to Fel d 2 and Fel d 4 (p<0.05), but not Fel d 1. Conclusions and Clinical Relevance Differences in sensitization to cat and dust mite among young children with AD may aid in identifying those at increased risk for disease progression and development of asthma. Early sensitization to cat and risk for wheeze among children with AD may be linked to an increased risk for sensitization to a broader spectrum of allergen components from early life. Collectively, our findings argue for early intervention strategies designed to mitigate skin inflammation in children with AD. PMID:24074334
Solar activity as driver for the Dark Age Grand Solar Minimum
NASA Astrophysics Data System (ADS)
Neuhäuser, Ralph; Neuhäuser, Dagmar
2017-04-01
We will discuss the role of solar activity for the temperature variability from AD 550 to 840, roughly the last three centuries of the Dark Ages. This time range includes the so-called Dark Age Grand Solar Minimum, whose deep part is dated to about AD 650 to 700, which is seen in increased radiocarbon, but decreased aurora observations (and a lack of naked-eye sunspot sightings). We present historical reports on aurorae from all human cultures with written reports including East Asia, Near East (Arabia), and Europe. To classify such reports correctly, clear criteria are needed, which are also discussed. We compare our catalog of historical aurorae (and sunspots) as well as C-14 data, i.e. solar activity proxies, with temperature reconstructions (PAGES). After increased solar activity until around AD 600, we see a dearth of aurorae and increased radiocarbon production in particular in the second half of the 7th century, i.e. a typical Grand Solar Minimum. Then, after about AD 690 (the maximum in radiocarbon, the end of the Dark Age Grand Minimum), we see increased auroral activity, decreasing radiocarbon, and increasing temperature until about AD 775. At around AD 775, we see the well-known strong C-14 variability (solar activity drop), then immediately another dearth of aurorae plus high C-14, indicating another solar activity minimum. This is consistent with a temperature depression from about AD 775 on into the beginning of the 9th century. Very high solar activity is then seen in the first four decades with four aurora clusters and three simultaneous sunspot clusters, and low C-14, again also increasing temperature. The period of increasing solar activity marks the end of the so-called Dark Ages: While auroral activity increases since about AD 793, temperature starts to increase quite exactly at AD 800. We can reconstruct the Schwabe cycles with aurorae and C-14 data. In summary, we can see a clear correspondence of the variability of solar activity proxies and surface temperature reconstructions. This indicates that solar activity is an important climate driver.
Luck, Tobias; Rodriguez, Francisca S; Wiese, Birgitt; van der Leeden, Carolin; Heser, Kathrin; Bickel, Horst; In der Schmitten, Jürgen; Koenig, Hans-Helmut; Weyerer, Siegfried; Mamone, Silke; Mallon, Tina; Wagner, Michael; Weeg, Dagmar; Fuchs, Angela; Brettschneider, Christian; Werle, Jochen; Scherer, Martin; Maier, Wolfgang; Riedel-Heller, Steffi G
2017-04-13
Completion of advance directives (ADs) and power of attorney (POA) documents may protect a person's autonomy in future health care situations when the individual lacks decisional capacity. As such situations become naturally much more common in old age, we specifically aimed at providing information on (i) the frequency of ADs/POA in oldest-old individuals and (ii) factors associated with having completed ADs/POA. We analyzed data of oldest-old primary care patients (85+ years; including community-dwelling and institutionalized individuals) within the German AgeQualiDe study. Patients were initially recruited via their general practitioners (GPs). We calculated frequencies of ADs and POA for health care with 95% confidence intervals (CI) and used multivariable logistic regression analysis to evaluate the association between having ADs and POA and participants' socio-demographic, cognitive, functional, and health-related characteristics. Among 868 GP patients participating in AgeQualiDe (response = 90.9%), n = 161 had dementia and n = 3 were too exhausted/ill to answer the questions. Out of the remaining 704 (81.1%) dementia-free patients (mean age = 88.7 years; SD = 3.0), 69.0% (95%-CI = 65.6-72.4) stated to having ADs and 64.6% (95%-CI = 61.1-68.2) to having a POA for health care. Individual characteristics did not explain much of the variability of the presence/absence of ADs and POA (regression models: Nagelkerke's R 2 = 0.034/0.051). The most frequently stated reasons for not having ADs were that the older adults trust their relatives or physicians to make the right decisions for them when necessary (stated by 59.4% and 44.8% of those without ADs). Among the older adults with ADs, the majority had received assistance in its preparation (79.0%), most frequently from their children/grandchildren (38.3%). Children/grandchildren were also the most frequently stated group of designated persons (76.7%) for those with a POA for health care. Our findings suggest a high dissemination of ADs and POA for health care in the oldest-old in Germany. Some adults without ADs/POA perhaps would have completed advance care documents, if they had had received more information and support. When planning programs to offer advanced care planning to the oldest old, it might be helpful to respond to these specific needs, and also to be sensitive to attitudinal differences in this target group.
Mellon, Michael W.; Natchev, Brooke E.; Katusic, Slavica K.; Colligan, Robert C.; Weaver, Amy L.; Voigt, Robert G.; Barbaresi, William J.
2013-01-01
OBJECTIVE This study reports the incidence of enuresis and encopresis among children with attention-deficit/hyperactivity disorder (AD/HD) versus those without AD/HD. METHOD Subjects included 358 (74.5% male) children with research-identified AD/HD from a 1976-1982 population-based birth cohort (N = 5718) and 729 (75.2% male) non-AD/HD control subjects from the same birth cohort, matched by gender and age. All subjects were retrospectively followed from birth until a diagnosis of enuresis or encopresis was made or last follow-up prior to 18 years of age. The complete medical record for each subject was reviewed to obtain information on age of initial diagnosis of an elimination disorder, frequency and duration of symptoms, identification of exclusionary criteria specified by DSM-IV, with confirmation of the diagnosis by expert consensus. RESULTS Children with AD/HD were 2.1 (95% CI, 1.3-3.4; p = 0.002) times more likely to meet DSM-IV criteria for enuresis than non-AD/HD controls; they were 1.8 (95% CI, 1.2 – 2.7; p = 0.006) times more likely to do so than non-AD/HD controls when less stringent criteria for a diagnosis of enuresis were employed. Though not significant, children with AD/HD were 1.8 (95% CI, 0.7-4.6; p = 0.23) times more likely to meet criteria for encopresis than non-AD/HD controls. The relative risk was 2.0 (95% CI, 1.0-4.1; p = 0.05) when a less stringent definition for encopresis was utilized. CONCLUSIONS The results of this population-based study demonstrate that children with AD/HD are more likely than their peers without AD/HD to develop enuresis with a similar trend for encopresis. PMID:23680296
Determinants of tobacco use by students
Vargas, Lorena Silva; Lucchese, Roselma; da Silva, Andrécia Cósmem; Guimarães, Rafael Alves; Vera, Ivânia; de Castro, Paulo Alexandre
2017-01-01
ABSTRACT OBJECTIVE Estimate the prevalence and determinants of tobacco use by students. METHODS This cross-sectional study, carried out between 2013 and 2014, evaluates 701 public school students between 10 and 79 years of age living in a city in the countryside of the State of Goias, Midwest of Brazil. A structured questionnaire collected the data and the predictor variables were demographic data, family nucleus, religion, physical activity practice, family functionality and parental smoking. Two multivariable models were implemented, the first for occasional tobacco use and the second for regular use, acquiring the measure of prevalence ratio (PR) and their respective 95%CI. Variables with p < 0.10 were included in Poisson regression models with robust variance to obtain the adjusted PR (adPR) and 95%CI. The Wald Chi-Squared test examined the differences between proportions, and values with p < 0.05 were statistically significant. RESULTS The prevalence of occasional and regular tobacco use were 33.4% (95%CI 29.8–36.9) and 6.7% (95%CI 5.0–8.8), respectively. The factors associated with occasional tobacco consumption were age of 15 to 17 years (adPR = 1.98) and above 18 years (adPR = 3.87), male gender (adPR = 1.23), moderate family dysfunction (adPR = 1.30), high family dysfunction (adPR = 1.97) and parental smoking (adPR = 1.60). In regards to regular consumption of tobacco, age above 18 years (adPR = 4.63), lack of religion (adPR = 2.08), high family dysfunction (adPR = 2.35) and parental smoking (adPR = 2.89) remained associated. CONCLUSIONS Students exhibit a high prevalence of occasional and regular tobacco use. This consumption relates to sociodemographic variables and family dysfunction. PMID:28492760
Matsuda, H; Mizumura, S; Nemoto, K; Yamashita, F; Imabayashi, E; Sato, N; Asada, T
2012-06-01
The necessity for structural MRI is greater than ever to both diagnose AD in its early stage and objectively evaluate its progression. We propose a new VBM-based software program for automatic detection of early specific atrophy in AD. A target VOI was determined by group comparison of 30 patients with very mild AD and 40 age-matched healthy controls by using SPM. Then this target VOI was incorporated into a newly developed automated software program independently running on a Windows PC for VBM by using SPM8 plus DARTEL. ROC analysis was performed for discrimination of 116 other patients with AD with very mild stage (n = 45), mild stage (n = 30) and moderate-to-advanced stages (n = 41) from 40 other age-matched healthy controls by using a z score map in the target VOI. Medial temporal structures involving the entire region of the entorhinal cortex, hippocampus, and amygdala showed significant atrophy in the patients with very mild AD and were determined as a target VOI. When we used the severity score of atrophy in this target VOI, 91.6%, 95.8%, and 98.2% accuracies were obtained in the very mild AD, mild AD, and moderate-to-severe AD groups, respectively. In the very mild AD group, a high specificity of 97.5% with a sensitivity of 86.4% was obtained, and age at onset of AD did not influence this accuracy. This software program with application of SPM8 plus DARTEL to VBM provides a high performance for AD diagnosis by using MRI.
Wu, Meina; Zhou, Fang; Cao, Xiuli; Yang, Junting; Bai, Yu; Yan, Xudong; Cao, Jimin; Qi, Jinshun
2018-05-29
Circadian rhythm disturbance (CRD) is one of the iconic manifestations in Alzheimer's disease (AD), a disease tightly associated with age, but the characteristics and gender difference of CRD occurred in AD have not been well demonstrated. Using 6-month-old triple transgenic AD mouse model (3xTg-AD) without obvious brain pathological changes, we demonstrated the gender difference of CRD at this age. We further showed abnormal Per gene expression in the central clock suprachiasmatic nucleus (SCN) of the 3xTg-AD mice. Specifically, compared with the wide type (WT) mice, the 3xTg-AD mice showed disrupted circadian locomotor rhythms both at LD (light-dark 12 h:12 h) and DD (constant dark) conditions, such as increased activities in the resting phase, decreased and scattered activities in the active phase, decreased overall activity intensities, amplitude, robustness, and increased intradaily variability. We further observed that 3xTg-AD female mice showed obviously less CRD compared with the 3xTg-AD male mice, and female mice of both WT and 3xTg-AD were more active in locomotor activity. Accordingly, 3xTg-AD mice showed a phase delay in the expression of Per1 and Per2 mRNA in the SCN, with the levels of Per1 and Per2 mRNA were significantly lower than that of WT mice at specific time points. We conclude that 3xTg-AD mice exhibit behavioral CRD at the age of six months with male gender preference, and these phenomena are at least partly associated with the alteration of Per1 and Per2 transcription patterns in the SCN. Copyright © 2018 Elsevier B.V. All rights reserved.
Early detection of Alzheimer disease: methods, markers, and misgivings.
Green, R C; Clarke, V C; Thompson, N J; Woodard, J L; Letz, R
1997-01-01
There is at present no reliable predictive test for most forms of Alzheimer disease (AD). Although some information about future risk for disease is available in theory through ApoE genotyping, it is of limited accuracy and utility. Once neuroprotective treatments are available for AD, reliable early detection will become a key component of the treatment strategy. We recently conducted a pilot survey eliciting attitudes and beliefs toward an unspecified and hypothetical predictive test for AD. The survey was completed by a convenience sample of 176 individuals, aged 22-77, which was 75% female, 30% African-American, and of which 33% had a family member with AD. The survey revealed that 69% of this sample would elect to obtain predictive testing for AD if the test were 100% accurate. Individuals were more likely to desire predictive testing if they had an a priori belief that they would develop AD (p = 0.0001), had a lower educational level (p = 0.003), were worried that they would develop AD (p = 0.02), had a self-defined history of depression (p = 0.04), and had a family member with AD (p = 0.04). However, the desire for predictive testing was not significantly associated with age, gender, ethnicity, or income. The desire to obtain predictive testing for AD decreased as the assumed accuracy of the hypothetical test decreased. A better short-term strategy for early detection of AD may be computer-based neuropsychological screening of at-risk (older aged) individuals to identify very early cognitive impairment. Individuals identified in this manner could be referred for diagnostic evaluation and early cases of AD could be identified and treated. A new self-administered, touch-screen, computer-based, neuropsychological screening instrument called Neurobehavioral Evaluation System-3 is described, which may facilitate this type of screening.
Barbeau, E M; DeJong, W; Brugge, D M; Rand, W M
1998-01-01
This investigation examined whether, despite the Tobacco Institute's Voluntary Cigarette Advertising and Promotion Code, current cigarette print advertising communicates culturally positive messages to youth about smoking. Nine hundred thirteen students in grades 6-8 (ages 10-15) were shown a sample of four contemporary cigarette print ads (Camel, Marlboro, Newport, and Virginia Slims) and completed structured written assessments designed to capture their perceptions of each ad. Across the four ads, between 37% and 84% of the students reported that the ads communicated to them that smoking will make people popular, cool, successful in life, sexy, attractive, and healthy. Sizeable percentages of students reported that the ads show people using the product in an "exaggerated" way, and that what people in the ads are doing requires "exercise and physical energy." The median estimated age of the models in the ads was under age 25 for four out of the six models. As perceived by adolescents, current cigarette print advertising violates basic tenets of the Voluntary Code, thus bringing into question the tobacco industry's ability to self-regulate image advertising. These findings suggest that the FDA ruling to prohibit image advertising for tobacco in publications with significant youth readership deserves serious consideration.
Is the Alzheimer's disease cortical thickness signature a biological marker for memory?
Busovaca, Edgar; Zimmerman, Molly E; Meier, Irene B; Griffith, Erica Y; Grieve, Stuart M; Korgaonkar, Mayuresh S; Williams, Leanne M; Brickman, Adam M
2016-06-01
Recent work suggests that analysis of the cortical thickness in key brain regions can be used to identify individuals at greatest risk for development of Alzheimer's disease (AD). It is unclear to what extent this "signature" is a biological marker of normal memory function - the primary cognitive domain affected by AD. We examined the relationship between the AD signature biomarker and memory functioning in a group of neurologically healthy young and older adults. Cortical thickness measurements and neuropsychological evaluations were obtained in 110 adults (age range 21-78, mean = 46) drawn from the Brain Resource International Database. The cohort was divided into young adult (n = 64, age 21-50) and older adult (n = 46, age 51-78) groups. Cortical thickness analysis was performed with FreeSurfer, and the average cortical thickness extracted from the eight regions that comprise the AD signature. Mean AD-signature cortical thickness was positively associated with performance on the delayed free recall trial of a list learning task and this relationship did not differ between younger and older adults. Mean AD-signature cortical thickness was not associated with performance on a test of psychomotor speed, as a control task, in either group. The results suggest that the AD signature cortical thickness is a marker for memory functioning across the adult lifespan.
Seshadri, Sudha; Beiser, Alexa; Au, Rhoda; Wolf, Philip A.; Evans, Denis A.; Wilson, Robert S.; Petersen, Ronald C.; Knopman, David S.; Rocca, Walter A.; Kawas, Claudia H.; Corrada, Maria M.; Plassman, Brenda L.; Langa, Kenneth M.; Chui, Helena C.
2011-01-01
This article focuses on the effects of operational differences in case ascertainment on estimates of prevalence and incidence of cognitive impairment/dementia of the Alzheimer type. Experience and insights are discussed by investigators from the Framingham Heart Study, the East Boston Senior Health Project, the Chicago Health and Aging Project, the Mayo Clinic Study of Aging, the Baltimore Longitudinal Study of Aging, and the Aging, Demographics, and Memory Study. There is a general consensus that the single most important factor regulating prevalence estimates of Alzheimer’s disease (AD) is the severity of cognitive impairment used for case ascertainment. Studies that require a level of cognitive impairment in which persons are unable to provide self-care will have much lower estimates than studies aimed at identifying persons in the earliest stages of AD. There is limited autopsy data from the above-mentioned epidemiologic studies to address accuracy in the diagnosis of etiologic subtype, namely the specification of AD alone or in combination with other types of pathology. However, other community-based cohort studies show that many persons with mild cognitive impairment (MCI) meet pathologic criteria for AD, and a large minority of persons without dementia or MCI also meets pathologic criteria for AD, thereby suggesting that the number of persons who would benefit from an effective secondary prevention intervention is probably higher than the highest published prevalence estimates. Improved accuracy in the clinical diagnosis of AD is anticipated with the addition of molecular and structural biomarkers in the next generation of epidemiologic studies. PMID:21255742
Ten-year incidence of dementia in a rural elderly US community population: the MoVIES Project.
Ganguli, M; Dodge, H H; Chen, P; Belle, S; DeKosky, S T
2000-03-14
To determine incidence rates by age, sex, and education of overall dementia and probable/ possible AD in a largely rural community. Ten-year prospective study of a randomly selected community sample aged 65+; biennial cognitive screening followed by standardized clinical evaluation. Incidence rates were estimated for overall dementia (Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., revised, criteria and Clinical Dementia Rating [CDR]) and for probable/possible AD (National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association criteria). The cohort consisted of 1,298 individuals free of dementia at study entry. Among these, 199 incident (new) cases of overall (all-cause) dementia with CDR stage > or = 0.5, including 110 with CDR > or = 1, were detected during follow-up. Among the incident cases, 153 (76.9%) had probable/ possible AD. Age-specific incidence rates are reported for all dementia and for probable/possible AD, by sex and CDR stage. Among all-cause dementias with CDR = 0.5, controlling for age and education, men had a higher incidence rate than women. In the same group, those with less than high school education had significantly higher incidence rates than those with more education. Rates did not vary significantly by sex or education for probable/possible AD or for dementia with CDR > or = 1. Incidence rates of all dementias and of AD increased with age; men and those with lesser education had higher rates of possible/incipient dementia (CDR = 0.5) in this community. Potential explanations for these sex and education effects are discussed.
Winpenny, E M; Penney, T L; Corder, K; White, M; van Sluijs, E M F
2017-11-01
Added sugar intake during adolescence has been associated with weight gain and cardiometabolic risk factors. Moreover, dietary habits may persist into adulthood, increasing chronic disease risk in later life. This systematic review investigated changes in intake of added sugars between the ages of 13 and 30 years. Literature databases were searched for longitudinal studies of diet during adolescence or early adulthood. Retrieved articles were screened for studies including multiple measures of intake of sugars or sugary foods from cohort participants between the ages of 13 and 30. Data were analysed using random-effects meta-analysis, by the three main nutrient and food group categories identified (PROSPERO: CRD42015030126). Twenty-four papers reported longitudinal data on intake of added sugar or sucrose (n = 6), sugar-sweetened beverages (SSBs) (n = 20) and/or confectionery (n = 9). Meta-analysis showed a non-significant per year of age decrease in added sugar or sucrose intake (-0.15% total energy intake (95%CI -0.41; 0.12)), a decrease in confectionery consumption (-0.20 servings/week (95%CI -0.41; -0.001)) and a non-significant decrease in SSB consumption (-0.15 servings/week (95%CI -0.32; 0.02)). Taken together, the overall decrease in added sugar intake observed from adolescence to early adulthood may suggest opportunities for intervention to further improve dietary choices within this age range. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
Collij, Lyduine E; Heeman, Fiona; Kuijer, Joost P A; Ossenkoppele, Rik; Benedictus, Marije R; Möller, Christiane; Verfaillie, Sander C J; Sanz-Arigita, Ernesto J; van Berckel, Bart N M; van der Flier, Wiesje M; Scheltens, Philip; Barkhof, Frederik; Wink, Alle Meije
2016-12-01
Purpose To investigate whether multivariate pattern recognition analysis of arterial spin labeling (ASL) perfusion maps can be used for classification and single-subject prediction of patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and subjects with subjective cognitive decline (SCD) after using the W score method to remove confounding effects of sex and age. Materials and Methods Pseudocontinuous 3.0-T ASL images were acquired in 100 patients with probable AD; 60 patients with MCI, of whom 12 remained stable, 12 were converted to a diagnosis of AD, and 36 had no follow-up; 100 subjects with SCD; and 26 healthy control subjects. The AD, MCI, and SCD groups were divided into a sex- and age-matched training set (n = 130) and an independent prediction set (n = 130). Standardized perfusion scores adjusted for age and sex (W scores) were computed per voxel for each participant. Training of a support vector machine classifier was performed with diagnostic status and perfusion maps. Discrimination maps were extracted and used for single-subject classification in the prediction set. Prediction performance was assessed with receiver operating characteristic (ROC) analysis to generate an area under the ROC curve (AUC) and sensitivity and specificity distribution. Results Single-subject diagnosis in the prediction set by using the discrimination maps yielded excellent performance for AD versus SCD (AUC, 0.96; P < .01), good performance for AD versus MCI (AUC, 0.89; P < .01), and poor performance for MCI versus SCD (AUC, 0.63; P = .06). Application of the AD versus SCD discrimination map for prediction of MCI subgroups resulted in good performance for patients with MCI diagnosis converted to AD versus subjects with SCD (AUC, 0.84; P < .01) and fair performance for patients with MCI diagnosis converted to AD versus those with stable MCI (AUC, 0.71; P > .05). Conclusion With automated methods, age- and sex-adjusted ASL perfusion maps can be used to classify and predict diagnosis of AD, conversion of MCI to AD, stable MCI, and SCD with good to excellent accuracy and AUC values. © RSNA, 2016.
Pérez, María J; Ponce, Daniela P; Osorio-Fuentealba, Cesar; Behrens, Maria I; Quintanilla, Rodrigo A
2017-01-01
The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients.
Pérez, María J.; Ponce, Daniela P.; Osorio-Fuentealba, Cesar; Behrens, Maria I.; Quintanilla, Rodrigo A.
2017-01-01
The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients. PMID:29056898
Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment.
Huang, Dandan; Liu, Dan; Yin, Jianzhong; Qian, Tianyi; Shrestha, Susan; Ni, Hongyan
2017-07-01
To explore the changes of glutamate-glutamine (Glx) and gamma-aminobutyric acid (GABA) in the brain in normal old age and cognitive impairment using magnetic resonance spectroscopy (MRS). Seventeen normal young controls (NYC), 15 normal elderly controls (NEC), 21 patients with mild cognitive impairment (MCI) and 17 with Alzheimer disease (AD) patients were included in this study. Glx and GABA+ levels in the anterior cingulate cortex (ACC) and right hippocampus (rHP) were measured by using a MEGA-PRESS sequence. Glx/Cr and GABA+/Cr ratios were compared between NYC and NEC and between the three elderly groups using analysis of covariance (ANCOVA); the tissue fractions of voxels were used as covariates. The relationships between metabolite ratios and cognitive performance were analysed using Spearman correlation coefficients. For NEC and NYC groups, Glx/Cr and GABA+/Cr ratios were lower in NEC in ACC and rHP. For the three elderly groups, Glx/Cr ratio was lower in AD in ACC compared to NEC and MCI; Glx/Cr ratio was lower in AD in rHP compared to NEC. There was no significant decrease for GABA+/Cr ratio. Glx and GABA levels may decrease simultaneously in normal aged, and Glx level decreased predominantly in AD, and it is helpful in the early diagnosis of AD. • Glx and GABA levels may decrease simultaneously in normal aged. • Glx level may decrease predominantly in Alzheimer disease. • The balance in excitatory-inhibitory systems may be broken in AD. • Decreased Glx level may be helpful in early diagnosis of AD.
Cunnane, Stephen C.; Courchesne-Loyer, Alexandre; Vandenberghe, Camille; St-Pierre, Valérie; Fortier, Mélanie; Hennebelle, Marie; Croteau, Etienne; Bocti, Christian; Fulop, Tamas; Castellano, Christian-Alexandre
2016-01-01
We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer’s disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal for age. (ii) The regional deficit in brain glucose uptake is present in adults <40 years-old who have genetic or lifestyle risk factors for AD but in whom cognitive decline has not yet started. Examples include young adult carriers of presenilin-1 or apolipoprotein E4, and young adults with mild insulin resistance or with a maternal family history of AD. (iii) Regional brain glucose uptake is impaired in AD and mild cognitive impairment (MCI), but brain uptake of ketones (beta-hydroxybutyrate and acetoacetate), remains the same in AD and MCI as in cognitively healthy age-matched controls. These observations point to a brain fuel deficit which appears to be specific to glucose, precedes cognitive decline associated with AD, and becomes more severe as MCI progresses toward AD. Since glucose is the brain’s main fuel, we suggest that gradual brain glucose exhaustion is contributing significantly to the onset or progression of AD. (iv) Interventions that raise ketone availability to the brain improve cognitive outcomes in both MCI and AD as well as in acute experimental hypoglycemia. Ketones are the brain’s main alternative fuel to glucose and brain ketone uptake is still normal in MCI and in early AD, which would help explain why ketogenic interventions improve some cognitive outcomes in MCI and AD. We suggest that the brain energy deficit needs to be overcome in order to successfully develop more effective therapeutics for AD. At present, oral ketogenic supplements are the most promising means of achieving this goal. PMID:27458340
Takeda, Toshinobu; Koyama, Tomonori; Kurita, Hiroshi
2007-12-01
This study is the first to compare the change in developmental quotient (DQ) or IQ between autistic disorder (AD) and pervasive developmental disorder not otherwise specified (PDDNOS) in preschool years. Forty-nine AD children and 77 PDDNOS children were evaluated at age 2 and at age > or =5. The AD children were significantly lower in DQ/IQ at initial evaluation and outcome evaluation (also with initial DQ being controlled for) than the PDDNOS children.
Allele doses of apolipoprotein E type {epsilon}4 in sporadic late-onset Alzheimer`s disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucotte, G.; Aouizerate, A.; Gerard, N.
1995-12-18
Apoliprotein E, type {epsilon}4 allele (ApoE-{epsilon}4) is associated with late-onset sporadic Alzheimer`s disease (AD). We have found that the cumulative probability of remaining unaffected over time decreases for each dose of ApoE-{epsilon}4 in sporadic, late-onset French AD. The effect of genotypes on age at onset of AD was analyzed using the product limit method, to compare unaffected groups during aging. 26 refs., 2 figs., 1 tab.
Huang, Xuan-Zhang; Gao, Peng; Song, Yong-Xi; Sun, Jing-Xu; Chen, Xiao-Wan; Zhao, Jun-Hua; Ma, Bin; Wang, Jun; Wang, Zhen-Ning
2016-04-12
Clinical practice guidelines focusing on age-related adjuvant chemotherapy for rectal cancer are currently limited. The present study aimed to explore the impact of age on the efficacy of adjuvant oxaliplatin-based chemotherapy in patients with rectal cancer after neoadjuvant chemoradiotherapy. We performed a retrospective cohort analysis using data from the Surveillance, Epidemiology, and End Results-Medicare-linked database from 1992-2009. We enrolled patients with yp stages I-III rectal cancer who received neoadjuvant chemoradiotherapy and underwent curative resection. The age-related survival benefit of adding oxaliplatin to adjuvant 5-fluorouracil (5-FU) chemotherapy was evaluated using Kaplan-Meier survival analysis with propensity score-matching and Cox proportional hazards models. Comparing the oxaliplatin group with the 5-FU group, there were significant interactions between age and chemotherapy efficacy in terms of overall survival (OS) (p for interaction = 0.017) among patients with positive lymph nodes (ypN+). Adding oxaliplatin to 5-FU could prolong survival in patients aged < 73 years and ypN+ category, and but did not translate into survival benefits in patients aged ≥ 73 years and ypN+ category. No significant interactions were observed among ypN- patients, and oxaliplatin did not significantly improve OS, regardless of age. In patients with rectal cancer who have already received neoadjuvant chemoradiotherapy and undergone curative resection, adding oxaliplatin to 5-FU could prolong OS in patients aged < 73 years and ypN+ category. However, adding oxaliplatin did not translate into survival benefits in patients age ≥ 73 years and ypN+ category, or in ypN- patients.
Lee, Chih-Ying; Chen, Mu-Hong; Jeng, Mei-Jy; Hsu, Ju-Wei; Tsai, Shih-Jen; Bai, Ya-Mei; Hung, Giun-Yi; Yen, Hsiu-Ju; Chen, Tzeng-Ji; Su, Tung-Ping
2016-09-01
Atopic dermatitis (AD) is one of the common allergic diseases in children. The presence of allergic diseases was found to have association with the risk of developing attention-deficit hyperactivity disorder (ADHD) or autistic spectrum disorder (ASD) in children, but it is still inconclusive. This study was to investigate the longitudinal relationship between AD developed during toddlerhood and subsequent development of ADHD or ASD in later childhood. Toddlers born between 1998 and 2008 and diagnosed with AD at the age younger than 3 years and older than 1 month were retrieved from Taiwan's National Health Insurance Research Database. Age- and gender-matched toddlers with no lifetime AD were enrolled as the control group. All enrolled toddlers were followed until 2011 to identify the development of ADHD or ASD. Multivariate Cox regression analysis was performed to analyze the hazard ratios (HRs). The risks associated with allergic comorbidities were analyzed. A total of 18,473 toddlers were enrolled into the AD group. The presence of AD significantly increased the risk of developing ADHD (HR = 2.92, 95% confidence interval [CI] = 2.48-3.45) or ASD (HR = 8.90, 95% CI = 4.98-15.92) when aged 3 years or older. Children from the AD group with 3 comorbidities together, namely, allergic rhinitis, allergic conjunctivitis, and asthma, had the greatest risk of developing ADHD and ASD (ADHD: HR = 4.67, 95% CI = 3.81-5.43; ASD: HR = 16.65, 95% CI = 8.63-30.60). In conclusion, toddlers who suffer from AD at the age younger than 3 years are at a higher risk of developing ADHD and ASD during later childhood. Pediatricians taking care of toddlers with AD should have knowledge of this increased risk of developing ADHD and ASD later in life, especially when children have certain comorbidities such as allergic rhinitis, allergic conjunctivitis, and asthma.
Lee, Chih-Ying; Chen, Mu-Hong; Jeng, Mei-Jy; Hsu, Ju-Wei; Tsai, Shih-Jen; Bai, Ya-Mei; Hung, Giun-Yi; Yen, Hsiu-Ju; Chen, Tzeng-Ji; Su, Tung-Ping
2016-01-01
Abstract Atopic dermatitis (AD) is one of the common allergic diseases in children. The presence of allergic diseases was found to have association with the risk of developing attention-deficit hyperactivity disorder (ADHD) or autistic spectrum disorder (ASD) in children, but it is still inconclusive. This study was to investigate the longitudinal relationship between AD developed during toddlerhood and subsequent development of ADHD or ASD in later childhood. Toddlers born between 1998 and 2008 and diagnosed with AD at the age younger than 3 years and older than 1 month were retrieved from Taiwan's National Health Insurance Research Database. Age- and gender-matched toddlers with no lifetime AD were enrolled as the control group. All enrolled toddlers were followed until 2011 to identify the development of ADHD or ASD. Multivariate Cox regression analysis was performed to analyze the hazard ratios (HRs). The risks associated with allergic comorbidities were analyzed. A total of 18,473 toddlers were enrolled into the AD group. The presence of AD significantly increased the risk of developing ADHD (HR = 2.92, 95% confidence interval [CI] = 2.48–3.45) or ASD (HR = 8.90, 95% CI = 4.98–15.92) when aged 3 years or older. Children from the AD group with 3 comorbidities together, namely, allergic rhinitis, allergic conjunctivitis, and asthma, had the greatest risk of developing ADHD and ASD (ADHD: HR = 4.67, 95% CI = 3.81–5.43; ASD: HR = 16.65, 95% CI = 8.63–30.60). In conclusion, toddlers who suffer from AD at the age younger than 3 years are at a higher risk of developing ADHD and ASD during later childhood. Pediatricians taking care of toddlers with AD should have knowledge of this increased risk of developing ADHD and ASD later in life, especially when children have certain comorbidities such as allergic rhinitis, allergic conjunctivitis, and asthma. PMID:27684861
Montgomery, William; Ueda, Kaname; Jorgensen, Margaret; Stathis, Shari; Cheng, Yuanyuan; Nakamura, Tomomi
2018-01-01
The burden of dementia in Japan is large and growing. With the world's fastest aging population, it is estimated that one in five elderly people will be living with dementia in Japan by 2025. The most common form of dementia is Alzheimer's disease (AD), accounting for around two-thirds of dementia cases. A systematic review was conducted to examine the epidemiology and associated burden of AD in Japan and to identify how AD is diagnosed and managed in Japan. English and Japanese language databases were searched for articles published between January 2000 and November 2015. Relevant Japanese sources, clinical practice guideline registers, and reference lists were also searched. Systematic reviews and cohort and case-control studies were eligible for inclusion, with a total of 60 studies included. The most recent national survey conducted in six regions of Japan reported the mean prevalence of dementia in people aged ≥65 years to be 15.75% (95% CI: 12.4, 22.2%), which is much higher than the previous estimated rate of 10% in 2010. AD was confirmed as the predominant type of dementia, accounting for 65.8% of all cases. Advancing age and low education were the most consistently reported risk factors for AD dementia. Japanese guidelines for the management of dementia were released in 2010 providing specific guidance for AD about clinical signs, image findings, biochemical markers, and treatment approaches. Pharmacotherapies and non-pharmacotherapies to relieve cognitive symptoms were introduced, as were recommendations to achieve better patient care. No studies reporting treatment patterns were identified. Due to population aging and growing awareness of AD in Japan, health care expenditure and associated burden are expected to soar. This review highlights the importance of early detection, diagnosis, and treatment of AD as strategies to minimize the impact of AD on society in Japan.
Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease.
Kumar, Kushal; Kumar, Ashwani; Keegan, Richard M; Deshmukh, Rahul
2018-02-01
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive deterioration of cognitive functions. The pathological hallmarks are extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles of tau protein. The cognitive deficits seen are thought to be due to synaptic dysfunction and neurochemical deficiencies. Various neurochemical abnormalities have been observed during progressive ageing, and are linked to cognitive abnormalities as seen with the sporadic form of AD. Acetylcholinesterase inhibitors are one of the major therapeutic strategies used for the treatment of AD. During the last decade, various new therapeutic strategies have shown beneficial effects in preclinical studies and under clinical development for the treatment of AD. The present review is aimed at discussing the neurobiology of AD and association of neurochemical abnormalities associated with cognitive deterioration and new therapeutic strategies for the treatment of AD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The Alzheimer's Disease Mitochondrial Cascade Hypothesis: Progress and Perspectives
Swerdlow, Russell H.; Burns, Jeffrey M.; Khan, Shaharyar M.
2013-01-01
Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it. PMID:24071439
Aging Microglia—Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases
Spittau, Björn
2017-01-01
Aging of the central nervous system (CNS) is one of the major risk factors for the development of neurodegenerative pathologies such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). The molecular mechanisms underlying the onset of AD and especially PD are not well understood. However, neuroinflammatory responses mediated by microglia as the resident immune cells of the CNS have been reported for both diseases. The unique nature and developmental origin of microglia causing microglial self-renewal and telomere shortening led to the hypothesis that these CNS-specific innate immune cells become senescent. Age-dependent and senescence-driven impairments of microglia functions and responses have been suggested to play essential roles during onset and progression of neurodegenerative diseases. This review article summarizes the current knowledge of microglia phenotypes and functions in the aging CNS and further discusses the implications of these age-dependent microglia changes for the development and progression of AD and PD as the most common neurodegenerative diseases. PMID:28659790
The neuropsychology of normal aging and preclinical Alzheimer's disease.
Caselli, Richard J; Locke, Dona E C; Dueck, Amylou C; Knopman, David S; Woodruff, Bryan K; Hoffman-Snyder, Charlene; Rademakers, Rosa; Fleisher, Adam S; Reiman, Eric M
2014-01-01
A National Institute on Aging-sponsored work group on preclinical Alzheimer's disease (AD) articulated the need to characterize cognitive differences between normal aging and preclinical AD. Seventy-one apolipoprotein E (APOE) ε4 homozygotes, 194 ε3/ε4 heterozygotes, and 356 ε4 noncarriers age 21 to 87 years who were cognitively healthy underwent neuropsychological testing every 2 years. Longitudinal trajectories of test scores were compared between APOE subgroups. There was a significant effect of age on all cognitive domains in both APOE ε4 carriers and noncarriers. A significant effect of APOE ε4 gene dose was confined to the memory domain and the Dementia Rating Scale. Cross-sectional comparisons did not discriminate the groups. Although cognitive aging patterns are similar in APOE ε4 carriers and noncarriers, preclinical AD is characterized by a significant ε4 gene dose effect that impacts memory and is detectable longitudinally. Preclinical neuropsychological testing strategies should emphasize memory-sensitive measures and longitudinal design. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Colin, Julie; Thomas, Mélanie H; Gregory-Pauron, Lynn; Pinçon, Anthony; Lanhers, Marie-Claire; Corbier, Catherine; Claudepierre, Thomas; Yen, Frances T; Oster, Thierry; Malaplate-Armand, Catherine
2017-06-01
Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Wong, Dennis T L; Narayan, Om; Leong, Darryl P; Bertaso, Angela G; Maia, Murilo G; Ko, Brian S H; Baillie, Timothy; Seneviratne, Sujith K; Worthley, Matthew I; Meredith, Ian T; Cameron, James D
2015-06-01
Aortic distensibility (AD) decreases with age and increased aortic stiffness is independently associated with adverse cardiovascular outcomes. The association of severe aortic stenosis (AS) with AD in different aortic regions has not been evaluated. Elderly subjects with severe AS and a cohort of patients without AS of similar age were studied. Proximal aortic cross-sectional-area changes during the cardiac cycle were determined using retrospective-ECG-gating on 128-detector row computed-tomography. Using oscillometric-brachial-blood-pressure measurements, the AD at the ascending-aorta (AA), proximal-descending-aorta (PDA) and distal-descending-aorta (DDA) was determined. Linear mixed effects modelling was used to determine the association of age and aortic stenosis on regional AD. 102 patients were evaluated: 36 AS patients (70-85 years), 24 AS patients (>85 years) and 42 patients without AS (9 patients <50 years, 20 patients between 51-70 years and 13 patients 70-85 years). When comparing patients 70-85 years, AA distensibility was significantly lower in those with AS compared to those without AS (0.9 ± 0.9 vs. 1.4 ± 1.1, P = 0.03) while there was no difference in the PDA (1.0 ± 1.1 vs. 1.0 ± 1.2, P = 0.26) and DDA (1.1 ± 1.2 vs. 1.2 ± 0.8, P = 0.97). In patients without AS, AD decreased with age in all aortic regions (P < 0.001). The AA in patients <50 years were the most distensible compared to other aortic regions. There is regional variation in aortic distensibility with aging. Patients with aortic stenosis demonstrated regional differences in aortic distensibility with lower distensibility demonstrated in the proximal ascending aorta compared to an age-matched cohort.
Prevalence rates for dementia and Alzheimer’s disease in African Americans: 1992 vs. 2001
Hall, KS; Gao, S; Baiyewu, O; Lane, KA; Gureje, O; Shen, J; Ogunniyi, A; Murrell, JR; Unverzagt, FW; Dickens, J; Smith-Gamble, V; Hendrie, HC
2009-01-01
Background This study compares age-specific and overall prevalence rates for dementia and Alzheimer’s disease (AD) in two non overlapping population-based cohorts of elderly African Americans in Indianapolis in 2001 and 1992. Methods Two-stage design, first stage is Community Screening Interview for Dementia (CSI-D). CSI-D scores grouped into good, intermediate and poor performance for selection into clinical assessment. Diagnosis was made using standard criteria in consensus diagnosis conference; clinicians blind to performance group. In 1992, interviewers went to randomly sampled addresses enrolling self identified African Americans age ≥ 65; of 2,582 eligible, 2,212 enrolled, (9.6% refused, 4.7% too sick). In 2001, Medicare roles were used for African Americans age ≥ 70 years; of 4,260 eligible, 1,892 (44%) enrolled, 1,999 (47%) refused, the remainder had other reasons. Results The overall age adjusted prevalence rate for dementia for age ≥ 70 years in 2001 was 7.45% (95 confidence interval [CI] 4.27–10.64) and for the 1992 cohort was 6.75% (95% CI 5.77–7.74). The overall age adjusted prevalence rate for age ≥ 70 years, for AD for the 2001 cohort was 6.77% (95% CI 3.65–9.90), and for the 1992 cohort was 5.47% (95% CI 4.51–6.42). Rates for dementia and AD were not significantly different in the two cohorts (dementia, p=0.3534, AD, p=0.2649). Conclusions We find no differences in prevalence rates of dementia and AD between 1992 and 2001 in spite of significant medical history and medical treatment differences in these population-based cohorts of African American elderly. PMID:19426950
Trebbastoni, Alessandro; Marcelli, Michela; Mallone, Fabiana; D'Antonio, Fabrizia; Imbriano, Letizia; Campanelli, Alessandra; de Lena, Carlo; Gharbiya, Magda
2017-01-01
To compare the 12-month choroidal thickness (CT) change between Alzheimer disease (AD) patients and normal subjects. In this prospective, observational study, 39 patients with a diagnosis of mild to moderate AD and 39 age-matched control subjects were included. All the subjects underwent neuropsychological (Mini Mental State Examination, Alzheimer disease Assessment Scale-Cognitive Subscale, and the Clinical Dementia Rating Scale) and ophthalmological evaluation, including spectral domain optical coherence tomography, at baseline and after 12 months. CT was measured manually using the caliper tool of the optical coherence tomography device. After 12 months, AD patients had a greater reduction of CT than controls (P≤0.05, adjusted for baseline CT, age, sex, axial length, and smoking). CT in patients with AD showed a rate of thinning greater than what could be expected during the natural course of aging.
Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L
2018-06-01
There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.
Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease
Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.
2013-01-01
We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256
Zhang, Nan; Gordon, Marc L; Goldberg, Terry E
2017-01-01
Arterial spin labeling (ASL) magnetic resonance imaging uses arterial blood water as an endogenous tracer to measure cerebral blood flow (CBF). In this review, based on ASL studies in the resting state, we discuss state-of-the-art technical and data processing improvements in ASL, and ASL CBF changes in normal aging, mild cognitive impairment (MCI), Alzheimer's disease (AD), and other types of dementia. We propose that vascular and AD risk factors should be considered when evaluating CBF changes in aging, and that other validated biomarkers should be used as inclusion criteria or covariates when evaluating CBF changes in MCI and AD. With improvements in hardware and experimental design, ASL is proving to be an increasingly promising tool for exploring pathogenetic mechanisms, early detection, monitoring disease progression and pharmacological response, and differential diagnosis of AD. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Psaltis, Dimitrios
2007-05-04
In braneworld gravity models with a finite anti-de Sitter space (AdS) curvature in the extra dimension, the AdS/conformal field theory correspondence leads to a prediction for the lifetime of astrophysical black holes that is significantly smaller than the Hubble time, for asymptotic curvatures that are consistent with current experiments. Using the recent measurements of the position, three-dimensional spatial velocity, and mass of the black hole XTE J1118+480, I calculate a lower limit on its kinematic age of > or =11 Myr (95% confidence). This translates into an upper limit for the asymptotic AdS curvature in the extra dimensions of <0.08 mm, which significantly improves the limit obtained by table top experiments of sub mm gravity.
A new model integrating short- and long-term aging of copper added to soils
Zeng, Saiqi; Li, Jumei; Wei, Dongpu
2017-01-01
Aging refers to the processes by which the bioavailability/toxicity, isotopic exchangeability, and extractability of metals added to soils decline overtime. We studied the characteristics of the aging process in copper (Cu) added to soils and the factors that affect this process. Then we developed a semi-mechanistic model to predict the lability of Cu during the aging process with descriptions of the diffusion process using complementary error function. In the previous studies, two semi-mechanistic models to separately predict short-term and long-term aging of Cu added to soils were developed with individual descriptions of the diffusion process. In the short-term model, the diffusion process was linearly related to the square root of incubation time (t1/2), and in the long-term model, the diffusion process was linearly related to the natural logarithm of incubation time (lnt). Both models could predict short-term or long-term aging processes separately, but could not predict the short- and long-term aging processes by one model. By analyzing and combining the two models, we found that the short- and long-term behaviors of the diffusion process could be described adequately using the complementary error function. The effect of temperature on the diffusion process was obtained in this model as well. The model can predict the aging process continuously based on four factors—soil pH, incubation time, soil organic matter content and temperature. PMID:28820888
The effect of increased genetic risk for Alzheimer’s disease on hippocampal and amygdala volume
Lupton, Michelle K.; Strike, Lachlan; Hansell, Narelle K.; Wen, Wei; Mather, Karen A.; Armstrong, Nicola J.; Thalamuthu, Anbupalam; McMahon, Katie L.; de Zubicaray, Greig I.; Assareh, Amelia A.; Simmons, Andrew; Proitsi, Petroula; Powell, John F.; Montgomery, Grant W.; Hibar, Derrek P.; Westman, Eric; Tsolaki, Magda; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Velas, Bruno; Lovestone, Simon; Brodaty, Henry; Ames, David; Trollor, Julian N.; Martin, Nicholas G.; Thompson, Paul M.; Sachdev, Perminder S.; Wright, Margaret J.
2016-01-01
Reduction in hippocampal and amygdala volume measured via structural magnetic resonance imaging is an early marker of Alzheimer’s disease (AD). Whether genetic risk factors for AD exert an effect on these subcortical structures independent of clinical status has not been fully investigated. We examine whether increased genetic risk for AD influences hippocampal and amygdala volumes in case-control and population cohorts at different ages, in 1674 older (aged >53 years; 17% AD, 39% mild cognitive impairment [MCI]) and 467 young (16–30 years) adults. An AD polygenic risk score combining common risk variants excluding apolipoprotein E (APOE), and a single nucleotide polymorphism in TREM2, were both associated with reduced hippocampal volume in healthy older adults and those with MCI. APOE ɛ4 was associated with hippocampal and amygdala volume in those with AD and MCI but was not associated in healthy older adults. No associations were found in young adults. Genetic risk for AD affects the hippocampus before the clinical symptoms of AD, reflecting a neurodegenerative effect before clinical manifestations in older adults. PMID:26973105
Kirova, Anna-Mariya; Bays, Rebecca B; Lagalwar, Sarita
2015-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by deficits in episodic memory, working memory (WM), and executive function. Examples of executive dysfunction in AD include poor selective and divided attention, failed inhibition of interfering stimuli, and poor manipulation skills. Although episodic deficits during disease progression have been widely studied and are the benchmark of a probable AD diagnosis, more recent research has investigated WM and executive function decline during mild cognitive impairment (MCI), also referred to as the preclinical stage of AD. MCI is a critical period during which cognitive restructuring and neuroplasticity such as compensation still occur; therefore, cognitive therapies could have a beneficial effect on decreasing the likelihood of AD progression during MCI. Monitoring performance on working memory and executive function tasks to track cognitive function may signal progression from normal cognition to MCI to AD. The present review tracks WM decline through normal aging, MCI, and AD to highlight the behavioral and neurological differences that distinguish these three stages in an effort to guide future research on MCI diagnosis, cognitive therapy, and AD prevention.
Familiarity-based memory as an early cognitive marker of preclinical and prodromal AD
Wolk, David A.; Mancuso, Lauren; Kliot, Daria; Arnold, Steven E.; Dickerson, Bradford C.
2013-01-01
There is great interest in the development of cognitive markers that differentiate “normal” age-associated cognitive change from that of Alzheimer's disease (AD) in its prodromal (i.e., mild cognitive impairment; MCI) or even preclinical stages. Dual process models posit that recognition memory is supported by the dissociable processes of recollection and familiarity. Familiarity-based memory has generally been considered to be spared during normal aging, but it remains controversial whether this type of memory is impaired in early AD. Here, we describe findings of estimates of recollection and familiarity in young adults (YA), cognitively normal older adults (CN), and patients with amnestic-MCI (a-MCI). These measures in the CN and a-MCI patients were then related to a structural imaging biomarker of AD that has previously been demonstrated to be sensitive to preclinical and prodromal AD, the Cortical Signature of AD (ADsig). Consistent with much work in the literature, recollection, but not familiarity, was impaired in CN versus YA. Replicating our prior findings, a-MCI patients displayed impairment in both familiarity and recollection. Finally, the familiarity measure was correlated with the ADsig biomarker across the CN and a-MCI group, as well as within the CN adults alone. No other standard psychometric measure was as highly associated with the ADsig, suggesting that familiarity may be a sensitive biomarker of AD-specific brain changes in preclinical and prodromal AD and that it may offer a qualitatively distinct measure of early AD memory impairment relative to normal age-associated change. PMID:23474075
Peng, Dantao; Shi, Zhihong; Xu, Jun; Shen, Lu; Xiao, Shifu; Zhang, Nan; Li, Yi; Jiao, Jinsong; Wang, Yan-Jiang; Liu, Shuai; Zhang, Meilin; Wang, Meng; Liu, Shuling; Zhou, Yuying; Zhang, Xiao; Gu, Xiao-Hua; Yang, Ce-Ce; Wang, Yu; Jiao, Bin; Tang, Beisha; Wang, Jinhuan; Yu, Tao; Ji, Yong
2016-06-01
Alzheimer disease (AD) is the most frequent cause of dementia. AD diagnosis, progression, and treatment have not been analyzed nationwide in China. The primary aim of this study was to analyze demographic and clinical characteristics related to cognitive decline in AD patients treated at outpatient clinics in China.We performed a retrospective study of 1993 AD patients at 10 cognitive centers across 8 cities in China from March 2011 to October 2014. Of these, 891 patients were followed for more than 1 year.The mean age at diagnosis was 72.0 ± 10.0 years (range 38-96 years), and the mean age at onset of AD was 69.8 ± 9.5 years. Most patients (65.1%) had moderate to severe symptoms at the time of diagnosis, and mean Mini-Mental State Examination at diagnosis was 15.7 ± 7.7. AD patients showed significant cognitive decline at 12 months after diagnosis. Having more than 9 years of formal education was an independent risk factor related to rapid cognitive decline [odds ratio (OR) = 1.80; 95% confidence interval (95% CI): 1.11-2.91]. Early-onset AD patients experienced more rapid cognitive decline than late-onset patients (OR = 1.83; 95% CI: 1.09-3.06).Most AD patients in China had moderate to severe symptoms at the time of diagnosis and experienced significant cognitive decline within 1 year. Rapid cognitive decline in AD was related to having a higher educational level and younger age of onset.
The muscle protein dysferlin accumulates in the Alzheimer brain
Palamand, Divya; Strider, Jeff; Milone, Margherita; Pestronk, Alan
2006-01-01
Dysferlin is a transmembrane protein that is highly expressed in muscle. Dysferlin mutations cause limb-girdle dystrophy type 2B, Miyoshi myopathy and distal anterior compartment myopathy. Dysferlin has also been described in neural tissue. We studied dysferlin distribution in the brains of patients with Alzheimer disease (AD) and controls. Twelve brains, staged using the Clinical Dementia Rating were examined: 9 AD cases (mean age: 85.9 years and mean disease duration: 8.9 years), and 3 age-matched controls (mean age: 87.5 years). Dysferlin is a cytoplasmic protein in the pyramidal neurons of normal and AD brains. In addition, there were dysferlin-positive dystrophic neurites within Aβ plaques in the AD brain, distinct from tau-positive neurites. Western blots of total brain protein (RIPA) and sequential extraction buffers (high salt, high salt/Triton X-100, SDS and formic acid) of increasing protein extraction strength were performed to examine solubility state. In RIPA fractions, dysferlin was seen as 230–272 kDa bands in normal and AD brains. In serial extractions, there was a shift of dysferlin from soluble phase in high salt/Triton X-100 to the more insoluble SDS fraction in AD. Dysferlin is a new protein described in the AD brain that accumulates in association with neuritic plaques. In muscle, dysferlin plays a role in the repair of muscle membrane damage. The accumulation of dysferlin in the AD brain may be related to the inability of neurons to repair damage due to Aβ deposits accumulating in the AD brain. PMID:17024495
Category specific deficits in Alzheimer's disease: fact or artefact?
Tippett, Lynette J; Meier, Sandra L; Blackwood, Kirsty; Diaz-Asper, Catherine
2007-10-01
Impairments in semantic memory commonly occur in Alzheimer's Disease (AD) but do these occur along category-specific lines? We administered a confrontation naming task comprising living and nonliving items to 68 individuals with AD and 59 age-matched control participants, in a study designed to address some of the methodological issues affecting investigation of category effects. In Experiment 1, stimuli were matched for familiarity and word frequency and also visual complexity, and the AD group showed a differential deficit in nonliving things. In Experiment 2, however, living and nonliving stimuli were matched for age-of-acquisition, name agreement, word frequency, and naming accuracy of elderly controls and there was no categorical impairment in the AD group. The AD group was subdivided first into mild and moderate AD, and then into normal or impaired overall naming groups and performance was reanalysed, but there was still no significant category deficit in any group. Converging evidence was provided by hierarchical regressions across items, as age-of-acquisition, name agreement and word frequency were significant predictors of naming performance in mild and moderate AD groups, but category was not. In Experiment 3, stimulus items were matched for familiarity and naming accuracy of elderly controls when their performance was off-ceiling, and again no differential effect of category was found. When we reduced slightly how closely matched stimuli were for familiarity we then found a differential impairment in living things in the AD group. When reviewing the changing pattern of results from use of different stimulus sets, we concluded that the main determinant of whether or not a categorical impairment of either sort is found in AD is which stimulus properties are controlled during stimulus selection. We conclude that AD does not generally lead to a selective category loss in semantic knowledge.
Hüls, Anke; Klümper, Claudia; MacIntyre, Elaina A; Brauer, Michael; Melén, Erik; Bauer, Mario; Berdel, Dietrich; Bergström, Anna; Brunekreef, Bert; Chan-Yeung, Moira; Fuertes, Elaine; Gehring, Ulrike; Gref, Anna; Heinrich, Joachim; Standl, Marie; Lehmann, Irina; Kerkhof, Marjan; Koppelman, Gerard H; Kozyrskyj, Anita L; Pershagen, Göran; Carlsten, Christopher; Krämer, Ursula; Schikowski, Tamara
2018-04-06
Associations between traffic-related air pollution (TRAP) and childhood atopic dermatitis (AD) remain inconsistent, possibly due to unexplored gene-environment interactions. The aim of this study was to examine whether a potential effect of TRAP on AD prevalence in children is modified by selected single nucleotide polymorphisms (SNPs) related to oxidative stress and inflammation. Doctor-diagnosed AD up to age 2 years and at 7-8 years, as well as AD symptoms up to age 2 years, was assessed using parental-reported questionnaires in six birth cohorts (N = 5685). Associations of nitrogen dioxide (NO 2 ) estimated at the home address of each child at birth and nine SNPs within the GSTP1, TNF, TLR2, or TLR4 genes with AD were examined. Weighted genetic risk scores (GRS) were calculated from the above SNPs and used to estimate combined marginal genetic effects of oxidative stress and inflammation on AD and its interaction with TRAP. GRS was associated with childhood AD and modified the association between NO 2 and doctor-diagnosed AD up to the age of 2 years (P(interaction) = .029). This interaction was mainly driven by a higher susceptibility to air pollution in TNF rs1800629 minor allele (A) carriers. TRAP was not associated with the prevalence of AD in the general population. The marginal genetic association of a weighted GRS from GSTP1, TNF, TLR2, and TLR4SNPs and its interaction with air pollution supports the role of oxidative stress and inflammation in AD. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Alzheimer’s Prevention Initiative: A Plan to Accelerate the Evaluation of Presymptomatic Treatments
Reiman, Eric M.; Langbaum, Jessica B.S.; Fleisher, Adam S.; Caselli, Richard J.; Chen, Kewei; Ayutyanont, Napatkamon; Quiroz, Yakeel T.; Kosik, Kenneth S.; Lopera, Francisco; Tariot, Pierre N.
2012-01-01
There is an urgent need to find effective presymptomatic Alzheimer’s disease (AD) treatments that reduce the risk of AD symptoms or prevent them completely. It currently takes too many healthy people, too much money and too many years to evaluate the range of promising presymptomatic treatments using clinical endpoints. We have used brain imaging and other measurements to track some of the earliest changes associated with the predisposition to AD. We have proposed the Alzheimer’s Prevention Initiative (API) to evaluate investigational amyloid-modifying treatments in healthy people who, based on their age and genetic background, are at the highest imminent risk of developing symptomatic AD using brain imaging, cerebrospinal fluid (CSF), and cognitive endpoints. In one trial, we propose to study AD-causing presenilin 1 [PS1] mutation carriers from the world’s largest early-onset AD kindred in Antioquia, Colombia, close to their estimated average age at clinical onset. In another trial, we propose to study apolipoprotein E (APOE)ε4 homozygotes (and possibly heterozygotes) close to their estimated average age at clinical onset. The API has several goals: 1) to evaluate investigational AD-modifying treatments sooner than otherwise possible; 2) to determine the extent to which the treatment’s brain imaging and other biomarker effects predict a clinical benefit—information needed to help qualify biomarker endpoints for use in pivotal prevention trials; 3) to provide a better test of the amyloid hypothesis than clinical trials in symptomatic patients, when these treatments may be too little too late to exert their most profound effect; 4) to establish AD prevention registries needed to support these and other presymptomatic AD trials; and 5) to give those individuals at highest imminent risk of AD symptoms access to the most promising investigational treatments in clinical trials. PMID:21971471
Tiihonen, Miia; Taipale, Heidi; Tanskanen, Antti; Tiihonen, Jari; Hartikainen, Sirpa
2016-01-01
We studied the incidence and duration of cumulative bisphosphonate use among older Finnish women and men with or without Alzheimer's disease (AD). The MEDALZ-2005 cohort is a nationwide sample of all persons with clinically diagnosed AD on 31 December 2005 and their age-, gender-, and region of residence-matched control persons without AD. Information on bisphosphonate use by persons with an AD diagnosis and their controls without AD during 2002-2009 was obtained from the prescription register database containing reimbursed medications. A total of 6,041 (11.8%) persons used bisphosphonates during the 8-year follow-up. Bisphosphonates were more commonly used among persons without AD (n = 3121, 12.3%) than among persons with AD (n = 2,920, 11.2%) (p = 0.001). The median duration of bisphosphonate use was 743 days (IQR). Among persons with AD, the median duration of use was 777 days (IQR) and among persons without AD, 701 days (IQR) (p = 0.011). People without AD more often used bisphosphonate combination preparations including vitamin D than did people with AD (p < 0.0001). Bisphosphonate use was more common among people without AD who had comorbidities, asthma/COPD, or rheumatoid arthritis compared with users with AD. Short-term users were more likely to be male, at least 80 years old, and not having AD. Although the incidence of bisphosphonate use was slightly higher among persons without AD, the cumulative duration of bisphosphonate use was longer in persons with AD. Short-term use was associated with male gender, older age, and not having AD.
A population-based study of familial Alzheimer disease: Linkage to chromosomes 14, 19, and 21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duijn, C.M. van; Hofman, A.; Hendriks, L.
1994-10-01
Linkage of Alzheimer disease (AD) to DNA markers on chromosomes 14, 19, and 21 was studied in 10 families in which the disease was apparently inherited as an autosomal dominant trait. Families were derived from a Dutch population-based epidemiologic study of early-onset AD. Although in all probands the onset of AD was at or before age 65 years, the mean age at onset was after age 65 years in four families (referred to as {open_quotes}LOAD{close_quotes}). Among the six families with early-onset AD (referred to as {open_quotes}EOAD,{close_quotes} i.e., mean age of onset of AD of relatives was at or before agemore » 65 years), conclusive linkage to 14q24.3 was found in one family with a very early onset (around 47 years), while linkage to the same region was excluded in two other families. For the LOAD families, predominantly negative lod scores were obtained, and the overall lod score excluded linkage to chromosome 14. The results with markers on chromosome 19 and chromosome 21 were not conclusive for EOAD and LOAD. The findings of our study confirm genetic heterogeneity within familial EOAD. 50 refs., 7 figs., 2 tabs.« less
Wang, Li; Li, Lin-Feng
2016-12-05
Atopic dermatitis (AD) is a common inflammatory skin disease with an increasingly significant prevalence. The prevalence of AD depends greatly on how its diagnosis is done. The UK Working Party's diagnostic criteria for AD are simple and easy to apply without invasive laboratory tests. This study assessed the clinical utility of these criteria in China. Data were collected from 6208 patients at 31 tertiary hospitals in 13 Chinese provinces/municipalities from March 2014 to May 2014. . The agreement between the UK diagnostic criteria and the clinical records for AD was assessed by Cohen's kappa. The overall agreement between the UK diagnostic criteria and clinical diagnosis was fair (kappa = 0.40). A slightly better agreement was found in patients aged between 4 and 9 years (kappa = 0.48), while fair agreement was found in the group <4 years and the group ≥10 years (kappa = 0.27 and 0.39, respectively). Using the UK party's criteria as the standard, the sensitivity, specificity, positive predictive value, and negative predictive value of the clinical diagnosis of AD were 62.3%, 89.2%, 38.0%, and 95.7%, respectively. Our study indicates a modest ability among Chinese dermatologists to apply the UK Working Party's diagnostic criteria for AD, especially in patients aged <4 years and ≥10 years. Since there is no gold standard for AD diagnosis, it is important to determine how AD is identified when evaluating a diagnostic tool.
Hippocampal Sclerosis of Aging Can Be Segmental: Two Cases and Review of the Literature.
Ighodaro, Eseosa T; Jicha, Gregory A; Schmitt, Frederick A; Neltner, Janna H; Abner, Erin L; Kryscio, Richard J; Smith, Charles D; Duplessis, Taylor; Anderson, Sonya; Patel, Ela; Bachstetter, Adam; Van Eldik, Linda J; Nelson, Peter T
2015-07-01
Hippocampal sclerosis of aging (HS-Aging) is a neurodegenerative disease that mimics Alzheimer disease (AD) clinically and has a prevalence rivaling AD in advanced age. Whereas clinical biomarkers are not yet optimized, HS-Aging has distinctive pathological features that distinguish it from other diseases with "hippocampal sclerosis" pathology, such as epilepsy, cerebrovascular perturbations, and frontotemporal lobar degeneration. By definition, HS-Aging brains show neuronal cell loss and gliosis in the hippocampal formation out of proportion to AD-type pathology; it is strongly associated with aberrant TDP-43 pathology and arteriolosclerosis. Here, we describe 2 cases of "segmental" HS-Aging in which "sclerosis" in the hippocampus was evident only in a subset of brain sections by hematoxylin and eosin (H&E) stain. In these cases, TDP-43 pathology was more widespread on immunostained sections than the neuronal cell loss and gliosis seen in H&E stains. The 2 patients were cognitively intact at baseline and were tracked longitudinally over a decade using cognitive studies with at least 1 neuroimaging scan. We discuss the relevant HS-Aging literature, which indicates the need for a clearer consensus-based delineation of "hippocampal sclerosis" and TDP-43 pathologies in aged subjects.
‘Alzheimer’s Progression Score’: Development of a Biomarker Summary Outcome for AD Prevention Trials
Leoutsakos, J.-M.; Gross, A.L.; Jones, R.N.; Albert, M.S.; Breitner, J.C.S.
2017-01-01
BACKGROUND Alzheimer’s disease (AD) prevention research requires methods for measurement of disease progression not yet revealed by symptoms. Preferably, such measurement should encompass multiple disease markers. OBJECTIVES Evaluate an item response theory (IRT) model-based latent variable Alzheimer Progression Score (APS) that uses multi-modal disease markers to estimate pre-clinical disease progression. DESIGN Estimate APS scores in the BIOCARD observational study, and in the parallel PREVENT-AD Cohort and its sister INTREPAD placebo-controlled prevention trial. Use BIOCARD data to evaluate whether baseline and early APS trajectory predict later progression to MCI/dementia. Similarly, use longitudinal PREVENT-AD data to assess test measurement invariance over time. Further, assess portability of the PREVENT-AD IRT model to baseline INTREPAD data, and explore model changes when CSF markers are added or withdrawn. SETTING BIOCARD was established in 1995 and participants were followed up to 20 years in Baltimore, USA. The PREVENT-AD and INTREPAD trial cohorts were established between 2011–2015 in Montreal, Canada, using nearly identical entry criteria to enroll high-risk cognitively normal persons aged 60+ then followed for several years. PARTICIPANTS 349 cognitively normal, primarily middle-aged participants in BIOCARD, 125 high-risk participants aged 60+ in PREVENT-AD, and 217 similar subjects in INTREPAD. 106 INTREPAD participants donated up to four serial CSF samples. MEASUREMENTS Global cognitive assessment and multiple structural, functional, and diffusion MRI metrics, sensori-neural tests, and CSF concentrations of tau, Aβ42 and their ratio. RESULTS Both baseline values and early slope of APS scores in BIOCARD predicted later progression to MCI or AD. Presence of CSF variables strongly improved such prediction. A similarly derived APS in PREVENT-AD showed measurement invariance over time and portability to the parallel INTREPAD sample. CONCLUSIONS An IRT-based APS can summarize multimodal information to provide a longitudinal measure of pre-clinical AD progression, and holds promise as an outcome for AD prevention trials. PMID:29034223
Leoutsakos, J-M; Gross, A L; Jones, R N; Albert, M S; Breitner, J C S
2016-01-01
Alzheimer's disease (AD) prevention research requires methods for measurement of disease progression not yet revealed by symptoms. Preferably, such measurement should encompass multiple disease markers. Evaluate an item response theory (IRT) model-based latent variable Alzheimer Progression Score (APS) that uses multi-modal disease markers to estimate pre-clinical disease progression. Estimate APS scores in the BIOCARD observational study, and in the parallel PREVENT-AD Cohort and its sister INTREPAD placebo-controlled prevention trial. Use BIOCARD data to evaluate whether baseline and early APS trajectory predict later progression to MCI/dementia. Similarly, use longitudinal PREVENT-AD data to assess test measurement invariance over time. Further, assess portability of the PREVENT-AD IRT model to baseline INTREPAD data, and explore model changes when CSF markers are added or withdrawn. BIOCARD was established in 1995 and participants were followed up to 20 years in Baltimore, USA. The PREVENT-AD and INTREPAD trial cohorts were established between 2011-2015 in Montreal, Canada, using nearly identical entry criteria to enroll high-risk cognitively normal persons aged 60+ then followed for several years. 349 cognitively normal, primarily middle-aged participants in BIOCARD, 125 high-risk participants aged 60+ in PREVENT-AD, and 217 similar subjects in INTREPAD. 106 INTREPAD participants donated up to four serial CSF samples. Global cognitive assessment and multiple structural, functional, and diffusion MRI metrics, sensori-neural tests, and CSF concentrations of tau, Aβ42 and their ratio. Both baseline values and early slope of APS scores in BIOCARD predicted later progression to MCI or AD. Presence of CSF variables strongly improved such prediction. A similarly derived APS in PREVENT-AD showed measurement invariance over time and portability to the parallel INTREPAD sample. An IRT-based APS can summarize multimodal information to provide a longitudinal measure of pre-clinical AD progression, and holds promise as an outcome for AD prevention trials.
Mohamed, Loqman A; Qosa, Hisham; Kaddoumi, Amal
2015-05-20
In Alzheimer's disease (AD), accumulation of brain amyloid-β (Aβ) depends on imbalance between production and clearance of Aβ. Several pathways for Aβ clearance have been reported including transport across the blood-brain barrier (BBB) and hepatic clearance. The incidence of AD increases with age and failure of Aβ clearance correlates with AD. The cholinesterase inhibitors (ChEIs) donepezil and rivastigmine are used to ease the symptoms of dementia associated with AD. Besides, both drugs have been reported to provide neuroprotective and disease-modifying effects. Here, we investigated the effect of ChEIs on age-related reduced Aβ clearance. Findings from in vitro and in vivo studies demonstrated donepezil and rivastigmine to enhance (125)I-Aβ40 clearance. Also, the increase in brain and hepatic clearance of (125)I-Aβ40 was more pronounced in aged compared to young rats, and was associated with significant reduction in brain Aβ endogenous levels determined by ELISA. Furthermore, the enhanced clearance was concomitant with up-regulation in the expression of Aβ major transport proteins P-glycoprotein and LRP1. Collectively, our findings that donepezil and rivastigmine enhance Aβ clearance across the BBB and liver are novel and introduce an additional mechanism by which both drugs could affect AD pathology. Thus, optimizing their clinical use could help future drug development by providing new drug targets and possible mechanisms involved in AD pathology.
Effects of body weight and age on the time and pairing of American black ducks
Hepp, G.R.
1986-01-01
I used captive young and adult American Black Ducks (Anas rubripes) during October-February 1984-1985 to test whether body weight and age affected time of pair-bond formation. Eighty ducks were marked individually, and 10 ducks (6 males and 4 females, half of each age class) were assigned to each of 8 experimental pens. Ducks in 4 pens received an ad libitum diet of commercial duck food, and ducks in the other 4 pens received a restricted ration of the same food. During early winter ducks in both groups gained weight, but ducks on the restricted diet gained less than birds on the ad libitum diet; peak winter weight of ducks on the ad libitum diet averaged 22% greater than initial body weight compared with 6.5% for ducks on the restricted diet. In late winter ducks on the restricted diet lost 28.7% of peak winter weight, and ducks on the ad libitum diet lost 19.3%. Weight loss of ducks on the ad libitum diet began before weather conditions became severe and coincided with a reduction in food consumption. This result supports the idea that weight loss of waterfowl in late winter is controlled endogenously. Individuals on the ad libitum diet paired earlier than those on the restricted diet, and pair bonds were stronger. Adults of both sexes paired earlier than young ducks, but differences for females were not significant statistically. Age and energy constraints are factors that can affect intraspecific variation in pairing chronology.
Jiráková, Anna; Vojáčková, Naděžda; Göpfertová, Dana; Hercogová, Jana
2012-06-01
Atopic dermatitis (AD) still remains one of the most common childhood inflammatory skin diseases. As a chronic disease, it can have a physical and psychological effect on social functioning of the affected child as well as their family. The objective of this study was to evaluate the quality of life of children with AD of different age groups and their families. A total of 203 children with a diagnosis of AD from newborn to 18 years of age and 202 of their parents took part in our study (as one parent did not return the questionnaire). All participants, according to their age, completed the following questionnaires: Infants' Dermatitis Quality of Life Index (IDQOL); Children's Dermatology Life Quality Index (CDLQI) - text and cartoon version; and Dermatitis Family Impact questionnaire (DFI). The mean total IDQOL score in our study was 8.18 (SD = 5.84, n = 120). The mean total CDLQI scores in the groups of children from 7 to 13 and from 14 to 18 years were 8.58 (SD = 4.98, n = 48) and 9.89 (SD = 5.26, n = 35). There was also a proven influence of the child's AD on the quality of life of his parents with the mean score: 7.98 (SD = 6.41, n = 202). The study demonstrated and confirmed that AD significantly impairs the children's quality of life in all age groups and also quality of life of their families. Such data give us patient-oriented information that is of great importance for understanding the situation of individuals with AD and its influence on members of their family. © 2012 The International Society of Dermatology.
Plancher, Gaën; Guyard, Anne; Nicolas, Serge; Piolino, Pascale
2009-10-01
It is well known that the occurrence of false memories increases with aging, but the results remain inconsistent concerning Alzheimer's disease (AD). Moreover, the mechanisms underlying the production of false memories are still unclear. Using an experimental episodic memory test with material based on the names of famous people in a procedure derived from the DRM paradigm [Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory & Cognition, 21, 803-814], we examined correct and false recall and recognition in 30 young adults, 40 healthy older adults, and 30 patients with AD. Moreover, we evaluated the relationships between false memory performance, correct episodic memory performance, and a set of neuropsychological assessments evaluating the semantic memory and executive functions. The results clearly indicated that correct recall and recognition performance decreased with the subjects' age, but it decreased even more with AD. In addition, semantically related false recalls and false recognitions increased with age but not with dementia. On the contrary, non-semantically related false recalls and false recognitions increased with AD. Finally, the regression analyses showed that executive functions mediated related false memories and episodic memory mediated related and unrelated false memories in aging. Moreover, executive functions predicted related and unrelated false memories in AD, and episodic and semantic memory predicted semantically related and unrelated false memories in AD. In conclusion, the results obtained are consistent with the current constructive models of memory suggesting that false memory creation depends on different cognitive functions and, consequently, that the impairments of these functions influence the production of false memories.
Preservation of musical memory and engagement in healthy aging and Alzheimer's disease.
Cuddy, Lola L; Sikka, Ritu; Vanstone, Ashley
2015-03-01
In striking contrast to the difficulties with new learning and episodic memories in aging and especially in Alzheimer's disease (AD), musical long-term memories appear to be largely preserved. Evidence for spared musical memories in aging and AD is reviewed here. New data involve the development of a Musical Engagement Questionnaire especially designed for use with AD patients. The questionnaire assesses behavioral responses to music and is answered by the care partner. Current results show that, despite cognitive loss, persons with mild to moderate AD preserve musical engagement and music seeking. Familiar music evokes personal autobiographical memories for healthy younger and older adults as well and for those with mild to moderate AD. It is argued that music is a prime candidate for being a stimulus for cognitive stimulation because musical memories and associated emotions may be readily evoked; that is, they are strong and do not need to be repaired. Working with and through music as a resource may enhance social and communication functions. © 2015 New York Academy of Sciences.
Brainstem Alzheimer’s-Like Pathology in the Triple Transgenic Mouse Model of Alzheimer’s Disease
Overk, Cassia R.; Kelley, Christy M.; Mufson, Elliott J.
2011-01-01
The triple transgenic mouse (3xTgAD), harboring human APPSwe, PS1M146V and TauP301L genes, develops age-dependent forebrain intraneuronal Aβ and tau and extraneuronal plaques. We evaluated brainstem AD-like pathology using 6E10, AT8, and Alz50 antibodies and unbiased stereology in young and old 3xTgAD mice. Intraneuronal Aβ occurred in the tectum, periaqueductal gray, substantia nigra, red nucleus, tegmentum and mesencephalic V nucleus at all ages. Aβ-positive neuron numbers significantly decreased in the superior colliculus and substantia nigra while AT8-positive superior colliculus, red nucleus, principal sensory V, vestibular nuclei, and tegmental neurons significantly increased between 2 and 12 months. Alz50-positive neuron numbers increased only in the inferior colliculus between these ages. Dual labeling revealed a few Aβ- and tau- positive neurons. Plaques occurred only in the pons of female 3xTgAD mice starting at 9 months. 3xTgAD mice provide a platform to define in vivo mechanisms of Aβ and tau brainstem pathology. PMID:19524671
Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy
Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.
2016-01-01
Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138
Accelerated aging-related transcriptome changes in the female prefrontal cortex
Yuan, Yuan; Chen, Yi-Ping Phoebe; Boyd-Kirkup, Jerome; Khaitovich, Philipp; Somel, Mehmet
2012-01-01
Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer’s disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD. PMID:22783978
Weis, Susanne; Leube, Dirk; Erb, Michael; Heun, Reinhard; Grodd, Wolfgang; Kircher, Tilo
2011-07-01
The aim of our study was to examine brain networks involved with sustaining memory encoding performance in healthy aging and in Alzheimer's disease (AD). Since different brain regions are affected by degradation in these two conditions, it might be conceivable that different compensation mechanisms occur to keep up memory performance in aging and in AD. Using an event-related functional magnetic resonance imaging (FMRI) design and a correlation analysis, 8 patients suffering from AD and 29 elderly control subjects were scanned while they studied a list of words for a subsequent memory test. Individual performance was assessed on the basis of a subsequent recognition test, and brain regions were identified where functional activations during study correlated with memory performance. In both groups, successful memory encoding performance was significantly correlated with the activation of the right frontal cortex. Furthermore, in healthy controls, there was a significant correlation of memory performance and the activation of the left medial and lateral temporal lobe. In contrast, in AD patients, increasing memory performance goes along with increasing activation of the hippocampus and a bilateral brain network including the frontal and temporal cortices. Our data show that in healthy aging and in AD, common and distinct compensatory mechanisms are employed to keep up a certain level of memory performance. Both in healthy aging and in patients with AD, an increased level of monitoring and control processes mediated by the (right) frontal lobe seems to be necessary to maintain a certain level of memory performance. In addition, memory performance in healthy older subjects seems to rely on an increased effort in encoding item-specific semantic and contextual information in lateral areas of the (left) temporal lobe. In AD patients, on the other hand, the maintenance of memory performance is related to an increase of activation of the (left) hippocampus in conjunction with a bilateral network of cortical areas that might be involved with phonological and visual rehearsal of the incoming information.
Age at Death in Individuals with Intellectual Disabilities
ERIC Educational Resources Information Center
Arvio, Maria; Salokivi, Tommi; Bjelogrlic-Laakso, Nina
2017-01-01
Background: We aimed to ascertain the average age at death (AD) in the intellectual disability population for each gender and compare them to those of the general population during 1970-2012. Methods: By analysing medical records, we calculated the ADs of all deceased clients (N = 1236) of two district organizations responsible for intellectual…
The Influence of Psychosocial and Cognitive Factors on Perceived Threat of Alzheimer’s Disease
Ostergren, Jenny E.; Heeringa, Steven G.; Mendes de Leon, Carlos F.; Connell, Cathleen M; Roberts, J. Scott
2018-01-01
This study explored psychosocial, and cognitive predictors of perceived threat of Alzheimer’s disease (AD). Respondents were 1,641 adults (mean age: 64.4; 54% female; 82% White) who completed a module in the Health and Retirement Study, a nationally representative survey of adults aged ≥50. Findings show that perceived threat was significantly higher for those aged 50-64 (p<0.001) and 65-74 (p<0.05) than for those ≥75. Respondents with a family history of AD had significantly greater perceived threat (p<0.001) than those with no experience. Stronger endorsement of the beliefs that stress (p<0.01) or genetics (p<0.01) are important AD risk factors was significantly associated with greater perceived threat, as was having more depressive symptoms (p<0.01), poorer self-rated memory (p<0.01), and lower cognitive function (p<0.01). Personal experience moderated the relationship between perceived threat and two variables: age and self-rated memory. Understanding perceived AD threat may inform practice and policies centered on early and accurate diagnosis. PMID:28605999
Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations
NASA Astrophysics Data System (ADS)
Grosjean, Martin; Suter, Peter J.; Trachsel, Mathias; Wanner, Heinz
2007-03-01
During the hot summer of 2003, reduction of an ice field in the Swiss Alps (Schnidejoch) uncovered spectacular archaeological hunting gear, fur, leather and woollen clothing and tools from four distinct windows of time: Neolithic Age (4900 to 4450 cal. yr BP), early Bronze Age (4100-3650 cal. yr BP), Roman Age (1st-3rd century AD), and Medieval times (8-9th century AD and 14-15th century AD). Transalpine routes connecting northern Italy with the northern Alps during these slots is consistent with late Holocene maximum glacier retreat. The age cohorts of the artefacts are separated which is indicative of glacier advances when the route was difficult and not used for transit. The preservation of Neolithic leather indicates permanent ice cover at that site from ca. 4900 cal. yr BP until AD 2003, implying that the ice cover was smaller in 2003 than at any time during the last 5000 years. Current glacier retreat is unprecedented since at least that time. This is highly significant regarding the interpretation of the recent warming and the rapid loss of ice in the Alps. Copyright
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, M.; Campion, D.; Babron, M.C.
1996-02-16
Segregation analysis of Alzheimer disease (AD) in 92 families ascertained through early-onset ({le}age 60 years) AD (EOAD) probands has been carried out, allowing for a mixture in AD inheritance among probands. The goal was to quantify the proportion of probands that could be explained by autosomal inheritance of a rare disease allele {open_quotes}a{close_quotes} at a Mendelian dominant gene (MDG). Our data provide strong evidence for a mixture of two distributions; AD transmission is fully explained by MDG inheritance in <20% of probands. Male and female age-of-onset distributions are significantly different for {open_quotes}AA{close_quote} but not for {open_quotes}aA{close_quote} subjects. For {open_quotes}aA{close_quote} subjectsmore » the estimated penetrance value was close to 1 by age 60. For {open_quotes}AA{close_quotes} subjects, it reaches, by age 90, 10% (males) and 30% (females). We show a clear cutoff in the posterior probability of being an MDG case. 10 refs., 1 tab.« less
Seifan, Alon; Ganzer, Christine A; Vermeylen, Francoise; Parry, Stephen; Zhu, Jifeng; Lyons, Abigail; Isaacson, Richard; Kim, Sarang
2017-12-01
Understanding health beliefs and how they influence willingness will enable the development of targeted curricula that maximize public engagement in Alzheimer's disease (AD) risk reduction behaviors. Literature on behavioral theory and community input was used to develop and validate a health beliefs survey about AD risk reduction among 428 community-dwelling adults. Principal component analysis was performed to assess internal consistency. Linear regression was performed to identify key predictors of Willingness to engage in AD risk reduction behaviors. The measure as well as the individual scales (Benefits, Barriers, Severity, Susceptibility and Social Norm) were found to be internally consistent. Overall, as Benefits and Barriers scores increased, Willingness scores also increased. Those without prior AD experience or family history had lower willingness scores. Finally, we observed an interaction between age and norms, suggesting that social factors related to AD prevention may differentially affect people of different ages. The Alzheimer Prevention Beliefs Measure provides assessment of several health belief factors related to AD prevention. Age, Family History, Logistical Barriers and total Benefits are significant determinants of willingness to engage in AD risk reduction behaviors, such as seeing a doctor or making a lifestyle change. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Hauser, N.; Cabaleri, N. G.; Gallego, O. F.; Monferran, M. D.; Silva Nieto, D.; Armella, C.; Matteini, M.; Aparicio González, P. A.; Pimentel, M. M.; Volkheimer, W.; Reimold, W. U.
2017-10-01
The Cañadón Asfalto basin, central Chubut, Argentina, comprises a volcano-sedimentary sequence related to the opening of the Atlantic Ocean during Mesozoic times. The Lonco Trapial, Cañadón Asfalto and Cañadón Calcáreo formations are the main units related to the evolution of this basin. The Las Chacritas and Puesto Almada members are distinguished in the Cañadón Asfalto Formation. LA-HR-ICP-MS U-Pb and Lu-Hf data on zircon were obtained on these units. The Lonco Trapial Formation gave a weighted average age of 172.3 ± 1.8 Ma. A pyroclastic level from the Las Chacritas Member gave a weighted average age of 168.2 ± 2.2 Ma. Two U-Pb concordant ages of 160.3 ± 1.7 Ma on a laminated tuffite and 158.3 ± 1.3 Ma on a pyroclastic level were obtained for the Puesto Almada Member. Two maximum depositional ages constrain the sedimentary provenance areas for the basin: 1) A sample from the Sierra de la Manea range, where a controversial unit related either to the Cañadón Asfalto or to the Cañadón Calcáreo formation occurs, gave an age of 176.6 ± 1.0 Ma. Two younger zircon crystals indicate that this unit may be related to the Cañadón Calcáreo Formation. 2) A sandstone with cross-stratification from the Puesto Almada Member gave a maximum depositional age of 173.6 ± 6.4 Ma. In terms of U-Pb and Lu-Hf isotopes, two magmatic events are identified in central Patagonia: the Mamil Choique magmatic event characterized by negative εHf values around -5.0 and representing recycling during Permian times of Mesoproterozoic crust (TDM of ∼1.5 Ga), and the Cañadón Asfalto magmatic event with negative (-8.2) to positive (+4) εHf values and Meso- to Neoproterozoic TDM between 1.5 and 0.8 Ga. The younger event is characterized by three main cycles: C1 related to the Lonco Trapial magmatism, C2 to the Las Chacritas volcanism, and C3 to the Puesto Almada volcanism. These cycles are related with Marifil, Chon Aike and El Quemado formations volcanics events of Patagonia and the Neuquén Basin during the Mesozoic.
The Calculator of Anti-Alzheimer’s Diet. Macronutrients
Studnicki, Marcin; Woźniak, Grażyna; Stępkowski, Dariusz
2016-01-01
The opinions about optimal proportions of macronutrients in a healthy diet have changed significantly over the last century. At the same time nutritional sciences failed to provide strong evidence backing up any of the variety of views on macronutrient proportions. Herein we present an idea how these proportions can be calculated to find an optimal balance of macronutrients with respect to prevention of Alzheimer’s Disease (AD) and dementia. These calculations are based on our published observation that per capita personal income (PCPI) in the USA correlates with age-adjusted death rates for AD (AADR). We have previously reported that PCPI through the period 1925–2005 correlated with AADR in 2005 in a remarkable, statistically significant oscillatory manner, as shown by changes in the correlation coefficient R (Roriginal). A question thus arises what caused the oscillatory behavior of Roriginal? What historical events in the life of 2005 AD victims had shaped their future with AD? Looking for the answers we found that, considering changes in the per capita availability of macronutrients in the USA in the period 1929–2005, we can mathematically explain the variability of Roriginal for each quarter of a human life. On the basis of multiple regression of Roriginal with regard to the availability of three macronutrients: carbohydrates, total fat, and protein, with or without alcohol, we propose seven equations (referred to as “the calculator” throughout the text) which allow calculating optimal changes in the proportions of macronutrients to reduce the risk of AD for each age group: youth, early middle age, late middle age and late age. The results obtained with the use of “the calculator” are grouped in a table (Table 4) of macronutrient proportions optimal for reducing the risk of AD in each age group through minimizing Rpredicted−i.e., minimizing the strength of correlation between PCPI and future AADR. PMID:27992612
The Calculator of Anti-Alzheimer's Diet. Macronutrients.
Studnicki, Marcin; Woźniak, Grażyna; Stępkowski, Dariusz
2016-01-01
The opinions about optimal proportions of macronutrients in a healthy diet have changed significantly over the last century. At the same time nutritional sciences failed to provide strong evidence backing up any of the variety of views on macronutrient proportions. Herein we present an idea how these proportions can be calculated to find an optimal balance of macronutrients with respect to prevention of Alzheimer's Disease (AD) and dementia. These calculations are based on our published observation that per capita personal income (PCPI) in the USA correlates with age-adjusted death rates for AD (AADR). We have previously reported that PCPI through the period 1925-2005 correlated with AADR in 2005 in a remarkable, statistically significant oscillatory manner, as shown by changes in the correlation coefficient R (Roriginal). A question thus arises what caused the oscillatory behavior of Roriginal? What historical events in the life of 2005 AD victims had shaped their future with AD? Looking for the answers we found that, considering changes in the per capita availability of macronutrients in the USA in the period 1929-2005, we can mathematically explain the variability of Roriginal for each quarter of a human life. On the basis of multiple regression of Roriginal with regard to the availability of three macronutrients: carbohydrates, total fat, and protein, with or without alcohol, we propose seven equations (referred to as "the calculator" throughout the text) which allow calculating optimal changes in the proportions of macronutrients to reduce the risk of AD for each age group: youth, early middle age, late middle age and late age. The results obtained with the use of "the calculator" are grouped in a table (Table 4) of macronutrient proportions optimal for reducing the risk of AD in each age group through minimizing Rpredicted-i.e., minimizing the strength of correlation between PCPI and future AADR.
Tong, Tong; Gao, Qinquan; Guerrero, Ricardo; Ledig, Christian; Chen, Liang; Rueckert, Daniel; Initiative, Alzheimer's Disease Neuroimaging
2017-01-01
Identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer's disease (AD) is not only crucial in clinical practice, but also has a significant potential to enrich clinical trials. The purpose of this study is to develop an effective biomarker for an accurate prediction of MCI-to-AD conversion from magnetic resonance images. We propose a novel grading biomarker for the prediction of MCI-to-AD conversion. First, we comprehensively study the effects of several important factors on the performance in the prediction task including registration accuracy, age correction, feature selection, and the selection of training data. Based on the studies of these factors, a grading biomarker is then calculated for each MCI subject using sparse representation techniques. Finally, the grading biomarker is combined with age and cognitive measures to provide a more accurate prediction of MCI-to-AD conversion. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the proposed global grading biomarker achieved an area under the receiver operating characteristic curve (AUC) in the range of 79-81% for the prediction of MCI-to-AD conversion within three years in tenfold cross validations. The classification AUC further increases to 84-92% when age and cognitive measures are combined with the proposed grading biomarker. The obtained accuracy of the proposed biomarker benefits from the contributions of different factors: a tradeoff registration level to align images to the template space, the removal of the normal aging effect, selection of discriminative voxels, the calculation of the grading biomarker using AD and normal control groups, and the integration of sparse representation technique and the combination of cognitive measures. The evaluation on the ADNI dataset shows the efficacy of the proposed biomarker and demonstrates a significant contribution in accurate prediction of MCI-to-AD conversion.
Alzheimer’s and Dementia in the Oldest-Old: A Century of Challenges
Kawas, Claudia H.; Corrada, Maria M.
2012-01-01
Alzheimer’s disease (AD) is the most common type of dementia in the US and much of the world with rates increasing exponentially from age 65. Increases in life expectancy in the last century have resulted in a large number of people living to old ages and will result in a quadrupling of AD cases by the middle of the century. Preventing or delaying the onset of AD could have a huge impact in the number of cases expected to develop. The oldest-old are the fastest growing segment of the population and are estimated to account for 12% of the population over 65. Establishing accurate estimates of dementia and AD rates in this group is crucial for public health planning. Prevalence and incidence estimates above age 85 are imprecise and inconsistent because of the lack of very old individuals in most studies. Moreover, risk and protective factors in our oldest citizens have been studied little, and clinical-pathological correlations appear to be poor. We introduce The 90+ Study, established to address some of the unanswered questions about AD and dementia in the oldest-old. Our preliminary results show that close to half of demented oldest-old do not have known cerebral pathology to account for their cognitive deficits. Furthermore, the APOE-e4 allele appears to be a risk factor for AD only in the women in our study. In addition to the challenge of preventing and treating AD, the oldest-old will require major investigative energy to better understand the concomitants of longevity, the causes of dementia, and the factors that promote successful aging in oldest citizens. PMID:17168640
Liao, Weiqi; Long, Xiaojing; Jiang, Chunxiang; Diao, Yanjun; Liu, Xin; Zheng, Hairong; Zhang, Lijuan
2014-05-01
Differentiating mild cognitive impairment (MCI) and Alzheimer Disease (AD) from healthy aging remains challenging. This study aimed to explore the cerebral structural alterations of subjects with MCI or AD as compared to healthy elderly based on the individual and collective effects of cerebral morphologic indices using univariate and multivariate analyses. T1-weighted images (T1WIs) were retrieved from Alzheimer Disease Neuroimaging Initiative database for 116 subjects who were categorized into groups of healthy aging, MCI, and AD. Analysis of covariance (ANCOVA) and multivariate analysis of covariance (MANCOVA) were performed to explore the intergroup morphologic alterations indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume with age and sex controlled as covariates, in 34 parcellated gyri regions of interest (ROIs) for both cerebral hemispheres based on the T1WI. Statistical parameters were mapped on the anatomic images to facilitate visual inspection. Global rather than region-specific structural alterations were revealed in groups of MCI and AD relative to healthy elderly using MANCOVA. ANCOVA revealed that the cortical thickness decreased more prominently in entorhinal, temporal, and cingulate cortices and was positively correlated with patients' cognitive performance in AD group but not in MCI. The temporal lobe features marked atrophy of white matter during the disease dynamics. Significant intercorrelations were observed among the morphologic indices with univariate analysis for given ROIs. Significant global structural alterations were identified in MCI and AD based on MANCOVA model with improved sensitivity. The intercorrelation among the morphologic indices may dampen the use of individual morphological parameter in featuring cerebral structural alterations. Decrease in cortical thickness is not reflective of the cognitive performance at the early stage of AD. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R.; Rose, Gregory M.; Cai, Huaibin; Struble, Robert G.; Cai, Yan; Yan, Xiao-Xin
2013-01-01
Deposition of β-amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer’s disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although less is clear about the change of the enzyme’s activity in AD brain. Cerebrospinal fluid (CSF) Aβ peptides are considered to derive from brain parenchyma, thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored a possibility of Aβ production and secretion by the choroid plexus (CP). Specific binding density of [3H]-L-685,458, a radiolabeled high affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with comparable ages and postmortem delays. The CP in postmortem samples exhibited exceptionally high [3H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins but released Aβ40 and Aβ42 into the medium. These results suggest that γ-secretase activity appears not altered in the cerebrum in AD related to aged control, nor correlated with regional amyloid plaque pathology. The choroid plexus appears to represent a novel non-neuronal source in the brain that may contribute Aβ into cerebrospinal fluid, probably at reduced levels in AD. PMID:23432732
Complexity and Synchronicity of Resting State BOLD FMRI in Normal Aging and Cognitive Decline
Liu, Collin Y; Krishnan, Anitha P; Yan, Lirong; Smith, Robert X; Kilroy, Emily; Alger, Jeffery R; Ringman, John M; Wang, Danny JJ
2012-01-01
Purpose To explore the use of approximate entropy (ApEn) as an index of the complexity and the synchronicity of resting state BOLD fMRI in normal aging and cognitive decline associated with familial Alzheimer’s disease (fAD). Materials and Methods Resting state BOLD fMRI data were acquired at 3T from 2 independent cohorts of subjects consisting of healthy young (age 23±2 years, n=8) and aged volunteers (age 66±3 years, n=8), as well as 22 fAD associated subjects (14 mutation carriers, age 41.2±15.8 years; and 8 non-mutation carrying family members, age 28.8±5.9 years). Mean ApEn values were compared between the two age groups, and correlated with cognitive performance in the fAD group. Cross-ApEn (C-ApEn) was further calculated to assess the asynchrony between precuneus and the rest of the brain. Results Complexity of brain activity measured by mean ApEn in gray and white matter decreased with normal aging. In the fAD group, cognitive impairment was associated with decreased mean ApEn in gray matter as well as decreased regional ApEn in right precuneus, right lateral parietal regions, left precentral gyrus, and right paracentral gyrus. A pattern of asynchrony between BOLD fMRI series emerged from C-ApEn analysis, with significant regional anti-correlation with cross-correlation coefficient of functional connectivity analysis. Conclusion ApEn and C-ApEn may be useful for assessing the complexity and synchronicity of brain activity in normal aging and cognitive decline associated with neurodegenerative diseases PMID:23225622
Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [ 11 C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
The Protective Effect of Cantonese/Mandarin Bilingualism on the Onset of Alzheimer Disease.
Zheng, Yifan; Wu, Qi; Su, Fengjuan; Fang, Yingying; Zeng, Jinsheng; Pei, Zhong
2018-06-08
Several studies have found that bilingualism can delay the age of onset of Alz-heimer disease (AD). The interpretation of these findings is that switching between two languages can enhance cognitive reserve. However, some studies have provided inconsistent results. Diverse language pairs used by the bilinguals in different studies may contribute to the discrepancies. Cantonese and Mandarin are widely used in southern China, and regarded as bilingualism. The present study aims to determine if Cantonese/Mandarin bilingualism can delay the onset of AD. The data of 129 patients diagnosed with probable AD, including 48 Cantonese monolinguals, 20 Mandarin monolinguals, and 61 Cantonese/Mandarin bilinguals were analyzed. Cantonese/Mandarin bilinguals were found to have an older age at AD onset, and older age at the first clinic visit than Mandarin monolinguals and Cantonese monolinguals. Both Mandarin monolinguals and Cantonese/Mandarin bilinguals had a higher education level and higher occupation status than the Cantonese monolinguals. Mandarin monolinguals did not differ from Cantonese/Mandarin bilinguals significantly in years of education and occupation status. The multiple linear regression analyses indicated that Cantonese/Mandarin bilingualism can delay the onset of AD independently. Constantly speaking both Cantonese and Mandarin from at least early adulthood can delay the onset of AD. © 2018 S. Karger AG, Basel.
Nelson, C; Wengreen, H J; Munger, R G; Corcoran, C D
2009-12-01
To examine associations between dietary and supplemental folate, vitamin B-12 and vitamin B-6 and incident Alzheimer's disease (AD) among elderly men and women. Data collected were from participants of the Cache County Memory, Health and Aging Study, a longitudinal study of 5092 men and women 65 years and older who were residents of Cache County, Utah in 1995. Multistage clinical assessment procedures were used to identify incident cases of AD. Dietary data were collected using a 142-item food frequency questionnaire. Cox Proportional Hazards (CPH) modeling was used to determine hazard ratios across quintiles of micronutrient intake. 202 participants were diagnosed with incident AD during follow-up (1995-2004). In multivariable CPH models that controlled for the effects of gender, age, education, and other covariates there were no observed differences in risk of AD or dementia by increasing quintiles of total intake of folate, vitamin B-12, or vitamin B-6. Similarly, there were no observed differences in risk of AD by regular use of either folate or B6 supplements. Dietary intake of B-vitamins from food and supplemental sources appears unrelated to incidence of dementia and AD. Further studies examining associations between dietary intakes of B-vitamins, biomarkers of B-vitamin status and cognitive endpoints are warranted.
Thevissen, P W; Galiti, D; Willems, G
2012-11-01
In the subadult age group, third molar development, as well as age-related morphological tooth information can be observed on panoramic radiographs. The aim of present study was to combine, in subadults, panoramic radiographic data based on developmental stages of third molar(s) and morphological measurements from permanent teeth, in order to evaluate its added age-predicting performances. In the age range between 15 and 23 years, 25 gender-specific radiographs were collected within each age category of 1 year. Third molar development was classified and registered according the 10-point staging and scoring technique proposed by Gleiser and Hunt (1955), modified by Köhler (1994). The Kvaal (1995) measuring technique was applied on the indicated teeth from the individuals' left side. Linear regression models with age as response and third molar-scored stages as explanatory variables were developed, and morphological measurements from permanent teeth were added. From the models, determination coefficients (R (2)) and root-mean-square errors (RMSE) were calculated. Maximal-added age information was reported as a 6 % R² increase and a 0.10-year decrease of RMSE. Forensic dental age estimations on panoramic radiographic data in the subadult group (15-23 year) should only be based on third molar development.
Brown, Christopher A; Jiang, Yang; Smith, Charles D; Gold, Brian T
2018-04-19
The default mode network (DMN) comprises defined brain regions contributing to internally-directed thought processes. Reductions in task-induced deactivation in the DMN have been associated with increasing age and poorer executive task performance, but factors underlying these functional changes remain unclear. We investigated contributions of white matter (WM) microstructure, WM hyperintensities (WMH) and Alzheimer's pathology to age-related alterations in DMN function. Thirty-five cognitively normal older adults and 29 younger adults underwent working memory task fMRI and diffusion tensor imaging. In the older adults, we measured cerebrospinal fluid tau and Aβ 42 (markers of AD pathology), and WMH on FLAIR imaging (marker of cerebrovascular disease). We identified a set of regions showing DMN deactivation and a set of inter-connecting WM tracts (DMN-WM) common to both age groups. There were negative associations between DMN deactivation and task performance in older adults, consistent with previous studies. Decreased DMN deactivation was associated with AD pathology and WM microstructure but not with WMH volume. Mediation analyses showed that WM microstructure mediated declines in DMN deactivation associated with both aging and AD pathology. Together these results suggest that AD pathology may exert a "second-hit" on WM microstructure, over-and-above the effects of age, both contributing to diminished DMN deactivation in older adults. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vemuri, Prashanthi; Knopman, David S; Lesnick, Timothy G; Przybelski, Scott A; Mielke, Michelle M; Graff-Radford, Jonathan; Murray, Melissa E; Roberts, Rosebud O; Vassilaki, Maria; Lowe, Val J; Machulda, Mary M; Jones, David T; Petersen, Ronald C; Jack, Clifford R
2017-06-01
While amyloid and neurodegeneration are viewed together as Alzheimer disease pathophysiology (ADP), the factors that influence amyloid and AD-pattern neurodegeneration may be considerably different. Protection from these ADP factors may be important for aging without significant ADP. To identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration in a population-based sample and to test the hypothesis that "exceptional agers" with advanced ages do not have significant ADP because they have protective factors for amyloid and neurodegeneration. This cohort study conducted a prospective analysis of 942 elderly individuals (70-≥90 years) with magnetic resonance imaging and Pittsburgh compound B-positron emission tomography scans enrolled in the Mayo Clinic Study of Aging, a longitudinal population-based study of cognitive aging in Olmsted County, Minnesota. We operationalized "exceptional aging" without ADP by considering individuals 85 years or older to be without significant evidence of ADP. We evaluated predictors including demographics, APOE, intellectual enrichment, midlife risk factors (physical inactivity, obesity, smoking, diabetes, hypertension, and dyslipidemia), and the total number of late-life cardiac and metabolic conditions. We used multivariate linear regression models to identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration. Using a subsample of the cohort 85 years of age or older, we computed Cohen d-based effect size estimations to compare the quantitative strength of each predictor variable in their contribution with exceptional aging without ADP. The study participants included 423 (45%) women and the average age of participants was 79.7 (5.9) years. Apart from demographics and the APOE genotype, only midlife dyslipidemia was associated with amyloid deposition. Obesity, smoking, diabetes, hypertension, and cardiac and metabolic conditions, but not intellectual enrichment, were associated with greater AD-pattern neurodegeneration. In the 85 years or older cohort, the Cohen d results showed small to moderate effects (effect sizes > 0.2) of several variables except job score and midlife hypertension in predicting exceptional aging without ADP. The protective factors that influence amyloid and AD-pattern neurodegeneration are different. "Exceptional aging" without ADP may be possible with a greater number of protective factors across the lifespan but warrants further investigation.
Johnson, Sterling C; Ries, Michele L; Hess, Timothy M; Carlsson, Cynthia M; Gleason, Carey E; Alexander, Andrew L; Rowley, Howard A; Asthana, Sanjay; Sager, Mark A
2007-10-01
Asymptomatic middle-aged adult children of patients with Alzheimer disease (AD) recently were found to exhibit functional magnetic resonance imaging (fMRI) deficits in the mesial temporal lobe during an encoding task. Whether this effect will be observed on other fMRI tasks is yet unknown. This study examines the neural substrates of self-appraisal (SA) in persons at risk for AD. Accurate appraisal of deficits is a problem for many patients with AD, and prior fMRI studies of healthy young adults indicate that brain areas vulnerable to AD such as the anterior mesial temporal lobe and posterior cingulate are involved during SA tasks. To determine whether parental family history of AD (hereafter referred to as FH) or presence of the epsilon4 allele of the apolipoprotein E gene (APOE4) exerts independent effects on brain function during SA. Cross-sectional factorial design in which APOE4 status (present vs absent) was one factor and FH was the other. All participants received cognitive testing, genotyping, and an fMRI task that required subjective SA decisions regarding trait adjective words in comparison with semantic decisions about the same words. An academic medical center with a research-dedicated 3.0-T MR imaging facility. Cognitively normal middle-aged adults (n = 110), 51 with an FH and 59 without an FH. Blood oxygen-dependent contrast measured using T2*-weighted echo-planar imaging. Parental family history of AD and APOE4 status interacted in the posterior cingulate and left superior and medial frontal regions. There were main effects of FH (FH negative > FH positive) in the left hippocampus and ventral posterior cingulate. There were no main effects of APOE genotype. Our results suggest that FH may affect brain function during subjective SA in regions commonly affected by AD. Although the participants in this study were asymptomatic and middle-aged, the findings suggest that there may be subtle alterations in brain function attributable to AD risk factors.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Ponomarev, Artem
2009-01-01
A concern for long-term space travel outside the Earth s magnetic field is the late effects to the central nervous system (CNS) from galactic cosmic ray (GCR) or solar particle events (SPE). Human epidemiology data is severely limited for making CNS risk estimates and it is not clear such effects occur following low LET exposures. We are developing systems biology models based on biological information on specific diseases, and experimental data for proton and heavy ion radiation. A two-hit model of Alzheimer s disease (AD) has been proposed by Zhu et al.(1), which is the framework of our model. Of importance is that over 50% of the US population over the age of 75-y have mild to severe forms of AD. Therefore we recommend that risk assessment for a potential AD risk from space radiation should focus on the projection of an earlier age of onset of AD and the prevention of this possible acceleration through countermeasures. In the two-hit model, oxidative stress and aberrant cell cycle-related abnormalities leading to amyloid-beta plaques and neurofibrillary tangles are necessary and invariant steps in AD. We have formulated a stochastic cell kinetics model of the two-hit AD model. In our model a population of neuronal cells is allowed to undergo renewal through neurogenesis and is susceptible to oxidative stress or cell cycle abnormalities with age-specific accumulation of damage. Baseline rates are fitted to AD population data for specific ages, gender, and for persons with an apolipoprotein 4 allele. We then explore how low LET or heavy ions may increase either of the two-hits or neurogenesis either through persistent oxidative stress, direct mutation, or through changes to the micro-environment, and suggest possible ways to develop accurate quantitative estimates of these processes for predicting AD risks following long-term space travel.
Validation of a polygenic risk score for dementia in black and white individuals
Marden, Jessica R; Walter, Stefan; Tchetgen Tchetgen, Eric J; Kawachi, Ichiro; Glymour, M Maria
2014-01-01
Objective To determine whether a polygenic risk score for Alzheimer's disease (AD) predicts dementia probability and memory functioning in non-Hispanic black (NHB) and non-Hispanic white (NHW) participants from a sample not used in previous genome-wide association studies. Methods Non-Hispanic white and NHB Health and Retirement Study (HRS) participants provided genetic information and either a composite memory score (n = 10,401) or a dementia probability score (n = 7690). Dementia probability score was estimated for participants' age 65+ from 2006 to 2010, while memory score was available for participants age 50+. We calculated AD genetic risk scores (AD-GRS) based on 10 polymorphisms confirmed to predict AD, weighting alleles by beta coefficients reported in AlzGene meta-analyses. We used pooled logistic regression to estimate the association of the AD-GRS with dementia probability and generalized linear models to estimate its effect on memory score. Results Each 0.10 unit change in the AD-GRS was associated with larger relative effects on dementia among NHW aged 65+ (OR = 2.22; 95% CI: 1.79, 2.74; P < 0.001) than NHB (OR=1.33; 95% CI: 1.00, 1.77; P = 0.047), although additive effect estimates were similar. Each 0.10 unit change in the AD-GRS was associated with a −0.07 (95% CI: −0.09, −0.05; P < 0.001) SD difference in memory score among NHW aged 50+, but no significant differences among NHB (β = −0.01; 95% CI: −0.04, 0.01; P = 0.546). [Correction added on 29 July 2014, after first online publication: confidence intervalshave been amended.] The estimated effect of the GRS was significantly smaller among NHB than NHW (P < 0.05) for both outcomes. Conclusion This analysis provides evidence for differential relative effects of the GRS on dementia probability and memory score among NHW and NHB in a new, national data set. PMID:25328845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, M. W., E-mail: m.little@doctors.org.uk; Boardman, P.; Macdonald, A. C.
PurposeTo investigate the clinical impact of performing prostate artery embolization (PAE) on patients with adenomatous-dominant benign prostatic hyperplasia (AdBPH).Materials and MethodsTwelve patients from the ongoing proSTatic aRtery EmbolizAtion for the treatMent of benign prostatic hyperplasia (STREAM) trial were identified as having AdBPH; defined as two or more adenomas within the central gland of ≥1 cm diameter on multi-parametric MRI (MP-MRI). These patients were age-matched with patients from the STREAM cohort, without AdBPH. Patients were followed up with repeat MP-MRI at 3 months and 1 year. International prostate symptom score (IPSS), international index for erectile function (IIEF), and quality of life assessment from themore » IPSS and EQ-5D-5S questionnaires were recorded pre-PAE and at 6 weeks, 3 months, and 1 year.ResultsThe mean age of patients was 68 (61–76). All patients had PAE as a day-case procedure. The technical success in the cohort was 23/24 (96%). There was a significant reduction in prostate volume following embolization with a median reduction of 34% (30–55) in the AdBPH group, compared to a mean volume reduction of 22% (9–44) in the non-AdBPH group (p = 0.04). There was a significant reduction in IPSS in the AdBPH group following PAE when compared with the control group [AdBPH median IPSS 8 (3–15) vs. non-AdBPH median IPSS 13 (8–18), p = 0.01]. IPSS QOL scores significantly improved in the AdBPH group (p = 0.007). There was no deterioration in sexual function in either group post-PAE.ConclusionsThis is the first time that AdBPH has been identified as being a predictor of clinical success following PAE.« less
The effects of verbal reaction time in Alzheimer's disease.
Midi, Ipek; Doǧan, Müzeyyen; Pata, Yavuz Selim; Kocak, Ismail; Mollahasanoglu, Aynur; Tuncer, Nese
2011-07-01
Verbal fluency deteriorates with normal aging, but is much more severe in Alzheimer's Disease (AD). Verbal functions were analyzed to find differences between normal aging subjects in patients with mild cognitive impairment (MCI), and in patients with early and moderate stages of AD. This study measured the verbal response time in patients with AD, MCI, and in control subjects This study measured the verbal response time in patients with AD, MCI, and in control subjects Fifteen patients with MCI, 15 patients with early AD, 8 patients with moderate AD, and 15 subjects for controls were included in the study. Word length in milliseconds, reaction time to a phoneme, word, or sentence and acoustic analysis of voice quality and speech diadochokinetic rate (DDK) were measured. Reaction time for a phoneme, word, or sentence especially the initiation period for them were longer in patients with early AD compared to patients with MCI (P < .001). The mean DDK rate was lower with increased severity of the disease, and was much more severe in patients with moderate AD. Clinical discrimination of the early stages of AD and MCI is challenging. Unfortunately, there are no laboratory markers present for the diagnosis of preclinical cases of AD. With the results of this study, the assessments of verbal reaction time may helpful for diagnosis of early AD. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Responding to National Water Resources Challenges
2010-08-01
Intergovernmental collaboration is necessary to ad- dress issues ranging from navigation and intermodal transport to flood risk management to...quality caused by runoff from the poultry industry and to avoid interstate litigation. This partnership is bringing together public (Natural...Drinking Water Act and $5 billion to ad- dress aging infrastructure needs, especially to treat sewage. Missouri expressed concern about its aging
An Experimental Approach to Detecting Dementia in Down Syndrome: A Paradigm for Alzheimer's Disease
ERIC Educational Resources Information Center
Nelson, Linda D.; Scheibel, Kevin E.; Ringman, John M.; Sayre, James W.
2007-01-01
Measures developed from animal models of aging may detect dementia of the Alzheimer's type in a population at-risk for Alzheimer's disease (AD). Although, by middle age, individuals with Down syndrome (DS) show an extraordinarily high prevalence of AD-type pathology, their severe idiopathic cognitive deficits tend to confound the "clinical"…
Peñas-Lledó, Eva; Bulik, Cynthia M; Lichtenstein, Paul; Larsson, Henrik; Baker, Jessica H
2015-09-01
This study explored the cross-sectional and predictive effect of drive for thinness and/or negative affect scores on the development of self-reported anorexia nervosa (AN) and bulimia nervosa (BN). K-means were used to cluster the Eating Disorder Inventory-Drive for Thinness (DT) and Child Behavior Checklist Anxious/Depressed (A/D) scores from 615 unrelated female twins at age 16-17. Logistic regressions were used to assess the effect of these clusters on self-reported eating disorder diagnosis at ages 16-17 (n = 565) and 19-20 (n = 451). DT and A/D scores were grouped into four clusters: Mild (scores lower than 90th percentile on both scales), DT (higher scores only on DT), A/D (higher scores only on A/D), and DT-A/D (higher scores on both the DT and A/D scales). DT and DT-A/D clusters at age 16-17 were associated cross-sectionally with AN and both cross-sectionally and longitudinally with BN. The DT-A/D cluster had the highest prevalence of AN at follow-up compared with all other clusters. Similarly, an interaction was observed between DT and A/D that predicted risk for AN. Having elevated DT and A/D scores may increase risk for eating disorder symptomatology above and beyond a high score on either alone. Findings suggest that cluster modeling based on DT and A/D may be useful to inform novel and useful intervention strategies for AN and BN in adolescents. © 2015 Wiley Periodicals, Inc.
Peñas-Lledó, Eva; Bulik, Cynthia M.; Lichtenstein, Paul; Larsson, Henrik; Baker, Jessica H.
2015-01-01
Objective The present study explored the cross-sectional and predictive effect of drive for thinness and/or negative affect scores on the development of self-reported anorexia nervosa (AN) and bulimia nervosa (BN). Method K-means were used to cluster the Eating Disorder Inventory-Drive for Thinness (DT) and Child Behavior Checklist Anxious/Depressed (A/D) scores from 615 unrelated female twins at age 16–17. Logistic regressions were used to assess the effect of these clusters on self-reported eating disorder diagnosis at ages 16–17 (n=565) and 19–20 (n=451). Results DT and A/D scores were grouped into four clusters: Mild (scores lower than 90th percentile on both scales), DT (higher scores only on DT), A/D (higher scores only on A/D), and DT-A/D (higher scores on both the DT and A/D scales). DT and DT-A/D clusters at age 16–17 were associated cross-sectionally with AN and both cross-sectionally and longitudinally with BN. The DT-A/D cluster had the highest prevalence of AN at follow-up compared with all other clusters. Similarly, an interaction was observed between DT and A/D that predicted risk for AN. Discussion Having elevated DT and A/D scores may increase risk for eating disorder symptomatology above and beyond a high score on either alone. Findings suggest that cluster modeling based on DT and A/D may be useful to inform novel and useful intervention strategies for AN and BN in adolescents. PMID:26013185
Janberidze, Elene; Hjermstad, Marianne Jensen; Brunelli, Cinzia; Loge, Jon Håvard; Lie, Hanne Cathrine; Kaasa, Stein; Knudsen, Anne Kari
2014-10-01
Depression is common in patients with advanced cancer; however, it is not often recognized and therefore not treated. The aims of this study were to examine the prevalence of the use of antidepressants (ADs) in an international cross-sectional study sample and to identify sociodemographic and medical variables associated with their use. The study was conducted in patients with advanced cancer from 17 centres across eight countries. Healthcare professionals registered patient and disease-related characteristics. A dichotomous score (no/yes) was used to assess the use of ADs other than as adjuvant for pain. Self-report questionnaires from patients were used for the assessment of functioning and symptom intensity. Of 1051 patient records with complete data on ADs, 1048 were included (M:540/F:508, mean age 62 years, standard deviation [SD] 12). The majority were inpatients, and 85% had metastatic disease. The prevalence of AD use was 14%. Multivariate logistic regression analyses showed that younger age (odds ratio [OR] 2.46; confidence interval [CI] 1.32-4.55), female gender (OR 1.59; CI 1.09-2.33), current medication for pain (OR 2.68; CI 1.65-4.33) and presence of three or more co-morbidities (OR 4.74; CI 2.27-9.91) were associated with AD use for reasons other than pain. Disease-related variables (diagnoses, stage, Karnofsky Performance Status and survival) were not associated with the use of ADs. Female gender, younger age, analgesic use and multiple co-morbidities were associated with the use of ADs. However, information is still limited on which variables guide physicians in prescribing AD medication. Further longitudinal studies including details on psychiatric and medication history are needed to improve the identification of patients in need of ADs. Copyright © 2014 John Wiley & Sons, Ltd.
Pasquini, Lorenzo; Tonch, Annika; Plant, Claudia; Zherdin, Andrew; Ortner, Marion; Kurz, Alexander; Förstl, Hans; Zimmer, Claus; Grimmer, Timo; Wohlschäger, Afra; Riedl, Valentin
2014-01-01
Abstract In Alzheimer's disease (AD), recent findings suggest that amyloid-β (Aβ)-pathology might start 20–30 years before first cognitive symptoms arise. To account for age as most relevant risk factor for sporadic AD, it has been hypothesized that lifespan intrinsic (i.e., ongoing) activity of hetero-modal brain areas with highest levels of functional connectivity triggers Aβ-pathology. This model induces the simple question whether in older persons without any cognitive symptoms intrinsic activity of hetero-modal areas is more similar to that of symptomatic patients with AD or to that of younger healthy persons. We hypothesize that due to advanced age and therefore potential impact of pre-clinical AD, intrinsic activity of older persons resembles more that of patients than that of younger controls. We tested this hypothesis in younger (ca. 25 years) and older healthy persons (ca. 70 years) and patients with mild cognitive impairment and AD-dementia (ca. 70 years) by the use of resting-state functional magnetic resonance imaging, distinct measures of intrinsic brain activity, and different hierarchical clustering approaches. Independently of applied methods and involved areas, healthy older persons' intrinsic brain activity was consistently more alike that of patients than that of younger controls. Our result provides evidence for larger similarity in intrinsic brain activity between healthy older persons and patients with or at-risk for AD than between older and younger ones, suggesting a significant proportion of pre-clinical AD cases in the group of cognitively normal older people. The observed link of aging and AD with intrinsic brain activity supports the view that lifespan intrinsic activity may contribute critically to the pathogenesis of AD. PMID:24689864
Yu, Lei; Dawe, Robert J; Buchman, Aron S; Boyle, Patricia A; Schneider, Julie A; Arfanakis, Konstantinos; Bennett, David A
2017-03-30
Alterations of the transverse relaxation rate, R 2 , measured using MRI, are observed in older persons with Alzheimer's (AD) dementia. However, the spatial pattern of these alterations and the degree to which they reflect the accumulation of common age-related neuropathologies are unknown. In this study, we characterized the profile of R 2 alterations in post-mortem brains of persons with clinical diagnosis of AD dementia and investigated how the profile differs after accounting for neuropathologic indices of AD, cerebral infarcts, Lewy body disease, hippocampal sclerosis and transactive response DNA-binding protein 43. Data came from 567 post-mortem brains donated by participants in two cohort studies of aging and dementia. R 2 was quantified using fast spin echo imaging. Voxelwise linear regression examined R 2 alterations between subjects diagnosed with AD dementia at death and those with no cognitive impairment. Voxels showing significant R 2 alterations were clustered into regions of interest (ROIs). Three R 2 profiles were compared, which were adjusted for (1) demographics only; (2) demographics and AD pathology; (3) demographics, AD pathology and other common neuropathologies. R 2 alterations were observed throughout the hemisphere, most commonly in white matter. Of the distinct ROIs identified, the largest region encompassed large portions of white matter in all lobes. This ROI became smaller in size but remained largely intact after adjusting for AD and other neuropathologic indices. Further, R 2 alterations identify AD dementia with improved accuracy, above and beyond demographics and neuropathologic indices (p<0.0001). In conclusion, R 2 alterations in AD dementia are not solely reflective of common age-related neuropathologies, suggesting that other mechanisms are at work. Copyright © 2016 Elsevier B.V. All rights reserved.
Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers.
Casaletto, Kaitlin B; Elahi, Fanny M; Bettcher, Brianne M; Neuhaus, John; Bendlin, Barbara B; Asthana, Sanjay; Johnson, Sterling C; Yaffe, Kristine; Carlsson, Cynthia; Blennow, Kaj; Zetterberg, Henrik; Kramer, Joel H
2017-10-24
To determine the association between synaptic functioning as measured via neurogranin in CSF and cognition relative to established Alzheimer disease (AD) biomarkers in neurologically healthy older adults. We analyzed CSF concentrations of neurogranin, β-amyloid (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau) among 132 neurologically normal older adults (mean 64.5, range 55-85), along with bilateral hippocampal volumes and a measure of episodic memory (Auditory Verbal Learning Test, delayed recall). Univariable analyses examined the relationship between neurogranin and the other AD-related biomarkers. Multivariable regression models examined the relationship between neurogranin and delayed recall, adjusting for age and sex, and interaction terms (neurogranin × AD biomarkers). Higher neurogranin concentrations were associated with older age (ρ = 0.20, p = 0.02), lower levels of p-tau and t-tau, and smaller hippocampal volumes ( p < 0.03), but not with CSF Aβ42 ( p = 0.18). In addition, CSF neurogranin demonstrated a significant relationship with memory performance independent of the AD-related biomarkers; individuals with the lowest CSF neurogranin concentrations performed better on delayed recall than those with medium or high CSF neurogranin concentrations ( p < 0.01). Notably, CSF p-tau, t-tau, and Aβ42 and hippocampal volumes were not significantly associated with delayed recall scores ( p > 0.40), and did not interact with neurogranin to predict memory ( p > 0.10). Synaptic dysfunction (assessed via neurogranin) may be an early pathologic process in age-related neurodegeneration, and a sensitive marker of age-related cognitive abilities, potentially preceding or even acting independently from AD pathogenesis. Synaptic functioning may be a useful early marker of cognitive aging and possibly a target for future brain aging interventions. © 2017 American Academy of Neurology.
Gifford, Katherine A; Phillips, Jeffrey S; Samuels, Lauren R; Lane, Elizabeth M; Bell, Susan P; Liu, Dandan; Hohman, Timothy J; Romano, Raymond R; Fritzsche, Laura R; Lu, Zengqi; Jefferson, Angela L
2015-07-01
A symptom of mild cognitive impairment (MCI) and Alzheimer's disease (AD) is a flat learning profile. Learning slope calculation methods vary, and the optimal method for capturing neuroanatomical changes associated with MCI and early AD pathology is unclear. This study cross-sectionally compared four different learning slope measures from the Rey Auditory Verbal Learning Test (simple slope, regression-based slope, two-slope method, peak slope) to structural neuroimaging markers of early AD neurodegeneration (hippocampal volume, cortical thickness in parahippocampal gyrus, precuneus, and lateral prefrontal cortex) across the cognitive aging spectrum [normal control (NC); (n=198; age=76±5), MCI (n=370; age=75±7), and AD (n=171; age=76±7)] in ADNI. Within diagnostic group, general linear models related slope methods individually to neuroimaging variables, adjusting for age, sex, education, and APOE4 status. Among MCI, better learning performance on simple slope, regression-based slope, and late slope (Trial 2-5) from the two-slope method related to larger parahippocampal thickness (all p-values<.01) and hippocampal volume (p<.01). Better regression-based slope (p<.01) and late slope (p<.01) were related to larger ventrolateral prefrontal cortex in MCI. No significant associations emerged between any slope and neuroimaging variables for NC (p-values ≥.05) or AD (p-values ≥.02). Better learning performances related to larger medial temporal lobe (i.e., hippocampal volume, parahippocampal gyrus thickness) and ventrolateral prefrontal cortex in MCI only. Regression-based and late slope were most highly correlated with neuroimaging markers and explained more variance above and beyond other common memory indices, such as total learning. Simple slope may offer an acceptable alternative given its ease of calculation.
The neuropsychology of normal aging and preclinical Alzheimer’s disease
Caselli, Richard J.; Locke, Dona E.C.; Dueck, Amylou C.; Knopman, David S.; Woodruff, Bryan K.; Hoffman-Snyder, Charlene; Rademakers, Rosa; Fleisher, Adam S.; Reiman, Eric M.
2013-01-01
Background An NIA-sponsored workgroup on preclinical Alzheimer’s disease (AD) articulated the need to characterize cognitive differences between normal aging and preclinical AD. Methods 71 apolipoprotein E (APOE) e4 homozygotes (HMZ), 194 e3/4 heterozygotes (HTZ), and 356 e4 noncarriers (NC) aged 21–87 years who were cognitively healthy underwent neuropsychological testing every two years. Longitudinal trajectories of test scores were compared between APOE subgroups. Results There was a significant effect of age on all cognitive domains in both APOE e4 carriers and NC. A significant effect of APOE e4 gene dose was confined to the memory domain and the Dementia Rating Scale. Cross sectional comparisons did not discriminate the groups. Conclusions While cognitive aging patterns are similar in APOE e4 carriers and NC, preclinical AD is characterized by a significant e4 gene dose effect that impacts memory and is detectable longitudinally. Preclinical neuropsychological testing strategies should emphasize memory sensitive measures and longitudinal design. PMID:23541188
Sansevero, Gabriele; Begenisic, Tatjana; Mainardi, Marco; Sale, Alessandro
2016-09-01
Down syndrome (DS) is the most diffused genetic cause of intellectual disability and, after the age of forty, is invariantly associated with Alzheimer's disease (AD). In the last years, the prolongation of life expectancy in people with DS renders the need for intervention paradigms aimed at improving mental disability and counteracting AD pathology particularly urgent. At present, however, there are no effective therapeutic strategies for DS and concomitant AD in mid-life people. The most intensively studied mouse model of DS is the Ts65Dn line, which summarizes the main hallmarks of the DS phenotype, included severe learning and memory deficits and age-dependent AD-like pathology. Here we report for the first time that middle-age Ts65Dn mice display a marked increase in soluble Aβ oligomer levels in their hippocampus. Moreover, we found that long-term exposure to environmental enrichment (EE), a widely used paradigm that increases sensory-motor stimulation, reduces Aβ oligomers and rescues spatial memory abilities in trisomic mice. Our findings underscore the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes in DS subjects. Copyright © 2016 Elsevier Inc. All rights reserved.
Weaning onto solid foods: some of the challenges.
Bennett, A E; O'Connor, A L; Canning, N; Kenny, A; Keaveney, E; Younger, K; Flynn, M A T
2012-09-01
Weaning--the transition from milk to solid food--influences life-long health. Dietary challenges during weaning include providing sufficient critical nutrients such as iron with minimal added sugar and fat and no added salt. This study assessed the inclusion of iron-containing red meat in infant diets before age one year, and the Irish commercial baby food environment. Of mothers with an infant under 30 months of age who were surveyed in shopping centres in Ireland (n195), 82% (n159) reported wanting more weaning information. A quarter (n24) of infants over age 12 months (n97) received no iron-containing red meat before age one year. A scan of commercial baby foods in Ireland identified 448 products. While all complied with baby food legislation, 15% (n69) were intrinsically high in sugar and fat, or contained added salt. This study indicates the need for specific guidance on best infant feeding practice in Ireland.
Cardiorespiratory Fitness is Associated with Atrophy in Alzheimer’s and Aging Over Two Years
Vidoni, Eric D.; Honea, Robyn A.; Billinger, Sandra A.; Swerdlow, Russel H.; Burns, Jeffrey M.
2011-01-01
We sought to describe change in cardiorespiratory (CR) fitness over 2 years in those with early–stage Alzheimer’s disease (AD) and nondemented aging and assess the relationship of CR fitness with cognitive decline, brain atrophy and dementia progression. Individuals with early-stage AD (n=37) and without dementia (n=53) attended clinical evaluations, cognitive and exercise tests, and MRI at baseline and 2 years later. CR fitness was lower in those with AD over the study period. Lower baseline CR fitness was associated with progression of dementia severity in AD. Declining CR fitness over 2 years was associated with brain atrophy in AD, especially in the parahippocampus. In nondemented participants, there was a trend for lower baseline fitness to be related to cognitive decline. Both lower baseline CR fitness and declining CR fitness over 2 years were associated with regional brain atrophy. We conclude that CR fitness is chronically reduced in those with AD. Further in those with AD, CR fitness is associated with progression of dementia severity and brain atrophy in AD, suggesting a link between progression of dementia severity and cardiorespiratory health. PMID:21531480
Sabbagh, Marwan N; Chen, Kewei; Rogers, Joseph; Fleisher, Adam S; Liebsack, Carolyn; Bandy, Dan; Belden, Christine; Protas, Hillary; Thiyyagura, Pradeep; Liu, Xiaofen; Roontiva, Auttawut; Luo, Ji; Jacobson, Sandra; Malek-Ahmadi, Michael; Powell, Jessica; Reiman, Eric M
2015-08-01
Down syndrome (DS) is associated with amyloid b (Ab) deposition. We characterized imaging measurements of regional fibrillar Ab burden, cerebral metabolic rate for glucose (rCMRgl), gray matter volumes (rGMVs), and age associations in 5 DS with dementia (DS/AD1), 12 DS without dementia (DS/AD2), and 9 normal controls (NCs). There were significant group differences in mean standard uptake value ratios (SUVRs) for florbetapir with DS/AD1 having the highest, followed by DS/AD2, followed by NC. For [18F]-fluorodeoxyglucose positron emission tomography, posterior cingulate rCMRgl in DS/AD1 was significantly reduced compared with DS/AD2 and NC. For volumetric magnetic resonance imaging (vMRI), hippocampal volumes were significantly reduced for the DS/AD1 compared with DS/AD2 and NC. Age-related SUVR increases and rCMRgl reductions were greater in DS participants than in NCs. DS is associated with fibrillar Ab, rCMRgl, and rGMV alterations in the dementia stage and before the presence of clinical decline. This study provides a foundation for the studies needed to inform treatment and prevention in DS. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Confirmed recall and perceived effectiveness of tobacco countermarketing media in rural youth.
Vogeltanz-Holm, Nancy; Holm, Jeffrey E; White Plume, Jessica; Poltavski, Dmitri
2009-12-01
This study was the first to examine rural youth's responses to ten television and radio tobacco countermarketing ads aired during a 13-week field campaign conducted in a U.S. Northern Plains state. A post-campaign survey of 391 girls and boys aged 12-17 years and including 58 American Indian youth provided information about their confirmed recall (CR) of the ads; and for recalled ads, their ratings of the ads' perceived effectiveness (PE). Results were that controlling for age and smoking risk, both American Indian and white girls and boys had the highest CR for the television ad Artery and for the radio ad ABC. Artery shows fatty deposits being squeezed from a deceased smoker's aorta, and ABC presents a former smoker speaking through his electro-larynx. Among the television ads, PE ratings were highest for the ad Artery in both boys and girls. Among the radio ads, boys rated ABC highest, whereas girls rated Joe DoBoer highest-an ad that discusses mouth lesions that developed from using smokeless tobacco. An analysis of race/ethnicity differences in PE for the ad Artery and ABC indicated American Indian and white youth considered these ads equally effective. These findings indicate certain TV and radio ads depicting graphic health harms from tobacco-especially the TV ad Artery and the radio ad ABC-are highly recalled and perceived as effective by both American Indian and white girls and boys from a rural region. Future research is needed to better understand which individual- and media-level factors increase the likelihood that anti-tobacco ads will be effective in reducing youth tobacco use.
Xie, Yue; Gao, Ya; Jia, Jianjun; Wang, Xiaohong; Wang, Zhenfu; Xie, Hengge
2014-01-01
Objective. To investigate the utility of AD8 for cognitive impairment in a Chinese physical examination population. Methods. Military cadres who took routine physical examination in Chinese PLA General Hospital from Jan 1, 2013, to Dec 31, 2013, were subjected to AD8 scale. Individual information such as age, gender, and education was also collected. All data were analyzed by SPSS 19.0. Results. 1544 subjects were enrolled in this study with mean age 75.4 ± 10.6 years. The subjects who scored 0 to 8 of AD8 scale were 1015, 269, 120, 60, 30, 14, 19, 8, and 9, respectively. Corresponding proportions were 65.7%, 17.4%, 7.8%, 3.9%, 2.0%, 0.9%, 1.2%, 0.5%, and 0.6%, respectively. The endorsement prevalence of 8 questions was 5.6%, 9.2%, 6.6%, 9.2%, 4.8%, 4.5%, 8.9%, and 24.1%, respectively. The endorsement prevalence of question 8 was significantly higher than others (P < 0.05). 260 subjects were scored equal to or greater than 2. The abnormal rate was 16.9%. All the participants were stratified into 9 groups by age; the prevalence of dementia was highly correlated with age (P < 0.01). Conclusion. AD8 scale is a convenient and effective tool for cognitive screening in routine physical examination population. PMID:25436227
Xie, Yue; Gao, Ya; Jia, Jianjun; Wang, Xiaohong; Wang, Zhenfu; Xie, Hengge
2014-01-01
To investigate the utility of AD8 for cognitive impairment in a Chinese physical examination population. Military cadres who took routine physical examination in Chinese PLA General Hospital from Jan 1, 2013, to Dec 31, 2013, were subjected to AD8 scale. Individual information such as age, gender, and education was also collected. All data were analyzed by SPSS 19.0. 1544 subjects were enrolled in this study with mean age 75.4 ± 10.6 years. The subjects who scored 0 to 8 of AD8 scale were 1015, 269, 120, 60, 30, 14, 19, 8, and 9, respectively. Corresponding proportions were 65.7%, 17.4%, 7.8%, 3.9%, 2.0%, 0.9%, 1.2%, 0.5%, and 0.6%, respectively. The endorsement prevalence of 8 questions was 5.6%, 9.2%, 6.6%, 9.2%, 4.8%, 4.5%, 8.9%, and 24.1%, respectively. The endorsement prevalence of question 8 was significantly higher than others (P < 0.05). 260 subjects were scored equal to or greater than 2. The abnormal rate was 16.9%. All the participants were stratified into 9 groups by age; the prevalence of dementia was highly correlated with age (P < 0.01). AD8 scale is a convenient and effective tool for cognitive screening in routine physical examination population.
The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?†.
Fjell, Anders M; Amlien, Inge K; Sneve, Markus H; Grydeland, Håkon; Tamnes, Christian K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B
2015-09-01
Alzheimer's disease (AD) is regarded a human-specific condition, and it has been suggested that brain regions highly expanded in humans compared with other primates are selectively targeted. We calculated shared and unique variance in the distribution of AD atrophy accounted for by cortical expansion between macaque and human, affiliation to the default mode network (DMN), ontogenetic development and normal aging. Cortical expansion was moderately related to atrophy, but a critical discrepancy was seen in the medial temporo-parietal episodic memory network. Identification of "hotspots" and "coldspots" of expansion across several primate species did not yield compelling evidence for the hypothesis that highly expanded regions are specifically targeted. Controlling for distribution of atrophy in aging substantially attenuated the expansion-AD relationship. A path model showed that all variables explained unique variance in AD atrophy but were generally mediated through aging. This supports a systems-vulnerability model, where critical networks are subject to various negative impacts, aging in particular, rather than being selectively targeted in AD. An alternative approach is suggested, focused on the interplay of the phylogenetically old and preserved medial temporal lobe areas with more highly expanded association cortices governed by different principles of plasticity and stability. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Marakis, Georgios; Tsigarida, Eirini; Mila, Spyridoula; Panagiotakos, Demosthenes B
2014-08-01
To investigate the knowledge, attitudes and behaviour of Greek adults towards salt as well as their differences with respect to gender, age and level of education. Cross-sectional, observational survey. Voluntary participation to a telephone interview, using a seventeen-item questionnaire. Greek adults aged over 25 years (n 3609), nationally representative according to age, gender and geographical distribution of the Greek population, were interviewed. More women of all age groups compared with men reported adding salt during cooking (P < 0·001), while less reported adding salt on the plate (P < 0·001). Also, more women believed that salt added during cooking was the main source of salt in the diet (P < 0·001). Participants aged 25-34, 35-44 and 45-54 years old had better knowledge of the harmful effects of salt on health compared with the 55+ years age group (P = 0·002, P = 0·001, P < 0·001, respectively); respondents in the aforementioned age groups also knew that children should consume less salt than adults compared with 55+ years age group (P = 0·004, P < 0·001, P < 0·001, respectively). Respondents with secondary and higher educational status were more likely to avoid consumption of processed foods (P < 0·001) and to check the nutrition information on food packaging as compared with respondents having basic education status (P < 0·001). Awareness needs to be raised regarding salt recommendations for adults and children, sources of sodium in the diet and adding less salt during cooking, as well as reading food labels. Future campaigns for salt reduction should consider gender, age and level of education differences regarding knowledge, attitudes and behaviour towards salt.
Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration.
Seo, Sang Won; Thibodeau, Marie-Pierre; Perry, David C; Hua, Alice; Sidhu, Manu; Sible, Isabel; Vargas, Jose Norberto S; Gaus, Stephanie E; Rabinovici, Gil D; Rankin, Katherine D; Boxer, Adam L; Kramer, Joel H; Rosen, Howard J; Gorno-Tempini, Maria Luisa; Grinberg, Lea T; Huang, Eric J; DeArmond, Stephen J; Trojanowski, John Q; Miller, Bruce L; Seeley, William W
2018-03-20
To examine clinicopathologic correlations in early vs late age at onset frontotemporal dementia (FTD) and frontotemporal lobar degeneration (FTLD). All patients were clinically evaluated and prospectively diagnosed at the UCSF Memory and Aging Center. Two consecutive series were included: (1) patients with a clinically diagnosed FTD syndrome who underwent autopsy (cohort 1) and (2) patients with a primary pathologic diagnosis of FTLD, regardless of the clinical syndrome (cohort 2). These series were divided by age at symptom onset (cutoff 65 years). In cohort 1, 48 (25.3%) were 65 years or older at symptom onset. Pathologic causes of behavioral variant FTD (bvFTD) were similar in the early age at onset (EO) and late age at onset (LO) bvFTD groups. In corticobasal syndrome (CBS), however, the most common pathologic substrate differed according to age at onset: progressive supranuclear palsy (42.9%) in LO-CBS and Alzheimer disease (AD; 40.7%) in EO-CBS. In cohort 2, 57 (28.4%) were classified as LO-FTLD. Regarding FTLD major molecular classes, FTLD with transactive response DNA-binding protein of 43 kDa was most common in EO-FTLD (44.4%), whereas FTLD-tau (58.3%) was most common in LO-FTLD. Antemortem diagnosis of a non-FTD syndrome, usually AD-type dementia, was more frequent in LO-FTLD than EO-FTLD (19.3% vs 7.7%, p = 0.017). LO-FTLD was also associated with more prevalent comorbid pathologic changes. Of these, moderate to severe AD neuropathologic change and argyrophilic grain disease were overrepresented among patients who received an antemortem diagnosis of AD-type dementia. Patients with FTD and FTLD often develop symptoms after age 65, and age at onset represents an important consideration when making antemortem neuropathologic predictions. © 2018 American Academy of Neurology.
Physical activity attenuates age-related biomarker alterations in preclinical AD
Schultz, Stephanie A.; Oh, Jennifer M.; Larson, Jordan; Edwards, Dorothy; Cook, Dane; Koscik, Rebecca; Gallagher, Catherine L.; Dowling, N.M.; Carlsson, Cynthia M.; Bendlin, Barbara B.; LaRue, Asenath; Rowley, Howard A.; Christian, Brad T.; Asthana, Sanjay; Hermann, Bruce P.; Johnson, Sterling C.; Sager, Mark A.
2014-01-01
Objective: To examine whether engagement in physical activity might favorably alter the age-dependent evolution of Alzheimer disease (AD)-related brain and cognitive changes in a cohort of at-risk, late-middle-aged adults. Methods: Three hundred seventeen enrollees in the Wisconsin Registry for Alzheimer's Prevention underwent T1 MRI; a subset also underwent 11C-Pittsburgh compound B–PET (n = 186) and 18F-fluorodeoxyglucose–PET (n = 152) imaging. Participants' responses on a self-report measure of current physical activity were used to classify them as either physically active or physically inactive based on American Heart Association guidelines. They also completed a comprehensive neuropsychological battery. Covariate-adjusted regression analyses were used to test whether the adverse effect of age on imaging and cognitive biomarkers was modified by physical activity. Results: There were significant age × physical activity interactions for β-amyloid burden (p = 0.014), glucose metabolism (p = 0.015), and hippocampal volume (p = 0.025) such that, with advancing age, physically active individuals exhibited a lesser degree of biomarker alterations compared with the physically inactive. Similar age × physical activity interactions were also observed on cognitive domains of Immediate Memory (p = 0.042) and Visuospatial Ability (p = 0.016). In addition, the physically active group had higher scores on Speed and Flexibility (p = 0.002) compared with the inactive group. Conclusions: In a middle-aged, at-risk cohort, a physically active lifestyle is associated with an attenuation of the deleterious influence of age on key biomarkers of AD pathophysiology. However, because our observational, cross-sectional design cannot establish causality, randomized controlled trials/longitudinal studies will be necessary for determining whether midlife participation in structured physical exercise forestalls the development of AD and related disorders in later life. PMID:25298312
Physical activity attenuates age-related biomarker alterations in preclinical AD.
Okonkwo, Ozioma C; Schultz, Stephanie A; Oh, Jennifer M; Larson, Jordan; Edwards, Dorothy; Cook, Dane; Koscik, Rebecca; Gallagher, Catherine L; Dowling, N M; Carlsson, Cynthia M; Bendlin, Barbara B; LaRue, Asenath; Rowley, Howard A; Christian, Brad T; Asthana, Sanjay; Hermann, Bruce P; Johnson, Sterling C; Sager, Mark A
2014-11-04
To examine whether engagement in physical activity might favorably alter the age-dependent evolution of Alzheimer disease (AD)-related brain and cognitive changes in a cohort of at-risk, late-middle-aged adults. Three hundred seventeen enrollees in the Wisconsin Registry for Alzheimer's Prevention underwent T1 MRI; a subset also underwent (11)C-Pittsburgh compound B-PET (n = 186) and (18)F-fluorodeoxyglucose-PET (n = 152) imaging. Participants' responses on a self-report measure of current physical activity were used to classify them as either physically active or physically inactive based on American Heart Association guidelines. They also completed a comprehensive neuropsychological battery. Covariate-adjusted regression analyses were used to test whether the adverse effect of age on imaging and cognitive biomarkers was modified by physical activity. There were significant age × physical activity interactions for β-amyloid burden (p = 0.014), glucose metabolism (p = 0.015), and hippocampal volume (p = 0.025) such that, with advancing age, physically active individuals exhibited a lesser degree of biomarker alterations compared with the physically inactive. Similar age × physical activity interactions were also observed on cognitive domains of Immediate Memory (p = 0.042) and Visuospatial Ability (p = 0.016). In addition, the physically active group had higher scores on Speed and Flexibility (p = 0.002) compared with the inactive group. In a middle-aged, at-risk cohort, a physically active lifestyle is associated with an attenuation of the deleterious influence of age on key biomarkers of AD pathophysiology. However, because our observational, cross-sectional design cannot establish causality, randomized controlled trials/longitudinal studies will be necessary for determining whether midlife participation in structured physical exercise forestalls the development of AD and related disorders in later life. © 2014 American Academy of Neurology.
Hippocampal Sclerosis of Aging Can Be Segmental: Two Cases and Review of the Literature
Ighodaro, Eseosa T.; Jicha, Gregory A.; Schmitt, Frederick A.; Neltner, Janna H.; Abner, Erin L.; Kryscio, Richard J.; Smith, Charles D.; Duplessis, Taylor; Anderson, Sonya; Patel, Ela; Bachstetter, Adam; Van Eldik, Linda J.; Nelson, Peter T.
2015-01-01
Hippocampal sclerosis of aging (HS-Aging) is a neurodegenerative disease that mimics Alzheimer disease (AD) clinically and has a prevalence rivaling AD in advanced age. Whereas clinical biomarkers are not yet optimized, HS-Aging has distinctive pathological features that distinguish it from other diseases with “hippocampal sclerosis” pathology, such as epilepsy, cerebrovascular perturbations, and frontotemporal lobar degeneration. By definition, HS-Aging brains show neuronal cell loss and gliosis in the hippocampal formation out of proportion to AD-type pathology; it is strongly associated with aberrant TDP-43 pathology and arteriolosclerosis. Here, we describe 2 cases of “segmental” HS-Aging in which “sclerosis” in the hippocampus was evident only in a subset of brain sections by hematoxylin and eosin (H&E) stain. In these cases, TDP-43 pathology was more widespread on immunostained sections than the neuronal cell loss and gliosis seen in H&E stains. The 2 patients were cognitively intact at baseline and were tracked longitudinally over a decade using cognitive studies with at least 1 neuroimaging scan. We discuss the relevant HS-Aging literature, which indicates the need for a clearer consensus-based delineation of “hippocampal sclerosis” and TDP-43 pathologies in aged subjects. PMID:26083567
Markham, Wolfgang A; Young, Robert; Sweeting, Helen; West, Patrick; Aveyard, Paul
2012-07-01
Previous studies found lower substance use in schools achieving better examination and truancy results than expected, given their pupil populations (high value-added schools). This study examines whether these findings are replicated in West Scotland and whether school ethos indicators focussing on pupils' perceptions of schooling (environment, involvement, engagement and teacher-pupil relations) mediate the associations. Teenagers from forty-one schools (S2, aged 13, n = 2268; S4, aged 15, n = 2096) previously surveyed in primary school (aged 11, n = 2482) were surveyed in the late 1990s. School value-added scores were derived from standardised residuals of two regression equations separately predicting from pupils' socio-demographic characteristics (1) proportions of pupils passing five Scottish Standard Grade Examinations, and (2) half-day truancy loss. Outcomes were current smoking, monthly drinking, ever illicit drug use. Random effects logistic regression models adjusted for potential pupil-level confounders were used to assess (1) associations between substance use and school-level value-added scores and (2) whether these associations were mediated by pupils' perceptions of schooling or other school-level factors (school roll, religious denomination and mean aggregated school-level ethos scores). Against expectations, value-added education was positively associated with smoking (Odds Ratios [95% confidence intervals] for one standard deviation increase in value-added scores were 1.28 [1.02-1.61] in S2 and 1.13 [1.00-1.27] in S4) and positively but weakly and non-significantly associated with drinking and drug use. Engagement and positive teacher-pupil relations were strongly and negatively associated with all substance use outcomes at both ages. Other school-level factors appeared weakly and largely non-significantly related to substance use. Value-added scores were unrelated to school ethos measures and no ethos measure mediated associations between value-added education and substance use. We conclude that substance use in Scotland is more likely in high value-added schools, among disengaged students and those with poorer student-teacher relationships. Understanding the underpinning mechanisms is a potentially important public health concern. Copyright © 2012 Elsevier Ltd. All rights reserved.
Markham, Wolfgang A.; Young, Robert; Sweeting, Helen; West, Patrick; Aveyard, Paul
2012-01-01
Previous studies found lower substance use in schools achieving better examination and truancy results than expected, given their pupil populations (high value-added schools). This study examines whether these findings are replicated in West Scotland and whether school ethos indicators focussing on pupils' perceptions of schooling (environment, involvement, engagement and teacher–pupil relations) mediate the associations. Teenagers from forty-one schools (S2, aged 13, n = 2268; S4, aged 15, n = 2096) previously surveyed in primary school (aged 11, n = 2482) were surveyed in the late 1990s. School value-added scores were derived from standardised residuals of two regression equations separately predicting from pupils' socio-demographic characteristics (1) proportions of pupils passing five Scottish Standard Grade Examinations, and (2) half-day truancy loss. Outcomes were current smoking, monthly drinking, ever illicit drug use. Random effects logistic regression models adjusted for potential pupil-level confounders were used to assess (1) associations between substance use and school-level value-added scores and (2) whether these associations were mediated by pupils' perceptions of schooling or other school-level factors (school roll, religious denomination and mean aggregated school-level ethos scores). Against expectations, value-added education was positively associated with smoking (Odds Ratios [95% confidence intervals] for one standard deviation increase in value-added scores were 1.28 [1.02–1.61] in S2 and 1.13 [1.00–1.27] in S4) and positively but weakly and non-significantly associated with drinking and drug use. Engagement and positive teacher–pupil relations were strongly and negatively associated with all substance use outcomes at both ages. Other school-level factors appeared weakly and largely non-significantly related to substance use. Value-added scores were unrelated to school ethos measures and no ethos measure mediated associations between value-added education and substance use. We conclude that substance use in Scotland is more likely in high value-added schools, among disengaged students and those with poorer student–teacher relationships. Understanding the underpinning mechanisms is a potentially important public health concern. PMID:22503837
Decreased C-reactive protein levels in Alzheimer disease.
O'Bryant, Sid E; Waring, Stephen C; Hobson, Valerie; Hall, James R; Moore, Carol B; Bottiglieri, Teodoro; Massman, Paul; Diaz-Arrastia, Ramon
2010-03-01
C-reactive protein (CRP) is an acute-phase reactant that has been found to be associated with Alzheimer disease (AD) in histopathological and longitudinal studies; however, little data exist regarding serum CRP levels in patients with established AD. The current study evaluated CRP levels in 192 patients diagnosed with probable AD (mean age = 75.8 +/- 8.2 years; 50% female) as compared to 174 nondemented controls (mean age = 70.6 +/- 8.2 years; 63% female). Mean CRP levels were found to be significantly decreased in AD (2.9 microg/mL) versus controls (4.9 microg/mL; P = .003). In adjusted models, elevated CRP significantly predicted poorer (elevated) Clinical Dementia Rating Scale sum of boxes (CDR SB) scores in patients with AD. In controls, CRP was negatively associated with Mini-Mental State Examination (MMSE) scores and positively associated with CDR SB scores. These findings, together with previously published results, are consistent with the hypothesis that midlife elevations in CRP are associated with increased risk of AD development though elevated CRP levels are not useful for prediction in the immediate prodrome years before AD becomes clinically manifest. However, for a subgroup of patients with AD, elevated CRP continues to predict increased dementia severity suggestive of a possible proinflammatory endophenotype in AD.
Decreased C-Reactive Protein Levels in Alzheimer Disease
O’Bryant, Sid E.; Waring, Stephen C.; Hobson, Valerie; Hall, James R.; Moore, Carol B.; Bottiglieri, Teodoro; Massman, Paul; Diaz-Arrastia, Ramon
2011-01-01
C-reactive protein (CRP) is an acute-phase reactant that has been found to be associated with Alzheimer disease (AD) in histo-pathological and longitudinal studies; however, little data exist regarding serum CRP levels in patients with established AD. The current study evaluated CRP levels in 192 patients diagnosed with probable AD (mean age = 75.8 ± 8.2 years; 50% female) as compared to 174 nondemented controls (mean age = 70.6 ± 8.2 years; 63% female). Mean CRP levels were found to be significantly decreased in AD (2.9 µg/mL) versus controls (4.9 µg/mL; P = .003). In adjusted models, elevated CRP significantly predicted poorer (elevated) Clinical Dementia Rating Scale sum of boxes (CDR SB) scores in patients with AD. In controls, CRP was negatively associated with Mini-Mental State Examination (MMSE) scores and positively associated with CDR SB scores. These findings, together with previously published results, are consistent with the hypothesis that midlife elevations in CRP are associated with increased risk of AD development though elevated CRP levels are not useful for prediction in the immediate prodrome years before AD becomes clinically manifest. However, for a subgroup of patients with AD, elevated CRP continues to predict increased dementia severity suggestive of a possible proinflammatory endophenotype in AD. PMID:19933496
Maki, Yohko; Yoshida, Hiroshi; Yamaguchi, Tomoharu; Yamaguchi, Haruyasu
2013-01-01
Positivity recognition bias has been reported for facial expression as well as memory and visual stimuli in aged individuals, whereas emotional facial recognition in Alzheimer disease (AD) patients is controversial, with possible involvement of confounding factors such as deficits in spatial processing of non-emotional facial features and in verbal processing to express emotions. Thus, we examined whether recognition of positive facial expressions was preserved in AD patients, by adapting a new method that eliminated the influences of these confounding factors. Sensitivity of six basic facial expressions (happiness, sadness, surprise, anger, disgust, and fear) was evaluated in 12 outpatients with mild AD, 17 aged normal controls (ANC), and 25 young normal controls (YNC). To eliminate the factors related to non-emotional facial features, averaged faces were prepared as stimuli. To eliminate the factors related to verbal processing, the participants were required to match the images of stimulus and answer, avoiding the use of verbal labels. In recognition of happiness, there was no difference in sensitivity between YNC and ANC, and between ANC and AD patients. AD patients were less sensitive than ANC in recognition of sadness, surprise, and anger. ANC were less sensitive than YNC in recognition of surprise, anger, and disgust. Within the AD patient group, sensitivity of happiness was significantly higher than those of the other five expressions. In AD patient, recognition of happiness was relatively preserved; recognition of happiness was most sensitive and was preserved against the influences of age and disease.
Experimental investigation of the influence of nanoparticles on water-based mud
NASA Astrophysics Data System (ADS)
Dhiman, Paritosh; Cheng, Yaoze; Zhang, Yin; Patil, Shirish
2018-03-01
This study has investigated the influence of nanoparticles including nanoparticle concentration, size, and type on water-based mud (WBM) properties including rheology, filtration, and lubricity through experimental tests, while the influence of temperature and aging on these properties have been investigated. It has been found that adding SiO2 nanoparticles increase the plastic viscosity and decrease the yield points and gel strengths with the increase of nanoparticle concentration. At fixed 0.5 wt%, the plastic viscosity decreases with the increase of TiO2 nanoparticle size, but the influence of TiO2 nanoparticle size on yield points and gel strengths is not monotonous. In general, adding negative charged SiO2 nanoparticles reduce the yield points and gel strengths, while adding positively charged TiO2, Al2O3, and Fe3O4 nanoparticles increase yield points and gel strengths. Adding lower concentrations (< 0.05 wt%) of SiO2 nanoparticles improved mud filtration and lubricity properties, but higher concentrations are adverse to these properties and adding 0.5 wt% TiO2, Al2O3 and Fe3O4 nanoparticles impaired these properties. Besides, it is found that there is no consistent influence of aging on mud properties and adding nanoparticles cannot improve aging resistance of mud. Although adding nanoparticles can significantly affect WBM properties, their influences are not consistency, depending on the integrated impact of the nanoparticle properties, such as surface electrical property, specific surface area, concentration, and size.
Candidate gene analysis for Alzheimer's disease in adults with Down syndrome.
Lee, Joseph H; Lee, Annie J; Dang, Lam-Ha; Pang, Deborah; Kisselev, Sergey; Krinsky-McHale, Sharon J; Zigman, Warren B; Luchsinger, José A; Silverman, Wayne; Tycko, Benjamin; Clark, Lorraine N; Schupf, Nicole
2017-08-01
Individuals with Down syndrome (DS) overexpress many genes on chromosome 21 due to trisomy and have high risk of dementia due to the Alzheimer's disease (AD) neuropathology. However, there is a wide range of phenotypic differences (e.g., age at onset of AD, amyloid β levels) among adults with DS, suggesting the importance of factors that modify risk within this particularly vulnerable population, including genotypic variability. Previous genetic studies in the general population have identified multiple genes that are associated with AD. This study examined the contribution of polymorphisms in these genes to the risk of AD in adults with DS ranging from 30 to 78 years of age at study entry (N = 320). We used multiple logistic regressions to estimate the likelihood of AD using single-nucleotide polymorphisms (SNPs) in candidate genes, adjusting for age, sex, race/ethnicity, level of intellectual disability and APOE genotype. This study identified multiple SNPs in APP and CST3 that were associated with AD at a gene-wise level empirical p-value of 0.05, with odds ratios in the range of 1.5-2. SNPs in MARK4 were marginally associated with AD. CST3 and MARK4 may contribute to our understanding of potential mechanisms where CST3 may contribute to the amyloid pathway by inhibiting plaque formation, and MARK4 may contribute to the regulation of the transition between stable and dynamic microtubules. Copyright © 2017 Elsevier Inc. All rights reserved.
Early detection of AD using cortical thickness measurements
NASA Astrophysics Data System (ADS)
Spjuth, M.; Gravesen, F.; Eskildsen, S. F.; Østergaard, L. R.
2007-03-01
Alzheimer's disease (AD) is a neurodegenerative disorder that causes cortical atrophy and impaired cognitive functions. The diagnosis is difficult to make and is often made over a longer period of time using a combination of neuropsychological tests, and structural and functional imaging. Due to the impact of early intervention the challenge of distinguishing early AD from normal ageing has received increasing attention. This study uses cortical thickness measurements to characterize the atrophy in nine mild AD patients (mean MMSE-score 23.3 (std: 2.6)) compared to five healthy middle-aged subjects. A fully automated method based on deformable models is used for delineation of the inner and outer boundaries of the cerebral cortex from Magnetic Resonance Images. This allows observer independent high-resolution quantification of the cortical thickness. The cortex analysis facilitates detection of alterations throughout the entire cortical mantle. To perform inter-subject thickness comparison in which the spatial information is retained, a feature-based registration algorithm is developed which uses local cortical curvature, normal vector, and a distance measure. A comparison of the two study groups reveals that the lateral side of the hemispheres shows diffuse thinner areas in the mild AD group but especially the medial side shows a pronounced thinner area which can be explained by early limbic changes in AD. For classification principal component analysis is applied to reduce the high number of thickness measurements (>200,000) into fewer features. All mild AD and healthy middle-aged subjects are classified correctly (sensitivity and specificity 100%).
Ramdane, Said; Daoudi-Gueddah, Doria
2011-08-01
We examined retrospectively the concurrent relationships between fasting plasma total cholesterol, triglycerides, and glucose levels, and Alzheimer's disease (AD), in a clinical setting-based study. Total cholesterol level was higher in patients with AD compared to elderly controls; triglycerides or glucose levels did not significantly differ between the 2 groups. Respective plotted trajectories of change in cholesterol level across age were fairly parallel. No significant difference in total cholesterol levels was recorded between patients with AD classified by the Clinical Dementia Rating (CDR) score subgroups. These results suggest that patients with AD have relative mild total hypercholesterolemia, normal triglyceridemia, and normal fasting plasma glucose level. Mild total hypercholesterolemia seems to be permanent across age, and across dementia severity staging, and fairly parallels the trajectory of age-related change in total cholesterolemia of healthy controls. We speculate that these biochemical parameters pattern may be present long before-a decade at least-the symptomatic onset of the disease.
Guan, Jing-Zhi; Guan, Wei-Ping; Maeda, Toyoki; Makino, Naoki
2012-01-01
Oxidative stress (OS) may be involved in the neurodegenerative process in Alzheimer's disease (AD). Telomeres, the repeated sequences that cap chromosome ends, undergo shortening with each cell division, are sensitive to OS, and serve as markers of a cell's replicative history. Telomere length shortening has been reported to relate to OS with aging process and aging-associated diseases, but the telomeric changes were not always identical, especially in change of telomere length distribution and subtelomeric methylation. The involvement of an OS-associated telomere change in the pathogenesis of AD has been discussed for decades, and the telomere length and telomerase activity were analyzed. However, other telomeric factors, such as the telomere distribution and subtelomeric methylation status, have not yet been analyzed. The subtelomeric methylation status as well as the telomere length were studied in AD with an antioxidant vitamin in terms of OS. We measured urinary 8-iso-PGF2α, a lipid-peroxidation product as an OS marker, and methylated and non-methylated telomere lengths in the peripheral blood mononuclear cells by Southern blotting in AD patients before and after vitamin E treatment. The level of urinary 8-iso-PGF2α was found to have increased in AD. Middle-ranged telomeres (4.4-9.4 kb) increased and the shortest telomeres (<4.4 kb) decreased in AD patients. Telomeres were more methylated in both long telomeres and in short telomeres in AD compared with the control. The oral administration of the antioxidant vitamin E in 400 mg/day for 6 months in AD patients partly reversed AD-associated alterations in OS marker levels. AD patients showed an elevated OS marker level, and vitamin E lowered the OS level. In comparison with controls, AD patients showed shorter telomere lengths. Cells with short and long telomeres bore relatively hypermethylated subtelomeres in AD patients. Aging-associated accumulation of cells bearing short telomeres was not observed in AD. These results imply that long telomeres with hypomethylation tend to shorten faster, and cells bearing short telomeres with hypomethylation tend to more easily enter into a senescent state under elevated OS stress in AD. However, no significant effect on the altered telomeric profiles in AD patients could be detected after a 6-month administration of vitamin E. Copyright © 2011 S. Karger AG, Basel.
Serum trace metal levels in Alzheimer's disease and normal control groups.
Park, Jun-Hyun; Lee, Dong-Woo; Park, Kyung Su; Joung, Hyojee
2014-02-01
To determine whether serum trace metals are related to abnormal cognition in Alzheimer's disease (AD). We studied serum lead (Pb), cadmium (Cd), mercury (Hg), and arsenic(As) in 89 patients with AD and in 118 cognitively normal individuals. We analyzed the results of the blood tests and the food intake. Serum Pb levels correlated with word list recall (P = .039) and word list recognition (P = .037). Without age adjustment, serum Cd levels (P = .044) were significantly higher in the AD group. After stratified age adjustment, the levels of selected trace metals did not differ significantly between AD and normal individuals. Food intakes regarding selected trace metals were not significantly different between the 2 groups. In this study, serum Pb, Cd, Hg, and As levels were not directly related to abnormal cognition in AD. Serum Pb levels were significantly negatively correlated with verbal memory scores.
Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology
Tesseur, Ina; Zou, Kun; Esposito, Luke; Bard, Frederique; Berber, Elisabeth; Can, Judith Van; Lin, Amy H.; Crews, Leslie; Tremblay, Patrick; Mathews, Paul; Mucke, Lennart; Masliah, Eliezer; Wyss-Coray, Tony
2006-01-01
Alzheimer’s disease (AD) is characterized by progressive neurodegeneration and cerebral accumulation of the β-amyloid peptide (Aβ), but it is unknown what makes neurons susceptible to degeneration. We report that the TGF-β type II receptor (TβRII) is mainly expressed by neurons, and that TβRII levels are reduced in human AD brain and correlate with pathological hallmarks of the disease. Reducing neuronal TGF-β signaling in mice resulted in age-dependent neurodegeneration and promoted Aβ accumulation and dendritic loss in a mouse model of AD. In cultured cells, reduced TGF-β signaling caused neuronal degeneration and resulted in increased levels of secreted Aβ and β-secretase–cleaved soluble amyloid precursor protein. These results show that reduced neuronal TGF-β signaling increases age-dependent neurodegeneration and AD-like disease in vivo. Increasing neuronal TGF-β signaling may thus reduce neurodegeneration and be beneficial in AD. PMID:17080199
Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas
NASA Astrophysics Data System (ADS)
Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Bindeman, Ilya N.; Barth, Andrew P.
2011-10-01
Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), Öræfajökull (1362 AD) and Torfajökull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions.
Schaffert, Jeff; LoBue, Christian; White, Charles L; Chiang, Hsueh-Sheng; Didehbani, Nyaz; Lacritz, Laura; Rossetti, Heidi; Dieppa, Marisara; Hart, John; Cullum, C Munro
2018-05-01
To evaluate whether a history of traumatic brain injury (TBI) with reported loss of consciousness (LOC) is a risk factor for earlier onset of Alzheimer's disease (AD) in an autopsy-confirmed sample. Data from 2,133 participants with autopsy-confirmed AD (i.e., at least Braak neurofibrillary tangle stages III to VI and CERAD neuritic plaque score moderate to frequent) were obtained from the National Alzheimer's Coordinating Center (NACC). Participants were categorized by presence/absence of self-reported remote (i.e., >1 year prior to their first Alzheimer's Disease Center visit) history of TBI with LOC (TBI+ vs. TBI-). Analyses of Covariance (ANCOVA) controlling for sex, education, and race compared groups on clinician-estimated age of symptom onset and age of diagnosis. Average age of onset was 2.34 years earlier (p = .01) for the TBI+ group (n = 194) versus the TBI- group (n = 1900). Dementia was diagnosed on average 2.83 years earlier (p = .002) in the TBI+ group (n = 197) versus the TBI- group (n = 1936). Using more stringent neuropathological criteria (i.e., Braak stages V-VI and CERAD frequent), both age of AD onset and diagnosis were 3.6 years earlier in the TBI+ group (both p's < .001). History of TBI with reported LOC appears to be a risk factor for earlier AD onset. This is the first study to use autopsy-confirmed cases, supporting previous investigations that used clinical criteria for the diagnosis of AD. Further investigation as to possible underlying mechanisms of association is needed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Rhodes, Lindsay A; Huisingh, Carrie E; Quinn, Adam E; McGwin, Gerald; LaRussa, Frank; Box, Daniel; Owsley, Cynthia; Girkin, Christopher A
2017-02-01
To examine if racial differences in Bruch's membrane opening minimum rim width (BMO-MRW) in spectral-domain optical coherence tomography (SDOCT) exist, specifically between people of African descent (AD) and European descent (ED) in normal ocular health. Cross-sectional study. Patients presenting for a comprehensive eye examination at retail-based primary eye clinics were enrolled based on ≥1 of the following at-risk criteria for glaucoma: AD aged ≥40 years, ED aged ≥50 years, diabetes, family history of glaucoma, and/or pre-existing diagnosis of glaucoma. Participants with normal optic nerves on examination received SDOCT of the optic nerve head (24 radial scans). Global and regional (temporal, superotemporal, inferotemporal, nasal, superonasal, and inferonasal) BMO-MRW were measured and compared by race using generalized estimating equations. Models were adjusted for age, sex, and BMO area. SDOCT scans from 269 eyes (148 participants) were included in the analysis. Mean global BMO-MRW declined as age increased. After adjusting for age, sex, and BMO area, there was not a statistically significant difference in mean global BMO-MRW by race (P = .60). Regionally, the mean BMO-MRW was lower in the crude model among AD eyes in the temporal, superotemporal, and nasal regions and higher in the inferotemporal, superonasal, and inferonasal regions. However, in the adjusted model, these differences were not statistically significant. BMO-MRW was not statistically different between those of AD and ED. Race-specific normative data may not be necessary for the deployment of BMO-MRW in AD patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Rhodes, Lindsay A.; Huisingh, Carrie E.; Quinn, Adam E.; McGwin, Gerald; LaRussa, Frank; Box, Daniel; Owsley, Cynthia; Girkin, Christopher A.
2016-01-01
Purpose To examine if racial differences in Bruch's membrane opening-minimum rim width (BMO-MRW) in spectral domain optical coherence tomography (SDOCT) exist, specifically between people of African descent (AD) and European descent (ED) in normal ocular health. Design Cross-sectional study Methods Patients presenting for a comprehensive eye exam at retail-based primary eye clinics were enrolled based on ≥1 of the following at-risk criteria for glaucoma: AD aged ≥ 40 years, ED aged ≥50 years, diabetes, family history of glaucoma, and/or preexisting diagnosis of glaucoma. Participants with normal optic nerves on exam received SDOCT of the optic nerve head (24 radial scans). Global and regional (temporal, superotemporal, inferotemporal, nasal, superonasal, and inferonasal) BMO-MRW were measured and compared by race using generalized estimating equations. Models were adjusted for age, gender, and BMO area. Results SDOCT scans from 269 eyes (148 participants) were included in the analysis. Mean global BMO-MRW declined as age increased. After adjusting for age, gender, and BMO area, there was not a statistically significant difference in mean global BMO-MRW by race (P = 0.60). Regionally, the mean BMO-MRW was lower in the crude model among AD eyes in the temporal, superotemporal, and nasal regions and higher in the inferotemporal, superonasal, and inferonasal regions. However, in the adjusted model, these differences were not statistically significant. Conclusions BMO-MRW was not statistically different between those of AD and ED. Race-specific normative data may not be necessary for the deployment of BMO-MRW in AD patients. PMID:27825982
Neuropathologic Studies of the Baltimore Longitudinal Study of Aging (BLSA)
O’Brien, Richard J.; Resnick, Susan M.; Zonderman, Alan B.; Ferrucci, Luigi; Crain, Barbara J.; Pletnikova, Olga; Rudow, Gay; Iacono, Diego; Riudavets, Miguel A.; Driscoll, Ira; Price, Donald L.; Martin, Lee J.; Troncoso, Juan C.
2010-01-01
The Baltimore Longitudinal Study of Aging (BLSA) was established in 1958 and is one the oldest prospective studies of aging in the USA and the world. The BLSA is supported by the National Institute of Aging (NIA) and its mission is to learn what happens to people as they get old and how to sort out changes due to aging and from those due to disease or other causes. In 1986, an autopsy program combined with comprehensive neurologic and cognitive evaluations was established in collaboration with the Johns Hopkins University Alzheimer’s Disease Research Center (ADRC). Since then, 211 subjects have undergone autopsy. Here we review the key clinical neuropathological correlations from this autopsy series. The focus is on the morphological and biochemical changes that occur in normal aging, and the early neuropathological changes of neurodegenerative diseases, especially Alzheimer’s disease (AD). We highlight the combined clinical, pathologic, morphometric, and biochemical evidence of asymptomatic AD, a state characterized by normal clinical evaluations in subjects with abundant AD pathology. We conclude that in some individuals, successful cognitive aging results from compensatory mechanisms that occur at the neuronal level (i.e., neuronal hypertrophy and synaptic plasticity) whereas a failure of compensation may culminate in disease. PMID:19661626
Repetition priming of words and nonwords in Alzheimer's disease and normal aging
Ober, Beth A.; Shenaut, Gregory K.
2014-01-01
Objective This study examines the magnitude and direction of nonword and word lexical decision repetition priming effects in Alzheimer’s disease (AD) and normal aging, focusing specifically on the negative priming effect sometimes observed with repeated nonwords. Method Probable Alzheimer's disease (AD) patients (30), elderly normal controls (34), and young normal controls (49) participated in a repetition priming experiment using low-frequency words and word-like nonwords with a letter-level orthographic orienting task at study followed by a lexical decision test phase. Results Although participants' reaction times were longer in AD compared to elderly normal, and elderly normal compared to young normal, the repetition priming effect and the degree to which the repetition priming effect was reversed for nonwords compared to words was unaffected by AD or normal aging. Conclusion AD patients, like young and elderly normal participants, are able to modify (in the case of words) and create (in the case of nonwords) long-term memory traces for lexical stimuli, based on a single orthographic processing trial. The nonword repetition results are discussed from the perspective of new vocabulary learning commencing with a provisional lexical memory trace created after orthographic encoding of a novel word-like letter string. PMID:25000325
Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.
Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J
2016-08-01
Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Castel, Alan D.; Balota, David A.; McCabe, David P.
2009-01-01
Selecting what is important to remember, attending to this information, and then later recalling it can be thought of in terms of the strategic control of attention and the efficient use of memory. In order to examine whether aging and Alzheimer's disease (AD) influenced this ability, the present study used a selectivity task, where studied items were worth various point values and participants were asked to maximize the value of the items they recalled. Relative to younger adults (N=35) and healthy older adults (N=109), individuals with very mild AD (N=41) and mild AD (N=13) showed impairments in the strategic and efficient encoding and recall of high value items. Although individuals with AD recalled more high value items than low value items, they did not efficiently maximize memory performance (as measured by a selectivity index) relative to healthy older adults. Performance on complex working memory span tasks was related to the recall of the high value items but not low value items. This pattern suggests that relative to healthy aging, AD leads to impairments in strategic control at encoding and value-directed remembering. PMID:19413444
The Measurement of Advertising Impact on Children.
ERIC Educational Resources Information Center
Haefner, James E.; And Others
This study examined the impact on children of two deceptive and two non-deceptive 60-second color commericals inserted in a 25-minute film. The ads were rated as deceptive or non-deceptive by attorneys at the Federal Trade Commission. A total of 102 students aged 11 to 13 and 34 students aged 7 viewed the film with the ads inserted. Pre- and…
Selective attention skills in differentiating between Alzheimer's disease and normal aging.
Solfrizzi, Vincenzo; Panza, Francesco; Torres, Francesco; Capurso, Cristiano; D'Introno, Alessia; Colacicco, Anna Maria; Capurso, Antonio
2002-01-01
We determined the reliability and validity of a cancellation test of symbols (Symbol Cancellation Test [SCT]), designed to assess visual selective attention deficits in the elderly, on 34 Alzheimer's disease (AD) patients from Bari University Hospital Center, Bari, Italy, and 232 nondemented elderly subjects, aged 68 to 87 years, from the second prevalence survey (1995 through 1996) of the Italian Longitudinal Study on Aging (Casamassima, Bari, Italy). To assess convergent and discriminant validity, the Digit Cancellation Test (DCT), Mini-Mental State Examination (MMSE), and Babcock Story Recall Test (BSRT) were administered. Finally, discriminant accuracy of SCT between AD patients and nondemented elderly subjects was assessed. Inter-rater and test-retest reliability for P1 and P2 was excellent for both AD patients and the normal population, with a high degree of internal consistency. The SCT was significantly correlated with the DCT (0.67), MMSE (0.60), and BSRT (0.33). The classification accuracies of overall performance on the SCT for subjects with and without AD were 0.62 and 0.91, respectively. The SCT is a valid and reliable test to assess selective attention in elderly subjects, in whom dementing illness must be diagnosed and clinically distinct from age-related cognitive decline.
Genetic Aspects of Alzheimer Disease
Williamson, Jennifer; Goldman, Jill; Marder, Karen S.
2011-01-01
Background Alzheimer disease (AD) is a genetically complex disorder. Mutations in 3 genes, presenilin 1, amyloid precursor protein, and presenilin 2, lead to early-onset familial AD in rare families with onset of disease occurring prior to age 65. Specific polymorphisms in apolipoprotein E are associated with the more common, late-onset AD occurring after age 65. In this review, we discuss current advances in AD genetics, the implications of the known AD genes, presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E, and other possible genes on the clinical diagnosis, treatment, and genetic counseling of patients and families with early- and late-onset AD. Review Summary In addition to the mutations in 4 known genes associated with AD, mutations in other genes may be implicated in the pathogenesis of the disease. Most recently, 2 different research groups have reported genetic association between 2 genes, sortilin-related receptor and GAB2, and AD. These associations have not changed the diagnostic and medical management of AD. Conclusions New research in the genetics of AD have implicated novel genes as having a role in the disease, but these findings have not been replicated nor have specific disease causing mutations been identified. To date, clinical genetic testing is limited to familial early-onset disease for symptomatic individuals and asymptomatic relatives and, although not recommended, amyloid precursor protein apolipoprotein E testing as an adjunct to diagnosis of symptomatic individuals. PMID:19276785
Slater, M D; Rouner, D; Murphy, K; Beauvais, F; Van Leuven, J; Rodríguez, M D
1996-07-01
This study examines white male adolescent responses to TV beer advertisements with and without sports content and to nonbeer ads when embedded in sports and entertainment programming. A total of 72 advertisements and 24 television program excerpts were randomly sampled from national television programming. White male adolescents (N = 157) recruited in a public school system each viewed six ads (one of each of three types of ad embedded in each of two types of programming) comprising the 2 x 2 x 3 factorial, within-subjects, mixed-model (random and fixed effects) experimental design along with an age-level blocking factor and random factors for commercial and program stimuli. Cognitive responses to each ad were content-analyzed. Individual difference variables including alcohol use behavior, sensation-seeking, masculinity and sports involvement were also measured. Subjects showed a consistent preference for beer ads with sports content. A significant three-way interaction between ad type, programming type and junior versus senior high-school age level also indicated that sports programming had an inconsistent effect on responses to beer ads but that nonbeer ads were responded to more positively during sports than during entertainment programming. Other analyses showed that subjects were more cognitively resistant to beer ads than to nonbeer ads. These results support public and official concerns that sports content in beer ads increase the ads appeal to underage youth. They do not support hypothesized concerns that sports programming might prime adolescents to be more receptive to beer ads. Implications for alcohol education efforts are discussed.
Kharrazi, Hadi; Vaisi-Raygani, Asad; Rahimi, Zohreh; Tavilani, Haidar; Aminian, Mahdi; Pourmotabbed, Tayebeh
2008-08-01
There are evidence suggesting that APOE-varepsilon4 allele play an important role in the pathogenesis of Alzheimer's disease (AD) by reducing peripheral levels and activities of a broad spectrum of nonenzymatic and enzymatic antioxidants systems. However, the link between APOE genotype, oxidative stress, and AD has yet to be established. In this study we examined whether antioxidant defense mechanism exacerbates the risk of AD in individual carrying APOE-varepsilon4 allele in a population from Tehran, Iran. We determined the enzymatic activities of the erythrocyte Cu-Zn superoxide dismutase (Cu-Zn SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and serum level of total antioxidant status(TAS) in various APOE genotypes in 91 patients with AD and 91 healthy subjects as control group (age and sex-matched). The results showed that the TAS level and the activities of enzymatic antioxidants CAT and GSH-Px were significantly lower and the SOD activity was significantly higher in AD patients compared to controls. The AD patients with APOE-varepsilon4 allele genotype had significantly lower serum TAS concentration and lower erythrocytes GSH-Px and CAT activities (p=0.001) but significantly higher erythrocytes Cu-Zn SOD activity (p=0.001) than the non-APOE-varepsilon4 carrier AD and the control group. In addition, the association observed between the factors involved in an antioxidant defense mechanism and APOE-varepsilon4 allele in AD increased with age of the subjects. These data indicate that the reduced serum level of TAS and activity of CAT, GSH-Px and increased SOD exacerbate the risk of AD in individuals carrying APOE-varepsilon4 allele. The reduced antioxidants defense in APOE-varepsilon4 allele carrier may contribute to beta-amyloidosis. This effect, however, is more pronounced in the AD patients older than 75 years of age. This suggests that a therapeutic modality should be considered for these subjects.
Benchmarking Brown Dwarf Models With a Non-irradiated Transiting Brown Dwarf in Praesepe
NASA Astrophysics Data System (ADS)
Beatty, Thomas; Marley, Mark; Line, Michael; Gizis, John
2018-05-01
We wish to use 9.4 hours of Spitzer time to observe two eclipses, one each at 3.6um and 4.5um, of the transiting brown dwarf AD 3116b. AD 3116b is a 54.2+/-4.3 MJ, 1.08+/-0.07 RJ object on a 1.98 day orbit about a 3200K M-dwarf. Uniquely, AD 3116 and its host star are both members of Praesepe, a 690+/-60 Myr old open cluster. AD 3116b is thus one of two transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models, and the youngest brown dwarf for which this is the case. Importantly, the flux AD 3116b receives from its host star is only 0.7% of its predicted internal luminosity (Saumon & Marley 2008). This makes AD 3116b the first known transiting brown dwarf that simultaneously has a well-defined age, and that receives a negligible amount of external irradiation, and a unique laboratory to test radius and luminosity predictions from brown dwarf evolutionary models. Our goal is to measure the emission from the brown dwarf. AD 3116b should have large, 25 mmag, eclipse depths in the Spitzer bandpasses, and we expect to measure them with a precision of +/-0.50 mmag at 3.6um and +/-0.54 mmag at 4.5um. This will allow us to make measure AD 3116b?s internal effective temperature to +/-40K. We will also use the upcoming Gaia DR2 parallaxes to measure AD 3116b's absolute IRAC magnitudes and color, and hence determine the cloud properties of the atmosphere. As the only known brown dwarf with an independently measured mass, radius, and age, Spitzer measurements of AD 3116b's luminosity and clouds will provide a critical benchmark for brown dwarf observation and theory.
Voorhees, Jaymie R; Remy, Matthew T; Cintrón-Pérez, Coral J; El Rassi, Eli; Khan, Michael Z; Dutca, Laura M; Yin, Terry C; McDaniel, Latisha N; Williams, Noelle S; Brat, Daniel J; Pieper, Andrew A
2017-11-06
In addition to cognitive deficits, Alzheimer's disease (AD) is associated with other neuropsychiatric symptoms, including severe depression. Indeed, depression often precedes cognitive deficits in patients with AD. Unfortunately, the field has seen only minimal therapeutic advances, underscoring the critical need for new treatments. P7C3 aminopropyl carbazoles promote neuronal survival by enhancing nicotinamide adenine dinucleotide flux in injured neurons. Neuroprotection with P7C3 compounds has been demonstrated in preclinical models of neurodegeneration by virtue of promoting neuronal survival independently of early disease-specific pathology, resulting in protection from cognitive deficits and depressive-like behavior. We hypothesize that P7C3 compounds might be uniquely applicable to patients with AD, given the comorbid presentation of depression and cognitive deficits. Aging male and female wild-type and TgF344-AD rats, a well-characterized preclinical AD model, were administered (-)-P7C3-S243 daily for 9 and 18 months, beginning at 6 months of age. Behavioral phenotypes related to cognition and depression were assessed at 15 and 24 months, and brain pathology and biochemistry were assessed at 24 months. (-)-P7C3-S243 safely protected aging male and female wild-type and TgF344-AD rats from cognitive deficits and depressive-like behavior. Depressive-like behavior occurred earlier than cognitive deficits in TgF344-AD rats, consistent with AD in many patients. Treatment with (-)-P7C3-S243 blocked neurodegeneration in TgF344-AD rats, without altering amyloid deposition or indicators of neuroinflammation. Neuronal cell death-specific treatment approaches, such as P7C3 compounds, may represent a new treatment approach for patients experiencing the combination of cognitive deficits and depression associated with AD. Published by Elsevier Inc.
Inagawa, Toshimitsu; Hamagishi, Toshio; Takaso, Yuji; Hitomi, Yoshiaki; Kambayashi, Yasuhiro; Hibino, Yuri; Shibata, Aki; Ngoc, Nguyen T M; Okochi, Jiro; Hatta, Kotaro; Takamuku, Kiyoshi; Konoshita, Tadashi; Nakamura, Hiroyuki
2013-01-01
Alzheimer's disease (AD) impairs cognitive functions, subsequently decreasing activity of daily living (ADL), and is frequently accompanied by lower limb fracture including hip fracture in the elderly. However, there have been few studies on what kinds of physical functions are affected or what degrees of dysfunction are produced by this combination. This study aims to clarify the relationship between decreased ADL and the combination of AD and lower limb fracture. We examined present illness and ADL in 4340 elderly aged 82.8 ± 9.36 years [average ± standard deviation (SD)] requiring nursing care and compared ADL between elderly with and without AD or lower limb fracture treated with surgery or conservatively using analysis of covariance (ANCOVA), with age and sex as covariants. We recognized that activities of cognitive function (p < 0.001), eating (dysphagia) (p < 0.001), eating (feeding) (p < 0.001), and toilet use (p < 0.001) in the elderly with AD were significantly lower than in those without the disease, even after adjusting for sex and age. Activities of bed mobility (p < 0.05), transfer and locomotion (p < 0.001), and bathing (p < 0.05) in the elderly with a fracture treated with surgery were significantly lower, which differed from the results of AD. Significant interactions of AD and fracture treated with surgery on the ADL scores for bed mobility (p < 0.001), dysphagia (p < 0.01), feeding (p < 0.001), and toilet use (p < 0.05) show that the combination had a much more profound influence on the ADL scores than AD or fracture alone. We obtained almost the same results for fractures treated conservatively as for fractures treated with surgery. These results demonstrated that the combined effects of AD and lower limb fracture were significantly greater than expected additive effects of AD and fracture, suggesting that the combination of AD and lower limb fracture has synergistic effects on almost all types of ADL except cognitive functions.
NASA Astrophysics Data System (ADS)
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
A Comparison of Problem Behavior Profiles in Turkish Children with AD/HD and Non-AD/HD Children
ERIC Educational Resources Information Center
Ozdemir, Selda
2010-01-01
Introduction: There is an increasing number of studies describing the symptoms of ADHD among school-age children in western cultures. Yet, studies on children with ADHD living in non-western cultures are limited. Thus, the purpose of this study was to compare problem behavior profiles of Turkish children with AD/HD and non-AD/HD children. Method:…
Strom, M.A.; Fishbein, A.B.; Paller, A.S.; Silverberg, J.I.
2016-01-01
Summary Background Atopic dermatitis (AD) is associated with chronic itch, allergic disease and sleep disturbance, all of which might increase the risk of attention deficit (hyperactivity) disorder (ADD/ADHD). Previous analyses have found a consistent association between AD and ADD/ADHD, although the underlying factors contributing to such an association remain underexplored. Additionally, the relationship has been underexplored in adults. Objectives To determine if childhood and adult AD and AD severity are associated with ADD/ADHD and to delineate the factors contributing to such an association. Methods We analysed data on 354 416 children aged 2–17 years and 34 613 adults age 18+ years from 19 U.S. population-based surveys, including the National Health Interview Survey 1997–2013 and the National Survey of Children’s Health 2003/4 and 2007/8. Results In multivariate models adjusting for age, sex, sociodemographics, allergic disease and healthcare utilization, AD was associated with ADD/ADHD in both children [adjusted odds ratio (95% confidence interval), 1·14 (1·03–1·26)] and adults [1·61 (1·25–2·06)]. Children with both severe AD and only 0–3 nights of adequate sleep per week had much higher odds of ADD/ADHD [16·83 (7·02–40·33)] than those with 0–3 nights of adequate sleep per week [1·83 (1·47–2·26)] or mild–moderate AD alone [1·56 (1·22–1·99)]. AD was most strongly associated with severe ADHD. AD unaccompanied by other allergic disease was also associated with increased risk of ADD/ADHD in children. Among children with AD, history of anaemia, headaches and obesity were associated with even higher odds of ADD/ADHD. Asthma, insomnia and headaches increased the odds of ADHD in adults with AD, although underweight body mass index was protective. Conclusions Atopic dermatitis is associated with increased odds of ADD/ADHD in adults and children. Several factors increase the risk of ADHD in adults and children with AD. PMID:27105659
Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology
NASA Astrophysics Data System (ADS)
Solomina, Olga; Jomelli, Vincent; Kaser, Georg; Ames, Alcides; Berger, Bernhard; Pouyaud, Bernard
2007-10-01
This paper is a comparison and compilation of lichenometric and geomorphic studies performed by two independent teams in the Cordillera Blanca, Peru, in 1996 and 2002 on 66 "Little Ice Age" moraines of 14 glaciers. Using eleven new control points, we recalibrated the initial rapid growth phase of the previously established Rhizocarpon subgenus Rhizocarpon growth curve. This curve was then used to estimate the age of "Little Ice Age" moraines. The time of deposition of the most prominent and numerous terminal and lateral moraines on the Pacific-facing side of the Cordillera Blanca (between AD 1590 and AD 1720) corresponds to the coldest and wettest phase in the tropical Andes as revealed by ice-core data. Less prominent advances occurred between AD 1780 and 1880.
Prevalence and clinical features of adult atopic dermatitis in tertiary hospitals of China.
Wang, Xin; Shi, Xiao-Dong; Li, Lin-Feng; Zhou, Ping; Shen, Yi-Wei; Song, Qing-Kun
2017-03-01
The prevalence of atopic dermatitis (AD) has increased substantially. Previous studies have focused mostly on pediatric patients, while epidemiological investigation on adult AD has been very limited.The aim of this study was to determine the prevalence and clinical features of adult AD in outpatients with dermatitis and eczema in China mainland.A multicenter cross-sectional study was conducted among outpatients with eczema or dermatitis from 39 tertiary hospitals of 15 provinces in China from July 1 to September 30, 2014.Of 8758 patients, 407 were adult AD. Compared with adults with other types of dermatitis, the mean age (41.8 ± 14.3 vs 42.04 ± 15.38 years, P < 0.05) and onset age (35.2 ± 11.2 vs 39.2 ± 14.0 years, P < 0.001) of adult AD were younger, and mean disease duration was longer (5.3 ± 7.1 vs 2.8 ± 4.9 years, P < 0.001). About 53.3% adult AD involved 3 or more body locations, higher than adults with other types of dermatitis (34.4%, P < 0.001), but lower than those with pediatric and adolescent AD (73.8%, P < 0.001). History of asthma (19.2% vs 6.9%, P < 0.001) or allergic conjunctivitis (21.9% vs 14.9%, P < 0.05) was more common in adult AD than pediatric/adolescent AD. Suspected bacterial infection was more frequently in adult AD than adults with other types of dermatitis (24.3% vs 14.6%, P < 0.001) and pediatric/adolescent AD (24.3% vs 14.9%, P < 0.001). More severe itching was observed in 31.4% of adult AD, higher than that of adults with other types of dermatitis (15.4%, P < 0.001), whereas similar to that of pediatric/adolescent AD (28.7%, P > 0.05). The highest (8.7%) and lowest prevalence (3.7%) of adult AD were in 25°N to 30°N and 35°N to 40°N latitude region.A substantial part of adult outpatients with eczema or dermatitis is adult AD. Middle age, more body location involvement, more suspected bacterial infection, and severe itching are the main clinical feathers of adult AD. Geographical environment and economic situation work in synergy to adult AD.
Smith, Lindsey A; McMahon, Lori L
2018-02-01
Alzheimer's disease (AD) pathology begins decades prior to onset of clinical symptoms, and the entorhinal cortex and hippocampus are among the first and most extensively impacted brain regions. The TgF344-AD rat model, which more fully recapitulates human AD pathology in an age-dependent manner, is a next generation preclinical rodent model for understanding pathophysiological processes underlying the earliest stages of AD (Cohen et al., 2013). Whether synaptic alterations occur in hippocampus prior to reported learning and memory deficit is not known. Furthermore, it is not known if specific hippocampal synapses are differentially affected by progressing AD pathology, or if synaptic deficits begin to appear at the same age in males and females in this preclinical model. Here, we investigated the time-course of synaptic changes in basal transmission, paired-pulse ratio, as an indirect measure of presynaptic release probability, long-term potentiation (LTP), and dendritic spine density at two hippocampal synapses in male and ovariectomized female TgF344-AD rats and wildtype littermates, prior to reported behavioral deficits. Decreased basal synaptic transmission begins at medial perforant path-dentate granule cell (MPP-DGC) synapses prior to Schaffer-collateral-CA1 (CA3-CA1) synapses, in the absence of a change in paired-pulse ratio (PPR) or dendritic spine density. N-methyl-d-aspartate receptor (NMDAR)-dependent LTP magnitude is unaffected at CA3-CA1 synapses at 6, 9, and 12months of age, but is significantly increased at MPP-DGC synapses in TgF344-AD rats at 6months only. Sex differences were only observed at CA3-CA1 synapses where the decrease in basal transmission occurs at a younger age in males versus females. These are the first studies to define presymptomatic alterations in hippocampal synaptic transmission in the TgF344-AD rat model. The time course of altered synaptic transmission mimics the spread of pathology through hippocampus in human AD and provides support for this model as a valuable preclinical tool in elucidating pathological mechanisms of early synapse dysfunction in AD. Copyright © 2017. Published by Elsevier Inc.
Nishida, K; Yoshimura, M; Isotani, T; Yoshida, T; Kitaura, Y; Saito, A; Mii, H; Kato, M; Takekita, Y; Suwa, A; Morita, S; Kinoshita, T
2011-09-01
To determine the electrophysiological characteristics of frontotemporal dementia (FTD) and the distinction with Alzheimer's disease (AD). We performed analyses of global field power (GFP) which is a measure of whole brain electric field strength, and EEG neuroimaging analyses with sLORETA (standardized low resolution electromagnetic tomography), in the mild stages of FTD (n = 19; mean age = 68.11 ± 7.77) and AD (n = 19; mean age = 69.42 ± 9.57) patients, and normal control (NC) subjects (n = 22; mean age = 66.13 ± 6.02). In the GFP analysis, significant group effects were observed in the delta (1.5-6.0 Hz), alpha1 (8.5-10.0 Hz), and beta1 (12.5-18.0 Hz) bands. In sLORETA analysis, differences in activity were observed in the alpha1 band (NC > FTD) in the orbital frontal and temporal lobe, in the delta band (AD>NC) in widespread areas including the frontal lobe, and in the beta1 band (FTD > AD) in the parietal lobe and sensorimotor area. Differential patterns of brain regions and EEG frequency bands were observed between the FTD and AD groups in terms of pathological activity. FTD and AD patients in the early stages displayed different patterns in the cortical localization of oscillatory activity across different frequency bands. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.
Kim, Jinho; Jeong, Yong
2013-01-01
Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.
BRAIN FUEL METABOLISM, AGING AND ALZHEIMER’S DISEASE
Cunnane, SC; Nugent, S; Roy, M; Courchesne-Loyer, A; Croteau, E; Tremblay, S; Castellano, A; Pifferi, F; Bocti, C; Paquet, N; Begdouri, H; Bentourkia, M; Turcotte, E; Allard, M; Barberger-Gateau, P; Fulop, T; Rapoport, S
2012-01-01
Lower brain glucose metabolism is present before the onset of clinically-measurable cognitive decline in two groups of people at risk of Alzheimer’s disease (AD) - carriers of apoE4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and contribute to the neuropathological cascade leading cognitive decline in AD. The reason for brain hypometabolism is unclear but may include defects in glucose transport at the blood-brain barrier, glycolysis, and/or mitochondrial function. Methodological issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization which, in turn, may increase the risk of declining brain glucose uptake, at least in some regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e. that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and, hence, reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to – (i) improve insulin sensitivity by improving systemic glucose utilization, or (ii) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia. PMID:21035308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houlden, H.; Rossor, M.
1994-09-01
Recent work has demonstrated that the apolipoprotein E (ApoE) genotype is of great importance in the etiology of Alzheimer`s disease (AD). Thus, inheritance of the ApoE4 allele predisposes to the occurrences of late onset disease and decreases the onset age in families with pathogenic mutations in the amyloid precursor protein gene. We analysed ApoE genotypes in 35 families multiply affected by AD and confirm that familial clustering in late onset AD is associated with the ApoE4 allele. This allele occurs in the great majority (82%) of late onset familial Alzheimer cases. Elderly unaffected sibs (80-90 years) have an allele frequencymore » that is not significantly different to that of normal controls. Data presented from our family sets together previously published data is suggestive that the effect of a single ApoE4 allele is to increase the risk of developing AD by an amount equivalent to 5 years and that the effect of ApoE4 homozygosity is to increase the risk of developing AD by an amount equivalent to 10 years of age. Data shows significant difference between the frequency of the ApoE4 allele in the familial AD probands and controls and in both sets of unaffected sibs, p<0.01.« less
NELSON, C.; WENGREEN, H.J.; MUNGER, R.G.; CORCORAN, C.D.
2013-01-01
Objective To examine associations between dietary and supplemental folate, vitamin B-12 and vitamin B-6 and incident Alzheimer’s disease (AD) among elderly men and women. Design, Setting and Participants Data collected were from participants of the Cache County Memory, Health and Aging Study, a longitudinal study of 5092 men and women 65 years and older who were residents of Cache County, Utah in 1995. Measurements Multistage clinical assessment procedures were used to identify incident cases of AD. Dietary data were collected using a 142-item food frequency questionnaire. Cox Proportional Hazards (CPH) modeling was used to determine hazard ratios across quintiles of micronutrient intake. Results 202 participants were diagnosed with incident AD during follow-up (1995–2004). In multivariable CPH models that controlled for the effects of gender, age, education, and other covariates there were no observed differences in risk of AD or dementia by increasing quintiles of total intake of folate, vitamin B-12, or vitamin B-6. Similarly, there were no observed differences in risk of AD by regular use of either folate or B6 supplements. Conclusion Dietary intake of B-vitamins from food and supplemental sources appears unrelated to incidence of dementia and AD. Further studies examining associations between dietary intakes of B-vitamins, biomarkers of B-vitamin status and cognitive endpoints are warranted. PMID:19924351
Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: A Meta-analysis.
Neu, Scott C; Pa, Judy; Kukull, Walter; Beekly, Duane; Kuzma, Amanda; Gangadharan, Prabhakaran; Wang, Li-San; Romero, Klaus; Arneric, Stephen P; Redolfi, Alberto; Orlandi, Daniele; Frisoni, Giovanni B; Au, Rhoda; Devine, Sherral; Auerbach, Sanford; Espinosa, Ana; Boada, Mercè; Ruiz, Agustín; Johnson, Sterling C; Koscik, Rebecca; Wang, Jiun-Jie; Hsu, Wen-Chuin; Chen, Yao-Liang; Toga, Arthur W
2017-10-01
It is unclear whether female carriers of the apolipoprotein E (APOE) ε4 allele are at greater risk of developing Alzheimer disease (AD) than men, and the sex-dependent association of mild cognitive impairment (MCI) and APOE has not been established. To determine how sex and APOE genotype affect the risks for developing MCI and AD. Twenty-seven independent research studies in the Global Alzheimer's Association Interactive Network with data on nearly 58 000 participants. Non-Hispanic white individuals with clinical diagnostic and APOE genotype data. Homogeneous data sets were pooled in case-control analyses, and logistic regression models were used to compute risks. Age-adjusted odds ratios (ORs) and 95% confidence intervals for developing MCI and AD were calculated for men and women across APOE genotypes. Participants were men and women between ages 55 and 85 years. Across data sets most participants were white, and for many participants, racial/ethnic information was either not collected or not known. Men (OR, 3.09; 95% CI, 2.79-3.42) and women (OR, 3.31; CI, 3.03-3.61) with the APOE ε3/ε4 genotype from ages 55 to 85 years did not show a difference in AD risk; however, women had an increased risk compared with men between the ages of 65 and 75 years (women, OR, 4.37; 95% CI, 3.82-5.00; men, OR, 3.14; 95% CI, 2.68-3.67; P = .002). Men with APOE ε3/ε4 had an increased risk of AD compared with men with APOE ε3/ε3. The APOE ε2/ε3 genotype conferred a protective effect on women (OR, 0.51; 95% CI, 0.43-0.61) decreasing their risk of AD more (P value = .01) than men (OR, 0.71; 95% CI, 0.60-0.85). There was no difference between men with APOE ε3/ε4 (OR, 1.55; 95% CI, 1.36-1.76) and women (OR, 1.60; 95% CI, 1.43-1.81) in their risk of developing MCI between the ages of 55 and 85 years, but women had an increased risk between 55 and 70 years (women, OR, 1.43; 95% CI, 1.19-1.73; men, OR, 1.07; 95% CI, 0.87-1.30; P = .05). There were no significant differences between men and women in their risks for converting from MCI to AD between the ages of 55 and 85 years. Individuals with APOE ε4/ε4 showed increased risks vs individuals with ε3/ε4, but no significant differences between men and women with ε4/ε4 were seen. Contrary to long-standing views, men and women with the APOE ε3/ε4 genotype have nearly the same odds of developing AD from age 55 to 85 years, but women have an increased risk at younger ages.
Characterization of Mexican Americans with mild cognitive impairment and Alzheimer's disease.
O'Bryant, Sid E; Johnson, Leigh; Balldin, Valerie; Edwards, Melissa; Barber, Robert; Williams, Benjamin; Devous, Michael; Cushings, Blair; Knebl, Janice; Hall, James
2013-01-01
The purpose of the study was to provide characterization of Mexican Americans who meet criteria for Alzheimer's disease (AD) and mild cognitive impairment (MCI). For the study, 1,069 participants ages 40 and above who self-identified as either non-Hispanic white (n = 633) or Mexican American (n = 436) were recruited using a community-based participatory research approach. Global cognition was assessed via the Mini-Mental State Examination (MMSE), dementia severity by the Clinical Dementia Rating Scale, and depression via the Geriatric Depression Scale 30-item version. Age, gender, education, ApoE ε4 allele frequency, and diabetic diagnoses were also analyzed. The findings showed that Mexican Americans (normal controls, MCI, and AD) were younger, less highly educated, performed more poorly on the MMSE, endorsed more symptoms of depression, were more likely to be diagnosed with diabetes, and possessed the ApoE ε4 allele less frequently. Age was the only significant risk factor for cognitive dysfunction (AD/MCI) among Mexican Americans (OR = 1.06, 95% CI = 1.03-1.09). Age (B = 0.07, std = 0.02, p < 0.001) and ApoE ε4 presence (B = 0.9, std = 0.4, p = 0.02) were significantly related to increased disease severity. Given the rapidly growing and aging Mexican American population, there is a substantial need for research into cognitive aging, MCI, and AD among this ethnic group. The current findings hold important implications for both clinic and research settings and point to additional research needs.
Markers of Alzheimer's Disease in Primary Visual Cortex in Normal Aging in Mice
Perez-Hernández, Montserrat; Torres-Romero, Abigail; Gorostieta-Salas, Elisa; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo
2017-01-01
Aging is the principal risk factor for the development of Alzheimer's disease (AD). The hallmarks of AD are accumulation of the amyloid-β peptide 1–42 (Aβ42) and abnormal hyperphosphorylation of Tau (p-Tau) protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, Aβ42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of Aβ42, p-Tau, glial-acidic fibrillary protein (GFAP), and presenilin-2, one of the main enzymes involved in Aβ42 production. Our results show a significant increase of Aβ42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of Aβ42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging. PMID:29138750
Imamura, Kazuhiro; Matumoto, Shinjirou; Mabuchi, Naoki; Kobayashi, Yasushi; Okayasu, Naoki; Watanabe, Kenichi
2009-06-01
We compared the relationship between regional cerebral blood flow (rCBF) of the olfactory area and the cognitive function and anosmia in patient with Parkinson disease (PD) and in those with Alzheimer disease (AD). UPDRS III, MMSE, HDS-R, CDR, Beck Depression Inventory (BDI) were employed in this study. The subjects included 56 PD patients (average age 71.4+/-9.69 years), 23 AD patients (average age 73.3+/-7.12 years), 12 patients with mild cognitive impairment (MCI) (average age 72.5+/-6.89 years), and 9 age-matched controls (NC) (average age 73.8+/-6.61 years). Next we intravenously injected 1 ampule of thiamine propyldisulphide (Alinamin) and confirmed anosmia. In addition, we performed 123I-IMP SPECT (SEE methods) and satistically determined rCBF of the olfactory area based on the basis of the Z scores of the interest area. Anosima was detected in approximately 40% of the PD and AD patients. The HDS-R and MMSE scores were significantly higher in patients with anosima than in those without anosima; the CDR scores were significantly higher in the former than in the latter. Further, the incidence of anosima in PD patients and AD patients with MCI increased with an increase in the CDR scores. In order to determine the rCBF of the olfactory area of the PD and AD patients. As to rCBF of the olfactory area, we examined left and right Z scores of hippocampus, parahippocampus, amygdala, and uncus at Talairach level 3 and the scores of the Brodmann area 28, 34, 35, and 36 at Talairach level 5. In patients with anosmia, the Z scores were significantly high in cases with anosmia in all areas except the right Brodmann area 34 in PD patients and the right Brodmann area 28 and bilateral the Brodmann area 34 of both sides in AD patients. Some parts of the olfactory area are closely related to cognitive function, and it appeares that a reduced rCBF in the olfactory areas may lead to a functional decline in these regions which may cause anosmia and cognitive decline in PD and AD patients.
Hohman, Timothy J; Bell, Susan P; Jefferson, Angela L
2015-05-01
A subset of older adults present post mortem with Alzheimer disease (AD) pathologic features but without any significant clinical manifestation of dementia. Vascular endothelial growth factor (VEGF) has been implicated in staving off AD-related neurodegeneration. To evaluate whether VEGF levels are associated with brain aging outcomes (hippocampal volume and cognition) and to further evaluate whether VEGF modifies relations between AD biomarkers and brain aging outcomes. Biomarker analysis using neuroimaging and neuropsychological outcomes from the Alzheimer's Disease Neuroimaging Initiative. This prospective longitudinal study across North America included individuals with normal cognition (n = 90), mild cognitive impairment (n = 130), and AD (n = 59) and began in October 2004, with follow-up ongoing. Cerebrospinal fluid VEGF was cross-sectionally related to brain aging outcomes (hippocampal volume, episodic memory, and executive function) using a general linear model and longitudinally using mixed-effects regression. Alzheimer disease biomarker (cerebrospinal fluid β-amyloid 42 and total tau)-by-VEGF interactions evaluated the effect of VEGF on brain aging outcomes in the presence of enhanced AD biomarkers. Vascular endothelial growth factor was associated with baseline hippocampal volume (t277 = 2.62; P = .009), longitudinal hippocampal atrophy (t858 = 2.48; P = .01), and longitudinal decline in memory (t1629 = 4.09; P < .001) and executive function (t1616 = 3.00; P = .003). Vascular endothelial growth factor interacted with tau in predicting longitudinal hippocampal atrophy (t845 = 4.17; P < .001), memory decline (t1610 = 2.49; P = .01), and executive function decline (t1597 = 3.71; P < .001). Vascular endothelial growth factor interacted with β-amyloid 42 in predicting longitudinal memory decline (t1618 = -2.53; P = .01). Elevated cerebrospinal fluid VEGF was associated with more optimal brain aging in vivo. The neuroprotective effect appeared strongest in the presence of enhanced AD biomarkers, suggesting that VEGF may be particularly beneficial in individuals showing early hallmarks of the AD cascade. Future work should evaluate the interaction between VEGF expression in vitro and pathologic burden to address potential mechanisms.
Choi, Ji-Kyung; Carreras, Isabel; Aytan, Nur; Jenkins-Sahlin, Eric; Dedeoglu, Alpaslan; Jenkins, Bruce G
2014-11-24
We investigated a triple transgene Alzheimer's disease (AD) mouse model that recapitulates many of the neurochemical, anatomic, pathologic and behavioral defects seen in human AD. We studied the mice as a function of age and brain region and investigated potential therapy with the non-steroidal anti-inflammatory drug ibuprofen. Magnetic resonance spectroscopy (MRS) showed alterations characteristic of AD (i.e. increased myo-inositol and decreased N-acetylaspartate (NAA)). Mice at 6 months of age showed an increase in myo-inositol in the hippocampus at a time when the Aβ is intracellular, but not in amygdala or cortex. Myo-inositol increased as a function of age in the amygdala, cortex and striatum while NAA decreased only in the hippocampus and cortex at 17-23 months of age. Ibuprofen protected the increase of myo-inositol at six months of age in the hippocampus, but had no effect at 17-23 months of age (a time when Aβ is extracellular). In vivo MRI and MRS showed that at 17-23 months of age there was a significant protective effect of ibuprofen on hippocampal volume and NAA loss. Together, these data show the following: the increase in myo-inositol occurs before the decrease in NAA in hippocampus but not cortex; the hippocampus shows earlier changes than does the amygdale or cortex consistent with earlier deposition of Aβ40-42 in the hippocampus and ibuprofen protects against multiple components of the AD pathology. These data also show a profound effect of housing on this particular mouse model. Published by Elsevier B.V.
2009 Alzheimer's disease facts and figures.
2009-05-01
Alzheimer's disease (AD) is the sixth leading cause of all deaths in the United States, and the fifth leading cause of death in Americans aged 65 and older. Whereas other major causes of death have been on the decrease, deaths attributable to AD have been rising dramatically. Between 2000 and 2006, heart-disease deaths decreased nearly 12%, stroke deaths decreased 18%, and prostate cancer-related deaths decreased 14%, whereas deaths attributable to AD increased 47%. An estimated 5.3 million Americans have AD; the approximately 200,000 persons under age 65 years with AD comprise the younger-onset AD population. Every 70 seconds, someone in America develops AD; by 2050, this time is expected to decrease to every 33 seconds. Over the coming decades, the "baby-boom" population is projected to add 10 million people to these numbers. In 2050, the incidence of AD is expected to approach nearly a million people per year, with a total estimated prevalence of 11 to 16 million people. Significant cost implications related to AD and other dementias include an estimated $148 billion annually in direct (Medicare/Medicaid) and indirect (e.g., decreased business productivity) costs. Not included in these figures is the $94 billion in unpaid services to individuals with AD provided annually by an estimated 10 million caregivers. Mild cognitive impairment (MCI) is an important component in the continuum from healthy cognition to dementia. Understanding which individuals with MCI are at highest risk for eventually developing AD is key to our ultimate goal of preventing AD. This report provides information meant to increase an understanding of the public-health impact of AD, including incidence and prevalence, mortality, lifetime risks, costs, and impact on family caregivers. This report also sets the stage for a better understanding of the relationship between MCI and AD.
Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease.
Cho, Jinkyung; Shin, Min-Kyoo; Kim, Donghyun; Lee, Inhwan; Kim, Shinuk; Kang, Hyunsik
2015-09-01
This study investigated the effect of treadmill running on cognitive declines in the early and advanced stages of Alzheimer disease (AD) in 3xTg-AD mice. At 4 months of age, 3xTg-AD mice (N = 24) were assigned to control (AD + CON, n = 12) or exercise (AD + EX, n = 12) group. At 24 months of age, 3xTg-AD mice (N = 16) were assigned to AD + CON (n = 8) or AD + EX (n = 8) group. The AD + EX mice were subjected to treadmill running for 12 wk. At each pathological stage, the background strain mice were included as wild-type control (WT + CON, n = 8-12). At the early stage of AD, 3xTg-AD mice had impaired short- and long-term memory based on Morris water maze along with higher cortical Aβ deposition, higher hippocampal and cortical tau pathology, and lower hippocampal and cortical PSD-95 and synaptophysin. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the tau pathology along with suppression of the decreased PSD-95 and synaptophysin in the hippocampus and cortex. At the advanced stage of AD, 3xTg-AD mice had impaired short- and long-term memory along with higher levels of Aβ deposition, soluble Aβ1-40 and Aβ1-42, tau pathology, and lower levels of brain-derived neurotrophic factor, PSD-95, and synaptophysin in the hippocampus and cortex. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the Aβ and tau pathology along with suppression of the decreased synaptic proteins and brain-derived neurotrophic factor in the hippocampus and cortex. The current findings suggest that treadmill running provides a nonpharmacological means to combat cognitive declines due to AD pathology.
Gibson, J; Russ, T C; Adams, M J; Clarke, T-K; Howard, D M; Hall, L S; Fernandez-Pujals, A M; Wigmore, E M; Hayward, C; Davies, G; Murray, A D; Smith, B H; Porteous, D J; Deary, I J; McIntosh, A M
2017-01-01
Major depressive disorder (MDD) and Alzheimer's disease (AD) are both common in older age and frequently co-occur. Numerous phenotypic studies based on clinical diagnoses suggest that a history of depression increases risk of subsequent AD, although the basis of this relationship is uncertain. Both illnesses are polygenic, and shared genetic risk factors could explain some of the observed association. We used genotype data to test whether MDD and AD have an overlapping polygenic architecture in two large population-based cohorts, Generation Scotland's Scottish Family Health Study (GS:SFHS; N=19 889) and UK Biobank (N=25 118), and whether age of depression onset influences any relationship. Using two complementary techniques, we found no evidence that the disorders are influenced by common genetic variants. Using linkage disequilibrium score regression with genome-wide association study (GWAS) summary statistics from the International Genomics of Alzheimer's Project, we report no significant genetic correlation between AD and MDD (rG=−0.103, P=0.59). Polygenic risk scores (PRS) generated using summary data from International Genomics of Alzheimer's Project (IGAP) and the Psychiatric Genomics Consortium were used to assess potential pleiotropy between the disorders. PRS for MDD were nominally associated with participant-recalled AD family history in GS:SFHS, although this association did not survive multiple comparison testing. AD PRS were not associated with depression status or late-onset depression, and a survival analysis showed no association between age of depression onset and genetic risk for AD. This study found no evidence to support a common polygenic structure for AD and MDD, suggesting that the comorbidity of these disorders is not explained by common genetic variants. PMID:28418403
Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer's Disease.
Chouraki, Vincent; Reitz, Christiane; Maury, Fleur; Bis, Joshua C; Bellenguez, Celine; Yu, Lei; Jakobsdottir, Johanna; Mukherjee, Shubhabrata; Adams, Hieab H; Choi, Seung Hoan; Larson, Eric B; Fitzpatrick, Annette; Uitterlinden, Andre G; de Jager, Philip L; Hofman, Albert; Gudnason, Vilmundur; Vardarajan, Badri; Ibrahim-Verbaas, Carla; van der Lee, Sven J; Lopez, Oscar; Dartigues, Jean-François; Berr, Claudine; Amouyel, Philippe; Bennett, David A; van Duijn, Cornelia; DeStefano, Anita L; Launer, Lenore J; Ikram, M Arfan; Crane, Paul K; Lambert, Jean-Charles; Mayeux, Richard; Seshadri, Sudha
2016-06-18
Effective prevention of Alzheimer's disease (AD) requires the development of risk prediction tools permitting preclinical intervention. We constructed a genetic risk score (GRS) comprising common genetic variants associated with AD, evaluated its association with incident AD and assessed its capacity to improve risk prediction over traditional models based on age, sex, education, and APOEɛ4. In eight prospective cohorts included in the International Genomics of Alzheimer's Project (IGAP), we derived weighted sum of risk alleles from the 19 top SNPs reported by the IGAP GWAS in participants aged 65 and older without prevalent dementia. Hazard ratios (HR) of incident AD were estimated in Cox models. Improvement in risk prediction was measured by the difference in C-index (Δ-C), the integrated discrimination improvement (IDI) and continuous net reclassification improvement (NRI>0). Overall, 19,687 participants at risk were included, of whom 2,782 developed AD. The GRS was associated with a 17% increase in AD risk (pooled HR = 1.17; 95% CI = [1.13-1.21] per standard deviation increase in GRS; p-value = 2.86×10-16). This association was stronger among persons with at least one APOEɛ4 allele (HRGRS = 1.24; 95% CI = [1.15-1.34]) than in others (HRGRS = 1.13; 95% CI = [1.08-1.18]; pinteraction = 3.45×10-2). Risk prediction after seven years of follow-up showed a small improvement when adding the GRS to age, sex, APOEɛ4, and education (Δ-Cindex = 0.0043 [0.0019-0.0067]). Similar patterns were observed for IDI and NRI>0. In conclusion, a risk score incorporating common genetic variation outside the APOEɛ4 locus improved AD risk prediction and may facilitate risk stratification for prevention trials.
Elucidating Pathogenic Mechanisms of Early-onset Alzheimer's Disease in Down Syndrome Patients.
Asai, Masashi; Kawakubo, Takashi; Mori, Ryotaro; Iwata, Nobuhisa
2017-01-01
Down syndrome (DS) patients demonstrate the neuropathology of Alzheimer's disease (AD) characterized by the formation of senile plaques and neurofibrillary tangles by age 40-50 years. It has been considered for a number of years that 1.5-fold expression of the gene for the amyloid precursor protein (APP) located on chromosome 21 leading to overproduction of amyloid-β peptide (Aβ) results in the early onset of AD in adults with DS. However, the mean age of onset of familial AD with the Swedish mutation on APP which has high affinity for β-secretase associated with a dramatic increase in Aβ production is about 55 years. This paradox indicates that there is a poor correlation between average ages of AD onset and the theoretical amount of Aβ production and that there are factors exacerbating AD on chromosome 21. We therefore focused on dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), since overexpressing transgenic mice show AD-like brain pathology. The overexpression of DYRK1A caused suppression of the activity of neprilysin (NEP), which is a major Aβ-degrading enzyme in the brain, and phosphorylation at the NEP cytoplasmic domain. NEP activity was markedly reduced in fibroblasts derived from DS patients compared with that in fibroblasts derived from healthy controls. This impaired activity of NEP was rescued by DYRK1A inhibition. These results show that DYRK1A overexpression causes suppression of NEP activity through its phosphorylation in DS patients. Our results suggest that DYRK1A inhibitors could be effective against AD not only in adults with DS but also in sporadic AD patients.
Burfeind, Kevin G; Murchison, Charles F; Westaway, Shawn K; Simon, Matthew J; Erten-Lyons, Deniz; Kaye, Jeffrey A; Quinn, Joseph F; Iliff, Jeffrey J
2017-09-01
The glymphatic system is a brain-wide perivascular network that facilitates clearance of proteins, including amyloid β, from the brain interstitium through the perivascular exchange of cerebrospinal fluid and interstitial fluid. The astrocytic water channel aquaporin-4 (AQP4) is required for glymphatic system function, and impairment of glymphatic function in the aging brain is associated with altered AQP4 expression and localization. In human cortical tissue, alterations in AQP4 expression and localization are associated with Alzheimer's disease (AD) status and pathology. Although this suggests a potential role for AQP4 in the development or progression of AD, the relationship between of naturally occurring variants in the human AQP4 gene and cognitive function has not yet been evaluated. Using data from several longitudinal aging cohorts, we investigated the association between five AQP4 single-nucleotide polymorphisms (SNPs) and the rate of cognitive decline in participants with a diagnosis of AD. None of the five SNPs were associated with different rates of AD diagnosis, age of dementia onset in trial subjects. No association between AQP4 SNPs with histological measures of AD pathology, including Braak stage or neuritic plaque density was observed. However, AQP4 SNPs were associated with altered rates of cognitive decline after AD diagnosis, with two SNPS (rs9951307 and rs3875089) associated with slower cognitive decline and two (rs3763040 and rs3763043) associated with more rapid cognitive decline after AD diagnosis. These results provide the first evidence that variations in the AQP4 gene, whose gene product AQP4 is vital for glymphatic pathway function, may modulate the progression of cognitive decline in AD.
Predictors of driving safety in early Alzheimer disease.
Dawson, J D; Anderson, S W; Uc, E Y; Dastrup, E; Rizzo, M
2009-02-10
To measure the association of cognition, visual perception, and motor function with driving safety in Alzheimer disease (AD). Forty drivers with probable early AD (mean Mini-Mental State Examination score 26.5) and 115 elderly drivers without neurologic disease underwent a battery of cognitive, visual, and motor tests, and drove a standardized 35-mile route in urban and rural settings in an instrumented vehicle. A composite cognitive score (COGSTAT) was calculated for each subject based on eight neuropsychological tests. Driving safety errors were noted and classified by a driving expert based on video review. Drivers with AD committed an average of 42.0 safety errors/drive (SD = 12.8), compared to an average of 33.2 (SD = 12.2) for drivers without AD (p < 0.0001); the most common errors were lane violations. Increased age was predictive of errors, with a mean of 2.3 more errors per drive observed for each 5-year age increment. After adjustment for age and gender, COGSTAT was a significant predictor of safety errors in subjects with AD, with a 4.1 increase in safety errors observed for a 1 SD decrease in cognitive function. Significant increases in safety errors were also found in subjects with AD with poorer scores on Benton Visual Retention Test, Complex Figure Test-Copy, Trail Making Subtest-A, and the Functional Reach Test. Drivers with Alzheimer disease (AD) exhibit a range of performance on tests of cognition, vision, and motor skills. Since these tests provide additional predictive value of driving performance beyond diagnosis alone, clinicians may use these tests to help predict whether a patient with AD can safely operate a motor vehicle.
Gibson, J; Russ, T C; Adams, M J; Clarke, T-K; Howard, D M; Hall, L S; Fernandez-Pujals, A M; Wigmore, E M; Hayward, C; Davies, G; Murray, A D; Smith, B H; Porteous, D J; Deary, I J; McIntosh, A M
2017-04-18
Major depressive disorder (MDD) and Alzheimer's disease (AD) are both common in older age and frequently co-occur. Numerous phenotypic studies based on clinical diagnoses suggest that a history of depression increases risk of subsequent AD, although the basis of this relationship is uncertain. Both illnesses are polygenic, and shared genetic risk factors could explain some of the observed association. We used genotype data to test whether MDD and AD have an overlapping polygenic architecture in two large population-based cohorts, Generation Scotland's Scottish Family Health Study (GS:SFHS; N=19 889) and UK Biobank (N=25 118), and whether age of depression onset influences any relationship. Using two complementary techniques, we found no evidence that the disorders are influenced by common genetic variants. Using linkage disequilibrium score regression with genome-wide association study (GWAS) summary statistics from the International Genomics of Alzheimer's Project, we report no significant genetic correlation between AD and MDD (r G =-0.103, P=0.59). Polygenic risk scores (PRS) generated using summary data from International Genomics of Alzheimer's Project (IGAP) and the Psychiatric Genomics Consortium were used to assess potential pleiotropy between the disorders. PRS for MDD were nominally associated with participant-recalled AD family history in GS:SFHS, although this association did not survive multiple comparison testing. AD PRS were not associated with depression status or late-onset depression, and a survival analysis showed no association between age of depression onset and genetic risk for AD. This study found no evidence to support a common polygenic structure for AD and MDD, suggesting that the comorbidity of these disorders is not explained by common genetic variants.
Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs
2009-01-01
The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent. Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and precisely mediate an adaptation to this major life-history transition. AD symptomatology shares close similarities with deprivation syndromes in other animals including the starvation response. Both molecular and anatomical features of AD imitate brain changes that have been conceptualized as adaptive responses to low food availability in mammals and birds. Alzheimer's patients are known to express low overall metabolic rates and are genetically inclined to exhibit physiologically thrifty traits widely thought to allow mammals to subsist under conditions of nutritional scarcity. Additionally, AD is examined here in the contexts of anthropology, comparative neuroscience, evolutionary medicine, expertise, gerontology, neural Darwinism, neuroecology and the thrifty genotype. PMID:19250550
Reser, Jared Edward
2009-02-28
The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent.Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and precisely mediate an adaptation to this major life-history transition.AD symptomatology shares close similarities with deprivation syndromes in other animals including the starvation response. Both molecular and anatomical features of AD imitate brain changes that have been conceptualized as adaptive responses to low food availability in mammals and birds. Alzheimer's patients are known to express low overall metabolic rates and are genetically inclined to exhibit physiologically thrifty traits widely thought to allow mammals to subsist under conditions of nutritional scarcity. Additionally, AD is examined here in the contexts of anthropology, comparative neuroscience, evolutionary medicine, expertise, gerontology, neural Darwinism, neuroecology and the thrifty genotype.
Joo, Soo Hyun; Yun, Se Hee; Kang, Dong Woo; Hahn, Chang Tae; Lim, Hyun Kook; Lee, Chang Uk
2018-01-01
Introduction: Mild cognitive impairment (MCI) is a prodromal stage of dementia. The association of body mass index (BMI) and progression to Alzheimer's disease (AD) in MCI subjects according to age, sex, and cognitive intervention remains unknown. We investigated the relationship between BMI and the risk of progression to AD in subjects with MCI, as well as the effect of BMI on progression to AD depending on age, sex, cognitive intervention, and chronic diseases. Methods: Three hundred and eighty-eight MCI subjects were followed for 36.3 ± 18.4 months, prospectively. They underwent neuropsychological testing more than twice during the follow-up period. The MCI subjects were categorized into underweight, normal weight, overweight, and obese subgroups. The associations between baseline BMI and progression to AD over the follow-up period were estimated using Cox proportional hazard regression models. Data were analyzed after stratification by age, sex, cognitive intervention, and chronic diseases. Results: After adjustment for the covariates, the underweight MCI group had a higher risk of progression to AD [hazard ratio (HR): 2.38, 95% confidence interval (CI): 1.17-4.82] relative to the normal weight group. After stratifying by age, sex, cognitive intervention, and chronic diseases, this effect remained significant among females (HR: 3.15, 95% CI: 1.40-7.10), the older elderly ≥75 years old (HR: 3.52, 95% CI: 1.42-8.72), the non-intervention group (HR: 3.06, 95%CI: 1.18-7.91), and the hypertensive group (HR: 4.71, 95% CI: 1.17-18.99). Conclusion: These data indicate that underweight could be a useful marker for identifying individuals at increased risk for AD in MCI subjects. This association is even stronger in females, older elderly subjects, the non-cognitive intervention group, and the hypertensive group.
Risk factors for atopic dermatitis in New Zealand children at 3.5 years of age.
Purvis, D J; Thompson, J M D; Clark, P M; Robinson, E; Black, P N; Wild, C J; Mitchell, E A
2005-04-01
The prevalence of atopic dermatitis (AD) is increasing in Western societies. The hygiene hypothesis proposes that this is due to reduced exposure to environmental allergens and infections during early life. To examine factors associated with a diagnosis of AD at 3.5 years of age, especially those factors implicated by the hygiene hypothesis. The Auckland Birthweight Collaborative study is a case-control study of risk factors for small for gestational age babies. Cases were born at term with birthweight < or = 10th centile; controls were appropriate for gestational age, with birthweight > 10th centile. The infants were assessed at birth, 1 year and 3.5 years of age. Data were collected by parental interview and examination of the child. AD was defined as the presence of an itchy rash in the past 12 months with three or more of the following: history of flexural involvement; history of generally dry skin; history of atopic disease in parents or siblings; and visible flexural dermatitis as per photographic protocol. Statistical analyses took into account the disproportionate sampling of the study population. Analysis was restricted to European subjects. Eight hundred and seventy-one children were enrolled at birth, 744 (85.4%) participated at 1 year, and 550 (63.2%) at 3.5 years. AD was diagnosed in 87 (15.8%) children seen at 3.5 years. The prevalence of AD did not differ by birthweight. AD at 3.5 years was associated with raised serum IgE > 200 kU L(-1), and wheezing, asthma, rash or eczema at 1 year. In multivariate analysis, adjusted for parental atopy and breastfeeding, AD at 3.5 years was associated with atopic disease in the parents: maternal atopy only, adjusted odds ratio (OR) 3.83, 95% confidence interval (CI) 1.20-12.23; paternal atopy only, adjusted OR 3.59, 95% CI 1.09-11.75; both parents atopic, adjusted OR 6.12, 95% CI 2.02-18.50. There was a higher risk of AD with longer duration of breastfeeding: < 6 months, adjusted OR 6.13, 95% CI 1.45-25.86; > or = 6 months, adjusted OR 9.70, 95% CI 2.47-38.15 compared with never breastfed. These findings remained significant after adjusting for environmental factors and a personal history of atopy. AD at 3.5 years was associated with owning a cat at 3.5 years (adjusted OR 0.45, 95% CI 0.21-0.97) but not with owning a dog at 3.5 years, pets at 1 year, nor with older siblings. Furthermore, AD at 3.5 years was not associated with gender, socioeconomic status, maternal smoking, parity, damp, mould, immunizations, body mass index or antibiotic use in first year of life. A personal and a parental history of atopic disease are risk factors for AD at 3.5 years. Duration of breastfeeding was associated with an increased risk of AD. No association was found with those factors implicated by the hygiene hypothesis. This study suggests that breastfeeding should not be recommended for the prevention of AD.
Wang, Yan-ping; Zhai, Jing-bo; Zhu, Fang; Zhang, Wen-wen; Yang, Xiao-juan; Qu, Cheng-yi
2011-02-01
To explore the incidence rate of people with mild cognitive impairment (MCI) which transferred to Alzheimer's disease (AD) and to study the related influencing factors. 600 MCI aged people were experienced screening test which was conducted by WHO-BCA, MMSE and DCR. A three-year follow-up study was conducted to get the information on the aged people with MCI. Data related to demography, behavior, chronic diseases and perception of the elderly with MCI were collected through face to face interview. Characteristics of the elderly with MCI aged people were tested by 16PF. The content of Apoe was tested by PCR. People with NC were investigated by telephone to get the progression and the time to AD. Methodologies on statistics were log-rank test and Cox proportional hazards regression model. The incidence rate of MCI to AD was 6.53% person-years. The incidence rate of the normal people to AD was 1.24% person-years. The hazard of MCI to AD was 5.27 times (95%CI: 3.01 - 9.82) of the normal people to AD. The result of Cox proportional hazards regression model displayed that:older age (RR = 3.14, 95%CI: 2.98 - 7.46), hypertension (RR = 3.28, 95%CI: 3.02 - 8.48), hyperlipemia (RR = 2.22, 95%CI: 1.29 - 3.82), diabetes (RR = 4.87, 95%CI: 2.56 - 9.25), lack of sports (RR = 2.02, 95%CI: 1.29-3.14), anxiety (RR = 4.46, 95%CI: 3.07 - 8.14), dread fullness (RR = 4.08, 95%CI: 3.52 - 5.25), loneliness (RR = 1.89, 95%CI: 1.13 - 3.16), characteristics of anxiety (RR = 5.07, 95%CI: 2.56 - 10.04, introvert characteristics (RR = 2.05, 95%CI: 1.33 - 3.15) and ApoE4 (RR = 1.73, 95%CI: 1.15 - 2.63) were the risk factors of MCI to AD. Higher education (RR = 0.29, 95%CI: 0.07 - 0.43), intellectual work (RR = 0.14, 95%CI: 0.05 - 0.32), often reading books (RR = 0.30, 95%CI: 0.15 - 0.58), often taking part in recreational activities (RR = 0.41, 95%CI: 0.23 - 0.75) seemed to be the protective of MCI to AD. The rate of the elderly with MCI that developing to AD was high, suggesting further study on the cognitive situation among the MCI aged people should be carried out.
VGF expression by T lymphocytes in patients with Alzheimer's disease
Glorius, Sarah; Dobrowolny, Henrik; Greiner-Bohl, Sabrina; Mawrin, Christian; Bommhardt, Ursula; Hartig, Roland; Bogerts, Bernhard; Busse, Mandy
2015-01-01
Secretion of VGF is increased in cerebrospinal fluid and blood in neurodegenerative disorders like Alzheimer's disease (AD) and VGF is a potential biomarker for these disorders. We have shown that VGF is expressed in peripheral T cells and is correlated with T cell survival and cytokine secretion. The frequency of VGF+CD3+ T cells increases with normal aging. We found an increased number of VGF-expressing T cells in patients with AD compared to aged healthy controls, which was associated with enhanced HbA1c levels in blood. Upon treatment with rivastigmine, T cell proliferation and VGF expression in AD patients decreased to the level found in controls. Moreover, rapamycin treatment in vitro reduced the number of VGF+CD3+ cells in AD patients to control levels. PMID:26142708
Lövheim, Hugo; Olsson, Jan; Weidung, Bodil; Johansson, Anders; Eriksson, Sture; Hallmans, Göran; Elgh, Fredrik
2018-01-01
Several environmental factors, including infectious agents, have been suggested to cause Alzheimer's disease (AD). Cytomegalovirus (CMV) has been associated with AD in several recent studies. To investigate whether carriage of CMV, alone or in combination with Herpes simplex virus (HSV), increased the risk of developing AD. Plasma samples from 360 AD cases (75.3% women, mean age 61.2 years), taken an average of 9.6 years before AD diagnosis, and 360 age-, sex-, cohort-, and sampling date matched dementia-free controls were analyzed to detect anti-CMV (immunoglobulin [Ig] G and IgM), group-specific anti-HSV (IgG and IgM), and specific anti-HSV1 and HSV2 IgG antibodies by enzyme-linked immunosorbent assays. AD cases and dementia-free controls were compared using conditional logistic regression analyses. The presence of anti-CMV IgG antibodies did not increase the risk of AD (odds ratio [OR], 0.857; p = 0.497). Among AD cases, an association between CMV and HSV1 carriage was detected (OR 7.145, p < 0.001); in a conditional logistic regression model, the interaction between CMV and HSV1 was associated with AD development (OR 5.662; p = 0.007). The present findings do not support a direct relationship between CMV infection and the development of AD; however, an interaction between CMV and HSV1 was found to be associated significantly with AD development. These findings suggest that CMV infection facilitates the development of HSV1-associated AD, possibly via its effects on the immune system.
Dubner, Lauren; Wang, Jun; Ho, Lap; Ward, Libby; Pasinetti, Giulio M
2015-01-01
It is currently thought that the lackluster performance of translational paradigms in the prevention of age-related cognitive deteriorative disorders, such as Alzheimer's disease (AD), may be due to the inadequacy of the prevailing approach of targeting only a single mechanism. Age-related cognitive deterioration and certain neurodegenerative disorders, including AD, are characterized by complex relationships between interrelated biological phenotypes. Thus, alternative strategies that simultaneously target multiple underlying mechanisms may represent a more effective approach to prevention, which is a strategic priority of the National Alzheimer's Project Act and the National Institute on Aging. In this review article, we discuss recent strategies designed to clarify the mechanisms by which certain brain-bioavailable, bioactive polyphenols, in particular, flavan-3-ols also known as flavanols, which are highly represented in cocoa extracts, may beneficially influence cognitive deterioration, such as in AD, while promoting healthy brain aging. However, we note that key issues to improve consistency and reproducibility in the development of cocoa extracts as a potential future therapeutic agent requires a better understanding of the cocoa extract sources, their processing, and more standardized testing including brain bioavailability of bioactive metabolites and brain target engagement studies. The ultimate goal of this review is to provide recommendations for future developments of cocoa extracts as a therapeutic agent in AD.
McGeown, William Jonathan; Shanks, Michael Fraser; Forbes-McKay, Katrina Elaine; Venneri, Annalena
2009-09-30
In a study of the effects of normal and pathological aging on semantic-related brain activity, 29 patients with Alzheimer's disease (AD) and 19 controls subjects (10 young and 9 older controls) performed a version of the Pyramids and Palm Trees Test that had been adapted for use during functional magnetic resonance imaging (fMRI). Young and older controls activated the left inferior and middle frontal gyri, precuneus and superior parietal lobule. Right frontal and left temporal cortices were activated only in the young. The AD group activated only the left prefrontal and cingulate cortex. Separate analyses of high- and low-performing AD subgroups showed a similar pattern of activation in the left frontal lobe, although activiation was more widespread in low performers. High performers significantly deactivated anterior midline frontal structures, however, while low performers did not. When the older adult and AD groups were combined, there was a significant positive correlation between left frontal and parietal activation and Mini-Mental State Examination (MMSE) score (covarying for age), suggesting a disease effect. A significant negative correlation between activation in the left temporal cortex and age (covarying for MMSE score) reflected a possible age effect. These differential effects suggest that semantic activation paradigms might aid diagnosis in those cases for whom conventional assessments lack the necessary sensitivity to detect subtle changes.
Cannabis and Anxiety and Depression in Young Adults: A Large Prospective Study
ERIC Educational Resources Information Center
Hayatbakhsh, Mohammad R.; Najman, Jake M.; Jamrozik, Konrad; Mamun, Abdullah A.; Alati, Rosa; Bor, William
2007-01-01
Objective: To examine whether age of first use or frequency of use of cannabis is associated with anxiety and depression (AD) in young adults, independent of known potential confounders, including the use of other illicit drugs. Method: A cohort of 3,239 Australian young adults was followed from birth to the age of 21 when data on AD were obtained…
Mobarak, E H
2011-01-01
To evaluate the influence of 2% and 5% chlorhexidine (CHX) pretreatment on bond durability of a self-etching adhesive to normal (ND) and caries-affected (AD) dentin after 2-years of aging in artificial saliva and under simulated intrapulpal pressure (IPP). One hundred twenty freshly extracted carious teeth were ground to expose ND and AD. Specimens were distributed into three equal groups (n=40) according to whether the dentin substrates were pretreated with 2% or 5% CHX or with water (control). Clearfil SE Bond (Kuraray) was applied to both substrates and composite cylinders (0.9 mm diameter and 0.7 mm height) were formed. Pretreatment and bonding were done while the specimens were subjected to 15 mm Hg IPP. After curing, specimens were aged in artificial saliva at 37°C and under IPP at 20 mm Hg until being tested after 24 hours or 2 years (n=20/group). Microshear bond strength was evaluated. Failure modes were determined using a scanning electron microscope (SEM) at 400× magnification. Data were statistically analyzed using three-way analysis of variance (ANOVA); one-way ANOVA tests, and t-test (p<0.05). Additional specimens (n=5/group) were prepared to evaluate interfacial silver precipitation. For the 24-hour groups, there were no significant differences among the ND groups and AD groups. For ND aged specimens, the 5% CHX group had the highest value followed by the 2% CHX and control groups, although the difference was statistically insignificant. For AD aged specimens, the 5% CHX group revealed statistically higher bond values compared to the 2% CHX and control groups. Fracture modes were predominately adhesive and mixed. Different interfacial silver depositions were recorded. Two percent or 5% CHX pretreatment has no adverse effect on the 24-hour bonding to ND and AD. Five percent CHX was able to diminish the loss in bonding to AD after 2years of aging in artificial saliva and under simulated IPP.
A hybrid feature selection approach for the early diagnosis of Alzheimer’s disease
NASA Astrophysics Data System (ADS)
Gallego-Jutglà, Esteve; Solé-Casals, Jordi; Vialatte, François-Benoît; Elgendi, Mohamed; Cichocki, Andrzej; Dauwels, Justin
2015-02-01
Objective. Recently, significant advances have been made in the early diagnosis of Alzheimer’s disease (AD) from electroencephalography (EEG). However, choosing suitable measures is a challenging task. Among other measures, frequency relative power (RP) and loss of complexity have been used with promising results. In the present study we investigate the early diagnosis of AD using synchrony measures and frequency RP on EEG signals, examining the changes found in different frequency ranges. Approach. We first explore the use of a single feature for computing the classification rate (CR), looking for the best frequency range. Then, we present a multiple feature classification system that outperforms all previous results using a feature selection strategy. These two approaches are tested in two different databases, one containing mild cognitive impairment (MCI) and healthy subjects (patients age: 71.9 ± 10.2, healthy subjects age: 71.7 ± 8.3), and the other containing Mild AD and healthy subjects (patients age: 77.6 ± 10.0 healthy subjects age: 69.4 ± 11.5). Main results. Using a single feature to compute CRs we achieve a performance of 78.33% for the MCI data set and of 97.56% for Mild AD. Results are clearly improved using the multiple feature classification, where a CR of 95% is found for the MCI data set using 11 features, and 100% for the Mild AD data set using four features. Significance. The new features selection method described in this work may be a reliable tool that could help to design a realistic system that does not require prior knowledge of a patient's status. With that aim, we explore the standardization of features for MCI and Mild AD data sets with promising results.
D'Anastasio, R; Cesana, D T; Viciano, J; Sciubba, M; Nibaruta, P; Capasso, L
2013-01-01
Dental enamel hypoplasia is usually read as a sign of a systematic growth disturbance during childhood. Following the analysis of human teeth from Herculaneum (79 AD, Central Italy), the authors focused on linear enamel hypoplasia (LEH) manifestations in order to delineate a possible correlation between their frequency and distribution and the earthquake that occurred in 62 AD, which is well documented in historical literature. The human remains from Herculaneum were buried at the same time as the Vesuvius eruption and represent an exceptional snapshot of life in the Roman Imperial Age. The Goodman and Rose method (1990) was used for attributing an "age at the moment of stress" for every skeleton in order to delineate the epidemiology of the enamel hypoplasia. When LEH frequency was analysed by age, two different age groups showed relevant patterns of hypoplasia: the first peak was evident in individuals between 14 and 20 years who were younger than 6 years at the time of the 62 AD earthquake, and a second peak was noted in adults of 30 +/- 5 years old, which suggests the presence of another stressful event that occurred 10 years before the earthquake, around 53 AD. The bimodal distribution of enamel hypoplasia could be the consequence of two different historical periods characterized by instability in the food supply, unhygienic conditions, and epidemic episodes; our data suggest that the first peak could be related to a decline in health status as an effect of the 62 AD earthquake. The relationship between recent natural disasters and variations in health status in modern populations is well documented in scientific literature. Our research represents the first attempt to correlate the status of health to an earthquake of known date in an archaeological population.
Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality.
Cushman, Laura A; Stein, Karen; Duffy, Charles J
2008-09-16
Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community.
The borderland between normal aging and dementia.
Lo, Raymond Y
2017-01-01
Alzheimer's disease (AD) has become a global health issue as the population ages. There is no effective treatment to protect against its occurrence or progression. Some argue that the lack of treatment response is due to delays in diagnosis. By the time a diagnosis of AD is made, neurodegenerative changes are at the stage where very few neurons can be salvaged by medication. The AD research community has developed the idea of mild cognitive impairment (MCI) in an attempt to find predementia patients who might benefit from potentially therapeutic drugs that have proven ineffective in the past. However, MCI is heterogeneous in terms of its underlying pathology and practicality for predicting dementia. This article first reviews the conceptual evolution of MCI as the borderland between normal aging and dementia, and then proposes that built environment and sociocultural context are two key elements in formulating a diagnosis of dementia. Dementia is more than a biomedical term. Cognitive impairment is considered a dynamic outcome of how an individual interacts with cognitive challenges. To focus on amyloid deposition as a single etiology for AD does not adequately capture the social implications and geriatric aspects of dementia. Moreover, MCI is nosologically questionable. Unlike a diagnosis of AD, for which a prototype has been well established, MCI is defined by operational criteria and there are no cases seen as typical MCI. Biofluid and imaging markers are under active development for early detection of amyloid deposition and neurofibrillary tangles in the brain, whereas vascular risks, chronic medical diseases, and polypharmacy continue to add to the complexity of dementia in old age. The paradigm of dementia care policy may shift to early diagnosis of AD pathology and comprehensive care for chronic diseases in the elderly population.
Vergés, Alvaro; Jackson, Kristina M.; Bucholz, Kathleen K.; Grant, Julia D.; Trull, Timothy J.; Wood, Phillip K.; Sher, Kenneth J.
2012-01-01
Epidemiological studies have consistently demonstrated that heavy alcohol use and alcohol dependence (AD), tend to increase in adolescence and emerging adulthood and then show a large decline in the late 20s, a phenomenon called “maturing out”. This decline has been explained as an effect of “role incompatibility” in which involvement in new roles and activities interferes with a heavy drinking lifestyle. However, maturing out has been conceived mostly as a decrease in offset, with little attention paid to reductions in new onset or recurrence across decades of life. Moreover, although role incompatibility processes have been studied with young samples, little is known about the effect of life transitions (e.g., marriage, parenthood, changes in employment status) on AD later in life and whether similar effects are observed. Using longitudinal data from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), a nationally representative epidemiologic survey, we examined the patterns of stability and change in AD across the lifespan and the differential effect of life transitions on AD across different age strata. Results showed that persistence of alcohol dependence tended to increase with age, although not dramatically, and that onset and recurrence tended to decrease with age. Moreover, the effects of life transitions on the course of AD varied across the lifespan and were different for men and women. These results indicate that life transitions differentially affect the patterns of stability and change in younger versus older people, have a different impact for men and women, and highlight the need to consider the unique aspects of each stage of adult development on the course of AD. PMID:22060948
Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease.
Noble, James M; Scarmeas, Nikolaos; Celenti, Romanita S; Elkind, Mitchell S V; Wright, Clinton B; Schupf, Nicole; Papapanou, Panos N
2014-01-01
Periodontitis and Alzheimer disease (AD) are associated with systemic inflammation. This research studied serum IgG to periodontal microbiota as possible predictors of incident AD. Using a case-cohort study design, 219 subjects (110 incident AD cases and 109 controls without incident cognitive impairment at last follow-up), matched on race-ethnicity, were drawn from the Washington Heights-Inwood Columbia Aging Project (WHICAP), a cohort of longitudinally followed northern Manhattan residents aged >65 years. Mean follow-up was five years (SD 2.6). In baseline sera, serum IgG levels were determined for bacteria known to be positively or negatively associated with periodontitis (Porphyromonas gingivalis, Tannerella forsythia, Actinobacillus actinomycetemcomitans Y4, Treponema denticola, Campylobacter rectus, Eubacterium nodatum, and Actinomyces naeslundii genospecies-2). In all analyses, we used antibody threshold levels shown to correlate with presence of moderate-severe periodontitis. Mean age was 72 years (SD 6.9) for controls, and 79 years (SD 4.6) for cases (p<0.001). Non-Hispanic Whites comprised 26%, non-Hispanic Blacks 27%, and Hispanics 48% of the sample. In a model adjusting for baseline age, sex, education, diabetes mellitus, hypertension, smoking, prior history of stroke, and apolipoprotein E genotype, high anti-A. naeslundii titer (>640 ng/ml, present in 10% of subjects) was associated with increased risk of AD (HR = 2.0, 95%CI: 1.1-3.8). This association was stronger after adjusting for other significant titers (HR = 3.1, 95%CI: 1.5-6.4). In this model, high anti-E. nodatum IgG (>1755 ng/ml; 19% of subjects) was associated with lower risk of AD (HR = 0.5, 95%CI: 0.2-0.9). Serum IgG levels to common periodontal microbiota are associated with risk for developing incident AD.
The borderland between normal aging and dementia
Lo, Raymond Y.
2017-01-01
Alzheimer's disease (AD) has become a global health issue as the population ages. There is no effective treatment to protect against its occurrence or progression. Some argue that the lack of treatment response is due to delays in diagnosis. By the time a diagnosis of AD is made, neurodegenerative changes are at the stage where very few neurons can be salvaged by medication. The AD research community has developed the idea of mild cognitive impairment (MCI) in an attempt to find predementia patients who might benefit from potentially therapeutic drugs that have proven ineffective in the past. However, MCI is heterogeneous in terms of its underlying pathology and practicality for predicting dementia. This article first reviews the conceptual evolution of MCI as the borderland between normal aging and dementia, and then proposes that built environment and sociocultural context are two key elements in formulating a diagnosis of dementia. Dementia is more than a biomedical term. Cognitive impairment is considered a dynamic outcome of how an individual interacts with cognitive challenges. To focus on amyloid deposition as a single etiology for AD does not adequately capture the social implications and geriatric aspects of dementia. Moreover, MCI is nosologically questionable. Unlike a diagnosis of AD, for which a prototype has been well established, MCI is defined by operational criteria and there are no cases seen as typical MCI. Biofluid and imaging markers are under active development for early detection of amyloid deposition and neurofibrillary tangles in the brain, whereas vascular risks, chronic medical diseases, and polypharmacy continue to add to the complexity of dementia in old age. The paradigm of dementia care policy may shift to early diagnosis of AD pathology and comprehensive care for chronic diseases in the elderly population. PMID:28757769
Individual Patient Diagnosis of AD and FTD via High-Dimensional Pattern Classification of MRI
Davatzikos, C.; Resnick, S. M.; Wu, X.; Parmpi, P.; Clark, C. M.
2008-01-01
The purpose of this study is to determine the diagnostic accuracy of MRI-based high-dimensional pattern classification in differentiating between patients with Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), and healthy controls, on an individual patient basis. MRI scans of 37 patients with AD and 37 age-matched cognitively normal elderly individuals, as well as 12 patients with FTD and 12 age-matched cognitively normal elderly individuals, were analyzed using voxel-based analysis and high-dimensional pattern classification. Diagnostic sensitivity and specificity of spatial patterns of regional brain atrophy found to be characteristic of AD and FTD were determined via cross-validation and via split-sample methods. Complex spatial patterns of relatively reduced brain volumes were identified, including temporal, orbitofrontal, parietal and cingulate regions, which were predominantly characteristic of either AD or FTD. These patterns provided 100% diagnostic accuracy, when used to separate AD or FTD from healthy controls. The ability to correctly distinguish AD from FTD averaged 84.3%. All estimates of diagnostic accuracy were determined via cross-validation. In conclusion, AD- and FTD-specific patterns of brain atrophy can be detected with high accuracy using high-dimensional pattern classification of MRI scans obtained in a typical clinical setting. PMID:18474436
Kim, Dae Suk; Lee, Ju Hee; Lee, Kwang Hoon; Lee, Min-Geol
2012-09-01
The objective of this study was to evaluate the precise prevalence of atopic dermatitis (AD) in schoolchildren in Jeju Island in South Korea examined in 2009. Nine elementary schools were randomly selected from Jeju Island and a total of 4,028 schoolchildren were examined by a dermatologist. AD was diagnosed based on the Korean Atopic Dermatitis Research Group criteria for the disease. The severity of AD was measured with the three-item severity score (TIS). The point prevalence of AD was 9.5% overall. The prevalence among higher graders (age 9-12 years) was significantly lower than that in lower graders (age 6-9 years) (7.5% vs. 11.9%, < 0.00001). AD prevalence in girls (11.1%) was higher than that in boys (8.1%) (<0.005). In each grade, more than 50% of those affected had the mild form (TIS score 1 or 2). There were no apparent differences in severity of AD between grades or genders. This is the first Asian study of prevalence in schoolchildren using TIS score for evaluating AD severity.
Rajaratnam, Kamini; Xiang, Yu-Tao; Tripathi, Adarsh; Chiu, Helen F K; Si, Tian-Mei; Chee, Kok-Yoon; Avasthi, Ajit; Grover, Sandeep; Chong, Mian-Yoon; Kuga, Hironori; Kanba, Shigenobu; He, Yan-Ling; Lee, Min-Soo; Yang, Shu-Yu; Udomratn, Pichet; Kallivayalil, Roy A; Tanra, Andi J; Maramis, Margarita M; Shen, Winston W; Sartorius, Norman; Kua, Ee-Heok; Tan, Chay-Hoon; Mahendran, Rathi; Shinfuku, Naotaka; Sum, Min Yi; Baldessarini, Ross J; Sim, Kang
2017-04-01
As most reports concerning treatment with combinations of mood stabilizer (MS) with antidepressant (AD) drugs are based in the West, we surveyed characteristics of such cotreatment in 42 sites caring for the mentally ill in 10 Asian countries. This cross-sectional, pharmacoepidemiologic study used 2004 and 2013 data from the REAP-AD (Research Study on Asian Psychotropic Prescription Patterns for Antidepressants) to evaluate the rates and doses of MSs given with ADs and associated factors in 4164 psychiatric patients, using standard bivariate methods followed by multivariable logistic regression modeling. Use of MS + AD increased by 104% (5.5% to 11.2%) between 2004 and 2013 and was much more associated with diagnosis of bipolar disorder than major depression or anxiety disorder, as well as with hospitalization > outpatient care, psychiatric > general-medical programs, and young age (all P < 0.001), but not with country, sex, or AD dose. The findings provide a broad picture of contemporary use of MSs with ADs in Asia, support predictions that such treatment increased in recent years, and was associated with diagnosis of bipolar disorder, treatment in inpatient and psychiatric settings, and younger age.
Sperling, Reisa A.; Aisen, Paul S.; Beckett, Laurel A.; Bennett, David A.; Craft, Suzanne; Fagan, Anne M.; Iwatsubo, Takeshi; Jack, Clifford R.; Kaye, Jeffrey; Montine, Thomas J.; Park, Denise C.; Reiman, Eric M.; Rowe, Christopher C.; Siemers, Eric; Stern, Yaakov; Yaffe, Kristine; Carrillo, Maria C.; Thies, Bill; Morrison-Bogorad, Marcelle; Wagster, Molly V.; Phelps, Creighton H.
2011-01-01
The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long “preclinical” phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from “normal” cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious. PMID:21514248
Maria, Sabogal-Guáqueta Angélica; Edison, Osorio; Patricia, Cardona-Gómez Gloria
2015-01-01
Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disorder. Several types of treatments have been tested to block or delay the onset of the disease, but none have been completely successful. Diet, lifestyle and natural products are currently the main scientific focuses. Here, we evaluate the effects of oral administration of the monoterpene linalool (25 mg / kg), every 48 hours for 3 months, on aged (21–24 months old) mice with a triple transgenic model of AD (3xTg-AD) mice. Linalool-treated 3xTg-AD mice showed improved learning and spatial memory and greater risk assessment behavior during the elevated plus maze. Hippocampi and amygdalae from linalool-treated 3xTg-AD mice exhibited a significant reduction in extracellular β-amyloidosis, tauopathy, astrogliosis and microgliosis as well as a significant reduction in the levels of the pro-inflammatory markers p38 MAPK, NOS2, COX2 and IL-1β. Together, our findings suggest that linalool reverses the histopathological hallmarks of AD and restores cognitive and emotional functions via an anti-inflammatory effect. Thus, linalool may be an AD prevention candidate for preclinical studies. PMID:26549854
Finding of increased caudate nucleus in patients with Alzheimer's disease.
Persson, K; Bohbot, V D; Bogdanovic, N; Selbaek, G; Braekhus, A; Engedal, K
2018-02-01
A recently published study using an automated MRI volumetry method (NeuroQuant®) unexpectedly demonstrated larger caudate nucleus volume in patients with Alzheimer's disease dementia (AD) compared to patients with subjective and mild cognitive impairment (SCI and MCI). The aim of this study was to explore this finding. The caudate nucleus and the hippocampus volumes were measured (both expressed as ratios of intracranial volume) in a total of 257 patients with SCI and MCI according to the Winblad criteria and AD according to ICD-10 criteria. Demographic data, cognitive measures, and APOE-ɛ4 status were collected. Compared with non-dementia patients (SCI and MCI), AD patients were older, more of them were female, and they had a larger caudate nucleus volume and smaller hippocampus volume (P<.001). In multiple linear regression analysis, age and female sex were associated with larger caudate nucleus volume, but neither diagnosis nor memory function was. Age, gender, and memory function were associated with hippocampus volume, and age and memory function were associated with caudate nucleus/hippocampus ratio. A larger caudate nucleus volume in AD patients was partly explained by older age and being female. These results are further discussed in the context of (1) the caudate nucleus possibly serving as a mechanism for temporary compensation; (2) methodological properties of automated volumetry of this brain region; and (3) neuropathological alterations. Further studies are needed to fully understand the role of the caudate nucleus in AD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality
Cushman, Laura A.; Stein, Karen; Duffy, Charles J.
2008-01-01
Background: Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Methods: Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). Results: We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Conclusions: Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community. GLOSSARY AD = Alzheimer disease; EAD = early Alzheimer disease; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; ONC = older normal control; std. wt. = standardized weight; THSD = Tukey honestly significant difference; VR = virtual reality; YNC = young normal control. PMID:18794491
Wang, Rui; Li, Sa-Ying; Chen, Min; Zhou, Jin-Yuan; Peng, Dan-Tao; Zhang, Chen; Dai, Yong-Ming
2015-03-05
Amide proton transfer (APT) imaging has recently emerged as an important contrast mechanism for magnetic resonance imaging (MRI) in the field of molecular and cellular imaging. The aim of this study was to evaluate the feasibility of APT imaging to detect cerebral abnormality in patients with Alzheimer's disease (AD) at 3.0 Tesla. Twenty AD patients (9 men and 11 women; age range, 67-83 years) and 20 age-matched normal controls (11 men and 9 women; age range, 63-82 years) underwent APT and traditional MRI examination on a 3.0 Tesla MRI system. The magnetic resonance ratio asymmetry (MTR asym ) values at 3.5 ppm of bilateral hippocampi (Hc), temporal white matter regions, occipital white matter regions, and cerebral peduncles were measured on oblique axial APT images. MTR asym (3.5 ppm) values of the cerebral structures between AD patients and control subjects were compared with independent samples t-test. Controlling for age, partial correlation analysis was used to investigate the associations between mini-mental state examination (MMSE) and the various MRI measures among AD patients. Compared with normal controls, MTR asym (3.5 ppm) values of bilateral Hc were significantly increased in AD patients (right 1.24% ± 0.21% vs. 0.83% ± 0.19%, left 1.18% ± 0.18% vs. 0.80%± 0.17%, t = 3.039, 3.328, P = 0.004, 0.002, respectively). MTR asym (3.5 ppm) values of bilateral Hc were significantly negatively correlated with MMSE (right r = -0.559, P = 0.013; left r = -0.461, P = 0.047). Increased MTR asym (3.5 ppm) values of bilateral Hc in AD patients and its strong correlations with MMSE suggest that APT imaging could potentially provide imaging biomarkers for the noninvasive molecular diagnosis of AD.
Cheng, Xiao-Rui; Zhou, Wen-Xia; Zhang, Yong-Xiang
2006-05-01
Alzheimer' s disease (AD) is the most common form of dementia in the elderly. AD is an invariably fatal neurodegenerative disorder with no effective treatment. Senescence-accelerated mouse prone 8 (SAMP8) is a model for studying age-related cognitive impairments and also is a good model to study brain aging and one of mouse model of AD. The technique of cDNA microarray can monitor the expression levels of thousands of genes simultaneously and can be used to study AD with the character of multi-mechanism, multi-targets and multi-pathway. In order to disclose the mechanism of AD and find the drug targets of AD, cDNA microarray containing 3136 cDNAs amplified from the suppression subtracted cDNA library of hippocampus of SAMP8 and SAMR1 was prepared with 16 blocks and 14 x 14 pins, the housekeeping gene beta-actin and G3PDH as inner conference. The background of this microarray was low and unanimous, and dots divided evenly. The conditions of hybridization and washing were optimized during the hybridization of probe and target molecule. After the data of hybridization analysis, the differential expressed cDNAs were sequenced and analyzed by the bioinformatics, and some of genes were quantified by the real time RT-PCR and the reliability of this cDNA microarray were validated. This cDNA microarray may be the good means to select the differential expressed genes and disclose the molecular mechanism of SAMP8's brain aging and AD.
Sancheti, Harsh; Patil, Ishan; Kanamori, Keiko; Díaz Brinton, Roberta; Zhang, Wei; Lin, Ai-Ling; Cadenas, Enrique
2014-01-01
Alzheimer's disease (AD) is characterized by age-dependent biochemical, metabolic, and physiologic changes. These age-dependent changes ultimately converge to impair cognitive functions. This study was carried out to examine the metabolic changes by probing glucose and tricarboxylic acid cycle metabolism in a 7-month-old triple transgenic mouse model of AD (3xTg-AD). The effect of lipoic acid, an insulin-mimetic agent, was also investigated to examine its ability in modulating age-dependent metabolic changes. Seven-month-old 3xTg-AD mice were given intravenous infusion of [1-13C]glucose followed by an ex vivo 13C nuclear magnetic resonance to determine the concentrations of 13C-labeled isotopomers of glutamate, glutamine, aspartate, gamma aminobutyric acid, and N-acetylaspartate. An intravenous infusion of [1-13C]glucose+[1,2-13C]acetate was given for different periods of time to distinguish neuronal and astrocytic metabolism. Enrichments of glutamate, glutamine, and aspartate were calculated after quantifying the total (12C+13C) concentrations by high-performance liquid chromatography. A hypermetabolic state was clearly evident in 7-month-old 3xTg-AD mice in contrast to the hypometabolic state reported earlier in 13-month-old mice. Hypermetabolism was evidenced by prominent increase of 13C labeling and enrichment in the 3xTg-AD mice. Lipoic acid feeding to the hypermetabolic 3xTg-AD mice brought the metabolic parameters to the levels of nonTg mice. PMID:25099753
Boespflug, Erin L; Iliff, Jeffrey J
2018-02-15
Amyloid-β (Aβ) plaques are a key histopathological hallmark of Alzheimer's disease (AD), and soluble Aβ species are believed to play an important role in the clinical development of this disease. Emerging biomarker data demonstrate that Aβ plaque deposition begins decades before the onset of clinical symptoms, suggesting that understanding the biological determinants of the earliest steps in the development of AD pathology may provide key opportunities for AD treatment and prevention. Although a clinical association between sleep disruption and AD has long been appreciated, emerging clinical studies and insights from the basic neurosciences have shed important new light on how sleep and Aβ homeostasis may be connected in the setting of AD. Aβ, like many interstitial solutes, is cleared in part through the exchange of brain interstitial fluid and cerebrospinal fluid along a brain-wide network of perivascular pathways recently termed the glymphatic system. Glymphatic function is primarily a feature of the sleeping brain, rather than the waking brain, and is slowed in the aging and posttraumatic brain. These changes may underlie the diurnal fluctuations in interstitial and cerebrospinal fluid Aβ levels observed in both the rodent and the human. These and other emerging studies suggest that age-related sleep disruption may be one key factor that renders the aging brain vulnerable to Aβ deposition and the development of AD. If this is true, sleep may represent a key modifiable risk factor or therapeutic target in the preclinical phases of AD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Varma, Vijay R; Oommen, Anup M; Varma, Sudhir; Casanova, Ramon; An, Yang; Andrews, Ryan M; O'Brien, Richard; Pletnikova, Olga; Troncoso, Juan C; Toledo, Jon; Baillie, Rebecca; Arnold, Matthias; Kastenmueller, Gabi; Nho, Kwangsik; Doraiswamy, P Murali; Saykin, Andrew J; Kaddurah-Daouk, Rima; Legido-Quigley, Cristina; Thambisetty, Madhav
2018-01-01
The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of each metabolite to severity of AD pathology and disease progression (Endophenotype Association Score in Early Alzheimer's Disease [EASE-AD]). Finally, we mapped the main metabolite classes emerging from our analyses to key biological pathways implicated in AD pathogenesis. We found that distinct sphingolipid species including sphingomyelin (SM) with acyl residue sums C16:0, C18:1, and C16:1 (SM C16:0, SM C18:1, SM C16:1) and hydroxysphingomyelin with acyl residue sum C14:1 (SM (OH) C14:1) were consistently associated with severity of AD pathology at autopsy and AD progression across prodromal and preclinical stages. Higher log-transformed blood concentrations of all four sphingolipids in cognitively normal individuals were significantly associated with increased risk of future conversion to incident AD: SM C16:0 (hazard ratio [HR] = 4.430, 95% confidence interval [CI] = 1.703-11.520, p = 0.002), SM C16:1 (HR = 3.455, 95% CI = 1.516-7.873, p = 0.003), SM (OH) C14:1 (HR = 3.539, 95% CI = 1.373-9.122, p = 0.009), and SM C18:1 (HR = 2.255, 95% CI = 1.047-4.855, p = 0.038). The sphingolipid species identified map to several biologically relevant pathways implicated in AD, including tau phosphorylation, amyloid-β (Aβ) metabolism, calcium homeostasis, acetylcholine biosynthesis, and apoptosis. Our study has limitations: the relatively small number of brain tissue samples may have limited our power to detect significant associations, control for heterogeneity between groups, and replicate our findings in independent, autopsy-derived brain samples. We present a novel framework to identify biologically relevant brain and blood metabolites associated with disease pathology and progression during the prodromal and preclinical stages of AD. Our results show that perturbations in sphingolipid metabolism are consistently associated with endophenotypes across preclinical and prodromal AD, as well as with AD pathology at autopsy. Sphingolipids may be biologically relevant biomarkers for the early detection of AD, and correcting perturbations in sphingolipid metabolism may be a plausible and novel therapeutic strategy in AD.
Oommen, Anup M.; Varma, Sudhir; Casanova, Ramon; An, Yang; O’Brien, Richard; Pletnikova, Olga; Kastenmueller, Gabi; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Thambisetty, Madhav
2018-01-01
Background The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Methods and findings Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and “asymptomatic Alzheimer’s disease” (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes—sphingolipids and glycerophospholipids—that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer’s Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of each metabolite to severity of AD pathology and disease progression (Endophenotype Association Score in Early Alzheimer’s Disease [EASE-AD]). Finally, we mapped the main metabolite classes emerging from our analyses to key biological pathways implicated in AD pathogenesis. We found that distinct sphingolipid species including sphingomyelin (SM) with acyl residue sums C16:0, C18:1, and C16:1 (SM C16:0, SM C18:1, SM C16:1) and hydroxysphingomyelin with acyl residue sum C14:1 (SM (OH) C14:1) were consistently associated with severity of AD pathology at autopsy and AD progression across prodromal and preclinical stages. Higher log-transformed blood concentrations of all four sphingolipids in cognitively normal individuals were significantly associated with increased risk of future conversion to incident AD: SM C16:0 (hazard ratio [HR] = 4.430, 95% confidence interval [CI] = 1.703–11.520, p = 0.002), SM C16:1 (HR = 3.455, 95% CI = 1.516–7.873, p = 0.003), SM (OH) C14:1 (HR = 3.539, 95% CI = 1.373–9.122, p = 0.009), and SM C18:1 (HR = 2.255, 95% CI = 1.047–4.855, p = 0.038). The sphingolipid species identified map to several biologically relevant pathways implicated in AD, including tau phosphorylation, amyloid-β (Aβ) metabolism, calcium homeostasis, acetylcholine biosynthesis, and apoptosis. Our study has limitations: the relatively small number of brain tissue samples may have limited our power to detect significant associations, control for heterogeneity between groups, and replicate our findings in independent, autopsy-derived brain samples. Conclusions We present a novel framework to identify biologically relevant brain and blood metabolites associated with disease pathology and progression during the prodromal and preclinical stages of AD. Our results show that perturbations in sphingolipid metabolism are consistently associated with endophenotypes across preclinical and prodromal AD, as well as with AD pathology at autopsy. Sphingolipids may be biologically relevant biomarkers for the early detection of AD, and correcting perturbations in sphingolipid metabolism may be a plausible and novel therapeutic strategy in AD. PMID:29370177
Analysis of alternative splicing associated with aging and neurodegeneration in the human brain
Tollervey, James R.; Wang, Zhen; Hortobágyi, Tibor; Witten, Joshua T.; Zarnack, Kathi; Kayikci, Melis; Clark, Tyson A.; Schweitzer, Anthony C.; Rot, Gregor; Curk, Tomaž; Zupan, Blaž; Rogelj, Boris; Shaw, Christopher E.; Ule, Jernej
2011-01-01
Age is the most important risk factor for neurodegeneration; however, the effects of aging and neurodegeneration on gene expression in the human brain have most often been studied separately. Here, we analyzed changes in transcript levels and alternative splicing in the temporal cortex of individuals of different ages who were cognitively normal, affected by frontotemporal lobar degeneration (FTLD), or affected by Alzheimer's disease (AD). We identified age-related splicing changes in cognitively normal individuals and found that these were present also in 95% of individuals with FTLD or AD, independent of their age. These changes were consistent with increased polypyrimidine tract binding protein (PTB)–dependent splicing activity. We also identified disease-specific splicing changes that were present in individuals with FTLD or AD, but not in cognitively normal individuals. These changes were consistent with the decreased neuro-oncological ventral antigen (NOVA)–dependent splicing regulation, and the decreased nuclear abundance of NOVA proteins. As expected, a dramatic down-regulation of neuronal genes was associated with disease, whereas a modest down-regulation of glial and neuronal genes was associated with aging. Whereas our data indicated that the age-related splicing changes are regulated independently of transcript-level changes, these two regulatory mechanisms affected expression of genes with similar functions, including metabolism and DNA repair. In conclusion, the alternative splicing changes identified in this study provide a new link between aging and neurodegeneration. PMID:21846794
Lubitz, Irit; Ricny, Jan; Atrakchi-Baranes, Dana; Shemesh, Chen; Kravitz, Efrat; Liraz-Zaltsman, Sigal; Maksin-Matveev, Anna; Cooper, Itzik; Leibowitz, Avshalom; Uribarri, Jaime; Schmeidler, James; Cai, Weijing; Kristofikova, Zdena; Ripova, Daniela; LeRoith, Derek; Schnaider-Beeri, Michal
2016-04-01
There is growing evidence of the involvement of advanced glycation end products (AGEs) in the pathogenesis of neurodegenerative processes including Alzheimer's disease (AD) and their function as a seed for the aggregation of Aβ, a hallmark feature of AD. AGEs are formed endogenously and exogenously during heating and irradiation of foods. We here examined the effect of a diet high in AGEs in the context of an irradiated diet on memory, insoluble Aβ42 , AGEs levels in hippocampus, on expression of the receptor for AGEs (RAGE), and on oxidative stress in the vasculature. We found that AD-like model mice on high-AGE diet due to irradiation had significantly poorer memory, higher hippocampal levels of insoluble Aβ42 and AGEs as well as higher levels of oxidative stress on vascular walls, compared to littermates fed an isocaloric diet. These differences were not due to weight gain. The data were further supported by the overexpression of RAGE, which binds to Aβ42 and regulates its transport across the blood-brain barrier, suggesting a mediating pathway. Because exposure to AGEs can be diminished, these insights provide an important simple noninvasive potential therapeutic strategy for alleviating a major lifestyle-linked disease epidemic. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Berger, Christoph; Erbe, Anna-Katharina; Ehlers, Inga; Marx, Ivo; Hauenstein, Karlheinz; Teipel, Stefan
2015-01-01
Research suggests generally impaired cognitive control functions in working memory (WM) processes in amnestic mild cognitive impairment (MCI) and incipient Alzheimer's disease (AD). Little is known how emotional salience of task-irrelevant stimuli may modulate cognitive control of WM performance and neurofunctional activation in MCI and AD individuals. We investigated the impact of emotional task-irrelevant visual stimuli on cortical activation during verbal WM. Twelve AD/MCI individuals and 12 age-matched healthy individuals performed a verbal WM (nback-) task with task-irrelevant emotionally neutral and emotionally negative background pictures during fMRI measurement. AD/MCI individuals showed decreased WM performance compared with controls; both AD/MCI and control groups reacted slower during presentation of negative pictures, regardless of WM difficulty. The AD/MCI group showed increased activation in the left hemispheric prefrontal network, higher amygdala and less cerebellar activation with increasing WM task difficulty compared to healthy controls. Correlation analysis between neurofunctional activation and WM performance revealed a negative correlation between task sensitivity and activation in the dorsal anterior cingulum for the healthy controls but not for the AD/MCI group. Our data suggest compensatory activation in prefrontal cortex and amygdala, but also dysfunctional inhibition of distracting information in the AD/MCI group during higher WM task difficulty. Additionally, attentional processes affecting the correlation between WM performance and neurofunctional activation seem to be different between incipient AD and healthy aging.
Persistence of mild to moderate Atopic Dermatitis
Margolis, Jacob S; Abuabara, Katrina; Bilker, Warren; Hoffstad, Ole; Margolis, David J
2015-01-01
Importance Atopic dermatitis (AD) is a common illness of childhood Objective The goal of this study was to evaluate the natural history of AD and determine the persistence of symptoms over time. Design A cross-sectional and cohort study. Setting A nation-wide long-term registry of children with AD. Participants Children enrolled in the Pediatric Eczema Elective Registry (PEER). Main outcome Self-reported outcome of whether or not a child’s skin was AD symptom-free for 6 months at 6 month intervals. Results 7,157 subjects were enrolled in the PEER study for a total of 22, 550 person-years. At least 2 years of follow-up was observed for 4,248 and at least 5 years of follow-up was observed for 2,416 children. Multiple demographic and exposure variables were associated with more persistent AD. At every age (i.e. 2 to 26 years), more than 80% of PEER subjects had symptoms of AD and/or were using medication to treat their AD. It was not until age 20 years that 50% of subjects had at least one lifetime six-month symptom and treatment free period. Conclusions and Relevance Based on this large longitudinal cohort study, symptoms associated with AD appear to persist well into the second decade of a child’s life and likely longer. AD is likely a life-long illness. PMID:24696036
Atopic dermatitis in older adults: A viewpoint from geriatric dermatology.
Tanei, Ryoji; Hasegawa, Yasuko
2016-03-01
Atopic dermatitis (AD) in older adults represents a newly defined subgroup of AD. The prevalence of elderly AD is approximately 1-3% among elderly populations in industrialized countries. Elderly patients with AD show some common clinical characteristics, such as a male predominance, a lower incidence of lichenified eczema at the elbow and knee folds, and particular patterns of onset and clinical course. Both immunoglobulin (Ig)E-allergic and non-IgE-allergic types are observed in elderly AD. Elderly patients with IgE-allergic AD show high rates of positivity for specific IgE antibodies against house dust mites, associations with IgE allergic and asthmatic complications, histopathological features with a predominance of IgE-mediated allergic inflammation in the lesional skin, and a significantly lower incidence of malignancy as compared with control subjects. The etiology of elderly AD might be associated with immunosenescence, age-related changes to the sex hormone milieu, age-related barrier dysfunctions in the skin and gut, functional disturbance of sweat production, and environmental stimuli in the lifestyle of elderly individuals. Powerful anti-inflammatory treatments, such as oral corticosteroids, might be required together with standard treatments to manage moderate to severe cases of elderly AD. Finally, most elderly patients with AD reach the end of life with this disease, which should now be considered a lifelong allergic disease. © 2016 Japan Geriatrics Society.
Van der Jeugd, Ann; Parra-Damas, Arnaldo; Baeta-Corral, Raquel; Soto-Faguás, Carlos M; Ahmed, Tariq; LaFerla, Frank M; Giménez-Llort, Lydia; D'Hooge, Rudi; Saura, Carlos A
2018-04-24
Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer's disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12-14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.
Magnetic resonance imaging traits in siblings discordant for Alzheimer disease.
Cuenco, Karen T; Green, Robert C; Zhang, J; Lunetta, Kathryn; Erlich, Porat M; Cupples, L Adrienne; Farrer, Lindsay A; DeCarli, Charles
2008-07-01
Magnetic resonance imaging (MRI) can aid clinical assessment of brain changes potentially correlated with Alzheimer disease (AD). MRI traits may improve our ability to identify genes associated with AD-outcomes. We evaluated semi-quantitative MRI measures as endophenotypes for genetic studies by assessing their association with AD in families from the Multi-Institutional Research in Alzheimer Genetic Epidemiology (MIRAGE) Study. Discordant siblings from multiple ethnicities were ascertained through a single affected proband. Semi-quantitative MRI measures were obtained for each individual. The association between continuous/ordinal MRI traits and AD were analyzed using generalized estimating equations. Medical history and Apolipoprotein E (APOE)epsilon4 status were evaluated as potential confounders. Comparisons of 214 affected and 234 unaffected subjects from 229 sibships revealed that general cerebral atrophy, white matter hyperintensities (WMH), and mediotemporal atrophy differed significantly between groups (each at P < .0001) and varied by ethnicity. Age at MRI and duration of AD confounded all associations between AD and MRI traits. Among unaffected sibs, the presence of at least one APOEepsilon4 allele and MRI infarction was associated with more WMH after adjusting for age at MRI. The strong association between MRI traits and AD suggests that MRI traits may be informative endophenotypes for basic and clinical studies of AD. In particular, WMH may be a marker of vascular disease that contributes to AD pathogenesis.
Sontag, Estelle; Luangpirom, Ampa; Hladik, Christa; Mudrak, Ingrid; Ogris, Egon; Speciale, Samuel; White, Charles L
2004-04-01
The formation of amyloid-containing senile plaques and tau-rich neurofibrillary tangles are central events in Alzheimer disease (AD) pathogenesis. Significantly, ABalphaC, a major protein phosphatase 2A (PP2A) holoenzyme, specifically binds to and dephosphorylates tau. Deregulation of PP2A results in tau hyperphosphorylation in vivo. Here, we compared the expression levels and distribution of PP2A subunits in various brain regions from autopsy cases of AD and aged controls with or without histological evidence of age-related neurofibrillary degeneration. Immunoblotting analyses revealed that there was a significant reduction in the total amounts of ABalphaC in AD frontal and temporal cortices that matched the decrease in PP2A activity measured in the same brain homogenates. Immunohistochemical studies showed that neuronal ABalphaC expression levels were significantly and selectively decreased in AD-affected regions and in tangle-bearing neurons, but not in AD cerebellum and in non-AD dementias. Reduced neuronal ABalphaC immunoreactivity closely correlated with tangle load, but not plaque burden, suggesting that ABalphaC dysfunction contributes to AD tau pathology. Glial cells within senile plaques were also positive for ABalphaC. Increased glial PP2A immunoreactivity was observed in both AD and non-AD cases and may play a role in the brain's response to general inflammatory processes and amyloidogenesis.
Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R.; Olah, Marta; Mantingh-Otter, Ietje J.; Van Dam, Debby; De Deyn, Peter P.; den Dunnen, Wilfred; Eggen, Bart J. L.; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer’s disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration. PMID:28713239
Edwards, Stephen R; Hamlin, Adam S; Marks, Nicola; Coulson, Elizabeth J; Smith, Maree T
2014-10-01
Evaluation of the efficacy of novel therapeutics for potential treatment of Alzheimer's disease (AD) requires an animal model that develops age-related cognitive deficits reproducibly between independent groups of investigators. Herein we assessed comparative temporal changes in spatial memory function in two commercially available transgenic mouse models of AD using the Morris water maze (MWM), incorporating both visible and hidden platform training. Individual cohorts of cDNA-based 'line 85'-derived double-transgenic mice coexpressing the 'Swedish' mutation of amyloid precursor protein (APPSwe) and the presenillin 1 (PS1) 'dE9' mutation were assessed in the MWM at mean ages of 3.6, 9.3 and 14.8 months. We found significant deficits in spatial memory retention in APPSwe/PS1dE9 mice aged 3.6 months and robust deficits in spatial memory acquisition and retention in APPSwe/PS1dE9 mice aged 9.3 months, with a further significant decline by age 14.8 months. β-Amyloid deposits were present in brain sections by 7.25 months of age. In contrast, MWM studies with individual cohorts (aged 4-21 months) of single-transgenic genomic-based APPSwe mice expressing APPSwe on a yeast artificial chromosomal (YAC) construct showed no significant deficits in spatial memory acquisition until 21 months of age. There were no significant deficits in spatial memory retention up to 21 months of age and β-amyloid deposits were not present in brain sections up to 24 months of age. These data, generated using comprehensive study designs, show that APPSwe/PS1dE9 but not APPSwe YAC mice appear to provide a suitably robust model of AD for efficacy assessment of novel AD treatments in development. © 2014 Wiley Publishing Asia Pty Ltd.
Jack, Clifford R.; Wiste, Heather J.; Weigand, Stephen D.; Rocca, Walter A.; Knopman, David S.; Mielke, Michelle M.; Lowe, Val J.; Senjem, Matthew L.; Gunter, Jeffrey L.; Preboske, Gregory M.; Pankratz, Vernon S.; Vemuri, Prashanthi; Petersen, Ronald C.
2015-01-01
Summary Background As treatment of pre-clinical Alzheimer's disease (AD) becomes a focus of therapeutic intervention, observational research studies should recognize the overlap between imaging abnormalities associated with typical aging vs those associated with AD. Our objective was to characterize how typical aging and pre-clinical AD blend together with advancing age in terms of neurodegeneration and b-amyloidosis. Methods We measured age-specific frequencies of amyloidosis and neurodegeneration in 985 cognitively normal subjects age 50 to 89 from a population-based study of cognitive aging. Potential participants were randomly selected from the Olmsted County, Minnesota population by age- and sex-stratification and invited to participate in cognitive evaluations and undergo multimodality imaging. To be eligible for inclusion, subjects must have been judged clinically to have no cognitive impairment and have undergone amyloid PET, FDG PET and MRI. Imaging studies were obtained from March 2006 to December 2013. Amyloid positive/negative status (A+/A−) was determined by amyloid PET using Pittsburgh Compound B. Neurodegeneration positive/negative status (N+/N−) was determined by an AD-signature FDG PET measure and/or hippocampal volume on MRI. We labeled subjects positive or negative for neurodegeneration (FDG PET or MRI) or amyloidosis by using cutpoints defined such that 90% of 75 clinically diagnosed AD dementia subjects were categorized as abnormal. APOE genotype was assessed using DNA extracted from blood. Every individual was assigned to one of four groups: A−N−, A+N−, A−N+, or A+N+. Age specific frequencies of the 4 A/N groups were determined cross-sectionally using multinomial regression models. Associations with APOE ε4 and sex effects were evaluated by including these covariates in the multinomial models. Findings The population frequency of A−N− was 100% (n=985) at age 50 and declined thereafter. The frequency of A+N− increased to a maximum of 28% (95% CI, 24%-32%) at age 74 then decreased to 17% (95% CI, 11%-25%) by age 89. A−N+ increased from age 60 onward reaching a frequency of 24% (95% CI, 16%-34%) by age 89. A+N+ increased from age 65 onward reaching a frequency of 42% (95% CI, 31%-52%) by age 89. A+N− and A+N+ were more frequent in APOE ε4 carriers. A+N+ was more, and A+N− less frequent in men. Interpretation Accumulation of A/N imaging abnormalities is nearly inevitable by old age yet people are able to remain cognitively normal despite these abnormalities. . The multinomial models suggest the A/N frequency trends by age are modified by APOE ε4 , which increases risk for amyloidosis, and male sex, which increases risk for neurodegeneration. Changing A/N frequencies with age suggest that individuals may follow different pathophysiological sequences. Funding National Institute on Aging; Alexander Family Professorship of Alzheimer's Disease Research. PMID:25201514
Streit, Wolfgang J; Xue, Qing-Shan; Tischer, Jasmin; Bechmann, Ingo
2014-09-26
This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer's disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial pathology and its significance during aging and in the pathogenesis of Alzheimer dementia (AD). The identification of dystrophic (senescent) microglia has created an ostensible conflict with prior work claiming a role for activated microglia and neuroinflammation during normal aging and in AD, and this has raised a basic question: does the brain's immune system become hyperactive (inflamed) or does it become weakened (senescent) in elderly and demented people, and what is the impact on neuronal function and cognition? Here we strive to reconcile these seemingly contradictory notions by arguing that both low-grade neuroinflammation and microglial senescence are the result of aging-associated free radical injury. Both processes are damaging for microglia as they synergistically exhaust this essential cell population to the point where the brain's immune system is effete and unable to support neuronal function.
Neuropathology of dementia with Lewy bodies in advanced age: a comparison with Alzheimer disease.
Ubhi, Kiren; Peng, Kevin; Lessig, Stephanie; Estrella, Jennilyn; Adame, Anthony; Galasko, Douglas; Salmon, David P; Hansen, Lawrence A; Kawas, Claudia H; Masliah, Eliezer
2010-11-26
Dementia with Lewy Bodies (DLB) is a common neurodegenerative disorder of the aging population characterized by α-synuclein accumulation in cortical and subcortical regions. Although neuropathology in advanced age has been investigated in dementias such as Alzheimer Disease (AD), severity of the neuropathology in the oldest old with DLB remains uncharacterized. For this purpose we compared characteristics of DLB cases divided into three age groups 70-79, 80-89 and ≥ 90 years (oldest old). Neuropathological indicators and levels of synaptophysin were assessed and correlated with clinical measurements of cognition and dementia severity. These studies showed that frequency and severity of DLB was lower in 80-89 and ≥ 90 year cases compared to 70-79 year old group but cognitive impairment did not vary with age. The extent of AD neuropathology correlated with dementia severity only in the 70-79 year group, while synaptophysin immunoreactivity more strongly associated with dementia severity in the older age group in both DLB and AD. Taken together these results suggest that the oldest old with DLB might represent a distinct group. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Chen, Ying; Pham, Tuan D
2013-05-15
We apply for the first time the sample entropy (SampEn) and regularity dimension model for measuring signal complexity to quantify the structural complexity of the brain on MRI. The concept of the regularity dimension is based on the theory of chaos for studying nonlinear dynamical systems, where power laws and entropy measure are adopted to develop the regularity dimension for modeling a mathematical relationship between the frequencies with which information about signal regularity changes in various scales. The sample entropy and regularity dimension of MRI-based brain structural complexity are computed for early Alzheimer's disease (AD) elder adults and age and gender-matched non-demented controls, as well as for a wide range of ages from young people to elder adults. A significantly higher global cortical structure complexity is detected in AD individuals (p<0.001). The increase of SampEn and the regularity dimension are also found to be accompanied with aging which might indicate an age-related exacerbation of cortical structural irregularity. The provided model can be potentially used as an imaging bio-marker for early prediction of AD and age-related cognitive decline. Copyright © 2013 Elsevier B.V. All rights reserved.
Corlier, Fabian; Hafzalla, George; Faskowitz, Joshua; Kuller, Lewis H; Becker, James T; Lopez, Oscar L; Thompson, Paul M; Braskie, Meredith N
2018-05-15
Inflammatory processes may contribute to risk for Alzheimer's disease (AD) and age-related brain degeneration. Metabolic and genetic risk factors, and physical activity may, in turn, influence these inflammatory processes. Some of these risk factors are modifiable, and interact with each other. Understanding how these processes together relate to brain aging will help to inform future interventions to treat or prevent cognitive decline. We used brain magnetic resonance imaging (MRI) to scan 335 older adult humans (mean age 77.3 ± 3.4 years) who remained non-demented for the duration of the 9-year longitudinal study. We used structural equation modeling (SEM) in a subset of 226 adults to evaluate whether measures of baseline peripheral inflammation (serum C-reactive protein levels; CRP), mediated the baseline contributions of genetic and metabolic risk, and physical activity, to regional cortical thickness in AD-relevant brain regions at study year 9. We found that both baseline metabolic risk and AD risk variant apolipoprotein E ε4 (APOE4), modulated baseline serum CRP. Higher baseline CRP levels, in turn, predicted thinner regional cortex at year 9, and mediated an effect between higher metabolic risk and thinner cortex in those regions. A higher polygenic risk score composed of variants in immune-associated AD risk genes (other than APOE) was associated with thinner regional cortex. However, CRP levels did not mediate this effect, suggesting that other mechanisms may be responsible for the elevated AD risk. We found interactions between genetic and environmental factors and structural brain health. Our findings support the role of metabolic risk and peripheral inflammation in age-related brain decline. Copyright © 2018 Elsevier Inc. All rights reserved.
Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease
Swerdlow, Russell H.; Vidoni, Eric D.; Burns, Jeffrey M.
2011-01-01
Objective: Beyond age, having a family history is the most significant risk factor for Alzheimer disease (AD). This longitudinal brain imaging study examines whether there are differential patterns of regional gray matter atrophy in cognitively healthy elderly subjects with (FH+) and without (FH−) a family history of late-onset AD. Methods: As part of the KU Brain Aging Project, cognitively intact individuals with a maternal history (FHm, n = 11), paternal history (FHp, n = 10), or no parental history of AD (FH−, n = 32) similar in age, gender, education, and Mini-Mental State Examination (MMSE) score received MRI at baseline and 2-year follow-up. A custom voxel-based morphometry processing stream was used to examine regional differences in atrophy between FH groups, controlling for age, gender, and APOE ϵ4 (APOE4) status. We also analyzed APOE4-related atrophy. Results: Cognitively normal FH+ individuals had significantly increased whole-brain gray matter atrophy and CSF expansion compared to FH−. When FH+ groups were split, only FHm was associated with longitudinal measures of brain change. Moreover, our voxel-based analysis revealed that FHm subjects had significantly greater atrophy in the precuneus and parahippocampus/hippocampus regions compared to FH− and FHp subjects, independent of APOE4 status, gender, and age. Individuals with an ε4 allele had more regional atrophy in the frontal cortex compared to ε4 noncarriers. Conclusions: We conclude that FHm individuals without dementia have progressive gray matter volume reductions in select AD-vulnerable brain regions, specifically the precuneus and parahippocampal gyrus. These data complement and extend reports of regional cerebral metabolic differences and increases in amyloid-β burden in FHm subjects, which may be related to a higher risk for developing AD. PMID:21357834
Lemere, Cynthia A; Oh, Jiwon; Stanish, Heather A; Peng, Ying; Pepivani, Imelda; Fagan, Anne M; Yamaguchi, Haruyasu; Westmoreland, Susan V; Mansfield, Keith G
2008-04-01
Alzheimer's disease (AD) is the most common progressive form of dementia in the elderly. Two major neuropathological hallmarks of AD include cerebral deposition of amyloid-beta protein (Abeta) into plaques and blood vessels, and the presence of neurofibrillary tangles in brain. In addition, activated microglia and reactive astrocytes are often associated with plaques and tangles. Numerous other proteins are associated with plaques in human AD brain, including Apo E and ubiquitin. The amyloid precursor protein and its shorter fragment, Abeta, are homologous between humans and non-human primates. Cerebral Abeta deposition has been reported previously for rhesus monkeys, vervets, squirrel monkeys, marmosets, lemurs, cynomologous monkeys, chimpanzees, and orangutans. Here we report, for the first time, age-related neuropathological changes in cotton-top tamarins (CTT, Saguinus oedipus), an endangered non-human primate native to the rainforests of Colombia and Costa Rica. Typical lifespan is 13-14 years of age in the wild and 15-20+ years in captivity. We performed detailed immunohistochemical analyses of Abeta deposition and associated pathogenesis in archived brain sections from 36 tamarins ranging in age from 6-21 years. Abeta plaque deposition was observed in 16 of the 20 oldest tamarins (>12 years). Plaques contained mainly Abeta42, and in the oldest animals, were associated with reactive astrocytes, activated microglia, Apo E, and ubiquitin-positive dystrophic neurites, similar to human plaques. Vascular Abeta was detected in 14 of the 20 aged tamarins; Abeta42 preceded Abeta40 deposition. Phospho-tau labeled dystrophic neurites and tangles, typically present in human AD, were absent in the tamarins. In conclusion, tamarins may represent a model of early AD pathology.
Daulatzai, Mak Adam
2016-10-01
Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD.
Matsuda, Osamu; Saito, Masahiko; Kato, Mayumi; Azami, Hiroki; Shido, Emi
2015-03-01
This study examined the significance of age-related subtest scores from the Japanese version of the Wechsler Adult Intelligence Scale-III in patients in the early stages of Alzheimer's disease (AD). The subjects of this study included 58 elderly Japanese persons classified into two groups: AD group (n = 29) and control group (n = 29). These groups did not differ in age, years of education, gender ratio, Hasegawa's Dementia Scale-Revised score, or Full-Scale IQ score. No subject scored below the cut-off point on Hasegawa's Dementia Scale-Revised, a frequently used dementia screen test in Japan. At the index score level, General Ability Index scores were the only scores that differed significantly between the groups, with the AD group scoring significantly lower than the control group (P < 0.05, Hedges' g = 0.54). At the subtest level, information scores were the only scores that differed significantly between the groups, with the AD group significantly lower than the control group (P < 0.01, Hedges' g = 0.74). The General Ability Index is a composite score that deducts components of working memory and processing speed, which are sensitive to decline with normal ageing, from the Full-Scale IQ. It also served as a subtest measuring crystallized intelligence, especially of acquired knowledge of general and factual information. Therefore, the results of this study seem to suggest that Wechsler Adult Intelligence Scale-III profile of very early AD may be characterized by weak performance on subtests normally resistant to decline with ageing. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.
Messinis, Lambros; Nasios, Grigorios; Mougias, Antonios; Politis, Antonis; Zampakis, Petros; Tsiamaki, Eirini; Malefaki, Sonia; Gourzis, Phillipos; Papathanasopoulos, Panagiotis
2016-01-01
Rey's Auditory Verbal Learning Test (RAVLT) is a widely used neuropsychological test to assess episodic memory. In the present study we sought to establish normative and discriminative validity data for the RAVLT in the elderly population using previously adapted learning lists for the Greek adult population. We administered the test to 258 cognitively healthy elderly participants, aged 60-89 years, and two patient groups (192 with amnestic mild cognitive impairment, aMCI, and 65 with Alzheimer's disease, AD). From the statistical analyses, we found that age and education contributed significantly to most trials of the RAVLT, whereas the influence of gender was not significant. Younger elderly participants with higher education outperformed the older elderly with lower education levels. Moreover, both clinical groups performed significantly worse on most RAVLT trials and composite measures than matched cognitively healthy controls. Furthermore, the AD group performed more poorly than the aMCI group on most RAVLT variables. Receiver operating characteristic (ROC) analysis was used to examine the utility of the RAVLT trials to discriminate cognitively healthy controls from aMCI and AD patients. Area under the curve (AUC), an index of effect size, showed that most of the RAVLT measures (individual and composite) included in this study adequately differentiated between the performance of healthy elders and aMCI/AD patients. We also provide cutoff scores in discriminating cognitively healthy controls from aMCI and AD patients, based on the sensitivity and specificity of the prescribed scores. Moreover, we present age- and education-specific normative data for individual and composite scores for the Greek adapted RAVLT in elderly subjects aged between 60 and 89 years for use in clinical and research settings.
Traditional used Plants against Cognitive Decline and Alzheimer Disease
Eckert, Gunter Peter
2010-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by progressive memory deficits, impaired cognitive function, and altered and inappropriate behavior. Aging represents the most important risk factor for AD and the global trend in the phenomenon of population aging has dramatic consequences for public health, healthcare financing, and delivery systems in the word and, especially in developing countries. Mounting evidence obtained in in vitro and in vivo studies, suggests that various traditionally used plants in Asia, India, and Europe significantly affect key metabolic alterations culminating in AD-typical neurodegeneration. The present article aims to bring the reader up-to-date on the most recent studies and advances describing the direct and indirect activities of traditional used plants and its constituents possibly relieving features of AD. A variety of traditional used plants and its extracts exerted activities on AD related drug targets including AChE activity, antioxidative activity, modulation of Aβ-producing secretase activities, Aβ-degradation, heavy metal chelating, induction of neurotrophic factors, and cell death mechanisms. Although pre-clinical investigations identified promising drug candidates for AD, clinical evidences are still pending. PMID:21833177
Recall bias in childhood atopic diseases among adults in the Odense Adolescence Cohort Study.
Mortz, Charlotte G; Andersen, Klaus E; Bindslev-Jensen, Carsten
2015-11-01
Atopic dermatitis (AD) is a common disease in childhood and an important risk factor for the later development of other atopic diseases. Many publications on childhood AD use questionnaires based on information obtained in adulthood, which introduce the possibility of recall bias. In a prospective cohort study, recall bias was evaluated in 1,501 unselected schoolchildren (mean age 14 years) evaluated for the first time in 1995 with a standardized questionnaire combined with a clinical examination and repeated in 2010. The lifetime prevalence of AD was 34.1% including data obtained both during school age and 15 years later, compared with 23.6% including data only from adulthood. The most important factors for remembering having had AD in childhood were: (i) long duration of dermatitis in childhood; (ii) adult hand eczema; and (iii) concomitant atopic disease. Recall bias for childhood AD affected the results of logistic regression on adult hand eczema and is a significant problem in retrospective epidemiological questionnaire studies evaluating previous AD as a risk factor for development of other diseases.
Genetic association between ghrelin polymorphisms and Alzheimer's disease in a Japanese population.
Shibata, Nobuto; Ohnuma, Tohru; Kuerban, Bolati; Komatsu, Miwa; Arai, Heii
2011-01-01
Ghrelin has been reported to enter the hippocampus and to bind to the neurons of the hippocampal formation. This peptide also affects neuronal glucose uptake and decreases tau hyperphosphorylation. There is increasing evidence suggesting an association between ghrelin and Alzheimer's disease (AD) pathology. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) of the ghrelin gene are associated with AD. The SNPs were genotyped using TaqMan technology and were analyzed using a case-control study design. Our case-control dataset consisted of 182 AD patients and 143 age-matched controls. Hardy-Weinberg equilibrium and linkage disequilibrium analyses suggest that the region in and around the gene is highly polymorphic. One SNP, rs4684677 (Leu90Gln), showed a marginal association with age of AD onset. We did not detect any association between the other SNPs of the ghrelin gene and AD. There have been few genetic studies on the relationship between circulating ghrelin and functional SNPs. Further multifactorial studies are needed to clarify the relationship between ghrelin and AD. Copyright © 2011 S. Karger AG, Basel.
Design of comprehensive Alzheimer's disease centers to address unmet national needs.
Trojanowski, John Q; Arnold, Steven E; Karlawish, Jason H; Brunden, Kurt; Cary, Mark; Davatzikos, Christos; Detre, John; Gaulton, Glen; Grossman, Murray; Hurtig, Howard; Jedrziewski, Kathryn; McCluskey, Leo; Naylor, Mary; Polsky, Daniel; Schellenberg, Gerard D; Siderowf, Andrew; Shaw, Leslie M; Van Deerlin, Vivianna; Wang, Li-San; Werner, Rachel; Xie, Sharon X; Lee, Virginia M-Y
2010-03-01
The problem of Alzheimer's disease (AD) exemplifies the challenges of dealing with a broad range of aging-related chronic disorders that require long-term, labor-intensive, and expensive care. As the baby boom generation ages and brain diseases become more prevalent, the need to confront the pending health care crisis is more urgent than ever before. Indeed, there is now a critical need to expand significantly the national effort to solve the problem of AD, with special focus on prevention. The Campaign to Prevent Alzheimer's Disease by 2020 (PAD2020) aims to create a new paradigm for planning and supporting the organization of worldwide cooperative research networks to develop new technologies for early detection and treatments of aging-related memory and motor impairments. PAD 2020 is developing an implementation plan to justify (1) increasing the federal budget for research, (2) developing novel national resources to discover new interventions for memory and motor disorders, and (3) creating innovative and streamlined decision-making processes for selecting and supporting new ideas. Since 1978 the National Institute on Aging or National Institute of Health (NIH) established an extensive national network of AD research facilities at academic institutions including AD Centers (ADCs), Consortium to Establish a Registry for AD, AD Cooperative Study (ADCS), AD Drug Discovery Program, National Alzheimer's Coordinating Center, National Cell Repository for AD, and AD Neuroimaging Initiative. However, despite the success of these programs and their critical contributions, they are no longer adequate to meet the challenges presented by AD. PAD 2020 is designed to address these changes by improving the efficiency and effectiveness of these programs. For example, the ADCs (P30s and P50s) can be enhanced by converting some into Comprehensive Alzheimer's Disease Centers (CADCs) to support not only research, but also by being demonstration projects on care/treatment, clinical trials, and education as well as by seamlessly integrating multisite collaborative studies (ADCS, AD Neuroimaging Initiative, Patient Registries, Clinical Data Banks, etc) into a cohesive structure that further enhances the original mission of the National Institute on Aging ADCs. Regional CADCs offer greater efficiency and cost savings while serving as coordinating hubs of existing ADCs, thereby offering greater economies of scale and programmatic integration. The CADCs also broaden the scope of ADC activities to include research on interventions, diagnosis, imaging, prevention trials, and other longitudinal studies that require long-term support. Thus, CADCs can address the urgent need to identify subjects at high risk of AD for prevention trials and very early in the course of AD for clinical trials of disease modification. The enhanced CADCs will allow more flexibility among ADCs by supporting collaborative linkages with other institutions and drawing on a wider expertise from different locations. This perspective article describes the University of Pennsylvania (Penn) CADC Model as an illustrative example of how an existing ADC can be converted into a CADC by better utilization of Penn academic resources to address the wide range of problems concerning AD. The intent of this position paper is to stimulate thinking and foster the development of other or alternative models for a systematic approach to the study of dementia and movement disorders. 2010 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Role of Pro-Inflammatory Cytokines and Vitamin D in Probable Alzheimer's Disease with Depression
Banerjee, Anindita; Khemka, Vineet Kumar; Roy, Debashree; Dhar, Aparajita; Sinha Roy, Tapan Kumar; Biswas, Atanu; Mukhopadhyay, Barun; Chakrabarti, Sasanka
2017-01-01
Symptoms of depression are present in a significant proportion of Alzheimer's disease (AD) patients. While epidemiological studies have shown a strong association between depression and AD, it has not been established whether depression is a risk factor or merely a co-morbidity of AD. It is also uncertain if depression affects the pathogenesis of AD. In this paper, we address these questions by measuring the serum levels of two common metabolic risk factors of AD and depression, inflammatory cytokines (IL 6 and TNF alpha) and serum 25-hydroxyvitamin D, in a case-control study. We measured the serum levels of IL 6, TNF α and 25-hydroxyvitamin D in age-matched healthy controls (n= 60) and in AD patients without depression (n=26) or AD patients with depression (n=34), and statistically analyzed the changes in these parameters among different groups under this study. Our results show that in AD there is a significant increase in IL 6 and TNF α and a marked decrease in 25-hydroxyvitamin D in the peripheral circulation compared to age-matched healthy controls. Furthermore, AD patients with depression have even significantly higher levels of IL 6 or TNF α and a lower level of 25-hydroxyvitamin D in circulation than in AD patients without depression. We also found a strong statistical correlation between the disease severity and the serum levels of IL 6, TNF α and 25-hydroxyvitamin D in AD patients with depression. These results suggest that altered circulating levels of common metabolic risk factors lead to the co-existence of depression with AD in many patients, and when they co-exist, the depression presumably affects the severity of AD presentations through more aggravated changes in these risk factors. PMID:28580183
University education and cervical artery dissection.
Kellert, Lars; Grau, Armin; Pezzini, Alessandro; Debette, Stéphanie; Leys, Didier; Caso, Valeria; Thijs, Vincent N; Bersano, Anna; Touzé, Emmanuel; Tatlisumak, Turgut; Traenka, Christopher; Lyrer, Philippe A; Engelter, Stefan T; Metso, Tiina M; Grond-Ginsbach, Caspar; Kloss, Manja
2018-05-01
We investigated whether university education is more likely in cervical artery dissection (CeAD)-patients than in age- and sex-matched patients with ischemic stroke (IS) due to other causes (non-CeAD-IS-patients). Patients from the Cervical Artery Dissection and Ischemic Stroke Patients study with documented self-reported profession before onset of IS due to CeAD (n = 715) or non-CeAD causes (n = 631) were analyzed. In the reported profession, the absence or presence of university education was assessed. Professions could be rated as academic or non-academic in 518 CeAD and 456 non-CeAD patients. Clinical outcome at 3 months was defined as excellent if modified Rankin Scale was 0-1. University education was more frequent in CeAD-patients (100 of 518, 19.3%) than in non-CeAD-IS-patients (61 of 456, 13.4%, p = 0.008). CeAD-patients with and without university education differed significantly with regard to smoking (39 vs. 57%, p = 0.001) and excellent outcome (80 vs. 66%, p = 0.004). In logistic regression analysis, university education was associated with excellent outcome in CeAD-patients (OR 2.44, 95% CI 1.37-5.38) independent of other outcome predictors such as age (OR 0.97, 95% CI 0.84-0.99), NIHSS (OR 0.80, 95% CI 0.76-0.84) and local signs (OR 2.77, 95% CI 1.37-5.57). We observed a higher rate of university education in patients with CeAD compared with non-CeAD patients in our study population. University education was associated with favorable outcome in CeAD-patients. The mechanism behind this association remains unclear.
Mehta, Kala M.; Stewart, Anita L.; Langa, Kenneth M.; Yaffe, Kristine; Moody-Ayers, Sandra; Williams, Brie A.; Covinsky, Kenneth E.
2009-01-01
Background: Low formal education level is becoming accepted as a risk factor for Alzheimer's disease (AD). Though increasing attention has been paid to educational quality differences, no prior studies have addressed participants' own characterization of their overall performance in school. We examined whether self-assessed school performance is associated with AD beyond the effects of educational level alone. Methods: Participants were drawn from the population-representative Aging, Demographics and Memory Study (ADAMS), 2000-2002. ADAMS participants were asked about their performance in school; possible response options were ‘above average,’ ‘average,’ or ‘below average’. ADAMS participants also had a full neuropsychological battery and were given a research diagnosis of possible/probable AD. Results: The 725 participants (mean age 81.8 years, 59% female, and 16% African-American) varied in their educational performance: 29% reported ‘above average’; 64% ‘average’; and 7% reported ‘below average’ school performance. Participants with lower self-assessed school performance had higher proportions of AD: eleven percent of participants with above average self-assessed performance had AD; 12 percent of participants with ‘average’ performance and 26% of participants with ‘below average’ performance (p<0.001). After controlling for subjects' years in school, literacy test score(W-RAT), age, sex, race/ethnicity, and ApoE-ε4 status, socioeconomic status and self-reported comorbidity, respondents with ‘below average’ self-assessed school performance were 4 times more likely to have AD compared to those who had average performance.(OR 4.0; 95% CI 1.2-14) Above average' and ‘average’ self-assessed school performance did not increase or decrease the odds of AD.(OR 0.9; 95% CI 0.5-1.7) Conclusion: We suggest an association between ‘below average’ self-assessed school performance and AD beyond the known association with formal education. Efforts to increase cognitive reserve through better school performance in addition to increasing the number of years of formal education in early life may be important to reduce vulnerability throughout the life course. PMID:19751917
Tournissac, Marine; Vandal, Milène; François, Arnaud; Planel, Emmanuel; Calon, Frédéric
2017-02-01
Thermoregulatory deficits coincide with a rise in the incidence of Alzheimer's disease (AD) in old age. Lower body temperature increases tau phosphorylation, a neuropathological hallmark of AD. To determine whether old age potentiates cold-induced tau phosphorylation, we compared the effects of cold exposure (4 °C, 24 hours) in 6- and 18-month-old mice. Cold-induced changes in body temperature, brown adipose tissue activity, and phosphorylation of tau at Ser202 were not different between 6- and 18-month-old mice. However, following cold exposure, only old mice displayed a significant rise in soluble tau pThr181 and pThr231, which was correlated with body temperature. Inactivation of glycogen synthase kinase 3β was more prominent in young mice, suggesting a protective mechanism against cold-induced tau phosphorylation. These results suggest that old age confers higher susceptibility to tau hyperphosphorylation following a change in body temperature, thereby contributing to an enhanced risk of developing AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Gleichmann, Marc; Zhang, Yongqing; Wood, William H.; Becker, Kevin G.; Mughal, Mohamed R.; Pazin, Michael J.; van Praag, Henriette; Kobilo, Tali; Zonderman, Alan B.; Troncoso, Juan C.; Markesbery, William R.; Mattson, Mark P.
2010-01-01
Activity-dependent modulation of neuronal gene expression promotes neuronal survival and plasticity, and neuronal network activity is perturbed in aging and Alzheimer’s disease (AD). Here we show that cerebral cortical neurons respond to chronic suppression of excitability by downregulating the expression of genes and their encoded proteins involved in inhibitory transmission (GABAergic and somatostatin) and Ca2+ signaling; alterations in pathways involved in lipid metabolism and energy management are also features of silenced neuronal networks. A molecular fingerprint strikingly similar to that of diminished network activity occurs in the human brain during aging and in AD, and opposite changes occur in response to activation of N-methyl-D-aspartate (NMDA) and brain-derived neurotrophic factor (BDNF) receptors in cultured cortical neurons and in mice in response to an enriched environment or electroconvulsive shock. Our findings suggest that reduced inhibitory neurotransmission during aging and in AD may be the result of compensatory responses that, paradoxically, render the neurons vulnerable to Ca2+-mediated degeneration. PMID:20947216
Miranda, Andre M; Herman, Mathieu; Cheng, Rong; Nahmani, Eden; Barrett, Geoffrey; Micevska, Elizabeta; Fontaine, Gaelle; Potier, Marie-Claude; Head, Elizabeth; Schmitt, Frederick A; Lott, Ira T; Jiménez-Velázquez, Ivonne Z; Antonarakis, Stylianos E; Di Paolo, Gilbert; Lee, Joseph H; Hussaini, S Abid; Marquer, Catherine
2018-06-05
The phosphoinositide phosphatase synaptojanin 1 (SYNJ1) is a key regulator of synaptic function. We first tested whether SYNJ1 contributes to phenotypic variations in familial Alzheimer's disease (FAD) and show that SYNJ1 polymorphisms are associated with age of onset in both early- and late-onset human FAD cohorts. We then interrogated whether SYNJ1 levels could directly affect memory. We show that increased SYNJ1 levels in autopsy brains from adults with Down syndrome (DS/AD) are inversely correlated with synaptophysin levels, a direct readout of synaptic integrity. We further report age-dependent cognitive decline in a mouse model overexpressing murine Synj1 to the levels observed in human sporadic AD, triggered through hippocampal hyperexcitability and defects in the spatial reproducibility of place fields. Taken together, our findings suggest that SYNJ1 contributes to memory deficits in the aging hippocampus in all forms of AD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Wildburger, Norelle C; Gyngard, Frank; Guillermier, Christelle; Patterson, Bruce W; Elbert, Donald; Mawuenyega, Kwasi G; Schneider, Theresa; Green, Karen; Roth, Robyn; Schmidt, Robert E; Cairns, Nigel J; Benzinger, Tammie L S; Steinhauser, Matthew L; Bateman, Randall J
2018-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder with clinical manifestations of progressive memory decline and loss of executive function and language. AD affects an estimated 5.3 million Americans alone and is the most common form of age-related dementia with a rapidly growing prevalence among the aging population-those 65 years of age or older. AD is characterized by accumulation of aggregated amyloid-beta (Aβ) in the brain, which leads to one of the pathological hallmarks of AD-Aβ plaques. As a result, Aβ plaques have been extensively studied after being first described over a century ago. Advances in brain imaging and quantitative measures of Aβ in biological fluids have yielded insight into the time course of plaque development decades before and after AD symptom onset. However, despite the fundamental role of Aβ plaques in AD, in vivo measures of individual plaque growth, growth distribution, and dynamics are still lacking. To address this question, we combined stable isotope labeling kinetics (SILK) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging in an approach termed SILK-SIMS to resolve plaque dynamics in three human AD brains. In human AD brain, plaques exhibit incorporation of a stable isotope tracer. Tracer enrichment was highly variable between plaques and the spatial distribution asymmetric with both quiescent and active nanometer sub-regions of tracer incorporation. These data reveal that Aβ plaques are dynamic structures with deposition rates over days indicating a highly active process. Here, we report the first, direct quantitative measures of in vivo deposition into plaques in human AD brain. Our SILK-SIMS studies will provide invaluable information on plaque dynamics in the normal and diseased brain and offer many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development.
Association of GSK3B With Alzheimer Disease and Frontotemporal Dementia
Schaffer, Barbara A. J.; Bertram, Lars; Miller, Bruce L.; Mullin, Kristina; Weintraub, Sandra; Johnson, Nancy; Bigio, Eileen H.; Mesulam, Marsel; Wiedau-Pazos, Martina; Jackson, George R.; Cummings, Jeffrey L.; Cantor, Rita M.; Levey, Allan I.; Tanzi, Rudolph E.; Geschwind, Daniel H.
2009-01-01
Background Deposits of abnormally hyperphosphorylated tau are a hallmark of several dementias, including Alzheimer disease (AD), and about 10% of familial frontotemporal dementia (FTD) cases are caused by mutations in the tau gene. As a known tau kinase, GSK3B is a promising candidate gene in the remaining cases of FTD and in AD, for which tau mutations have not been found. Objective To examine the promoter of GSK3B and all 12 exons, including the surrounding intronic sequence, in patients with FTD, patients with AD, and aged healthy subjects to identify single-nucleotide polymorphisms associated with disease. Design, Setting, and Participants Single-nucleotide polymorphism frequency was examined in a case-control cohort of 48 patients with probable AD, 102 patients with FTD, 38 patients with primary progressive aphasia, and 85 aged healthy subjects. Results were followed up in 2 independent AD family samples consisting of 437 multiplex families with AD (National Institute of Mental Health Genetics Initiative AD Study) or 150 sibships discordant for AD (Consortium on Alzheimer’s Genetics Study). Results Several rare sequence variants in GSK3B were identified in the case-control study. An intronic polymorphism (IVS2−68G>A) occurred at more than twice the frequency among patients with FTD (10.8%) and patients with AD (14.6%) than in aged healthy subjects (4.1%). The polymorphism showed association with disease in both follow-up samples independently, although only the Consortium on Alzheimer’s Genetics sample showed the same direction of association as the case-control sample. Conclusions To our knowledge, this is the first evidence that a gene known to be involved in tau phosphorylation, GSK3B, is associated with risk for primary neurodegenerative dementias. This supports previous work in animal models suggesting that such genes are therapeutic targets. PMID:18852354
Garza-Manero, Sylvia; Arias, Clorinda; Bermúdez-Rattoni, Federico; Vaca, Luis; Zepeda, Angélica
2015-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore, the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs), a class of small non-coding RNAs of 22–25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD). We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in the 3xTg-AD mice. PMID:25745387
Garza-Manero, Sylvia; Arias, Clorinda; Bermúdez-Rattoni, Federico; Vaca, Luis; Zepeda, Angélica
2015-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore, the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs), a class of small non-coding RNAs of 22-25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD). We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in the 3xTg-AD mice.
Bentley, P.; Driver, J.; Dolan, R.J.
2008-01-01
Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visual attentional processing would be impaired relative to controls, yet partially susceptible to improvement with cholinesterase inhibition. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of the effects of physostigmine on stimulus- and attention-related brain activations, and to allow between-group comparisons for these. Subjects viewed stimuli comprising faces or buildings while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed poorer than controls in both tasks, while physostigmine benefited AD patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in AD relative to controls but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed enhanced stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. Our results demonstrate cholinergic-mediated improvements for both stimulus- and attention-dependent responses in functionally affected extrastriate and frontoparietal regions for AD. We also show that normal stimulus- and task-dependent activity patterns can be perturbed in the healthy brain by cholinergic stimulation. PMID:18077465
Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease
Smith, Charles D.; Abner, Erin L.; Wilfred, Bernard J.; Wang, Wang-Xia; Neltner, Janna H.; Baker, Michael; Fardo, David W.; Kryscio, Richard J.; Scheff, Stephen W.; Jicha, Gregory A.; Jellinger, Kurt A.; Van Eldik, Linda J.; Schmitt, Frederick A.
2013-01-01
Hippocampal sclerosis of aging (HS-Aging) is a causative factor in a large proportion of elderly dementia cases. The current definition of HS-Aging rests on pathologic criteria: neuronal loss and gliosis in the hippocampal formation that is out of proportion to AD-type pathology. HS-Aging is also strongly associated with TDP-43 pathology. HS-Aging pathology appears to be most prevalent in the oldest-old: autopsy series indicate that 5–30 % of nonagenarians have HS-Aging pathology. Among prior studies, differences in study design have contributed to the study-to-study variability in reported disease prevalence. The presence of HS-Aging pathology correlates with significant cognitive impairment which is often misdiagnosed as AD clinically. The antemortem diagnosis is further confounded by other diseases linked to hippocampal atrophy including frontotemporal lobar degeneration and cerebrovascular pathologies. Recent advances characterizing the neurocognitive profile of HS-Aging patients have begun to provide clues that may help identify living individuals with HS-Aging pathology. Structural brain imaging studies of research subjects followed to autopsy reveal hippocampal atrophy that is substantially greater in people with eventual HS-Aging pathology, compared to those with AD pathology alone. Data are presented from individuals who were followed with neurocognitive and neuroradiologic measurements, followed by neuropathologic evaluation at the University of Kentucky. Finally, we discuss factors that are hypothesized to cause or modify the disease. We conclude that the published literature on HS-Aging provides strong evidence of an important and under-appreciated brain disease of aging. Unfortunately, there is no therapy or preventive strategy currently available. PMID:23864344
Giaccone, Giorgio
2015-01-01
The distinction between Alzheimer's disease (AD) and Primary Age-Related Tauopathy (PART) is a hotly debated issue. As most lines of evidence support the tenet that tau pathology occurs downstream of amyloid-β deposition, it seems reasonable to consider PART as a separate disease process not necessarily related to Aβ and hence AD. Following this view, the early stages of neurofibrillary pathology may not always be the forerunner of diffuse neurofibrillary changes and AD. The ongoing debate further enhances the need for greater caution against any future predictions using tau cerebrospinal fluid and imaging biomarkers.
Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori
2015-01-01
Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123
[Validity and reliability of the CERAD-Col neuropsychological battery].
Aguirre-Acevedo, D C; Gómez, R D; Moreno, S; Henao-Arboleda, E; Motta, M; Muñoz, C; Arana, A; Pineda, D A; Lopera, F
Alzheimer's disease (AD) is an important public health problem due to its disabling character and high individual, familial and social costs. The CERAD neuropsychological battery has been widely used for evaluation and diagnosis of the cognitive deficit associated with AD. This instrument has been adapted to the Colombian culture (CERAD-Col) for the Neurosciences Group. A study was carried out to establish the validity and reliability of the CERAD-Col in Colombian, Spanish-speaking individuals aged 50 years or more. It included 151 controls and 151 AD patients. Controls were selected from a convenience sample of 848 adults aged 50 years or more. The construct validity was determined in three ways: 1) factorial analysis; 2) correlation with the functional scales FAST and GDS (convergent-type validity) and, 3) comparison between the two groups. Internal consistency was determined by means of Cronbach's alpha coefficient. Three factors -memory, language and praxis- explained 88% of the total variance. Moderate but statistically significant correlations were found between neuropsychological tests and functional scales. Internal consistency and test-retest reproducibility were high. The AD group exhibited significantly lower scores (p < 0.05) than the control one. CERAD-Col is valid and reliable for the diagnosis of AD in Colombian Spanish-speaking population aged 50 years or more.
Lee, Joseph H; Gurney, Susan; Pang, Deborah; Temkin, Alexis; Park, Naeun; Janicki, Sarah C; Zigman, Warren B; Silverman, Wayne; Tycko, Benjamin; Schupf, Nicole
2012-01-01
Background/Aims. Genetic variants that affect estrogen activity may influence the risk of Alzheimer's disease (AD). In women with Down syndrome, we examined the relation of polymorphisms in hydroxysteroid-17beta-dehydrogenase (HSD17B1) to age at onset and risk of AD. HSD17B1 encodes the enzyme 17β-hydroxysteroid dehydrogenase (HSD1), which catalyzes the conversion of estrone to estradiol. Methods. Two hundred and thirty-eight women with DS, nondemented at baseline, 31-78 years of age, were followed at 14-18-month intervals for 4.5 years. Women were genotyped for 5 haplotype-tagging single-nucleotide polymorphisms (SNPs) in the HSD17B1 gene region, and their association with incident AD was examined. Results. Age at onset was earlier, and risk of AD was elevated from two- to threefold among women homozygous for the minor allele at 3 SNPs in intron 4 (rs676387), exon 6 (rs605059), and exon 4 in COASY (rs598126). Carriers of the haplotype TCC, based on the risk alleles for these three SNPs, had an almost twofold increased risk of developing AD (hazard ratio = 1.8, 95% CI, 1.1-3.1). Conclusion. These findings support experimental and clinical studies of the neuroprotective role of estrogen.
Chen, Yanxing; Dai, Chun-Ling; Wu, Zhe; Iqbal, Khalid; Liu, Fei; Zhang, Baorong; Gong, Cheng-Xin
2017-01-01
General anesthesia increases the risk for cognitive impairment post operation, especially in the elderly and vulnerable individuals. Recent animal studies on the impact of anesthesia on postoperative cognitive impairment have provided some valuable insights, but much remains to be understood. Here, by using mice of various ages and conditions, we found that anesthesia with propofol and sevoflurane caused significant deficits in spatial learning and memory, as tested using Morris Water Maze (MWM) 2-6 days after anesthesia exposure, in aged (17-18 months old) wild-type (WT) mice and in adult (7-8 months old) 3xTg-AD mice (a triple transgenic mouse model of Alzheimer's disease (AD)), but not in adult WT mice. Anesthesia resulted in long-term neurobehavioral changes in the fear conditioning task carried out 65 days after exposure to anesthesia in 3xTg-AD mice. Importantly, daily intranasal administration of insulin (1.75 U/mouse/day) for only 3 days prior to anesthesia completely prevented the anesthesia-induced deficits in spatial learning and memory and the long-term neurobehavioral changes tested 65 days after exposure to anesthesia in 3xTg-AD mice. These results indicate that aging and AD-like brain pathology increase the vulnerability to cognitive impairment after anesthesia and that intranasal treatment with insulin can prevent anesthesia-induced cognitive impairment.
Ramos-Rodriguez, Juan Jose; Spires-Jones, Tara; Pooler, Amy M; Lechuga-Sancho, Alfonso Maria; Bacskai, Brian J; Garcia-Alloza, Monica
2017-07-01
Age remains the main risk factor for developing Alzheimer's disease (AD) although certain metabolic alterations, including prediabetes and type 2 diabetes (T2D), may also increase this risk. In order to understand this relationship, we have studied an AD-prediabetes mouse model (APP/PS1) with severe hyperinsulinemia induced by long-term high fat diet (HFD), and an AD-T2D model, generated by crossing APP/PS1 and db/db mice (APP/PS1xdb/db). In both, prediabetic and diabetic AD mice, we have analyzed underlying neuronal pathology and synaptic loss. At 26 weeks of age, when both pathologies were clearly established, we observed severe brain atrophy in APP/PS1xdb/db animals as well as cortical thinning, accompanied by increased caspase activity. Reduced senile plaque burden and elevated soluble Aβ40 and 42 levels were observed in AD-T2D mice. Further assessment revealed a significant increase of neurite curvature in prediabetic-AD mice, and this effect was worsened in AD-T2D animals. Synaptic density loss, analyzed by array tomography, revealed a synergistic effect between T2D and AD, whereas an intermediate state was observed, once more, in prediabetic-AD mice. Altogether, our data suggest that early prediabetic hyperinsulinemia may exacerbate AD pathology, and that fully established T2D clearly worsens these effects. Therefore, it is feasible that early detection of prediabetic state and strict metabolic control could slow or delay progression of AD-associated neuropathological features.
Ho, Y-H; Huang, Y-T; Lu, Y-C; Lee, S-Y; Tsai, M-F; Hung, S-P; Hsu, T-Y
2017-01-01
Despite the widely accepted concept that probiotics confer miscellaneous benefits to hosts, the controversies surrounding these health-promoting claims cannot be ignored. These controversies hinder development and innovation in this field. To clarify the effects of age and gender on probiotic-induced immune responses, we recruited 1613 Taiwanese individuals and calculated the ratio of IFN-γ to IL-10 production after each individual's PBMCs were stimulated by six probiotic strains (L. paracasei BRAP01, L. acidophilus AD300, B. longum BA100, E. faecium BR0085, L. rhamnosus AD500 and L. reuteri BR101). Our results indicated that gender and age have only minor effects on the immune modulation of probiotics. Additionally, we showed that L. paracasei BRAP01 and L. acidophilus AD300 are the two dominant strains inducing IFN-γ/IL-10 production in Taiwanese individuals and that L. reuteri BR101 was the most effective stimulator of IL-10/IFN-γ. Additionally, a significant inverse relationship between the ability of L. paracasei BRAP01 and L. rhamnosus AD500 to stimulate IFN-γ/IL-10 or IL-10/IFN-γ production was also observed. Our results indicated that age and gender have only minor effects on the immune modulation abilities of probiotics.
Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats
Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong
2014-01-01
Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672
Atsma, Femke; van der Schouw, Yvonne T; Grobbee, Diederick E; Hoes, Arno W; Bartelink, Marie-Louise E L
2008-11-12
The aim of the present study was to investigate the added value of age at menopause and the lifetime cumulative number of menstrual cycles in cardiovascular risk prediction in postmenopausal women. This study included 971 women. The ankle-arm index was used as a proxy for cardiovascular morbidity and mortality. The ankle-arm index was calculated for each leg by dividing the highest ankle systolic blood pressure by the highest brachial systolic blood pressure. A cut-off value of 0.95 was used to differentiate between low and high risk women. Three cardiovascular risk models were constructed. In the initial model all classical predictors for cardiovascular disease were investigated. This model was then extended by age at menopause or the lifetime cumulative number of menstrual cycles to test their added value for cardiovascular risk prediction. Differences in discriminative power between the models were investigated by comparing the area under the receiver operating characteristic (ROC) curves. The mean age was 66.0 (+/-5.6) years. The 6 independent predictors for cardiovascular disease were age, systolic blood pressure, total to HDL cholesterol ratio, current smoking, glucose level, and body mass index > or =30 kg/m(2). The ROC area was 0.69 (0.64-0.73) and did not change when age at menopause or the lifetime cumulative number of menstrual cycles was added. The findings in this study among postmenopausal women did not support the view that age at menopause or a refined estimation of lifetime endogenous estrogen exposure would improve cardiovascular risk prediction as approximated by the ankle-arm index.
Hawkes, Cheryl A; Gatherer, Maureen; Sharp, Matthew M; Dorr, Adrienne; Yuen, Ho Ming; Kalaria, Rajesh; Weller, Roy O; Carare, Roxana O
2013-04-01
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Loss-of-Function PCSK9 Mutations Are Not Associated With Alzheimer Disease.
Paquette, Martine; Saavedra, Yascara Grisel Luna; Poirier, Judes; Théroux, Louise; Dea, Doris; Baass, Alexis; Dufour, Robert
2018-03-01
Hypercholesterolemia is a major risk factor for the late-onset form of Alzheimer disease (AD). Loss-of-function (LOF) mutations of PCSK9 and PCSK9 inhibitors lower low-density lipoprotein cholesterol (LDL-C) and have been associated with a reduced risk of cardiovascular disease. The aim of this study was to examine the effect of PCSK9 LOF variants on risk and age of onset of AD. A total of 878 participants (410 controls and 468 AD cases) from the Quebec Founder Population were included in the study. Fifty-four (6.2%) participants carried the R46L mutation, whereas 226 (26.2%) participants carried the InsLEU mutation. There was no protective or no deleterious effect of carrying PCSK9 LOF mutations on AD prevalence nor on age of onset, even when stratified by apolipoprotein E epsilon 4 genotype or by gender. Our data indicate that carrying PCSK9 LOF mutations has a neutral effect on neurocognitive health and the prevalence of AD.
Research recruitment using Facebook advertising: big potential, big challenges.
Kapp, Julie M; Peters, Colleen; Oliver, Debra Parker
2013-03-01
To our knowledge, ours is the first study to report on Facebook advertising as an exclusive mechanism for recruiting women ages 35-49 years residing in the USA into a health-related research study. We directed our survey to women ages 35-49 years who resided in the USA exclusively using three Facebook advertisements. Women were then redirected to our survey site. There were 20,568,960 women on Facebook that met the eligibility criteria. The three ads resulted in 899,998 impressions with a reach of 374,225 women. Of the women reached, 280 women (0.075 %) clicked the ad. Of the women who clicked the ad, nine women (3.2 %) proceeded past the introductory page. Social networking, and in particular Facebook, is an innovative venue for recruiting participants for research studies. Challenges include developing an ad to foster interest without biasing the sample, and motivating women who click the ad to complete the survey. There is still much to learn about this potential method of recruitment.
Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.
Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B
2017-09-01
Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.
Head, Elizabeth; Murphey, Heather L; Dowling, Amy L S; McCarty, Katie L; Bethel, Samuel R; Nitz, Jonathan A; Pleiss, Melanie; Vanrooyen, Jenna; Grossheim, Mike; Smiley, Jeffery R; Murphy, M Paul; Beckett, Tina L; Pagani, Dieter; Bresch, Frederick; Hendrix, Curt
2012-01-01
Alzheimer's disease (AD) involves multiple pathological processes in the brain, including increased inflammation and oxidative damage, as well as the accumulation of amyloid-β (Aβ) plaques. We hypothesized that a combinatorial therapeutic approach to target these multiple pathways may provide cognitive and neuropathological benefits for AD patients. To test this hypothesis, we used a canine model of human aging and AD. Aged dogs naturally develop learning and memory impairments, human-type Aβ deposits, and oxidative damage in the brain. Thus, 9 aged beagles (98-115 months) were treated with a medical food cocktail containing (1) an extract of turmeric containing 95% curcuminoids; (2) an extract of green tea containing 50% epigallocatechingallate; (3) N-acetyl cysteine; (4) R-alpha lipoic acid; and (5) an extract of black pepper containing 95% piperine. Nine similarly aged dogs served as placebo-treated controls. After 3 months of treatment, 13 dogs completed a variable distance landmark task used as a measure of spatial attention. As compared to placebo-treated animals, dogs receiving the medical food cocktail had significantly lower error scores (t11 = 4.3, p = 0.001) and were more accurate across all distances (F(1,9) = 20.7, p = 0.001), suggesting an overall improvement in spatial attention. Measures of visual discrimination learning, executive function and spatial memory, and levels of brain and cerebrospinal fluid Aβ were unaffected by the cocktail. Our results indicate that this medical food cocktail may be beneficial for improving spatial attention and motivation deficits associated with impaired cognition in aging and AD.
Alzheimer's disease prevention: A way forward.
Bermejo-Pareja, F; Llamas-Velasco, S; Villarejo-Galende, A
2016-12-01
This review proposes a more optimistic view of Alzheimer's disease (AD), in contrast to that contributed by the ageing of the population and the failure of potentially curative therapies (vaccines and others). Treatment failure is likely due to the fact that AD gestates in the brain for decades but manifests in old age. This review updates the concept of AD and presents the results of recent studies that show that primary prevention can reduce the incidence and delay the onset of the disease. Half of all cases of AD are potentially preventable through education, the control of cardiovascular risk factors, the promotion of healthy lifestyles and specific drug treatments. These approaches could substantially reduce the future incidence rate of this disease. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Exposure to food advertising on television among US children.
Powell, Lisa M; Szczypka, Glen; Chaloupka, Frank J
2007-06-01
To examine exposure to food advertising on television (TV) among children aged 2 through 11 years. Weighted examination of the distribution of national advertisements (ads) using TV ratings data. National ads from 170 top-rated TV shows viewed by children aged 2 through 11 years from September 1, 2003, through May 31, 2004. Sample of 224,083 ads. Television nonprogram content time was assessed across 6 mutually exclusive categories that included food products, non-fast food restaurants, fast food restaurants, other products, public service announcements, and TV promotions. Food advertising was assessed according to 7 food categories--cereal, snacks, sweets, beverages, fast food restaurants, non-fast food restaurants, and other food products--and then examined across more detailed categories. In 2003-2004, 27.2% and 36.4% of children's exposure to total nonprogram content time and product advertising, respectively, was for food-related products. Similar distributions were found by race. Cereal was the most frequently seen food product, making up 27.6% of all food ads. Comparisons with previous studies suggest that, over time, food ads account for a smaller share of the product ads seen by US children. Children aged 2 through 11 years are exposed to a substantial amount of food advertising through TV, but the dramatic increase in childhood obesity rates during the past few decades was not mirrored by similar changes in food advertising exposure. However, we found evidence of a very recent (2000-2005) upward trend in the amount of exposure to food advertising on TV among US children.
A nationwide survey of pediatric acquired demyelinating syndromes in Japan
Yamaguchi, Y.; Kira, R.; Ishizaki, Y.; Sakai, Y.; Sanefuji, M.; Ichiyama, T.; Oka, A.; Kishi, T.; Kimura, S.; Kubota, M.; Takanashi, J.; Takahashi, Y.; Tamai, H.; Natsume, J.; Hamano, S.; Hirabayashi, S.; Maegaki, Y.; Mizuguchi, M.; Minagawa, K.; Yoshikawa, H.; Kira, J.; Kusunoki, S.; Hara, T.
2016-01-01
Objective: To investigate the clinical and epidemiologic features of pediatric acquired demyelinating syndromes (ADS) of the CNS in Japan. Methods: We conducted a nationwide survey and collected clinical data on children with ADS aged 15 years or younger, who visited hospitals between 2005 and 2007. Results: Among 977 hospitals enrolled, 723 (74.0%) responded to our inquiries and reported a total of 439 patients as follows: 244 with acute disseminated encephalomyelitis (ADEM), 117 with multiple sclerosis (MS), 14 with neuromyelitis optica (NMO), and 64 with other ADS. We collected and analyzed detailed data from 204 cases, including those with ADEM (66), MS (58), and NMO (10). We observed the following: (1) the estimated annual incidence rate of pediatric ADEM in Japan was 0.40 per 100,000 children (95% confidence interval [CI], 0.34–0.46), with the lowest prevalence in the north; (2) the estimated prevalence rate of MS was 0.69 per 100,000 children (95% CI, 0.58–0.80), with the lowest prevalence in the south; (3) NMO in Japan was rare, with an estimated prevalence of 0.06 per 100,000 children (95% CI, 0.04–0.08); and (4) the sex ratio and mean age at onset varied by ADS type, and (5) male/female ratios correlated with ages at onset in each ADS group. Conclusions: Our results clarify the characteristic clinical features of pediatric ADS in the Japanese population. PMID:27742816
Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults.
Berti, Valentina; Walters, Michelle; Sterling, Joanna; Quinn, Crystal G; Logue, Michelle; Andrews, Randolph; Matthews, Dawn C; Osorio, Ricardo S; Pupi, Alberto; Vallabhajosula, Shankar; Isaacson, Richard S; de Leon, Mony J; Mosconi, Lisa
2018-05-15
To examine in a 3-year brain imaging study the effects of higher vs lower adherence to a Mediterranean-style diet (MeDi) on Alzheimer disease (AD) biomarker changes (brain β-amyloid load via 11 C-Pittsburgh compound B [PiB] PET and neurodegeneration via 18 F-fluorodeoxyglucose [FDG] PET and structural MRI) in midlife. Seventy 30- to 60-year-old cognitively normal participants with clinical, neuropsychological, and dietary examinations and imaging biomarkers at least 2 years apart were examined. These included 34 participants with higher (MeDi+) and 36 with lower (MeDi-) MeDi adherence. Statistical parametric mapping and volumes of interest were used to compare AD biomarkers between groups at cross section and longitudinally. MeDi groups were comparable for clinical and neuropsychological measures. At baseline, compared to the MeDi+ group, the MeDi- group showed reduced FDG-PET glucose metabolism (CMRglc) and higher PiB-PET deposition in AD-affected regions ( p < 0.001). Longitudinally, the MeDi--group showed CMRglc declines and PiB increases in these regions, which were greater than those in the MeDi+ group ( p interaction < 0.001). No effects were observed on MRI. Higher MeDi adherence was estimated to provide 1.5 to 3.5 years of protection against AD. Lower MeDi adherence was associated with progressive AD biomarker abnormalities in middle-aged adults. These data support further investigation of dietary interventions for protection against brain aging and AD. © 2018 American Academy of Neurology.
Estrogen receptor β in Alzheimer's disease: From mechanisms to therapeutics.
Zhao, Liqin; Woody, Sarah K; Chhibber, Anindit
2015-11-01
Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for AD has been largely associated with the loss of ovarian sex hormones during menopause. This review examines the current understanding of the role of estrogen receptor β (ERβ) in the regulation of neurological health and its implication in the development and intervention of AD. Since its discovery in 1996, research conducted over the last 15-20 years has documented a great deal of evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from development to aging. ERβ genetic polymorphisms have been associated with cognitive impairment and increased risk for AD predominantly in women. The role of ERβ in the intervention of AD has been demonstrated by the alteration of AD pathology in response to treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and tangle histopathological presentations as well as learning and memory deficits. Future studies that explore the potential interactions between ERβ signaling and the genetic isoforms of human apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically needed. The current trend of lost-in-translation in AD drug development that has primarily been based on early-onset familial AD (FAD) models underscores the urgent need for novel models that recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD representing more than 95% of the current human AD population. Combining the use of FAD-related models that generally have excellent face validity with SAD-related models that hold more reliable construct validity would together increase the predictive validity of preclinical findings for successful translation into humans. Copyright © 2015 Elsevier B.V. All rights reserved.
Patel, Tejas K; Patel, Parvati B
2018-06-01
The aim of this study was to estimate the prevalence of mortality among patients due to adverse drug reactions that lead to hospitalisation (fatal ADR Ad ), to explore the heterogeneity in its estimation through subgroup analysis of study characteristics, and to identify system-organ classes involved and causative drugs for fatal ADR Ad . We identified prospective ADR Ad -related studies via screening of the PubMed and Google Scholar databases with appropriate key terms. We estimated the prevalence of fatal ADR Ad using a double arcsine method and explored heterogeneity using the following study characteristics: age groups, wards, study region, ADR definitions, ADR identification methods, study duration and sample size. We examined patterns of fatal ADR Ad and causative drugs. Among 312 full-text articles assessed, 49 studies satisfied the selection criteria and were included in the analysis. The mean prevalence of fatal ADR Ad was 0.20% (95% CI: 0.13-0.27%; I 2 = 93%). The age groups and study wards were the important heterogeneity modifiers. The mean fatal ADR Ad prevalence varied from 0.01% in paediatric patients to 0.44% in the elderly. Subgroup analysis showed a higher prevalence of fatal ADR Ad in intensive care units, emergency departments, multispecialty wards and whole hospitals. Computer-based monitoring systems in combination with other methods detected higher mortality. Intracranial haemorrhage, renal failure and gastrointestinal bleeding accounted for more than 50% of fatal ADR Ad cases. Warfarin, aspirin, renin-angiotensin system (RAS) inhibitors and digoxin accounted for 60% of fatal ADR Ad . ADR Ad is an important cause of mortality. Strategies targeting the safer use of warfarin, aspirin, RAS inhibitors and digoxin could reduce the large number of fatal ADR Ad cases.
Markers of Alzheimer's Disease in Primary Visual Cortex in Normal Aging in Mice.
Hernández-Zimbrón, Luis Fernando; Perez-Hernández, Montserrat; Torres-Romero, Abigail; Gorostieta-Salas, Elisa; Gonzalez-Salinas, Roberto; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo; Zenteno, Edgar
2017-01-01
Aging is the principal risk factor for the development of Alzheimer's disease (AD). The hallmarks of AD are accumulation of the amyloid- β peptide 1-42 (A β 42) and abnormal hyperphosphorylation of Tau (p-Tau) protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, A β 42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of A β 42, p-Tau, glial-acidic fibrillary protein (GFAP), and presenilin-2, one of the main enzymes involved in A β 42 production. Our results show a significant increase of A β 42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of A β 42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging.
van Geldorp, Bonnie; Heringa, Sophie M; van den Berg, Esther; Olde Rikkert, Marcel G M; Biessels, Geert Jan; Kessels, Roy P C
2015-01-01
Recent studies indicate that in both normal and pathological aging working memory (WM) performance deteriorates, especially when associations have to be maintained. However, most studies typically do not assess the relationship between WM and episodic memory formation. In the present study, we examined WM and episodic memory formation in normal aging and in patients with early Alzheimer's disease (mild cognitive impairment, MCI; and Alzheimer's dementia, AD). In the first study, 26 young adults (mean age 29.6 years) were compared to 18 middle-aged adults (mean age 52.2 years) and 25 older adults (mean age 72.8 years). We used an associative delayed-match-to-sample WM task, which requires participants to maintain two pairs of faces and houses presented on a computer screen for short (3 s) or long (6 s) maintenance intervals. After the WM task, an unexpected subsequent associative memory task was administered (two-alternative forced choice). In the second study, 27 patients with AD and 19 patients with MCI were compared to 25 older controls, using the same paradigm as that in Experiment 1. Older adults performed worse than both middle-aged and young adults. No effect of delay was observed in the healthy adults, and pairs that were processed during long maintenance intervals were not better remembered in the subsequent memory task. In the MCI and AD patients, longer maintenance intervals hampered the task performance. Also, both patient groups performed significantly worse than controls on the episodic memory task as well as the associative WM task. Aging and AD present with a decline in WM binding, a finding that extends similar results in episodic memory. Longer delays in the WM task did not affect episodic memory formation. We conclude that WM deficits are found when WM capacity is exceeded, which may occur during associative processing.
The Rhetorical Construction of the AD/HD Subject: Managing the Self
ERIC Educational Resources Information Center
Comstock, Edward
2015-01-01
As the diagnosis of AD/HD becomes more frequent in our schools, and as many individuals across ages embrace an AD/HD identity, scholars need to account for the lived experience of the disorder to understand the meanings individuals give to it. This paper analyses the relationship between ethical practices of self-formation, power, and knowledge…
2010-01-01
Background Alzheimer's Disease (AD) affects a growing proportion of the population each year. Novel therapies on the horizon may slow the progress of AD symptoms and avoid cases altogether. Initiating treatment for the underlying pathology of AD would ideally be based on biomarker screening tools identifying pre-symptomatic individuals. Early-stage modeling provides estimates of potential outcomes and informs policy development. Methods A time-to-event (TTE) simulation provided estimates of screening asymptomatic patients in the general population age ≥55 and treatment impact on the number of patients reaching AD. Patients were followed from AD screen until all-cause death. Baseline sensitivity and specificity were 0.87 and 0.78, with treatment on positive screen. Treatment slowed progression by 50%. Events were scheduled using literature-based age-dependent incidences of AD and death. Results The base case results indicated increased AD free years (AD-FYs) through delays in onset and a reduction of 20 AD cases per 1000 screened individuals. Patients completely avoiding AD accounted for 61% of the incremental AD-FYs gained. Total years of treatment per 1000 screened patients was 2,611. The number-needed-to-screen was 51 and the number-needed-to-treat was 12 to avoid one case of AD. One-way sensitivity analysis indicated that duration of screening sensitivity and rescreen interval impact AD-FYs the most. A two-way sensitivity analysis found that for a test with an extended duration of sensitivity (15 years) the number of AD cases avoided was 6,000-7,000 cases for a test with higher sensitivity and specificity (0.90,0.90). Conclusions This study yielded valuable parameter range estimates at an early stage in the study of screening for AD. Analysis identified duration of screening sensitivity as a key variable that may be unavailable from clinical trials. PMID:20433705
Furiak, Nicolas M; Klein, Robert W; Kahle-Wrobleski, Kristin; Siemers, Eric R; Sarpong, Eric; Klein, Timothy M
2010-04-30
Alzheimer's Disease (AD) affects a growing proportion of the population each year. Novel therapies on the horizon may slow the progress of AD symptoms and avoid cases altogether. Initiating treatment for the underlying pathology of AD would ideally be based on biomarker screening tools identifying pre-symptomatic individuals. Early-stage modeling provides estimates of potential outcomes and informs policy development. A time-to-event (TTE) simulation provided estimates of screening asymptomatic patients in the general population age > or =55 and treatment impact on the number of patients reaching AD. Patients were followed from AD screen until all-cause death. Baseline sensitivity and specificity were 0.87 and 0.78, with treatment on positive screen. Treatment slowed progression by 50%. Events were scheduled using literature-based age-dependent incidences of AD and death. The base case results indicated increased AD free years (AD-FYs) through delays in onset and a reduction of 20 AD cases per 1000 screened individuals. Patients completely avoiding AD accounted for 61% of the incremental AD-FYs gained. Total years of treatment per 1000 screened patients was 2,611. The number-needed-to-screen was 51 and the number-needed-to-treat was 12 to avoid one case of AD. One-way sensitivity analysis indicated that duration of screening sensitivity and rescreen interval impact AD-FYs the most. A two-way sensitivity analysis found that for a test with an extended duration of sensitivity (15 years) the number of AD cases avoided was 6,000-7,000 cases for a test with higher sensitivity and specificity (0.90,0.90). This study yielded valuable parameter range estimates at an early stage in the study of screening for AD. Analysis identified duration of screening sensitivity as a key variable that may be unavailable from clinical trials.
Coronas-Samano, Guillermo; Baker, Keeley L.; Tan, Winston J. T.; Ivanova, Alla V.; Verhagen, Justus V.
2016-01-01
Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4–5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral deficits of the Fus1 KO mice at this relatively young age are highly relevant to sAD, making them suitable for effective research on pharmacological targets in the context of early intervention of sAD. PMID:27895577
Dodge, Hiroko H.; Zhu, Jian; Woltjer, Randy; Nelson, Peter T.; Bennett, David A.; Cairns, Nigel J.; Fardo, David W.; Kaye, Jeffrey A.; Lyons, Deniz-Erten; Mattek, Nora; Schneider, Julie A; Silbert, Lisa C.; Xiong, Chengjie; Yu, Lei; Schmitt, Frederick A.; Kryscio, Richard J.; Abner, Erin L.
2016-01-01
Introduction Presence of cerebrovascular pathology may increase the risk of clinical diagnosis of AD. Methods We examined excess risk of incident clinical diagnosis of AD (probable and possible AD) posed by the presence of lacunes and large infarcts beyond AD pathology using data from the Statistical Modelling of Aging and Risk of Transition (SMART) study, a consortium of longitudinal cohort studies with over 2000 autopsies. We created six mutually exclusive pathology patterns combining three levels of AD pathology (low, moderate or high AD pathology) and two levels of vascular pathology (without lacunes and large infarcts or with lacunes and/or large infarcts). Results The coexistence of lacunes and large infarcts results in higher likelihood of clinical diagnosis of AD only when AD pathology burden is low. Discussion Our results reinforce the diagnostic importance of AD pathology in clinical AD. Further harmonization of assessment approaches for vascular pathologies is required. PMID:28017827
Helzner, E P.; Scarmeas, N; Cosentino, S; Tang, M X.; Schupf, N; Stern, Y
2008-01-01
Objective: To describe factors associated with survival in Alzheimer disease (AD) in a multiethnic, population-based longitudinal study. Methods: AD cases were identified in the Washington Heights Inwood Columbia Aging Project, a longitudinal, community-based study of cognitive aging in Northern Manhattan. The sample comprised 323 participants who were initially dementia-free but developed AD during study follow-up (incident cases). Participants were followed for an average of 4.1 (up to 12.6) years. Possible factors associated with shorter lifespan were assessed using Cox proportional hazards models with attained age as the time to event (time from birth to death or last follow-up). In subanalyses, median postdiagnosis survival durations were estimated using postdiagnosis study follow-up as the timescale. Results: The mortality rate was 10.7 per 100 person-years. Mortality rates were higher among those diagnosed at older ages, and among Hispanics compared to non-Hispanic whites. The median lifespan of the entire sample was 92.2 years (95% CI: 90.3, 94.1). In a multivariable-adjusted Cox model, history of diabetes and history of hypertension were independently associated with a shorter lifespan. No differences in lifespan were seen by race/ethnicity after multivariable adjustment. The median postdiagnosis survival duration was 3.7 years among non-Hispanic whites, 4.8 years among African Americans, and 7.6 years among Hispanics. Conclusion: Factors influencing survival in Alzheimer disease include race/ethnicity and comorbid diabetes and hypertension. GLOSSARY AD = Alzheimer disease; NDI = National Death Index; WHICAP = Washington Heights Inwood Columbia Aging Project. PMID:18981370
Dim light melatonin onset in alcohol-dependent men and women compared with healthy controls.
Conroy, Deirdre A; Hairston, Ilana S; Arnedt, J Todd; Hoffmann, Robert F; Armitage, Roseanne; Brower, Kirk J
2012-02-01
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean ± SD age: 36.0 ± 11.0 yrs of age, 10 women) who were 3-12 wks since their last drink (abstinence: 57.9 ± 19.3 d) and 19 age- and sex-matched HCs (34.4 ± 10.6 yrs, 5 women). Following a 23:00-06:00 h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00 h bedtime) during which salivary melatonin samples were collected every 30 min beginning at 19:30 h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02 ± 00:41 h, than in HC, 20:44 ± 00:21 h (t = -2.4, p = .02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18 min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats.
Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease.
Pennisi, Manuela; Crupi, Rosalia; Di Paola, Rosanna; Ontario, Maria Laura; Bella, Rita; Calabrese, Edward J; Crea, Roberto; Cuzzocrea, Salvatore; Calabrese, Vittorio
2017-07-01
Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dalton, Madeline A; Longacre, Meghan R; Drake, Keith M; Cleveland, Lauren P; Harris, Jennifer L; Hendricks, Kristy; Titus, Linda J
2017-06-01
To determine whether exposure to child-targeted fast-food (FF) television (TV) advertising is associated with children's FF intake in a non-experimental setting. Cross-sectional survey conducted April-December 2013. Parents reported their pre-school child's TV viewing time, channels watched and past-week FF consumption. Responses were combined with a list of FF commercials (ads) aired on children's TV channels during the same period to calculate children's exposure to child-targeted TV ads for the following chain FF restaurants: McDonald's, Subway and Wendy's (MSW). Paediatric and Women, Infants, and Children (WIC) clinics in New Hampshire, USA. Parents (n 548) with a child of pre-school age. Children's mean age was 4·4 years; 43·2 % ate MSW in the past week. Among the 40·8 % exposed to MSW ads, 23·3 % had low, 34·2 % moderate and 42·5 % high exposure. McDonald's accounted for over 70 % of children's MSW ad exposure and consumption. Children's MSW consumption was significantly associated with their ad exposure, but not overall TV viewing time. After adjusting for demographics, socio-economic status and other screen time, moderate MSW ad exposure was associated with a 31 % (95 % CI 1·12, 1·53) increase and high MSW ad exposure with a 26 % (95 % CI 1·13, 1·41) increase in the likelihood of consuming MSW in the past week. Further adjustment for parent FF consumption did not change the findings substantially. Exposure to child-targeted FF TV advertising is positively associated with FF consumption among children of pre-school age, highlighting the vulnerability of young children to persuasive advertising and supporting recommendations to limit child-directed FF marketing.