Science.gov

Sample records for age related cognitive

  1. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  2. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  3. The Role of Social Activity in Age-Cognition Relations

    ERIC Educational Resources Information Center

    Soubelet, Andrea

    2013-01-01

    The goal of the current project was to examine whether engaging in social activity may moderate or mediate the relation between age and cognitive functioning. A large age range sample of adults performed a variety of cognitive tests and completed a social activities questionnaire. Results did not support the moderator hypothesis, as age…

  4. Computer Use and the Relation between Age and Cognitive Functioning

    ERIC Educational Resources Information Center

    Soubelet, Andrea

    2012-01-01

    This article investigates whether computer use for leisure could mediate or moderate the relations between age and cognitive functioning. Findings supported smaller age differences in measures of cognitive functioning for people who reported spending more hours using a computer. Because of the cross-sectional design of the study, two alternative…

  5. Epigenetic modification of PKMζ rescues aging-related cognitive impairment

    PubMed Central

    Chen, Chen; Meng, Shi-Qiu; Xue, Yan-Xue; Han, Ying; Sun, Cheng-Yu; Deng, Jia-Hui; Chen, Na; Bao, Yan-Ping; Zhang, Fei-Long; Cao, Lin-Lin; Zhu, Wei-Guo; Shi, Jie; Song, Wei-Hong; Lu, Lin

    2016-01-01

    Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue. PMID:26926225

  6. The Relation Between Instrumental Musical Activity and Cognitive Aging

    PubMed Central

    Hanna-Pladdy, Brenda; MacKay, Alicia

    2015-01-01

    Objective Intensive repetitive musical practice can lead to bilateral cortical reorganization. However, whether musical sensorimotor and cognitive abilities transfer to nonmusical cognitive abilities that are maintained throughout the life span is unclear. In an attempt to identify modifiable lifestyle factors that may potentially enhance successful aging, we evaluated the association between musical instrumental participation and cognitive aging. Method Seventy older healthy adults (ages 60–83) varying in musical activity completed a comprehensive neuropsychological battery. The groups (nonmusicians, low and high activity musicians) were matched on age, education, history of physical exercise, while musicians were matched on age of instrumental acquisition and formal years of musical training. Musicians were classified in the low (1–9 years) or high (>10 years) activity group based on years of musical experience throughout their life span. Results The results of this preliminary study revealed that participants with at least 10 years of musical experience (high activity musicians) had better performance in nonverbal memory (η2 = .106), naming (η2 = .103), and executive processes (η2 = .131) in advanced age relative to nonmusicians. Several regression analyses evaluated how years of musical activity, age of acquisition, type of musical training, and other variables predicted cognitive performance. Conclusions These correlational results suggest a strong predictive effect of high musical activity throughout the life span on preserved cognitive functioning in advanced age. A discussion of how musical participation may enhance cognitive aging is provided along with other alternative explanations. PMID:21463047

  7. Unique Relations of Age and Delinquency with Cognitive Control

    ERIC Educational Resources Information Center

    Iselin, Anne-Marie R.; DeCoster, Jamie

    2012-01-01

    Context processing has significant empirical support as an explanation of age- and psychopathology-related deficiencies in cognitive control. We examined whether context processing generalizes to younger individuals who are in trouble with the law. We tested whether age and delinquency might have unique relations to context processing skills in…

  8. Age-related difference in relationships between cognitive processing speed and general cognitive status.

    PubMed

    Tam, Helena M K; Lam, Charlene L M; Huang, Haixia; Wang, Baolan; Lee, Tatia M C

    2015-01-01

    General cognitive status (GCS) is a composite of cognitive abilities reflecting full function. The literature suggests a relationship between cognitive processing speed and GCS, as well as age-related changes of processing speed on cognitive performance. Therefore, this study recruited 34 younger and 39 older adults to verify age-related differences in relationships between cognitive processing speed and GCS. We measured cognitive processing speed with the Processing Speed Index of the Wechsler Adult Intelligence Scale. Findings indicated that cognitive processing speed predicted GCS in older but not younger adults. Future research may be needed to verify the training effect of processing speed on GCS. This study also further examined cognitive factors related to processing speed in aging and the relationships between cognitive processing speed and verbal fluency, cognitive inhibition, and divided attention. A stepwise regression analysis indicated that only verbal fluency contributed significantly to cognitive processing speed in older adults, accounting for 21% of the variance. These observations suggest that age-related changes of prefrontal regions may not fully explain age-related decline in cognitive processing speed. PMID:24927241

  9. Stress-Related Cognitive Interference Predicts Cognitive Function in Old Age

    PubMed Central

    Stawski, Robert S.; Sliwinski, Martin J.; Smyth, Joshua M.; University, Syracuse

    2010-01-01

    Both subjective distress and cognitive interference have been proposed as mechanisms underlying the negative effects of stress on cognition. Studies of aging have shown that distress is associated with lower cognitive performance, but none have examined the effects of cognitive interference. One hundred eleven older adults (Mage = 80) completed measures of working memory, processing speed, and episodic memory as well as self-report measures of subjective distress and cognitive interference. Cognitive interference was strongly associated with poorer performance on all 3 cognitive constructs, whereas distress was only modestly associated with lower working memory. The results suggest that cognitive process related to stress is an important predictor of cognitive function in advanced age. PMID:16953715

  10. BOLD Variability is Related to Dopaminergic Neurotransmission and Cognitive Aging.

    PubMed

    Guitart-Masip, Marc; Salami, Alireza; Garrett, Douglas; Rieckmann, Anna; Lindenberger, Ulman; Bäckman, Lars

    2016-05-01

    Dopamine (DA) losses are associated with various aging-related cognitive deficits. Typically, higher moment-to-moment brain signal variability in large-scale patterns of voxels in neocortical regions is linked to better cognitive performance and younger adult age, yet the physiological mechanisms regulating brain signal variability are unknown. We explored the relationship among adult age, DA availability, and blood oxygen level-dependent (BOLD) signal variability, while younger and older participants performed a spatial working memory (SWM) task. We quantified striatal and extrastriatal DA D1 receptor density with [(11)C]SCH23390 and positron emission tomography in all participants. We found that BOLD variability in a neocortical region was negatively related to age and positively related to SWM performance. In contrast, BOLD variability in subcortical regions and bilateral hippocampus was positively related to age and slower responses, and negatively related to D1 density in caudate and dorsolateral prefrontal cortex. Furthermore, BOLD variability in neocortical regions was positively associated with task-related disengagement of the default-mode network, a network whose activation needs to be suppressed for efficient SWM processing. Our results show that age-related DA losses contribute to changes in brain signal variability in subcortical regions and suggest a potential mechanism, by which neocortical BOLD variability supports cognitive performance. PMID:25750252

  11. Veterans have less age-related cognitive decline.

    PubMed

    McLay, R N; Lyketsos, C G

    2000-08-01

    Military service involves exposure to a number of stresses, both psychological and physical. On the other hand, military personnel generally maintain excellent fitness, and veterans have increased access to education and health care. The overall effect on age-related cognitive decline, whether for good or ill, of having served in the armed forces has not been investigated previously. In this study, we examined a diverse population of 208 veterans and 1,216 civilians followed as part of the Epidemiologic Catchment Area Study in 1981, 1982, and 1993 to 1996. We examined change in Mini-Mental State Examination (MMSE) score after a median of 11.5 years. Veterans were found to have significantly less decrease in MMSE scores at follow-up even after sex, race, and education were taken into account. These results suggest an overall positive effect of military service on the rate of age-related cognitive decline. PMID:10957857

  12. Disconnected aging: cerebral white matter integrity and age-related differences in cognition.

    PubMed

    Bennett, I J; Madden, D J

    2014-09-12

    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. PMID:24280637

  13. Developmental Change and Intraindividual Variability: Relating Cognitive Aging to Cognitive Plasticity, Cardiovascular Lability, and Emotional Diversity

    PubMed Central

    Ram, Nilam; Gerstorf, Denis; Lindenberger, Ulman; Smith, Jacqui

    2010-01-01

    Repeated assessments obtained over years can be used to measure individuals’ developmental change, whereas repeated assessments obtained over a few weeks can be used to measure individuals’ dynamic characteristics. Using data from a burst of measurement embedded in the Berlin Aging Study (BASE: Baltes & Mayer, 1999), we illustrate and examine how long-term changes in cognitive ability are related to short-term changes in cognitive performance, cardiovascular function, and emotional experience. Our findings suggest that “better” cognitive aging over approximately13 years was associated with greater cognitive plasticity, less cardiovascular lability, and less emotional diversity over approximately 2 weeks at age 90 years. The study highlights the potential benefits of multi-time scale longitudinal designs for the study of individual function and development. PMID:21443355

  14. The role of cognition in age-related hearing loss.

    PubMed

    Craik, Fergus I M

    2007-01-01

    The article presents a commentary on the accompanying six papers from the perspective of a cognitive psychologist. Treisman's (1964, 1969) levels of analysis model of selective attention is suggested as a framework within which the interactions between 'bottom-up' auditory factors and 'top-down' cognitive factors may be understood. The complementary roles of auditory and cognitive aspects of hearing are explored, and their mutually compensatory properties discussed. The findings and ideas reported in the six accompanying papers fit well into such a 'levels of processing' framework, which may therefore be proposed as a model for understanding the effects of aging on speech processing and comprehension. PMID:18236642

  15. Age-related cognitive decline during normal aging: the complex effect of education.

    PubMed

    Ardila, A; Ostrosky-Solis, F; Rosselli, M; Gómez, C

    2000-08-01

    The purpose of this study was to further analyze the effects of education on cognitive decline during normal aging. An 806-subject sample was taken from five different Mexican regions. Participants ranged in age from 16 to 85 years. Subjects were grouped into four educational levels: illiterate, 1-4, 5-9, and 10 or more years of education, and four age ranges: 16-30, 31-50, 51-65, and 66-85 years. A brief neuropsychological test battery (NEUROPSI), standardized and normalized in Spanish, was administered. The NEUROPSI test battery includes assessment of orientation, attention, memory, language, visuoperceptual abilities, motor skills, and executive functions. In general, test scores were strongly associated with level of educational, and differences among age groups were smaller than differences among education groups. However, there was an interaction between age and education such as that among illiterate individuals scores of participants 31-50 years old were higher than scores of participants 16-30 years old for over 50% of the tests. Different patterns of interaction among educational groups were distinguished. It was concluded that: (a) The course of life-span changes in cognition are affected by education. Among individuals with a low level of education, best neuropsychological test performance is observed at an older age than among higher-educated subjects; and (b) there is not a single relationship between age-related cognitive decline and education, but different patterns may be found, depending upon the specific cognitive domain. PMID:14590204

  16. Conscientiousness, Dementia Related Pathology, and Trajectories of Cognitive Aging

    PubMed Central

    Wilson, Robert S.; Boyle, Patricia A.; Yu, Lei; Segawa, Eisuke; Sytsma, Joel; Bennett, David A.

    2015-01-01

    The study aim was to determine the contribution of dementia related pathologies to the association of conscientiousness with late-life cognitive health. At enrollment in 2 longitudinal clinical-pathologic cohort studies, 309 older persons without cognitive impairment completed a standard conscientiousness measure. Annually thereafter, they completed a battery of 17 cognitive tests. Upon death, they underwent a uniform neuropathologic examination from which measures of neurofibrillary tangles, Lewy bodies, chronic gross cerebral infarction, and hippocampal sclerosis were derived. The relation of conscientiousness and the neuropathologic markers to cognitive decline was assessed in mixed-effects change point models to accommodate nonlinear cognitive decline. During a mean of 10.7 years of follow-up, annual decline on a composite measure of global cognition (baseline mean=0.082, SD = 0.499) was gradual (estimated mean = −0.036, 95% confidence interval [CI]: −0.046, −0.025) until a mean of 3.2 years before death (95% CI: −3.6, −2.8) when it accelerated to a mean annual loss of 0.369-unit (95% CI: −0.426,−0.317), a tenfold increase. Higher conscientiousness (baseline mean = 33.6, SD = 5.1) was associated with slower terminal decline (estimate=0.064, 95% CI: 0.024, 0.103) but not preterminal decline (estimate =0.005, 95% CI: −0.003, 0.013). After adjustment for neuropathologic burden, conscientiousness was still related to terminal decline (estimate = 0.057, 95% CI: 0.019, 0.094) and accounted for 4% of the variance in terminal slopes. In addition, the association of neocortical Lewy bodies with terminal cognitive decline was attenuated in those with higher conscientiousness. The results suggest that higher conscientiousness is protective of late-life cognitive health. PMID:25664558

  17. Closed-Loop Rehabilitation of Age-Related Cognitive Disorders

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2015-01-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual’s neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  18. Closed-loop rehabilitation of age-related cognitive disorders.

    PubMed

    Mishra, Jyoti; Gazzaley, Adam

    2014-11-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual's neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  19. Multiple Brain Markers are Linked to Age-Related Variation in Cognition.

    PubMed

    Hedden, Trey; Schultz, Aaron P; Rieckmann, Anna; Mormino, Elizabeth C; Johnson, Keith A; Sperling, Reisa A; Buckner, Randy L

    2016-04-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342

  20. From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.

    PubMed

    Maillet, David; Schacter, Daniel L

    2016-01-01

    The majority of studies that have investigated the effects of healthy aging on cognition have focused on age-related differences in voluntary and deliberately engaged cognitive processes. Yet many forms of cognition occur spontaneously, without any deliberate attempt at engaging them. In this article we review studies that have assessed age-related differences in four such types of spontaneous thought processes: mind-wandering, involuntary autobiographical memory, intrusive thoughts, and spontaneous prospective memory retrieval. These studies suggest that older adults exhibit a reduction in frequency of both mind-wandering and involuntary autobiographical memory, whereas findings regarding intrusive thoughts have been more mixed. Additionally, there is some preliminary evidence that spontaneous prospective memory retrieval may be relatively preserved in aging. We consider the roles of age-related differences in cognitive resources, motivation, current concerns and emotional regulation in accounting for these findings. We also consider age-related differences in the neural correlates of spontaneous cognitive processes. PMID:26617263

  1. The potential effects of meditation on age-related cognitive decline: a systematic review

    PubMed Central

    Gard, Tim; Hölzel, Britta K.; Lazar, Sara W.

    2014-01-01

    With a rapidly aging society it becomes increasingly important to counter normal age-related decline in cognitive functioning. Growing evidence suggests that cognitive training programs may have the potential to counteract this decline. On the basis of a growing body of research that shows that meditation has positive effects on cognition in younger and middle-aged adults, meditation may be able to offset normal age-related cognitive decline or even enhance cognitive function in older adults. In this paper, we review studies investigating the effects of meditation on age-related cognitive decline. We searched the Web of Science (1900 to present), PsycINFO (1597 to present), MEDLINE (1950 to present), and CABI (1910 to present) to identify original studies investigating the effects of meditation on cognition and cognitive decline in the context of aging. Twelve studies were included in the review, six of which were randomized controlled trials. Studies involved a wide variety of meditation techniques and reported preliminary positive effects on attention, memory, executive function, processing speed, and general cognition. However, most studies had a high risk of bias and small sample sizes. Reported dropout rates were low and compliance rates high. We conclude that meditation interventions for older adults are feasible, and preliminary evidence suggests that meditation can offset age-related cognitive decline. PMID:24571182

  2. Effects of a computer-based cognitive exercise program on age-related cognitive decline.

    PubMed

    Bozoki, Andrea; Radovanovic, Mirjana; Winn, Brian; Heeter, Carrie; Anthony, James C

    2013-01-01

    We developed a 'senior friendly' suite of online 'games for learning' with interactive calibration for increasing difficulty, and evaluated the feasibility of a randomized clinical trial to test the hypothesis that seniors aged 60-80 can improve key aspects of cognitive ability with the aid of such games. Sixty community-dwelling senior volunteers were randomized to either an online game suite designed to train multiple cognitive abilities, or to a control arm with online activities that simulated the look and feel of the games but with low level interactivity and no calibration of difficulty. Study assessment included measures of recruitment, retention and play-time. Cognitive change was measured with a computerized assessment battery administered just before and within two weeks after completion of the six-week intervention. Impediments to feasibility included: limited access to in-home high-speed internet, large variations in the amount of time devoted to game play, and a reluctance to pursue more challenging levels. Overall analysis was negative for assessed performance (transference effects) even though subjects improved on the games themselves. Post hoc analyses suggest that some types of games may have more value than others, but these effects would need to be replicated in a study designed for that purpose. We conclude that a six-week, moderate-intensity computer game-based cognitive intervention can be implemented with high-functioning seniors, but the effect size is relatively small. Our findings are consistent with Owen et al. (2010), but there are open questions about whether more structured, longer duration or more intensive 'games for learning' interventions might yield more substantial cognitive improvement in seniors. PMID:23542053

  3. Shared and Unique Genetic and Environmental Influences on Aging-Related Changes in Multiple Cognitive Abilities

    ERIC Educational Resources Information Center

    Tucker-Drob, Elliot M.; Reynolds, Chandra A.; Finkel, Deborah; Pedersen, Nancy L.

    2014-01-01

    Aging-related declines occur in many different domains of cognitive function during middle and late adulthood. However, whether a global dimension underlies individual differences in changes in different domains of cognition and whether global genetic influences on cognitive changes exist is less clear. We addressed these issues by applying…

  4. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline

    PubMed Central

    VanGuilder, Heather D.; Farley, Julie A.; Yan, Han; Van Kirk, Colleen A.; Mitschelen, Matthew; Sonntag, William E.; Freeman, Willard M.

    2011-01-01

    Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 Months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype. PMID:21440628

  5. [Normal aging and cognition].

    PubMed

    Ska, Bernadette; Joanette, Yves

    2006-03-01

    It is now well documented that normal aging modifies the cognitive functioning and most observations suggest that cognition evolves in the direction of deterioration. The more frequently impaired functions are memory, attention and visual-spatial abilities. On the other hand, some abilities seem to increase, such as vocabulary. Considering the aging effect on cognition, questions remain regarding directionality, universality and reversibility. A great variability in aged related impacts is observed among subjects and among cognitive domains. Some individuals evolved more rapidly than others. Some cognitive functions are more affected by aging than others. General and specific factors are hypothesized to explain the aged related cognitive decline. Among them, educational level, health, cognitive style, life style, personality, are likely to modulate the aged related cognitive evolution by influencing attentional resources and cerebral plasticity. Cognitive resources are essential to develop adaptative strategies. During the life span, resources are activated and increased by learning and training. Considering the role of cognitive resources, successful aging is dependent on several conditions : absence of disease leading to a loss of autonomy, maintenance of cognitive and physical activities, and active and social engaged lifestyle. PMID:16527210

  6. Age-related differences in white matter integrity and cognitive function are related to APOE status

    PubMed Central

    Ryan, Lee; Walther, Katrin; Bendlin, Barbara B.; Lue, Lih-Fen; Walker, Douglas G.; Glisky, Elizabeth L.

    2010-01-01

    While an extensive literature is now available on age-related differences in white matter integrity measured by diffusion MRI, relatively little is known about the relationships between diffusion and cognitive functions in older adults. Even less is known about whether these relationships are influenced by the apolipoprotein (APOE) ε4 allele, despite growing evidence that ε4 increases cognitive impairment in older adults. The purpose of the present study was to examine these relationships in a group of community-dwelling cognitively normal older adults. Data were obtained from a sample of 126 individuals (ages 52–92) that included 32 ε4 heterozygotes, 6 ε4 homozygotes, and 88 non-carriers. Two measures of diffusion, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA), were obtained from six brain regions – frontal white matter, lateral parietal white matter, the centrum semiovale, the genu and splenium of the corpus callosum, and the temporal stem white matter – and were used to predict composite scores of cognitive function in two domains, executive function and memory function. Results indicated that ADC and FA differed with increasing age in all six brain regions, and these differences were significantly greater for ε4 carriers compared to noncarriers. Importantly, after controlling for age, diffusion measures predicted cognitive function in a region-specific way that was also influenced by ε4 status. Regardless of APOE status, frontal ADC and FA independently predicted executive function scores for all participants, while temporal lobe ADC additionally predicted executive function for ε4 carriers, but not noncarriers. Memory scores were predicted by temporal lobe ADC but not frontal diffusion for all participants, and this relationship was significantly stronger in ε4 carriers compared to noncarriers. Taken together, age and temporal lobe ADC accounted for a striking 53% of the variance in memory scores within the ε4 carrier

  7. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  8. Foreign language training as cognitive therapy for age-related cognitive decline: A hypothesis for future research

    PubMed Central

    Antoniou, Mark; Gunasekera, Geshri; Wong, Patrick C. M.

    2014-01-01

    Over the next fifty years, the number of older adults is set to reach record levels. Protecting older adults from the age-related effects of cognitive decline is one of the greatest challenges of the next few decades as it places increasing pressure on families, health systems, and economies on a global scale. The disease-state of age-related cognitive decline—Alzheimer's disease and other dementias—hijacks our consciousness and intellectual autonomy. However, there is evidence that cognitively stimulating activities protect against the adverse effects of cognitive decline. Similarly, bilingualism is also considered to be a safeguard. We propose that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. It is recommended that future research should test this potentially fruitful hypothesis. PMID:24051310

  9. Vagal Recovery From Cognitive Challenge Moderates Age-Related Deficits in Executive Functioning.

    PubMed

    Crowley, Olga V; Kimhy, David; McKinley, Paula S; Burg, Matthew M; Schwartz, Joseph E; Lachman, Margie E; Tun, Patricia A; Ryff, Carol D; Seeman, Teresa E; Sloan, Richard P

    2016-05-01

    Decline in executive functioning (EF) is a hallmark of cognitive aging. We have previously reported that faster vagal recovery from cognitive challenge is associated with better EF. This study examined the association between vagal recovery from cognitive challenge and age-related differences in EF among 817 participants in the Midlife in the U.S. study (aged 35-86). Cardiac vagal control was measured as high-frequency heart rate variability. Vagal recovery moderated the association between age and EF (β = .811, p = .004). Secondary analyses revealed that older participants (aged 65-86) with faster vagal recovery had superior EF compared to their peers who had slower vagal recovery. In contrast, among younger (aged 35-54) and middle-aged (aged 55-64) participants, vagal recovery was not associated with EF. We conclude that faster vagal recovery from cognitive challenge is associated with reduced deficits in EF among older, but not younger individuals. PMID:26303063

  10. Vagal Recovery From Cognitive Challenge Moderates Age-Related Deficits in Executive Functioning

    PubMed Central

    Crowley, Olga V.; Kimhy, David; McKinley, Paula S.; Burg, Matthew M.; Schwartz, Joseph E.; Lachman, Margie E.; Tun, Patricia A.; Ryff, Carol D.; Seeman, Teresa E.; Sloan, Richard P.

    2015-01-01

    Decline in executive functioning (EF) is a hallmark of cognitive aging. We have previously reported that faster vagal recovery from cognitive challenge is associated with better EF. This study examined the association between vagal recovery from cognitive challenge and age-related differences in EF among 817 participants in the Midlife in the U.S. study (aged 35–86). Cardiac vagal control was measured as high-frequency heart rate variability. Vagal recovery moderated the association between age and EF (β = .811, p = .004). Secondary analyses revealed that older participants (aged 65–86) with faster vagal recovery had superior EF compared to their peers who had slower vagal recovery. In contrast, among younger (aged 35–54) and middle-aged (aged 55–64) participants, vagal recovery was not associated with EF. We conclude that faster vagal recovery from cognitive challenge is associated with reduced deficits in EF among older, but not younger individuals. PMID:26303063

  11. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.

    PubMed

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-06-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  12. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice

    PubMed Central

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-01-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging1,2. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  13. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance

    PubMed Central

    Lo, June C.; Loh, Kep Kee; Zheng, Hui; Sim, Sam K.Y.; Chee, Michael W.L.

    2014-01-01

    Study Objectives: To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Design: Community-based longitudinal brain and cognitive aging study using a convenience sample. Setting: Participants were studied in a research laboratory. Participants: Relatively healthy adults aged 55 y and older at study commencement. Interventions: N/A. Measurements and Results: Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. Conclusions: In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Citation: Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance. SLEEP 2014;37(7):1171-1178. PMID:25061245

  14. Age-related differences in cognition across the adult lifespan in autism spectrum disorder.

    PubMed

    Lever, Anne G; Geurts, Hilde M

    2016-06-01

    It is largely unknown how age impacts cognition in autism spectrum disorder (ASD). We investigated whether age-related cognitive differences are similar, reduced or increased across the adult lifespan, examined cognitive strengths and weaknesses, and explored whether objective test performance is related to subjective cognitive challenges. Neuropsychological tests assessing visual and verbal memory, generativity, and theory of mind (ToM), and a self-report measure assessing cognitive failures were administered to 236 matched participants with and without ASD, aged 20-79 years (IQ > 80). Group comparisons revealed that individuals with ASD had higher scores on visual memory, lower scores on generativity and ToM, and similar performance on verbal memory. However, ToM impairments were no longer present in older (50+ years) adults with ASD. Across adulthood, individuals with ASD demonstrated similar age-related effects on verbal memory, generativity, and ToM, while age-related differences were reduced on visual memory. Although adults with ASD reported many cognitive failures, those were not associated with neuropsychological test performance. Hence, while some cognitive abilities (visual and verbal memory) and difficulties (generativity and semantic memory) persist across adulthood in ASD, others become less apparent in old age (ToM). Age-related differences characteristic of typical aging are reduced or parallel, but not increased in individuals with ASD, suggesting that ASD may partially protect against an age-related decrease in cognitive functioning. Despite these findings, adults with ASD experience many cognitive daily challenges, which highlights the need for adequate social support and the importance of further research into this topic, including longitudinal studies. Autism Res 2016, 9: 666-676. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26333004

  15. Inspection Time and Cognitive Abilities in Twins Aged 7 to 17 Years: Age-Related Changes, Heritability and Genetic Covariance

    ERIC Educational Resources Information Center

    Edmonds, Caroline J.; Isaacs, Elizabeth B.; Visscher, Peter M.; Rogers, Mary; Lanigan, Julie; Singhal, Atul; Lucas, Alan; Gringras, Paul; Denton, Jane; Deary, Ian J.

    2008-01-01

    We studied the age-related differences in inspection time and multiple cognitive domains in a group of monozygotic (MZ) and dizygotic (DZ) twins aged 7 to 17 years. Data from 111 twin pairs and 19 singleton siblings were included. We found clear age-related trends towards more efficient visual information processing in older participants. There…

  16. Parental Loss and Eating-Related Cognitions and Behaviors in College-Age Women

    ERIC Educational Resources Information Center

    Beam, Minna R.; Servaty-Seib, Heather L.; Mathews, Laura

    2004-01-01

    To examine the eating-related cognitions and behaviors of college-age women who had experienced parental death, parental divorce, or neither loss condition, we recruited 48 women from science and social science departments at a state university in the Southeast. All participants completed the Mizes Anorectic Cognitions Scale (MAC) and the Bulimia…

  17. Molecular aspects of age-related cognitive decline: the role of GABA signaling

    PubMed Central

    McQuail, Joseph A.; Frazier, Charles J.; Bizon, Jennifer L.

    2015-01-01

    Alterations in inhibitory interneurons contribute to cognitive deficits associated with several psychiatric and neurological diseases. Phasic and tonic inhibition imparted by γ-amino-butyric acid (GABA) receptors regulates neural activity and helps to establish the appropriate network dynamics in cortical circuits that support normal cognition. This review highlights basic science demonstrating that inhibitory signaling is altered in aging, and discusses the impact of age-related shifts in inhibition on different forms of memory function, including hippocampus-dependent spatial reference memory and prefrontal cortex (PFU)-dependent working memory. The clinical appropriateness and tractability of select therapeutic candidates for cognitive aging that target receptors mediating inhibition are also discussed. PMID:26070271

  18. Shared and unique genetic and environmental influences on aging-related changes in multiple cognitive abilities.

    PubMed

    Tucker-Drob, Elliot M; Reynolds, Chandra A; Finkel, Deborah; Pedersen, Nancy L

    2014-01-01

    Aging-related declines occur in many different domains of cognitive function during middle and late adulthood. However, whether a global dimension underlies individual differences in changes in different domains of cognition and whether global genetic influences on cognitive changes exist is less clear. We addressed these issues by applying multivariate growth curve models to longitudinal data from 857 individuals from the Swedish Adoption/Twin Study of Aging, who had been measured on 11 cognitive variables representative of verbal, spatial, memory, and processing speed abilities up to 5 times over up to 16 years between ages 50 and 96 years. Between ages 50 and 65 years scores on different tests changed relatively independently of one another, and there was little evidence for strong underlying dimensions of change. In contrast, over the period between 65 and 96 years of age, there were strong interrelations among rates of change both within and across domains. During this age period, variability in rates of change were, on average, 52% domain-general, 8% domain-specific, and 39% test-specific. Quantitative genetic decomposition indicated that 29% of individual differences in a global domain-general dimension of cognitive changes during this age period were attributable to genetic influences, but some domain-specific genetic influences were also evident, even after accounting for domain-general contributions. These findings are consistent with a balanced global and domain-specific account of the genetics of cognitive aging. PMID:23586942

  19. Age-related decline in cognitive control: the role of fluid intelligence and processing speed

    PubMed Central

    2014-01-01

    Background Research on cognitive control suggests an age-related decline in proactive control abilities whereas reactive control seems to remain intact. However, the reason of the differential age effect on cognitive control efficiency is still unclear. This study investigated the potential influence of fluid intelligence and processing speed on the selective age-related decline in proactive control. Eighty young and 80 healthy older adults were included in this study. The participants were submitted to a working memory recognition paradigm, assessing proactive and reactive cognitive control by manipulating the interference level across items. Results Repeated measures ANOVAs and hierarchical linear regressions indicated that the ability to appropriately use cognitive control processes during aging seems to be at least partially affected by the amount of available cognitive resources (assessed by fluid intelligence and processing speed abilities). Conclusions This study highlights the potential role of cognitive resources on the selective age-related decline in proactive control, suggesting the importance of a more exhaustive approach considering the confounding variables during cognitive control assessment. PMID:24401034

  20. Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline.

    PubMed

    Wang, Deng-Shun; Bennett, David A; Mufson, Elliott J; Mattila, Petri; Cochran, Elizabeth; Dickson, Dennis W

    2004-01-01

    The structural substrates for age-associated cognitive and motor slowing are not known, but age-related white matter changes, such as ubiquitin (UBQ)-immunoreactive granular degeneration of myelin, might contribute to this slowing. To address this hypothesis we measured immunoreactivity for UBQ and myelin basic protein (MBP) in frontal white matter of age-, sex- and postmortem interval-matched cases with no cognitive impairment (NCI; N=12), mild cognitive impairment (MCI; N=14) and Alzheimer disease (AD; N=12). There were no significant correlations between UBQ in white matter and cognitive measures, but MBP was significantly lower in AD compared with NCI and MCI. MBP correlated with overall cognition as assessed by neuropsychological summary scores, as well as with timed cognitive tests and those that reflect frontal functions. An age-related decrease in MBP immunoreactivity was detected in NCI cases (r=0.71). These results support the hypothesis that white matter pathology may contribute to age-associated decline in cognition. PMID:14687885

  1. Microstructural white matter changes mediate age-related cognitive decline on the Montreal Cognitive Assessment (MoCA).

    PubMed

    Jolly, Todd A D; Cooper, Patrick S; Badwi, Syarifah Azizah Wan Ahmadul; Phillips, Natalie A; Rennie, Jaime L; Levi, Christopher R; Drysdale, Karen A; Parsons, Mark W; Michie, Patricia T; Karayanidis, Frini

    2016-02-01

    Although the relationship between aging and cognitive decline is well established, there is substantial individual variability in the degree of cognitive decline in older adults. The present study investigates whether variability in cognitive performance in community-dwelling older adults is related to the presence of whole brain or tract-specific changes in white matter microstructure. Specifically, we examine whether age-related decline in performance on the Montreal Cognitive Assessment (MoCA), a cognitive screening tool, is mediated by the white matter microstructural decline. We also examine if this relationship is driven by the presence of cardiovascular risk factors or variability in cerebral arterial pulsatility, an index of cardiovascular risk. Sixty-nine participants (aged 43-87) completed behavioral and MRI testing including T1 structural, T2-weighted FLAIR, and diffusion-weighted imaging (DWI) sequences. Measures of white matter microstructure were calculated using diffusion tensor imaging analyses on the DWI sequence. Multiple linear regression revealed that MoCA scores were predicted by radial diffusivity (RaD) of white matter beyond age or other cerebral measures. While increasing age and arterial pulsatility were associated with increasing RaD, these factors did not mediate the relationship between total white matter RaD and MoCA. Further, the relationship between MoCA and RaD was specific to participants who reported at least one cardiovascular risk factor. These findings highlight the importance of cardiovascular risk factors in the presentation of cognitive decline in old age. Further work is needed to establish whether medical or lifestyle management of these risk factors can prevent or reverse cognitive decline in old age. PMID:26511789

  2. Prevention of Age-Related Cognitive Decline: Which Strategies, When, and for Whom?

    PubMed

    Shatenstein, Bryna; Barberger-Gateau, Pascale; Mecocci, Patrizia

    2015-01-01

    Brain aging is characterized by the progressive and gradual accumulation of detrimental changes in structure and function, which increase risk of age-related cognitive decline and dementia. This devastating chronic condition generates a huge social and economic burden and accounts for 11.2% of years of disability. The increase in lifespan has contributed to the increase in dementia prevalence; however, there is currently no curative treatment for most causes of dementias. This paper reviews evidence-based strategies to build, enhance, and preserve cognition over the lifespan by examining approaches that work best, proposing when in the life course they should be implemented, and in which population group(s). Recent work shows a tendency to decreased age-specific prevalence and incidence of cognitive problems and dementia among people born later in the first half of the 20th century, citing higher educational levels, improvements in lifestyle, and better handling of vascular risk factors. This implies that we can target modifiable environmental, lifestyle, and health risk factors to modify the trajectory of cognitive decline before the onset of irreversible dementia. Because building cognitive reserve and prevention of cognitive decline are of critical importance, interventions are needed at every stage of the life course to foster cognitive stimulation, and enable healthy eating habits and physical activity throughout the lifespan. Preventive interventions to decrease and delay cognitive decline and its consequences in old age will also require collaboration and action on the part of policy-makers at the political and social level. PMID:26401926

  3. Recent Advances in Berry Supplementation and Age-Related Cognitive Decline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To summarize recent findings and current concepts in the beneficial effects of berry consumption on brain function during aging. Berryfruit supplementation has continued to demonstrate efficacy in reversing age-related cognitive decline in animal studies. In terms of the mechanisms behind the effe...

  4. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging.

    PubMed

    Maimaiti, Shaniya; Anderson, Katie L; DeMoll, Chris; Brewer, Lawrence D; Rauh, Benjamin A; Gant, John C; Blalock, Eric M; Porter, Nada M; Thibault, Olivier

    2016-01-01

    Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP. PMID:25659889

  5. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  6. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering.

    PubMed

    Pereira, Ana C; Lambert, Hilary K; Grossman, Yael S; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K; Calakos, Katina; Janssen, William G; McEwen, Bruce S; Morrison, John H

    2014-12-30

    The dementia of Alzheimer's disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  7. The Relation between canine cognitive dysfunction and age-related brain lesions

    PubMed Central

    OZAWA, Makiko; CHAMBERS, James K.; UCHIDA, Kazuyuki; NAKAYAMA, Hiroyuki

    2016-01-01

    Canine cognitive dysfunction (CCD) is a syndrome that manifests itself in abnormal behaviors, such as disorientation and wandering. β-amyloid deposition in the brain, including the senile plaque (SP) and cerebral amyloid angiopathy (CAA), has been suggested as a major cause of the syndrome. However, the pathological significance of β-amyloid deposition in CCD dogs remains unclear. The present study was conducted using 16 dogs aged 10 years or older to clarify the relationship between the age-related histopathological lesions, such as β-amyloid deposition, in the brain and the clinical symptoms of CCD as evaluated in a questionnaire previously established in a large survey. In addition, age-related brain lesions were assessed in 37 dogs. The pathological lesions were evaluated by the severity of β-amyloid deposition (SP and CAA), the amount of ubiquitin-positive granules (UBQ), GFAP-positive astrocytes, Iba-1-positive microglia and Nissle stain-positive nerve cells. The results revealed that there was no significant correlation between the severities of canine SP and CCD. The SP increased until 14 years old, but decreased thereafter, although the incidence of CCD is high at these ages. The CAA consistently increased with age, but did not correlate greatly with the CCD score. In contrast, the increases of UBQ, astrocytes and microglia were significantly correlated with CCD. Thus, the impairment in the synapse and/or myelin suggested by increased UBQ and glial activation might be involved in CCD pathogenesis, but β-amyloid deposition, especially SP, is not a direct pathogenic factor of CCD. PMID:26922972

  8. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    PubMed Central

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  9. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review

    PubMed Central

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-01-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. PMID:27178844

  10. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review.

    PubMed

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-07-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. PMID:27178844

  11. Myelin Breakdown Mediates Age-Related Slowing in Cognitive Processing Speed in Healthy Elderly Men

    ERIC Educational Resources Information Center

    Lu, Po H.; Lee, Grace J.; Tishler, Todd A.; Meghpara, Michael; Thompson, Paul M.; Bartzokis, George

    2013-01-01

    Background: To assess the hypothesis that in a sample of very healthy elderly men selected to minimize risk for Alzheimer's disease (AD) and cerebrovascular disease, myelin breakdown in late-myelinating regions mediates age-related slowing in cognitive processing speed (CPS). Materials and methods: The prefrontal lobe white matter and the genu of…

  12. Cognitive Abilities Explaining Age-Related Changes in Time Perception of Short and Long Durations

    ERIC Educational Resources Information Center

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2011-01-01

    The current study investigated how the development of cognitive abilities explains the age-related changes in temporal judgment over short and long duration ranges from 0.5 to 30 s. Children (5- and 9-year-olds) as well as adults were given a temporal bisection task with four different duration ranges: a duration range shorter than 1 s, two…

  13. Age-related differences in the course of cognitive skill acquisition: the role of regional cortical shrinkage and cognitive resources.

    PubMed

    Head, Denise; Raz, Naftali; Gunning-Dixon, Faith; Williamson, Adrienne; Acker, James D

    2002-03-01

    This study examined the impact of age-related differences in regional cerebral volumes and cognitive resources on acquisition of a cognitive skill. Volumes of brain regions were measured on magnetic resonance images of healthy adults (aged 22-80). At the early stage of learning to solve the Tower of Hanoi puzzle, speed and efficiency were associated with age, prefrontal cortex volume, and working memory. A similar pattern of brain-behavior associations was observed with perseveration measured on the Wisconsin Card Sorting Test. None of the examined structural brain variables were important at the later stages of skill acquisition. When hypertensive participants were excluded, the effect of prefrontal shrinkage on executive aspects of performance was no longer significant, but the effect of working memory remained. PMID:11931289

  14. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline

    PubMed Central

    Deibel, Scott H.; Zelinski, Erin L.; Keeley, Robin J.; Kovalchuk, Olga; McDonald, Robert J.

    2015-01-01

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  15. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition.

    PubMed

    Pichora-Fuller, M Kathleen; Mick, Paul; Reed, Marilyn

    2015-08-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  16. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition

    PubMed Central

    Pichora-Fuller, M. Kathleen; Mick, Paul; Reed, Marilyn

    2015-01-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  17. Exercise-Related Changes of Networks in Aging and Mild Cognitive Impairment Brain

    PubMed Central

    Huang, Pei; Fang, Rong; Li, Bin-Yin; Chen, Sheng-Di

    2016-01-01

    Aging and mild cognitive impairment (MCI) are accompanied by decline of cognitive functions. Meanwhile, the most common form of dementia is Alzheimer’s disease (AD), which is characterized by loss of memory and other intellectual abilities serious to make difficulties for patients in their daily life. MCI is a transition period between normal aging and dementia, which has been used for early detection of emerging dementia. It converts to dementia with an annual rate of 5–15% as compared to normal aging with 1% rate. Small decreases in the conversion rate of MCI to AD might significantly reduce the prevalence of dementia. Thus, it is important to intervene at the preclinical stage. Since there are still no effective drugs to treat AD, non-drug intervention is crucial for the prevention and treatment of cognitive decline in aging and MCI populations. Previous studies have found some cognitive brain networks disrupted in aging and MCI population, and physical exercise (PE) could effectively remediate the function of these brain networks. Understanding the exercise-related mechanisms is crucial to design efficient and effective PE programs for treatment/intervention of cognitive decline. In this review, we provide an overview of the neuroimaging studies on physical training in normal aging and MCI to identify the potential mechanisms underlying current physical training procedures. Studies of functional magnetic resonance imaging, electroencephalography, magnetoencephalography and positron emission tomography on brain networks were all included. Based on our review, the default mode network, fronto-parietal network and fronto-executive network are probably the three most valuable targets for efficiency evaluation of interventions. PMID:27014055

  18. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice.

    PubMed

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J; Marcantonio, Edward R; Crosby, Gregory; Tanzi, Rudolph E; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD. PMID:24441878

  19. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.

  20. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  1. Like cognitive function, decision making across the life span shows profound age-related changes

    PubMed Central

    Tymula, Agnieszka; Rosenberg Belmaker, Lior A.; Ruderman, Lital; Glimcher, Paul W.; Levy, Ifat

    2013-01-01

    It has long been known that human cognitive function improves through young adulthood and then declines across the later life span. Here we examined how decision-making function changes across the life span by measuring risk and ambiguity attitudes in the gain and loss domains, as well as choice consistency, in an urban cohort ranging in age from 12 to 90 y. We identified several important age-related patterns in decision making under uncertainty: First, we found that healthy elders between the ages of 65 and 90 were strikingly inconsistent in their choices compared with younger subjects. Just as elders show profound declines in cognitive function, they also show profound declines in choice rationality compared with their younger peers. Second, we found that the widely documented phenomenon of ambiguity aversion is specific to the gain domain and does not occur in the loss domain, except for a slight effect in older adults. Finally, extending an earlier report by our group, we found that risk attitudes across the life span show an inverted U-shaped function; both elders and adolescents are more risk-averse than their midlife counterparts. Taken together, these characterizations of decision-making function across the life span in this urban cohort strengthen the conclusions of previous reports suggesting a profound impact of aging on cognitive function in this domain. PMID:24082105

  2. Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer's disease.

    PubMed

    Solé-Padullés, Cristina; Bartrés-Faz, David; Junqué, Carme; Vendrell, Pere; Rami, Lorena; Clemente, Imma C; Bosch, Beatriu; Villar, Amparo; Bargalló, Núria; Jurado, M Angeles; Barrios, Maite; Molinuevo, Jose Luis

    2009-07-01

    Cognitive reserve (CR) is the brain's capacity to cope with cerebral damage to minimize clinical manifestations. The 'passive model' considers head or brain measures as anatomical substrates of CR, whereas the 'active model' emphasizes the use of brain networks effectively. Sixteen healthy subjects, 12 amnestic mild cognitive impairment (MCI) and 16 cases with mild Alzheimer's disease (AD) were included to investigate the relationships between proxies of CR and cerebral measures considered in the 'passive' and 'active' models. CR proxies were inferred premorbid IQ (WAIS Vocabulary test), 'education-occupation', a questionnaire of intellectual and social activities and a composite CR measure. MRI-derived whole-brain volumes and brain activity by functional MRI during a visual encoding task were obtained. Among healthy elders, higher CR was related to larger brains and reduced activity during cognitive processing, suggesting more effective use of cerebral networks. In contrast, higher CR was associated with reduced brain volumes in MCI and AD and increased brain function in the latter, indicating more advanced neuropathology but that active compensatory mechanisms are still at work in higher CR patients. The right superior temporal gyrus (BA 22) and the left superior parietal lobe (BA 7) showed greatest significant differences in direction of slope with CR and activation between controls and AD cases. Finally, a regression analysis revealed that fMRI patterns were more closely related to CR proxies than brain volumes. Overall, inverse relationships for healthy and pathological aging groups emerged between brain structure and function and CR variables. PMID:18053618

  3. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates

    PubMed Central

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination. PMID:26716699

  4. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    PubMed

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination. PMID:26716699

  5. ROLE OF SOLUBLE EPOXIDE HYDROLASE IN AGE-RELATED VASCULAR COGNITIVE DECLINE

    PubMed Central

    Nelson, Jonathan W.; Young, Jennifer M.; Borkar, Rohan; Woltjer, Randy L.; Quinn, Joseph F.; Silbert, Lisa C.; Grafe, Marjorie R.; Alkayed, Nabil J.

    2014-01-01

    P450 eicosanoids are important regulators of the cerebral microcirculation, but their role in cerebral small vessel disease is unclear. We tested the hypothesis that vascular cognitive impairment (VCI) is linked to reduced cerebral microvascular eicosanoid signaling. We analyzed human brain tissue from individuals formerly enrolled in the Oregon Brain Aging Study, who had a history of cognitive impairment histopathological evidence of microvascular disease. VCI subjects had significantly higher lesion burden both on premortem MRI and postmortem histopathology compared to age- and sex-matched controls. Mass spectrometry-based eicosanoid analysis revealed that 14,15-dihydroxyeicosatrienoic acid (DHET) was elevated in cortical brain tissue from VCI subjects. Immunoreactivity of soluble epoxide hydrolase (sEH), the enzyme responsible for 14,15-DHET formation, was localized to cerebral microvascular endothelium, and was enhanced in microvessels of affected tissue. Finally, we evaluated the genotype frequency of two functional single nucleotide polymorphisms of sEH gene EPHX2 in VCI and control groups. Our findings support a role for sEH and a potential benefit from sEH inhibitors in age-related VCI. PMID:25277097

  6. Age-Related Decline in Cognitive Pain Modulation Induced by Distraction: Evidence From Event-Related Potentials.

    PubMed

    Zhou, Shu; Després, Olivier; Pebayle, Thierry; Dufour, André

    2015-09-01

    Distraction is known to reduce perceived pain but not always efficiently. Overlapping cognitive resources play a role in both pain processing and executive functions. We hypothesized that with aging, the analgesic effects of cognitive modulation induced by distraction would be reduced as a result of functional decline of frontal networks. Twenty-eight elderly and 28 young participants performed a tonic heat pain test with and without distraction (P + D vs P condition), and 2 executive tasks involving the frontal network (1-back [working memory] and go/no-go [response inhibition]), during which event-related potentials were recorded. A significant age-related difference in modulatory effect was observed during the pain-distraction test, with the older group reporting higher pain perception than the younger group during the P + D than during the P condition. Greater brain activity of early processes (P2 component) in both go/no-go and 1-back tasks correlated with less perceived pain during distraction in younger participants. For later processes, more cognitive control and attentional resources (increased N2 and P3 amplitude) needed for working memory processes were associated with greater pain perception in the older group. Inhibition processes were related to conscious distraction estimation in both groups. These findings indicate that cognitive processes subtended by resources in the frontal network, particularly working memory processes, are elicited more in elderly than in younger individuals for pain tolerance when an irrelevant task is performed simultaneously. Perspective: This study suggests that age-related declines in pain modulation are caused by functional degeneration of frontal cerebral networks, which may contribute to a higher prevalence of chronic pain. Analyzing the impact of frontal network function on pain modulation may assist in the development of more effective targeted treatment plans. PMID:26080043

  7. Processing Speed, Inhibitory Control, and Working Memory: Three Important Factors to Account for Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez

    2008-01-01

    Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…

  8. Age-Sensitive Cognitive Abilities Related to Children's Acquisition of Spatial Knowledge.

    ERIC Educational Resources Information Center

    Allen, Gary L.; Ondracek, Pamela J.

    1995-01-01

    Two experiments examined the relationship between developmental improvement in performance on tasks requiring acquisition of spatial knowledge and age-sensitive cognitive abilities. Found that age differences in landmark knowledge were mediated primarily by recognition-in-context memory and that age differences in route knowledge were mediated…

  9. Embodied cognition of aging

    PubMed Central

    Vallet, Guillaume T.

    2015-01-01

    Embodiment is revolutionizing the way we consider cognition by incorporating the influence of our body and of the current context within cognitive processing. A growing number of studies which support this view of cognition in young adults stands in stark contrast with the lack of evidence in favor of this view in the field of normal aging and neurocognitive disorders. Nonetheless, the validation of embodiment assumptions on the whole spectrum of cognition is a mandatory step in order for embodied cognition theories to become theories of human cognition. More pragmatically, aging populations represent a perfect target to test embodied cognition theories due to concomitant changes in sensory, motor and cognitive functioning that occur in aging, since these theories predict direct interactions between them. Finally, the new perspectives on cognition provided by these theories might also open new research avenues and new clinical applications in the field of aging. The present article aims at showing the value and interest to explore embodiment in normal and abnormal aging as well as introducing some potential theoretical and clinical applications. PMID:25932019

  10. DNA methylation and cognitive aging

    PubMed Central

    Xu, Xiangru

    2015-01-01

    With ever-increasing elder population, the high incidence of age-related diseases such as neurodegenerative disorders has turned out to be a huge public concern. Especially the elders and their families dreadfully suffer from the learning, behavioral and cognitive impairments. The lack of effective therapies for such a horrible symptom makes a great demanding for biological mechanism study for cognitive aging. Epigenetics is an emerging field that broadens the dimensions of mammalian genome blueprint. It is, unlike genetics, not only inheritable but also reversible. Recent studies suggest that DNA methylation, one of major epigenetic mechanisms, plays a pivotal role in the pathogenesis of age-related neurodegenerations and cognitive defects. In this review, the evolving knowledge of age-related cognitive functions and the potential DNA methylation mechanism of cognitive aging are discussed. That indicates the impairment of DNA methylation may be a crucial but reversible mechanism of behavioral and cognitive related neurodegeneration. The methods to examine the dynamics of DNA methylation patterns at tissue and single cell level and at the representative scale as well as the whole genome single base resolution are also briefly discussed. Importantly, the challenges of DNA methylation mechanism of cognitive aging research are brought up, and the possible solutions to tackle these difficulties are put forward. PMID:26015403

  11. Cognitive Load and Listening Effort: Concepts and Age-Related Considerations.

    PubMed

    Lemke, Ulrike; Besser, Jana

    2016-01-01

    Listening effort has been recognized as an important dimension of everyday listening, especially with regard to the comprehension of spoken language. At constant levels of comprehension performance, the level of effort exerted and perceived during listening can differ considerably across listeners and situations. In this article, listening effort is used as an umbrella term for two different types of effort that can arise during listening. One of these types is processing effort, which is used to denote the utilization of "extra" mental processing resources in listening conditions that are adverse for an individual. A conceptual description is introduced how processing effort could be defined in terms of situational influences, the listener's auditory and cognitive resources, and the listener's personal state. Also, the proposed relationship between processing effort and subjectively perceived listening effort is discussed. Notably, previous research has shown that the availability of mental resources, as well as the ability to use them efficiently, changes over the course of adult aging. These common age-related changes in cognitive abilities and their neurocognitive organization are discussed in the context of the presented concept, especially regarding situations in which listening effort may be increased for older people. PMID:27355774

  12. Lower cognitive function in patients with age-related macular degeneration: a meta-analysis

    PubMed Central

    Zhou, Li-Xiao; Sun, Cheng-Lin; Wei, Li-Juan; Gu, Zhi-Min; Lv, Liang; Dang, Yalong

    2016-01-01

    Objective To investigate the cognitive impairment in patients with age-related macular degeneration (AMD). Methods Relevant articles were identified through a search of the following electronic databases through October 2015, without language restriction: 1) PubMed; 2) the Cochrane Library; 3) EMBASE; 4) ScienceDirect. Meta-analysis was conducted using STATA 12.0 software. Standardized mean differences with corresponding 95% confidence intervals were calculated. All of the included studies met the following four criteria: 1) the study design was a case–control or randomized controlled trial (RCT) study; 2) the study investigated cognitive function in the patient with AMD; 3) the diagnoses of AMD must be provided; 4) there were sufficient scores data to extract for evaluating cognitive function between cases and controls. The Newcastle–Ottawa Scale criteria were used to assess the methodological quality of the studies. Results Of the initial 278 literatures, only six case–control and one RCT studies met all of the inclusion criteria. A total of 794 AMD patients and 1,227 controls were included in this study. Five studies were performed with mini-mental state examination (MMSE), two studies with animal fluency, two studies with trail making test (TMT)-A and -B, one study with Mini-Cog. Results of the meta-analysis revealed lower cognitive function test scores in patients with AMD, especially with MMSE and Mini-Cog test (P≤0.001 for all). The results also showed that differences in the TMT-A (except AMD [total] vs controls) and TMT-B test had no statistical significance (P>0.01). The Newcastle–Ottawa Scale score was ≥5 for all of the included studies. Based on the sensitivity analysis, no single study influenced the overall pooled estimates. Conclusion This meta-analysis suggests lower cognitive function test scores in patients with AMD, especially with MMSE and Mini-Cog test. The other cognitive impairment screening tests, such as animal fluency test and

  13. Mitochondrial haplogroups modify the effect of black carbon on age-related cognitive impairment

    PubMed Central

    2014-01-01

    Background Traffic-related air pollution has been linked with impaired cognition in older adults, possibly due to effects of oxidative stress on the brain. Mitochondria are the main source of cellular oxidation. Haplogroups in mitochondrial DNA (mtDNA) mark individual differences in oxidative potential and are possible determinants of neurodegeneration. The aim of this study was to investigate whether mtDNA haplogroups determined differential susceptibility to cognitive effects of long-term exposure to black carbon (BC), a marker of traffic-related air pollution. Methods We investigated 582 older men (72 ± 7 years) in the VA Normative Aging Study cohort with ≤4 visits per participant (1.8 in average) between 1995–2007. Low (≤25) Mini Mental State Examination (MMSE) was used to assess impaired cognition in multiple domains. We fitted repeated-measure logistic regression using validated-LUR BC estimated in the year before their first visit at the participant’s address. Results Mitochondrial haplotyping identified nine haplogroups phylogenetically categorized in four clusters. BC showed larger effect on MMSE in Cluster 4 carriers, including I, W and X haplogroups, [OR = 2.7; 95% CI (1.3-5.6)], moderate effect in Cluster 1, including J and T haplogroups [OR = 1.6; 95% CI: (0.9-2.9)], and no effect in Cluster 2 (H and V haplogroups) [OR = 1.1; 95% CI: (0.8-1.5)] or Cluster 3 (K and U haplogroups) [OR = 1.0; 95% CI: (0.6-1.6)]. BC effect varied only moderately across the I, X, and W haplogroups or across the J and T haplogroups. Conclusions The association of BC with impaired cognition was worsened in carriers of phylogenetically-related mtDNA haplogroups in Cluster 4. No BC effects were detected in Cluster 2 and 3 carriers. MtDNA haplotypes may modify individual susceptibility to the particle cognitive effects. PMID:24884505

  14. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap-detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap

  15. Video Games as a Means to Reduce Age-Related Cognitive Decline: Attitudes, Compliance, and Effectiveness

    PubMed Central

    Boot, Walter R.; Champion, Michael; Blakely, Daniel P.; Wright, Timothy; Souders, Dustin J.; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a “brain fitness” game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants’ ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  16. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    PubMed

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  17. Therapeutics for cognitive aging

    PubMed Central

    Shineman, Diana W.; Salthouse, Timothy A.; Launer, Lenore J.; Hof, Patrick R.; Bartzokis, George; Kleiman, Robin; Luine, Victoria; Buccafusco, Jerry J.; Small, Gary W.; Aisen, Paul S.; Lowe, David A.; Fillit, Howard M.

    2011-01-01

    This review summarizes the scientific talks presented at the conference “Therapeutics for Cognitive Aging,” hosted by the New York Academy of Sciences and the Alzheimer’s Drug Discovery Foundation on May 15, 2009. Attended by scientists from industry and academia, as well as by a number of lay people—approximately 200 in all—the conference specifically tackled the many aspects of developing therapeutic interventions for cognitive impairment. Discussion also focused on how to define cognitive aging and whether it should be considered a treatable, tractable disease. PMID:20392284

  18. Age-related changes in the cerebral substrates of cognitive procedural learning.

    PubMed

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-04-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. PMID:18537110

  19. Age-related changes in the cerebral substrates of cognitive procedural learning

    PubMed Central

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-01-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, whereas the engagement of frontal and cingulate regions persisted in the older group as learning continued, it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. PMID:18537110

  20. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition

    PubMed Central

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17–88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  1. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition.

    PubMed

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17-88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  2. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey.

    PubMed

    Ngwenya, Laura B; Heyworth, Nadine C; Shwe, Yamin; Moore, Tara L; Rosene, Douglas L

    2015-01-01

    The generation of new neurons in the adult mammalian brain is well-established for the hippocampal dentate gyrus (DG). However, the role of neurogenesis in hippocampal function and cognition, how it changes in aging, and the mechanisms underlying this are yet to be elucidated in the monkey brain. To address this, we investigated adult neurogenesis in the DG of 42 rhesus monkeys (39 cognitively tested) ranging in age from young adult to the elderly. We report here that there is an age-related decline in proliferation and a delayed development of adult neuronal phenotype. Additionally, we show that many of the new neurons survive throughout the lifetime of the animal and may contribute to a modest increase in total neuron number in the granule cell layer of the DG over the adult life span. Lastly, we find that measures of decreased adult neurogenesis are only modestly predictive of age-related cognitive impairment. PMID:26236203

  3. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey

    PubMed Central

    Ngwenya, Laura B.; Heyworth, Nadine C.; Shwe, Yamin; Moore, Tara L.; Rosene, Douglas L.

    2015-01-01

    The generation of new neurons in the adult mammalian brain is well-established for the hippocampal dentate gyrus (DG). However, the role of neurogenesis in hippocampal function and cognition, how it changes in aging, and the mechanisms underlying this are yet to be elucidated in the monkey brain. To address this, we investigated adult neurogenesis in the DG of 42 rhesus monkeys (39 cognitively tested) ranging in age from young adult to the elderly. We report here that there is an age-related decline in proliferation and a delayed development of adult neuronal phenotype. Additionally, we show that many of the new neurons survive throughout the lifetime of the animal and may contribute to a modest increase in total neuron number in the granule cell layer of the DG over the adult life span. Lastly, we find that measures of decreased adult neurogenesis are only modestly predictive of age-related cognitive impairment. PMID:26236203

  4. APOE and aging-related cognitive change in a longitudinal cohort of men.

    PubMed

    Rantalainen, Ville; Lahti, Jari; Henriksson, Markus; Kajantie, Eero; Tienari, Pentti; Eriksson, Johan G; Raikkonen, Katri

    2016-08-01

    We examined associations between APOE major isoforms, rs405509 promoter and rs440446 intron-1 polymorphisms, and nonpathologic cognitive aging. Men from the Helsinki Birth Cohort Study took the Finnish Defence Forces Basic Intellectual Ability Test twice, at age 20.1 (n = 404) and 67.6 years (n = 247). APOE major isoforms did not associate with cognitive ability. In the APOE major isoform-adjusted analyses, the number of rs405509 minor alleles was associated with a higher cognitive ability total and verbal, arithmetic, and visuospatial subtest scores at 67.6 years (p-values < 0.004). In the analyses of cognitive change, the visuospatial subtest score increased across time in rs440446 minor allele carriers but decreased in noncarriers (p = 0.007). Associations in the APOE major isoform-stratified analyses were significant in the APOE ε3/3 homozygotes only. The APOE locus harbors additional modifying alleles, independent of APOE major isoforms that are associated with better preserved general cognitive ability in nondemented elderly men and change in visuospatial ability across 5 decades. These results suggest that at least 2 distinct mechanisms link the APOE locus with cognitive ability. PMID:27318143

  5. Relations between Concurrent Longitudinal Changes in Cognition, Depressive Symptoms, Self-Rated Health and Everyday Function in Normally Aging Octogenarians.

    PubMed

    Classon, Elisabet; Fällman, Katarina; Wressle, Ewa; Marcusson, Jan

    2016-01-01

    Ability to predict and prevent incipient functional decline in older adults may help prolong independence. Cognition is related to everyday function and easily administered, sensitive cognitive tests may help identify at-risk individuals. Factors like depressive symptoms and self-rated health are also associated with functional ability and may be as important as cognition. The purpose of this study was to investigate the relationship between concurrent longitudinal changes in cognition, depression, self-rated health and everyday function in a well-defined cohort of healthy 85 year olds that were followed-up at the age of 90 in the Elderly in Linköping Screening Assessment 85 study. Regression analyses were used to determine if cognitive decline as assessed by global (the Mini-Mental State Examination) and domain specific (the Cognitive Assessment Battery, CAB) cognitive tests predicted functional decline in the context of changes in depressive symptoms and self-rated health. Results showed deterioration in most variables and as many as 83% of these community-dwelling elders experienced functional difficulties at the age of 90. Slowing-down of processing speed as assessed by the Symbol Digits Modality Test (included in the CAB) accounted for 14% of the variance in functional decline. Worsening self-rated health accounted for an additional 6%, but no other variables reached significance. These results are discussed with an eye to possible preventive interventions that may prolong independence for the steadily growing number of normally aging old-old citizens. PMID:27551749

  6. Relations between Concurrent Longitudinal Changes in Cognition, Depressive Symptoms, Self-Rated Health and Everyday Function in Normally Aging Octogenarians

    PubMed Central

    2016-01-01

    Ability to predict and prevent incipient functional decline in older adults may help prolong independence. Cognition is related to everyday function and easily administered, sensitive cognitive tests may help identify at-risk individuals. Factors like depressive symptoms and self-rated health are also associated with functional ability and may be as important as cognition. The purpose of this study was to investigate the relationship between concurrent longitudinal changes in cognition, depression, self-rated health and everyday function in a well-defined cohort of healthy 85 year olds that were followed-up at the age of 90 in the Elderly in Linköping Screening Assessment 85 study. Regression analyses were used to determine if cognitive decline as assessed by global (the Mini-Mental State Examination) and domain specific (the Cognitive Assessment Battery, CAB) cognitive tests predicted functional decline in the context of changes in depressive symptoms and self-rated health. Results showed deterioration in most variables and as many as 83% of these community-dwelling elders experienced functional difficulties at the age of 90. Slowing-down of processing speed as assessed by the Symbol Digits Modality Test (included in the CAB) accounted for 14% of the variance in functional decline. Worsening self-rated health accounted for an additional 6%, but no other variables reached significance. These results are discussed with an eye to possible preventive interventions that may prolong independence for the steadily growing number of normally aging old-old citizens. PMID:27551749

  7. A genome-wide scan for common variants affecting the rate of age-related cognitive decline

    PubMed Central

    De Jager, Philip L.; Shulman, Joshua M.; Chibnik, Lori B.; Keenan, Brendan T.; Raj, Towfique; Wilson, Robert S.; Yu, Lei; Leurgans, Sue E.; Tran, Dong; Aubin, Cristin; Anderson, Christopher D.; Biffi, Alessandro; Corneveaux, Jason J.; Huentelman, Matthew J.; Rosand, Jonathan; Daly, Mark J.; Myers, Amanda J.; Reiman, Eric M.; Bennett, David A.; Evans, Denis A.

    2011-01-01

    Age-related cognitive decline is likely promoted by accumulated brain injury due to chronic conditions of aging, including neurodegenerative and vascular disease. Since common neuronal mechanisms may mediate the adaptation to diverse cerebral insults, we hypothesized that susceptibility for age-related cognitive decline may be due in part to a shared genetic network. We have therefore performed a genome-wide association study using a quantitative measure of global cognitive decline slope, based on repeated measures of 17 cognitive tests in 749 subjects from the Religious Orders Study. Top results were evaluated in three independent replication cohorts, consisting of 2,279 additional subjects with repeated cognitive testing. As expected, we find that the Alzheimer’s disease (AD) susceptibility locus, APOE, is strongly associated with rate of cognitive decline (PDISC=5.6×10−9; PJOINT=3.7×10−27). We additionally discover a variant, rs10808746, which shows consistent effects in the replication cohorts and modestly improved evidence of association in the joint analysis (PDISC=6.7×10−5; PREP=9.4×10−3; PJOINT=2.3×10−5). This variant influences the expression of two adjacent genes, PDE7A and MTFR1, which are potential regulators of inflammation and oxidative injury, respectively. Using aggregate measures of genetic risk, we find that known susceptibility loci for cardiovascular disease, type II diabetes, and inflammatory diseases are not significantly associated with cognitive decline in our cohort. Our results suggest that intermediate phenotypes, when coupled with larger sample sizes, may be a useful tool to dissect susceptibility loci for age-related cognitive decline and uncover shared molecular pathways with a role in neuronal injury. PMID:22054870

  8. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status.

    PubMed

    D'Angelo, Maria C; Smith, Victoria M; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A; Barense, Morgan D; Ryan, Jennifer D

    2016-11-01

    Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals' failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA. PMID:27049878

  9. The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status

    PubMed Central

    D’Angelo, Maria C.; Smith, Victoria M.; Kacollja, Arber; Zhang, Felicia; Binns, Malcolm A.; Barense, Morgan D.; Ryan, Jennifer D.

    2016-01-01

    ABSTRACT Binding relations among items in the transverse patterning (TP) task is dependent on the integrity of the hippocampus and its extended network. Older adults have impaired TP learning, corresponding to age-related reductions in hippocampal volumes. Unitization is a training strategy that can mitigate TP impairments in amnesia by reducing reliance on hippocampal-dependent relational binding and increasing reliance on fused representations. Here we examined whether healthy older adults and those showing early signs of cognitive decline would also benefit from unitization. Although both groups of older adults had neuropsychological performance within the healthy range, their TP learning differed both under standard and unitized training conditions. Healthy older adults with impaired TP learning under standard training benefited from unitized training. Older adults who failed the Montreal Cognitive Assessment (MoCA) showed greater impairments under standard conditions, and showed no evidence of improvement with unitization. These individuals’ failures to benefit from unitization may be a consequence of early deficits not seen in older adults who pass the MoCA. PMID:27049878

  10. Perspective: A Critical Look at the Ancillary Age-Related Eye Disease Study 2: Nutrition and Cognitive Function Results in Older Individuals with Age-Related Macular Degeneration.

    PubMed

    Hammond, Billy R; Renzi-Hammond, Lisa M

    2016-05-01

    A large body of literature suggests that the dietary carotenoids lutein and zeaxanthin and long-chain polyunsaturated fatty acids such as docosahexaenoic acid are related to improved cognitive function across the life span. A recent report by the Age-Related Eye Disease Study (AREDS) group appears to contradict the general findings of others in the field. In this review, we look critically at the methods, study designs, and analysis techniques used in the larger body of literature and compare them with the recent AREDS reports. PMID:27184270

  11. Characterizing cognitive aging of recognition memory and related processes in animal models and in humans

    PubMed Central

    Burke, Sara N.; Ryan, Lee; Barnes, Carol A.

    2012-01-01

    Analyses of complex behaviors across the lifespan of animals can reveal the brain regions that are impacted by the normal aging process, thereby, elucidating potential therapeutic targets. Recent data from rats, monkeys, and humans converge, all indicating that recognition memory and complex visual perception are impaired in advanced age. These cognitive processes are also disrupted in animals with lesions of the perirhinal cortex, indicating that the the functional integrity of this structure is disrupted in old age. This current review summarizes these data, and highlights current methodologies for assessing perirhinal cortex-dependent behaviors across the lifespan. PMID:22988437

  12. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions

    PubMed Central

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons. PMID:24600211

  13. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions.

    PubMed

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons. PMID:24600211

  14. [Aging and cognitive slowing: example of attentional processes--evaluation procedures and related questions].

    PubMed

    Eusop, E; Sebban, C; Piette, F

    2001-01-01

    Slowing is generally associated to ageing. It appears in motor's functions and in cognitive tasks. What is the real nature of this slowing? Is it a general slowing concerning every cognitive processes with the same scale or is this slowing specific of only processes. Or, at least, is it of different magnitude for each cognitive processes? The aim of this paper is to present the state of this debate from results obtained in studies orientated toward attentional processes. Attention allows us to adapt oneself to environment that require in one hand selective mechanisms for pertinence events and in other hand inhibitory mechanisms for interferences. To evaluate these mechanisms priming and cueing procedures are used. Using primes (semantic or conceptual) results in shorter reaction time than for conditions without prime. In some experimental conditions, negative primes can be observed which results for longer reaction time. In these procedures, we need to be careful to the SOA's value (Stimulus Onset Asynchrony) (it represents the time between the end of the prime or cue presentation and the beginning of the stimulus presentation). The longer is the SOA, the shorter is the reaction time increase with a SOA between 200 ms and 400 ms. In these procedures, we now have to understand in the field of information processing what causes this reaction time modification. In other words, increase of reaction time with SOA could be explain increase of all stages of treatment or may be also the consequence of some abolition's of stages? In attentional procedures, we have to consider the automatic or controlled nature of cognitive processes. In target research tasks that implies selective attention, several authors have showed a distinction between automatic and controlled processing. Time to detect prompts increase generally with the distractor number excepted when the prompt is prominent for the subject (because of physical or emotional characteristics). In this second case, the

  15. Infant and Early Childhood Exposure to Adult-Directed and Child-Directed Television Programming: Relations with Cognitive Skills at Age Four

    ERIC Educational Resources Information Center

    Barr, Rachel; Lauricella, Alexis; Zach, Elizabeth; Calvert, Sandra L.

    2010-01-01

    This study described the relations among the amount of child-directed versus adult-directed television exposure at ages 1 and 4 with cognitive outcomes at age 4. Sixty parents completed 24-hour television diaries when their children were 1 and 4 years of age. At age 4, their children also completed a series of cognitive measures and parents…

  16. The Impact of Age on Cognition.

    PubMed

    Murman, Daniel L

    2015-08-01

    This article reviews the cognitive changes that occur with normal aging, the structural and functional correlates of these cognitive changes, and the prevalence and cognitive effects of age-associated diseases. Understanding these age-related changes in cognition is important given our growing elderly population and the importance of cognition in maintaining functional independence and effective communication with others. The most important changes in cognition with normal aging are declines in performance on cognitive tasks that require one to quickly process or transform information to make a decision, including measures of speed of processing, working memory, and executive cognitive function. Cumulative knowledge and experiential skills are well maintained into advanced age. Structural and function changes in the brain correlate with these age-related cognitive changes, including alterations in neuronal structure without neuronal death, loss of synapses, and dysfunction of neuronal networks. Age-related diseases accelerate the rate of neuronal dysfunction, neuronal loss, and cognitive decline, with many persons developing cognitive impairments severe enough to impair their everyday functional abilities. There is emerging evidence that healthy lifestyles may decrease the rate of cognitive decline seen with aging and help delay the onset of cognitive symptoms in the setting of age-associated diseases. PMID:27516712

  17. The Impact of Age on Cognition

    PubMed Central

    Murman, Daniel L.

    2015-01-01

    This article reviews the cognitive changes that occur with normal aging, the structural and functional correlates of these cognitive changes, and the prevalence and cognitive effects of age-associated diseases. Understanding these age-related changes in cognition is important given our growing elderly population and the importance of cognition in maintaining functional independence and effective communication with others. The most important changes in cognition with normal aging are declines in performance on cognitive tasks that require one to quickly process or transform information to make a decision, including measures of speed of processing, working memory, and executive cognitive function. Cumulative knowledge and experiential skills are well maintained into advanced age. Structural and function changes in the brain correlate with these age-related cognitive changes, including alterations in neuronal structure without neuronal death, loss of synapses, and dysfunction of neuronal networks. Age-related diseases accelerate the rate of neuronal dysfunction, neuronal loss, and cognitive decline, with many persons developing cognitive impairments severe enough to impair their everyday functional abilities. There is emerging evidence that healthy lifestyles may decrease the rate of cognitive decline seen with aging and help delay the onset of cognitive symptoms in the setting of age-associated diseases. PMID:27516712

  18. Are delta-aminolevulinate dehydratase inhibition and metal concentrations additional factors for the age-related cognitive decline?

    PubMed

    Baierle, Marília; Charão, Mariele F; Göethel, Gabriela; Barth, Anelise; Fracasso, Rafael; Bubols, Guilherme; Sauer, Elisa; Campanharo, Sarah C; Rocha, Rafael C C; Saint'Pierre, Tatiana D; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M; Avila, Daiana S; Gioda, Adriana; Garcia, Solange C

    2014-01-01

    Aging is often accompanied by cognitive impairments and influenced by oxidative status and chemical imbalances. Thus, this study was conducted to examine whether age-related cognitive deficit is associated with oxidative damage, especially with inhibition of the enzyme delta-aminolevulinate dehydratase (ALA-D), as well as to verify the influence of some metals in the enzyme activity and cognitive performance. Blood ALA-D activity, essential (Fe, Zn, Cu, Se) and non-essential metals (Pb, Cd, Hg, As, Cr, Ni, V) were measured in 50 elderly and 20 healthy young subjects. Cognitive function was assessed by tests from Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery and other. The elderly group presented decreased ALA-D activity compared to the young group. The index of ALA-D reactivation was similar to both study groups, but negatively associated with metals. The mean levels of essential metals were within the reference values, while the most toxic metals were above them in both groups. Cognitive function impairments were observed in elderly group and were associated with decreased ALA-D activity, with lower levels of Se and higher levels of toxic metals (Hg and V). Results suggest that the reduced ALA-D activity in elderly can be an additional factor involved in cognitive decline, since its inhibition throughout life could lead to accumulation of the neurotoxic compound ALA. Toxic metals were found to contribute to cognitive decline and also to influence ALA-D reactivation. PMID:25329536

  19. Touchscreen-Based Cognitive Tasks Reveal Age-Related Impairment in a Primate Aging Model, the Grey Mouse Lemur (Microcebus murinus)

    PubMed Central

    2014-01-01

    Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However, standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by applying pairwise visual discrimination (PD) and reversal learning (PDR) tasks. On average, mouse lemurs needed 24 days of training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility. This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives for comparative approaches in aging, personality, and evolutionary research. PMID:25299046

  20. Age-Related Changes in Sleep and Circadian Rhythms: Impact on Cognitive Performance and Underlying Neuroanatomical Networks

    PubMed Central

    Schmidt, Christina; Peigneux, Philippe; Cajochen, Christian

    2012-01-01

    Circadian and homeostatic sleep-wake regulatory processes interact in a fine tuned manner to modulate human cognitive performance. Dampening of the circadian alertness signal and attenuated deterioration of psychomotor vigilance in response to elevated sleep pressure with aging change this interaction pattern. As evidenced by neuroimaging studies, both homeostatic sleep pressure and circadian sleep-wake promotion impact on cognition-related cortical and arousal-promoting subcortical brain regions including the thalamus, the anterior hypothalamus, and the brainstem locus coeruleus (LC). However, how age-related changes in circadian and homeostatic processes impact on the cerebral activity subtending waking performance remains largely unexplored. Post-mortem studies point to neuronal degeneration in the SCN and age-related modifications in the arousal-promoting LC. Alongside, cortical frontal brain areas are particularly susceptible both to aging and misalignment between circadian and homeostatic processes. In this perspective, we summarize and discuss here the potential neuroanatomical networks underlying age-related changes in circadian and homeostatic modulation of waking performance, ranging from basic arousal to higher order cognitive behaviors. PMID:22855682

  1. Combination Training in Aging Individuals Modifies Functional Connectivity and Cognition, and Is Potentially Affected by Dopamine-Related Genes

    PubMed Central

    Pieramico, Valentina; Esposito, Roberto; Sensi, Francesca; Cilli, Franco; Mantini, Dante; Mattei, Peter A.; Frazzini, Valerio; Ciavardelli, Domenico; Gatta, Valentina; Ferretti, Antonio; Romani, Gian Luca; Sensi, Stefano L.

    2012-01-01

    Background Aging is a major co-risk factor in many neurodegenerative diseases. Cognitive enrichment positively affects the structural plasticity of the aging brain. In this study, we evaluated effects of a set of structured multimodal activities (Combination Training; CT) on cognitive performances, functional connectivity, and cortical thickness of a group of healthy elderly individuals. CT lasted six months. Methodology Neuropsychological and occupational performances were evaluated before and at the end of the training period. fMRI was used to assess effects of training on resting state network (RSN) functional connectivity using Independent Component Analysis (ICA). Effects on cortical thickness were also studied. Finally, we evaluated whether specific dopamine-related genes can affect the response to training. Principal Findings Results of the study indicate that CT improves cognitive/occupational performances and reorganizes functional connectivity. Intriguingly, individuals responding to CT showed specific dopamine-related genotypes. Indeed, analysis of dopamine-related genes revealed that carriers of DRD3 ser9gly and COMT Val158Met polymorphisms had the greatest benefits from exposure to CT. Conclusions and Significance Overall, our findings support the idea that exposure to a set of structured multimodal activities can be an effective strategy to counteract aging-related cognitive decline and also indicate that significant capability of functional and structural changes are maintained in the elderly. PMID:22937122

  2. Cognitive and neuropsychological underpinnings of relational and conjunctive working memory binding across age.

    PubMed

    van Geldorp, Bonnie; Parra, Mario A; Kessels, Roy P C

    2015-01-01

    The ability to form associations (i.e., binding) is critical for memory formation. Recent studies suggest that aging specifically affects relational binding (associating separate features) but not conjunctive binding (integrating features within an object). Possibly, this dissociation may be driven by the spatial nature of the studies so far. Alternatively, relational binding may simply require more attentional resources. We assessed relational and conjunctive binding in three age groups and we included an interfering task (i.e., an articulatory suppression task). Binding was examined in a working memory (WM) task using non-spatial features: shape and colour. Thirty-one young adults (mean age = 22.35), 30 middle-aged adults (mean age = 54.80) and 30 older adults (mean age = 70.27) performed the task. Results show an effect of type of binding and an effect of age but no interaction between type of binding and age. The interaction between type of binding and interference was significant. These results indicate that aging affects relational binding and conjunctive binding similarly. However, relational binding is more susceptible to interference than conjunctive binding, which suggests that relational binding may require more attentional resources. We suggest that a general decline in WM resources associated with frontal dysfunction underlies age-related deficits in WM binding. PMID:25216357

  3. Computer Simulations of Loss of Organization of Neurons as a Model for Age-related Cognitive Decline

    NASA Astrophysics Data System (ADS)

    Cruz, Luis; Fengometidis, Elene; Jones, Frank; Jampani, Srinivas

    2011-03-01

    In normal aging, brains suffer from progressive cognitive decline not linked with loss of neurons common in neurodegenerative disorders such as Alzheimer's disease. However, in some brain areas neurons have lost positional organization specifically within microcolumns: arrays of interconnected neurons which may constitute fundamental computational units in the brain. This age-related loss of organization, likely a result of micron-sized random displacements in neuronal positions, is hypothesized to be a by-product of the loss of support from the surrounding medium, including dendrites. Using a dynamical model applied to virtual 3D representation of neuronal arrangements, that previously showed loss of organization in brains of cognitively tested rhesus monkeys, the relationship between these displacements and changes to the surrounding dendrite network are presented. The consequences of these displacements on the structure of the dendritic network, with possible disruptions in signal synchrony important to cognitive function, are discussed. NIH R01AG021133.

  4. Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory

    PubMed Central

    VanGuilder, Heather D.; Bixler, Georgina V.; Sonntag, William E.; Freeman, Willard M.

    2012-01-01

    Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands MAG, Nogo-A, and OMgp, and their common receptor, NgR1, was examined in hippocampal synaptosomes and CA1, CA3 and DG subregions derived from adult (12–13 months) and aged (26–28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n=7–8) or aged cognitively impaired (n=7–10) relative to adults (n=5–7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that upregulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline. PMID:22269040

  5. Everyday Cognition: Age and Intellectual Ability Correlates

    PubMed Central

    Allaire, Jason C.; Marsiske, Michael

    2010-01-01

    The primary aim of this study was to examine the relationship between a new battery of everyday cognition measures, which assessed 4 cognitive abilities within 3 familiar real-world domains, and traditional psychometric tests of the same basic cognitive abilities. Several theoreticians have argued that everyday cognition measures are somewhat distinct from traditional cognitive assessment approaches, and the authors investigated this assertion correlationally in the present study. The sample consisted of 174 community-dwelling older adults from the Detroit metropolitan area, who had an average age of 73 years. Major results of the study showed that (a) each everyday cognitive test was strongly correlated with the basic cognitive abilities; (b) several basic abilities, as well as measures of domain-specific knowledge, predicted everyday cognitive performance; and (c) everyday and basic measures were similarly related to age. The results suggest that everyday cognition is not unrelated to traditional measures, nor is it less sensitive to age-related differences. PMID:10632150

  6. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    PubMed Central

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158

  7. Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice.

    PubMed

    Li, Yan; Abdourahman, Aicha; Tamm, Joseph A; Pehrson, Alan L; Sánchez, Connie; Gulinello, Maria

    2015-08-01

    Cognitive decline occurs during healthy aging, even in middle-aged subjects, via mechanisms that could include reduced stem cell proliferation, changed growth factor expression and/or reduced expression of synaptic plasticity genes. Although antidepressants alter these mechanisms in young rodents, their effects in older animals are unclear. In middle-aged mice, we examined the effects of a selective serotonin reuptake inhibitor (fluoxetine) and a multimodal antidepressant (vortioxetine) on cognitive and affective behaviors, brain stem cell proliferation, growth factor and gene expression. Twelve-month-old female C57BL/6 mice exhibited impaired visuospatial memory in the novel object placement (location) task associated with reduced expression of several plasticity-related genes. Chronic treatment with vortioxetine, but not fluoxetine, improved visuospatial memory and reduced depression-like behavior in the forced swim test in middle-aged mice. Vortioxetine, but not fluoxetine, increased hippocampal expression of several neuroplasticity-related genes in middle-aged mice (e.g., Nfkb1, Fos, Fmr1, Camk2a, Arc, Shank1, Nlgn2, and Rab3a). Neither drug reversed the age-associated decrease in stem cell proliferation. Hippocampal growth factor levels were not consistent with behavioral outcomes. Thus, a change in the expression of multiple genes involved in neuronal plasticity by antidepressant treatment was associated with improved cognitive function and a reduction in depression-like behavior in middle-aged mice. PMID:26046533

  8. Guidelines for the Evaluation of Dementia and Age-Related Cognitive Change

    ERIC Educational Resources Information Center

    American Psychologist, 2012

    2012-01-01

    Dementia in its many forms is a leading cause of functional limitation among older adults worldwide and will continue to ascend in global health importance as populations continue to age and effective cures remain elusive. The following guidelines were developed for psychologists who perform evaluations of dementia and age-related cognitive…

  9. Relating Memory To Functional Performance In Normal Aging to Dementia Using Hierarchical Bayesian Cognitive Processing Models

    PubMed Central

    Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.

    2012-01-01

    Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225

  10. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  11. Cognitive Engagement and Cognitive Aging: Is Openness Protective?

    PubMed Central

    Sharp, Emily Schoenhofen; Reynolds, Chandra A.; Pedersen, Nancy L.; Gatz, Margaret

    2010-01-01

    The purpose of this study was to examine whether openness to experience is related to longitudinal change in cognitive performance across advancing age. Participants were 857 individuals from the Swedish Adoption/Twin Study of Aging (SATSA). Factors for 5 cognitive domains were created including: verbal ability, spatial ability, memory, processing speed, and a global score, “g”. Latent growth curve models were used to assess level and longitudinal trajectories of cognitive performance. It was hypothesized that individuals who endorsed higher levels of openness would have higher cognitive test scores and lesser rates of cognitive decline. As predicted, higher openness to experience was associated with significantly higher performance across all cognitive tests for both males and females even after adjusting for education, cardiovascular disease and activities of daily living. Openness, however, was not predictive of differences in the trajectories of cognitive performance over age. PMID:20230128

  12. Cognitive Aging Research: What Does It Say about Cognition? Aging?

    ERIC Educational Resources Information Center

    Glucksberg, Sam

    Cognitive aging research needs to clarify whether or not there are functional or ability declines with aging and, if so, to understand and mediate these declines. Recent research which has demonstrated declines in cognitive functioning with age has involved episodic memory and rehearsal-independent forms of such memory. It is not known how much of…

  13. Computer-Based Cognitive Programs for Improvement of Memory, Processing Speed and Executive Function during Age-Related Cognitive Decline: A Meta-Analysis

    PubMed Central

    Shao, Yan-kun; Mang, Jing; Li, Pei-lan; Wang, Jie; Deng, Ting; Xu, Zhong-xin

    2015-01-01

    Background Several studies have assessed the effects of computer-based cognitive programs (CCP) in the management of age-related cognitive decline, but the role of CCP remains controversial. Therefore, this systematic review evaluated the evidence on the efficacy of CCP for age-related cognitive decline in healthy older adults. Methods Six electronic databases (through October 2014) were searched. The risk of bias was assessed using the Cochrane Collaboration tool. The standardized mean difference (SMD) and 95% confidence intervals (CI) of a random-effects model were calculated. The heterogeneity was assessed using the Cochran Q statistic and quantified with the I2 index. Results Twelve studies were included in the current review and were considered as moderate to high methodological quality. The aggregated results indicate that CCP improves memory performance (SMD, 0.31; 95% CI 0.16 to 0.45; p < 0.0001) and processing speed (SMD, 0.50; 95% CI 0.14 to 0.87; p = 0.007) but not executive function (SMD, -0.12; 95% CI -0.33 to 0.09; p = 0.27). Furthermore, there were long-term gains in memory performance (SMD, 0.59; 95% CI 0.13 to 1.05; p = 0.01). Conclusion CCP may be a valid complementary and alternative therapy for age-related cognitive decline, especially for memory performance and processing speed. However, more studies with longer follow-ups are warranted to confirm the current findings. PMID:26098943

  14. Age-related differences in neural recruitment during the use of cognitive reappraisal and selective attention as emotion regulation strategies

    PubMed Central

    Allard, Eric S.; Kensinger, Elizabeth A.

    2014-01-01

    The present study examined age differences in the timing and neural recruitment within lateral and medial PFC while younger and older adults hedonically regulated their responses to unpleasant film clips. When analyses focused on activity during the emotional peak of the film clip (the most emotionally salient portion of the film), several age differences emerged. When comparing regulation to passive viewing (combined effects of selective attention and reappraisal) younger adults showed greater regulation related activity in lateral PFC (DLPFC, VLPFC, OFC) and medial PFC (ACC) while older adults showed greater activation within a region DLPFC. When assessing distinct effects of the regulation conditions, an ANOVA revealed a significant Age × Regulation Condition interaction within bilateral DLPFC and ACC; older adults but not young adults showed greater recruitment within these regions for reappraisal than selective attention. When examining activity at the onset of the film clip and at its emotional peak, the timing of reappraisal-related activity within VLPFC differed between age groups: younger adults showed greater activity at film onset while older adults showed heightened activity during the peak. Our results suggest that older adults rely more heavily on PFC recruitment when engaging cognitively demanding reappraisal strategies while PFC-mediated regulation might not be as task-specific for younger adults. Older adults' greater reliance on cognitive control processing during emotion regulation may also be reflected in the time needed to implement these strategies. PMID:24782800

  15. Formaldehyde as a trigger for protein aggregation and potential target for mitigation of age-related, progressive cognitive impairment.

    PubMed

    Su, Tao; Monte, Woodrow C; Hu, Xintian; He, Yingge; He, Rongqiao

    2016-01-01

    Recently, formaldehyde (FA), existing in a number of different cells including neural cells, was found to affect age-related cognitive impairment. Oral administration of methanol (the metabolic precursor of FA) triggers formation of senile plaques (SPs) and Tau hyperphosphorylation in the brains of monkeys with memory decline. Intraperitoneal injection of FA leads to hyperphosphorylation of Tau in wild-type mouse brains and N2a cells through activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, formaldehyde at low concentrations can directly induce Tau aggregation and amyloid β (Aβ) peptide deposits in vitro. Formaldehyde-induced Tau aggregation is implicated in cytotoxicity and neural cell apoptosis. Clarifying how FA triggers Aβ deposits and Tau hyperphosphorlyation will not only improve our understanding of the molecular and cellular mechanisms of age-related cognitive impairment but will also contribute to the ongoing investigation of alternate targets for new drugs. Here, we review the role of FA, particularly that of endogenous origin, in protein aggregation and as a potential drug intervention in the development of agerelated cognitive impairment. PMID:26268337

  16. Age-Related Changes in Electrophysiological and Neuropsychological Indices of Working Memory, Attention Control, and Cognitive Flexibility

    PubMed Central

    Peltz, Carrie Brumback; Gratton, Gabriele; Fabiani, Monica

    2011-01-01

    Older adults exhibit great variability in their cognitive abilities, with some maintaining high levels of performance on executive control tasks and others showing significant deficits. Previous event-related potential (ERP) work has shown that some of these performance differences are correlated with persistence of the novelty/frontal P3 in older adults elicited by task-relevant events, presumably reflecting variability in the capacity to suppress orienting to unexpected but no longer novel events. In recent ERP work in young adults, we showed that the operation-span (OSPAN) task (a measure of attention control) is predictive of the ability of individuals to keep track of stimulus sequencing and to maintain running mental representations of task stimuli, as indexed by the parietally distributed P300 (or P3b). Both of these phenomena reflect aspects of frontal function (cognitive flexibility and attention control, respectively). To investigate these phenomena we sorted both younger and older adults into low- and high-working memory spans and low- and high-cognitive flexibility subgroups, and examined ERPs during an equal-probability choice reaction time task. For both age groups (a) participants with high OSPAN scores were better able to keep track of stimulus sequencing, as indicated by their smaller P3b to sequential changes; and (b) participants with lower cognitive flexibility had larger P3a than their high-scoring counterparts. However, these two phenomena did not interact suggesting that they manifest dissociable control mechanisms. Further, the fact that both effects are already visible in younger adults suggests that at least some of the brain mechanisms underlying individual differences in cognitive aging may already operate early in life. PMID:21887150

  17. Relations between Measures of Cattell-Horn-Carroll (CHC) Cognitive Abilities and Mathematics Achievement across the School-Age Years

    ERIC Educational Resources Information Center

    Floyd, Randy G.; Evans, Jeffrey J.; McGrew, Kevin S.

    2003-01-01

    Cognitive clusters from the Woodcock-Johnson III (WJ III) Tests of Cognitive Abilities that measure select Cattell-Horn-Carroll broad and narrow cognitive abilities were shown to be significantly related to mathematics achievement in a large, nationally representative sample of children and adolescents. Multiple regression analyses were used to…

  18. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  19. Age-Related Changes in Cognitive Processing of Moral and Social Conventional Violations

    ERIC Educational Resources Information Center

    Lahat, Ayelet; Helwig, Charles C.; Zelazo, Philip David

    2012-01-01

    Moral and conventional violations are usually judged differently: Only moral violations are treated as independent of social rules. To investigate the cognitive processing involved in the development of this distinction, undergraduates (N = 34), adolescents (N = 34), and children (N = 14) read scenarios presented on a computer that had 1 of 3…

  20. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  1. Over the Hill at 24: Persistent Age-Related Cognitive-Motor Decline in Reaction Times in an Ecologically Valid Video Game Task Begins in Early Adulthood

    PubMed Central

    Thompson, Joseph J.; Blair, Mark R.; Henrey, Andrew J.

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  2. Productive extension of semantic memory in school-aged children: Relations with reading comprehension and deployment of cognitive resources.

    PubMed

    Bauer, Patricia J; Blue, Shala N; Xu, Aoxiang; Esposito, Alena G

    2016-07-01

    We investigated 7- to 10-year-old children's productive extension of semantic memory through self-generation of new factual knowledge derived through integration of separate yet related facts learned through instruction or through reading. In Experiment 1, an experimenter read the to-be-integrated facts. Children successfully learned and integrated the information and used it to further extend their semantic knowledge, as evidenced by high levels of correct responses in open-ended and forced-choice testing. In Experiment 2, on half of the trials, the to-be-integrated facts were read by an experimenter (as in Experiment 1) and on half of the trials, children read the facts themselves. Self-generation performance was high in both conditions (experimenter- and self-read); in both conditions, self-generation of new semantic knowledge was related to an independent measure of children's reading comprehension. In Experiment 3, the way children deployed cognitive resources during reading was predictive of their subsequent recall of newly learned information derived through integration. These findings indicate self-generation of new semantic knowledge through integration in school-age children as well as relations between this productive means of extension of semantic memory and cognitive processes engaged during reading. (PsycINFO Database Record PMID:27253263

  3. Thyroid Function and Cognition during Aging.

    PubMed

    Bégin, M E; Langlois, M F; Lorrain, D; Cunnane, S C

    2008-01-01

    We summarize here the studies examining the association between thyroid function and cognitive performance from an aging perspective. The available data suggest that there may be a continuum in which cognitive dysfunction can result from increased or decreased concentrations of thyroid hormones. Clinical and subclinical hypothyroidism as well as hyperthyroidism in middle-aged and elderly adults are both associated with decreased cognitive functioning, especially memory, visuospatial organization, attention, and reaction time. Mild variations of thyroid function, even within normal limits, can have significant consequences for cognitive function in the elderly. Different cognitive deficits possibly related to thyroid failure do not necessarily follow a consistent pattern, and L-thyroxine treatment may not always completely restore normal functioning in patients with hypothyroidism. There is little or no consensus in the literature regarding how thyroid function is associated with cognitive performance in the elderly. PMID:19415145

  4. Age-Related Differences on Cognitive Overload in an Audio-Visual Memory Task

    ERIC Educational Resources Information Center

    Murray, Jennifer; Thomson, Mary E.

    2011-01-01

    The present study aimed to provide evidence outlining whether the type of stimuli used in teaching would provoke differing levels of recall across three different academic age groups. One hundred and twenty-one participants, aged 11-25 years, were given a language-based memory task in the form of a wordlist consisting of 15 concrete and 15…

  5. Exercise, cognitive function, and aging

    PubMed Central

    2015-01-01

    Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise. PMID:26031719

  6. Cognitive Functions and Cognitive Reserve in Relation to Blood Pressure Components in a Population-Based Cohort Aged 53 to 94 Years

    PubMed Central

    Giordano, Nunzia; Tikhonoff, Valérie; Palatini, Paolo; Bascelli, Anna; Boschetti, Giovanni; De Lazzari, Fabia; Grasselli, Carla; Martini, Bortolo; Caffi, Sandro; Piccoli, Antonio; Mazza, Alberto; Bisiacchi, Patrizia; Casiglia, Edoardo

    2012-01-01

    In 288 men and women from general population in a cross-sectional survey, all neuropsychological tests were negatively associated with age; memory and executive function were also positively related with education. The hypertensives (HT) were less efficient than the normotensives (NT) in the test of memory with interference at 10 sec (MI-10) (−33%, P = 0.03), clock drawing test (CLOX) (−28%, P < 0.01), and mini-mental state examination (MMSE) (−6%, P = 0.02). Lower MMSE, MI-10, and CLOX were predicted by higher systolic (odds ratio, OR, 0.97, P = 0.02; OR 0.98, P < 0.005; OR 0.95, P < 0.001) and higher pulse blood pressure (BP) (OR 0.97, P = 0.02; OR 0.97, P < 0.01; and 0.95, P < 0.0001). The cognitive reserve index (CRI) was 6% lower in the HT (P = 0.03) and was predicted by higher pulse BP (OR 0.82, P < 0.001). The BP vectors of lower MMSE, MI-10, and CLOX were directed towards higher values of systolic and diastolic BP, that of low CRI towards higher systolic and lower diastolic. The label of hypertension and higher values of systolic or pulse BP are associated to worse memory and executive functions. Higher diastolic BP, although insufficient to impair cognition, strengthens this association. CRI is predicted by higher systolic BP associated to lower diastolic BP. PMID:22548150

  7. Long-term moderate alcohol consumption does not exacerbate age-related cognitive decline in healthy, community-dwelling older adults

    PubMed Central

    Moussa, Malaak N.; Simpson, Sean L.; Mayhugh, Rhiannon E.; Grata, Michelle E.; Burdette, Jonathan H.; Porrino, Linda J.; Laurienti, Paul J.

    2015-01-01

    Recent census data has found that roughly 40% of adults 65 years and older not only consume alcohol but also drink more of it than previous generations. Older drinkers are more vulnerable than younger counterparts to the psychoactive effects of alcohol due to natural biological changes that occur with aging. This study was specifically designed to measure the effect of long-term moderate alcohol consumption on cognitive health in older adult drinkers. An extensive battery of validated tests commonly used in aging and substance use literature was used to measure performance in specific cognitive domains, including working memory and attention. An age (young, old) * alcohol consumption (light, moderate) factorial study design was used to evaluate the main effects of age and alcohol consumption on cognitive performance. The focus of the study was then limited to light and moderate older drinkers, and whether or not long-term moderate alcohol consumption exacerbated age-related cognitive decline. No evidence was found to support the idea that long-term moderate alcohol consumption in older adults exacerbates age-related cognitive decline. Findings were specific to healthy community dwelling social drinkers in older age and they should not be generalized to individuals with other consumption patterns, like heavy drinkers, binge drinkers or ex-drinkers. PMID:25601835

  8. Is There a Relation between Onset Age of Bilingualism and Enhancement of Cognitive Control?

    ERIC Educational Resources Information Center

    Luk, Gigi; de Sa, Eric; Bialystok, Ellen

    2011-01-01

    Young English-speaking monolingual and bilingual adults were examined for English proficiency, language use history, and performance on a flanker task. The bilinguals, who were about twenty years old, were divided into two groups (early bilinguals and late bilinguals) according to whether they became actively bilingual before or after the age of…

  9. Combined effects of physical exercise and education on age-related cortical thinning in cognitively normal individuals

    PubMed Central

    Lee, Jin San; Shin, Hee Young; Kim, Hee Jin; Jang, Young Kyoung; Jung, Na-Yeon; Lee, Juyoun; Kim, Yeo Jin; Chun, Phillip; Yang, Jin-Ju; Lee, Jong-Min; Kang, Mira; Park, Key-Chung; Na, Duk L.; Seo, Sang Won

    2016-01-01

    We investigated the association between self-reported physical exercise and cortical thickness in a large sample of cognitively normal individuals. We also determined whether a combination of physical exercise and education had more protective effects on age-related cortical thinning than either parameter alone. A total of 1,842 participants were included in this analysis. Physical exercise was assessed using a questionnaire regarding intensity, frequency, and duration. Cortical thickness was measured using a surface-based method. Longer duration of exercise (≥1 hr/day), but not intensity or frequency, was associated with increased mean cortical thickness globally (P-value = 0.013) and in the frontal regions (P-value = 0.007). In particular, the association of exercise with cortical thinning had regional specificity in the bilateral dorsolateral prefrontal, precuneus, left postcentral, and inferior parietal regions. The combination of higher exercise level and higher education level showed greater global and frontal mean thickness than either parameter alone. Testing for a trend with the combination of high exercise level and high education level confirmed this finding (P-value = 0.001–0.003). Our findings suggest that combined exercise and education have important implications for brain health, especially considering the paucity of known protective factors for age-related cortical thinning. PMID:27063336

  10. Exercise, Cognitive Function, and Aging

    ERIC Educational Resources Information Center

    Barnes, Jill N.

    2015-01-01

    Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding…

  11. Aging, Cognitive Performance, and Mental Speed.

    ERIC Educational Resources Information Center

    Nettelbeck, Ted; Rabbitt, Patrick M. A.

    1992-01-01

    Measures of four-choice reaction time, inspection time, and scores on a speeded coding-substitution task obtained from 104 adults aged 54 to 85 years were found to account for almost all age-related changes in cognitive performance on a number of indices of general fluid ability. (SLD)

  12. Relation between Speech-in-Noise Threshold, Hearing Loss and Cognition from 40–69 Years of Age

    PubMed Central

    Moore, David R.; Edmondson-Jones, Mark; Dawes, Piers; Fortnum, Heather; McCormack, Abby; Pierzycki, Robert H.; Munro, Kevin J.

    2014-01-01

    Background Healthy hearing depends on sensitive ears and adequate brain processing. Essential aspects of both hearing and cognition decline with advancing age, but it is largely unknown how one influences the other. The current standard measure of hearing, the pure-tone audiogram is not very cognitively demanding and does not predict well the most important yet challenging use of hearing, listening to speech in noisy environments. We analysed data from UK Biobank that asked 40–69 year olds about their hearing, and assessed their ability on tests of speech-in-noise hearing and cognition. Methods and Findings About half a million volunteers were recruited through NHS registers. Respondents completed ‘whole-body’ testing in purpose-designed, community-based test centres across the UK. Objective hearing (spoken digit recognition in noise) and cognitive (reasoning, memory, processing speed) data were analysed using logistic and multiple regression methods. Speech hearing in noise declined exponentially with age for both sexes from about 50 years, differing from previous audiogram data that showed a more linear decline from <40 years for men, and consistently less hearing loss for women. The decline in speech-in-noise hearing was especially dramatic among those with lower cognitive scores. Decreasing cognitive ability and increasing age were both independently associated with decreasing ability to hear speech-in-noise (0.70 and 0.89 dB, respectively) among the population studied. Men subjectively reported up to 60% higher rates of difficulty hearing than women. Workplace noise history associated with difficulty in both subjective hearing and objective speech hearing in noise. Leisure noise history was associated with subjective, but not with objective difficulty hearing. Conclusions Older people have declining cognitive processing ability associated with reduced ability to hear speech in noise, measured by recognition of recorded spoken digits. Subjective reports

  13. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides

    PubMed Central

    Wang, Dongmei; Mitchell, Ellen S.

    2016-01-01

    Brain glucose hypometabolism is a common feature of Alzheimer’s disease (AD). Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT). Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA) suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet) in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612) phosphorylation and decreased S6K phosphorylation (240/244) but only MCT10 increased Akt phosphorylation (473). MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1) were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels. PMID:27517611

  14. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides.

    PubMed

    Wang, Dongmei; Mitchell, Ellen S

    2016-01-01

    Brain glucose hypometabolism is a common feature of Alzheimer's disease (AD). Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT). Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA) suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet) in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612) phosphorylation and decreased S6K phosphorylation (240/244) but only MCT10 increased Akt phosphorylation (473). MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1) were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels. PMID:27517611

  15. Evaluation of a Short-term, Cognitive-Behavioral Intervention for Primary Age Children with Anger-Related Difficulties

    ERIC Educational Resources Information Center

    Cole, Rachel L.; Treadwell, Susanne; Dosani, Sima; Frederickson, Norah

    2013-01-01

    This study evaluated the school-based short-term, cognitive-behavioral group anger management programme, "Learning How to Deal with our Angry Feelings" (Southampton Psychology Service, 2003). Thirteen groups of children aged 7- to 11-years-old were randomly allocated to two different cohorts: One cohort ("n"?=?35) first received the intervention…

  16. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  17. Healthy cognitive aging and dementia prevention.

    PubMed

    Smith, Glenn E

    2016-01-01

    Behavioral prevention strategies can help maintain high levels of cognition and functional integrity, and can reduce the social, medical, and economic burden associated with cognitive aging and age-associated neurodegenerative diseases. Interventions involving physical exercise and cognitive training have consistently shown positive effects on cognition in older adults. "Brain fitness" interventions have now been shown to have sustained effects lasting 10 years or more. A meta-analysis suggests these physical exercise and brain fitness exercises produce nearly identical impact on formal measures of cognitive function. Behavioral interventions developed and deployed by psychologists are key in supporting healthy cognitive aging. The National Institutes of Health should expand research on cognitive health and behavioral and social science to promote healthy aging and to develop and refine ways to prevent and treat dementia. Funding for adequately powered, large-scale trials is needed. Congress must maintain support for crucial dementia-related initiatives like the Centers for Disease Control and Prevention Healthy Brain Initiative and fund training programs to insure there is a work force with skills to provide high quality care for older adults. Insurers must provide better coverage for behavioral interventions. Better coverage is needed so there can be increased access to evidence-based disease prevention and health promotion services with the potential for reducing dementia risk. (PsycINFO Database Record PMID:27159433

  18. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits

    PubMed Central

    Oh, M. Matthew; Simkin, Dina; Disterhoft, John F.

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  19. Age-related Changes in Respiratory Function and Daily Living. A Tentative Model Including Psychosocial Variables, Respiratory Diseases and Cognition.

    PubMed

    Facal, David; González-Barcala, Francisco-Javier

    2016-01-01

    Changes in respiratory function are common in older populations and affect quality of life, social relationships, cognitive function and functional capacity. This paper reviews evidence reported in medical and psychological journals between 2000 and 2014 concerning the impact of changes in respiratory function on daily living in older adults. A tentative model establishes relationships involving respiratory function, cognitive function and functional capacities. The conclusion stresses the need for both longitudinal studies, to establish causal pathways between respiratory function and psychosocial aspects in aging, and intervention studies. PMID:26593253

  20. Effect of Normal Aging and of Mild Cognitive Impairment on Event-Related Potentials to a Stroop Color-Word Task.

    PubMed

    Ramos-Goicoa, Marta; Galdo-Álvarez, Santiago; Díaz, Fernando; Zurrón, Montserrat

    2016-04-01

    Event-related potentials (ERPs) were recorded from 84 adults (51 to 87 years old) with the aim of exploring the effects of aging (middle-aged and older groups) and cognitive status (healthy or with amnestic mild cognitive impairment, aMCI) on the neural functioning associated with stimulus and response processing in a Stroop color-word task. An interference (or Stroop) effect was observed in the Reaction Time (RT), and the RT and number of errors results were consistent with the age-related decline in performance. Cognitive status did not affect the behavioral performance of the task, but age and cognitive status affected several ERP parameters. Aging was associated with a) slowing of the neural processing of the stimuli (P150, N2, and P3b latencies were longer), b) greater activation of the motor cortex for response preparation (LRP-R amplitude was larger), and c) use of more neural resources for cognitive control of stimuli (N2 amplitude was larger to the congruent and incongruent stimuli than to the colored X-strings, in the older group). Independent of age, aMCI dedicated more neural resources to processing the irrelevant dimension of the stimulus (they showed a greater difference than the control participants between the P3b amplitude to the colored X-strings and to the congruent/incongruent stimuli) and showed a deficit in the selection and preparation of the motor response (with smaller LRP-S and LRP-R amplitudes). Furthermore, the middle-aged aMCI participants evaluated and classified both congruent and incongruent stimuli more slowly (they showed longer P3b latencies) relative to middle-aged controls. PMID:27079705

  1. Personality-Cognition Relations across Adulthood

    ERIC Educational Resources Information Center

    Soubelet, Andrea; Salthouse, Timothy A.

    2011-01-01

    Although an increasing number of studies have investigated relations between dimensions of personality and level of cognitive functioning, the research results have been somewhat inconsistent. Furthermore, relatively little is known about whether the personality-cognition relations vary as a function of age in adulthood. The current project…

  2. Operationalizing diagnostic criteria for Alzheimer’s disease and other age-related cognitive impairment—Part 2*

    PubMed Central

    Seshadri, Sudha; Beiser, Alexa; Au, Rhoda; Wolf, Philip A.; Evans, Denis A.; Wilson, Robert S.; Petersen, Ronald C.; Knopman, David S.; Rocca, Walter A.; Kawas, Claudia H.; Corrada, Maria M.; Plassman, Brenda L.; Langa, Kenneth M.; Chui, Helena C.

    2011-01-01

    This article focuses on the effects of operational differences in case ascertainment on estimates of prevalence and incidence of cognitive impairment/dementia of the Alzheimer type. Experience and insights are discussed by investigators from the Framingham Heart Study, the East Boston Senior Health Project, the Chicago Health and Aging Project, the Mayo Clinic Study of Aging, the Baltimore Longitudinal Study of Aging, and the Aging, Demographics, and Memory Study. There is a general consensus that the single most important factor regulating prevalence estimates of Alzheimer’s disease (AD) is the severity of cognitive impairment used for case ascertainment. Studies that require a level of cognitive impairment in which persons are unable to provide self-care will have much lower estimates than studies aimed at identifying persons in the earliest stages of AD. There is limited autopsy data from the above-mentioned epidemiologic studies to address accuracy in the diagnosis of etiologic subtype, namely the specification of AD alone or in combination with other types of pathology. However, other community-based cohort studies show that many persons with mild cognitive impairment (MCI) meet pathologic criteria for AD, and a large minority of persons without dementia or MCI also meets pathologic criteria for AD, thereby suggesting that the number of persons who would benefit from an effective secondary prevention intervention is probably higher than the highest published prevalence estimates. Improved accuracy in the clinical diagnosis of AD is anticipated with the addition of molecular and structural biomarkers in the next generation of epidemiologic studies. PMID:21255742

  3. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri.

    PubMed

    Valenzano, Dario R; Terzibasi, Eva; Cattaneo, Antonino; Domenici, Luciano; Cellerino, Alessandro

    2006-06-01

    Temperature variations are known to modulate aging and life-history traits in poikilotherms as different as worms, flies and fish. In invertebrates, temperature affects lifespan by modulating the slope of age-dependent acceleration in death rate, which is thought to reflect the rate of age-related damage accumulation. Here, we studied the effects of temperature on aging kinetics, aging-related behavioural deficits, and age-associated histological markers of senescence in the short-lived fish Nothobranchius furzeri. This species shows a maximum captive lifespan of only 3 months, which is tied with acceleration in growth and expression of aging biomarkers. These biological peculiarities make it a very convenient animal model for testing the effects of experimental manipulations on life-history traits in vertebrates. Here, we show that (i) lowering temperature from 25 degrees C to 22 degrees C increases both median and maximum lifespan; (ii) life extension is due to reduction in the slope of the age-dependent acceleration in death rate; (iii) lowering temperature from 25 degrees C to 22 degrees C retards the onset of age-related locomotor and learning deficits; and (iv) lowering temperature from 25 degrees C to 22 degrees C reduces the accumulation of the age-related marker lipofuscin. We conclude that lowering water temperature is a simple experimental manipulation which retards the rate of age-related damage accumulation in this short-lived species. PMID:16842500

  4. Relation of EEG alpha background to cognitive fuction, brain atrophy, and cerebral metabolism in Down's syndrome. Age-specific changes

    SciTech Connect

    Devinsky, O.; Sato, S.; Conwit, R.A.; Schapiro, M.B. )

    1990-01-01

    We studied 19 young adults (19 to 37 years old) and 9 older patients (42 to 66 years old) with Down's syndrome (DS) and a control group of 13 healthy adults (22 to 38 years old) to investigate the relation of electroencephalographic (EEG) alpha background to cognitive function and cerebral metabolism. Four of the older patients with DS had a history of mental deterioration, disorientation, and memory loss and were demented. Patients and control subjects had EEGs, psychometric testing, quantitative computed tomography, and positron emission tomography with fludeoxyglucose F 18. A blinded reader classified the EEGs into two groups--those with normal alpha background or those with abnormal background. All the control subjects, the 13 young adult patients with DS, and the 5 older patients with DS had normal EEG backgrounds. In comparison with the age-matched patients with DS with normal alpha background, older patients with DS with decreased alpha background had dementia, fewer visuospatial skills, decreased attention span, larger third ventricles, and a global decrease in cerebral glucose utilization with parietal hypometabolism. In the young patients with DS, the EEG background did not correlate with psychometric or positron emission tomographic findings, but the third ventricles were significantly larger in those with abnormal EEG background. The young patients with DS, with or without normal EEG background, had positron emission tomographic findings similar to those of the control subjects. The mechanism underlying the abnormal EEG background may be the neuropathologic changes of Alzheimer's disease in older patients with DS and may be cerebral immaturity in younger patients with DS.

  5. Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice.

    PubMed

    Chen, Shuang-qing; Cai, Qing; Shen, Yu-ying; Wang, Pei-jun; Teng, Gao-jun; Zhang, Wei; Zang, Feng-chao

    2012-11-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) and the Morris water maze (MWM) have played an important role in Alzheimer's disease (AD) research. The aim of this study was to determine whether (1)H-MRS and the MWM can detect for early AD in APP/PS1 transgenic (tg) mice. (1)H-MRS was performed in 20 tg mice and 15 wild-type mice at 3, 5 and 8 months of age. The concentration of N-acetylaspartate (NAA), glutamate (Glu), myo-inositol (mI), choline (Cho) and creatine (Cr) in the hippocampus were measured, and the NAA/Cr, Glu/Cr, mI/Cr and Cho/Cr ratios were quantified. Additionally, the spatial learning and memory of the mice were evaluated by MWM. The (1)H-MRS revealed that mI levels in tg mice were significantly higher at 3 months of age compared to wt mice, while the NAA and Glu levels in 5- and 8-month-old tg mice were significantly decreased (p<0.05). Additionally, significant cognitive changes only occurred at 8 months of age in APP/PS1 tg mice. These results indicated that metabolic changes preceded overt cognitive dysfunctions in early-stage AD, suggesting that (1)H-MRS is a more sensitive biomarker for assessing early AD. PMID:22828014

  6. The aging memory: Modulating epigenetic modifications to improve cognitive function.

    PubMed

    Fonseca, Rosalina

    2016-09-01

    Age-related cognitive decline is a major concern in society. Here, I discuss recent evidence that shows an age-related modulation of gene transcription by epigenetic modifications. Epigenetic modifications, such as histone acetylation, is unbalanced in aging, with an increase in histone deacetylation, that limits the expression of plasticity-related genes. By modifying the balance towards histone acetylation, histone deacetylase inhibitors present a new pharmacological approach to ameliorate age-related cognitive deficits. PMID:27390098

  7. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning

    PubMed Central

    Levine, Morgan E.; Lu, Ake T.; Bennett, David A.; Horvath, Steve

    2015-01-01

    There is an urgent need to develop molecular biomarkers of brain age in order to advance our understanding of age related neurodegeneration. Recently, we developed a highly accurate epigenetic biomarker of tissue age (known as epigenetic clock) which is based on DNA methylation levels. Here we use n=700 dorsolateral prefrontal cortex (DLPFC) samples from Caucasian subjects of the Religious Order Study and the Rush Memory and Aging Project to examine the association between epigenetic age and Alzheimer’s disease (AD) related cognitive decline, and AD related neuropathological markers. Epigenetic age acceleration of DLPFC is correlated with several neuropathological measurements including diffuse plaques (r=0.12, p=0.0015), neuritic plaques (r=0.11, p=0.0036), and amyloid load (r=0.091, p=0.016). Further, it is associated with a decline in global cognitive functioning (β=−0.500, p=0.009), episodic memory (β=−0.411, p=0.009) and working memory (β=−0.405, p=0.011) among individuals with AD. The neuropathological markers may mediate the association between epigenetic age and cognitive decline. Genetic complex trait analysis (GCTA) revealed that epigenetic age acceleration is heritable (h2=0.41) and has significant genetic correlations with diffuse plaques (r=0.24, p=0.010) and possibly working memory (r=−0.35, p=0.065). Overall, these results suggest that the epigenetic clock may lend itself as a molecular biomarker of brain age. PMID:26684672

  8. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults

    PubMed Central

    DeVan, Allison E.; Cruickshank-Quinn, Charmion; Reisdorph, Nichole; Bassett, Candace J.; Evans, Trent D.; Brooks, Forrest A.; Bryan, Nathan S.; Chonchol, Michel B.; Giordano, Tony; McQueen, Matthew B.; Seals, Douglas R.

    2015-01-01

    Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 or 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging. PMID:26626856

  9. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults.

    PubMed

    Justice, Jamie N; Johnson, Lawrence C; DeVan, Allison E; Cruickshank-Quinn, Charmion; Reisdorph, Nichole; Bassett, Candace J; Evans, Trent D; Brooks, Forrest A; Bryan, Nathan S; Chonchol, Michel B; Giordano, Tony; McQueen, Matthew B; Seals, Douglas R

    2015-11-01

    Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 to 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging. PMID:26626856

  10. Age-related cognitive decline and electroencephalogram slowing in Down's syndrome as a model of Alzheimer's disease.

    PubMed

    Soininen, H; Partanen, J; Jousmäki, V; Helkala, E L; Vanhanen, M; Majuri, S; Kaski, M; Hartikainen, P; Riekkinen, P

    1993-03-01

    We studied quantitative electroencephalogram and neuropsychological performance in an aging series of 31 patients with Down's syndrome and compared the findings with those of 36 patients with probable Alzheimer's disease and age-matched controls. We found an age-related decline of cortical functions and slowing of the electroencephalogram in Down's syndrome patients aged from 20 to 60 years. Slowing of the electroencephalogram, i.e. the decrease of the peak frequency, was significantly related to Mini-Mental status scores, and visual, praxic and speech functions, as well as memory in the Down patients, similar to the Alzheimer patients. Similar correlations were not demonstrated for young or elderly controls. This study provides neuropsychological and electrophysiological data to suggest that studying Down's syndrome patients of different ages can serve as a model for progression of Alzheimer's disease. PMID:8469312

  11. Elevated dynorphin in the hippocampal formation of aged rats: Relation to cognitive impairment on a spatial learning task

    SciTech Connect

    Jiang, Hannkuang; Owyang, V.; Hong, Jaushyong; Gallagher, M. )

    1989-04-01

    Radioimmunoassay revealed increased dynorphin A(1-8)-like immunoreactivity (dynA(1-8)LI) in the aged rat brain. Among a number of brain regions examined, an age-related dynA(1-8)LI elevation was found only in the hippocampal formation and frontal cortex. Moreover, the increase in dynA(1-8)LI in the aged hippocampus was associated with a decline in spatial learning ability: dynA(1-8)LI distinguished aged rats that were behaviorally impaired from aged cohorts that learned the spatial task as rapidly as younger animals. Northern blot hybridization using a {sup 32}P-labeled complementary RNA probe encoding rat prodynorphin indicated that the abundance of prodynorphin mRNA was also significantly increased in the hippocampal formation of aged rats with identified spatial learning impairments.

  12. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory

    PubMed Central

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM. PMID

  13. Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Memory capacity suffers an age-related decline, which is supposed to be due to a generalized slowing of processing speed and to a reduced availability of processing resources. Information encoding in memory has been demonstrated to be very sensitive to age-related changes, especially when carried out through self-initiated strategies or under high cognitive demands. However, most event-related potentials (ERP) research on age-related changes in working memory (WM) has used tasks that preclude distinction between age-related changes in encoding and retrieval processes. Here, we used ERP recording and a delayed match to sample (DMS) task with two levels of memory load to assess age-related changes in electrical brain activity in young and old adults during successful information encoding in WM. Age-related decline was reflected in lower accuracy rates and longer reaction times in the DMS task. Beside, only old adults presented lower accuracy rates under high than low memory load conditions. However, effects of memory load on brain activity were independent of age and may indicate an increased need of processing after stimulus classification as reflected in larger mean voltages in high than low load conditions between 550 and 1000 ms post-stimulus for young and old adults. Regarding age-related effects on brain activity, results also revealed smaller P2 and P300 amplitudes that may signal the existence of an age dependent reduction in the processing resources available for stimulus evaluation and categorization. Additionally, P2 and N2 latencies were longer in old than in young participants. Furthermore, longer N2 latencies were related to greater accuracy rates on the DMS task, especially in old adults. These results suggest that age-related slowing of processing speed may be specific for target stimulus analysis and evaluation processes. Thus, old adults seem to improve their performance the longer they take to evaluate the stimulus they encode in visual WM. PMID

  14. Ability to learn inhaler technique in relation to cognitive scores and tests of praxis in old age

    PubMed Central

    Allen, S; Ragab, S

    2002-01-01

    Clinical observations have shown that some older patients are unable to learn to use a metered dose inhaler (MDI) despite having a normal abbreviated mental test (AMT) score, possibly because of dyspraxia or unrecognised cognitive impairment. Thirty inhaler-naive inpatients (age 76–94) with an AMT score of 8–10 (normal) were studied. Standard MDI training was given and the level of competence reached was scored (inhalation score). A separate observer performed the minimental test (MMT), Barthel index, geriatric depression score (GDS), ideational dyspraxia test (IDT), and ideomotor dyspraxia test (IMD). No correlative or threshold relationship was found between inhalation score and Barthel index, GDS, or IDT. However, a significant correlation was found between inhalation score and IMD (r = 0.45, p = 0.039) and MMT (r = 0.48, p = 0.032) and threshold effects emerged in that no subject with a MMT score of less than 23/30 had an inhalation score of 5/10 or more (adequate technique requires 6/10 or more), and all 17/18 with an inhalation score of 6/10 or more had an IMD of 14/20 or more. The three patients with a MMT >22 and inhalation score <6 had abnormal IMD scores. Inability to learn an adequate inhaler technique in subjects with a normal AMT score appears to be due to unrecognised cognitive impairment or dyspraxia. The MMT is probably a more useful screening test than the AMT score in this context. PMID:11796871

  15. Achieving and maintaining cognitive vitality with aging.

    PubMed

    Fillit, Howard M; Butler, Robert N; O'Connell, Alan W; Albert, Marilyn S; Birren, James E; Cotman, Carl W; Greenough, William T; Gold, Paul E; Kramer, Arthur F; Kuller, Lewis H; Perls, Thomas T; Sahagan, Barbara G; Tully, Tim

    2002-07-01

    Cognitive vitality is essential to quality of life and survival in old age. With normal aging, cognitive changes such as slowed speed of processing are common, but there is substantial interindividual variability, and cognitive decline is clearly not inevitable. In this review, we focus on recent research investigating the association of various lifestyle factors and medical comorbidities with cognitive aging. Most of these factors are potentially modifiable or manageable, and some are protective. For example, animal and human studies suggest that lifelong learning, mental and physical exercise, continuing social engagement, stress reduction, and proper nutrition may be important factors in promoting cognitive vitality in aging. Manageable medical comorbidities, such as diabetes, hypertension, and hyperlipidemia, also contribute to cognitive decline in older persons. Other comorbidities such as smoking and excess alcohol intake may contribute to cognitive decline, and avoiding these activities may promote cognitive vitality in aging. Various therapeutics, including cognitive enhancers and protective agents such as antioxidants and anti-inflammatories, may eventually prove useful as adjuncts for the prevention and treatment of cognitive decline with aging. The data presented in this review should interest physicians who provide preventive care management to middle-aged and older individuals who seek to maintain cognitive vitality with aging. PMID:12108606

  16. Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: a 3-year follow-up of the LADIS study cohort.

    PubMed

    Ryberg, C; Rostrup, E; Paulson, O B; Barkhof, F; Scheltens, P; van Straaten, E C W; van der Flier, W M; Fazekas, F; Schmidt, R; Ferro, J M; Baezner, H; Erkinjuntti, T; Jokinen, H; Wahlund, L-O; Poggesi, A; Pantoni, L; Inzitari, D; Waldemar, G

    2011-08-15

    The aim of this 3-year follow-up study was to investigate whether corpus callosum (CC) atrophy may predict future motor and cognitive impairment in an elderly population. On baseline MRI from 563 subjects with age-related white matter changes (ARWMC) from the Leukoaraiosis And DISability (LADIS) study, the CC was segmented and subdivided into five anterior-posterior regions (CC1-CC5). Associations between the CC areas and decline in motor performance and cognitive functions over a 3-year period were analyzed. CC atrophy at baseline was significantly associated with impaired cognitive performance (p<0.01 for CC1, p<0.05 for CC5), motor function (p<0.05 for CC2 and CC5), and walking speed (p<0.01 for CC2 and CC5, p<0.05 for CC3 and total CC), and with development of dementia at 3 years (p<0.05 for CC1) after correction for appropriate confounders (ARWMC volume, atrophy, age, gender and handedness). In conclusion, CC atrophy, an indicator of reduced functional connectivity between cortical areas, seems to contribute, independently of ARWMC load, to future cognitive and motor decline in the elderly. PMID:21621224

  17. Age-related cortical thinning in cognitively healthy individuals in their 60s: the PATH Through Life study.

    PubMed

    Shaw, Marnie E; Sachdev, Perminder S; Anstey, Kaarin J; Cherbuin, Nicolas

    2016-03-01

    Although it is recognized that the human cortex thins with age, longitudinal estimates of thinning patterns specific to healthy young-old age (<75 years) individuals are lacking. Importantly, many neurodegenerative disorders first manifest between midlife and old age, and normative estimates may provide a reference for differential change associated with such disorders. Here, we provide longitudinal estimates of cortical thinning observed over 12 years in a large group (n = 396) of healthy individuals, aged 60-66 years at baseline scan, who were scanned with magnetic resonance imaging (1.5T) on 4 occasions. Longitudinal age-related thinning was observed across most of the cortices, with a mean change of -0.3% per year. We measured significant thinning in heteromodal association cortex, with less thinning in regions expected to atrophy later in life (e.g., primary sensory cortex). Men showed more extensive thinning than women. Our comparison of cross-sectional and longitudinal estimates adds to growing evidence that cross-sectional designs may underestimate age-related changes in cortical thickness. PMID:26923417

  18. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity. PMID:25156204

  19. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  20. Effect of long-term treatment with rasagiline on cognitive deficits and related molecular cascades in aged mice.

    PubMed

    Weinreb, Orly; Badinter, Felix; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H

    2015-09-01

    The present study aimed to investigate the protective effects of prolonged treatment with the selective, irreversible monoamine oxidase-B inhibitor, novel anti-parkinsonian drug, rasagiline (Azilect) in aged animals. Our findings from behavioral experiments demonstrated that long-term treatment of aged mice with rasagiline (0.2 mg/kg) exerted significant beneficial effects on mood-related dysfunction and spatial learning and memory functions. At this dose of rasagiline, chronic drug administration significantly inhibited monoamine oxidase-B activity and caused an increase in striatal dopamine and serotonin levels, while decreasing their metabolism. In addition, rasagiline treatment elevated striatal mRNA expression levels of dopamine receptors D1 and D2. Furthermore, we found that rasagiline upregulated expression levels of the synaptic plasticity markers brain-derived neurotrophic factor, tyrosine kinase-B receptor, and synapsin-1, increased Bcl-2 to Bax antiapoptotic ratio and the activity of the antioxidant enzyme, catalase in brain of aged mice. The present study demonstrated that long-term treatment with rasagiline could affect behavioral deficits in aged mice and upregulate various neuroprotective parameters in the aging brain, indicating that the drug may have therapeutic potential for treatment of age-associated neurodegenerative disorders. PMID:26142126

  1. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy. PMID:26900650

  2. Cognitive Aging: Activity Patterns and Maintenance Intentions

    ERIC Educational Resources Information Center

    Gilhooly, K. J.; Gilhooly, M. L.; Phillips, L. H.; Harvey, D.; Murray, A.; Hanlon, P.

    2007-01-01

    This study examined relationships between cognitive functioning in older people and (1) levels of mental, physical and social activities, and (2) intentions regarding maintenance of cognitive functioning. Participants (N = 145) were 70-91 years of age, varied in health status and socio-economic backgrounds. Current cognitive functioning was…

  3. Age-dependent effects of esculetin on mood-related behavior and cognition from stressed mice are associated with restoring brain antioxidant status.

    PubMed

    Martín-Aragón, Sagrario; Villar, Ángel; Benedí, Juana

    2016-02-01

    Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. PMID:26290950

  4. Sex-dependent modulation of age-related cognitive decline by the L-type calcium channel gene Cacna1c (Cav 1.2).

    PubMed

    Zanos, Panos; Bhat, Shambhu; Terrillion, Chantelle E; Smith, Robert J; Tonelli, Leonardo H; Gould, Todd D

    2015-10-01

    Increased calcium influx through L-type voltage-gated calcium channels has been implicated in the neuronal dysfunction underlying age-related memory declines. The present study aimed to test the specific role of Cacna1c (which encodes Cav 1.2) in modulating age-related memory dysfunction. Short-term, spatial and contextual/emotional memory was evaluated in young and aged, wild-type as well as mice with one functional copy of Cacna1c (haploinsufficient), using the novel object recognition, Y-maze and passive avoidance tasks, respectively. Hippocampal expression of Cacna1c mRNA was measured by quantitative polymerase chain reaction. Ageing was associated with object recognition and contextual/emotional memory deficits, and a significant increase in hippocampal Cacna1c mRNA expression. Cacna1c haploinsufficiency was associated with decreased Cacna1c mRNA expression in both young and old animals. However, haploinsufficient mice did not manifest an age-related increase in expression of this gene. Behaviourally, Cacna1c haploinsufficiency prevented object recognition deficits during ageing in both male and female mice. A significant correlation between higher Cacna1c levels and decreased object recognition performance was observed in both sexes. Also, a sex-dependent protective role of decreased Cacna1c levels in contextual/emotional memory loss has been observed, specifically in male mice. These data provide evidence for an association between increased hippocampal Cacna1c expression and age-related cognitive decline. Additionally, they indicate an interaction between the Cacna1c gene and sex in the modulation of age-related contextual memory declines. PMID:25989111

  5. Characterizing cognitive aging in humans with links to animal models

    PubMed Central

    Alexander, Gene E.; Ryan, Lee; Bowers, Dawn; Foster, Thomas C.; Bizon, Jennifer L.; Geldmacher, David S.; Glisky, Elizabeth L.

    2012-01-01

    With the population of older adults expected to grow rapidly over the next two decades, it has become increasingly important to advance research efforts to elucidate the mechanisms associated with cognitive aging, with the ultimate goal of developing effective interventions and prevention therapies. Although there has been a vast research literature on the use of cognitive tests to evaluate the effects of aging and age-related neurodegenerative disease, the need for a set of standardized measures to characterize the cognitive profiles specific to healthy aging has been widely recognized. Here we present a review of selected methods and approaches that have been applied in human research studies to evaluate the effects of aging on cognition, including executive function, memory, processing speed, language, and visuospatial function. The effects of healthy aging on each of these cognitive domains are discussed with examples from cognitive/experimental and clinical/neuropsychological approaches. Further, we consider those measures that have clear conceptual and methodological links to tasks currently in use for non-human animal studies of aging, as well as those that have the potential for translation to animal aging research. Having a complementary set of measures to assess the cognitive profiles of healthy aging across species provides a unique opportunity to enhance research efforts for cross-sectional, longitudinal, and intervention studies of cognitive aging. Taking a cross-species, translational approach will help to advance cognitive aging research, leading to a greater understanding of associated neurobiological mechanisms with the potential for developing effective interventions and prevention therapies for age-related cognitive decline. PMID:22988439

  6. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain.

    PubMed

    Souza, Leandro Cattelan; Antunes, Michelle Silva; Filho, Carlos Borges; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Donato, Franciele; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent. PMID:25931267

  7. Does bilingualism influence cognitive aging?

    PubMed

    Bak, Thomas H; Nissan, Jack J; Allerhand, Michael M; Deary, Ian J

    2014-06-01

    Recent evidence suggests a positive impact of bilingualism on cognition, including later onset of dementia. However, monolinguals and bilinguals might have different baseline cognitive ability. We present the first study examining the effect of bilingualism on later-life cognition controlling for childhood intelligence. We studied 853 participants, first tested in 1947 (age = 11 years), and retested in 2008-2010. Bilinguals performed significantly better than predicted from their baseline cognitive abilities, with strongest effects on general intelligence and reading. Our results suggest a positive effect of bilingualism on later-life cognition, including in those who acquired their second language in adulthood. PMID:24890334

  8. Does Bilingualism Influence Cognitive Aging?

    PubMed Central

    Bak, Thomas H; Nissan, Jack J; Allerhand, Michael M; Deary, Ian J

    2014-01-01

    Recent evidence suggests a positive impact of bilingualism on cognition, including later onset of dementia. However, monolinguals and bilinguals might have different baseline cognitive ability. We present the first study examining the effect of bilingualism on later-life cognition controlling for childhood intelligence. We studied 853 participants, first tested in 1947 (age = 11 years), and retested in 2008–2010. Bilinguals performed significantly better than predicted from their baseline cognitive abilities, with strongest effects on general intelligence and reading. Our results suggest a positive effect of bilingualism on later-life cognition, including in those who acquired their second language in adulthood. PMID:24890334

  9. Gender and age differences in food cognition.

    PubMed

    Rappoport, L; Peters, G R; Downey, R; McCann, T; Huff-Corzine, L

    1993-02-01

    Results from three studies relevant to a model of food cognition based on the evaluative dimensions pleasure, health, and convenience are reported. In the first study, discriminant analyses of the evaluative ratings (n = 248) of 35 meals and snacks yielded significant gender and age differences on the pleasure and health dimensions. Separate factor analyses of the pleasure and health ratings revealed that males and females grouped foods differently on these criteria. The factor analysis of convenience ratings suggested that males and females perceive the meaning of convenience differently. In the second study, 336 college students rated 27 meals on the three evaluative dimensions and also indicated their preferences for each meal. Multiple regression analyses showed that preferences could be significantly predicted, and other results showed that as compared to males, females give higher health, pleasure and convenience ratings to healthy meals. The third study employed a modified free association technique to investigate gender and age differences in the meanings of nine familiar foods. Data from 96 males and females aged 18 to 86 revealed a substantial variety of significant age and gender differences for specific foods. It is suggested that taken together, these results indicate important cognitive and affective sources for gender and age-related food attitudes. PMID:8452376

  10. Effects of paternal age and offspring cognitive ability in early adulthood on the risk of schizophrenia and related disorders.

    PubMed

    Sørensen, Holger J; Pedersen, Carsten B; Nordentoft, Merete; Mortensen, Preben B; Ehrenstein, Vera; Petersen, Liselotte

    2014-12-01

    Advanced paternal age (APA) and intelligence quotient (IQ) are both associated with the risk of schizophrenia spectrum disorder (SSD) in young adult offspring. We hypothesized that the offspring SSD risk gradient associated with paternal age is mediated by offspring IQ. We investigated joint and separate associations of paternal age and offspring IQ with the risk of SSD. We used IQ routinely measured at conscription in Danish males (n=138,966) from cohorts born in 1955-84 and in 1976-1993 and followed them from a year after the conscription through 2010. We used Cox regression to estimate the incidence rate ratio (IRR) of SSD. During the follow-up, 528 men developed SSD (incidence rate [IR] 5.2 and 8.6 per 10,000 person-years in the first and second cohorts, respectively). APA was associated with higher risk of SSD (IRR, 1.32; 95% CI, 1.10-1.60 per a ten-year increase in paternal age). A higher IQ was associated with lower SSD risk (IRR, 0.68; 95% confidence interval [CI], 0.63-0.74 per one SD increase). The IR of SSD was higher among persons who were draft-exempt for health reasons (<20% of the men). Overall, there was little evidence of lower premorbid IQ in APA-related SSD (individuals who developed SSD and were also offspring of older fathers). Our results do not support the notion that risk gradient for offspring SSD associated with paternal age is mediated by offspring IQ. PMID:25445626

  11. BioAge: Toward A Multi-Determined, Mechanistic Account of Cognitive Aging

    PubMed Central

    DeCarlo, Correne A.; Tuokko, Holly A.; Williams, Dorothy; Dixon, Roger A.; MacDonald, Stuart W.S.

    2014-01-01

    The search for reliable early indicators of age-related cognitive decline represents a critical avenue for progress in aging research. Chronological age is a commonly used developmental index; however, it offers little insight into the mechanisms underlying cognitive decline. In contrast, biological age (BioAge), reflecting the vitality of essential biological systems, represents a promising operationalization of developmental time. Current BioAge models have successfully predicted age-related cognitive deficits. Research on aging-related cognitive function indicates that the interaction of multiple risk and protective factors across the human lifespan confers individual risk for late-life cognitive decline, implicating a multi-causal explanation. In this review, we explore current BioAge models, describe three broad yet pathologically relevant biological processes linked to cognitive decline, and propose a novel operationalization of BioAge accounting for both moderating and causal mechanisms of cognitive decline and dementia. We argue that a multivariate and mechanistic BioAge approach will lead to a greater understanding of disease pathology as well as more accurate prediction and early identification of late-life cognitive decline. PMID:25278166

  12. The aging mind: neuroplasticity in response to cognitive training

    PubMed Central

    Park, Denise C.; Bischof, Gérard N.

    2013-01-01

    Is it possible to enhance neural and cognitive function with cognitive training techniques? Can we delay age-related decline in cognitive function with interventions and stave off Alzheimer's disease? Does an aged brain really have the capacity to change in response to stimulation? In the present paper, we consider the neuroplasticity of the aging brain, that is, the brain's ability to increase capacity in response to sustained experience. We argue that, although there is some neural deterioration that occurs with age, the brain has the capacity to increase neural activity and develop neural scaffolding to regulate cognitive function. We suggest that increase in neural volume in response to cognitive training or experience is a clear indicator of change, but that changes in activation in response to cognitive training may be evidence of strategy change rather than indicative of neural plasticity. We note that the effect of cognitive training is surprisingly durable over time, but that the evidence that training effects transfer to other cognitive domains is relatively limited. We review evidence which suggests that engagement in an environment that requires sustained cognitive effort may facilitate cognitive function. PMID:23576894

  13. Cognitive problems related to vertebrobasilar circulation.

    PubMed

    Koçer, Abdulkadir

    2015-01-01

    Neurodegenerative disorders are characterized by decreased regional cerebral blood flow. Supporting this concept, both cognitive training exercises and physical activity promote blood flow increase and correlate with healthy cognitive aging. The terminal branches of the posterior circulation supply blood to areas of the brain, such as the thalamus, hippocampus, occipital lobe, and cerebellum, involved with important intellectual functions, particularly recent memory, visual-spatial functioning, and visuomotor adaptations. Amnesia and visual agnosia may be a complication of not only posterior circulation infarctions but also vertebrobasilar insufficiency (VBI) without accompanying structural infarcts. The cognitive impairment maybe a manifestation of transient attacks and may persist beyond resolution of symptoms related to ischemia. Early recognition of cognitive deficits in the VBI patient is important because several recent reports show stent placements or medical treatment may improve cognition. PMID:26738337

  14. Where Cognitive Development and Aging Meet: Face Learning Ability Peaks after Age 30

    ERIC Educational Resources Information Center

    Germine, Laura T.; Duchaine, Bradley; Nakayama, Ken

    2011-01-01

    Research on age-related cognitive change traditionally focuses on either development or aging, where development ends with adulthood and aging begins around 55 years. This approach ignores age-related changes during the 35 years in-between, implying that this period is uninformative. Here we investigated face recognition as an ability that may…

  15. Cognitive development and Down syndrome: age-related change on the Stanford-Binet test (fourth edition).

    PubMed

    Couzens, Donna; Cuskelly, Monica; Haynes, Michele

    2011-05-01

    Growth models for subtests of the Stanford-Binet Intelligence Scale, 4th edition ( R. L. Thorndike, E. P. Hagen, & J. M. Sattler, 1986a , 1986b ) were developed for individuals with Down syndrome. Models were based on the assessments of 208 individuals who participated in longitudinal and cross-sectional research between 1987 and 2004. Variation in performance among individuals was large and significant across all subtests except Memory for Sentences. Scores on the Memory for Sentences subtest remained low between ages 4 to 30 years. Greatest variation was found on the Pattern Analysis subtest, where scores continued to rise into adulthood. Turning points for scores on the Vocabulary and Comprehension subtests appeared premature relative to normative patterns of development. The authors discuss development at the subdomain level and analyze both individual and group trajectories. PMID:21591843

  16. Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation.

    PubMed

    Li, Shu-Chen; Sikström, Sverker

    2002-11-01

    Besides neuroanatomical changes, neuromodulatory mechanisms are also compromised during aging. Neural network models are suitable tools for exploring the relatively broad and homogenous neuromodulatory influences on cortical function. Computational approaches for understanding neuromodulation of the dynamic properties of cortical function and recent neurocomputational theories relating different aspects of cognitive aging with declines in neuromodulation are reviewed. Considered within an integrative cross-level neurocomputational framework, aging-related decline in dopaminergic neuromodulation reduces the fidelity of neural information and gives rise to less distinctive neural pattern representations that may underlie various facets of aging cognitive and, possibly also, sensorimotor phenomena. PMID:12470691

  17. Down with Retirement: Implications of Embodied Cognition for Healthy Aging.

    PubMed

    Hommel, Bernhard; Kibele, Armin

    2016-01-01

    Cognitive and neurocognitive approaches to human healthy aging attribute age-related decline to the biologically caused loss of cognitive-control functions. However, an embodied-cognition approach to aging implies a more interactive view according to which cognitive control emerges from, and relies on a person's active encounters with his or her physical and social environment. We argue that the availability of cognitive-control resources does not only rely on biological processes but also on the degree of active maintenance, that is, on the systematic use of the available control resources. Unfortunately, there is evidence that the degree of actual use might systematically underestimate resource availability, which implies that elderly individuals do not fully exploit their cognitive potential. We discuss evidence for this possibility from three aging-related issues: the reduction of dopaminergic supply, loneliness, and the loss of body strength. All three phenomena point to a downward spiral, in which losses of cognitive-control resources do not only directly impair performance but also more indirectly discourage individuals from making use of them, which in turn suggests underuse and a lack of maintenance-leading to further loss. On the positive side, the possibility of underuse points to not yet fully exploited reservoirs of cognitive control, which calls for more systematic theorizing and experimentation on how cognitive control can be enhanced, as well as for reconsiderations of societal practices that are likely to undermine the active maintenance of control resources-such as retirement laws. PMID:27555831

  18. Down with Retirement: Implications of Embodied Cognition for Healthy Aging

    PubMed Central

    Hommel, Bernhard; Kibele, Armin

    2016-01-01

    Cognitive and neurocognitive approaches to human healthy aging attribute age-related decline to the biologically caused loss of cognitive-control functions. However, an embodied-cognition approach to aging implies a more interactive view according to which cognitive control emerges from, and relies on a person’s active encounters with his or her physical and social environment. We argue that the availability of cognitive-control resources does not only rely on biological processes but also on the degree of active maintenance, that is, on the systematic use of the available control resources. Unfortunately, there is evidence that the degree of actual use might systematically underestimate resource availability, which implies that elderly individuals do not fully exploit their cognitive potential. We discuss evidence for this possibility from three aging-related issues: the reduction of dopaminergic supply, loneliness, and the loss of body strength. All three phenomena point to a downward spiral, in which losses of cognitive-control resources do not only directly impair performance but also more indirectly discourage individuals from making use of them, which in turn suggests underuse and a lack of maintenance—leading to further loss. On the positive side, the possibility of underuse points to not yet fully exploited reservoirs of cognitive control, which calls for more systematic theorizing and experimentation on how cognitive control can be enhanced, as well as for reconsiderations of societal practices that are likely to undermine the active maintenance of control resources—such as retirement laws. PMID:27555831

  19. The ups and downs of the posteromedial cortex: age- and amyloid-related functional alterations of the encoding/retrieval flip in cognitively normal older adults.

    PubMed

    Vannini, Patrizia; Hedden, Trey; Huijbers, Willem; Ward, Andrew; Johnson, Keith A; Sperling, Reisa A

    2013-06-01

    Neural networks supporting memory function decline with increasing age. Accumulation of amyloid-β, a histopathological finding in Alzheimer's disease, is a likely contributor. Posteromedial cortices (PMCs) are particularly vulnerable to early amyloid pathology and play a role in both encoding and retrieval processes. The extent to which aging and amyloid influence the ability to modulate activity between these processes within the PMC was investigated by combining positron emission tomography-amyloid imaging with functional magnetic resonance imaging in cognitively normal older and young adults. Young subjects exhibited a marked decrease in activity during encoding and an increase during retrieval (also known as encoding/retrieval "flip"). Impaired ability to modulate activity was associated with increasing age, greater amyloid burden, and worse memory performance. In contrast, the hippocampus showed increased activity during both encoding and retrieval, which was not related to these variables. These findings support a specific link between amyloid pathology and neural dysfunction in PMC and elucidate the underpinnings of age-related memory dysfunction. PMID:22586140

  20. Effect of Aging on ERP Components of Cognitive Control

    PubMed Central

    Kropotov, Juri; Ponomarev, Valery; Tereshchenko, Ekaterina P.; Müller, Andreas; Jäncke, Lutz

    2016-01-01

    As people age, their performance on tasks requiring cognitive control often declines. Such a decline is frequently explained as either a general or specific decline in cognitive functioning with age. In the context of hypotheses suggesting a general decline, it is often proposed that processing speed generally declines with age. A further hypothesis is that an age-related compensation mechanism is associated with a specific cognitive decline. One prominent theory is the compensation hypothesis, which proposes that deteriorated functions are compensated for by higher performing functions. In this study, we used event-related potentials (ERPs) in the context of a GO/NOGO task to examine the age-related changes observed during cognitive control in a large group of healthy subjects aged between 18 and 84 years. The main question we attempted to answer was whether we could find neurophysiological support for either a general decline in processing speed or a compensation strategy. The subjects performed a relatively demanding cued GO/NOGO task with similar omissions and reaction times across the five age groups. The ERP waves of cognitive control, such as N2, P3cue and CNV, were decomposed into latent components by means of a blind source separation method. Based on this decomposition, it was possible to more precisely delineate the different neurophysiological and psychological processes involved in cognitive control. These data support the processing speed hypothesis because the latencies of all cognitive control ERP components increased with age, by 8 ms per decade for the early components (<200 ms) and by 20 ms per decade for the late components. At the same time, the compensatory hypothesis of aging was also supported, as the amplitudes of the components localized in posterior brain areas decreased with age, while those localized in the prefrontal cortical areas increased with age in order to maintain performance on this simple task at a relatively stable level

  1. Effect of Aging on ERP Components of Cognitive Control.

    PubMed

    Kropotov, Juri; Ponomarev, Valery; Tereshchenko, Ekaterina P; Müller, Andreas; Jäncke, Lutz

    2016-01-01

    As people age, their performance on tasks requiring cognitive control often declines. Such a decline is frequently explained as either a general or specific decline in cognitive functioning with age. In the context of hypotheses suggesting a general decline, it is often proposed that processing speed generally declines with age. A further hypothesis is that an age-related compensation mechanism is associated with a specific cognitive decline. One prominent theory is the compensation hypothesis, which proposes that deteriorated functions are compensated for by higher performing functions. In this study, we used event-related potentials (ERPs) in the context of a GO/NOGO task to examine the age-related changes observed during cognitive control in a large group of healthy subjects aged between 18 and 84 years. The main question we attempted to answer was whether we could find neurophysiological support for either a general decline in processing speed or a compensation strategy. The subjects performed a relatively demanding cued GO/NOGO task with similar omissions and reaction times across the five age groups. The ERP waves of cognitive control, such as N2, P3cue and CNV, were decomposed into latent components by means of a blind source separation method. Based on this decomposition, it was possible to more precisely delineate the different neurophysiological and psychological processes involved in cognitive control. These data support the processing speed hypothesis because the latencies of all cognitive control ERP components increased with age, by 8 ms per decade for the early components (<200 ms) and by 20 ms per decade for the late components. At the same time, the compensatory hypothesis of aging was also supported, as the amplitudes of the components localized in posterior brain areas decreased with age, while those localized in the prefrontal cortical areas increased with age in order to maintain performance on this simple task at a relatively stable level

  2. Neural mechanisms of ageing and cognitive decline

    PubMed Central

    Bishop, Nicholas A.; Lu, Tao; Yankner, Bruce A.

    2010-01-01

    During the past century, treatments for the diseases of youth and middle age have helped raise life expectancy significantly. However, cognitive decline has emerged as one of the greatest health threats of old age, with nearly 50% of adults over the age of 85 afflicted with Alzheimer’s disease. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain ageing. Recent advances in the biology of ageing in model organisms, together with molecular and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline. PMID:20336135

  3. [Presbycusis - Age Related Hearing Loss].

    PubMed

    Fischer, N; Weber, B; Riechelmann, H

    2016-07-01

    Presbycusis or age related hearing loss can be defined as a progressive, bilateral and symmetrical sensorineural hearing loss due to age related degeneration of inner ear structures. It can be considered a multifactorial complex disorder with environmental and genetic factors. The molecular, electrophysiological and histological damage at different levels of the inner ear cause a progressive hearing loss, which usually affects the high frequencies of hearing. The resulting poor speech recognition has a negative impact on cognitive, emotional and social function in older adults. Recent investigations revealed an association between hearing impairment and social isolation, anxiety, depression and cognitive decline in elderly. These findings emphasize the importance of diagnosis and treating hearing loss in the elderly population. Hearing aids are the most commonly used devices for treating presbycusis. The technical progress of implantable hearing devices allows an effective hearing rehabilitation even in elderly with severe hearing loss. However, most people with hearing impairments are not treated adequately. PMID:27392191

  4. Aging and Intergenerational Relations.

    ERIC Educational Resources Information Center

    Lee, Gary R.

    1987-01-01

    Considers the rapid aging of the American population and the changing age structure of society. Discusses the needs of older adults, the role of the family in providing support to older members, and issues of intergenerational relations. (NB)

  5. Age-Related Cognitive Impairment as a Sign of Geriatric Neurocardiovascular Interactions: May Polyphenols Play a Protective Role?

    PubMed Central

    Jagla, Fedor; Pechanova, Olga

    2015-01-01

    It is known that endothelial dysfunction plays an important role in the development and progression of cardiovascular diseases implicated also in cognitive decline. Experimental studies pointed to the fact that the modification of NO levels via NOS activity may affect the blood pressure level as well as several higher nervous functions—for example, learning and memory. There are emerging evidences from in vitro and animal studies suggesting that polyphenols may potentially have a protective effect on the development of neurodegenerative diseases and may improve cognitive function as well as positively affecting the blood pressure regulatory mechanisms. This review accentuates the need for precisely defined clinically controlled studies as well as for use of adequate experimental procedures discriminating between the human higher brain functions and the only overall activation of the brain cortex. The physiological neurocardiovascular interactions are implicated in the increased healthy life span as well. PMID:26180593

  6. Depressive symptoms and longitudinal changes in cognition: Women's Health Initiative Study of Cognitive Aging

    PubMed Central

    Goveas, Joseph S.; Espeland, Mark A.; Hogan, Patricia E.; Tindle, Hilary A.; Shih, Regina A.; Kotchen, Jane M.; Robinson, Jennifer G.; Barnes, Deborah E.; Resnick, Susan M.

    2015-01-01

    Elevated Depressive symptoms (DS) are associated with incident mild cognitive impairment and probable dementia in postmenopausal women. We examined the association of elevated DS with domain-specific cognitive changes, and the moderating role of cardiovascular risk factor (CVRF) severity and cardiovascular disease (CVD). 2221 elderly women who participated in the Women's Health Initiative Study of Cognitive Aging were separated into those with (N = 204) and without (N = 2017) elevated DS. DS and multi-domain cognitive outcomes were measured annually for an average follow-up of 5.04 years. Women with elevated DS showed baseline multi-domain cognitive deficits, but longitudinal declines in global cognition only. Persistent DS was related to greater global cognition, and verbal knowledge and fluency, and memory declines. Significant DS-CVD interactions were observed cross-sectionally (but not longitudinally) for figural memory and fine motor speed. Future studies should investigate the role of nonvascular mechanisms linking DS and cognitive decline. PMID:24584465

  7. Incentive relativity in middle aged rats.

    PubMed

    Justel, N; Mustaca, A; Boccia, M; Ruetti, E

    2014-01-24

    Response to a reinforcer is affected by prior experience with different reward values of that reward, a phenomenon known as incentive relativity. Two different procedures to study this phenomenon are the incentive downshift (ID) and the consummatory anticipatory negative contrast (cANC), the former is an emotional-cognitive protocol and the latter cognitive one. Aged rodents, as also well described in aged humans, exhibit alterations in cognitive functions. The main goal of this work was to evaluate the effect of age in the incentive' assessment using these two procedures. The results indicated that aged rats had an adequate assessment of the rewards but their performance is not completely comparable to that of young subjects. They recover faster from the ID and they had a cognitive impairment in the cANC. The results are discussed in relation to age-related changes in memory and emotion. PMID:24315974

  8. Berry effects on cognition and motor function in aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last century, the lifespan of humans has almost doubled. Consequently, the percent of the population that is over the age of 65 years has markedly increased, making age-related pathologies a growing concern. Research has demonstrated, in both human and animals, that psychomotor and cognitive...

  9. Acai fruit improves motor and cognitive function in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on motor and cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and ne...

  10. Prospective study of Dietary Approaches to Stop Hypertension– and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging123

    PubMed Central

    Munger, Ronald G; Cutler, Adele; Quach, Anna; Bowles, Austin; Corcoran, Christopher; Tschanz, JoAnn T; Norton, Maria C; Welsh-Bohmer, Kathleen A

    2013-01-01

    Background: Healthy dietary patterns may protect against age-related cognitive decline, but results of studies have been inconsistent. Objective: We examined associations between Dietary Approaches to Stop Hypertension (DASH)– and Mediterranean-style dietary patterns and age-related cognitive change in a prospective, population-based study. Design: Participants included 3831 men and women ≥65 y of age who were residents of Cache County, UT, in 1995. Cognitive function was assessed by using the Modified Mini-Mental State Examination (3MS) ≤4 times over 11 y. Diet-adherence scores were computed by summing across the energy-adjusted rank-order of individual food and nutrient components and categorizing participants into quintiles of the distribution of the diet accordance score. Mixed-effects repeated-measures models were used to examine 3MS scores over time across increasing quintiles of dietary accordance scores and individual food components that comprised each score. Results: The range of rank-order DASH and Mediterranean diet scores was 1661–25,596 and 2407–26,947, respectively. Higher DASH and Mediterranean diet scores were associated with higher average 3MS scores. People in quintile 5 of DASH averaged 0.97 points higher than those in quintile 1 (P = 0.001). The corresponding difference for Mediterranean quintiles was 0.94 (P = 0.001). These differences were consistent over 11 y. Higher intakes of whole grains and nuts and legumes were also associated with higher average 3MS scores [mean quintile 5 compared with 1 differences: 1.19 (P < 0.001), 1.22 (P < 0.001), respectively]. Conclusions: Higher levels of accordance with both the DASH and Mediterranean dietary patterns were associated with consistently higher levels of cognitive function in elderly men and women over an 11-y period. Whole grains and nuts and legumes were positively associated with higher cognitive functions and may be core neuroprotective foods common to various healthy plant

  11. Cognitive activity, cognitive function, and brain diffusion characteristics in old age.

    PubMed

    Arfanakis, Konstantinos; Wilson, Robert S; Barth, Christopher M; Capuano, Ana W; Vasireddi, Anil; Zhang, Shengwei; Fleischman, Debra A; Bennett, David A

    2016-06-01

    The objective of this work was to test the hypotheses that a) more frequent cognitive activity in late life is associated with higher brain diffusion anisotropy and lower trace of the diffusion tensor, and b) brain diffusion characteristics partially mediate the association of late life cognitive activity with cognition. As part of a longitudinal cohort study, 379 older people without dementia rated their frequency of participation in cognitive activities, completed a battery of cognitive function tests, and underwent diffusion tensor imaging. We used tract-based spatial statistics to test the association between late life cognitive activity and brain diffusion characteristics. Clusters with statistically significant findings defined regions of interest in which we tested the hypothesis that diffusion characteristics partially mediate the association of late life cognitive activity with cognition. More frequent cognitive activity in late life was associated with higher level of global cognition after adjustment for age, sex, education, and indicators of early life cognitive enrichment (p = 0.001). More frequent cognitive activity was also related to higher fractional anisotropy in the left superior and inferior longitudinal fasciculi, left fornix, and corpus callosum, and lower trace in the thalamus (p < 0.05, FWE-corrected). After controlling for fractional anisotropy or trace from these regions, the regression coefficient for the association of late life cognitive activity with cognition was reduced by as much as 26 %. These findings suggest that the association of late life cognitive activity with cognition may be partially mediated by brain diffusion characteristics. PMID:25982658

  12. [The effects of video games on cognitive aging].

    PubMed

    Maillot, Pauline; Perrot, Alexandra; Hartley, Alan

    2012-03-01

    Advancing age is associated with cognitive decline, which, however, remains a very heterogeneous phenomenon. Indeed, several extrinsic factors seem to modulate the effect of aging on cognition. Recently, several studies have provided evidence that the practice of video games could engender many benefits by favoring the maintenance of cognitive vitality in the elderly. This review of the literature aims to establish a precise inventory of the relations between the various types of video games and cognitive aging, including both sedentary video games (i.e., classics as well as brain training) and active video games (i.e., exergames). The largest benefits seem to be provided by exergames which combine game play with significant physical exercise. This article also tries to define the determinants of the training programs which could be responsible for the observed improvements. PMID:22414403

  13. Effects of Gestational Age at Birth on Cognitive Performance: A Function of Cognitive Workload Demands

    PubMed Central

    Jaekel, Julia; Baumann, Nicole; Wolke, Dieter

    2013-01-01

    Objective Cognitive deficits have been inconsistently described for late or moderately preterm children but are consistently found in very preterm children. This study investigates the association between cognitive workload demands of tasks and cognitive performance in relation to gestational age at birth. Methods Data were collected as part of a prospective geographically defined whole-population study of neonatal at-risk children in Southern Bavaria. At 8;5 years, n = 1326 children (gestation range: 23–41 weeks) were assessed with the K-ABC and a Mathematics Test. Results Cognitive scores of preterm children decreased as cognitive workload demands of tasks increased. The relationship between gestation and task workload was curvilinear and more pronounced the higher the cognitive workload: GA2 (quadratic term) on low cognitive workload: R2 = .02, p<0.001; moderate cognitive workload: R2 = .09, p<0.001; and high cognitive workload tasks: R2 = .14, p<0.001. Specifically, disproportionally lower scores were found for very (<32 weeks gestation) and moderately (32–33 weeks gestation) preterm children the higher the cognitive workload of the tasks. Early biological factors such as gestation and neonatal complications explained more of the variance in high (12.5%) compared with moderate (8.1%) and low cognitive workload tasks (1.7%). Conclusions The cognitive workload model may help to explain variations of findings on the relationship of gestational age with cognitive performance in the literature. The findings have implications for routine cognitive follow-up, educational intervention, and basic research into neuro-plasticity and brain reorganization after preterm birth. PMID:23717694

  14. Productive Extension of Semantic Memory in School-Aged Children: Relations with Reading Comprehension and Deployment of Cognitive Resources

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Blue, Shala N.; Xu, Aoxiang; Esposito, Alena G.

    2016-01-01

    We investigated 7- to 10-year-old children's productive extension of semantic memory through self-generation of new factual knowledge derived through integration of separate yet related facts learned through instruction or through reading. In Experiment 1, an experimenter read the to-be-integrated facts. Children successfully learned and…

  15. Early Visual Attention in Preterm and Fullterm Infants in Relation to Cognitive and Motor Outcomes at School Age: An Exploratory Study

    PubMed Central

    Hitzert, Marrit M.; Van Braeckel, Koenraad N. J. A.; Bos, Arend F.; Hunnius, Sabine; Geuze, Reint H.

    2014-01-01

    Objective: Preterm infants are exposed to the visual environment earlier than fullterm infants, but whether early exposure affects later development is unclear. Our aim was to investigate whether the development of visual disengagement capacity during the first 6 months postterm was associated with cognitive and motor outcomes at school age, and whether associations differed between fullterms and low-risk preterms. Method: Seventeen fullterms and ten low-risk preterms were tested in a gaze shifting task every 4 weeks until 6 months postterm. The longitudinal data were converted into single continuous variables by fitting the data with an S-shaped curve (frequencies of looks) or an inverse model (latencies of looks). Neuropsychological test results at school age were converted into composite z scores. We then performed linear regression analyses for each functional domain at school age with the variables measuring infant visual attention as separate predictors and adjusting for maternal level of education and group (fullterms versus preterms). We included an interaction term, visual attention*group, to determine whether predictive relations differed between fullterms and preterms. Results: A slower development of disengagement predicted poorer performance on attention, motor skills, and handwriting, irrespective of fullterm or preterm birth. Predictive relationships differed marginally between fullterms and preterms for inhibitory attentional control (P = 0.054) and comprehensive reading (P = 0.064). Conclusion: This exploratory study yielded no indications of a clear advantage or disadvantage of the extra visual exposure in healthy preterm infants. We tentatively conclude that additional visual exposure does not interfere with the ongoing development of neuronal networks during this vulnerable period of brain development. PMID:25340045

  16. Sound credit scores and financial decisions despite cognitive aging

    PubMed Central

    Li, Ye; Gao, Jie; Enkavi, A. Zeynep; Zaval, Lisa; Weber, Elke U.; Johnson, Eric J.

    2015-01-01

    Age-related deterioration in cognitive ability may compromise the ability of older adults to make major financial decisions. We explore whether knowledge and expertise accumulated from past decisions can offset cognitive decline to maintain decision quality over the life span. Using a unique dataset that combines measures of cognitive ability (fluid intelligence) and of general and domain-specific knowledge (crystallized intelligence), credit report data, and other measures of decision quality, we show that domain-specific knowledge and expertise provide an alternative route for sound financial decisions. That is, cognitive aging does not spell doom for financial decision-making in domains where the decision maker has developed expertise. These results have important implications for public policy and for the design of effective interventions and decision aids. PMID:25535381

  17. Sound credit scores and financial decisions despite cognitive aging.

    PubMed

    Li, Ye; Gao, Jie; Enkavi, A Zeynep; Zaval, Lisa; Weber, Elke U; Johnson, Eric J

    2015-01-01

    Age-related deterioration in cognitive ability may compromise the ability of older adults to make major financial decisions. We explore whether knowledge and expertise accumulated from past decisions can offset cognitive decline to maintain decision quality over the life span. Using a unique dataset that combines measures of cognitive ability (fluid intelligence) and of general and domain-specific knowledge (crystallized intelligence), credit report data, and other measures of decision quality, we show that domain-specific knowledge and expertise provide an alternative route for sound financial decisions. That is, cognitive aging does not spell doom for financial decision-making in domains where the decision maker has developed expertise. These results have important implications for public policy and for the design of effective interventions and decision aids. PMID:25535381

  18. Correlations among central serotonergic parameters and age-related emotional and cognitive changes assessed through the elevated T-maze and the Morris water maze

    PubMed Central

    Oliveira, Luciana; Graeff, Frederico G.; Pereira, Silvia R. C.; Oliveira-Silva, Ieda F.; Franco, Glaura C.

    2010-01-01

    Emotion and spatial cognitive aspects were assessed in adult and middle-aged rats using the elevated T-maze (ETM) and the Morris water maze (MWM) tasks. Both adult and middle-aged rats were able to acquire inhibitory avoidance behaviour, though the middle-aged subjects showed larger latencies along the trials, including the baseline, which was significantly longer than that showed by adult rats. Further, compared to adult rats, middle-aged rats had longer escape latency. In spite of the worse performance in the second session of the spatial cognitive task, the middle-aged rats were able to learn the task and remember the information along the whole probe trial test. Both thalamic serotonin (5-HT) concentration and amygdala serotonergic activity (5-HIAA/5-HT) are significantly correlated, respectively, to escape latency and behavioural extinction in the MWM only for middle-aged rats. A significant correlation between the 5-HIAA/5-HT ratio in the amygdala and behavioural extinction for middle-aged, but not for adult, rats was observed. This result suggests that serotonergic activity in the amygdala may regulate behavioural flexibility in aged animals. In addition, a significant negative correlation was found between hippocampal 5-HIAA/5-HT ratio and the path length at the second training session of the MWM task, although only for adult subjects. This was the only session where a significant difference between the performance of middle-aged and adult rats has occurred. Although the involvement of the hippocampus in learning and memory is well established, the present work shows, for the first time, a correlation between a serotonergic hippocampal parameter and performance of a spatial task, which is lost with ageing. PMID:20431986

  19. Normal Genetic Variation, Cognition, and Aging

    PubMed Central

    Greenwood, P. M.; Parasuraman, Raja

    2005-01-01

    This article reviews the modulation of cognitive function by normal genetic variation. Although the heritability of “g” is well established, the genes that modulate specific cognitive functions are largely unidentified. Application of the allelic association approach to individual differences in cognition has begun to reveal the effects of single nucleotide polymorphisms on specific and general cognitive functions. This article proposes a framework for relating genotype to cognitive phenotype by considering the effect of genetic variation on the protein product of specific genes within the context of the neural basis of particular cognitive domains. Specificity of effects is considered, from genes controlling part of one receptor type to genes controlling agents of neuronal repair, and evidence is reviewed of cognitive modulation by polymorphisms in dopaminergic and cholinergic receptor genes, dopaminergic enzyme genes, and neurotrophic genes. Although allelic variation in certain genes can be reliably linked to cognition—specifically to components of attention, working memory, and executive function in healthy adults—the specificity, generality, and replicability of the effects are not fully known. PMID:15006290

  20. Hair cortisol and cognitive performance in working age adults.

    PubMed

    McLennan, Skye N; Ihle, Andreas; Steudte-Schmiedgen, Susann; Kirschbaum, Clemens; Kliegel, Matthias

    2016-05-01

    It has been hypothesized that prolonged exposure to high cortisol levels results in cognitive impairment. However, previous research into the relationship between cortisol and cognition has produced mixed results, most likely due to difficulties achieving valid estimates of long-term cortisol exposure based on salivary or plasma cortisol assessments at a single time point. Furthermore, there has been little research on the cognitive effects of long-term cortisol exposure in working-age adults. In the present study, hair samples were collected from 246 nurses (89.8% female) aged from 21 to 62 (M=42.0, SD=11.2). Hair cortisol concentrations (HCC) in the proximal 3-cm hair segment were analyzed providing an estimate of integrated cortisol secretion over the 3 month-period prior to hair sampling. Cognition was measured using a battery of 15 neuropsychological tests, measuring core dimensions of memory, inductive reasoning, processing speed, crystalized intelligence and major aspects of executive functioning. HCC was not significantly related to any of the cognitive abilities measured, either before or after controlling for potential moderators such as age, sex, education, health, well-being, work ability and burnout. Tests for nonlinear relationships also yielded non-significant results. Thus, despite the study being well powered, long term cortisol exposure did not appear to be related to cognitive performance in this sample of working-age adults, suggesting that long term cortisol exposure may be less relevant to cognition in younger and middle-aged adults than was previously thought. PMID:26881835

  1. Nutrient intake, nutritional status, and cognitive function with aging.

    PubMed

    Tucker, Katherine L

    2016-03-01

    With the demographic aging of populations worldwide, diseases associated with aging are becoming more prevalent and costly to individuals, families, and healthcare systems. Among aging-related impairments, a decline in cognitive function is of particular concern, as it erodes memory and processing abilities and eventually leads to the need for institutionalized care. Accumulating evidence suggests that nutritional status is a key factor in the loss of cognitive abilities with aging. This is of tremendous importance, as dietary intake is a modifiable risk factor that can be improved to help reduce the burden of cognitive impairment. With respect to nutrients, there is evidence to support the critical role of several B vitamins in particular, but also of vitamin D, antioxidant vitamins (including vitamin E), and omega-3 fatty acids, which are preferentially taken up by brain tissue. On the other hand, high intakes of nutrients that contribute to hypertension, atherosclerosis, and poor glycemic control may have negative effects on cognition through these conditions. Collectively, the evidence suggests that considerable slowing and reduction of cognitive decline may be achieved by following a healthy dietary pattern, which limits intake of added sugars, while maximizing intakes of fish, fruits, vegetables, nuts, and seeds. PMID:27116240

  2. Brain plasticity and motor practice in cognitive aging

    PubMed Central

    Cai, Liuyang; Chan, John S. Y.; Yan, Jin H.; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population. PMID:24653695

  3. Structure and Correlates of Cognitive Aging in a Narrow Age Cohort

    PubMed Central

    2014-01-01

    Aging-related changes occur for multiple domains of cognitive functioning. An accumulating body of research indicates that, rather than representing statistically independent phenomena, aging-related cognitive changes are moderately to strongly correlated across domains. However, previous studies have typically been conducted in age-heterogeneous samples over longitudinal time lags of 6 or more years, and have failed to consider whether results are robust to a comprehensive set of controls. Capitalizing on 3-year longitudinal data from the Lothian Birth Cohort of 1936, we took a longitudinal narrow age cohort approach to examine cross-domain cognitive change interrelations from ages 70 to 73 years. We fit multivariate latent difference score models to factors representing visuospatial ability, processing speed, memory, and crystallized ability. Changes were moderately interrelated, with a general factor of change accounting for 47% of the variance in changes across domains. Change interrelations persisted at close to full strength after controlling for a comprehensive set of demographic, physical, and medical factors including educational attainment, childhood intelligence, physical function, APOE genotype, smoking status, diagnosis of hypertension, diagnosis of cardiovascular disease, and diagnosis of diabetes. Thus, the positive manifold of aging-related cognitive changes is highly robust in that it can be detected in a narrow age cohort followed over a relatively brief longitudinal period, and persists even after controlling for many potential confounders. PMID:24955992

  4. Aging and emotional memory: cognitive mechanisms underlying the positivity effect.

    PubMed

    Spaniol, Julia; Voss, Andreas; Grady, Cheryl L

    2008-12-01

    Younger adults tend to remember negative information better than positive or neutral information (negativity bias). The negativity bias is reduced in aging, with older adults occasionally exhibiting superior memory for positive, as opposed to negative or neutral, information (positivity bias). Two experiments with younger (N=24 in Experiment 1, N=25 in Experiment 2; age range: 18-35 years) and older adults (N=24 in both experiments; age range: 60-85 years) investigated the cognitive mechanisms responsible for age-related differences in recognition memory for emotional information. Results from diffusion model analyses (R. Ratcliff, 1978) indicated that the effects of valence on response bias were similar in both age groups but that Age x Valence interactions emerged in memory retrieval. Specifically, older adults experienced greater overall familiarity for positive items than younger adults. We interpret this finding in terms of an age-related increase in the accessibility of positive information in long-term memory. PMID:19140656

  5. Environment as 'Brain Training': A review of geographical and physical environmental influences on cognitive ageing.

    PubMed

    Cassarino, Marica; Setti, Annalisa

    2015-09-01

    Global ageing demographics coupled with increased urbanisation pose major challenges to the provision of optimal living environments for older persons, particularly in relation to cognitive health. Although animal studies emphasize the benefits of enriched environments for cognition, and brain training interventions have shown that maintaining or improving cognitive vitality in older age is possible, our knowledge of the characteristics of our physical environment which are protective for cognitive ageing is lacking. The present review analyses different environmental characteristics (e.g. urban vs. rural settings, presence of green) in relation to cognitive performance in ageing. Studies of direct and indirect associations between physical environment and cognitive performance are reviewed in order to describe the evidence that our living contexts constitute a measurable factor in determining cognitive ageing. PMID:26144974

  6. A Method for Investigating Age-related Differences in the Functional Connectivity of Cognitive Control Networks Associated with Dimensional Change Card Sort Performance

    PubMed Central

    DeBenedictis, Bianca; Morton, J. Bruce

    2014-01-01

    The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages. PMID:24837515

  7. Sleep, Cognition, and Normal Aging: Integrating a Half-Century of Multidisciplinary Research

    PubMed Central

    Scullin, Michael K.; Bliwise, Donald L.

    2014-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age there are substantial changes to sleep quantity and quality including changes to slow wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half-century of research studies across 7 diverse correlational and experimental literature domains, which historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects (including correlations in the unexpected, negative direction) in healthy older adults indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines. PMID:25620997

  8. Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research.

    PubMed

    Scullin, Michael K; Bliwise, Donald L

    2015-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age, there are substantial changes to sleep quantity and quality, including changes to slow-wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half century of research across seven diverse correlational and experimental domains that historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects in healthy older adults (including correlations in the unexpected, negative direction) indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines. PMID:25620997

  9. Age-Dependent Modifications of AMPA Receptor Subunit Expression Levels and Related Cognitive Effects in 3xTg-AD Mice.

    PubMed

    Cantanelli, Pamela; Sperduti, Samantha; Ciavardelli, Domenico; Stuppia, Liborio; Gatta, Valentina; Sensi, Stefano Luca

    2014-01-01

    GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca(2+)-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q-R substitution, a key factor in the regulation of AMPAR Ca(2+)-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca(2+) and Zn(2+). The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer's disease (AD). With quantitative real-time PCR analysis, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.)] and old (12 m.o.a) Tg-AD mice and made comparisons with levels found in age-matched wild type (WT) mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for learning short- and long-term spatial memory with the Morris Water Maze (MWM) navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in

  10. Age-Dependent Modifications of AMPA Receptor Subunit Expression Levels and Related Cognitive Effects in 3xTg-AD Mice

    PubMed Central

    Cantanelli, Pamela; Sperduti, Samantha; Ciavardelli, Domenico; Stuppia, Liborio; Gatta, Valentina; Sensi, Stefano Luca

    2014-01-01

    GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q–R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease (AD). With quantitative real-time PCR analysis, we assayed hippocampal mRNA expression levels of GluA1–4 subunits occurring in young [3 months of age (m.o.a.)] and old (12 m.o.a) Tg-AD mice and made comparisons with levels found in age-matched wild type (WT) mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for learning short- and long-term spatial memory with the Morris Water Maze (MWM) navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1–4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in

  11. Age-Related White Matter Changes

    PubMed Central

    Xiong, Yun Yun; Mok, Vincent

    2011-01-01

    Age-related white matter changes (WMC) are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC. PMID:21876810

  12. Age or age at onset? Which of them really matters for neuro and social cognition in schizophrenia?

    PubMed

    Linke, Magdalena; Jankowski, Konrad S; Ciołkiewicz, Agnieszka; Jędrasik-Styła, Małgorzata; Parnowska, Dorota; Gruszka, Anna; Denisiuk, Mirella; Jarema, Marek; Wichniak, Adam

    2015-01-30

    In schizophrenia patients, both an older age and earlier age at onset of the disease are related to worse cognitive functioning. As patients with later schizophrenia onset are also older, analysing the two effects separately can be misleading, as they can either be spurious or cancel one another out. The purpose of the present study was to elucidate the effects of age and onset-age on cognition in schizophrenia patients. Individuals with schizophrenia (N=151), aged 18-59 years, were examined with a MATRICS Consensus Cognitive Battery (MCCB) to get a full picture of their cognitive performance. Results showed age and age at onset indeed interrelated. Regression analyses revealed later onset of schizophrenia related to better social cognition. Patients׳ older age was related to a slower performance in symbol coding task, less effective executive functions, worse visual learning, lower attention, and lower total score in the MCCB. In the above regression analyses we controlled doses of antipsychotic medications. The results suggest that a previously found relationship between older age and social cognition might be spurious, and strengthen observations that it is specifically later onset-age which fosters better social cognition in schizophrenia patients. PMID:25482394

  13. The Influences of Cognitive Resources on Adaptation and Old Age.

    ERIC Educational Resources Information Center

    Poon, Leonard W.; And Others

    1992-01-01

    Estimated cognitive resources in nondemented older adults (n=165; ages 60-100+). Five clusters of results were found concerning age differences, the role of everyday experiences, influence of physical and mental health on cognitive performance, personality and cognitive factors, and levels of intelligence and affect. Concluded that cognitive…

  14. Melodic Contour Identification Reflects the Cognitive Threshold of Aging.

    PubMed

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p < 0.05 for Δpre - on task; p < 0.01 for Δon - post task) rather than the older adult group (n.s for Δpre - on task; n.s for Δon - post task). We further concluded that the oxyHb difference was present in the brain regions near the right dorsolateral prefrontal cortex. Taken together, these findings suggest that CIT2 (i.e., the melodic contour task in the target-like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  15. Melodic Contour Identification Reflects the Cognitive Threshold of Aging

    PubMed Central

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p < 0.05 for Δpre - on task; p < 0.01 for Δon – post task) rather than the older adult group (n.s for Δpre - on task; n.s for Δon – post task). We further concluded that the oxyHb difference was present in the brain regions near the right dorsolateral prefrontal cortex. Taken together, these findings suggest that CIT2 (i.e., the melodic contour task in the target-like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  16. Impact of Aging and Cognition on Hearing Assistive Technology Use

    PubMed Central

    Jorgensen, Lindsey E.; Messersmith, Jessica J.

    2015-01-01

    Many factors go into appropriate recommendation and use of hearing assistive technology (HAT). The aging auditory system presents with its own complications and intricacies; there are many types of age-related hearing loss, and it is possible that the underlying cause of hearing loss can significantly impact the recommendations and performance with HATs. The audiologist should take into consideration peripheral and central auditory function when selecting HATs for the aging adult population as well as when selecting appropriate types of technology including personal sound amplification products, hearing aids, cochlear implants, and other assistive technology. The cognitive ability of the patient plays a central role in the recommendations of HAT. It is possible that the use of HATs could mitigate some of the effects of cognitive decline and thus should be considered as early as possible. Assessment of ability and appropriate recommendations are crucial to consistent use of HAT devices. PMID:27516716

  17. Relational Knowledge in Higher Cognitive Processes.

    ERIC Educational Resources Information Center

    Halford, Graeme S.

    Explicit representation of relations plays some role in virtually all higher cognitive processes, but relational knowledge has seldom been investigated systematically. This paper considers how relational knowledge is involved in some tasks that have been important to cognitive development, including transitivity, the balance scale, classification…

  18. Blood Glucose, Diet-Based Glycemic Load and Cognitive Aging Among Dementia-Free Older Adults

    PubMed Central

    Andel, Ross; McEvoy, Cathy; Dahl Aslan, Anna K.; Finkel, Deborah; Pedersen, Nancy L.

    2015-01-01

    Background. Although evidence indicates that Type II Diabetes is related to abnormal brain aging, the influence of elevated blood glucose on long-term cognitive change is unclear. In addition, the relationship between diet-based glycemic load and cognitive aging has not been extensively studied. The focus of this study was to investigate the influence of diet-based glycemic load and blood glucose on cognitive aging in older adults followed for up to 16 years. Methods. Eight-hundred and thirty-eight cognitively healthy adults aged ≥50 years (M = 63.1, SD = 8.3) from the Swedish Adoption/Twin Study of Aging were studied. Mixed effects growth models were utilized to assess overall performance and change in general cognitive functioning, perceptual speed, memory, verbal ability, and spatial ability as a function of baseline blood glucose and diet-based glycemic load. Results. High blood glucose was related to poorer overall performance on perceptual speed as well as greater rates of decline in general cognitive ability, perceptual speed, verbal ability, and spatial ability. Diet-based glycemic load was related to poorer overall performance in perceptual speed and spatial ability. Conclusion. Diet-based glycemic load and, in particular, elevated blood glucose appear important for cognitive performance/cognitive aging. Blood glucose control (perhaps through low glycemic load diets) may be an important target in the detection and prevention of age-related cognitive decline. PMID:25149688

  19. Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation

    PubMed Central

    Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène

    2016-01-01

    The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666

  20. Assessment of Functional Change and Cognitive Correlates in the Progression from Healthy Cognitive Aging to Dementia

    PubMed Central

    Schmitter-Edgecombe, Maureen; Parsey, Carolyn M.

    2014-01-01

    Objective There is currently limited understanding of the course of change in everyday functioning that occurs with normal aging and dementia. To better characterize the nature of this change, we evaluated the types of errors made by participants as they performed everyday tasks in a naturalistic environment. Method Participants included cognitively healthy younger adults (YA; N = 55) and older adults (OA; N =88), and individuals with mild cognitive impairment (MCI: N =55) and dementia (N = 18). Participants performed eight scripted everyday activities (e.g., filling a medication dispenser) while under direct observation in a campus apartment. Task performances were coded for the following errors: inefficient actions, omissions, substitutions, and irrelevant actions. Results Performance accuracy decreased with age and level of cognitive impairment. Relative to the YAs, the OA group exhibited more inefficient actions which were linked to performance on neuropsychological measures of executive functioning. Relative to the OAs, the MCI group committed significantly more omission errors which were strongly linked to performance on memory measures. All error types were significantly more prominent in individuals with dementia. Omission errors uniquely predicted everyday functional status as measured by both informant-report and a performance-based measure. Conclusions These findings suggest that in the progression from healthy aging to MCI, everyday task difficulties may evolve from task inefficiencies to task omission errors, leading to inaccuracies in task completion that are recognized by knowledgeable informants. Continued decline in cognitive functioning then leads to more substantial everyday errors, which compromise ability to live independently. PMID:24933485

  1. Age-Related Macular Degeneration

    MedlinePlus

    ... this page please turn Javascript on. Age-related Macular Degeneration What is AMD? Click for more information Age-related macular degeneration, ... the macula allows you to see fine detail. AMD Blurs Central Vision AMD blurs the sharp central ...

  2. Aging and Cognitive Performance: Challenges and Implications for Physicians Practicing in the 21st Century

    ERIC Educational Resources Information Center

    Durning, Steven J.; Artino, Anthony R.; Holmboe, Eric; Beckman, Thomas J.; van der Vleuten, Cees; Schuwirth, Lambert

    2010-01-01

    The demands of physician practice are growing. Some specialties face critical shortages and a significant percentage of physicians are aging. To improve health care it is paramount to understand and address challenges, including cognitive issues, facing aging physicians. In this article, we outline several issues related to cognitive performance…

  3. Cognitive Functioning in Healthy Aging: The Role of Reserve and Lifestyle Factors Early in Life

    ERIC Educational Resources Information Center

    Fritsch, Thomas; McClendon, McKee J.; Smyth, Kathleen A.; Lerner, Alan J.; Friedland, Robert P.; Larsen, Janet D.

    2007-01-01

    Purpose: According to the "reserve perspective" on cognitive aging, individuals are born with or can develop resources that help them resist normal and disease-related cognitive changes that occur in aging. The reserve perspective is becoming more sophisticated, but gaps in knowledge persist. In the present research, we considered three…

  4. Kicking Back Cognitive Ageing: Leg Power Predicts Cognitive Ageing after Ten Years in Older Female Twins

    PubMed Central

    Steves, Claire J.; Mehta, Mitul M.; Jackson, Stephen H.D.; Spector, Tim D.

    2016-01-01

    Background Many observational studies have shown a protective effect of physical activity on cognitive ageing, but interventional studies have been less convincing. This may be due to short time scales of interventions, suboptimal interventional regimes or lack of lasting effect. Confounding through common genetic and developmental causes is also possible. Objectives We aimed to test whether muscle fitness (measured by leg power) could predict cognitive change in a healthy older population over a 10-year time interval, how this performed alongside other predictors of cognitive ageing, and whether this effect was confounded by factors shared by twins. In addition, we investigated whether differences in leg power were predictive of differences in brain structure and function after 12 years of follow-up in identical twin pairs. Methods A total of 324 healthy female twins (average age at baseline 55, range 43-73) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB) at two time points 10 years apart. Linear regression modelling was used to assess the relationships between baseline leg power, physical activity and subsequent cognitive change, adjusting comprehensively for baseline covariates (including heart disease, diabetes, blood pressure, fasting blood glucose, lipids, diet, body habitus, smoking and alcohol habits, reading IQ, socioeconomic status and birthweight). A discordant twin approach was used to adjust for factors shared by twins. A subset of monozygotic pairs then underwent magnetic resonance imaging. The relationship between muscle fitness and brain structure and function was assessed using linear regression modelling and paired t tests. Results A striking protective relationship was found between muscle fitness (leg power) and both 10-year cognitive change [fully adjusted model standardised β-coefficient (Stdβ) = 0.174, p = 0.002] and subsequent total grey matter (Stdβ = 0.362, p = 0.005). These effects were robust in discordant

  5. [Car driving, cognitive aging and Alzheimer disease].

    PubMed

    Fabrigoule, Colette; Lafont, Sylviane

    2015-10-01

    Older drivers are more numerous on the roads. They are expert drivers, but with increasing age certain physiological changes can interfere with driving, which is a complex activity of daily living. Older drivers are involved in fewer accidents than younger drivers, but they have a higher accident rate per kilometer driven. The elderly are heavily represented in the balance sheet of road deaths, being motorists or pedestrians. This high mortality is largely explained by their physical frailty. In the presence of deficits, self-regulation of driving habits, changes/reductions or stopping in driving activity occur in the elderly. But cognitive deficits are associated with an increased risk of accidents. Among drivers with Alzheimer's disease, there is a heterogeneity of driving ability, making difficult the advisory role of a physician for driving. A protocol for physicians was developed to assess cognitive impairments that may affect driving in an elderly patient. The car plays an important role in the autonomy of the elderly and patient advice on stopping driving should take into account the risk/benefit ratio. PMID:26009241

  6. Greater Cognitive Decline with Aging among Elders with High Serum Concentrations of Organochlorine Pesticides

    PubMed Central

    Kim, Se-A; Lee, Yu-Mi; Lee, Ho-Won; Jacobs, David R; Lee, Duk-Hee

    2015-01-01

    Although cognitive decline is very common in elders, age-related cognitive decline substantially differs among elders and the determinants of the differences in age-related cognitive decline are unclear. We investigated our hypothesis that the association between age and cognition was stronger in those with higher serum concentrations of organochlorine (OC) pesticides, common persistent and strongly lipophilic neurotoxic chemicals. Participants were 644 elders aged 60-85, participating in the National Health and Nutrition Examination Survey 1999-2002. Six OC pesticides (p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodipenyldichloroethylene (DDE), β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide) were evaluated. “Lower cognitive function” was defined as having a low Digit-Symbol Substitution Test (DSST) score (<25th percentile of DSST score, cutpoint 28 symbols substituted). Higher levels of β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide modified the associations between age and lower cognitive function (Pinteraction<0.01, 0.03, <0.01, and 0.02, respectively). Elders in the 3rd tertile of these chemicals demonstrated a greater risk of lower cognitive function with aging, compared to those in the combined 1st and 2nd tertiles. Among those with highest OC pesticides (3rd tertile), the odds ratio for the risk of lower cognitive function was about 6 to 11 for the highest quintile of age (80-85 years) vs. the first quintile of age (60-63 years), while the association between age and lower cognitive function became flatter in those with lower OC pesticides (combined 1st and 2nd tertiles). Both DDT and DDE showed no interaction, with lower DSST scores for higher age irrespective of serum concentrations of DDT or DDE. Even though DSST score measures only one aspect of cognition, several OC pesticides modified aging-related prevalence of low cognitive score, a finding which should be evaluated in

  7. Cognitive Aging in Older Black and White Persons

    PubMed Central

    Wilson, Robert S.; Capuano, Ana W.; Sytsma, Joel; Bennett, David A.; Barnes, Lisa L.

    2015-01-01

    During a mean of 5.2 years of annual follow-up, older Black (n=647) and White (n=647) persons of equivalent age and education completed a battery of 17 cognitive tests from which composite measures of 5 abilities were derived. Baseline level of each ability was lower in the Black subgroup. Decline in episodic and working memory was not related to race. Decline in semantic memory, perceptual speed, and visuospatial ability was slower in Black persons than White persons, and in semantic memory and perceptual speed this effect was stronger in older than younger participants. Racial differences persisted after adjustment for retest effects. The results suggest subtle cognitive aging differences between Black persons and White persons. PMID:25961876

  8. Perception and Cognition in the Ageing Brain: A Brief Review of the Short- and Long-Term Links between Perceptual and Cognitive Decline

    PubMed Central

    Roberts, Katherine L.; Allen, Harriet A.

    2016-01-01

    Ageing is associated with declines in both perception and cognition. We review evidence for an interaction between perceptual and cognitive decline in old age. Impoverished perceptual input can increase the cognitive difficulty of tasks, while changes to cognitive strategies can compensate, to some extent, for impaired perception. While there is strong evidence from cross-sectional studies for a link between sensory acuity and cognitive performance in old age, there is not yet compelling evidence from longitudinal studies to suggest that poor perception causes cognitive decline, nor to demonstrate that correcting sensory impairment can improve cognition in the longer term. Most studies have focused on relatively simple measures of sensory (visual and auditory) acuity, but more complex measures of suprathreshold perceptual processes, such as temporal processing, can show a stronger link with cognition. The reviewed evidence underlines the importance of fully accounting for perceptual deficits when investigating cognitive decline in old age. PMID:26973514

  9. Olfactory dysfunction and cognitive impairment in age-related neurodegeneration: prevalence related to patient selection, diagnostic criteria and therapeutic treatment of aged clients receiving clinical neurology and community-based care.

    PubMed

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2011-11-01

    A decrease in olfactory function with age has been attributed to a variety of factors including normal anatomical and physiological changes in aging, surgery, trauma, environmental factors, medications and disease. Olfactory impairment has also been associated with neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Deficits in these chemical senses cannot only reduce the pleasure and comfort from food, but represent risk factors for nutritional and immune deficiencies as well as adherence to specific dietary regimens. Therapy is limited, but one should be aware of the existing medical and surgical treatment modalities. Reactive oxygen and nitrogen species, copper and zinc ions, glycating agents and reactive aldehydes, protein cross-linking and proteolytic dysfunction may all contribute to neurodegeneration, olfactory dysfunction, AD. Carnosine (beta-alanyl- L-histidine) is a naturally-occurring, pluripotent, homeostatic transglycating agent. The olfactory lobe is normally enriched in carnosine and zinc. Loss of olfactory function and oxidative damage to olfactory tissue are early symptoms of AD. Protein and lipid oxidation and glycation are integral components of the AD pathophysiology. Carnosine can suppress amyloidbeta peptide toxicity, inhibit production of oxygen free-radicals, scavenge hydroxyl radicals and reactive aldehydes, and suppresses protein glycation. The observations suggest that patented non-hydrolyzed carnosine lubricant drug delivery or perfume toilet water formulations combined with related moiety amino acid structures, such as beta-alanine, should be explored for therapeutic potential towards olfactory dysfunction, AD and other neurodegenerative disorders. "The olfactory system, anatomically, is right in the middle of the part of the brain that's very important for memory. There are strong neural connections between the two." ~ Donald Wilson. PMID:22082323

  10. Structural brain changes in aging: courses, causes and cognitive consequences.

    PubMed

    Fjell, Anders M; Walhovd, Kristine B

    2010-01-01

    The structure of the brain is constantly changing from birth throughout the lifetime, meaning that normal aging, free from dementia, is associated with structural brain changes. This paper reviews recent evidence from magnetic resonance imaging (MRI) studies about age-related changes in the brain. The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging. However, the pattern of changes is highly heterogeneous, with the largest changes seen in the frontal and temporal cortex, and in the putamen, thalamus, and accumbens. With modern approaches to analysis of MRI data, changes in cortical thickness and subcortical volume can be tracked over periods as short as one year, with annual reductions of between 0.5% and 1.0% in most brain areas. (2) The volumetric brain reductions in healthy aging are likely only to a minor extent related to neuronal loss. Rather, shrinkage of neurons, reductions of synaptic spines, and lower numbers of synapses probably account for the reductions in grey matter. In addition, the length of myelinated axons is greatly reduced, up to almost 50%. (3) Reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen in healthy aging. Such reductions are to a substantial degree mediated by neuroanatomical changes, meaning that between 25% and 100% of the differences between young and old participants in selected cognitive functions can be explained by group differences in structural brain characteristics. PMID:20879692

  11. Chronic Glucocorticoid Hypersecretion in Cushing's Syndrome Exacerbates Cognitive Aging

    ERIC Educational Resources Information Center

    Michaud, Kathy; Forget, Helene; Cohen, Henri

    2009-01-01

    Cumulative exposure to glucocorticoid hormones (GC) over the lifespan has been associated with cognitive impairment and may contribute to physical and cognitive degeneration in aging. The objective of the present study was to examine whether the pattern of cognitive deficits in patients with Cushing's syndrome (CS), a disorder characterized by…

  12. Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing?

    PubMed Central

    Cox, Simon R.; MacPherson, Sarah E.; Ferguson, Karen J.; Royle, Natalie A.; Maniega, Susana Muñoz; Hernández, Maria del C. Valdés; Bastin, Mark E.; MacLullich, Alasdair M.J.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Elevated glucocorticoid (GC) levels putatively damage specific brain regions, which in turn may accelerate cognitive ageing. However, many studies are cross-sectional or have relatively short follow-up periods, making it difficult to relate GCs directly to changes in cognitive ability with increasing age. Moreover, studies combining endocrine, MRI and cognitive variables are scarce, measurement methods vary considerably, and formal tests of the underlying causal hypothesis (cortisol → brain → cognition) are absent. In this study, 90 men, aged 73 years, provided measures of fluid intelligence, processing speed and memory, diurnal and reactive salivary cortisol and two measures of white matter (WM) structure (WM hyperintensity volume from structural MRI and mean diffusivity averaged across 12 major tracts from diffusion tensor MRI), hippocampal volume, and also cognitive ability at age 11. We tested whether negative relationships between cognitive ageing differences (over more than 60 years) and salivary cortisol were significantly mediated by WM and hippocampal volume. Significant associations between reactive cortisol at 73 and cognitive ageing differences between 11 and 73 (r = −.28 to −.36, p < .05) were partially mediated by both WM structural measures, but not hippocampal volume. Cortisol-WM relationships were modest, as was the degree to which WM structure attenuated cortisol–cognition associations (<15%). These data support the hypothesis that GCs contribute to cognitive ageing differences from childhood to the early 70s, partly via brain WM structure. PMID:26298692

  13. Neurogenetic Effects on Cognition in Aging Brains: A Window of Opportunity for Intervention?

    PubMed Central

    Reinvang, Ivar; Deary, Ian J.; Fjell, Anders M.; Steen, Vidar M.; Espeseth, Thomas; Parasuraman, Raja

    2010-01-01

    Knowledge of genetic influences on cognitive aging can constrain and guide interventions aimed at limiting age-related cognitive decline in older adults. Progress in understanding the neural basis of cognitive aging also requires a better understanding of the neurogenetics of cognition. This selective review article describes studies aimed at deriving specific neurogenetic information from three parallel and interrelated phenotype-based approaches: psychometric constructs, cognitive neuroscience-based processing measures, and brain imaging morphometric data. Developments in newer genetic analysis tools, including genome wide association, are also described. In particular, we focus on models for establishing genotype–phenotype associations within an explanatory framework linking molecular, brain, and cognitive levels of analysis. Such multiple-phenotype approaches indicate that individual variation in genes central to maintaining synaptic integrity, neurotransmitter function, and synaptic plasticity are important in affecting age-related changes in brain structure and cognition. Investigating phenotypes at multiple levels is recommended as a means to advance understanding of the neural impact of genetic variants relevant to cognitive aging. Further knowledge regarding the mechanisms of interaction between genetic and preventative procedures will in turn help in understanding the ameliorative effect of various experiential and lifestyle factors on age-related cognitive decline. PMID:21103005

  14. Cognitive Aging: What Every Geriatric Psychiatrist Should Know.

    PubMed

    Blazer, Dan G; Wallace, Robert B

    2016-09-01

    The authors of this review both served on the Institute of Medicine Committee, which produced the report "Cognitive Aging: Progress in Understanding and Opportunities for Action." In this review, the authors summarize portions of the report that are especially applicable to geriatric psychiatrists and other clinicians who work with the elderly. Cognitive aging is a universal phenomenon that must be better understood by clinicians, a trajectory across multiple cognitive functions upstream from mild neurocognitive and major neurocognitive disorders. The authors review the epidemiology, basic neurobiology, and evidence-based interventions for cognitive aging. PMID:27569270

  15. Neuroanatomical Correlates of Age-Sensitive and Age-Invariant Cognitive Abilities: An "In Vivo" MRI Investigation.

    ERIC Educational Resources Information Center

    Raz, Naftali; And Others

    1993-01-01

    The relationship between brain asymmetry and age-related differences in cognitive abilities was examined for 29 adults aged 18 to 78 years using magnetic resonance imagery (MRI). Brain and dorsolateral prefrontal cortex size correlated positively with fluid intelligence but did not add to the fluid intelligence variance explained by age alone.…

  16. Development of Cognitive Capacities in Preschool Age

    ERIC Educational Resources Information Center

    Veraksa, Nikolay E.

    2011-01-01

    Child development involves the process of mastering cultural tools, which modify relations with the world and provide the means to act on the self. A sign is a universal cultural tool, but these tools are not the same for all ages. The problem of specifying development becomes one of finding the tools that children use in their activity.…

  17. A review of physical and cognitive interventions in aging.

    PubMed

    Bamidis, P D; Vivas, A B; Styliadis, C; Frantzidis, C; Klados, M; Schlee, W; Siountas, A; Papageorgiou, S G

    2014-07-01

    Maintaining a healthy brain is a critical factor for the quality of life of elderly individuals and the preservation of their independence. Challenging aging brains through cognitive training and physical exercises has shown to be effective against age-related cognitive decline and disease. But how effective are such training interventions? What is the optimal combination/strategy? Is there enough evidence from neuropsychological observations, animal studies, as well as, structural and functional neuroimaging investigations to interpret the underlying neurobiological mechanisms responsible for the observed neuroplasticity of the aging brain? This piece of work summarizes recent findings toward these questions, but also highlights the role of functional brain connectivity work, an emerging discipline for future research in healthy aging and the study of the underlying mechanisms across the life span. The ultimate aim is to conclude on recommended multimodal training, in light of contemporary trends in the design of exergaming interventions. The latter issue is discussed in conjunction with building up neuroscientific knowledge and envisaged future research challenges in mapping, understanding and training the aging brain. PMID:24705268

  18. Impaired Sleep Predicts Cognitive Decline in Old People: Findings from the Prospective KORA Age Study

    PubMed Central

    Johar, Hamimatunnisa; Kawan, Rasmila; Emeny, Rebecca Thwing; Ladwig, Karl-Heinz

    2016-01-01

    Study Objectives: To investigate the association between sleep-related characteristics and cognitive change over 3 years of follow up in an aged population. Methods: Sleep characteristics and covariates were assessed at baseline in a standardized interview and clinical examination of the population-based KORA Age Study (n = 740, mean age = 75 years). Cognitive score (determined by telephone interview for cognitive status, TICS-m) was recorded at baseline and 3 years later. Results: At baseline, 82.83% (n = 613) of participants had normal cognitive status, 13.51% (n = 100) were classified with mild cognitive impairment (MCI), and 3.64% (n = 27) with probable dementia. The effect of three distinct patterns of poor sleep (difficulties initiating [DIS] or maintaining sleep [DMS], daytime sleepiness [DS] or sleep duration) were considered on a change in cognitive score with adjustments for potential confounders in generalized linear regression models. Cognitive decline was more pronounced in individuals with DMS compared to those with no DMS (β = 1.33, 95% CI = 0.41–2.24, P < 0.001). However, the predictive power of DMS was only significant in individuals with normal cognition and not impaired subjects at baseline. Prolonged sleep duration increased the risk for cognitive decline in cognitively impaired elderly (β = 1.86, 95% CI = 0.15–3.57, P = 0.03). Other sleep characteristics (DIS and DS) were not significantly associated with cognitive decline. Conclusions: DMS and long sleep duration were associated with cognitive decline in normal and cognitively impaired elderly, respectively. The identification of impaired sleep quality may offer intervention strategies to deter cognitive decline in the elderly with normal cognitive function. Citation: Johar H, Kawan R, Emeny RT, Ladwig KH. Impaired sleep predicts cognitive decline in old people: findings from the prospective KORA age study. SLEEP 2016;39(1):217–226. PMID:26414903

  19. Confidant Relations of the Aged.

    ERIC Educational Resources Information Center

    Tigges, Leann M.; And Others

    The confidant relationship is a qualitatively distinct dimension of the emotional support system of the aged, yet the composition of the confidant network has been largely neglected in research on aging. Persons (N=940) 60 years of age and older were interviewed about their socio-environmental setting. From the enumeration of their relatives,…

  20. Effects of age and ability on components of cognitive change

    PubMed Central

    Salthouse, Timothy A.

    2013-01-01

    Prior experience with a cognitive task is often associated with higher performance on a second assessment, and these experience effects can complicate the interpretation of cognitive change. The current study was designed to investigate experience effects by obtaining measures of cognitive performance separated by days and by years. The analyses were based on data from 2017 adults with two longitudinal occasions, of whom 948 had also completed a third occasion, with each occasion consisting of three parallel versions of the tests on separate sessions. Change across short intervals was typically positive, and greater among older adults and adults with low levels of cognitive ability, whereas change over intervals of approximately three years was often negative, particularly at older ages. In contrast to the expectation that change over short intervals might be informative about change over longer intervals, relations between short-term change and long-term change were negative, as the individuals who gained the most with assessments separated by days tended to experience the greatest losses across assessments separated by years. PMID:24159248

  1. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice.

    PubMed

    Qian, Xiao-Lan; Zhang, Wei; Liu, Ming-Zheng; Zhou, Yu-Bing; Zhang, Jing-Min; Han, Li; Peng, You-Mei; Jiang, Jin-hua; Wang, Qing-Duan

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a frequent complication following major surgery in the elderly. However, the exact pathogenic mechanisms are still unknown. Dexmedetomidine, a selective alpha 2 adrenal receptor agonist, was revealed anesthesia and brain protective role. The present study aimed to examine whether dexmedetomdine protects against POCD induced by major surgical trauma under general anesthesia in aged mice. In the present study, cognitive function was assessed by Y-maze. Proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α), apoptosis-related factor caspase-3 and Bax were detected by real-time PCR, Western blot or immunohistochemistry. The results showed that anesthesia alone caused weak cognitive dysfunction on the first day after general anesthesia. Cognitive function in mice with splenectomy under general anesthesia was significantly exacerbated at the first and third days after surgery, and was significantly improved by dexmedetomidine administration. Splenectomy increased the expression of IL-1β, TNF-α, Bax and caspase-3 in hippocampus. These changes were significantly inversed by dexmedetomidine. These results suggest that hippocampal inflammatory response and neuronal apoptosis may contribute to POCD, and selective alpha 2 adrenal receptor excitation play a protective role. PMID:25460022

  2. Cognitive control, cognitive reserve, and memory in the aging bilingual brain

    PubMed Central

    Grant, Angela; Dennis, Nancy A.; Li, Ping

    2014-01-01

    In recent years bilingualism has been linked to both advantages in executive control and positive impacts on aging. Such positive cognitive effects of bilingualism have been attributed to the increased need for language control during bilingual processing and increased cognitive reserve, respectively. However, a mechanistic explanation of how bilingual experience contributes to cognitive reserve is still lacking. The current paper proposes a new focus on bilingual memory as an avenue to explore the relationship between executive control and cognitive reserve. We argue that this focus will enhance our understanding of the functional and structural neural mechanisms underlying bilingualism-induced cognitive effects. With this perspective we discuss and integrate recent cognitive and neuroimaging work on bilingual advantage, and suggest an account that links cognitive control, cognitive reserve, and brain reserve in bilingual aging and memory. PMID:25520695

  3. Effects of Age on Cognitive Control during Semantic Categorization

    PubMed Central

    Mudar, Raksha A.; Chiang, Hsueh-Sheng; Maguire, Mandy J.; Spence, Jeffrey S.; Eroh, Justin; Michael, A. Kraut; Hart, John

    2015-01-01

    We used event-related potentials (ERPs) to study age effects of perceptual (basic-level) vs. perceptual-semantic (superordinate-level) categorization on cognitive control using the go/nogo paradigm. Twenty-two younger (11 M; 21±2.2 years) and 22 older adults (9 M; 63±5.8 years) completed two visual go/nogo tasks. In the single car task (SiC) (basic), go/nogo responses were made based on single exemplars of a car (go) and a dog (nogo). In the object animal task (ObA) (superordinate), responses were based on multiple exemplars of objects (go) and animals (nogo). Each task consisted of 200 trials: 160 (80%) ‘go’ trials that required a response through button pressing and 40 (20%) ‘nogo’ trials that required inhibition/withholding of a response. ERP data revealed significantly reduced nogo-N2 and nogo-P3 amplitudes in older compared to younger adults, whereas go-N2 and go-P3 amplitudes were comparable in both groups during both categorization tasks. Although the effects of categorization levels on behavioral data and P3 measures were similar in both groups with longer response times, lower accuracy scores, longer P3 latencies, and lower P3 amplitudes in ObA compared to SiC, N2 latency revealed age group differences moderated by the task. Older adults had longer N2 latency for ObA compared to SiC, in contrast, younger adults showed no N2 latency difference between SiC and ObA. Overall, these findings suggest that age differentially affects neural processing related to cognitive control during semantic categorization. Furthermore, in older adults, unlike in younger adults, levels of categorization modulate neural processing related to cognitive control even at the early stages (N2). PMID:25823764

  4. Macular degeneration - age-related

    MedlinePlus

    Age-related macular degeneration (ARMD); AMD ... distorted and wavy. There may be a small dark spot in the center of your vision that ... leafy vegetables, may also decrease your risk of age-related macular degeneration. If you have wet AMD, ...

  5. Optimal Developmental Outcomes for the Child Aged Six to Twelve: Social, Moral, Cognitive, and Emotional Dimensions.

    ERIC Educational Resources Information Center

    Baker, Kay

    2001-01-01

    Discusses Montessori theories for development of social, moral, cognitive, and emotional dimensions of the human personality during the second plane of development--age six to puberty--as these theories relate to the theory of optimal experience. (JPB)

  6. Preschooler Sleep Patterns Related to Cognitive and Adaptive Functioning

    ERIC Educational Resources Information Center

    Keefe-Cooperman, Kathleen; Brady-Amoon, Peggy

    2014-01-01

    Research Findings: Preschoolers' sleep patterns were examined related to cognitive and adaptive functioning. The sample consisted of 874 typically developing preschool children with a mean age of 40.01 months. Parent/caregiver reports of children's sleep pattern factors, Stanford-Binet 5 intelligence scale scores, and Behavior Assessment…

  7. Complementary Cognitive Capabilities, Economic Decision-Making, and Aging

    PubMed Central

    Li, Ye; Baldassi, Martine; Johnson, Eric J.; Weber, Elke U.

    2014-01-01

    Fluid intelligence decreases with age, yet evidence about age declines in decision-making quality is mixed: Depending on the study, older adults make worse, equally good, or even better decisions than younger adults. We propose a potential explanation for this puzzle, namely that age differences in decision performance result from the interplay between two sets of cognitive capabilities that impact decision making, one in which older adults fare worse (i.e., fluid intelligence) and one in which they fare better (i.e., crystallized intelligence). Specifically, we hypothesized that older adults’ higher levels of crystallized intelligence can provide an alternate pathway to good decisions when the fluid intelligence pathway declines. The performance of older adults relative to younger adults therefore depends on the relative importance of each type of intelligence for the decision at hand. We tested this complementary capabilities hypothesis in a broad sample of younger and older adults, collecting a battery of standard cognitive measures and measures of economically important decision-making “traits”—including temporal discounting, loss aversion, financial literacy, and debt literacy. We found that older participants performed as well as or better than younger participants on these four decision-making measures. Structural equation modeling verified our hypothesis: Older participants’ greater crystallized intelligence offset their lower levels of fluid intelligence for temporal discounting, financial literacy, and debt literacy, but not for loss aversion. These results have important implications for public policy and for the design of effective decision environments for older adults. PMID:24040999

  8. Complementary cognitive capabilities, economic decision making, and aging.

    PubMed

    Li, Ye; Baldassi, Martine; Johnson, Eric J; Weber, Elke U

    2013-09-01

    Fluid intelligence decreases with age, yet evidence about age declines in decision-making quality is mixed: Depending on the study, older adults make worse, equally good, or even better decisions than younger adults. We propose a potential explanation for this puzzle, namely that age differences in decision performance result from the interplay between two sets of cognitive capabilities that impact decision making, one in which older adults fare worse (i.e., fluid intelligence) and one in which they fare better (i.e., crystallized intelligence). Specifically, we hypothesized that older adults' higher levels of crystallized intelligence can provide an alternate pathway to good decisions when the fluid intelligence pathway declines. The performance of older adults relative to younger adults therefore depends on the relative importance of each type of intelligence for the decision at hand. We tested this complementary capabilities hypothesis in a broad sample of younger and older adults, collecting a battery of standard cognitive measures and measures of economically important decision-making "traits"--including temporal discounting, loss aversion, financial literacy, and debt literacy. We found that older participants performed as well as or better than younger participants on these four decision-making measures. Structural equation modeling verified our hypothesis: Older participants' greater crystallized intelligence offset their lower levels of fluid intelligence for temporal discounting, financial literacy, and debt literacy, but not for loss aversion. These results have important implications for public policy and for the design of effective decision environments for older adults. PMID:24040999

  9. Mediterranean diet and cognitive function in older age: results from the Women’s Health Study

    PubMed Central

    Samieri, Cécilia; Grodstein, Francine; Rosner, Bernard A.; Kang, Jae H.; Cook, Nancy R.; Manson, JoAnn E.; Buring, Julie E.; Willett, Walter C.; Okereke, Olivia I.

    2013-01-01

    Background Adherence to a Mediterranean diet may help prevent cognitive decline in older age, but studies are limited. We examined the association of adherence to the Mediterranean diet with cognitive function and decline. Methods We included 6,174 participants, aged 65+ years, from the cognitive sub-study of the Women’s Health Study. Women provided dietary information in 1998 and completed a cognitive battery 5 years later, followed by two assessments at 2-year intervals. The primary outcomes were composite scores of global cognition and verbal memory. The alternate Mediterranean diet adherence 9-point-score was constructed based on intakes of: vegetables, fruits, legumes, whole grains, nuts, fish, red and processed meats, moderate alcohol, and the ratio of monounsaturated-to-saturated fats. Results After multivariable adjustment, the alternate Mediterranean diet score was not associated with trajectories of repeated cognitive scores (P-trend across quintiles=0.26 and 0.40 for global cognition and verbal memory, respectively), nor with overall global cognition and verbal memory at older ages, assessed by averaging the three cognitive measures (P-trend=0.63 and 0.44, respectively). Among alternate Mediterranean diet components, higher monounsaturated-to-saturated fats ratio was associated with more favorable cognitive trajectories (P-trend=0.03 and 0.05 for global cognition and verbal memory, respectively). Greater whole grain intake was not associated with cognitive trajectories, but was related to better average global cognition (P-trend=0.02). Conclusions In this large study of older women, we observed no association of the Mediterranean diet with cognitive decline. Relations between individual Mediterranean diet components, particularly whole grains, and cognitive function merit further study. PMID:23676264

  10. The Relative Age Effect among Female Brazilian Youth Volleyball Players

    ERIC Educational Resources Information Center

    Okazaki, Fabio H. A.; Keller, Birgit; Fontana, Fabio E.; Gallagher, Jere D.

    2011-01-01

    In sports, the relative age effect (RAE) refers to performance disadvantages of children born late in the competition year compared to those with birthdays soon after the cutoff date. This effect is derived from age grouping, a strategy commonly used in youth sport programs. The purpose of age grouping is to decrease possible cognitive, physical,…

  11. Sex-based memory advantages and cognitive aging: a challenge to the cognitive reserve construct?

    PubMed

    Caselli, Richard J; Dueck, Amylou C; Locke, Dona E C; Baxter, Leslie C; Woodruff, Bryan K; Geda, Yonas E

    2015-02-01

    Education and related proxies for cognitive reserve (CR) are confounded by associations with environmental factors that correlate with cerebrovascular disease possibly explaining discrepancies between studies examining their relationships to cognitive aging and dementia. In contrast, sex-related memory differences may be a better proxy. Since they arise developmentally, they are less likely to reflect environmental confounds. Women outperform men on verbal and men generally outperform women on visuospatial memory tasks. Furthermore, memory declines during the preclinical stage of AD, when it is clinically indistinguishable from normal aging. To determine whether CR mitigates age-related memory decline, we examined the effects of gender and APOE genotype on longitudinal memory performances. Memory decline was assessed in a cohort of healthy men and women enriched for APOE ɛ4 who completed two verbal [Rey Auditory Verbal Learning Test (AVLT), Buschke Selective Reminding Test (SRT)] and two visuospatial [Rey-Osterrieth Complex Figure Test (CFT), and Benton Visual Retention Test (VRT)] memory tests, as well as in a separate larger and older cohort [National Alzheimer's Coordinating Center (NACC)] who completed a verbal memory test (Logical Memory). Age-related memory decline was accelerated in APOE ɛ4 carriers on all verbal memory measures (AVLT, p=.03; SRT p<.001; logical memory p<.001) and on the VRT p=.006. Baseline sex associated differences were retained over time, but no sex differences in rate of decline were found for any measure in either cohort. Sex-based memory advantage does not mitigate age-related memory decline in either APOE ɛ4 carriers or non-carriers. PMID:25665170

  12. Sex-Based Memory Advantages and Cognitive Aging: A Challenge to the Cognitive Reserve Construct?

    PubMed Central

    Caselli, Richard J.; Dueck, Amylou C.; Locke, Dona E.C.; Baxter, Leslie C.; Woodruff, Bryan K.; Geda, Yonas E.

    2016-01-01

    Education and related proxies for cognitive reserve (CR) are confounded by associations with environmental factors that correlate with cerebrovascular disease possibly explaining discrepancies between studies examining their relationships to cognitive aging and dementia. In contrast, sex-related memory differences may be a better proxy. Since they arise developmentally, they are less likely to reflect environmental confounds. Women outperform men on verbal and men generally outperform women on visuospatial memory tasks. Furthermore, memory declines during the preclinical stage of AD, when it is clinically indistinguishable from normal aging. To determine whether CR mitigates age-related memory decline, we examined the effects of gender and APOE genotype on longitudinal memory performances. Memory decline was assessed in a cohort of healthy men and women enriched for APOE ε4 who completed two verbal [Rey Auditory Verbal Learning Test (AVLT), Buschke Selective Reminding Test (SRT)] and two visuospatial [Rey-Osterrieth Complex Figure Test (CFT), and Benton Visual Retention Test (VRT)] memory tests, as well as in a separate larger and older cohort [National Alzheimer’s Coordinating Center (NACC)] who completed a verbal memory test (Logical Memory). Age-related memory decline was accelerated in APOE ε4 carriers on all verbal memory measures (AVLT, p = .03; SRT p<.001; logical memory p<.001) and on the VRT p = .006. Baseline sex associated differences were retained over time, but no sex differences in rate of decline were found for any measure in either cohort. Sex-based memory advantage does not mitigate age-related memory decline in either APOE ε4 carriers or non-carriers. PMID:25665170

  13. The Implications of Cognitive Aging for Listening and the Framework for Understanding Effortful Listening (FUEL).

    PubMed

    Phillips, Natalie A

    2016-01-01

    This review article considers some of the age-related changes in cognition that are likely to interact with hearing, listening effort, and cognitive energy. The focus of the review is on normative age-related changes in cognition; however, consideration is also given to older adults who experience clinically significant deficits in cognition, such as persons with Alzheimer's disease or who may be in a preclinical stage of dementia (mild cognitive impairment). The article distinguishes between the assessment of cognitive function for clinical versus research purposes. It reviews the goal of cognitive testing in older adults and discusses the challenges of validly assessing cognition in persons with sensory impairments. The article then discusses the goals of assessing specific cognitive functions (processing speed and attentional processes) for the purpose of understanding their relationships with listening effort. Finally, the article highlights certain concepts that are likely to be relevant to listening effort and cognitive energy, including some issues that have not yet received much attention in this context (e.g., conation, cognitive reserve, and second language speech processing). PMID:27355769

  14. Keep Your Brain Fit! A Psychoeducational Training Program for Healthy Cognitive Aging: A Feasibility Study

    ERIC Educational Resources Information Center

    Reijnders, Jennifer; van Heugten, Caroline; van Boxtel, Martin

    2015-01-01

    A psychoeducational face-to-face training program (Keep Your Brain Fit!) was developed to support the working population in coping with age-related cognitive changes and taking proactive preventive measures to maintain cognitive health. A feasibility study was conducted to test the training program presented in a workshop format. Participants…

  15. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues

    PubMed Central

    Konar, Arpita; Singh, Padmanabh; Thakur, Mahendra K.

    2016-01-01

    Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets. PMID:27114845

  16. Health-Related Quality of Life and Cognitive Functioning from the Perspective of Parents of School-Aged Children with Asperger's Syndrome Utilizing the PedsQL[TM

    ERIC Educational Resources Information Center

    Limbers, Christine A.; Heffer, Robert W.; Varni, James W.

    2009-01-01

    HRQOL as a multidimensional construct has not been previously investigated in children with Asperger's Syndrome. The objective of the present study was to examine the initial feasibility, reliability, and validity of the PedsQL[TM] 4.0 Generic Core Scales and PedsQL[TM] Cognitive Functioning Scale parent proxy-report versions in school-aged…

  17. New Measures of Masked Text Recognition in Relation to Speech-in-Noise Perception and Their Associations with Age and Cognitive Abilities

    ERIC Educational Resources Information Center

    Besser, Jana; Zekveld, Adriana A.; Kramer, Sophia E.; Ronnberg, Jerker; Festen, Joost M.

    2012-01-01

    Purpose: In this research, the authors aimed to increase the analogy between Text Reception Threshold (TRT; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) and Speech Reception Threshold (SRT; Plomp & Mimpen, 1979) and to examine the TRT's value in estimating cognitive abilities that are important for speech comprehension in noise. Method: The…

  18. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet

    PubMed Central

    Kesby, James P.; Kim, Jane J.; Scadeng, Miriam; Woods, Gina; Kado, Deborah M.; Olefsky, Jerrold M.; Jeste, Dilip V.; Achim, Cristian L.; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  19. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet.

    PubMed

    Kesby, James P; Kim, Jane J; Scadeng, Miriam; Woods, Gina; Kado, Deborah M; Olefsky, Jerrold M; Jeste, Dilip V; Achim, Cristian L; Semenova, Svetlana

    2015-01-01

    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. PMID:26448649

  20. Antecedents of Emotions in Elite Athletes: A Cognitive Motivational Relational Theory Perspective

    ERIC Educational Resources Information Center

    Uphill, Mark A.; Jones, Marc V.

    2007-01-01

    Cognitive motivational relational theory suggests that cognitive appraisals or core relational themes (a composite summary of appraisal components) represent the proximal determinants of athletes' emotions. Semistructured interviews with 12 current international athletes (1 woman and 11 men) ages 19 to 37 years (M age = 27 years, SD = 6.03),…

  1. Higher Education Is an Age-Independent Predictor of White Matter Integrity and Cognitive Control in Late Adolescence

    ERIC Educational Resources Information Center

    Noble, Kimberly G.; Korgaonkar, Mayuresh S.; Grieve, Stuart M.; Brickman, Adam M.

    2013-01-01

    Socioeconomic status is an important predictor of cognitive development and academic achievement. Late adolescence provides a unique opportunity to study how the attainment of socioeconomic status (in the form of years of education) relates to cognitive and neural development, during a time when age-related cognitive and neural development is…

  2. Development of Planning Abilities in Normal Aging: Differential Effects of Specific Cognitive Demands

    ERIC Educational Resources Information Center

    Köstering, Lena; Stahl, Christoph; Leonhart, Rainer; Weiller, Cornelius; Kaller, Christoph P.

    2014-01-01

    In line with the frontal hypothesis of aging, the ability to plan ahead undergoes substantial change during normal aging. Although impairments on the Tower of London planning task were reported earlier, associations between age-related declines and specific cognitive demands on planning have not been studied. Here we investigated the impact of…

  3. Cognitive Diversity in Middle-Aged and Elderly Adults: The Role of Education

    ERIC Educational Resources Information Center

    Pereiro-Rozas, Arturo X.; Juncos-Rabadán, Onésimo; Facal, David; Pérez-Fernández, Aurora

    2014-01-01

    This study examines cognitive diversity through performance of four attentional tasks and a vocabulary measure in relation to age and level of education. Tasks were performed by 168 participants (aged between 45 and 91 years) who were grouped according to age and level of education. Multivariate analyses of variance were applied to Z scores…

  4. Glutamatergic treatment strategies for age-related memory disorders.

    PubMed

    Müller, W E; Scheuer, K; Stoll, S

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7997073

  5. Metabolic reserve as a determinant of cognitive aging.

    PubMed

    Stranahan, Alexis M; Mattson, Mark P

    2012-01-01

    Mild cognitive impairment (MCI) and Alzheimer's disease (AD) represent points on a continuum of cognitive performance in aged populations. Cognition may be impaired or preserved in the context of brain aging. One theory to account for memory maintenance in the context of extensive pathology involves 'cognitive reserve', or the ability to compensate for neuropathology through greater recruitment of remaining neurons. In this review, we propose a complementary hypothesis of 'metabolic reserve', where a brain with high metabolic reserve is characterized by the presence of neuronal circuits that respond adaptively to perturbations in cellular and somatic energy metabolism and thereby protects against declining cognition. Lifestyle determinants of metabolic reserve, such as exercise, reduced caloric intake, and intake of specific dietary components can promote neuroprotection, while pathological states arising from sedentary lifestyles and excessive caloric intake contribute to neuronal endangerment. This bidirectional relationship between metabolism and cognition may be mediated by alterations in central insulin and neurotrophic factor signaling and glucose metabolism, with downstream consequences for accumulation of amyloid-β and hyperphosphorylated tau. The metabolic reserve hypothesis is supported by epidemiological findings and the spectrum of individual cognitive trajectories during aging, with additional data from animal models identifying potential mechanisms for this relationship. Identification of biomarkers for metabolic reserve could assist in generating a predictive model for the likelihood of cognitive decline with aging. PMID:22045480

  6. The Analysis of Cognitive Abilities in the Preschool Age.

    ERIC Educational Resources Information Center

    Blank, Marion

    In order to gain a greater understanding of the intellectual strengths and weaknesses of the young child, a test was developed (for which data collection is ongoing) to investigate a broad range of cognitive skills in the three- to five-year age range. The test covers skills within four main spheres--cognitively Directed Perception, Concepts and…

  7. Mobility and cognition: End points for dietary interventions in aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Healthy aging is associated with functional declines in mobility and cognition among both humans and non-human animals. OBJECTIVE: This study combines human measures of mobility and cognition to develop a test battery for evaluating the effects of dietary supplements among older adults....

  8. Cognitive control, goal maintenance, and prefrontal function in healthy aging.

    PubMed

    Paxton, Jessica L; Barch, Deanna M; Racine, Caroline A; Braver, Todd S

    2008-05-01

    Cognitive control impairments in healthy older adults may partly reflect disturbances in the ability to actively maintain goal-relevant information, a function that depends on the engagement of lateral prefrontal cortex (PFC). In 2 functional magnetic resonance imaging studies, healthy young and older adults performed versions of a task in which contextual cues provide goal-relevant information used to bias processing of subsequent ambiguous probes. In Study 1, a blocked design and manipulation of the cue-probe delay interval revealed a generalized pattern of enhanced task-related brain activity in older adults but combined with a specific delay-related reduction of activity in lateral PFC regions. In Study 2, a combined blocked/event-related design revealed enhanced sustained (i.e., across-trial) activity but a reduction in transient trial-related activation in lateral PFC among older adults. Further analyses of within-trial activity dynamics indicated that, within these and other lateral PFC regions, older adults showed reduced activation during the cue and delay period but increased activation at the time of the probe, particularly on high-interference trials. These results are consistent with the hypothesis that age-related impairments in goal maintenance abilities cause a compensatory shift in older adults from a proactive (seen in young adults) to a reactive cognitive control strategy. PMID:17804479

  9. Performances on a cognitive theory of mind task: specific decline or general cognitive deficits? Evidence from normal aging.

    PubMed

    Fliss, Rafika; Lemerre, Marion; Mollard, Audrey

    2016-06-01

    Compromised theory of mind (ToM) can be explained either by a failure to implement specific representational capacities (mental state representations) or by more general executive selection demands. In older adult populations, evidence supporting affected executive functioning and cognitive ToM in normal aging are reported. However, links between these two functions remain unclear. In the present paper, we address these shortcomings by using a specific task of ToM and classical executive tasks. We studied, using an original cognitive ToM task, the effect of age on ToM performances, in link with the progressive executive decline. 96 elderly participants were recruited. They were asked to perform a cognitive ToM task, and 5 executive tests (Stroop test and Hayling Sentence Completion Test to appreciate inhibitory process, Trail Making Test and Verbal Fluency for shifting assessment and backward span dedicated to estimate working memory capacity). The results show changes in cognitive ToM performance according to executive demands. Correlational studies indicate a significant relationship between ToM performance and the selected executive measures. Regression analyzes demonstrates that level of vocabulary and age as the best predictors of ToM performance. The results are consistent with the hypothesis that ToM deficits are related to age-related domain-general decline rather than as to a breakdown in specialized representational system. The implications of these findings for the nature of social cognition tests in normal aging are also discussed. PMID:27277154

  10. Chemotherapy-related cognitive impairment in older patients with cancer

    PubMed Central

    Loh, Kah Poh; Janelsins, Michelle C.; Mohile, Supriya G.; Holmes, Holly M.; Hsu, Tina; Inouye, Sharon K.; Karuturi, Meghan S.; Kimmick, Gretchen G.; Lichtman, Stuart M.; Magnuson, Allison; Whitehead, Mary I.; Wong, Melisa L.; Ahles, Tim A.

    2016-01-01

    Chemotherapy-related cognitive impairment (CRCI) can occur during or after chemotherapy and represents a concern for many patients with cancer. Among older patients with cancer, in whom there is little clinical trial evidence examining side effects like CRCI, many unanswered questions remain regarding risk for and resulting adverse outcomes from CRCI. Given the rising incidence of cancer with age, CRCI is of particular concern for older patients with cancer who receive treatment. Therefore, research related to CRCI in older patients with cancers is a high priority. In this manuscript, we discuss current gaps in research highlighting the lack of clinical studies of CRCI in older adults, the complex mechanisms of CRCI, and the challenges in measuring cognitive impairment in older patients with cancer. Although we focus on CRCI, we also discuss cognitive impairment related to cancer itself and other treatment modalities. We highlight several research priorities to improve the study of CRCI in older patients with cancer. PMID:27197918

  11. Characterizing healthy samples for studies of human cognitive aging

    PubMed Central

    Geldmacher, David S.; Levin, Bonnie E.; Wright, Clinton B.

    2012-01-01

    Characterizing the cognitive declines associated with aging, and differentiating them from the effects of disease in older adults, are important goals for human neuroscience researchers. This is also an issue of public health urgency in countries with rapidly aging populations. Progress toward understanding cognitive aging is complicated by numerous factors. Researchers interested in cognitive changes in healthy older adults need to consider these complexities when they design and interpret studies. This paper addresses important factors in study design, patient demographics, co-morbid and incipient medical conditions, and assessment instruments that will allow researchers to optimize the characterization of healthy participants and produce meaningful and generalizable research outcomes from studies of cognitive aging. Application of knowledge from well-designed studies should be useful in clinical settings to facilitate the earliest possible recognition of disease and guide appropriate interventions to best meet the needs of the affected individual and public health priorities. PMID:22988440

  12. Empirical Findings to a Cognitive Theory of Aging

    ERIC Educational Resources Information Center

    Olbrich, Erhard; Thomae, Hans

    1978-01-01

    Reviews evidence for a cognitive theory of aging which attempts to integrate individual perceptions, social perceptions, and integrative processes with biological, social, and ecological influences and behavior patterns. (BD)

  13. The synergistic effects of HIV, diabetes, and aging on cognition: implications for practice and research.

    PubMed

    Vance, David E; Fazeli, Pariya L; Dodson, Joan E; Ackerman, Michelle; Talley, Michele; Appel, Susan J

    2014-10-01

    Thanks to highly active antiretroviral therapy, many people infected with HIV will likely live into old age. Although this is a welcome prognosis, new issues are emerging that may complicate the ability to successfully age in this clinical population. HIV and aging independently are related to cognitive impairments, so there are concerns that those aging with HIV may be more at risk of such cognitive impairments. Moreover, highly active antiretroviral therapy itself can create metabolic disorders, such as prediabetes and/or frank type 2 diabetes, which have also been linked to poorer cognitive functioning. Thus, concerns increase that, as people age with HIV and develop comorbid metabolic disorders that may lead to type 2 diabetes, they will be at triple risk of developing cognitive impairments that can impair everyday functioning and reduce quality of life. This article explores these issues and provides implications for practice and research. PMID:25099061

  14. Cognitive Function in Childhood and Lifetime Cognitive Change in Relation to Mental Wellbeing in Four Cohorts of Older People

    PubMed Central

    Gale, Catharine R.; Cooper, Rachel; Craig, Leone; Elliott, Jane; Kuh, Diana; Richards, Marcus; Starr, John M.; Whalley, Lawrence J.; Deary, Ian J.

    2012-01-01

    Background Poorer cognitive ability in youth is a risk factor for later mental health problems but it is largely unknown whether cognitive ability, in youth or in later life, is predictive of mental wellbeing. The purpose of this study was to investigate whether cognitive ability at age 11 years, cognitive ability in later life, or lifetime cognitive change are associated with mental wellbeing in older people. Methods We used data on 8191 men and women aged 50 to 87 years from four cohorts in the HALCyon collaborative research programme into healthy ageing: the Aberdeen Birth Cohort 1936, the Lothian Birth Cohort 1921, the National Child Development Survey, and the MRC National Survey for Health and Development. We used linear regression to examine associations between cognitive ability at age 11, cognitive ability in later life, and lifetime change in cognitive ability and mean score on the Warwick Edinburgh Mental Wellbeing Scale and meta-analysis to obtain an overall estimate of the effect of each. Results People whose cognitive ability at age 11 was a standard deviation above the mean scored 0.53 points higher on the mental wellbeing scale (95% confidence interval 0.36, 0.71). The equivalent value for cognitive ability in later life was 0.89 points (0.72, 1.07). A standard deviation improvement in cognitive ability in later life relative to childhood ability was associated with 0.66 points (0.39, 0.93) advantage in wellbeing score. These effect sizes equate to around 0.1 of a standard deviation in mental wellbeing score. Adjustment for potential confounding and mediating variables, primarily the personality trait neuroticism, substantially attenuated these associations. Conclusion Associations between cognitive ability in childhood or lifetime cognitive change and mental wellbeing in older people are slight and may be confounded by personality trait differences. PMID:22970320

  15. Cognitive Impairment and Age-Related Vision Disorders: Their Possible Relationship and the Evaluation of the Use of Aspirin and Statins in a 65 Years-and-Over Sardinian Population.

    PubMed

    Mandas, Antonella; Mereu, Rosa Maria; Catte, Olga; Saba, Antonio; Serchisu, Luca; Costaggiu, Diego; Peiretti, Enrico; Caminiti, Giulia; Vinci, Michela; Casu, Maura; Piludu, Stefania; Fossarello, Maurizio; Manconi, Paolo Emilio; Dessí, Sandra

    2014-01-01

    Neurological disorders (Alzheimer's disease, vascular and mixed dementia) and visual loss (cataract, age-related macular degeneration, glaucoma, and diabetic retinopathy) are among the most common conditions that afflict people of at least 65 years of age. An increasing body of evidence is emerging, which demonstrates that memory and vision impairment are closely, significantly, and positively linked and that statins and aspirin may lessen the risk of developing age-related visual and neurological problems. However, clinical studies have produced contradictory results. Thus, the intent of the present study was to reliably establish whether a relationship exist between various types of dementia and age-related vision disorders, and to establish whether statins and aspirin may or may not have beneficial effects on these two types of disorders. We found that participants with dementia and/or vision problems were more likely to be depressed and displayed worse functional ability in basic and instrumental activities of daily living than controls. Mini mental state examination scores were significantly lower in patients with vision disorders compared to subjects without vision disorders. A closer association with macular degeneration was found in subjects with Alzheimer's disease than in subjects without dementia or with vascular dementia, mixed dementia, or other types of age-related vision disorders. When we considered the associations between different types of dementia and vision disorders and the use of statins and aspirin, we found a significant positive association between Alzheimer's disease and statins on their own or in combination with aspirin, indicating that these two drugs do not appear to reduce the risk of Alzheimer's disease or improve its clinical evolution and may, on the contrary, favor its development. No significant association in statin use alone, aspirin use alone, or the combination of these was found in subjects without vision disorders but

  16. Cognitive Impairment and Age-Related Vision Disorders: Their Possible Relationship and the Evaluation of the Use of Aspirin and Statins in a 65 Years-and-Over Sardinian Population

    PubMed Central

    Mandas, Antonella; Mereu, Rosa Maria; Catte, Olga; Saba, Antonio; Serchisu, Luca; Costaggiu, Diego; Peiretti, Enrico; Caminiti, Giulia; Vinci, Michela; Casu, Maura; Piludu, Stefania; Fossarello, Maurizio; Manconi, Paolo Emilio; Dessí, Sandra

    2014-01-01

    Neurological disorders (Alzheimer’s disease, vascular and mixed dementia) and visual loss (cataract, age-related macular degeneration, glaucoma, and diabetic retinopathy) are among the most common conditions that afflict people of at least 65 years of age. An increasing body of evidence is emerging, which demonstrates that memory and vision impairment are closely, significantly, and positively linked and that statins and aspirin may lessen the risk of developing age-related visual and neurological problems. However, clinical studies have produced contradictory results. Thus, the intent of the present study was to reliably establish whether a relationship exist between various types of dementia and age-related vision disorders, and to establish whether statins and aspirin may or may not have beneficial effects on these two types of disorders. We found that participants with dementia and/or vision problems were more likely to be depressed and displayed worse functional ability in basic and instrumental activities of daily living than controls. Mini mental state examination scores were significantly lower in patients with vision disorders compared to subjects without vision disorders. A closer association with macular degeneration was found in subjects with Alzheimer’s disease than in subjects without dementia or with vascular dementia, mixed dementia, or other types of age-related vision disorders. When we considered the associations between different types of dementia and vision disorders and the use of statins and aspirin, we found a significant positive association between Alzheimer’s disease and statins on their own or in combination with aspirin, indicating that these two drugs do not appear to reduce the risk of Alzheimer’s disease or improve its clinical evolution and may, on the contrary, favor its development. No significant association in statin use alone, aspirin use alone, or the combination of these was found in subjects without vision

  17. [The effect of normal and pathological aging on cognition].

    PubMed

    Collette, F; Salmon, E

    2014-01-01

    Cognitive deficits in the executive and memory domains are observed in normal aging and Alzheimer's disease (AD). These deficits are associated with changes at the brain activity level. However, a series of factors are prone to delay the occurrence of cognitive deficits, such as mental stimulation or physical activity. Similarly, cognitive rehabilitation allows improving the daily life functioning of patients with AD. The identification of factors and techniques that contribute to maintain cognitive efficiency and/or counteract the effects of AD will allow optimizing quality of life of older people. PMID:25065230

  18. Neuroplasticity and Successful Cognitive Aging: A Brief Overview for Nursing

    PubMed Central

    Vance, David E.; Kaur, Jaspreet; Fazeli, Pariya L.; Talley, Michele H.; Yuen, Hon K.; Kitchin, Beth; Lin, Feng

    2013-01-01

    The brain remains dynamic even in older age and can benefit from mental exercise. Thus, it is important to understand the concepts of positive neuroplasticity and negative neuroplasticity and how these mechanisms either support or detract from cognitive reserve. This article provides a brief review of these key concepts using four exemplary studies that clearly demonstrate the effects these neurological mechanisms exert on cognitive reserve and cognitive functioning. From this review, a working knowledge of how neuroplasticity and cognitive reserve are expressed in patients will be provided along with how this information can be incorporated into nursing practice and research. PMID:22743813

  19. Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance

    ERIC Educational Resources Information Center

    Madden, David J.; Spaniol, Julia; Costello, Matthew C.; Bucur, Barbara; White, Leonard E.; Cabeza, Roberto; Davis, Simon W.; Dennis, Nancy A.; Provenzale, James M.; Huettel, Scott A.

    2009-01-01

    Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white…

  20. Dietary Vitamin D Deficiency in Rats from Middle- to Old-age Leads to Elevated Tyrosine Nitration and Proteomics Changes in Levels of Key Proteins in Brain: Implications for Low Vitamin D-dependent Age-Related Cognitive Decline

    PubMed Central

    Keeney, Jeriel T. R.; Förster, Sarah; Sultana, Rukhsana; Brewer, Lawrence D.; Latimer, Caitlin S.; Cai, Jian; Klein, Jon B.; Porter, Nada M.; Butterfield, D. Allan

    2013-01-01

    status. Together, these results suggest that dietary VitD deficiency contributes to significant nitrosative stress in brain and may promote cognitive decline in middle-aged and elderly adults. PMID:23872023

  1. Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: implications for low vitamin D-dependent age-related cognitive decline.

    PubMed

    Keeney, Jeriel T R; Förster, Sarah; Sultana, Rukhsana; Brewer, Lawrence D; Latimer, Caitlin S; Cai, Jian; Klein, Jon B; Porter, Nada M; Butterfield, D Allan

    2013-12-01

    results suggest that dietary VitD deficiency contributes to significant nitrosative stress in brain and may promote cognitive decline in middle-aged and elderly adults. PMID:23872023

  2. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  3. Nutrition and Cognition in Aging Adults.

    PubMed

    Coley, Nicola; Vaurs, Charlotte; Andrieu, Sandrine

    2015-08-01

    Numerous longitudinal observational studies have suggested that nutrients, such as antioxidants, B vitamins, and ω-3 fatty acids, may prevent cognitive decline or dementia. There is very little evidence from well-sized randomized controlled trials that nutritional interventions can benefit cognition in later life. Nutritional interventions may be more effective in individuals with poorer nutritional status or as part of multidomain interventions simultaneously targeting multiple lifestyle factors. Further evidence, notably from randomized controlled trials, is required to prove or refute these hypotheses. PMID:26195103

  4. Neural Plastic Effects of Cognitive Training on Aging Brain

    PubMed Central

    Leung, Natalie T. Y.; Tam, Helena M. K.; Chu, Leung W.; Kwok, Timothy C. Y.; Chan, Felix; Lam, Linda C. W.; Woo, Jean; Lee, Tatia M. C.

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age. PMID:26417460

  5. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age.

    PubMed

    Karama, S; Bastin, M E; Murray, C; Royle, N A; Penke, L; Muñoz Maniega, S; Gow, A J; Corley, J; Valdés Hernández, M del C; Lewis, J D; Rousseau, M-É; Lepage, C; Fonov, V; Collins, D L; Booth, T; Rioux, P; Sherif, T; Adalat, R; Starr, J M; Evans, A C; Wardlaw, J M; Deary, I J

    2014-05-01

    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration. PMID:23732878

  6. Genetic variants and cognitive aging: destiny or a nudge?

    PubMed

    Raz, Naftali; Lustig, Cindy

    2014-06-01

    One would be hard-pressed to find a human trait that is not heritable at least to some extent, and genetics have played an important role in behavioral science for more than half a century. With the advent of high-throughput molecular methods and the increasing availability of genomic analyses, genetics have acquired a firm foothold in public discourse. However, although the proliferation of genetic association studies and ever-expanding library of single-nucleotide polymorphisms have generated some fascinating results, they have thus far fallen short of delivering the anticipated dramatic breakthroughs. In this collection of eight articles, we present a spectrum of efforts aimed at finding more nuanced and meaningful ways of integrating genomic findings into the study of cognitive aging. The articles present examples of Mendelian randomization in the service of investigating difficult-to-manipulate biochemical properties of human participants. Furthermore, in an important step forward, they acknowledge the interactive effects of genes and physiological risk factors on age-related difference and change in cognitive performance, as well as the possibility of modifying the negative effect of genetic variants by lifestyle changes. PMID:24956004

  7. Premorbid Cognitive Deficits in Young Relatives of Schizophrenia Patients

    PubMed Central

    Keshavan, Matcheri S.; Kulkarni, Shreedhar; Bhojraj, Tejas; Francis, Alan; Diwadkar, Vaibhav; Montrose, Debra M.; Seidman, Larry J.; Sweeney, John

    2009-01-01

    Neurocognitive deficits in schizophrenia (SZ) are thought to be stable trait markers that predate the illness and manifest in relatives of patients. Adolescence is the age of maximum vulnerability to the onset of SZ and may be an opportune “window” to observe neurocognitive impairments close to but prior to the onset of psychosis. We reviewed the extant studies assessing neurocognitive deficits in young relatives at high risk (HR) for SZ and their relation to brain structural alterations. We also provide some additional data pertaining to the relation of these deficits to psychopathology and brain structural alterations from the Pittsburgh Risk Evaluation Program (PREP). Cognitive deficits are noted in the HR population, which are more severe in first-degree relatives compared to second-degree relatives and primarily involve psychomotor speed, memory, attention, reasoning, and social-cognition. Reduced general intelligence is also noted, although its relationship to these specific domains is underexplored. Premorbid cognitive deficits may be related to brain structural and functional abnormalities, underlining the neurobiological basis of this illness. Cognitive impairments might predict later emergence of psychopathology in at-risk subjects and may be targets of early remediation and preventive strategies. Although evidence for neurocognitive deficits in young relatives abounds, further studies on their structural underpinnings and on their candidate status as endophenotypes are needed. PMID:20300465

  8. Education does not slow cognitive decline with aging: 12-year evidence from the victoria longitudinal study.

    PubMed

    Zahodne, Laura B; Glymour, M Maria; Sparks, Catharine; Bontempo, Daniel; Dixon, Roger A; MacDonald, Stuart W S; Manly, Jennifer J

    2011-11-01

    Although the relationship between education and cognitive status is well-known, evidence regarding whether education moderates the trajectory of cognitive change in late life is conflicting. Early studies suggested that higher levels of education attenuate cognitive decline. More recent studies using improved longitudinal methods have not found that education moderates decline. Fewer studies have explored whether education exerts different effects on longitudinal changes within different cognitive domains. In the present study, we analyzed data from 1014 participants in the Victoria Longitudinal Study to examine the effects of education on composite scores reflecting verbal processing speed, working memory, verbal fluency, and verbal episodic memory. Using linear growth models adjusted for age at enrollment (range, 54-95 years) and gender, we found that years of education (range, 6-20 years) was strongly related to cognitive level in all domains, particularly verbal fluency. However, education was not related to rates of change over time for any cognitive domain. Results were similar in individuals older or younger than 70 at baseline, and when education was dichotomized to reflect high or low attainment. In this large longitudinal cohort, education was related to cognitive performance but unrelated to cognitive decline, supporting the hypothesis of passive cognitive reserve with aging. PMID:21923980

  9. Education Does Not Slow Cognitive Decline with Aging: 12-Year Evidence from the Victoria Longitudinal Study

    PubMed Central

    Zahodne, L.B.; Glymour, M.M.; Sparks, C.; Bontempo, D.; Dixon, R.A.; MacDonald, S.W.S.; Manly, J.J.

    2012-01-01

    Although the relationship between education and cognitive status is well-known, evidence regarding whether education moderates the trajectory of cognitive change in late life is conflicting. Early studies suggested that higher levels of education attenuate cognitive decline. More recent studies using improved longitudinal methods have not found that education moderates decline. Few studies have explored whether education exerts different effects on longitudinal changes within different cognitive domains. In the present study, we analyzed data from 1,023 participants in the Victoria Longitudinal Study to examine the effects of education on composite scores reflecting verbal processing speed, working memory, verbal fluency, and verbal episodic memory. Using linear growth models adjusted for age at enrollment (range: 55–94) and gender, we found that years of education (range: 6–20) was strongly related to cognitive level in all domains, particularly verbal fluency. However, education was not related to rates of change over time for any cognitive domain. Results were similar in individuals older or younger than 70 at baseline, and when education was dichotomized to reflect high or low attainment. In this large longitudinal cohort, education was related to cognitive performance but unrelated to cognitive decline, supporting the hypothesis of passive cognitive reserve with aging. PMID:21923980

  10. Relations between Brain and Cognitive Development.

    ERIC Educational Resources Information Center

    Fischer, Kurt W.

    1987-01-01

    The developmental pattern of concurrent synaptogenesis in rhesus monkeys is consistent with a straightforward model of relations between brain and cognitive development. Concurrent synaptogenesis is hypothesized to lay the primary cortical foundation for a series of developmental levels in middle infancy that have been empirically documented in…

  11. Chronic social stress during adolescence induces cognitive impairment in aged mice.

    PubMed

    Sterlemann, Vera; Rammes, Gerhard; Wolf, Miriam; Liebl, Claudia; Ganea, Karin; Müller, Marianne B; Schmidt, Mathias V

    2010-04-01

    Age-related cognitive decline is one of the major aspects that impede successful aging in humans. Environmental factors, such as chronic stress, can accelerate or aggravate cognitive deficits during aging. While there is abundant evidence that chronic stress directly affects cognitive performance, the lasting consequences of stress exposures during vulnerable developmental time windows are largely unknown. This is especially true for the adolescent period, which is critical in terms of physical, sexual, and behavioral maturation. Here we used chronic social stress during adolescence in male mice and investigated the consequences of this treatment on cognitive performance during aging. We observed a substantial impairment of spatial memory, but not other memory domains, 12 months after the end of the stress period. This hippocampus-dependent cognitive dysfunction was supported by concomitant impairment in LTP induction in CA1 neurons in 15-month-old animals. Further, we observed a decrease of hippocampal BDNF mRNA and synaptophysin immunoreactivity, suggesting plasticity and structural alterations in formerly stressed mice. Finally, we identified expression changes of specific neurotransmitter subunits critically involved in learning and memory, specifically the NMDA receptor subunit NR2B. Taken together, our results identify possible molecular mechanisms underlying cognitive impairment during aging, demonstrating the detrimental impact of stress during adolescence on hippocampus-dependent cognitive function in aged mice. PMID:19489003

  12. Cognitive Decline and Reorganization of Functional Connectivity in Healthy Aging: The Pivotal Role of the Salience Network in the Prediction of Age and Cognitive Performances

    PubMed Central

    La Corte, Valentina; Sperduti, Marco; Malherbe, Caroline; Vialatte, François; Lion, Stéphanie; Gallarda, Thierry; Oppenheim, Catherine; Piolino, Pascale

    2016-01-01

    Normal aging is related to a decline in specific cognitive processes, in particular in executive functions and memory. In recent years a growing number of studies have focused on changes in brain functional connectivity related to cognitive aging. A common finding is the decreased connectivity within multiple resting state networks, including the default mode network (DMN) and the salience network. In this study, we measured resting state activity using fMRI and explored whether cognitive decline is related to altered functional connectivity. To this end we used a machine learning approach to classify young and old participants from functional connectivity data. The originality of the approach consists in the prediction of the performance and age of the subjects based on functional connectivity by using a machine learning approach. Our findings showed that the connectivity profile between specific networks predicts both the age of the subjects and their cognitive abilities. In particular, we report that the connectivity profiles between the salience and visual networks, and the salience and the anterior part of the DMN, were the features that best predicted the age. Moreover, independently of the age of the subject, connectivity between the salience network and various specific networks (i.e., visual, frontal) predicted episodic memory skills either based on a standard assessment or on an autobiographical memory task, and short-term memory binding. Finally, the connectivity between the salience and the frontal networks predicted inhibition and updating performance, but this link was no longer significant after removing the effect of age. Our findings confirm the crucial role of episodic memory and executive functions in cognitive aging and suggest a pivotal role of the salience network in neural reorganization in aging. PMID:27616991

  13. Cognitive Decline and Reorganization of Functional Connectivity in Healthy Aging: The Pivotal Role of the Salience Network in the Prediction of Age and Cognitive Performances.

    PubMed

    La Corte, Valentina; Sperduti, Marco; Malherbe, Caroline; Vialatte, François; Lion, Stéphanie; Gallarda, Thierry; Oppenheim, Catherine; Piolino, Pascale

    2016-01-01

    Normal aging is related to a decline in specific cognitive processes, in particular in executive functions and memory. In recent years a growing number of studies have focused on changes in brain functional connectivity related to cognitive aging. A common finding is the decreased connectivity within multiple resting state networks, including the default mode network (DMN) and the salience network. In this study, we measured resting state activity using fMRI and explored whether cognitive decline is related to altered functional connectivity. To this end we used a machine learning approach to classify young and old participants from functional connectivity data. The originality of the approach consists in the prediction of the performance and age of the subjects based on functional connectivity by using a machine learning approach. Our findings showed that the connectivity profile between specific networks predicts both the age of the subjects and their cognitive abilities. In particular, we report that the connectivity profiles between the salience and visual networks, and the salience and the anterior part of the DMN, were the features that best predicted the age. Moreover, independently of the age of the subject, connectivity between the salience network and various specific networks (i.e., visual, frontal) predicted episodic memory skills either based on a standard assessment or on an autobiographical memory task, and short-term memory binding. Finally, the connectivity between the salience and the frontal networks predicted inhibition and updating performance, but this link was no longer significant after removing the effect of age. Our findings confirm the crucial role of episodic memory and executive functions in cognitive aging and suggest a pivotal role of the salience network in neural reorganization in aging. PMID:27616991

  14. Neuroimaging explanations of age-related differences in task performance

    PubMed Central

    Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov

    2014-01-01

    Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance. PMID:24672481

  15. The effect of age on cognitive performance of frontal patients

    PubMed Central

    Cipolotti, Lisa; Healy, Colm; Chan, Edgar; MacPherson, Sarah E.; White, Mark; Woollett, Katherine; Turner, Martha; Robinson, Gail; Spanò, Barbara; Bozzali, Marco; Shallice, Tim

    2015-01-01

    Age is known to affect prefrontal brain structure and executive functioning in healthy older adults, patients with neurodegenerative conditions and TBI. Yet, no studies appear to have systematically investigated the effect of age on cognitive performance in patients with focal lesions. We investigated the effect of age on the cognitive performance of a large sample of tumour and stroke patients with focal unilateral, frontal (n=68), or non-frontal lesions (n=45) and healthy controls (n=52). We retrospectively reviewed their cross sectional cognitive and imaging data. In our frontal patients, age significantly predicted the magnitude of their impairment on two executive tests (Raven's Advanced Progressive Matrices, RAPM and the Stroop test) but not on nominal (Graded Naming Test, GNT) or perceptual (Incomplete Letters) task. In our non-frontal patients, age did not predict the magnitude of their impairment on the RAPM and GNT. Furthermore, the exacerbated executive impairment observed in our frontal patients manifested itself from middle age. We found that only age consistently predicted the exacerbated executive impairment. Lesions to specific frontal areas, or an increase in global brain atrophy or white matter abnormalities were not associated with this impairment. Our results are in line with the notion that the frontal cortex plays a critical role in aging to counteract cognitive and neuronal decline. We suggest that the combined effect of aging and frontal lesions impairs the frontal cortical systems by causing its computational power to fall below the threshold needed to complete executive tasks successfully. PMID:26102190

  16. The effect of age on cognitive performance of frontal patients.

    PubMed

    Cipolotti, Lisa; Healy, Colm; Chan, Edgar; MacPherson, Sarah E; White, Mark; Woollett, Katherine; Turner, Martha; Robinson, Gail; Spanò, Barbara; Bozzali, Marco; Shallice, Tim

    2015-08-01

    Age is known to affect prefrontal brain structure and executive functioning in healthy older adults, patients with neurodegenerative conditions and TBI. Yet, no studies appear to have systematically investigated the effect of age on cognitive performance in patients with focal lesions. We investigated the effect of age on the cognitive performance of a large sample of tumour and stroke patients with focal unilateral, frontal (n=68), or non-frontal lesions (n=45) and healthy controls (n=52). We retrospectively reviewed their cross sectional cognitive and imaging data. In our frontal patients, age significantly predicted the magnitude of their impairment on two executive tests (Raven's Advanced Progressive Matrices, RAPM and the Stroop test) but not on nominal (Graded Naming Test, GNT) or perceptual (Incomplete Letters) task. In our non-frontal patients, age did not predict the magnitude of their impairment on the RAPM and GNT. Furthermore, the exacerbated executive impairment observed in our frontal patients manifested itself from middle age. We found that only age consistently predicted the exacerbated executive impairment. Lesions to specific frontal areas, or an increase in global brain atrophy or white matter abnormalities were not associated with this impairment. Our results are in line with the notion that the frontal cortex plays a critical role in aging to counteract cognitive and neuronal decline. We suggest that the combined effect of aging and frontal lesions impairs the frontal cortical systems by causing its computational power to fall below the threshold needed to complete executive tasks successfully. PMID:26102190

  17. Effects of psychiatric history on cognitive performance in old-age depression

    PubMed Central

    Pantzar, Alexandra; Atti, Anna Rita; Bäckman, Lars; Laukka, Erika J.

    2015-01-01

    Cognitive deficits in old-age depression vary as a function of multiple factors; one rarely examined factor is long-term psychiatric history. We investigated effects of psychiatric history on cognitive performance in old-age depression and in remitted persons. In the population-based Swedish National Study on Aging and Care in Kungsholmen study, older persons (≥60 years) without dementia were tested with a cognitive battery and matched to the Swedish National Inpatient Register (starting 1969). Participants were grouped according to current depression status and psychiatric history and compared to healthy controls (n = 96). Group differences were observed for processing speed, attention, executive functions, and verbal fluency. Persons with depression and psychiatric inpatient history (n = 20) and late-onset depression (n = 49) performed at the lowest levels, whereas cognitive performance in persons with self-reported recurrent unipolar depression (n = 52) was intermediate. Remitted persons with inpatient history of unipolar depression (n = 38) exhibited no cognitive deficits. Heart disease burden, physical inactivity, and cumulative inpatient days modulated the observed group differences in cognitive performance. Among currently depressed persons, those with inpatient history, and late onset performed at the lowest levels. Importantly, remitted persons showed no cognitive deficits, possibly reflecting the extended time since the last admission (m = 15.6 years). Thus, the present data suggest that cognitive deficits in unipolar depression may be more state- than trait-related. Information on profiles of cognitive performance, psychiatric history, and health behaviors may be useful in tailoring individualized treatment. PMID:26175699

  18. Recent and Past Musical Activity Predicts Cognitive Aging Variability: Direct Comparison with General Lifestyle Activities

    PubMed Central

    Hanna-Pladdy, Brenda; Gajewski, Byron

    2012-01-01

    Studies evaluating the impact of modifiable lifestyle factors on cognition offer potential insights into sources of cognitive aging variability. Recently, we reported an association between extent of musical instrumental practice throughout the life span (greater than 10 years) on preserved cognitive functioning in advanced age. These findings raise the question of whether there are training-induced brain changes in musicians that can transfer to non-musical cognitive abilities to allow for compensation of age-related cognitive declines. However, because of the relationship between engagement in general lifestyle activities and preserved cognition, it remains unclear whether these findings are specifically driven by musical training or the types of individuals likely to engage in greater activities in general. The current study controlled for general activity level in evaluating cognition between musicians and nomusicians. Also, the timing of engagement (age of acquisition, past versus recent) was assessed in predictive models of successful cognitive aging. Seventy age and education matched older musicians (>10 years) and non-musicians (ages 59–80) were evaluated on neuropsychological tests and general lifestyle activities. Musicians scored higher on tests of phonemic fluency, verbal working memory, verbal immediate recall, visuospatial judgment, and motor dexterity, but did not differ in other general leisure activities. Partition analyses were conducted on significant cognitive measures to determine aspects of musical training predictive of enhanced cognition. The first partition analysis revealed education best predicted visuospatial functions in musicians, followed by recent musical engagement which offset low education. In the second partition analysis, early age of musical acquisition (<9 years) predicted enhanced verbal working memory in musicians, while analyses for other measures were not predictive. Recent and past musical activity, but not

  19. Age-related changes in prefrontal norepinephrine transporter density: The basis for improved cognitive flexibility after low doses of atomoxetine in adolescent rats.

    PubMed

    Bradshaw, Sarah E; Agster, Kara L; Waterhouse, Barry D; McGaughy, Jill A

    2016-06-15

    Adolescence is a period of major behavioral and brain reorganization. As diagnoses and treatment of disorders like attention deficit hyperactivity disorder (ADHD) often occur during adolescence, it is important to understand how the prefrontal cortices change and how these changes may influence the response to drugs during development. The current study uses an adolescent rat model to study the effect of standard ADHD treatments, atomoxetine and methylphenidate on attentional set shifting and reversal learning. While both of these drugs act as norepinephrine reuptake inhibitors, higher doses of atomoxetine and all doses of methylphenidate also block dopamine transporters (DAT). Low doses of atomoxetine, were effective at remediating cognitive rigidity found in adolescents. In contrast, methylphenidate improved performance in rats unable to form an attentional set due to distractibility but was without effect in normal subjects. We also assessed the effects of GBR 12909, a selective DAT inhibitor, but found no effect of any dose on behavior. A second study in adolescent rats investigated changes in norepinephrine transporter (NET) and dopamine beta hydroxylase (DBH) density in five functionally distinct sub-regions of the prefrontal cortex: infralimbic, prelimbic, anterior cingulate, medial and lateral orbitofrontal cortices. These regions are implicated in impulsivity and distractibility. We found that NET, but not DBH, changed across adolescence in a regionally selective manner. The prelimbic cortex, which is critical to cognitive rigidity, and the lateral orbitofrontal cortex, critical to reversal learning and some forms of response inhibition, showed higher levels of NET at early than mid- to late adolescence. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26774596

  20. Brain white matter damage in aging and cognitive ability in youth and older age.

    PubMed

    Valdés Hernández, Maria Del C; Booth, Tom; Murray, Catherine; Gow, Alan J; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A; Aribisala, Benjamin S; Bastin, Mark E; Starr, John M; Deary, Ian J; Wardlaw, Joanna M

    2013-12-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with lower late life general cognitive ability (β = -0.14, p < 0.01) and processing speed (β = -0.19, p < 0.001). WMH were also associated independently with lower age 11 IQ (β = -0.08, p < 0.05) and hypertension. In conclusion, having more WMH is significantly associated with lower cognitive ability, after accounting for prior ability, age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth leads to increasing brain damage with aging is important for future successful cognitive aging. PMID:23850341

  1. The dynamic relationship between cognitive function and walking speed: the English Longitudinal Study of Ageing.

    PubMed

    Gale, Catharine R; Allerhand, Michael; Sayer, Avan Aihie; Cooper, Cyrus; Deary, Ian J

    2014-01-01

    Cross-sectional studies show that older people with better cognition tend to walk faster. Whether this association reflects an influence of fluid cognition upon walking speed, vice versa, a bidirectional relationship or the effect of common causes is unclear. We used linear mixed effects models to examine the dynamic relationship between usual walking speed and fluid cognition, as measured by executive function, verbal memory and processing speed, in 2,654 men and women aged 60 to over 90 years from the English Longitudinal Study of Ageing. There was a bidirectional relationship between walking speed and fluid cognition. After adjusting for age and sex, better performance on executive function, memory and processing speed was associated with less yearly decline in walking speed over the 6-year follow-up period; faster walking speed was associated with less yearly decline in each cognitive domain; and less yearly decline in each cognitive domain was associated with less yearly decline in walking speed. Effect sizes were small. After further adjustment for other covariates, effect sizes were attenuated but most remained statistically significant. We found some evidence that walking speed and the fluid cognitive domains of executive function and processing speed may change in parallel with increasing age. Investigation of the association between walking speed and cognition earlier in life is needed to better understand the origins of this relation and inform the development and timing of interventions. PMID:24997019

  2. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy. PMID:25715554

  3. Hormones as “difference makers” in cognitive and socioemotional aging processes

    PubMed Central

    Ebner, Natalie C.; Kamin, Hayley; Diaz, Vanessa; Cohen, Ronald A.; MacDonald, Kai

    2015-01-01

    Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems—cortisol, estrogen, testosterone, and oxytocin—as “difference makers” in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: (1) examining both singular actions and interrelations of these four hormonal systems; (2) exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and (3) considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions. PMID:25657633

  4. The Hippocampal Neuroproteome with Aging and Cognitive Decline: Past Progress and Future Directions

    PubMed Central

    VanGuilder, Heather D.; Freeman, Willard M.

    2011-01-01

    Although steady progress on understanding brain aging has been made over recent decades through standard anatomical, immunohistochemical, and biochemical techniques, the biological basis of non-neurodegenerative cognitive decline with aging remains to be determined. This is due in part to technical limitations of traditional approaches, in which only a small fraction of neurobiologically relevant proteins, mRNAs or metabolites can be assessed at a time. With the development and refinement of proteomic technologies that enable simultaneous quantitative assessment of hundreds to thousands of proteins, neuroproteomic studies of brain aging and cognitive decline are becoming more widespread. This review focuses on the contributions of neuroproteomic investigations to advances in our understanding of age-related deficits of hippocampus-dependent spatial learning and memory. Accumulating neuroproteomic data demonstrate that hippocampal aging involves common themes of dysregulated metabolism, increased oxidative stress, altered protein processing, and decreased synaptic function. Additionally, growing evidence suggests that cognitive decline does not represent a “more aged” phenotype, but rather is associated with specific neuroproteomic changes that occur in addition to age-related alterations. Understanding if and how age-related changes in the hippocampal neuroproteome contribute to cognitive decline and elucidating the pathways and processes that lead to cognitive decline are critical objectives that remain to be achieved. Progress in the field and challenges that remain to be addressed with regard to animal models, behavioral testing, and proteomic reporting are also discussed. PMID:21647399

  5. Distinct Mechanisms of Impairment in Cognitive Ageing and Alzheimer's Disease

    ERIC Educational Resources Information Center

    Mapstone, Mark; Dickerson, Kathryn; Duffy, Charles J.

    2008-01-01

    Similar manifestations of functional decline in ageing and Alzheimer's disease obscure differences in the underlying cognitive mechanisms of impairment. We sought to examine the contributions of top-down attentional and bottom-up perceptual factors to visual self-movement processing in ageing and Alzheimer's disease. We administered a novel…

  6. Impact of Age, and Cognitive and Coping Resources on Coping

    ERIC Educational Resources Information Center

    Trouillet, Raphael; Doan-Van-Hay, Loane-Martine; Launay, Michel; Martin, Sophie

    2011-01-01

    To explore the predictive value of cognitive and coping resources for problem- and emotion-focused coping with age, we collected data from community-dwelling adults between 20 and 90 years old. We hypothesized that age, perceived stress, self-efficacy, working-memory capacity, and mental flexibility were predictors of coping. We collected data…

  7. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    PubMed Central

    Zamroziewicz, Marta K.; Barbey, Aron K.

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition—from entire diets to specific nutrients—affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging. PMID:27375409

  8. Mild Cognitive Impairment and Susceptibility to Scams in Old Age

    PubMed Central

    Han, S. Duke; Boyle, Patricia A.; James, Bryan D.; Yu, Lei; Bennett, David A.

    2016-01-01

    Background Falling victim to financial scams can have a significant impact upon social and financial wellbeing and independence. A large proportion of scam victims are older adults, but whether older victims with mild cognitive impairment (MCI) are at higher risk remains unknown. Objective We tested the hypothesis that older persons with MCI exhibit greater susceptibility to scams compared to those without cognitive impairment. Methods Seven hundred and thirty older adults without dementia were recruited from the Rush Memory and Aging Project, a community-based epidemiologic study of aging. Participants completed a five-item self-report measure of susceptibility to scams, a battery of cognitive measures, and clinical diagnostic evaluations. Results In models adjusted for age, education, and gender, the presence of MCI was associated with greater susceptibility to scams (B = 0.125, SE = 0.063, p-value = 0.047). Further, in analyses of the role of specific cognitive systems in susceptibility to scams among persons with MCI (n = 144), the level of performance in two systems, episodic memory and perceptual speed abilities, were associated with susceptibility. Conclusions Adults with MCI may be more susceptible to scams in old age than older persons with normal cognition. Lower abilities in specific cognitive systems, particularly perceptual speed and episodic memory, may contribute to greater susceptibility to scams in those with MCI. PMID:26519434

  9. Integrative Transcriptome Profiling of Cognitive Aging and Its Preservation through Ser/Thr Protein Phosphatase Regulation

    PubMed Central

    Park, C. Sehwan; Valomon, Amandine; Welzl, Hans

    2015-01-01

    Environmental enrichment has been reported to delay or restore age-related cognitive deficits, however, a mechanism to account for the cause and progression of normal cognitive decline and its preservation by environmental enrichment is lacking. Using genome-wide SAGE-Seq, we provide a global assessment of differentially expressed genes altered with age and environmental enrichment in the hippocampus. Qualitative and quantitative proteomics in naïve young and aged mice was used to further identify phosphorylated proteins differentially expressed with age. We found that increased expression of endogenous protein phosphatase-1 inhibitors in aged mice may be characteristic of long-term environmental enrichment and improved cognitive status. As such, hippocampus-dependent performances in spatial, recognition, and associative memories, which are sensitive to aging, were preserved by environmental enrichment and accompanied by decreased protein phosphatase activity. Age-associated phosphorylated proteins were also found to correspond to the functional categories of age-associated genes identified through transcriptome analysis. Together, this study provides a comprehensive map of the transcriptome and proteome in the aging brain, and elucidates endogenous protein phosphatase-1 inhibition as a potential means through which environmental enrichment may ameliorate age-related cognitive deficits. PMID:26102285

  10. Age-related hearing loss

    MedlinePlus

    ... is no known single cause of age-related hearing loss. Most commonly, it is caused by changes in the inner ear that occur as you grow older. Your genes and loud noise (from rock concerts or music headphones) may play a large role. The following ...

  11. Age Differences in Perseveration: Cognitive and Neuroanatomical Mediators of Performance on the Wisconsin Card Sorting Test

    ERIC Educational Resources Information Center

    Head, Denise; Kennedy, Kristen M.; Rodrigue, Karen M.; Raz, Naftali

    2009-01-01

    Aging effects on the Wisconsin Card Sorting Test (WCST) are fairly well established but the mechanisms of the decline are not clearly understood. In this study, we examined the cognitive and neural mechanisms mediating age-related increases in perseveration on the WCST. MRI-based volumetry and measures of selected executive functions in…

  12. The beneficial effects of berries on cognition, motor behavior, and neuronal function in aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, it has been shown that strawberry or blueberry supplementations, when fed to rats from 19-21 months of age, reverse age-related decrements in motor and cognitive performance. We have postulated that these effects may be the result of a number of positive benefits of the berry polyphenol...

  13. Adaptive Behavior and Cognitive Function of Adults with Down Syndrome: Modeling Change with Age.

    ERIC Educational Resources Information Center

    Hawkins, Barbara A.; Eklund, Susan J.; James, David R.; Foose, Alice K.

    2003-01-01

    Fifty-eight adults with Down syndrome were assessed longitudinally over 10 years for the purpose of modeling aging-related change in cognitive function and adaptive behavior. Findings provide further evidence of changes in performance with age and include selected effects for participants who completed the study and those lost to follow-up.…

  14. Differential effects of blueberry polyphenols on age-associated neuroinflammation and cognition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effects of oxidative stress and inflammatory insults are thought to contribute to the decrements in cognitive performance seen in aging and neurodegenerative diseases. In previous studies, we have shown the beneficial effects of various dark-colored berry fruits in reversing age-related de...

  15. Effects of Blackberries on Motor and Cognitive Function in Aged Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The polyphenolics in fruits and vegetables, when fed to rats from 19-21 months of age, have been shown to retard and even reverse age-related decrements in motor and cognitive performance. These effects may be the result of the polyphenols increasing antioxidant and/or anti-inflammatory levels, or ...

  16. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors.

    PubMed

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging. PMID:27199738

  17. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors

    PubMed Central

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V.; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging. PMID:27199738

  18. Cognitive experience and its effect on age-dependent cognitive decline in beagle dogs.

    PubMed

    Milgram, Norton W

    2003-11-01

    Test-sophisticated beagle dogs show marked age sensitivity in a size discrimination learning task, with old and senior dogs performing significantly more poorly than young dogs. By contrast, age differences in learning were not seen in dogs naive with respect to neuropsychological test experience. These results indicate that old animals benefit less from prior cognitive experience than young animals, which is an example of an age-dependent loss in plasticity. This finding also suggests that behaviorally experienced animals are a more useful model of human cognitive aging than behaviorally naïve animals. We also looked at the effect of a program of behavioral enrichment in aged dogs. One year of enrichment did not lead to significant differences, but after 2 years the behaviorally enriched group performed significantly better than the control group. The effect after 2 years indicates that a prolonged program of cognitive enrichment can serve as an effective intervention in aged dogs. These findings demonstrate that cognitive abilities in aged animals can be modified by providing behavioral experience, indicating that cognitive abilities remain moderately plastic, even in very old animals. PMID:14584821

  19. Flavonol Intake and Cognitive Decline in Middle-Aged Adults.

    PubMed

    Root, Martin; Ravine, Erin; Harper, Anne

    2015-12-01

    Cognitive decline occurs with age and may be slowed by dietary measures, including increased intake of dietary phytochemicals. However, evidence from large and long-term studies of flavonol intake is limited. Dietary intakes of flavonols were assessed from a large biracial study of 10,041 subjects, aged 45-64, by analysis of a food frequency questionnaire administered at visit 1 of triennial visits. Cognitive function was assessed at visits 2 and 4 with the following three cognitive performance tests: the delayed word recall test, the revised Wechsler Adult Intelligence Scale digit symbol subtest, and the word fluency test of the Multilingual Aphasia Examination. The change in each score over 6 years was calculated, and a combined standardized change score was calculated. Generalized linear models controlled for age, ethnicity, gender, education level, energy intake, current smoking, physical activity, body mass index, diabetes, and vitamin C intake. Total flavonols across quintiles of intake were positively associated with preserved combined cognitive function (P<.001). This pattern with preserved combined cognitive function was consistent for the three major individual flavonols in the diet, myricetin, kaempferol, and quercetin (each P<.001). The positive association with total flavonols was strongest for the digit symbol subtest (P<.001). In this cohort, flavonol intake was correlated with protected cognitive function over time. PMID:26325006

  20. Age-dependent cognitive impairment in a Drosophila Fragile X model and its pharmacological rescue

    PubMed Central

    Choi, Catherine H.; Schoenfeld, Brian P.; Liebelt, David A.; Ferreiro, David; Ferrick, Neal J.; Hinchey, Paul; Kollaros, Maria; Rudominer, Rebecca L.; Terlizzi, Allison M.; Koenigsberg, Eric; Wang, Yan; Sumida, Ai; Nguyen, Hanh T.; Bell, Aaron J.; McDonald, Thomas V.

    2010-01-01

    Fragile X syndrome afflicts 1 in 2,500 individuals and is the leading heritable cause of mental retardation worldwide. The overriding clinical manifestation of this disease is mild to severe cognitive impairment. Age-dependent cognitive decline has been identified in Fragile X patients, although it has not been fully characterized nor examined in animal models. A Drosophila model of this disease has been shown to display phenotypes bearing similarity to Fragile X symptoms. Most notably, we previously identified naive courtship and memory deficits in young adults with this model that appear to be due to enhanced metabotropic glutamate receptor (mGluR) signaling. Herein we have examined age-related cognitive decline in the Drosophila Fragile X model and found an age-dependent loss of learning during training. We demonstrate that treatment with mGluR antagonists or lithium can prevent this age-dependent cognitive impairment. We also show that treatment with mGluR antagonists or lithium during development alone displays differential efficacy in its ability to rescue naive courtship, learning during training and memory in aged flies. Furthermore, we show that continuous treatment during aging effectively rescues all of these phenotypes. These results indicate that the Drosophila model recapitulates the age-dependent cognitive decline observed in humans. This places Fragile X in a category with several other diseases that result in age-dependent cognitive decline. This demonstrates a role for the Drosophila Fragile X Mental Retardation Protein (dFMR1) in neuronal physiology with regard to cognition during the aging process. Our results indicate that misregulation of mGluR activity may be causative of this age onset decline and strengthens the possibility that mGluR antagonists and lithium may be potential pharmacologic compounds for counteracting several Fragile X symptoms. PMID:20039205

  1. Age and regional cerebral blood flow at rest and during cognitive activity

    SciTech Connect

    Gur, R.C.; Gur, R.E.; Obrist, W.D.; Skolnick, B.E.; Reivich, M.

    1987-07-01

    The relationship between age and regional cerebral blood flow (rCBF) activation for cognitive tasks was investigated with the xenon (Xe 133) inhalation technique. The sample consisted of 55 healthy subjects, ranging in age from 18 to 72 years, who were studied during rest and during the performance of verbal analogy and spatial orientation tasks. The dependent measures were indexes of gray-matter rCBF and average rCBF (gray and white matter) as well as the percentage of gray-matter tissue. Advanced age was associated with reduced flow, particularly pronounced in anterior regions. However, the extent and pattern of rCBF changes during cognition was unaffected by age. For the percentage of gray matter, there was a specific reduction in anterior regions of the left hemisphere. The findings suggest the utility of this research paradigm for investigating neural underpinnings of the effects of dementia on cognitive functioning, relative to the effects of normal aging.

  2. Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging.

    PubMed

    Raz, N; Gunning-Dixon, F M; Head, D; Dupuis, J H; Acker, J D

    1998-01-01

    To examine putative brain substrates of cognitive functions differentially affected by age the authors measured the volume of cortical regions and performance on tests of executive functions, working memory, explicit memory, and priming in healthy adults (18-77 years old). The results indicate that shrinkage of the prefrontal cortex mediates age-related increases in perseveration. The volume of visual processing areas predicted performance on nonverbal working memory tasks. Contrary to the hypotheses, in the examined age range, the volume of limbic structures was unrelated to any of the cognitive functions; verbal working memory, verbal explicit memory, and verbal priming were independent of cortical volumes. Nevertheless, among the participants aged above 60, reduction in the volume of limbic structures predicted declines in explicit memory. Chronological age adversely influenced all cognitive indices, although its effects on priming were only indirect, mediated by declines in verbal working memory. PMID:9460738

  3. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  4. Behavioral reinforcement of long-term potentiation is impaired in aged rats with cognitive deficiencies.

    PubMed

    Bergado, J A; Almaguer, W; Ravelo, J; Rosillo, J C; Frey, J U

    2001-01-01

    Behavioral stimuli with emotional/motivational content can reinforce long-term potentiation in the dentate gyrus, if presented within a distinct time window. A similar effect can be obtained by stimulating the basolateral amygdala, a limbic structure related to emotions. We have previously shown that aging impairs amygdala-hippocampus interactions during long-term potentiation. In this report we show that behavioral reinforcement of long-term potentiation is also impaired in aged rats with cognitive deficits. While among young water-deprived animals drinking 15 min after induction of long-term potentiation leads to a significant prolongation of potentiation, cognitively impaired aged rats are devoid of such reinforcing effects. In contrast, a slight but statistically significant depression develops after drinking in this group of animals. We suggest that an impaired mechanism of emotional/motivational reinforcement of synaptic plasticity might be functionally related to the cognitive deficits shown by aged animals. PMID:11738126

  5. Influence of cognitive abilities and age on word recall performance across trials and list segments.

    PubMed

    Krueger, Lacy E; Salthouse, Timothy A

    2011-01-01

    The influence of cognitive abilities and age on multitrial word recall performance was examined for different list segments (i.e., first, middle, and last) and across trials by having 2497 participants ages 18-98 complete a multitrial word list test along with reference cognitive ability tests. As expected, higher episodic memory ability was associated with better recall on all list segments but with a smaller influence for the last items on the early trials. Performance improved across trials, but there were no relations of the fluid intelligence construct that might be postulated to be associated with effective strategy implementation with any of the recall measures. Advanced age was associated with lower levels of performance, but very few of the age relations were significant after the variation in the reference cognitive abilities was controlled for. PMID:21977691

  6. Are Parents' Gender Schemas Related to Their Children's Gender-Related Cognitions? A Meta-Analysis.

    ERIC Educational Resources Information Center

    Tenenbaum, Harriet R.; Leaper, Campbell

    2002-01-01

    Used meta-analysis to examine relationship of parents' gender schemas and their offspring's gender-related cognitions, with samples ranging in age from infancy through early adulthood. Found a small but meaningful effect size (r=.16) indicating a positive correlation between parent gender schema and offspring measures. Effect sizes were influenced…

  7. The Lateralization of Intrinsic Networks in the Aging Brain Implicates the Effects of Cognitive Training

    PubMed Central

    Luo, Cheng; Zhang, Xingxing; Cao, Xinyi; Gan, Yulong; Li, Ting; Cheng, Yan; Cao, Weifang; Jiang, Lijuan; Yao, Dezhong; Li, Chunbo

    2016-01-01

    Lateralization of function is an important organization of the human brain. The distribution of intrinsic networks in the resting brain is strongly related to cognitive function, gender and age. In this study, a longitudinal design with 1 year’s duration was used to evaluate the cognitive training effects on the lateralization of intrinsic networks among healthy older adults. The subjects were divided into two groups randomly: one with multi-domain cognitive training over 3 months and the other as a wait-list control group. Resting state fMRI data were acquired before training and 1 year after training. We analyzed the functional lateralization in 10 common resting state fMRI networks. We observed statically significant training effects on the lateralization of two important RSNs related to high-level cognition: right- and left- frontoparietal networks (FPNs). The lateralization of the left-FPN was retained especially well in the training group but decreased in the control group. The increased lateralization with aging was observed in the cerebellum network (CereN), in which the lateralization was significantly increased in the control group, although the same change tendency was observed in the training group. These findings indicate that the lateralization of the high-level cognitive intrinsic networks is sensitive to multi-domain cognitive training. This study provides neuroimaging evidence to support the hypothesis that cognitive training should have an advantage in preventing cognitive decline in healthy older adults. PMID:26973508

  8. Paternal Age and General Cognitive Ability—A Cross Sectional Study of Danish Male Conscripts

    PubMed Central

    McGrath, John; Mortensen, Preben Bo; Pedersen, Carsten Bøcker; Ehrenstein, Vera; Petersen, Liselotte

    2013-01-01

    Objectives Offspring of older men have impaired cognitive ability as children, but it is unclear if this impairment persists into adulthood. The main objective of this study was to explore the association between paternal age at offspring birth and general cognitive ability as young adults. Design Population-based cross-sectional study with prospectively collected data on obstetric factors and parental education. Setting Nationwide Danish sample. Participants Male conscripts (n = 169,009). Primary and secondary outcome measures General cognitive ability as assessed by the Børge Priens test score, an intelligence test with components related to logical, verbal, numerical and spatial reasoning. Results We observed an inverse U-shaped association between paternal age and general cognitive ability (slightly lower test scores in the offspring of fathers aged less than 25 years and older than 40 years, compared with fathers aged 25 to 29 years). However, after adjustment for maternal age, parental education and birth order the shape of the association changed. Offspring of fathers younger than 20 still showed slightly lower cognitive ability (-1.11 (95% CI -1.68 to -0.54)), but no significant impairments were identified in the men whose fathers were older than 29 years at the time of their birth (e.g. the mean difference in test score in the offspring of fathers aged 40 to 44 years were -0.03 [95% CI (-0.27 to 0.20)] compared with fathers aged 25 to 29 years). Conclusions We did not find that the offspring of older fathers had impaired cognitive ability as young adults. Whereas, we found a tendency that the offspring of teen fathers have lower cognitive ability. Thus, our results suggest that any potentially deleterious effects of older fathers on general cognitive ability as young adults may be counter-balanced by other potentially beneficial factors. PMID:24116230

  9. Patterns of cognitive decline in aged rhesus monkeys.

    PubMed

    Herndon, J G; Moss, M B; Rosene, D L; Killiany, R J

    1997-08-01

    Although cognitive decline has been well established as a consequence of aging in non-human primate models, the prevalence or frequency of impairment for specific age ranges has not been described. The first aim of this study was to estimate prevalence of cognitive impairment on each of the six tests of cognitive performance by comparing the performance of early-aged (19-23 years old), advanced-aged (24-28 years old), and oldest-aged (29+ years old) monkeys to that of young adults (< 15 years old). The second aim was to derive a single overall measure of cognitive performance to help classify behavioral function in our aged monkeys. Accordingly, we obtained performance measures for these age groups on six behavioral measures: (1) acquisition of the delayed non-matching-to-sample task (DNMS); (2) performance of the DNMS with a delay of 120 sec; (3) the spatial condition of the delayed recognition span test (DRST); (4) the color condition of the DRST; (5) spatial reversal learning; and (6) object reversal learning. Early-aged monkeys displayed prevalence rates of impairment significantly greater than zero on all tasks except the DRST-color. The highest prevalence of impairment was observed in this age group in a task measuring spatial memory (DRST). Significant trends toward progressively higher impairment rates in advanced-aged and oldest-aged monkeys were observed for DNMS-acquisition, DRST-color and spatial reversal learning tasks. A linear transformation of standardized scores on the six cognitive tests was derived by means of principal components analysis (PCA). The first PCA (PCA1) included data from 30 monkeys with available data on all six measures, and yielded a composite measure which declined linearly with increasing age (r = -0.74). A second PCA (PCA2) was performed on data from 53 monkeys for which three test scores (DNMS-acquisition, DNMS-120s delay, and DRST-spatial condition) were available. The composite score derived from this analysis was highly

  10. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion.

    PubMed

    Lucas, Samuel J E; Ainslie, Philip N; Murrell, Carissa J; Thomas, Kate N; Franz, Elizabeth A; Cotter, James D

    2012-08-01

    Regular exercise improves the age-related decline in cerebral blood flow (CBF) and is associated with improved cognitive function; however, less is known about the direct relationship between CBF and cognitive function. We examined the influence of healthy aging on the capability of acute exercise to improve cognition, and whether exercise-induced improvements in cognition are related to CBF and cortical hemodynamics. Middle cerebral artery blood flow velocity (MCAv; Doppler) and cortical hemodynamics (NIRS) were measured in 13 young (24±5 y) and 9 older (62±3 y) participants at rest and during cycling at 30% and 70% of heart rate range (HRR). Cognitive performance was assessed using a computer-adapted Stroop task (i.e., test of executive function cognition) at rest and during exercise. Average response times on the Stroop task were slower for the older compared to younger group for both simple and difficult tasks (P<0.01). Independent of age, difficult-task response times improved during exercise (P<0.01), with the improvement greater at 70% HRR exercise (P=0.04 vs. 30% HRR). Higher MCAv was correlated with faster response times for simple and difficult tasks at rest (R(2)=0.47 and R(2)=0.47, respectively), but this relation uncoupled progressively during exercise. Exercise-induced increases in MCAv were similar and unaltered during cognitive tasks for both age groups. In contrast, prefrontal cortical hemodynamic NIRS measures [oxyhemoglobin (O(2)Hb) and total hemoglobin (tHb)] were differentially affected by exercise intensity, age and cognitive task; e.g., there were smaller increases in [O(2)Hb] and [tHb] in the older group between exercise intensities (P<0.05). These data indicate that: 1) Regardless of age, cognitive (executive) function is improved while exercising; 2) while MCAv is strongly related to cognition at rest, this relation becomes uncoupled during exercise, and 3) there is dissociation between global CBF and regional cortical oxygenation and

  11. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals

    PubMed Central

    Pieramico, Valentina; Esposito, Roberto; Cesinaro, Stefano; Frazzini, Valerio; Sensi, Stefano L.

    2014-01-01

    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia. PMID:25228860

  12. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    PubMed

    Pieramico, Valentina; Esposito, Roberto; Cesinaro, Stefano; Frazzini, Valerio; Sensi, Stefano L

    2014-01-01

    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia. PMID:25228860

  13. Sex on the brain! Associations between sexual activity and cognitive function in older age

    PubMed Central

    Wright, Hayley; Jenks, Rebecca A.

    2016-01-01

    Background: the relationship between cognition and sexual activity in healthy older adults is under-researched. A limited amount of research in this area has shown that sexual activity is associated with better cognition in older men. The current study explores the possible mediating factors in this association in men and women, and attempts to provide an explanation in terms of physiological influences on cognitive function. Methods: using newly available data from Wave 6 of the English Longitudinal Study of Ageing, the current study explored associations between sexual activity and cognition in adults aged 50–89 (n = 6,833). Two different tests of cognitive function were analysed: number sequencing, which broadly relates to executive function, and word recall, which broadly relates to memory. Results: after adjusting for age, education, wealth, physical activity, depression, cohabiting, self-rated health, loneliness and quality of life, there were significant associations between sexual activity and number sequencing and recall in men. However, in women there was a significant association between sexual activity and recall, but not number sequencing. Conclusions: possible mediators of these associations (e.g. neurotransmitters) are discussed. The cross-sectional nature of the analysis is limiting, but provides a promising avenue for future explorations and longitudinal studies. The findings have implications for the promotion of sexual counselling in healthcare settings, where maintaining a healthy sex life in older age could be instrumental in improving cognitive function and well-being. PMID:26826237

  14. [Alcoholism and aging. 2. Alcoholic dementia or alcoholic cognitive impairment?].

    PubMed

    Pierucci-Lagha, Amira; Derouesné, Christian

    2003-12-01

    Chronic alcohol consumption results in considerable damage to many of the body's organs, and particularly to the brain. Beyond the confusional state occurring with acute intoxication or withdrawal, alcohol abuse is responsible of a constellation of neuropsychiatric syndromes including cognitive dysfunction, Wernicke-Korsakoff Syndrome, alcoholic cerebellar degeneration, Marchiafava-Bignami disease and alcohol-related dementia, ARD. ARD would account for nearly 20% of all admissions to state mental hospitals in the United-States. According to the DSM-IV, ARD is defined by a dementia associated with alcohol abuse. However, the concept of a dementia directly related to the neurotoxicity of alcohol for brain neurons is still a matter of debate. Several hypotheses have been proposed to explain the mechanisms of cognitive deficits related to chronic alcohol intoxication. This paper presents the epidemiological, neuropathological, neurochemical and clinical data on ARD. Alcoholism is responsible for cognitive deficits of various severity, which could be reversible or not with alcohol abstinence, but can also participate to the cognitive impairment related to other pathologies, such as Alzheimer disease. On account of this review, it is suggested that the term alcohol-related cognitive impairment should be more convenient than that of ARD, more restrictive and more confusing. Presently, there are no established treatment for alcohol-related cognitive impairment. Alcohol abstinence is a most important step. Psychosocial interventions are essential to support the patients in the daily life. PMID:15683959

  15. [Age-related macular degeneration].

    PubMed

    Garcia Layana, A

    1998-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the occidental world. Patients suffering this process have an important reduction on their quality of life being handicapped to read, to write, to recognise faces of their friends, or even to watch the television. One of the main problems of that disease is the absence of an effective treatment able to revert the process. Laser treatment is only useful in a limited number of patients, and even in these cases recurrent lesions are frequent. These facts and the progressive ageing of our society establish the ARMD as one of the biggest aim of medical investigations for the next century, and currently is focus of attention in the most industrialised countries. One of the most promising pieces of research is focused in the investigation of the risk factors associated with the age-related macular degeneration, in order to achieve a prophylactic treatment avoiding its appearance. Diet elements such as fat ingestion or reduced antioxidant intakes are being investigated as some of these factors, what open a new possibility for a prophylactic treatment. Finally, research is looking for new therapeutic modalities such as selective radiotherapy in order to improve or maintain the vision of these patients. PMID:10420956

  16. Divergent Thinking and Age-Related Changes

    ERIC Educational Resources Information Center

    Palmiero, Massimiliano; Di Giacomo, Dina; Passafiume, Domenico

    2014-01-01

    Aging can affect cognition in different ways. The extent to which aging affects divergent thinking is unclear. In this study, younger and older adults were compared at the performance on the Torrance Test of Creative Thinking in visual and verbal form. Results showed that older adults can think divergently as younger participants, although they…

  17. Cognitive decline due to aging among persons with Down syndrome.

    PubMed

    Das, J P; Divis, B; Alexander, J; Parrila, R K; Naglieri, J A

    1995-01-01

    This study examined decline in cognitive functions in individuals with Down syndrome (DS) over the age of 40 in comparison to participants of the same age and comparable mental handicap without Down syndrome (NonDS). Both DS (n = 32) and NonDS (n = 31) samples were divided into "younger" (40-49 years) and "older" (50-62) groups. Cognitive processes were examined by tests of general intellectual functioning (Dementia Rating Scale, Peabody Picture Vocabulary Test-Revised, and the Matrix Analogies Test-Expanded form), as well as planning, attention, simultaneous, and successive processing tests taken from Das-Naglieri Cognitive Assessment System. The older individuals with Down syndrome performed more poorly than those in the other three groups. The differences were particularly evident in tasks requiring planning and attention. The possibility of using these tests as indicators of the early signs of Alzheimer's disease is discussed. PMID:8584766

  18. MTHFR polymorphisms and cognitive ageing in the ninth decade: the Lothian Birth Cohort 1921.

    PubMed

    Schiepers, O J G; van Boxtel, M P J; Harris, S E; Gow, A J; Pattie, A; Brett, C E; de Groot, R H M; Jolles, J; Starr, J M; Deary, I J

    2011-04-01

    Low blood levels of B vitamins have been implicated in age-associated cognitive impairment. The present study investigated the association between genetic variation in folate metabolism and age-related cognitive decline in the ninth decade of life. Both the 677C>T (rs1801133) polymorphism and the scarcely studied 1298A>C (rs1801131) polymorphism of the MTHFR gene were assessed in relation to cognitive change over 8 years in older community-dwelling individuals. MTHFR genotype was determined in 476 participants of the Lothian Birth Cohort 1921, whose intelligence was measured in childhood in the Scottish Mental Survey of 1932. Cognitive performance on the domains of verbal memory, reasoning and verbal fluency was assessed at mean age of 79 (n = 476) and again at mean ages of 83 (n = 275) and 87 (n = 180). Using linear mixed models, the MTHFR 677C>T and 1298A>C variants were not associated with the rate of cognitive change between 79 and 87 years, neither in the total sample, nor in a subsample of individuals with erythrocyte folate levels below the median. APOE E4 allele carrier status did not interact with MTHFR genotype in affecting change in cognitive performance over 8 years. No significant combined effect of the two polymorphisms was found. In conclusion, MTHFR 677C>T and 1298A>C polymorphisms were not associated with individual change in cognitive functioning in the ninth decade of life. Although polymorphisms in the MTHFR gene may cause disturbances in folate metabolism, they do not appear to be accompanied by changes in cognitive functioning in old age. PMID:21255267

  19. Comparing Volume Loss in Neuroanatomical Regions of Emotion versus Regions of Cognition in Healthy Aging.

    PubMed

    Pressman, Peter S; Noniyeva, Yuliana; Bott, Nick; Dutt, Shubir; Sturm, Virginia; Miller, Bruce L; Kramer, Joel H

    2016-01-01

    Many emotional functions are relatively preserved in aging despite declines in several cognitive domains and physical health. High levels of happiness exist even among centenarians. To address the hypothesis of whether preservation of emotional function in healthy aging may relate to different rates of age-related volume loss across brain structures, we performed two volumetric analyses on structural magnetic resonance neuroimaging of a group of healthy aging research participants using Freesurfer version 5.1. Volumes selected as supporting cognition included bilateral midfrontal and lateral frontal gyri, lateral parietal and temporal cortex, and medial temporal lobes. Volumes supporting emotion included bilateral amygdala, rostral anterior cingulate, insula, orbitofrontal cortex, and nucleus accumbens. A cross-sectional analysis was performed using structural MRI scans from 258 subjects. We found no difference in proportional change between groups. A longitudinal mixed effects model was used to compare regional changes over time in a subset of 84 subjects. Again, there was no difference in proportional change over time. While our results suggest that aging does not collectively target cognitive brain regions more than emotional regions, subgroup analysis suggests relative preservation of the anterior cingulate cortex, with greater volume loss in the nucleus accumbens. Implications of these relative rates of age-related volume loss in healthy aging are discussed and merit further research. PMID:27552103

  20. Comparing Volume Loss in Neuroanatomical Regions of Emotion versus Regions of Cognition in Healthy Aging

    PubMed Central

    Noniyeva, Yuliana; Bott, Nick; Dutt, Shubir; Sturm, Virginia; Miller, Bruce L.; Kramer, Joel H.

    2016-01-01

    Many emotional functions are relatively preserved in aging despite declines in several cognitive domains and physical health. High levels of happiness exist even among centenarians. To address the hypothesis of whether preservation of emotional function in healthy aging may relate to different rates of age-related volume loss across brain structures, we performed two volumetric analyses on structural magnetic resonance neuroimaging of a group of healthy aging research participants using Freesurfer version 5.1. Volumes selected as supporting cognition included bilateral midfrontal and lateral frontal gyri, lateral parietal and temporal cortex, and medial temporal lobes. Volumes supporting emotion included bilateral amygdala, rostral anterior cingulate, insula, orbitofrontal cortex, and nucleus accumbens. A cross-sectional analysis was performed using structural MRI scans from 258 subjects. We found no difference in proportional change between groups. A longitudinal mixed effects model was used to compare regional changes over time in a subset of 84 subjects. Again, there was no difference in proportional change over time. While our results suggest that aging does not collectively target cognitive brain regions more than emotional regions, subgroup analysis suggests relative preservation of the anterior cingulate cortex, with greater volume loss in the nucleus accumbens. Implications of these relative rates of age-related volume loss in healthy aging are discussed and merit further research. PMID:27552103

  1. Epigenetic Contributions to Cognitive Aging: Disentangling Mindspan and Lifespan

    ERIC Educational Resources Information Center

    Spiegel, Amy M.; Sewal, Angila S.; Rapp, Peter R.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review…

  2. Health Screening and Random Recruitment for Cognitive Aging Research

    PubMed Central

    Christensen, Kathy J.; Moye, Jennifer; Armson, Rossana Rae; Kern, Thomas M.

    2016-01-01

    A survey of 197 cognitive aging studies revealed infrequent use of structured health assessments and random recruitment. In this study, a health screening questionnaire developed to identify subjects with medical problems that might impair cognition was administered to 315 adults aged 60 and older who were recruited by random digit dialing. On the basis of self-reported medical problems, 35% of the subjects were excluded. Those excluded were older (p < .001) and tended to be male but did not differ in education from those who passed the screening. Subjects who passed the screening and decided to participate in a neuropsychological research project were younger (p < .001), better educated (p < .001), and more likely to be male (p < .001) than nonparticipants. These findings suggest that careful assessment, selection, and description of subjects is needed to aid interpretation of cognitive aging research. Further attention to health status is needed to aid interpretation of cognitive aging research. Although random recruitment of the elderly is feasible, obtaining representative samples may require stratification on demographic variables. PMID:1610509

  3. Distinct mechanisms of impairment in cognitive ageing and Alzheimer's disease.

    PubMed

    Mapstone, Mark; Dickerson, Kathryn; Duffy, Charles J

    2008-06-01

    Similar manifestations of functional decline in ageing and Alzheimer's disease obscure differences in the underlying cognitive mechanisms of impairment. We sought to examine the contributions of top-down attentional and bottom-up perceptual factors to visual self-movement processing in ageing and Alzheimer's disease. We administered a novel heading discrimination task requiring subjects to determine direction of simulated self-movement from left or right offset optic flow fields of several sizes (25 degrees, 40 degrees or 60 degrees in diameter) to 18 Alzheimer's disease subjects (mean age = 75.3, 55% female), 21 older adult control subjects (mean age = 72.4, 67% female), and 26 younger control subjects (mean age = 26.5, 63% female). We also administered computerized measures of processing speed and divided and selective attention, and psychophysical measures of visual motion perception to all subjects. Both older groups showed significant difficulty in judging the direction of virtual self-movement [F(2,194) = 40.5, P < 0.001] and optic flow stimulus size had little effect on heading discrimination for any group. Both older groups showed impairments on measures of divided [F(2,62) = 22.2, P < 0.01] and selective [F(2,62) = 63.0, P < 0.001] attention relative to the younger adult control group, while the Alzheimer's disease group showed a selective impairment in outward optic flow perception [F(2,64) = 6.3, P = 0.003] relative to both control groups. Multiple linear regression revealed distinct attentional and perceptual contributions to heading discrimination performance for the two older groups. In older adult control subjects, poorer heading discrimination was attributable to attentional deficits (R(2) adj = 0.41, P = 0.001) whereas, in Alzheimer's disease patients, it was largely attributable to deficits of visual motion perception (R(2) adj = 0.57, P < 0.001). These findings suggest that successive attentional and perceptual deficits play independent roles in

  4. Statistical Approaches for the Study of Cognitive and Brain Aging

    PubMed Central

    Chen, Huaihou; Zhao, Bingxin; Cao, Guanqun; Proges, Eric C.; O'Shea, Andrew; Woods, Adam J.; Cohen, Ronald A.

    2016-01-01

    Neuroimaging studies of cognitive and brain aging often yield massive datasets that create many analytic and statistical challenges. In this paper, we discuss and address several limitations in the existing work. (1) Linear models are often used to model the age effects on neuroimaging markers, which may be inadequate in capturing the potential nonlinear age effects. (2) Marginal correlations are often used in brain network analysis, which are not efficient in characterizing a complex brain network. (3) Due to the challenge of high-dimensionality, only a small subset of the regional neuroimaging markers is considered in a prediction model, which could miss important regional markers. To overcome those obstacles, we introduce several advanced statistical methods for analyzing data from cognitive and brain aging studies. Specifically, we introduce semiparametric models for modeling age effects, graphical models for brain network analysis, and penalized regression methods for selecting the most important markers in predicting cognitive outcomes. We illustrate these methods using the healthy aging data from the Active Brain Study. PMID:27486400

  5. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging

    PubMed Central

    Sternberg, Daniel A.; Ballard, Kacey; Hardy, Joseph L.; Katz, Benjamin; Doraiswamy, P. Murali; Scanlon, Michael

    2013-01-01

    Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity's collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches at a large scale: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance. PMID:23801955

  6. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging.

    PubMed

    Sternberg, Daniel A; Ballard, Kacey; Hardy, Joseph L; Katz, Benjamin; Doraiswamy, P Murali; Scanlon, Michael

    2013-01-01

    Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity's collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches at a large scale: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance. PMID:23801955

  7. Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging.

    PubMed

    Bories, Cyril; Husson, Zoé; Guitton, Matthieu J; De Koninck, Yves

    2013-01-23

    Normal aging is associated with a variable decline in cognitive functions. Among these, executive function, decision-making, and working memory are primarily associated with the prefrontal cortex. Although a number of studies have examined the structural substrates of cognitive decline associated with aging within this cortical area, their functional correlates remain poorly understood. To fill this gap, we aimed to identify functional synaptic substrates of age-associated frontal-dependent deficits in layer 2/3 pyramidal neurons of medial prefrontal cortex of 3-, 9-, and ≥ 23-month-old Fischer 344 rats. We combined, in the same animals, novelty recognition and exploratory behavioral tasks with assessment of structural and functional aspects of prefrontal synaptic properties. We found that subsets of aged animals displayed stereotyped exploratory behavior or memory deficits. Despite an age-dependent dendritic spine loss, patch-clamp recording of synaptic activity revealed an increase in miniature EPSC frequency restricted to aged animals with preserved exploratory behavior. In contrast, we found a strong positive relationship between miniature IPSC frequency and the occurrence of both stereotyped exploratory behavior and novelty-related memory deficits. The enhanced miniature inhibitory tone was accompanied by a deficit in activity-driven inhibition, also suggesting an impaired dynamic range for modulation of inhibition in the aged, cognitively impaired animals. Together, our data indicate that differential changes in the balance of inhibitory to excitatory synaptic tone may underlie distinct trajectories in the evolution of cognitive performance during aging. PMID:23345211

  8. Macro- and micro-structural white matter differences correlate with cognitive performance in healthy aging.

    PubMed

    Marques, Paulo César Gonçalves; Soares, José Miguel Montenegro; Magalhães, Ricardo José da Silva; Santos, Nadine Correia; Sousa, Nuno Jorge Carvalho

    2016-03-01

    Studies have shown that white matter (WM) volumetric reductions and overall degradation occur with aging. Nonetheless little is known about the WM alterations that may underlie different cognitive status in older individuals. The main goal of the present work was to identify and characterize possible macro and microstructural WM alterations that could distinguish between older healthy individuals with contrasting cognitive profiles (i.e., "poor" vs "good" cognitive performers). Structural and diffusion magnetic resonance imaging was performed in order to quantify local WM volumes, white matter signal abnormalities (WMSA) volume (a measure of lesion burden) and diffusion tensor imaging scalar maps known to probe WM microstructure. A battery of neurocognitive/psychological tests was administered to assess the cognitive performance. Poor performers showed a higher slope for the positive association between WMSA volume and age compared to good performers. Even when controlling for WMSA volume, poor performers also evidenced lower fractional anisotropy, as well as positive associations with age with higher slopes of regression parameters in radial and axial diffusivity. Altogether results suggest that cognitive performance is related to differences in WM, with poor cognitive performers displaying signs of faster aging in WM. PMID:25824621

  9. Late cognitive event-related potentials in adult Down's syndrome.

    PubMed

    Vieregge, P; Verleger, R; Schulze-Rava, H; Kömpf, D

    1992-12-15

    Event-related electroencephalogram (EEG) potentials (ERPs) using two different tasks were measured in 14 adults with Down's syndrome (DS; mean age 32 years) without clinically detectable cognitive decline. Two groups, young healthy (YH) and old healthy (OH) adults, served as controls. In the oddball task, DS had prolonged N1 and earlier P2 latencies than the control groups. P3 latency was delayed in comparison to YH. In the PushWait task, P3 latency was later in DS than in YH and OH. In both tasks, DS showed a marked amplitude shift towards positivity overlapping the N1-P2 complex and seemingly also P3: The P3 amplitude evoked by target tones and by "Push" was shifted towards anterior sites resulting in a Cz maximum. Changes of the N1 latency and amplitude in DS may be related to enhanced arousal during stimulus processing, indicating a possible defect of central inhibitory mechanisms. The study suggests that differentiated ERP procedures provide information on adult DS cognition exceeding those given by mere P3 latency measurements. Such procedures may be useful in the evaluation of the cognitive decline due to precocious aging or Alzheimer-type dementia in DS. PMID:1477192

  10. Organisationalbis justice and cognitive function in middle-aged employees: the Whitehall II study

    PubMed Central

    Elovainio, Marko; Singh-Manoux, Archana; Ferrie, Jane E; Shipley, Martin; Gimeno, David; Vahtera, Jussi; Virtanen, Marianna; Jokela, Markus; Marmot, Michael G; Kivimäki, Mika; De Vogli, Roberto

    2012-01-01

    Background Little is known about the role work-related factors play in the decline cognitive function. We examined the association between perceived organizational justice and cognitive function among middle-aged men and women. Methods Perceived organizational justice was measured at Phases 1 (1985–1988) and 2 (1989–1990) of the Whitehall II study when the participants were 35–55 years old. Assessment of cognitive function at the screening clinic at Phases 5 (1997–1999) and 7 (2003–2004) included the following tests in screening clinic: memory, inductive reasoning (Alice Heim 4), vocabulary (Mill Hill), and verbal fluency (phonemic and semantic). Mean exposure to lower organizational justice at Phases 1 and 2 in relation to cognitive function at Phases 5 and 7 were analysed using linear regression analyses. The final sample included 4531 men and women. Results Lower mean levels of justice at Phases 1 and 2 were associated with worse cognitive function in terms of memory, inductive reasoning, vocabulary and verbal fluency at both Phases 5 and 7. These associations were independent of covariates, such as age, occupational grade, behavioural risks, depression, hypertension and job strain. Conclusions This study suggests an association between perceived organizational justice and cognitive function. Further studies are needed to examine whether interventions designed to improve organizational justice would affect employees’ cognition function favourably. PMID:21084589

  11. Peripheral leukocyte populations and oxidative stress biomarkers in aged dogs showing impaired cognitive abilities.

    PubMed

    Mongillo, Paolo; Bertotto, Daniela; Pitteri, Elisa; Stefani, Annalisa; Marinelli, Lieta; Gabai, Gianfranco

    2015-06-01

    In the present study, the peripheral blood leukocyte phenotypes, lymphocyte subset populations, and oxidative stress parameters were studied in cognitively characterized adult and aged dogs, in order to assess possible relationships between age, cognitive decline, and the immune status. Adult (N = 16, 2-7 years old) and aged (N = 29, older than 8 years) dogs underwent two testing procedures, for the assessment of spatial reversal learning and selective social attention abilities, which were shown to be sensitive to aging in pet dogs. Based on age and performance in cognitive testing, dogs were classified as adult not cognitively impaired (ADNI, N = 12), aged not cognitively impaired (AGNI, N = 19) and aged cognitively impaired (AGCI, N = 10). Immunological and oxidative stress parameters were compared across groups with the Kruskal-Wallis test. AGCI dogs displayed lower absolute CD4 cell count (p < 0.05) than ADNI and higher monocyte absolute count and percentage (p < 0.05) than AGNI whereas these parameters were not different between AGNI and ADNI. AGNI dogs had higher CD8 cell percentage than ADNI (p < 0.05). Both AGNI and AGCI dogs showed lower CD4/CD8 and CD21 count and percentage and higher neutrophil/lymphocyte and CD3/CD21 ratios (p < 0.05). None of the oxidative parameters showed any statistically significant difference among groups. These observations suggest that alterations in peripheral leukocyte populations may reflect age-related changes occurring within the central nervous system and disclose interesting perspectives for the dog as a model for studying the functional relationship between the nervous and immune systems during aging. PMID:25905581

  12. Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline

    PubMed Central

    Raji, Cyrus A.; Eyre, Harris; Wei, Sindy H.; Bredesen, Dale; Moylan, Steven; Law, Meng; Small, Gary; Thompson, Paul; Friedlander, Robert; Silverman, Dan H.; Baune, Bernhard T; Hoang, Thu-Anh; Salamon, Noriko; Toga, Arthur; Vernooij, Meike W.

    2015-01-01

    Preventive neuroradiology is a new concept supported by a growing literature. The main rationale of preventive neuroradiology is the application of multi-modal brain imaging towards early and subclinical detection of brain disease and subsequent preventive actions through identification of modifiable risk factors. An insightful example of this is in the area of age-related cognitive decline, mild cognitive impairment and dementia with potentially modifiable risk factors such as obesity, diet, sleep, hypertension, diabetes, depression, supplementation, smoking and physical activity. In studying this link between lifestyle and cognitive decline, brain imaging markers may be instrumental as quantitative measures or even indicators of early disease. The purpose of this article is to provide an overview of the major studies reflecting how lifestyle factors affect the brain and cognition ageing. In this hot topics review we will specifically focus on obesity and physical activity. PMID:26045577

  13. Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline.

    PubMed

    Raji, C A; Eyre, H; Wei, S H; Bredesen, D E; Moylan, S; Law, M; Small, G; Thompson, P M; Friedlander, R M; Silverman, D H; Baune, B T; Hoang, T A; Salamon, N; Toga, A W; Vernooij, M W

    2015-10-01

    Preventive neuroradiology is a new concept supported by growing literature. The main rationale of preventive neuroradiology is the application of multimodal brain imaging toward early and subclinical detection of brain disease and subsequent preventive actions through identification of modifiable risk factors. An insightful example of this is in the area of age-related cognitive decline, mild cognitive impairment, and dementia with potentially modifiable risk factors such as obesity, diet, sleep, hypertension, diabetes, depression, supplementation, smoking, and physical activity. In studying this link between lifestyle and cognitive decline, brain imaging markers may be instrumental as quantitative measures or even indicators of early disease. The purpose of this article is to provide an overview of the major studies reflecting how lifestyle factors affect the brain and cognition aging. In this hot topics review, we will specifically focus on obesity and physical activity. PMID:26045577

  14. Perceived Stress and Change in Cognitive Function Among Adults Aged 65 and Older

    PubMed Central

    Aggarwal, Neelum T.; Wilson, Robert S.; Beck, Todd L.; Rajan, Kumar B.; Mendes de Leon, Carlos F.; Evans, Denis A.; Everson-Rose, Susan A.

    2014-01-01

    Objective Exposure to acute and chronic stress can affect learning and memory but most evidence comes from animal studies or clinical observations. Almost no population-based studies have investigated the relation of stress to cognition or changes in cognition over time. We examined whether higher levels of perceived stress were associated with accelerated decline in cognitive function in older blacks and whites from a community-based population sample. Methods Participants included 6,207 black and white adults (65.7% black, 63.3% women) from the Chicago Health and Aging project. Two to five in-home assessments were completed over an average of 6.8 years of follow up, and included sociodemographics, health behaviors, psychosocial measures, cognitive function tests, and health history. Perceived stress was measured by a 6-item scale, and a composite measure of four tests of cognition was used to determine cognitive function at each assessment. Results Mixed effects regression models showed that increasing levels of perceived stress were related to lower initial cognitive scores (B=-0.0379, SE=0.0025, p<.001) and a faster rate of cognitive decline (stress × time interaction: B=-0.0015, SE=0.0004, p<.001). Results were similar after adjusting for demographic variables, smoking, systolic blood pressure, body mass index, chronic medical conditions, and psychosocial factors and did not vary by race, sex, age or education. Conclusion Increasing levels of stress are independently associated with accelerated declines in cognitive function in black and white adults aged 65 and above. PMID:24367123

  15. Quantitative T2 mapping of white matter: applications for ageing and cognitive decline.

    PubMed

    Knight, Michael J; McCann, Bryony; Tsivos, Demitra; Dillon, Serena; Coulthard, Elizabeth; Kauppinen, Risto A

    2016-08-01

    In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer's disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of  T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia. PMID:27384985

  16. Quantitative T2 mapping of white matter: applications for ageing and cognitive decline

    NASA Astrophysics Data System (ADS)

    Knight, Michael J.; McCann, Bryony; Tsivos, Demitra; Dillon, Serena; Coulthard, Elizabeth; Kauppinen, Risto A.

    2016-08-01

    In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer’s disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of  T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia.

  17. Cognitive Aging: Is There a Dark Side to Environmental Support?

    PubMed Central

    Lindenberger, Ulman; Mayr, Ulrich

    2013-01-01

    It has been known for some time that memory deficits among older adults increase when self-initiated processing is required, and decrease when the environment provides task-appropriate cues. We propose that this observation is not confined to memory but can be subsumed under a more general developmental trend. In perception, learning/memory, and action management, older adults often rely more on external information than younger adults, probably both as a direct reflection and indirect adaptation to difficulties in internally triggering and maintaining cognitive representations. This age-graded shift from internal towards environmental control is often associated with compromised performance. Cognitive aging research and the design of aging-friendly environments can benefit from paying closer attention to the developmental dynamics and implications of this shift. PMID:24210962

  18. Humour among Chinese and Greek Preschool Children in Relation to Cognitive Development

    ERIC Educational Resources Information Center

    Guo, Juan; Zhang, XiangKui; Wang, Yong; Xeromeritou, Aphrodite

    2011-01-01

    The researchers studied humour among Chinese and Greek preschool children in relation to cognitive development. The sample included 55 Chinese children and 50 Greek children ages 4½ to 5½ years. Results showed that both Chinese and Greek children's humour recognition were significantly and positively correlated to their cognitive development,…

  19. Growth of Cognitive Skills in Preschoolers: Impact of Sleep Habits and Learning-Related Behaviors

    ERIC Educational Resources Information Center

    Jung, Eunjoo; Molfese, Victoria J.; Beswick, Jennifer; Jacobi-Vessels, Jill; Molnar, Andrew

    2009-01-01

    Research Findings: The present study used a longitudinal design to identify how sleep habits and learning-related behaviors impact the development of cognitive skills in preschoolers (ages 3-5). Sixty- seven children with parental report and cognitive skill assessment data were included. Scores on the Differential Ability Scales (C. Elliott, 1990)…

  20. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    PubMed

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. PMID:26590911

  1. Cognitive Distortion in Rheumatoid Arthritis: Relation to Depression and Disability.

    ERIC Educational Resources Information Center

    Smith, Timothy W.; And Others

    1988-01-01

    Examined the relation between cognitive distortion, as measured by the Cognitive Error Questionnaire, and both self-reported and interview-rated depression and disability in 92 rheumatoid arthritis (RA) patients. Found cognitive distortion significantly associated with depression, and also related to physical disability. Discusses the results,…

  2. Behavioral symptoms related to cognitive impairment

    PubMed Central

    Dillon, Carol; Serrano, Cecilia M; Castro, Diego; Leguizamón, Patricio Perez; Heisecke, Silvina L; Taragano, Fernando E

    2013-01-01

    Neuropsychiatric symptoms (NPS) are core features of Alzheimer’s disease and related dementias. On one hand, behavioral symptoms in patients with mild cognitive impairment (MCI) can indicate an increased risk of progressing to dementia. On the other hand, mild behavioral impairment (MBI) in patients who usually have normal cognition indicates an increased risk of developing dementia. Whatever the cause, all dementias carry a high rate of NPI. These symptoms can be observed at any stage of the disease, may fluctuate over its course, are a leading cause of stress and overload for caregivers, and increase rates of hospitalization and early institutionalization for patients with dementia. The clinician should be able to promptly recognize NPI through the use of instruments capable of measuring their frequency and severity to support diagnosis, and to help monitor the treatment of behavioral symptoms. The aims of this review are to describe and update the construct ‘MBI’ and to revise the reported NPS related to prodromal stages of dementia (MCI and MBI) and dementia stages of Alzheimer’s disease and frontotemporal lobar degeneration. PMID:24092982

  3. Age-Related Factors in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Twyford, Charles William

    The convergence of several lines of psycholinguistic and sociolinguistic research suggests possible explanations for age-related influences on language acquisition. These factors, which include cognitive development, sociocultural context, affective factors, and language input, can be helpful to language educators. By being alert to the cognitive…

  4. Assessment of basic cognitive abilities in relation to cognitive deficits.

    PubMed

    Detterman, D K; Mayer, J D; Caruso, D R; Legree, P J; Conners, F A; Taylor, R

    1992-11-01

    A modal model of information-processing was used to select a battery of nine tasks of basic cognitive ability (learning, relearning, reaction time, probe recall, Sternberg search, self-paced probe, stimulus discrimination, tachistoscopic full report, tachistoscopic partial report). Parameters from these tasks operationalized the model. After extensive pilot testing of the tasks to establish reliability, we tested 40 subjects (20 with mental retardation and 20 college students) on all tasks and the WAIS-R. The parameters from the tasks were generally reliable (.7 through .9) and had low correlations with IQ (average about .37). Nearly all of the major cognitive parameters differentiated significantly between groups. A subset of the basic cognitive parameters predicted IQ with an estimated multiple correlation in the general population of .72. Prediction of IQ using basic cognitive parameters was better for subjects with mental retardation than for college students. A modified version of the modal model was supported. Results show that individual differences in higher mental processes are highly dependent on basic cognitive abilities and can be predicted from them. These findings have substantial implications for the development of models of information-processing. PMID:1449729

  5. Duration reproduction: lossy integration and effects of sensory modalities, cognitive functioning, age, and sex.

    PubMed

    Pütz, Peter; Wittmann, Marc; Wackermann, Jirí

    2012-10-01

    The "dual klepsydra model" (DKM) of internal time representation successfully models duration reproduction data, but relations between the DKM-based parameter kappa ("loss rate") and procedural variables (presentation modality) or individual characteristics (cognitive indices, age, sex) remained as yet unexplored. For that purpose, were-analyzed data from an earlier time reproduction study (N = 100), using visually or acoustically presented intervals of 1-5 sec. duration. Typical values of parameter kappa were approximately 0.03-0.04 sec.(-1), corresponding to relaxation times of internal "lossy integrators" of approximately 30 sec. Significant effects of presentation modality (smaller kappa values for the visual reproduction task) and of age (greater kappa in acoustic reproduction with increasing age) were observed. Cognitive variables (working memory, general fluid reasoning, attention) and sex of participants were not associated with kappa. Cognitive functions seem to play only a minor, if any, role at the level of time representation addressed by the DKM. PMID:23265003

  6. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments

  7. Brain volumetric changes and cognitive ageing during the eighth decade of life

    PubMed Central

    Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551

  8. Alzheimer's disease and age-related memory decline (preclinical).

    PubMed

    Terry, Alvin V; Callahan, Patrick M; Hall, Brandon; Webster, Scott J

    2011-08-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  9. Estrogen-cholinergic interactions: Implications for cognitive aging.

    PubMed

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  10. Gifted Students' Perceptions of Parenting Styles: Associations with Cognitive Ability, Sex, Race, and Age

    ERIC Educational Resources Information Center

    Rudasill, Kathleen Moritz; Adelson, Jill L.; Callahan, Carolyn M.; Houlihan, Deanna Vogt; Keizer, Benjamin M.

    2013-01-01

    Children whose parents are warm and responsive yet also set limits and have reasonable expectations for their children tend to have better outcomes than their peers whose parents show less warmth and responsiveness, have low expectations, or both. Parenting behavior is related to family race and children's sex, age, and cognitive ability. However,…

  11. Cognitive Functioning and Driving Simulator Performance in Middle-aged and Older Adults with HIV

    PubMed Central

    Vance, David E.; Fazeli, Pariya L.; Ball, David A.; Slater, Larry Z.; Ross, Lesley A.

    2014-01-01

    Nearly half of people living with HIV experience cognitive deficits that may impact instrumental activities of daily living. As the number of people aging with HIV increases, concerns mount that disease-related cognitive deficits may be compounded by age-related deficits, which may further compromise everyday functions such as driving. In this cross-sectional pilot study, during a 2.5-hour visit, 26 middle-aged and older adults (40+ years) were administered demographic, health, psychosocial, and driving habits questionnaires; cognitive assessments; and driving simulator tests. Although CD4+T lymphocyte count and viral load were unrelated to driving performance, older age was related to poorer driving. Furthermore, poorer visual speed of processing performance (i.e., Useful Field of View) was related to poorer driving performance (e.g., average gross reaction time). Mixed findings were observed between driving performance and cognitive function on self-reported driving habits of participants. Implications for these findings on nursing practice and research are posited. PMID:24513104

  12. A review of new insights on the association between hearing loss and cognitive decline in ageing.

    PubMed

    Fortunato, S; Forli, F; Guglielmi, V; De Corso, E; Paludetti, G; Berrettini, S; Fetoni, A R

    2016-06-01

    Age-related hearing loss (ARHL) has a multifactorial pathogenesis and it is an inevitable hearing impairment associated with reduction of communicative skills related to ageing. Increasing evidence has linked ARHL to more rapid progression of cognitive decline and incidental dementia. Many aspects of daily living of elderly people have been associated to hearing abilities, showing that hearing loss (HL) affects the quality of life, social relationships, motor skills, psychological aspects and function and morphology in specific brain areas. Epidemiological and clinical studies confirm the assumption of a relationship between these conditions. However, the mechanisms are still unclear and are reviewed herein. Long-term hearing deprivation of auditory inputs can impact cognitive performance by decreasing the quality of communication leading to social isolation and depression and facilitate dementia. On the contrary, the limited cognitive skills may reduce the cognitive resources available for auditory perception, increasing the effects of HL. In addition, hearing loss and cognitive decline may reflect a 'common cause' on the auditory pathway and brain. In fact, some pathogenetic factors are recongised in common microvascular disease factors such as diabetes, atherosclerosis and hypertension. Interdisciplinary efforts to investigate and address HL in the context of brain and cognitive ageing are needed. Surprisingly, few studies have been adressed on the effectiveness of hearing aids in changing the natural history of cognitive decline. Effective interventions with hearing aids or cochlear implant may improve social and emotional function, communication, cognitive function and positively impact quality of life. The aim of this review is to overview new insights on this challenging topic and provide new ideas for future research. PMID:27214827

  13. Higher Education is an Age-Independent Predictor of White Matter Integrity and Cognitive Control in Late Adolescence

    PubMed Central

    Korgaonkar, Mayuresh S.; Grieve, Stuart M.; Brickman, Adam M.

    2013-01-01

    Socioeconomic status is an important predictor of cognitive development and academic achievement. Late adolescence provides a unique opportunity to study how the attainment of socioeconomic status (in the form of years of education) relates to cognitive and neural development, during a time when age-related cognitive and neural development is ongoing. During late adolescence it is possible to disambiguate age- and education-related effects on the development of these processes. Here we assessed the degree to which higher educational attainment was related to performance on a cognitive control task, controlling for age. We then used diffusion tensor imaging (DTI) to assess the degree to which white matter microstructure might mediate this relationship. When covarying age, significant associations were found between educational attainment and fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF) and cingulum bundle (CB). Further, when covarying age, FA in these regions was associated with cognitive control. Finally, mediation analyses revealed that the age-independent association between educational attainment and cognitive control was completely accounted for by FA in these regions. The uncinate fasciculus, a late-myelinated control region not implicated in cognitive control, did not mediate this effect. PMID:24033571

  14. Cognitive aging and hearing acuity: modeling spoken language comprehension

    PubMed Central

    Wingfield, Arthur; Amichetti, Nicole M.; Lash, Amanda

    2015-01-01

    The comprehension of spoken language has been characterized by a number of “local” theories that have focused on specific aspects of the task: models of word recognition, models of selective attention, accounts of thematic role assignment at the sentence level, and so forth. The ease of language understanding (ELU) model (Rönnberg et al., 2013) stands as one of the few attempts to offer a fully encompassing framework for language understanding. In this paper we discuss interactions between perceptual, linguistic, and cognitive factors in spoken language understanding. Central to our presentation is an examination of aspects of the ELU model that apply especially to spoken language comprehension in adult aging, where speed of processing, working memory capacity, and hearing acuity are often compromised. We discuss, in relation to the ELU model, conceptions of working memory and its capacity limitations, the use of linguistic context to aid in speech recognition and the importance of inhibitory control, and language comprehension at the sentence level. Throughout this paper we offer a constructive look at the ELU model; where it is strong and where there are gaps to be filled. PMID:26124724

  15. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise.

    PubMed

    Parbery-Clark, Alexandra; Strait, Dana L; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-01-01

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30), we asked whether musical experience benefits an older cohort of musicians (ages 45-65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline. PMID:21589653

  16. Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise

    PubMed Central

    Parbery-Clark, Alexandra; Strait, Dana L.; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-01-01

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18–30), we asked whether musical experience benefits an older cohort of musicians (ages 45–65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline. PMID:21589653

  17. Automated Semantic Indices Related to Cognitive Function and Rate of Cognitive Decline

    ERIC Educational Resources Information Center

    Pakhomov, Serguei V. S.; Hemmy, Laura S.; Lim, Kelvin O.

    2012-01-01

    The objective of our study is to introduce a fully automated, computational linguistic technique to quantify semantic relations between words generated on a standard semantic verbal fluency test and to determine its cognitive and clinical correlates. Cognitive differences between patients with Alzheimer's disease and mild cognitive impairment are…

  18. [Cancer-related Cognitive Impairment: Current Knowledge and Future Challenges].

    PubMed

    Tanimukai, Hitoshi

    2015-01-01

    super-aging of society. Psychiatrists need to develop appropriate care for them and understand the value of ACP. In this review, an outline of CRCI is given, especially related to cancer therapy such as chemotherapy, hormonal therapy, and radiation therapy. In addition, the importance of ACP to facilitate a living will for patients likely to develop impaired cognitive functions in the future is described. PMID:26642725

  19. R2* mapping for brain iron: associations with cognition in normal aging.

    PubMed

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. PMID:25443291

  20. Aging White Matter and Cognition: Differential Effects of Regional Variations in Diffusion Properties on Memory, Executive Functions, and Speed

    ERIC Educational Resources Information Center

    Kennedy, Kristen M.; Raz, Naftali

    2009-01-01

    Disruption of cerebral white matter has been proposed as an explanation for age-related cognitive declines. However, the role of specific regions in specific cognitive declines remains unclear. We used diffusion tensor imaging to examine the associations between regional microstructural integrity of the white matter and performance on…

  1. Moving forward: age effects on the cerebellum underlie cognitive and motor declines.

    PubMed

    Bernard, Jessica A; Seidler, Rachael D

    2014-05-01

    Though the cortical contributions to age-related declines in motor and cognitive performance are well-known, the potential contributions of the cerebellum are less clear. The diverse functions of the cerebellum make it an important structure to investigate in aging. Here, we review the extant literature on this topic. To date, there is evidence to indicate that there are morphological age differences in the cerebellum that are linked to motor and cognitive behavior. Cerebellar morphology is often as good as - or even better - at predicting performance than the prefrontal cortex. We also touch on the few studies using functional neuroimaging and connectivity analyses that further implicate the cerebellum in age-related performance declines. Importantly, we provide a conceptual framework for the cerebellum influencing age differences in performance, centered on the notion of degraded internal models. The evidence indicating that cerebellar age differences associate with performance highlights the need for additional work in this domain to further elucidate the role of the cerebellum in age differences in movement control and cognitive function. PMID:24594194

  2. Effects of aging and mild cognitive impairment on electrophysiological correlates of performance monitoring.

    PubMed

    Thurm, Franka; Antonenko, Daria; Schlee, Winfried; Kolassa, Stephan; Elbert, Thomas; Kolassa, Iris-Tatjana

    2013-01-01

    Performance monitoring tasks are suitable for investigating aging-related decline in executive functions. However, little is known about performance monitoring in premature pathological aging and mild cognitive impairment (MCI). This study recorded the error-related negativity (ERN) and the correct-related negativity (CRN) as indices of performance monitoring and compared these responses in older adults with MCI to the ones of younger and older adult controls. No differences in either ERN or CRN were found between younger and older adult controls. Compared to both control groups, we observed a more negatively pronounced CRN in MCI subjects. Only in this group did the amplitude of the CRN not differ from the one of the ERN. In general, larger differences between both components (i.e., ERN > CRN) were associated with better performances in cognitive tests requiring inhibition and executive control. These results indicate that electrophysiological correlates of performance monitoring (ERN and CRN) are differentially affected by aging and MCI. PMID:23455987

  3. Cognitive decline is associated with reduced surface GluR1 expression in the hippocampus of aged rats.

    PubMed

    Yang, Yuan-Jian; Chen, Hai-Bo; Wei, Bo; Wang, Wei; Zhou, Ping-Liang; Zhan, Jin-Qiong; Hu, Mao-Rong; Yan, Kun; Hu, Bin; Yu, Bin

    2015-03-30

    Individual differences in cognitive aging exist in humans and in rodent populations, yet the underlying mechanisms remain largely unclear. Activity-dependent delivery of GluR1-containing AMPA receptor (AMPARs) plays an essential role in hippocampal synaptic plasticity, learning and memory. We hypothesize that alterations of surface GluR1 expression in the hippocampus might correlate with age-related cognitive decline. To test this hypothesis, the present study evaluated the cognitive function of young adult and aged rats using Morris water maze. After the behavioral test, the surface expression of GluR1 protein in hippocampal CA1 region of rats was determined using Western blotting. The results showed that the surface expression of GluR1 in the hippocampus of aged rats that are cognitively impaired was much lower than that of young adults and aged rats with preserved cognitive abilities. The phosphorylation levels of GluR1 at Ser845 and Ser831 sites, which promote the synaptic delivery of GluR1, were also selectively decreased in the hippocampus of aged-impaired rats. Correlation analysis reveals that greater decrease in surface GluR1 expression was associated with worse behavioral performance. These results suggest that reduced surface GluR1 expression may contribute to cognitive decline that occurs in normal aging, and different pattern of surface GluR1 expression might be responsible for the individual differences in cognitive aging. PMID:25697598

  4. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  5. The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain.

    PubMed

    Mather, Mara; Harley, Carolyn W

    2016-03-01

    Research on cognitive aging has focused on how decline in various cortical and hippocampal regions influence cognition. However, brainstem regions play essential modulatory roles, and new evidence suggests that, among these, the integrity of the locus coeruleus (LC)-norepinephrine (NE) system plays a key role in determining late-life cognitive abilities. The LC is especially vulnerable to toxins and infection and is often the first place Alzheimer's-related pathology appears, with most people showing at least some tau pathology by their mid-20s. On the other hand, NE released from the LC during arousing, mentally challenging, or novel situations helps to protect neurons from damage, which may help to explain how education and engaging careers prevent cognitive decline in later years. PMID:26895736

  6. The genetic and environmental etiologies of the relations between cognitive skills and components of reading ability.

    PubMed

    Christopher, Micaela E; Keenan, Janice M; Hulslander, Jacqueline; DeFries, John C; Miyake, Akira; Wadsworth, Sally J; Willcutt, Erik; Pennington, Bruce; Olson, Richard K

    2016-04-01

    Although previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with 3 components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of 8 and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children's cognitive ability and reading ability. (PsycINFO Database Record PMID:26974208

  7. Race-Related Cognitive Test Bias in the ACTIVE Study: A MIMIC Model Approach

    PubMed Central

    Aiken Morgan, Adrienne T.; Marsiske, Michael; Dzierzewski, Joseph; Jones, Richard N.; Whitfield, Keith E.; Johnson, Kathy E.; Cresci, Mary K.

    2010-01-01

    The present study investigated evidence for race-related test bias in cognitive measures used in the baseline assessment of the ACTIVE clinical trial. Test bias against African Americans has been documented in both cognitive aging and early lifespan studies. Despite significant mean performance differences, Multiple Indicators Multiple Causes (MIMIC) models suggested most differences were at the construct level. There was little evidence that specific measures put either group at particular advantage or disadvantage and little evidence of cognitive test bias in this sample. Small group differences in education, cognitive status, and health suggest positive selection may have attenuated possible biases. PMID:20845121

  8. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years.

    PubMed

    Huijgen, Barbara C H; Leemhuis, Sander; Kok, Niels M; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T; Visscher, Chris

    2015-01-01

    Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13-17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for "higher-level" cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). "Lower-level" cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA's showed that elite players outscored sub-elite players at the "higher-level" cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA's showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the "lower-level" cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the need for longitudinal

  9. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years

    PubMed Central

    Huijgen, Barbara C. H.; Leemhuis, Sander; Kok, Niels M.; Verburgh, Lot; Oosterlaan, Jaap; Elferink-Gemser, Marije T.; Visscher, Chris

    2015-01-01

    Soccer players are required to anticipate and react continuously in a changing, relatively unpredictable situation in the field. Cognitive functions might be important to be successful in soccer. The current study investigated the relationship between cognitive functions and performance level in elite and sub-elite youth soccer players aged 13–17 years. A total of 47 elite youth soccer players (mean age 15.5 years, SD = 0.9) and 41 sub-elite youth soccer players (mean age 15.2 years, SD = 1.2) performed tasks for “higher-level” cognitive functions measuring working memory (i.e., Visual Memory Span), inhibitory control (i.e., Stop-Signal Task), cognitive flexibility (i.e., Trail Making Test), and metacognition (i.e., Delis-Kaplan Executive Function System Design Fluency Test). “Lower-level” cognitive processes, i.e., reaction time and visuo-perceptual abilities, were also measured with the previous tasks. ANOVA’s showed that elite players outscored sub-elite players at the “higher-level” cognitive tasks only, especially on metacognition (p < .05). Using stepwise discriminant analysis, 62.5% of subjects was correctly assigned to one of the groups based on their metacognition, inhibitory control and cognitive flexibility performance. Controlling for training hours and academic level, MANCOVA’s showed differences in favor of the elite youth soccer players on inhibitory control (p = .001), and cognitive flexibility (p = .042), but not on metacognition (p = .27). No differences were found concerning working memory nor the “lower-level” cognitive processes (p > .05). In conclusion, elite youth soccer players have better inhibitory control, cognitive flexibility, and especially metacognition than their sub-elite counterparts. However, when training hours are taken into account, differences between elite and sub-elite youth soccer players remain apparent on inhibitory control and cognitive flexibility in contrast to metacognition. This highlights the

  10. Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults.

    PubMed

    Chapman, Sandra B; Aslan, Sina; Spence, Jeffrey S; Keebler, Molly W; DeFina, Laura F; Didehbani, Nyaz; Perez, Alison M; Lu, Hanzhang; D'Esposito, Mark

    2016-01-01

    Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56-75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health. PMID:27462210

  11. Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults

    PubMed Central

    Chapman, Sandra B.; Aslan, Sina; Spence, Jeffrey S.; Keebler, Molly W.; DeFina, Laura F.; Didehbani, Nyaz; Perez, Alison M.; Lu, Hanzhang; D'Esposito, Mark

    2016-01-01

    Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56–75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health. PMID:27462210

  12. Motor Control and Aging: Links to Age-Related Brain Structural, Functional, and Biochemical Effects

    PubMed Central

    Seidler, Rachael D.; Bernard, Jessica A.; Burutolu, Taritonye B.; Fling, Brett W.; Gordon, Mark T.; Gwin, Joseph T.; Kwak, Youngbin; Lipps, David B.

    2009-01-01

    Although connections between cognitive deficits and age-associated brain differences have been elucidated, relationships with motor performance are less well understood. Here, we broadly review age-related brain differences and motor deficits in older adults in addition to cognition-action theories. Age-related atrophy of the motor cortical regions and corpus callosum may precipitate or coincide with motor declines such as balance and gait deficits, coordination deficits, and movement slowing. Correspondingly, degeneration of neurotransmitter systems—primarily the dopaminergic system—may contribute to age-related gross and fine motor declines, as well as to higher cognitive deficits. In general, older adults exhibit involvement of more widespread brain regions for motor control than young adults, particularly the prefrontal cortex and basal ganglia networks. Unfortunately these same regions are the most vulnerable to age-related effects, resulting in an imbalance of “supply and demand”. Existing exercise, pharmaceutical, and motor training interventions may ameliorate motor deficits in older adults. PMID:19850077

  13. Nutrients for cognitive development in school-aged children.

    PubMed

    Bryan, Janet; Osendarp, Saskia; Hughes, Donna; Calvaresi, Eva; Baghurst, Katrine; van Klinken, Jan-Willem

    2004-08-01

    This review considers the research to date on the role of nutrition in cognitive development in children, with a particular emphasis on the relatively neglected post-infancy period. Undernutrition and deficiencies of iodine, iron, and folate are all important for the development of the brain and the emergent cognitive functions, and there is some evidence to suggest that zinc, vitamin B12, and omega-3 polyunsaturated fatty acids may also be important. Considerations for future research include a focus on the interactions between micronutrients and macronutrients that might be influential in the optimization of cognitive development; investigation of the impact of nutritional factors in children after infancy, with particular emphasis on effects on the developing executive functions; and selection of populations that might benefit from nutritional interventions, for example, children with nutrient deficiencies or those suffering from attention deficit-hyperactivity disorder and dyslexia. PMID:15478684

  14. Factors influencing the cognitive and neural effects of hormone treatment during aging in a rodent model

    PubMed Central

    Chisholm, Nioka C.; Juraska, Janice M.

    2013-01-01

    Whether hormone treatment alters brain structure or has beneficial effects on cognition during aging has recently become a topic of debate. Although previous research has indicated that hormone treatment benefits memory in menopausal women, several newer studies have shown no effect or detrimental effects. These inconsistencies emphasize the need to evaluate the role of hormones in protecting against age-related cognitive decline in an animal model. Importantly, many studies investigating the effects of estrogen and progesterone on cognition and related brain regions have used young adult animals, which respond differently than aged animals. However, when only the studies that have examined the effects of hormone treatment in an aging model are reviewed, there are still varied behavioral and neural outcomes. This article reviews some of the important factors that can influence the behavioral and neural outcomes of hormone treatment including the type of estrogen administered, whether or not estrogen is combined with progesterone and if so, the type of progesterone used, as well as the route, mode, and length of treatment. How these factors influence cognitive outcomes highlights the importance of study design and avoiding generalizations from a small number of studies. PMID:23419893

  15. Incident Subjective Cognitive Decline Does Not Predict Mortality in the Elderly – Results from the Longitudinal German Study on Ageing, Cognition, and Dementia (AgeCoDe)

    PubMed Central

    Roehr, Susanne; Luck, Tobias; Heser, Kathrin; Fuchs, Angela; Ernst, Annette; Wiese, Birgitt; Werle, Jochen; Bickel, Horst; Brettschneider, Christian; Koppara, Alexander; Pentzek, Michael; Lange, Carolin; Prokein, Jana; Weyerer, Siegfried; Mösch, Edelgard; König, Hans-Helmut; Maier, Wolfgang; Scherer, Martin

    2016-01-01

    Objective Subjective cognitive decline (SCD) might represent the first symptomatic representation of Alzheimer’s disease (AD), which is associated with increased mortality. Only few studies, however, have analyzed the association of SCD and mortality, and if so, based on prevalent cases. Thus, we investigated incident SCD in memory and mortality. Methods Data were derived from the German AgeCoDe study, a prospective longitudinal study on the epidemiology of mild cognitive impairment (MCI) and dementia in primary care patients over 75 years covering an observation period of 7.5 years. We used univariate and multivariate Cox regression analyses to examine the relationship of SCD and mortality. Further, we estimated survival times by the Kaplan Meier method and case-fatality rates with regard to SCD. Results Among 971 individuals without objective cognitive impairment, 233 (24.0%) incidentally expressed SCD at follow-up I. Incident SCD was not significantly associated with increased mortality in the univariate (HR = 1.0, 95% confidence interval = 0.8–1.3, p = .90) as well as in the multivariate analysis (HR = 0.9, 95% confidence interval = 0.7–1.2, p = .40). The same applied for SCD in relation to concerns. Mean survival time with SCD was 8.0 years (SD = 0.1) after onset. Conclusion Incident SCD in memory in individuals with unimpaired cognitive performance does not predict mortality. The main reason might be that SCD does not ultimately lead into future cognitive decline in any case. However, as prevalence studies suggest, subjectively perceived decline in non-memory cognitive domains might be associated with increased mortality. Future studies may address mortality in such other cognitive domains of SCD in incident cases. PMID:26766555

  16. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  17. Online games training aging brains: limited transfer to cognitive control functions

    PubMed Central

    van Muijden, Jesse; Band, Guido P. H.; Hommel, Bernhard

    2011-01-01

    The prevalence of age-related cognitive decline will increase due to graying of the global population. The goal of the present study was to test whether playing online cognitive training games can improve cognitive control (CC) in healthy older adults. Fifty-four older adults (age 60–77) played five different cognitive training games online for 30 min a day over a period of seven weeks (game group). Another group of 20 older adults (age 61–73) instead answered quiz questions about documentaries online (documentary group). Transfer was assessed by means of a cognitive test battery administered before and after the intervention. The test battery included measures of working memory updating, set shifting, response inhibition, attention, and inductive reasoning. Compared with the documentary group, the game group showed larger improvement of inhibition (Stop-Signal task) and inductive reasoning (Raven-SPM), whereas the documentary group showed more improvement in selective attention (UFoV-3). These effects qualify as transfer effects, because response inhibition, inductive reasoning and selective attention were not targeted by the interventions. However, because seven other indicators of CC did not show benefits of game training and some of those that did suffered from potential baseline differences, the study as a whole provides only modest support for the potential of videogame training to improve CC in healthy older adults. PMID:22912609

  18. Age and individual sleep characteristics affect cognitive performance in anesthesiology residents after a 24-hour shift.

    PubMed

    Tadinac, Meri; Sekulić, Ante; Hromatko, Ivana; Mazul-Sunko, Branka; Ivancić, Romina

    2014-03-01

    Previous research has shown that both shift work and sleep deprivation have an adverse influence on various aspects of human cognitive performance. The aim of this study was to explore changes in cognitive functioning and subjective sleepiness of anesthesiology residents after a 24-hour shift. Twenty-six anesthesiology residents completed a set of psychological instruments at the beginning and at the end of the shift, as well as a questionnaire regarding information about the shift, Stanford Sleepiness Scale, and Circadian Type Questionnaire. There was a significant decline in cognitive performance measured by the Auditory Verbal Learning Test after the shift. The effect was stronger in older participants and in those with high scores on rigidity of sleep scale and low scores on the ability to overcome sleepiness scale. There were no differences in the digits forward test (a measure of concentration), while digits backward test (a measure of working memory) even showed an improved performance after the shift. Although participants reported being significantly sleepier after the shift, the subjective sleepiness did not correlate with any of the objective measures of cognitive performance. In conclusion, the performance in short tasks involving concentration and working memory was not impaired, while performance in long-term and monotone tasks declined after sleep deprivation, and the magnitude of this decline depended on the specific individual characteristics of sleep and on age Surprisingly, age seemed to have an important impact on cognitive functions after shift work even in the relatively age-homogeneous population of young anesthesiology residents. PMID:24974663

  19. Aging Affects Neural Synchronization to Speech-Related Acoustic Modulations

    PubMed Central

    Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid

    2016-01-01

    As people age, speech perception problems become highly prevalent, especially in noisy situations. In addition to peripheral hearing and cognition, temporal processing plays a key role in speech perception. Temporal processing of speech features is mediated by synchronized activity of neural oscillations in the central auditory system. Previous studies indicate that both the degree and hemispheric lateralization of synchronized neural activity relate to speech perception performance. Based on these results, we hypothesize that impaired speech perception in older persons may, in part, originate from deviances in neural synchronization. In this study, auditory steady-state responses that reflect synchronized activity of theta, beta, low and high gamma oscillations (i.e., 4, 20, 40, and 80 Hz ASSR, respectively) were recorded in young, middle-aged, and older persons. As all participants had normal audiometric thresholds and were screened for (mild) cognitive impairment, differences in synchronized neural activity across the three age groups were likely to be attributed to age. Our data yield novel findings regarding theta and high gamma oscillations in the aging auditory system. At an older age, synchronized activity of theta oscillations is increased, whereas high gamma synchronization is decreased. In contrast to young persons who exhibit a right hemispheric dominance for processing of high gamma range modulations, older adults show a symmetrical processing pattern. These age-related changes in neural synchronization may very well underlie the speech perception problems in aging persons. PMID:27378906

  20. Age dependent levels of plasma homocysteine and cognitive performance.

    PubMed

    Agrawal, Aruna; Ilango, K; Singh, Praveen K; Karmakar, Dipankar; Singh, G P I; Kumari, Rinki; Dubey, G P

    2015-04-15

    Elevated plasma homocysteine (hcy) levels, also known as hyperhomocysteinemia (hhcy), have been associated with cognitive impairment and neurodegenerative disorders. Hhcy has been attributed to deficiency of B vitamins which can adversely affect the brain and result in memory loss and poor attention power. Monitoring hcy levels and the use of vitamin supplementation to treat hhcy may therefore prove advantageous for the prevention and management of cognitive impairment. With this in consideration, we measured plasma hcy, folate and vitamin B12 levels in 639 subjects from different age groups in two sub-regions of India. Cognitive function was also measured using attention span and immediate and delayed memory recall tests. Depression scores were obtained using the Beck Depression Inventory-II and functional impairment was assessed using the functional activities questionnaire (FAQ) score. As hhcy has also been linked to inflammation, plasma levels of high sensitivity C-reactive protein (hsCRP) and interleukin-6 (IL-6) were also measured. The results demonstrated significant negative correlations between hcy levels and folic acid levels, vitamin B12 levels and cognitive performance (attention span and delayed but not immediate memory recall) along with significant positive correlations between hcy levels and depression scores and hsCRP (but not IL-6) levels. A positive correlation was also observed between hcy levels and FAQ scores, however this was not found to be significant. Based on these results, folic acid and vitamin B12 intervention in people with elevated hcy levels in India could prove to be effective in lowering hcy levels and help maintain or improve cognitive function. PMID:25601573

  1. Cognitive Consequences of Aging with HIV: Implications for Neuroplasticity and Rehabilitation

    PubMed Central

    McDougall, Graham J.; Wilson, Natalie; Debiasi, Marcus Otavio; Cody, Shameka L.

    2014-01-01

    Combination active antiretroviral therapy prevents HIV from replicating and ravaging the immune system, thus allowing people to age with this disease. Unfortunately, the synergistic effects of HIV and aging can predispose many to become more at-risk of developing cognitive deficits which can interfere with medical management, everyday functioning, and quality of life. The purpose of this article is to describe the role of cognitive reserve and neuroplasticity on cognitive functioning in those aging with this disease. Specifically, the role of environment and the health of these individuals can compromise cognitive functioning. Fortunately, some cognitive interventions such as prevention and management of co-morbidities, cognitive remediation therapy, and neurotropic medications may be of value in preventing and rehabilitating the cognitive consequences of aging with HIV. Novel approaches such as cognitive prescriptions, transcranial direct stimulation, and binaural beat therapy may also be considered as possible techniques for cognitive rehabilitation. PMID:24817785

  2. Pathophysiology of ageing, longevity and age related diseases

    PubMed Central

    Bürkle, Alexander; Caselli, Graziella; Franceschi, Claudio; Mariani, Erminia; Sansoni, Paolo; Santoni, Angela; Vecchio, Giancarlo; Witkowski, Jacek M; Caruso, Calogero

    2007-01-01

    On April 18, 2007 an international meeting on Pathophysiology of Ageing, Longevity and Age-Related Diseases was held in Palermo, Italy. Several interesting topics on Cancer, Immunosenescence, Age-related inflammatory diseases and longevity were discussed. In this report we summarize the most important issues. However, ageing must be considered an unavoidable end point of the life history of each individual, nevertheless the increasing knowledge on ageing mechanisms, allows envisaging many different strategies to cope with, and delay it. So, a better understanding of pathophysiology of ageing and age-related disease is essential for giving everybody a reasonable chance for living a long and enjoyable final part of the life. PMID:17683521

  3. Examining interference of different cognitive tasks on voluntary balance control in aging and stroke.

    PubMed

    Bhatt, Tanvi; Subramaniam, Savitha; Varghese, Rini

    2016-09-01

    This study compared the effect of semantic and working memory tasks when each was concurrently performed with a voluntary balance task to evaluate the differences in the resulting cognitive-motor interference (CMI) between healthy aging and aging with stroke. Older stroke survivors (n = 10), older healthy (n = 10) and young adults (n = 10) performed the limits of stability, balance test under single task (ST) and dual task (DT) with two different cognitive tasks, word list generation (WLG) and counting backwards (CB). Cognitive ability was evaluated by recording the number of words and digits counted while sitting (ST) and during balance tasks (DT). The balance and cognitive costs were computed using [(ST-DT)/ST] × 100 for all the variables. Across groups, the balance cost was significantly higher for the older stroke survivors group in the CB condition than older healthy (p < 0.05) and young adult groups (p < 0.05) but was similar between these two groups for the WLG task. Similarly, the cognitive cost was significantly higher in older stroke survivors than in older healthy (p < 0.05) and young adults (p < 0.01) for both the cognitive tasks. The working memory task resulted in greater CMI than the semantic one, and this difference seemed to be most apparent in older stroke survivors. Young adults showed the least CMI, with a similar performance on the two memory tasks. On the other hand, healthy aging and stroke impact both semantic and working memory. Stroke-related cognitive deficits may further significantly decrease working memory function. PMID:27302401

  4. Age-related hypoxia in CNS pathology.

    PubMed

    Bădescu, George Mihai; Fîlfan, Mădălina; Ciobanu, Ovidiu; Dumbravă, DănuŢ Adrian; Popa-Wagner, Aurel

    2016-01-01

    Although neuropathological conditions differ in the etiology of the inflammatory response, cellular and molecular mechanisms of neuroinflammation are probably similar in aging, hypertension, depression and cognitive impairment. Moreover, a number of common risk factors such as obesity, hypertension, diabetes and atherosclerosis are increasingly understood to act as "silent contributors" to neuroinflammation and can underlie the development of disorders such as cerebral small vessel disease (cSVD) and subsequent dementia. On the other hand, acute neuroinflammation, such as in response to traumatic or cerebral ischemia, aggravates the acute damage and can lead to a number of pathological such as depression, post-stroke dementia and potentially neurodegeneration. All of those sequelae impair recovery and most of them provide the ground for further cerebrovascular events and a vicious cycle develops. Therefore, understanding the mechanisms associated with vascular dementia, stroke and related complications is of paramount importance in improving current preventive and therapeutic interventions. Likewise, understanding of molecular factors and pathways associated with neuroinflammation will eventually enable the discovery and implementation of new diagnostic and therapeutic strategies indicated in a wide range of neurological conditions. PMID:27151686

  5. Overcoming Age-Related Differences

    ERIC Educational Resources Information Center

    Agullo, Gloria Luque

    2006-01-01

    One of the most controversial issues in foreign language (FL) teaching is the age at which language learning should start. Nowadays it is recognized that in second language contexts maturational constraints make an early start advisable, but there is still disagreement regarding the problem of when to start or the best way to learn in foreign…

  6. Nutritional interventions protect against age-related deficits in behavior: from animals to humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on motor and cognitive tasks. Similar changes in behavior occur in humans with age, and the development of methods to retard or reverse these age-related neuronal and behavioral deficits could increase healthy aging and decrease health care costs. In the present s...

  7. Effects of hormone replacement therapy and aging on cognition: evidence for executive dysfunction.

    PubMed

    Wegesin, Domonick J; Stern, Yaakov

    2007-05-01

    The present study was designed to explore whether the frontal lobe hypothesis of cognitive aging may be extended to describe the cognitive effects associated with estrogen use in postmenopausal women. Postmenopausal estrogen-only users, estrogen + progesterone users, and non-users (60-80 years old), as well as young, regularly cycling women (18-30 years old) completed an item and source memory task. Since source memory is thought to rely more on executive processes than item memory, we hypothesized that aging and estrogen effects would be greater for source memory than for item memory. Neuropsychological tests explored whether the effects of aging and estrogen use were revealed on other tests of frontal lobe function. Results from the experimental task revealed greater aging and estrogen effects for source memory than for item memory, and neuropsychological results revealed aging and estrogen effects on a subset of tests of executive function. Women on estrogen + progesterone therapy did not outperform non-users, suggesting that the addition of progesterone to hormone therapy may mitigate the benefits induced by estrogen use alone. Overall, findings support the hypothesis that estrogen use may temper age-related cognitive decline by helping to maintain functions subserved by the frontal lobes. PMID:17453562

  8. Gene delivery of Homer1c rescues spatial learning in a rodent model of cognitive aging.

    PubMed

    Gerstein, Hilary; Lindstrom, Mary J; Burger, Corinna

    2013-08-01

    Homer1c has been shown to play a role in learning and memory. Overexpression of Homer1c in the hippocampus can improve memory in normal rats and can also rescue spatial learning deficits in Homer1 knockout mice. In a previous study, we found that Homer1c mRNA is upregulated after a spatial learning paradigm in aged rats that successfully learn the task, when compared to aged rats that are learning-impaired (AI). This study was designed to validate the role of Homer1c in successful cognitive aging. In this article, we report that gene delivery of Homer1c into the hippocampus of aged learning-impaired rats significantly improves individual performance on an object location memory task. The learning ability of these rats on the Morris Water Maze was also superior to that of AI control rats. In summary, using 2 independent spatial memory tasks, we demonstrate that Homer1c is sufficient to improve the spatial learning deficits in a rodent model of cognitive aging. These results point to Homer1c as a potential therapeutic target for improving age-related cognitive impairment. PMID:23523268

  9. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline

    PubMed Central

    Febo, Marcelo; Foster, Thomas C.

    2016-01-01

    Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline. PMID:27468264

  10. Serum folate, vitamin B-12 and cognitive function in middle and older age: The HAPIEE study

    PubMed Central

    Horvat, Pia; Gardiner, Julian; Kubinova, Ruzena; Pajak, Andrzej; Tamosiunas, Abdonas; Schöttker, Ben; Pikhart, Hynek; Peasey, Anne; Jansen, Eugene; Bobak, Martin

    2016-01-01

    Background Nutrient status of B vitamins, particularly folate and vitamin B-12, may be related to cognitive ageing but epidemiological evidence remains inconclusive. Objective The aim of this study was to estimate the association of serum folate and vitamin B-12 concentrations with cognitive function in middle-aged and older adults from three Central and Eastern European populations. Methods Men and women aged 45–69 at baseline participating in the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study were recruited in Krakow (Poland), Kaunas (Lithuania) and six urban centres in the Czech Republic. Tests of immediate and delayed recall, verbal fluency and letter search were administered at baseline and repeated in 2006–2008. Serum concentrations of biomarkers at baseline were measured in a sub-sample of participants. Associations of vitamin quartiles with baseline (n = 4166) and follow-up (n = 2739) cognitive domain-specific z-scores were estimated using multiple linear regression. Results After adjusting for confounders, folate was positively associated with letter search and vitamin B-12 with word recall in cross-sectional analyses. In prospective analyses, participants in the highest quartile of folate had higher verbal fluency (p < 0.01) and immediate recall (p < 0.05) scores compared to those in the bottom quartile. In addition, participants in the highest quartile of vitamin B-12 had significantly higher verbal fluency scores (β = 0.12; 95% CI = 0.02, 0.21). Conclusions Folate and vitamin B-12 were positively associated with performance in some but not all cognitive domains in older Central and Eastern Europeans. These findings do not lend unequivocal support to potential importance of folate and vitamin B-12 status for cognitive function in older age. Long-term longitudinal studies and randomised trials are required before drawing conclusions on the role of these vitamins in cognitive decline. PMID:26808046

  11. Nutrition and age-related eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  12. Structural and functional connectivity in healthy aging: Associations for cognition and motor behavior.

    PubMed

    Hirsiger, Sarah; Koppelmans, Vincent; Mérillat, Susan; Liem, Franziskus; Erdeniz, Burak; Seidler, Rachael D; Jäncke, Lutz

    2016-03-01

    Age-related behavioral declines may be the result of deterioration of white matter tracts, affecting brain structural (SC) and functional connectivity (FC) during resting state. To date, it is not clear if the combination of SC and FC data could better predict cognitive/motor performance than each measure separately. We probed these relationships in the cingulum bundle, a major white matter pathway of the default mode network. We aimed to attain deeper knowledge about: (a) the relationship between age and the cingulum's SC and FC strength, (b) the association between SC and FC, and particularly (c) how the cingulum's SC and FC are related to cognitive/motor performance separately and combined. We examined these associations in a healthy and well-educated sample of 165 older participants (aged 64-85). SC and FC were acquired using probabilistic tractography to derive measures to capture white matter integrity within the cingulum bundle (fractional anisotropy, mean, axial and radial diffusivity) and a seed-based resting-state functional MRI correlation approach, respectively. Participants performed cognitive tests measuring processing speed, memory and executive functions, and motor tests measuring motor speed and grip force. Our data revealed that only SC but not resting state FC was significantly associated with age. Further, the cingulum's SC and FC showed no relation. Different relationships between cognitive/motor performance and SC/FC separately were found, but no additive effect of the combined analysis of cingulum's SC and FC for predicting cognitive/motor performance was apparent. Hum Brain Mapp 37:855-867, 2016. © 2015 Wiley Periodicals, Inc. PMID:26663386

  13. The neurobiology of HIV and its impact on cognitive reserve: A review of cognitive interventions for an aging population.

    PubMed

    Cody, Shameka L; Vance, David E

    2016-08-01

    The medications used to treat HIV have reduced the severity of cognitive deficits; yet, nearly half of adults with HIV still exhibit some degree of cognitive deficits, referred to as HIV-associated neurocognitive disorder or HAND. These cognitive deficits interfere with everyday functioning such as emotional regulation, medication adherence, instrumental activities of daily living, and even driving a vehicle. As adults are expected to live a normal lifespan, the process of aging in this clinical population may exacerbate such cognitive deficits. Therefore, it is important to understand the neurobiological mechanisms of HIV on cognitive reserve and develop interventions that are either neuroprotective or compensate for such cognitive deficits. Within the context of cognitive reserve, this article delivers a state of the science perspective on the causes of HAND and provides possible interventions for addressing such cognitive deficits. Suggestions for future research are also provided. PMID:26776767

  14. Altered tract-specific white matter microstructure is related to poorer cognitive performance: The Rotterdam Study.

    PubMed

    Cremers, Lotte G M; de Groot, Marius; Hofman, Albert; Krestin, Gabriel P; van der Lugt, Aad; Niessen, Wiro J; Vernooij, Meike W; Ikram, M Arfan

    2016-03-01

    White matter microstructural integrity has been related to cognition. Yet, the potential role of specific white matter tracts on top of a global white matter effect remains unclear, especially when considering specific cognitive domains. Therefore, we determined the tract-specific effect of white matter microstructure on global cognition and specific cognitive domains. In 4400 nondemented and stroke-free participants (mean age 63.7 years, 55.5% women), we obtained diffusion magnetic resonance imaging parameters (fractional anisotropy and mean diffusivity) in 14 white matter tracts using probabilistic tractography and assessed cognitive performance with a cognitive test battery. Tract-specific white matter microstructure in all supratentorial tracts was associated with poorer global cognition. Lower fractional anisotropy in association tracts, primarily the inferior fronto-occipital fasciculus, and higher mean diffusivity in projection tracts, in particular the posterior thalamic radiation, most strongly related to poorer cognition. Altered white matter microstructure related to poorer information processing speed, executive functioning, and motor speed, but not to memory. Tract-specific microstructural changes may aid in better understanding the mechanism of cognitive impairment and neurodegenerative diseases. PMID:26923407

  15. Age-Related Declines Evident Before 60

    MedlinePlus

    ... Services, or federal policy. More Health News on: Exercise for Seniors Healthy Aging Recent Health News Related MedlinePlus Health Topics Exercise for Seniors Healthy Aging About MedlinePlus Site Map FAQs Contact Us Get ...

  16. Effects of Vitamin E on Cognitive Performance during Ageing and in Alzheimer’s Disease

    PubMed Central

    La Fata, Giorgio; Weber, Peter; Mohajeri, M. Hasan

    2014-01-01

    Vitamin E is an important antioxidant that primarily protects cells from damage associated with oxidative stress caused by free radicals. The brain is highly susceptible to oxidative stress, which increases during ageing and is considered a major contributor to neurodegeneration. High plasma vitamin E levels were repeatedly associated with better cognitive performance. Due to its antioxidant properties, the ability of vitamin E to prevent or delay cognitive decline has been tested in clinical trials in both ageing population and Alzheimer’s disease (AD) patients. The difficulty in performing precise and uniform human studies is mostly responsible for the inconsistent outcomes reported in the literature. Therefore, the benefit of vitamin E as a treatment for neurodegenerative disorders is still under debate. In this review, we focus on those studies that mostly have contributed to clarifying the exclusive function of vitamin E in relation to brain ageing and AD. PMID:25460513

  17. Effects of vitamin E on cognitive performance during ageing and in Alzheimer's disease.

    PubMed

    La Fata, Giorgio; Weber, Peter; Mohajeri, M Hasan

    2014-12-01

    Vitamin E is an important antioxidant that primarily protects cells from damage associated with oxidative stress caused by free radicals. The brain is highly susceptible to oxidative stress, which increases during ageing and is considered a major contributor to neurodegeneration. High plasma vitamin E levels were repeatedly associated with better cognitive performance. Due to its antioxidant properties, the ability of vitamin E to prevent or delay cognitive decline has been tested in clinical trials in both ageing population and Alzheimer's disease (AD) patients. The difficulty in performing precise and uniform human studies is mostly responsible for the inconsistent outcomes reported in the literature. Therefore, the benefit of vitamin E as a treatment for neurodegenerative disorders is still under debate. In this review, we focus on those studies that mostly have contributed to clarifying the exclusive function of vitamin E in relation to brain ageing and AD. PMID:25460513

  18. The genetic basis for cognitive ability, memory, and depression symptomatology in middle-aged and elderly chinese twins.

    PubMed

    Xu, Chunsheng; Sun, Jianping; Ji, Fuling; Tian, Xiaocao; Duan, Haiping; Zhai, Yaoming; Wang, Shaojie; Pang, Zengchang; Zhang, Dongfeng; Zhao, Zhongtang; Li, Shuxia; Hjelmborg, Jacob V B; Christensen, Kaare; Tan, Qihua

    2015-02-01

    The genetic influences on aging-related phenotypes, including cognition and depression, have been well confirmed in the Western populations. We performed the first twin-based analysis on cognitive performance, memory and depression status in middle-aged and elderly Chinese twins, representing the world's largest and most rapidly aging population. The sample consisted of 384 twin pairs with a median age of 50 years. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) scale; memory was assessed using the revised Wechsler Adult Intelligence scale; depression symptomatology was evaluated by the self-reported 30-item Geriatric Depression (GDS-30)scale. Both univariate and multivariate twin models were fitted to the three phenotypes with full and nested models and compared to select the best fitting models. Univariate analysis showed moderate-to-high genetic influences with heritability 0.44 for cognition and 0.56 for memory. Multivariate analysis by the reduced Cholesky model estimated significant genetic (rG = 0.69) and unique environmental (rE = 0.25) correlation between cognitive ability and memory. The model also estimated weak but significant inverse genetic correlation for depression with cognition (-0.31) and memory (-0.28). No significant unique environmental correlation was found for depression with other two phenotypes. In conclusion, there can be a common genetic architecture for cognitive ability and memory that weakly correlates with depression symptomatology, but in the opposite direction. PMID:25586092

  19. The interplay of subjective social status and essentialist beliefs about cognitive aging on cortisol reactivity to challenge in older adults.

    PubMed

    Weiss, David; Weiss, Mona

    2016-08-01

    Older adults are more likely than younger adults to experience stress when confronted with cognitive challenges. However, little is known about individual differences that might explain why some older adults exhibit stronger stress responses than others. We examined the interplay of two social-cognitive factors to explain older adults' cortisol reactivity: (1) subjective social status, and (2) essentialist beliefs about cognitive aging. We hypothesized that, depending on whether older adults believe that aging-related cognitive decline is inevitable versus modifiable, low subjective social status should lead to stronger or weaker cortisol reactivity. Using longitudinal data, we assessed the impact of cognitive challenges on stress reactivity in a sample of older adults (N = 389; 61-86 years). As predicted, regression analyses confirmed that 44 min after cognitively challenging tasks, older adults exhibited a significantly different cortisol reactivity depending on their subjective social status and their essentialist beliefs about cognitive aging. Specifically, older adults with low subjective social status and high essentialist beliefs showed a significantly elevated cortisol reactivity. We discuss the role of essentialist beliefs about cognitive aging to predict when and why high versus low subjective social status leads to stress responses in older adults. PMID:27159187

  20. Cerebrospinal fluid norepinephrine and cognition in subjects across the adult age span.

    PubMed

    Wang, Lucy Y; Murphy, Richard R; Hanscom, Brett; Li, Ge; Millard, Steven P; Petrie, Eric C; Galasko, Douglas R; Sikkema, Carl; Raskind, Murray A; Wilkinson, Charles W; Peskind, Elaine R

    2013-10-01

    Adequate central nervous system noradrenergic activity enhances cognition, but excessive noradrenergic activity may have adverse effects on cognition. Previous studies have also demonstrated that noradrenergic activity is higher in older than younger adults. We aimed to determine relationships between cerebrospinal fluid (CSF) norepinephrine (NE) concentration and cognitive performance by using data from a CSF bank that includes samples from 258 cognitively normal participants aged 21-100 years. After adjusting for age, gender, education, and ethnicity, higher CSF NE levels (units of 100 pg/mL) are associated with poorer performance on tests of attention, processing speed, and executive function (Trail Making A: regression coefficient 1.5, standard error [SE] 0.77, p = 0.046; Trail Making B: regression coefficient 5.0, SE 2.2, p = 0.024; Stroop Word-Color Interference task: regression coefficient 6.1, SE 2.0, p = 0.003). Findings are consistent with the earlier literature relating excess noradrenergic activity with cognitive impairment. PMID:23639207

  1. Activity engagement is related to level, but not change in cognitive ability across adulthood.

    PubMed

    Bielak, Allison A M; Anstey, Kaarin J; Christensen, Helen; Windsor, Tim D

    2012-03-01

    It is unclear whether the longitudinal relation between activity participation and cognitive ability is due to preserved differentiation (active individuals have higher initial levels of cognitive ability), or differential preservation (active individuals show less negative change across time). This distinction has never been evaluated after dividing time-varying activity into its two sources of variation: between-person and within-person variability. Further, few studies have investigated how the association between activity participation and cognitive ability may differ from early to older adulthood. Using the PATH Through Life Project, we evaluated whether between- and within-person variation in activity participation was associated with cognitive ability and change within cohorts aged 20-24 years, 40-44 years, and 60-64 years at baseline (n = 7,152) assessed on three occasions over an 8-year interval. Multilevel models indicated that between-person differences in activity significantly predicted baseline cognitive ability for all age cohorts and for each assessed cognitive domain (perceptual speed, short-term memory, working memory, episodic memory, and vocabulary), even after accounting for sex, education, occupational status, and physical and mental health. In each case, greater average participation was associated with higher baseline cognitive ability. However, the size of the relationship involving average activity participation and baseline cognitive ability did not differ across adulthood. Between-person activity and within-person variation in activity level were both not significantly associated with change in cognitive test performance. Results suggest that activity participation is indeed related to cognitive ability across adulthood, but only in relation to the starting value of cognitive ability, and not change over time. PMID:21806303

  2. Glycoconjugate changes in aging and age-related diseases.

    PubMed

    Ando, Susumu

    2014-01-01

    The significance of glycosphingolipids and glycoproteins is discussed in their relation to normal aging and pathological aging, aging with diseases. Healthy myelin that looks stable is found to be gradually degraded and reconstructed throughout life for remodeling. An exciting finding is that myelin P0 protein is located in neurons and glycosylated in aging brains. In pathological aging, the roles of glycosphingolipids and glycoproteins as risk factors or protective agents for Alzheimer's and Parkinson's diseases are discussed. Intensive studies have been performed aiming to remove the risks from and to restore the functional deficits of the brain. Some of them are expected to be translated to therapeutic means. PMID:25151390

  3. Relation between dairy food intake and cognitive function: The Maine-Syracuse Longitudinal Study

    PubMed Central

    Crichton, G.E.; Elias, M.F.; Dore, G.A.; Robbins, M.A.

    2013-01-01

    Diet modification to alter the course of age-related cognitive decline is becoming increasingly important. Few observational findings suggest that dairy food intake may be positively related to cognitive function, but research in this novel area is limited. The aim of this study was to investigate whether dairy food intake is associated with cognitive function, before and after adjustment for cardiovascular, lifestyle and dietary factors. To do this, a cross-sectional analyses of a subset of the community-based Maine-Syracuse Longitudinal Study (MSLS) sample (N = 972) was undertaken. It was determined that participants who consumed dairy products at least once per day had significantly higher scores on multiple domains of cognitive function compared with those who never or rarely consumed dairy foods, adjusting for cardiovascular risk factors, lifestyle and dietary factors. Frequent dairy food intake is associated with better cognitive performance but underlying causal mechanisms are still to be determined. PMID:24453407

  4. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process. PMID:26655093

  5. Cumulative Exposure to Lead in Relation to Cognitive Function in Older Women

    PubMed Central

    Weuve, Jennifer; Korrick, Susan A.; Weisskopf, Marc A.; Ryan, Louise M.; Schwartz, Joel; Nie, Huiling; Grodstein, Francine; Hu, Howard

    2009-01-01

    Background Recent data indicate that chronic low-level exposure to lead is associated with accelerated declines in cognition in older age, but this has not been examined in women. Objective We examined biomarkers of lead exposure in relation to performance on a battery of cognitive tests among older women. Methods Patella and tibia bone lead—measures of cumulative exposure over many years—and blood lead, a measure of recent exposure, were assessed in 587 women 47–74 years of age. We assessed their cognitive function 5 years later using validated telephone interviews. Results Mean ± SD lead levels in tibia, patella, and blood were 10.5 ± 9.7 μg/g bone, 12.6 ± 11.6 μg/g bone, and 2.9 ± 1.9 μg/dL, respectively, consistent with community-level exposures. In multivariable-adjusted analyses of all cognitive tests combined, levels of all three lead biomarkers were associated with worse cognitive performance. The association between bone lead and letter fluency score differed dramatically from the other bone lead-cognitive score associations, and exclusion of this particular score from the combined analyses strengthened the associations between bone lead and cognitive performance. Results were statistically significant only for tibia lead: one SD increase in tibia lead corresponded to a 0.051-unit lower standardized summary cognitive score (95% confidence interval: −0.099 to −0.003; p = 0.04), similar to the difference in cognitive scores we observed between women who were 3 years apart in age. Conclusions These findings suggest that cumulative exposure to lead, even at low levels experienced in community settings, may have adverse consequences for women’s cognition in older age. PMID:19440496

  6. Hippocampal Extracellular Matrix Levels and Stochasticity in Synaptic Protein Expression Increase with Age and Are Associated with Age-dependent Cognitive Decline*

    PubMed Central

    Végh, Marlene J.; Rausell, Antonio; Loos, Maarten; Heldring, Céline M.; Jurkowski, Wiktor; van Nierop, Pim; Paliukhovich, Iryna; Li, Ka Wan; del Sol, Antonio; Smit, August B.; Spijker, Sabine; van Kesteren, Ronald E.

    2014-01-01

    Age-related cognitive decline is a serious health concern in our aging society. Decreased cognitive function observed during healthy brain aging is most likely caused by changes in brain connectivity and synaptic dysfunction in particular brain regions. Here we show that aged C57BL/6J wild-type mice have hippocampus-dependent spatial memory impairments. To identify the molecular mechanisms that are relevant to these memory deficits, we investigated the temporal profile of mouse hippocampal synaptic proteome changes at 20, 40, 50, 60, 70, 80, 90, and 100 weeks of age. Extracellular matrix proteins were the only group of proteins that showed robust and progressive up-regulation over time. This was confirmed by immunoblotting and histochemical analysis, which indicated that the increased levels of hippocampal extracellular matrix might limit synaptic plasticity as a potential cause of age-related cognitive decline. In addition, we observed that stochasticity in synaptic protein expression increased with age, in particular for proteins that were previously linked with various neurodegenerative diseases, whereas low variance in expression was observed for proteins that play a basal role in neuronal function and synaptic neurotransmission. Together, our findings show that both specific changes and increased variance in synaptic protein expression are associated with aging and may underlie reduced synaptic plasticity and impaired cognitive performance in old age. PMID:25044018

  7. Age differences in the role of cognitive versus somatic arousal in sleep outcomes.

    PubMed

    Shoji, Kristy D; McCrae, Christina S; Dautovich, Natalie D

    2014-01-01

    The purpose of this study is twofold: (a) to determine whether daily or overall cognitive and somatic arousal better predict sleep and (b) to investigate age differences in the arousal-sleep relation. Fifty younger and 50 older adults completed the Pre-Sleep Arousal Scale and sleep diaries for 14 consecutive days. Analyses revealed mean arousal may better predict sleep regardless of age. However, daily arousal represents an important avenue of research as it may uncover lagged or coupling effects in the arousal-sleep relation. Significant age differences in the arousal-sleep relation suggest age-dependent associations between the type of arousal and sleep. Implications for assessment of sleep in older and younger adults are discussed. PMID:23746053

  8. The effect of age on postural and cognitive task performance while using vibrotactile feedback.

    PubMed

    Lin, Chia-Cheng; Whitney, Susan L; Loughlin, Patrick J; Furman, Joseph M; Redfern, Mark S; Sienko, Kathleen H; Sparto, Patrick J

    2015-04-01

    Vibrotactile feedback (VTF) has been shown to improve balance performance in healthy people and people with vestibular disorders in a single-task experimental condition. It is unclear how age-related changes in balance affect the ability to use VTF and if there are different attentional requirements for old and young adults when using VTF. Twenty younger and 20 older subjects participated in this two-visit study to examine the effect of age, VTF, sensory condition, cognitive task, duration of time, and visit on postural and cognitive performance. Postural performance outcome measures included root mean square of center of pressure (COP) and trunk tilt, and cognitive performance was assessed using the reaction time (RT) from an auditory choice RT task. The results showed that compared with younger adults, older adults had an increase in COP in fixed platform conditions when using VTF, although they were able to reduce COP during sway-referenced platform conditions. Older adults also did not benefit fully from using VTF in their first session. The RTs for the secondary cognitive tasks increased significantly while using the VTF in both younger and older adults. Older adults had a larger increase compared with younger adults, suggesting that greater attentional demands were required in older adults when using VTF information. Future training protocols for VTF should take into consideration the effect of aging. PMID:25589585

  9. The effect of age on postural and cognitive task performance while using vibrotactile feedback

    PubMed Central

    Whitney, Susan L.; Loughlin, Patrick J.; Furman, Joseph M.; Redfern, Mark S.; Sienko, Kathleen H.; Sparto, Patrick J.

    2015-01-01

    Vibrotactile feedback (VTF) has been shown to improve balance performance in healthy people and people with vestibular disorders in a single-task experimental condition. It is unclear how age-related changes in balance affect the ability to use VTF and if there are different attentional requirements for old and young adults when using VTF. Twenty younger and 20 older subjects participated in this two-visit study to examine the effect of age, VTF, sensory condition, cognitive task, duration of time, and visit on postural and cognitive performance. Postural performance outcome measures included root mean square of center of pressure (COP) and trunk tilt, and cognitive performance was assessed using the reaction time (RT) from an auditory choice RT task. The results showed that compared with younger adults, older adults had an increase in COP in fixed platform conditions when using VTF, although they were able to reduce COP during sway-referenced platform conditions. Older adults also did not benefit fully from using VTF in their first session. The RTs for the secondary cognitive tasks increased significantly while using the VTF in both younger and older adults. Older adults had a larger increase compared with younger adults, suggesting that greater attentional demands were required in older adults when using VTF information. Future training protocols for VTF should take into consideration the effect of aging. PMID:25589585

  10. Empathy in Relation to Social Cognitive Development.

    ERIC Educational Resources Information Center

    Shantz, Carolyn Uhlinger

    This review brings together some general findings on empathy that have emerged during the last decade of research with children. From a recent review of the research on social cognitive development (Schantz, in press), this paper responds to three specific questions: (1) What is empathy? (2) Under what conditions is empathy likely to occur? and…

  11. Spelling Difficulties in School-Aged Girls with Attention-Deficit/Hyperactivity Disorder: Behavioral, Psycholinguistic, Cognitive, and Graphomotor Correlates

    ERIC Educational Resources Information Center

    Åsberg Johnels, Jakob; Kopp, Svenny; Gillberg, Christopher

    2014-01-01

    Writing difficulties are common among children with attention-deficit/hyperactivity disorder (ADHD), but the nature of these difficulties has not been well studied. Here we relate behavioral, psycholinguistic, cognitive (memory/executive), and graphomotor measures to spelling skills in school-age girls with ADHD (n = 30) and an age-matched group…

  12. Practice of Contemporary Dance Improves Cognitive Flexibility in Aging

    PubMed Central

    Coubard, Olivier A.; Duretz, Stéphanie; Lefebvre, Virginie; Lapalus, Pauline; Ferrufino, Lena

    2011-01-01

    As society ages and frequency of dementia increases exponentially, counteracting cognitive aging decline is a challenging issue for countries of the developed world. Previous studies have suggested that physical fitness based on cardiovascular and strength training helps to improve attentional control in normal aging. However, how motor activity based on motor-skill learning can also benefit attentional control with age has been hitherto a neglected issue. This study examined the impact of contemporary dance (CD) improvisation on attentional control of older adults, as compared to two other motor training programs, fall prevention and Tai Chi Chuan. Participants performed setting, suppressing, and switching attention tasks before and after 5.7-month training in either CD or fall prevention or Tai Chi Chuan. Results indicated that CD improved switching but not setting or suppressing attention. In contrast, neither fall prevention nor Tai Chi Chuan showed any effect. We suggest that CD improvisation works as a training for change, inducing plasticity in flexible attention. PMID:21960971

  13. Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age.

    PubMed

    Graham, Alice M; Buss, Claudia; Rasmussen, Jerod M; Rudolph, Marc D; Demeter, Damion V; Gilmore, John H; Styner, Martin; Entringer, Sonja; Wadhwa, Pathik D; Fair, Damien A

    2016-04-01

    The first year of life is an important period for emergence of fear in humans. While animal models have revealed developmental changes in amygdala circuitry accompanying emerging fear, human neural systems involved in early fear development remain poorly understood. To increase understanding of the neural foundations of human fear, it is important to consider parallel cognitive development, which may modulate associations between typical development of early fear and subsequent risk for fear-related psychopathology. We, therefore, examined amygdala functional connectivity with rs-fcMRI in 48 neonates (M=3.65 weeks, SD=1.72), and measured fear and cognitive development at 6-months-of-age. Stronger, positive neonatal amygdala connectivity to several regions, including bilateral anterior insula and ventral striatum, was prospectively associated with higher fear at 6-months. Stronger amygdala connectivity to ventral anterior cingulate/anterior medial prefrontal cortex predicted a specific phenotype of higher fear combined with more advanced cognitive development. Overall, findings demonstrate unique profiles of neonatal amygdala functional connectivity related to emerging fear and cognitive development, which may have implications for normative and pathological fear in later years. Consideration of infant fear in the context of cognitive development will likely contribute to a more nuanced understanding of fear, its neural bases, and its implications for future mental health. PMID:26499255

  14. Sports-Related Eye Injuries by Age

    MedlinePlus

    Sports-Related Eye Injuries by Age Activity Estimated Injuries* Ages 0–14 Ages 15+ Basketball 5,237 ... Exercise, Weightlifting) 1,697 401 1,297 Racquet Sports 1,241 233 1,008 Ball Sports, Unspecified ...

  15. Age Related Changes in Preventive Health Behavior.

    ERIC Educational Resources Information Center

    Leventhal, Elaine A.; And Others

    Health behavior may be influenced by age, beliefs, and symptomatology. To examine age-related health beliefs and behaviors with respect to six diseases (the common cold, colon-rectal cancer, lung cancer, heart attack, high blood pressure, and senility), 396 adults (196 males, 200 females) divided into three age groups completed a questionnaire…

  16. How Are Cultural-Historical Change and Individual Cognition Related?

    ERIC Educational Resources Information Center

    Hatano, Giyoo

    2005-01-01

    The Geoffrey Saxe and Esmonde monograph (this issue) offers both fascinating empirical findings and intriguing theoretical insight about cultural change and individual cognition. Cultural and cognitive changes are "reciprocal processes," but how can these be related in research? One obvious way is to conduct longitudinal studies of the mutual…

  17. RAGE and AGEs in Mild Cognitive Impairment of Diabetic Patients: A Cross-Sectional Study

    PubMed Central

    Wang, Pin; Huang, Rong; Lu, Sen; Xia, Wenqing; Cai, Rongrong; Sun, Haixia; Wang, Shaohua

    2016-01-01

    Objective Receptor for advanced glycation end products (AGEs; RAGE) binds to both AGEs and amyloid-beta peptides. RAGE is involved in chronic complications of type 2 diabetes and Alzheimer’s disease. We aimed to investigate the roles of RAGE, AGEs and the Gly82Ser polymorphism of RAGE in mild cognitive impairment (MCI) among type 2 diabetes patients. Methods Of the 167 hospitalized type 2 diabetes patients recruited, 82 satisfied the diagnostic criteria for MCI, and 85 matched control individuals were classified as non-MCI. Demographic data were collected, and the soluble RAGE (sRAGE) concentrations, serum AGE-peptide (AGE-P) levels, RAGE Gly82Ser genotype and neuropsychological test results were examined. Results The MCI group exhibited a decreased sRAGE level (0.87±0.35 vs. 1.05±0.52 ng/ml, p<0.01) and an increased serum AGE-P level (3.54±1.27 vs. 2.71±1.18 U/ml, p<0.01) compared with the control group. Logistic regression analysis indicated that each unit reduction in the sRAGE concentration increased the MCI risk by 54% (OR 0.46[95% CI 0.22–0.96], p = 0.04) and that each unit increase in the AGE-P level increased the MCI risk by 72% in the type 2 diabetes patients (OR 1.72[95% CI 1.31–2.28], p<0.01). The serum sRAGE level was negatively correlated with the score on the trail making test-B (TMT-B) (r = -0.344, p = 0.002), which indicates early cognitive deficits related to diabetes. Moreover, the AGE-P level was positively correlated with multiple cognitive domains (all p<0.05). No significant differences in the neuropsychological test results or serum RAGE concentrations between the different RAGE genotypes or in the RAGE genotype frequencies between the MCI and control groups were identified (all p>0.05). Conclusions The RAGE pathway partially mediates AGE-induced MCI in diabetic patients. The serum AGE-P level may serve as a serum biomarker of MCI in these individuals, and sRAGE represents a predictor and even a potential intervention target of

  18. RC2S: A Cognitive Remediation Program to Improve Social Cognition in Schizophrenia and Related Disorders.

    PubMed

    Peyroux, Elodie; Franck, Nicolas

    2014-01-01

    In people with psychiatric disorders, particularly those suffering from schizophrenia and related illnesses, pronounced difficulties in social interactions are a key manifestation. These difficulties can be partly explained by impairments in social cognition, defined as the ability to understand oneself and others in the social world, which includes abilities such as emotion recognition, theory of mind (ToM), attributional style, and social perception and knowledge. The impact of several kinds of interventions on social cognition has been studied recently. The best outcomes in the area of social cognition in schizophrenia are those obtained by way of cognitive remediation programs. New strategies and programs in this line are currently being developed, such as RC2S (cognitive remediation of social cognition) in Lyon, France. Considering that the social cognitive deficits experienced by patients with schizophrenia are very diverse, and that the main objective of social cognitive remediation programs is to improve patients' functioning in their daily social life, RC2S was developed as an individualized and flexible program that allows patients to practice social interaction in a realistic environment through the use of virtual reality techniques. In the RC2S program, the patient's goal is to assist a character named Tom in various social situations. The underlying idea for the patient is to acquire cognitive strategies for analyzing social context and emotional information in order to understand other characters' mental states and to help Tom manage his social interactions. In this paper, we begin by presenting some data regarding the social cognitive impairments found in schizophrenia and related disorders, and we describe how these deficits are targeted by social cognitive remediation. Then we present the RC2S program and discuss the advantages of computer-based simulation to improve social cognition and social functioning in people with psychiatric disorders. PMID

  19. RC2S: A Cognitive Remediation Program to Improve Social Cognition in Schizophrenia and Related Disorders

    PubMed Central

    Peyroux, Elodie; Franck, Nicolas

    2014-01-01

    In people with psychiatric disorders, particularly those suffering from schizophrenia and related illnesses, pronounced difficulties in social interactions are a key manifestation. These difficulties can be partly explained by impairments in social cognition, defined as the ability to understand oneself and others in the social world, which includes abilities such as emotion recognition, theory of mind (ToM), attributional style, and social perception and knowledge. The impact of several kinds of interventions on social cognition has been studied recently. The best outcomes in the area of social cognition in schizophrenia are those obtained by way of cognitive remediation programs. New strategies and programs in this line are currently being developed, such as RC2S (cognitive remediation of social cognition) in Lyon, France. Considering that the social cognitive deficits experienced by patients with schizophrenia are very diverse, and that the main objective of social cognitive remediation programs is to improve patients’ functioning in their daily social life, RC2S was developed as an individualized and flexible program that allows patients to practice social interaction in a realistic environment through the use of virtual reality techniques. In the RC2S program, the patient’s goal is to assist a character named Tom in various social situations. The underlying idea for the patient is to acquire cognitive strategies for analyzing social context and emotional information in order to understand other characters’ mental states and to help Tom manage his social interactions. In this paper, we begin by presenting some data regarding the social cognitive impairments found in schizophrenia and related disorders, and we describe how these deficits are targeted by social cognitive remediation. Then we present the RC2S program and discuss the advantages of computer-based simulation to improve social cognition and social functioning in people with psychiatric disorders

  20. Hippocampal Subregions Exhibit Both Distinct and Shared Transcriptomic Responses to Aging and Nonneurodegenerative Cognitive Decline

    PubMed Central

    Masser, Dustin R.; Bixler, Georgina V.; Brucklacher, Robert M.; Yan, Han; Giles, Cory B.; Wren, Jonathan D.; Sonntag, William E.

    2014-01-01

    Impairment of hippocampal-dependent spatial learning and memory with aging affects a large segment of the aged population. Hippocampal subregions (CA1, CA3, and DG) have been previously reported to express both common and specific morphological, functional, and gene/protein alterations with aging and cognitive decline. To comprehensively assess gene expression with aging and cognitive decline, transcriptomic analysis of CA1, CA3, and DG was conducted using Adult (12M) and Aged (26M) F344xBN rats behaviorally characterized by Morris water maze performance. Each subregion demonstrated a specific pattern of responses with aging and with cognitive performance. The CA1 and CA3 demonstrating the greatest degree of shared gene expression changes. Analysis of the pathways, processes, and regulators of these transcriptomic changes also exhibit a similar pattern of commonalities and differences across subregions. Gene expression changes between Aged cognitively Intact and Aged cognitively Impaired rats often showed an inversion of the changes between Adult and Aged rats. This failure to adapt rather than an exacerbation of the aging phenotype questions a conventional view that cognitive decline is exaggerated aging. These results are a resource for investigators studying cognitive decline and also demonstrate the need to individually examine hippocampal subregions in molecular analyses of aging and cognitive decline. PMID:24994846

  1. Hippocampal subregions exhibit both distinct and shared transcriptomic responses to aging and nonneurodegenerative cognitive decline.

    PubMed

    Masser, Dustin R; Bixler, Georgina V; Brucklacher, Robert M; Yan, Han; Giles, Cory B; Wren, Jonathan D; Sonntag, William E; Freeman, Willard M

    2014-11-01

    Impairment of hippocampal-dependent spatial learning and memory with aging affects a large segment of the aged population. Hippocampal subregions (CA1, CA3, and DG) have been previously reported to express both common and specific morphological, functional, and gene/protein alterations with aging and cognitive decline. To comprehensively assess gene expression with aging and cognitive decline, transcriptomic analysis of CA1, CA3, and DG was conducted using Adult (12M) and Aged (26M) F344xBN rats behaviorally characterized by Morris water maze performance. Each subregion demonstrated a specific pattern of responses with aging and with cognitive performance. The CA1 and CA3 demonstrating the greatest degree of shared gene expression changes. Analysis of the pathways, processes, and regulators of these transcriptomic changes also exhibit a similar pattern of commonalities and differences across subregions. Gene expression changes between Aged cognitively Intact and Aged cognitively Impaired rats often showed an inversion of the changes between Adult and Aged rats. This failure to adapt rather than an exacerbation of the aging phenotype questions a conventional view that cognitive decline is exaggerated aging. These results are a resource for investigators studying cognitive decline and also demonstrate the need to individually examine hippocampal subregions in molecular analyses of aging and cognitive decline. PMID:24994846

  2. The status of computerized cognitive testing in aging: A systematic review

    PubMed Central

    Wild, Katherine; Howieson, Diane; Webbe, Frank; Seelye, Adriana; Kaye, Jeffrey

    2008-01-01

    Background Early detection of cognitive decline in the elderly has become of heightened importance in parallel with the recent advances in therapeutics. Computerized assessment may be uniquely suited to early detection of changes in cognition in the elderly. We present here a systematic review of the status of computer-based cognitive testing focusing on detection of cognitive decline in the aging population. Methods All studies purporting to assess or detect age-related changes in cognition or early dementia/mild cognitive impairment (MCI) by means of computerized testing were included. Each test battery was rated on availability of normative data, level of evidence for test validity and reliability, comprehensiveness, and usability. All published studies relevant to a particular computerized test were read by a minimum of two reviewers, who completed rating forms containing the above-mentioned criteria. Results Of the 18 test batteries identified from the initial search, eleven were appropriate to cognitive testing in the elderly and were subjected to systematic review. Of those 11, five were either developed specifically for application with the elderly or have been used extensively with that population. Even within the computerized testing genre, great variability existed in manner of administration, ranging from fully examiner administered to fully self-administered. All tests had at least minimal reliability and validity data, commonly reported in peer-reviewed articles. However, level of rigor of validity testing varied widely. Conclusion All test batteries exhibited some of the strengths of computerized cognitive testing: standardization of administration and stimulus presentation, accurate measures of response latencies, automated comparison in real-time with an individual’s prior performance as well as with age-related norms, and efficiencies of staffing and cost. Some, such as the MCIS, adapted complicated scoring algorithms to enhance the information

  3. The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing.

    PubMed

    Shukitt-Hale, Barbara; Bielinski, Donna F; Lau, Francis C; Willis, Lauren M; Carey, Amanda N; Joseph, James A

    2015-11-28

    Previously, it has been shown that strawberry (SB) or blueberry (BB) supplementations, when fed to rats from 19 to 21 months of age, reverse age-related decrements in motor and cognitive performance. We have postulated that these effects may be the result of a number of positive benefits of the berry polyphenols, including decreased stress signalling, increased neurogenesis, and increased signals involved in learning and memory. Thus, the present study was carried out to examine these mechanisms in aged animals by administering a control, 2 % SB- or 2 % BB-supplemented diet to aged Fischer 344 rats for 8 weeks to ascertain their effectiveness in reversing age-related deficits in behavioural and neuronal function. The results showed that rats consuming the berry diets exhibited enhanced motor performance and improved cognition, specifically working memory. In addition, the rats supplemented with BB and SB diets showed increased hippocampal neurogenesis and expression of insulin-like growth factor 1, although the improvements in working memory performance could not solely be explained by these increases. The diverse polyphenolics in these berry fruits may have additional mechanisms of action that could account for their relative differences in efficacy. PMID:26392037

  4. Increases in cognitive and linguistic processing primarily account for increases in speaking rate with age.

    PubMed

    Nip, Ignatius S B; Green, Jordan R

    2013-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 (N = 7), 7 (N = 10), 10 (N = 9), 13 (N = 7), 16 (N = 9) years, and young adults (N = 11) in speaking tasks varying in task demands. Speaking rate increased with age, with decreases in pauses and articulator displacements but not increases in articulator movement speed. Movement speed did not appear to constrain the speaking. Rather, age-related increases in speaking rate are due to gains in cognitive and linguistic processing and speech motor control. PMID:23331100

  5. Increases in Cognitive and Linguistic Processing Primarily Account for Increases in Speaking Rate with Age

    PubMed Central

    Nip, Ignatius S. B.; Green, Jordan R.

    2012-01-01

    Age-related increases of speaking rate are not fully understood, but have been attributed to gains in biologic factors and learned skills that support speech production. This study investigated developmental changes in speaking rate and articulatory kinematics of participants aged 4 (N = 7), 7 (N = 10), 10 (N = 9), 13 (N = 7), 16 (N = 9) years and young adults (N = 11) in speaking tasks varying in task demands. Speaking rate increased with age, with decreases in pauses and articulator displacements but not increases in articulator movement speed. Movement speed did not appear to constrain the speaking. Rather, age-related increases in speaking rate are due to gains in cognitive and linguistic processing and speech motor control. PMID:23331100

  6. Age-related forgetting in locomotor adaptation

    PubMed Central

    Malone, Laura A.; Bastian, Amy J.

    2016-01-01

    The healthy aging process affects the ability to learn and remember new facts and tasks. Prior work has shown that motor learning can be adversely affected by non-motor deficits, such as time. Here we investigated how age, and a dual task influence the learning and forgetting of a new walking pattern. We studied healthy younger (<30 yo) and older adults (>50 yo) as they alternated between 5-minute bouts of split-belt treadmill walking and resting. Older subjects learned a new walking pattern at the same rate as younger subjects, but forgot some of the new pattern during the rest breaks. We tested if forgetting was due to reliance on a cognitive strategy that was not fully engaged after rest breaks. When older subjects performed a dual cognitive task to reduce strategic control of split-belt walking, their adaptation rate slowed, but they still forgot much of the new pattern during the rest breaks. Our results demonstrate that the healthy aging process weakens motor memories during rest breaks and that this phenomenon cannot be explained solely by reliance on a conscious strategy in older adults. PMID:26589520

  7. Predictors of Retest Effects in a Longitudinal Study of Cognitive Aging in a Diverse Community-Based Sample.

    PubMed

    Gross, Alden L; Benitez, Andreana; Shih, Regina; Bangen, Katherine J; Glymour, M Maria M; Sachs, Bonnie; Sisco, Shannon; Skinner, Jeannine; Schneider, Brooke C; Manly, Jennifer J

    2015-08-01

    Better performance due to repeated testing can bias long-term trajectories of cognitive aging and correlates of change. We examined whether retest effects differ as a function of individual differences pertinent to cognitive aging: race/ethnicity, age, sex, language, years of education, literacy, and dementia risk factors including apolipoprotein E ε4 status, baseline cognitive performance, and cardiovascular risk. We used data from the Washington Heights-Inwood Columbia Aging Project, a community-based cohort of older adults (n=4073). We modeled cognitive change and retest effects in summary factors for general cognitive performance, memory, executive functioning, and language using multilevel models. Retest effects were parameterized in two ways, as improvement between the first and subsequent testings, and as the square root of the number of prior testings. We evaluated whether the retest effect differed by individual characteristics. The mean retest effect for general cognitive performance was 0.60 standard deviations (95% confidence interval [0.46, 0.74]), and was similar for memory, executive functioning, and language. Retest effects were greater for participants in the lowest quartile of cognitive performance (many of whom met criteria for dementia based on a study algorithm), consistent with regression to the mean. Retest did not differ by other characteristics. Retest effects are large in this community-based sample, but do not vary by demographic or dementia-related characteristics. Differential retest effects may not limit the generalizability of inferences across different groups in longitudinal research. PMID:26527240

  8. Predictors of retest effects in a longitudinal study of cognitive aging in a diverse community-based sample

    PubMed Central

    Gross, Alden L.; Benitez, Andreana; Shih, Regina; Bangen, Katherine J.; Glymour, M Maria M; Sachs, Bonnie; Sisco, Shannon; Skinner, Jeannine; Schneider, Brooke C.; Manly, Jennifer J.

    2016-01-01

    OBJECTIVE Better performance due to repeated testing can bias long-term trajectories of cognitive aging and correlates of change. We examined whether retest effects differ as a function of individual differences pertinent to cognitive aging: race/ethnicity, age, sex, language, years of education, and dementia risk factors including APOE ε4 status, baseline cognitive performance, and cardiovascular risk. METHOD We used data from the Washington Heights-Inwood Columbia Aging Project, a community-based cohort of older adults (n=4,073). We modeled cognitive change and retest effects in summary factors for general cognitive performance, memory, executive functioning, and language using multilevel models. Retest effects were parameterized in two ways, as improvement between the first and subsequent testings, and as the square root of the number of prior testings. We evaluated whether the retest effect differed by individual characteristics. RESULTS The mean retest effect for general cognitive performance was 0.60 standard deviations (95%CI: 0.46, 0.74), and was similar for memory, executive functioning, and language. Retest effects were greater for participants in the lowest quartile of cognitive performance, consistent with regression to the mean. Retest did not differ by other characteristics. CONCLUSIONS Retest effects are large in this community-based sample, but do not vary by demographic or dementia-related characteristics. Differential retest effects may not limit the generalizability of inferences across different groups in longitudinal research. PMID:26527240

  9. Cognitive dysfunction and health-related quality of life among older Chinese

    PubMed Central

    Pan, Chen-Wei; Wang, Xingzhi; Ma, Qinghua; Sun, Hong-Peng; Xu, Yong; Wang, Pei

    2015-01-01

    We aimed to assess the association of cognitive dysfunction with health-related quality of life (HRQOL) among older adults in China. We analyzed community-based cross-sectional data of 5,557 Chinese individuals aged 60 years and above in the Weitang Geriatric Diseases Study. Cognitive dysfunction and HRQOL were assessed using the Abbreviated Mental Test (AMT) and the European Quality of Life-5 dimensions (EQ-5D), respectively. We estimated the impacts of cognitive dysfunction on the EQ-5D index and visual analogue scale (VAS) scores using linear regression models, and the association between cognitive dysfunction and self-reported EQ-5D health problems using logistic regression models. The EQ-5D index and VAS scores were significantly lower for individuals with cognitive dysfunction than their counterparts. After controlling for covariates, the differences in EQ-5D index and VAS scores between individuals with and without cognitive dysfunction were −0.016 (95% confidence interval [CI]: −0.024, −0.008), and −3.4 (95% CI: −4.5, −2.4), respectively. Cognitive dysfunction was associated with reporting of problems in pain/discomfort (odds ration [OR]: 1.37; 95% CI: 1.12, 1.69), and anxiety/depression (OR: 2.13; 95% CI: 1.41, 3.23). The negative impact on HRQOL increased with the severity of cognitive dysfunction. The results indicate cognitive dysfunction was associated with worse HRQOL in older adults. PMID:26601612

  10. Relation of Type 2 Diabetes With Cognitive Change in a Multiethnic Elderly Cohort

    PubMed Central

    Bangen, Katherine J.; Gu, Yian; Gross, Alden L.; Schneider, Brooke C.; Skinner, Jeannine C.; Benitez, Andreana; Sachs, Bonnie C.; Shih, Regina; Sisco, Shannon; Schupf, Nicole; Mayeux, Richard; Manly, Jennifer J.; Luchsinger, José A.

    2015-01-01

    OBJECTIVES Diabetes may raise dementia risk. However, the pattern of cognitive change over time in non-demented older adults with diabetes, including the onset of cognitive decline, is unclear. We examined the association of diabetes and cognitive functioning at baseline and cognitive change over time in a large, ethnically diverse sample of older adults. DESIGN Prospective cohort study. SETTING Washington Heights-Inwood Columbia Aging Project (WHICAP), a community-based, prospective study of risk factors for dementia. PARTICIPANTS 1,493 met both inclusion and exclusion criteria for this study. MEASUREMENTS Participants underwent baseline and follow-up cognitive and health assessments approximately every 18 months. Generalized estimating equations were used to examine the longitudinal association between diabetes and cognition. RESULTS Diabetes was associated with poorer baseline cognitive performance in memory, language, processing speed/executive functioning, and visuospatial abilities. After adjusting for age, education, sex, race/ethnicity, and apolipoprotein-ε4, participants with diabetes performed significantly worse at baseline relative to those without diabetes in language and visuospatial abilities. There were no differences between those with and without diabetes in terms of rate of cognitive change over a mean follow-up time of six years. CONCLUSION The rate of cognitive change in elderly persons with and without diabetes is similar, although cognitive performance is lower in persons with diabetes. Our findings suggest that cognitive changes may occur early during the diabetes process and highlight the need for studies to follow participants beginning at least in midlife, prior to the typical later-life onset of dementia. PMID:26096383

  11. Anxiety sensitivity facets in relation to tobacco use, abstinence-related problems, and cognitions in treatment-seeking smokers.

    PubMed

    Guillot, Casey R; Leventhal, Adam M; Raines, Amanda M; Zvolensky, Michael J; Schmidt, Norman B

    2016-05-01

    Anxiety sensitivity (AS)--fear of anxiety-related experiences--has been implicated in smoking motivation and maintenance. In a cross-sectional design, we examined AS facets (physical, cognitive, and social concerns) in relation to tobacco use, abstinence-related problems, and cognitions in 473 treatment-seeking smokers. After controlling for sex, race, age, educational attainment, hypertension status, and neuroticism, linear regression models indicated that AS physical and cognitive concerns were associated with tobacco dependence severity (β=.13-.14, p<.01), particularly the severity of persistent smoking regardless of context or time of day (β=.14-.17, p<.01). All three AS facets were related to more severe problems during past quit attempts (β=.23-.27, p<.001). AS cognitive and social concerns were related to negative affect reduction smoking motives (β=.14, p<.01), but only the social concerns aspect of AS was related to pleasurable relaxation smoking motives and positive and negative reinforcement-related smoking outcome expectancies (β=.14-.17, p<.01). These data suggest that AS physical and cognitive concerns are associated with negative reinforcement-related smoking variables (e.g., abstinence-related problems), whereas the social concerns aspect of AS is associated with positive and negative reinforcement-related smoking variables. Together with past findings, current findings can usefully guide AS-oriented smoking cessation treatment development and refinement. PMID:26802790

  12. The Theory Behind the Age-Related Positivity Effect

    PubMed Central

    Reed, Andrew E.; Carstensen, Laura L.

    2012-01-01

    The “positivity effect” refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather and Carstensen, 2005) scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people. PMID:23060825

  13. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline. PMID:25866202

  14. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline

    PubMed Central

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-01-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer’s disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline. PMID:25866202

  15. White Matter Integrity Supports BOLD Signal Variability and Cognitive Performance in the Aging Human Brain

    PubMed Central

    Burzynska, Agnieszka Z.; Wong, Chelsea N.; Voss, Michelle W.; Cooke, Gillian E.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity. PMID:25853882

  16. Aging process, cognitive decline and Alzheimer`s disease: can strength training modulate these responses?

    PubMed

    Portugal, Eduardo Matta Mello; Vasconcelos, Poliane Gomes Torres; Souza, Renata; Lattari, Eduardo; Monteiro-Junior, Renato Sobral; Machado, Sergio; Deslandes, Andrea Camaz

    2015-01-01

    Some evidence shows that aerobic training can attenuate the aging effects on the brain structures and functions. However, the strength exercise effects are poorly discussed. Thus, in the present study, the effects of strength training on the brain in elderly people and Alzheimer`s disease (AD) patients were revised. Furthermore, it a biological explanation relating to strength training effects on the brain is proposed. Brain atrophy can be related to neurotransmission dysfunction, like oxidative stress, that generates mitochondrial damage and reduced brain metabolism. Another mechanism is related to amyloid deposition and amyloid tangles, that can be related to reductions on insulin-like growth factor I concentrations. The brain-derived neurotrophic factor also presents reduction during aging process and AD. These neuronal dysfunctions are also related to cerebral blood flow decline that influence brain metabolism. All of these alterations contribute to cognitive impairment and AD. After a long period of strength training, the oxidative stress can be reduced, the brain-derived neurotrophic factor and insulin-like growth factor I serum concentrations enhance, and the cognitive performance improves. Considering these results, we can infer that strength training can be related to increased neurogenesis, neuroplasticity and, consequently, counteracts aging effects on the brain. The effect of strength training as an additional treatment of AD needs further investigation. PMID:26556087

  17. Cognitive Deficits, Changes in Synaptic Function, and Brain Pathology in a Mouse Model of Normal Aging1,2,3

    PubMed Central

    Wu, Tiffany; Hanson, Jesse E.; Alam, Nazia M.; Ngu, Hai; Lauffer, Benjamin E.; Lin, Han H.; Dominguez, Sara L.; Reeder, Jens; Tom, Jennifer; Steiner, Pascal; Foreman, Oded; Prusky, Glen T.

    2015-01-01

    Abstract Age is the main risk factor for sporadic Alzheimer’s disease. Yet, cognitive decline in aged rodents has been less well studied, possibly due to concomitant changes in sensory or locomotor function that can complicate cognitive tests. We tested mice that were 3, 11, and 23 months old in cognitive, sensory, and motor measures, and postmortem measures of gliosis and neural activity (c-Fos). Hippocampal synaptic function was also examined. While age-related impairments were detectable in tests of spatial memory, greater age-dependent effects were observed in tests of associative learning [active avoidance (AA)]. Gross visual function was largely normal, but startle responses to acoustic stimuli decreased with increased age, possibly due to hearing impairments. Therefore, a novel AA variant in which light alone served as the conditioning stimuli was used. Age-related deficits were again observed. Mild changes in vision, as measured by optokinetic responses, were detected in 19- versus 4-month-old mice, but these were not correlated to AA performance. Thus, deficits in hearing or vision are unlikely to account for the observed deficits in cognitive measures. Increased gliosis was observed in the hippocampal formation at older ages. Age-related changes in neural function and plasticity were observed with decreased c-Fos in the dentate gyrus, and decreased synaptic strength and paired-pulse facilitation in CA1 slices. This work, which carefully outlines age-dependent impairments in cognitive and synaptic function, c-Fos activity, and gliosis during normal aging in the mouse, suggests robust translational measures that will facilitate further study of the biology of aging. PMID:26473169

  18. LONG-TERM INTAKE OF NUTS IN RELATION TO COGNITIVE FUNCTION IN OLDER WOMEN

    PubMed Central

    O’BRIEN, J.; OKEREKE, O.; DEVORE, E.; ROSNER, B.; BRETELER, M.; GRODSTEIN, F.

    2014-01-01

    Objective Nuts contain nutrients that may benefit brain health; thus, we examined long-term intake of nuts in relation to cognition in older women. Design Population-based prospective cohort study. Setting Academic research using data from the Nurses’ Health Study. Participants Nut intake was assessed in a food-frequency questionnaire beginning in1980, and approximately every four years thereafter. Between 1995–2001, 16,010 women age 70 or older (mean age = 74 years) without a history of stroke were administered 4 repeated telephone-based cognitive interviews over 6 years. Our final sample included 15,467 women who completed an initial cognitive interview and had complete information on nut intake. Main Outcome Measures The Telephone Interview for Cognitive Status (TICS), a global score averaging the results of all tests (TICS, immediate and delayed verbal recall, category fluency, and attention), and a verbal memory score averaging the results of tests of verbal recall. Results In multivariable-adjusted linear regression models, higher long-term total nut intake was associated with better average cognitive status for all cognitive outcomes. For the global composite score combining all tests, women consuming at least 5 servings of nuts/week had higher scores than non-consumers (mean difference=0.08 standard units, 95% confidence interval 0.00–0.15; p-trend=0.003). This mean difference of 0.08 is equivalent to the mean difference we find between women 2 years apart in age. Long-term intake of nuts was not associated with rates of cognitive decline. Conclusions Higher nut intake may be related to better overall cognition at older ages, and could be an easily-modifiable public health intervention. PMID:24886736

  19. Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine.

    PubMed

    Cummings, B J; Head, E; Afagh, A J; Milgram, N W; Cotman, C W

    1996-07-01

    It is well known that beta-amyloid accumulates abnormally in Alzheimer's disease; however, beta-amyloid's relationship to cognitive dysfunction has not been clearly established and is often confounded by the presence of neurofibrillary tangles. We used canines to investigate the relationship between beta-amyloid accumulation and cognitive function in an animal model of aging lacking neurofibrillary tangles. The performance of 20 canines (11 purebred beagles and 9 mongrels) on a battery of six cognitive tasks was measured. These tasks included Reward Approach and Object Approach learning, as well as Discrimination, Reversal, Object Recognition, and Spatial learning and memory. Aged canines were impaired on some tasks but not others. beta-Amyloid-immunopositive plaques were found in many of the older animals. Plaques were all of the diffuse subtype and many contained intact neurons detected with double-labeling for neurofilaments. No neurofibrillary tangles were detected. beta-Amyloid was also associated with the processes of many neurons and with blood vessels. Using computerized image analysis, we quantified the area occupied by beta-amyloid in entorhinal cortex, frontal cortex, and cerebellum. Controlling for age-related increases in beta-amyloid, we observed that increased beta-amyloid deposition is strongly associated with deficits on Discrimination learning (r = .80), Reversal learning (r = .65), and Spatial learning (r = .54) but not the other tasks. There were a few differences between breeds which are discussed in the text. Overall, these data suggest that beta-amyloid deposition may be a contributing factor to age-related cognitive dysfunction prior to the onset of neurofibrillary tangle formation. PMID:8661247

  20. Longitudinal Assessment of Aβ and Cognition in Aging and Alzheimer Disease

    PubMed Central

    Villemagne, Victor L.; Pike, Kerryn E.; Chételat, Gaël; Ellis, Kathryn A.; Mulligan, Rachel S.; Bourgeat, Pierrick; Ackermann, Uwe; Jones, Gareth; Szoeke, Cassandra; Salvado, Olivier; Martins, Ralph; O’Keefe, Graeme; Mathis, Chester A.; Klunk, William E.; Ames, David; Masters, Colin L.; Rowe, Christopher C.

    2011-01-01

    Objective Assess Aβ deposition longitudinally and explore its relationship with cognition and disease progression. Methods Clinical follow-up was obtained 20 ± 3 months after [11C]Pittsburgh compound B (PiB)-positron emission tomography in 206 subjects: 35 with dementia of the Alzheimer type (DAT), 65 with mild cognitive impairment (MCI), and 106 age-matched healthy controls (HCs). A second PiB scan was obtained at follow-up in 185 subjects and a third scan after 3 years in 57. Results At baseline, 97% of DAT, 69% of MCI, and 31% of HC subjects showed high PiB retention. At 20-month follow-up, small but significant increases in PiB standardized uptake value ratios were observed in the DAT and MCI groups, and in HCs with high PiB retention at baseline (5.7%, 2.1%, and 1.5%, respectively). Increases were associated with the number of apolipoprotein E ε4 alleles. There was a weak correlation between PiB increases and decline in cognition when all groups were combined. Progression to DAT occurred in 67% of MCI with high PiB versus 5% of those with low PiB, but 20% of the low PiB MCI subjects progressed to other dementias. Of the high PiB HCs, 16% developed MCI or DAT by 20 months and 25% by 3 years. One low PiB HC developed MCI. Interpretation Aβ deposition increases slowly from cognitive normality to moderate severity DAT. Extensive Aβ deposition precedes cognitive impairment, and is associated with ApoE genotype and a higher risk of cognitive decline in HCs and progression from MCI to DAT over 1 to 2 years. However, cognitive decline is only weakly related to change in Aβ burden, suggesting that downstream factors have a more direct effect on symptom progression. PMID:21280088

  1. The Neural Consequences of Age-Related Hearing Loss.

    PubMed

    Peelle, Jonathan E; Wingfield, Arthur

    2016-07-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here, we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  2. The Association of Urbanicity with Cognitive Development at Five Years of Age in Preterm Children

    PubMed Central

    Gouin, Marion; Flamant, Cyril; Gascoin, Géraldine; Rouger, Valérie; Florin, Agnès; Guimard, Philippe; Rozé, Jean-Christophe; Hanf, Matthieu

    2015-01-01

    Objective To determine the association of urbanicity, defined as living in an urban area, with cognitive development at five years of age in preterm children who were free of any disabilities or neurodevelopmental delays. Design Prospective population-based cohort. Setting French regional Loire Infant Follow-up Team (LIFT) network. Participants Included in the study were 1738 surviving infants born between March 2003 and December 2008 before 35 weeks of gestational age. At two years of age, the children were free of any disabilities and neurodevelopmental delays and were living in the Pays de la Loire region from their birth to five years of age. Main Outcome Measures The cognitive development at five years of age was evaluated with the Global School Adaptation score (GSA). The urbanicity of the residence for each child was classified into three groups: urban, quasi-rural, and rural area. Results Quantile regression approaches were used to identify a significant association between urbanicity and the GSA score at five years of age (adjusting for child and family characteristics). We found that the negative impact of urbanicity on the GSA score was more important for the lower quantile of the GSA scores. Conclusions Urbanicity was significantly associated with cognitive neurodevelopment at five years of age in preterm children born before 35 weeks of gestation. Complementary results additionally suggest that this relation could be mediated at the residence level by a high socioeconomic deprivation level. If these results are confirmed, more personalized follow-ups could be developed for preterm children. Further studies are needed to finely identify the contextual characteristics of urbanicity that underlie this association. PMID:26161862

  3. Age-related preferences and age weighting health benefits.

    PubMed

    Tsuchiya, A

    1999-01-01

    This paper deals with the relevance of age in the paradigm of quality adjusted life years (QALYs). The first section outlines two rationales for incorporating age weights into QALYs. One of them is based on efficiency concerns; and the other on equity concerns. Both of these are theoretical constructs. The main purpose of this paper is to examine the extent of published empirical support for such age weighting. The second section is a brief survey of nine empirical studies that elicited age-related preferences from the general public. Six of these quantified the strength of the preferences, and these are discussed in more detail in the third section. The analysis distinguishes three kinds of age-related preference: productivity ageism, utilitarian ageism and egalitarian ageism. The relationship between them and their relevance to the two different rationales for age weighting are then explored. It is concluded that, although there is strong prima facie evidence of public support for both types of age weighting, the empirical evidence to support any particular set of weights is at present weak. PMID:10048783

  4. Aging male bodies, health and the reproduction of age relations.

    PubMed

    Pietilä, Ilkka; Ojala, Hanna; King, Neal; Calasanti, Toni

    2013-08-01

    This article explores the ways in which a group of male factory workers uses bodies as bases for hierarchical categorization of men by age in their talk of mundane aspects of their lives. Analysis of interviews about health (4 focus groups and 5 personal interviews) with Finnish working-class men under 40 years old shows that they portray age groups to which they do not belong as careless, even irresponsible toward health and its maintenance. As they categorize youth and old people by age, they leave themselves unmarked by it, providing no vocabulary to describe their own group. Despite their tendency to distance themselves particularly from old people, they also distinguish among older men by familiarity, providing relatively nuanced accounts of their fathers' aging. We discuss the marking of age groups in terms of social inequality and talk of fathers in terms of intergenerational relations. Even family ties among men of diverse ages involve ageism, which familiarity serves both to mitigate and to make less visible. This article documents the maintenance of age inequality in everyday, mundane behavior. PMID:23849422

  5. Calorie Restriction Alleviates Age-Related Decrease in Neural Progenitor Cell Division in the Aging Brain

    PubMed Central

    Park, June-Hee; Glass, Zachary; Sayed, Kasim; Michurina, Tatyana V.; Lazutkin, Alexander; Mineyeva, Olga; Velmeshev, Dmitry; Ward, Walter F.; Richardson, Arlan; Enikolopov, Grigori

    2013-01-01

    Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of GFP, we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We show that CR increases the number of dividing cells in the dentate gyrus (DG) of female mice. The majority of these cells corresponded to Nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females. PMID:23773068

  6. Cognitive Inconsistency and Practice-Related Learning in Older Adults

    PubMed Central

    Dzierzewski, Joseph M.; Marsiske, Michael; Morgan, Adrienne Aiken; Buman, Mathew P.; Giacobbi, Peter R.; Roberts, Beverly; McCrae, Christina S.

    2013-01-01

    The current study examined predictors of individual differences in the magnitude of practice-related improvements achieved by 87 older adults (meanage 63.52 years) over 18-weeks of cognitive practice. Cognitive inconsistency in both baseline trial-to-trial reaction times and week-to-week accuracy scores was included as predictors of practice-related gains in two measures of processing speed. Conditional growth models revealed that both reaction time and accuracy level and rate-of-change in functioning were related to inconsistency, even after controlling for mean-level, but that increased inconsistency was negatively associated with accuracy versus positively associated with reaction time improvement. Cognitive inconsistency may signal dysregulation in the ability to control cognitive performance or may be indicative of adaptive attempts at functioning. PMID:24319428

  7. Cognitive Inconsistency and Practice-Related Learning in Older Adults.

    PubMed

    Dzierzewski, Joseph M; Marsiske, Michael; Morgan, Adrienne Aiken; Buman, Mathew P; Giacobbi, Peter R; Roberts, Beverly; McCrae, Christina S

    2013-09-01

    The current study examined predictors of individual differences in the magnitude of practice-related improvements achieved by 87 older adults (meanage 63.52 years) over 18-weeks of cognitive practice. Cognitive inconsistency in both baseline trial-to-trial reaction times and week-to-week accuracy scores was included as predictors of practice-related gains in two measures of processing speed. Conditional growth models revealed that both reaction time and accuracy level and rate-of-change in functioning were related to inconsistency, even after controlling for mean-level, but that increased inconsistency was negatively associated with accuracy versus positively associated with reaction time improvement. Cognitive inconsistency may signal dysregulation in the ability to control cognitive performance or may be indicative of adaptive attempts at functioning. PMID:24319428

  8. Localizing Age-Related Individual Differences in a Hierarchical Structure

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and…

  9. Blood lead levels in relation to cognitive function in older U.S. adults.

    PubMed

    van Wijngaarden, Edwin; Winters, Paul C; Cory-Slechta, Deborah A

    2011-01-01

    Studies suggest that cumulative exposure to lead, as measured in the bone, is associated with accelerated cognitive decline at older age. It is presently unclear, however, whether current blood lead levels (BLLs) are adversely related to cognitive functioning in older adults. We evaluated BLLs in relation to cognition in the continuous National Health and Nutrition Examination Survey (NHANES). The current study was limited to adults age 60 and older. We examined two measures of cognitive functioning: self-reported functional limitation due to difficulty remembering or periods of confusion (NHANES 1999-2008; n=7277) and performance on the Digit Symbol Substitution Test (DSST; NHANES 1999-2002; n=2299). We evaluated quintiles of BLL (<1.30, 1.79-<2.30, 2.30-<3.20, and ≥3.20μg/dL) in relation to cognitive functioning using logistic (functional limitation) and linear (DSST scores) regression in SUDAAN, adjusting for age, sex, race, poverty-income ratio, education, and self-reported general health status. BLLs were not associated with self-reported confusion or memory problems in crude and adjusted analyses, with adjusted odds ratios and 95% confidence intervals (CI) of 1.0 (ref.), 0.9 (CI=0.7-1.3), 0.8 (CI=0.6-1.2), 1.0 (CI=0.7-1.3), 1.0 (CI=0.7-1.4), respectively, in increasing quintiles. Similarly, there was no clear association between performance on the DSST and BLL after accounting for all covariates. Our findings add to the inconsistent evidence regarding the association between concurrent BLLs and cognitive function in older adults. Early-life or long-term, accumulated lead exposures may be etiologically more relevant to accelerated cognitive decline at older age. PMID:21093481

  10. Diagnosing dementia and normal aging: clinical relevance of brain ratios and cognitive performance in a Brazilian sample.

    PubMed

    Chaves, M L; Ilha, D; Maia, A L; Motta, E; Lehmen, R; Oliveira, L M

    1999-09-01

    The main objective of the present study was to evaluate the diagnostic value (clinical application) of brain measures and cognitive function. Alzheimer and multi-infarct patients (N = 30) and normal subjects over the age of 50 (N = 40) were submitted to a medical, neurological and cognitive investigation. The cognitive tests applied were Mini-Mental, word span, digit span, logical memory, spatial recognition span, Boston naming test, praxis, and calculation tests. The brain ratios calculated were the ventricle-brain, bifrontal, bicaudate, third ventricle, and suprasellar cistern measures. These data were obtained from a brain computer tomography scan, and the cutoff values from receiver operating characteristic curves. We analyzed the diagnostic parameters provided by these ratios and compared them to those obtained by cognitive evaluation. The sensitivity and specificity of cognitive tests were higher than brain measures, although dementia patients presented higher ratios, showing poorer cognitive performances than normal individuals. Normal controls over the age of 70 presented higher measures than younger groups, but similar cognitive performance. We found diffuse losses of tissue from the central nervous system related to distribution of cerebrospinal fluid in dementia patients. The likelihood of case identification by functional impairment was higher than when changes of the structure of the central nervous system were used. Cognitive evaluation still seems to be the best method to screen individuals from the community, especially for developing countries, where the cost of brain imaging precludes its use for screening and initial assessment of dementia. PMID:10464391

  11. Age at Childbearing over Two Generations and Grandchildren’s Cognitive Achievement

    PubMed Central

    Krueger, Patrick M.; Wagner, Nicole M.

    2014-01-01

    We examine whether grandparents’ and parents’ ages at birth are associated with grandchildren’s early cognitive achievement, and whether grandparents’ or parents’ socioeconomic status, health, and marital status mediate those associations. Our analysis is based on data from the Panel Study of Income Dynamics and its Child Development Supplement. A grandparent’s age at the birth of their own children is robustly and positively associated with grandchildren’s verbal achievement, but not with grandchildren’s applied mathematics achievement, after controlling for parents’ age at the grandchild’s birth. The associations are similar in magnitude for grandmothers and grandfathers. A variety of indicators of social class in the grandparent and parent generations did not mediate this age effect. However, many of those indicators of grandparents’ social class were directly or indirectly related to grandchildren’s achievement. PMID:25767330

  12. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2016-08-16

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  13. Lifelong Bilingualism Contributes to Cognitive Reserve against White Matter Integrity Declines in Aging

    PubMed Central

    Gold, Brian T.; Johnson, Nathan F.; Powell, David K.

    2013-01-01

    Recent evidence suggests that lifelong bilingualism may contribute to cognitive reserve (CR) in normal aging. However, there is currently no neuroimaging evidence to suggest that lifelong bilinguals can retain normal cognitive functioning in the face of age-related neurodegeneration. Here we explored this issue by comparing white matter (WM) integrity and gray matter (GM) volumetric patterns of older adult lifelong bilinguals (N = 20) and monolinguals (N = 20). The groups were matched on a range of relevant cognitive test scores and on the established CR variables of education, socioeconomic status and intelligence. Participants underwent high-resolution structural imaging for assessment of GM volume and diffusion tensor imaging (DTI) for assessment of WM integrity. Results indicated significantly lower microstructural integrity in the bilingual group in several WM tracts. In particular, compared to their monolingual peers, the bilingual group showed lower fractional anisotropy and/or higher radial diffusivity in the inferior longitudinal fasciculus/inferior fronto-occipital fasciculus bilaterally, the fornix, and multiple portions of the corpus callosum. There were no group differences in GM volume. Our results suggest that lifelong bilingualism contributes to CR against WM integrity declines in aging. PMID:24103400

  14. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    PubMed Central

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demandin