Science.gov

Sample records for age-associated neurodegenerative diseases

  1. Curcumin and neurodegenerative diseases

    PubMed Central

    Monroy, Adriana; Lithgow, Gordon J.; Alavez, Silvestre

    2013-01-01

    Over the last ten years curcumin has been reported to be effective against a wide variety of diseases and is characterized as having anti-carcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, anti-arthritic, and anti-infectious properties. Recent studies performed in both vertebrate and invertebrate models have been conducted to determine whether curcumin was also neuroprotective. The efficacy of curcumin in several pre-clinical trials for neurodegenerative diseases has created considerable excitement mainly due to its lack of toxicity and low cost. This suggests that curcumin could be a worthy candidate for nutraceutical intervention. Since aging is a common risk factor for neurodegenerative diseases, it is possible that some compounds that target aging mechanisms could also prevent these kinds of diseases. One potential mechanism to explain several of the general health benefits associated with curcumin is that it may prevent aging-associated changes in cellular proteins that lead to protein insolubility and aggregation. This loss in protein homeostasis is associated with several age-related diseases. Recently, curcumin has been found to help maintain protein homeostasis and extend lifespan in the model invertebrate Caenorhabditis elegans. Here, we review the evidence from several animal models that curcumin improves healthspan by preventing or delaying the onset of various neurodegenerative diseases. PMID:23303664

  2. Meditation and neurodegenerative diseases.

    PubMed

    Newberg, Andrew B; Serruya, Mijail; Wintering, Nancy; Moss, Aleezé Sattar; Reibel, Diane; Monti, Daniel A

    2014-01-01

    Neurodegenerative diseases pose a significant problem for the healthcare system, doctors, and patients. With an aging population, more and more individuals are developing neurodegenerative diseases and there are few treatment options at the present time. Meditation techniques present an interesting potential adjuvant treatment for patients with neurodegenerative diseases and have the advantage of being inexpensive, and easy to teach and perform. There is increasing research evidence to support the application of meditation techniques to help improve cognition and memory in patients with neurodegenerative diseases. This review discusses the current data on meditation, memory, and attention, and the potential applications of meditation techniques in patients with neurodegenerative diseases.

  3. Optogenetics for neurodegenerative diseases

    PubMed Central

    Vann, Kiara T; Xiong, Zhi-Gang

    2016-01-01

    Neurodegenerative diseases are devastating conditions that lead to progressive degeneration of neurons. Neurodegeneration may result in ataxia, dementia, and muscle atrophies, etc. Despite enormous research efforts that have been made, there is lack of effective therapeutic interventions for most of these diseases. Optogenetics is a recently developed novel technique that combines optics and genetics to modulate the activity of specific neurons. Optogenetics has been implemented in various studies including neuropsychiatric disorders and neurodegenerative diseases. This review focuses on the recent advance in using this technique for the studies of common neurodegenerative diseases. PMID:27186317

  4. Driving and neurodegenerative diseases.

    PubMed

    Uc, Ergun Y; Rizzo, Matthew

    2008-09-01

    The proportion of elderly people in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet neither medical diagnosis nor age alone is reliable enough to predict driver safety or crashes or to revoke the driving privileges of these individuals. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help develop rehabilitative measures for driving. PMID:18713573

  5. Sleep in Neurodegenerative Diseases.

    PubMed

    Iranzo, Alex

    2016-03-01

    Disorders of sleep are an integral part of neurodegenerative diseases and include insomnia, sleep-wake cycle disruption, excessive daytime sleepiness that may be manifested as persistent somnolence or sudden onset of sleep episodes, obstructive and central sleep apnea, rapid eye movement sleep behavior disorder, and restless legs syndrome. The origin of these sleep disorders is multifactorial including degeneration of the brain areas that modulate sleep, the symptoms of the disease, and the effect of medications. Treatment of sleep disorders in patients with neurodegenerative diseases should be individualized and includes behavioral therapy, sleep hygiene, bright light therapy, melatonin, hypnotics, waking-promoting agents, and continuous positive airway pressure. PMID:26972029

  6. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  7. Ceruloplasmin in neurodegenerative diseases.

    PubMed

    Vassiliev, Vadim; Harris, Zena Leah; Zatta, Paolo

    2005-11-01

    For decades, abnormalities in ceruloplasmin (Cp) synthesis have been associated with neurodegenerative disease. From the early observation that low circulating serum ceruloplasmin levels served as a marker for Wilson's disease to the recent characterization of a neurodegenerative disorder associated with a complete lack of serum ceruloplasmin, the link between Cp and neuropathology has strengthened. The mechanisms associated with these different central nervous system abnormalities are very distinct. In Wilson's disease, a defect in the P-type ATPase results in abnormal hepatic copper accumulation that eventually leaks into the circulation and is abnormally deposited in the brain. In this case, copper deposition results in the neurodegenerative phenotype observed. Patients with autosomal recessive condition, aceruloplasminemia, lack the ferroxidase activity inherent to the multi-copper oxidase ceruloplasmin and develop abnormal iron accumulation within the central nervous system. In the following review ceruloplasmin gene expression, structure and function will be presented and the role of ceruloplasmin in iron metabolism will be discussed. The molecular events underlying the different forms of neurodegeneration observed will be presented. Understanding the role of ceruloplasmin within the central nervous system is fundamental to further our understanding of the pathology observed. Is the ferroxidase function more essential than the antioxidant role? Does Cp help maintain nitrosothiol stores or does it oxidize critical brain substrates? The answers to these questions hold the promise for the treatment of devastating neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. It is essential to further elucidate the mechanism of the neuronal injury associated with these disorders.

  8. Glycoproteomics in Neurodegenerative Diseases

    PubMed Central

    Hwang, Hyejin; Zhang, Jianpeng; Chung, Kathryn A.; Leverenz, James B.; Zabetian, Cyrus P.; Peskind, Elaine R.; Jankovic, Joseph; Su, Zhen; Hancock, Aneeka M.; Pan, Catherine; Montine, Thomas J.; Pan, Sheng; Nutt, John; Albin, Roger; Gearing, Marla; Beyer, Richard P.; Shi, Min; Zhang, Jing

    2009-01-01

    Protein glycosylation regulates protein function and cellular distribution. Additionally, aberrant protein glycosylations have been recognized to play major roles in human disorders, including neurodegenerative diseases. Glycoproteomics, a branch of proteomics that catalogs and quantifies glycoproteins, provides a powerful means to systematically profile the glycopeptides or glycoproteins of a complex mixture that are highly enriched in body fluids, and therefore, carry great potential to be diagnostic and/or prognostic markers. Application of this mass spectrometry-based technology to the study of neurodegenerative disorders (e.g., Alzheimer's disease and Parkinson's disease) is relatively new, and is expected to provide insight into the biochemical pathogenesis of neurodegeneration, as well as biomarker discovery. In this review, we have summarized the current understanding of glycoproteins in biology and neurodegenerative disease, and have discussed existing proteomic technologies that are utilized to characterize glycoproteins. Some of the ongoing studies, where glycoproteins isolated from cerebrospinal fluid and human brain are being characterized in Parkinson's disease at different stages versus controls, are presented, along with future applications of targeted validation of brain specific glycoproteins in body fluids. PMID:19358229

  9. Aquaporins and Neurodegenerative Diseases

    PubMed Central

    Foglio, Eleonora; Rodella, Luigi Fabrizio

    2010-01-01

    Aquaporins (AQPs) are a family of widely distributed membrane-inserted water channel proteins providing a pathway for osmotically-driven water, glycerol, urea or ions transport through cell membranes and mechanisms to control particular aspects of homeostasis. Beside their physiological expression patterns in Central Nervous System (CNS), it is conceivable that AQPs are also abnormally expressed in some pathological conditions interesting CNS (e.g. neurodegenerative diseases) in which preservation of brain homeostasis is at risk. The purpose of this review was to take in consideration those neurodegenerative diseases in whose pathogenetic processes it was possible to hypothesize some alterations in CNS AQPs expression or modulation leading to damages of brain water homeostasis. PMID:21119882

  10. Stem cells and neurodegenerative diseases.

    PubMed

    Hou, LingLing; Hong, Tao

    2008-04-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington' disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  11. DNA damage in neurodegenerative diseases.

    PubMed

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans. PMID:26255941

  12. Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Johri, Ashu

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here, we provide a concise overview of the major findings in recent years highlighting the importance of healthy mitochondria for a healthy neuron. PMID:22700435

  13. NK Cells in Healthy Aging and Age-Associated Diseases

    PubMed Central

    Camous, Xavier; Pera, Alejandra; Solana, Rafael; Larbi, Anis

    2012-01-01

    NK cells exhibit the highest cytotoxic capacity within the immune system. Alteration of their number or functionality may have a deep impact on overall immunity. This is of particular relevance in aging where the elderly population becomes more susceptible to infection, cancer, autoimmune diseases, and neurodegenerative diseases amongst others. As the fraction of elderly increases worldwide, it becomes urgent to better understand the aging of the immune system to prevent and cure the elderly population. For this, a better understanding of the function and phenotype of the different immune cells and their subsets is necessary. We review here NK cell functions and phenotype in healthy aging as well as in various age-associated diseases. PMID:23251076

  14. NK cells in healthy aging and age-associated diseases.

    PubMed

    Camous, Xavier; Pera, Alejandra; Solana, Rafael; Larbi, Anis

    2012-01-01

    NK cells exhibit the highest cytotoxic capacity within the immune system. Alteration of their number or functionality may have a deep impact on overall immunity. This is of particular relevance in aging where the elderly population becomes more susceptible to infection, cancer, autoimmune diseases, and neurodegenerative diseases amongst others. As the fraction of elderly increases worldwide, it becomes urgent to better understand the aging of the immune system to prevent and cure the elderly population. For this, a better understanding of the function and phenotype of the different immune cells and their subsets is necessary. We review here NK cell functions and phenotype in healthy aging as well as in various age-associated diseases.

  15. Depressive symptoms in neurodegenerative diseases

    PubMed Central

    Baquero, Miquel; Martín, Nuria

    2015-01-01

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer’s disease and related conditions like Parkinson’s disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment. PMID:26301229

  16. Omental transplantation for neurodegenerative diseases

    PubMed Central

    Rafael, Hernando

    2014-01-01

    Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer’s disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders. PMID:25232510

  17. Metal imaging in neurodegenerative diseases

    PubMed Central

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  18. Drosophila Models of Neurodegenerative Diseases

    PubMed Central

    Lu, Bingwei; Vogel, Hannes

    2011-01-01

    Neurodegenerative diseases are progressive disorders of the nervous system that affect specific cellular populations in the central and peripheral nervous systems. Although most cases are sporadic, genes associated with familial cases have been identified, thus enabling the development of animal models. Invertebrates such as Drosophila have recently emerged as model systems for studying mechanisms of neurodegeneration in several major neurodegenerative diseases. These models are also excellent in vivo systems for the testing of therapeutic compounds. Genetic studies using these animal models have provided novel insights into the disease process. We anticipate that further exploration of the animal models will further our understanding of mechanisms of neurodegeneration as well as facilitate the development of rational treatments for debilitating degenerative diseases. PMID:18842101

  19. Glutathione transferases and neurodegenerative diseases.

    PubMed

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  20. Autophagy, inflammation and neurodegenerative disease

    PubMed Central

    Alirezaei, Mehrdad; Kemball, Christopher C.; Whitton, J. Lindsay

    2010-01-01

    Autophagy is emerging as a central regulator of cellular health and disease and, in the central nervous system (CNS), this homeostatic process appears to influence synaptic growth and plasticity. Herein, we review the evidence that dysregulation of autophagy may contribute to several neurodegenerative diseases of the CNS. Up-regulation of autophagy may prevent, delay or ameliorate at least some of these disorders, and – based on recent findings from our laboratory – we speculate that this goal may be achieved using a safe, simple, and inexpensive approach. PMID:21138487

  1. Oxidative stress in neurodegenerative diseases.

    PubMed

    Chen, Xueping; Guo, Chunyan; Kong, Jiming

    2012-02-15

    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2 (-)) and hydroxyl radical (OH(-)), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.

  2. Neurodegenerative disorders and metabolic disease.

    PubMed

    Pierre, Germaine

    2013-08-01

    Most genetic causes of neurodegenerative disorders in childhood are due to neurometabolic disease. There are over 200 disorders, including aminoacidopathies, creatine disorders, mitochondrial cytopathies, peroxisomal disorders and lysosomal storage disorders. However, diagnosis can pose a challenge to the clinician when patients present with non-specific problems like epilepsy, developmental delay, autism, dystonia and ataxia. The variety of specialist tests involved can also be daunting. This review aims to give a practical approach to the investigation and diagnosis of neurometabolic disease from the neonatal period to late childhood while prioritising disorders where there are therapeutic options. In particular, patients who have a complex clinical picture of several neurological and non-neurological features should be investigated.

  3. Systems biology of neurodegenerative diseases.

    PubMed

    Wood, Levi B; Winslow, Ashley R; Strasser, Samantha Dale

    2015-07-01

    Neurodegenerative diseases (NDs) collectively afflict more than 40 million people worldwide. The majority of these diseases lack therapies to slow or stop progression due in large part to the challenge of disentangling the simultaneous presentation of broad, multifaceted pathophysiologic changes. Present technologies and computational capabilities suggest an optimistic future for deconvolving these changes to identify novel mechanisms driving ND onset and progression. In particular, integration of highly multi-dimensional omic analytical techniques (e.g., microarray, mass spectrometry) with computational systems biology approaches provides a systematic methodology to elucidate new mechanisms driving NDs. In this review, we begin by summarizing the complex pathophysiology of NDs associated with protein aggregation, emphasizing the shared complex dysregulation found in all of these diseases, and discuss available experimental ND models. Next, we provide an overview of technological and computational techniques used in systems biology that are applicable to studying NDs. We conclude by reviewing prior studies that have applied these approaches to NDs and comment on the necessity of combining analysis from both human tissues and model systems to identify driving mechanisms. We envision that the integration of computational approaches with multiple omic analyses of human tissues, and mouse and in vitro models, will enable the discovery of new therapeutic strategies for these devastating diseases.

  4. Peptide aggregation in neurodegenerative disease.

    PubMed

    Murphy, Regina M

    2002-01-01

    In the not-so-distant past, insoluble aggregated protein was considered as uninteresting and bothersome as yesterday's trash. More recently, protein aggregates have enjoyed considerable scientific interest, as it has become clear that these aggregates play key roles in many diseases. In this review, we focus attention on three polypeptides: beta-amyloid, prion, and huntingtin, which are linked to three feared neurodegenerative diseases: Alzheimer's, "mad cow," and Huntington's disease, respectively. These proteins lack any significant primary sequence homology, yet their aggregates possess very similar features, specifically, high beta-sheet content, fibrillar morphology, relative insolubility, and protease resistance. Because the aggregates are noncrystalline, secrets of their structure at nanometer resolution are only slowly yielding to X-ray diffraction, solid-state NMR, and other techniques. Besides structure, the aggregates may possess similar pathways of assembly. Two alternative assembly pathways have been proposed: the nucleation-elongation and the template-assisted mode. These two modes may be complementary, not mutually exclusive. Strategies for interfering with aggregation, which may provide novel therapeutic approaches, are under development. The structural similarities between protein aggregates of dissimilar origin suggest that therapeutic strategies successful against one disease may have broad utility in others. PMID:12117755

  5. Stem cell technology for neurodegenerative diseases.

    PubMed

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  6. Amyloidosis in Retinal Neurodegenerative Diseases.

    PubMed

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain. PMID:27551275

  7. Amyloidosis in Retinal Neurodegenerative Diseases

    PubMed Central

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer’s disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer’s patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer’s patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a “window” to the brain. PMID:27551275

  8. Sound Naming in Neurodegenerative Disease

    PubMed Central

    Chow, Maggie L; Brambati, Simona M; Gorno-Tempini, Maria Luisa; Miller, Bruce L; Johnson, Julene K

    2010-01-01

    Modern cognitive neuroscientific theories and empirical evidence suggest that brain structures involved in movement may be related to action-related semantic knowledge. To test this hypothesis, we examined the naming of environmental sounds in patients with corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), two neurodegenerative diseases associated with cognitive and motor deficits. Subjects were presented with 56 environmental sounds: 28 of objects that required manipulation when producing the sound, and 28 that required no manipulation. Subjects were asked to provide the name of the object that produced the sound and also complete a sound-picture matching condition. Subjects included 33 individuals from four groups: CBD/PSP, Alzheimer disease, frontotemporal dementia, and normal controls. We hypothesized that CBD/PSP patients would exhibit impaired naming performance compared with controls, but the impairment would be most apparent when naming sounds associated with actions. We also explored neural correlates of naming environmental sounds using voxel-based morphometry (VBM) of brain MRI. As expected, CBD/PSP patients scored lower on environmental sounds naming (p<0.007) compared with the controls. In particular, the CBD/PSP patients scored the lowest when naming sounds of manipulable objects (p<0.05), but did not show deficits in naming sounds of non-manipulable objects. VBM analysis across all groups showed that performance in naming sounds of manipulable objects correlated with atrophy in the left premotor region, extending from area 6 to the middle and superior frontal gyrus. These results indicate an association between impairment in the retrieval of action-related names and the motor system, and suggest that difficulty in naming manipulable sounds may be related to atrophy in the premotor cortex. Our results support the hypothesis that retrieval of action-related semantic knowledge involves motor regions in the brain. PMID:20089342

  9. [Microglial Phagocytosis in the Neurodegenerative Diseases].

    PubMed

    Cao, Sheng-nan; Bao, Xiu-qi; Sun, Hua; Zhang, Dan

    2016-04-01

    Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases. PMID:27181903

  10. [Microglial Phagocytosis in the Neurodegenerative Diseases].

    PubMed

    Cao, Sheng-nan; Bao, Xiu-qi; Sun, Hua; Zhang, Dan

    2016-04-01

    Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases.

  11. Metal attenuating therapies in neurodegenerative disease.

    PubMed

    Mot, Alexandra I; Wedd, Anthony G; Sinclair, Layla; Brown, David R; Collins, Steven J; Brazier, Marcus W

    2011-12-01

    The clinical and pathological spectrum of neurodegenerative diseases is diverse, although common to many of these disorders is the accumulation of misfolded proteins, with oxidative stress thought to be an important contributing mechanism to neuronal damage. As a corollary, transition metal ion dyshomeostasis appears to play a key pathogenic role in a number of these maladies, including the most common of neurodegenerative diseases. In this review, studies spanning a wide variety of neurodegenerative disorders are presented with their involvement of transition metals compared and contrasted, including more detailed treatise in relation to Alzheimer's disease, Parkinson's disease and prion diseases. For each of these diseases, a discussion of the evolving scientific rationale for the development of therapies aimed at ameliorating the detrimental effects of transition metal dysregulation, including results from various human trials, is then provided.

  12. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.

  13. Nutraceuticals and amyloid neurodegenerative diseases: a focus on natural phenols.

    PubMed

    Rigacci, Stefania; Stefani, Massimo

    2015-01-01

    A common molecular feature of amyloid neurodegenerative diseases is the unfolding/misfolding of specific proteins/peptides which consequently become prone to aggregate into toxic assemblies and deposits that are the key histopathological trait of these pathologies. Apart from the rare early-onset familiar forms, these neurodegenerative diseases are age-associated disorders whose symptoms appear in aged people after long incubation periods. This makes the therapeutic approach particularly compelling and boosts the search for both early diagnostic tools and preventive approaches. In this last respect, natural compounds commonly present in foods and beverages are considered promising molecules, at least on the bench side. The so-called 'nutraceutical approach' suggests life-long healthy diets, particularly focusing on food molecules that are candidates to enter clinical trials as such or following a targeted molecular engineering. Natural phenols abundant in 'healthy' foods such as extra virgin olive oil, red wine, green tea, red berries and spices, appear particularly promising. PMID:25418871

  14. DNA methylation, a hand behind neurodegenerative diseases

    PubMed Central

    Lu, Haoyang; Liu, Xinzhou; Deng, Yulin; Qing, Hong

    2013-01-01

    Epigenetic alterations represent a sort of functional modifications related to the genome that are not responsible for changes in the nucleotide sequence. DNA methylation is one of such epigenetic modifications that have been studied intensively for the past several decades. The transfer of a methyl group to the 5 position of a cytosine is the key feature of DNA methylation. A simple change as such can be caused by a variety of factors, which can be the cause of many serious diseases including several neurodegenerative diseases. In this review, we have reviewed and summarized recent progress regarding DNA methylation in four major neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The studies of these four major neurodegenerative diseases conclude the strong suggestion of the important role DNA methylation plays in these diseases. However, each of these diseases has not yet been understood completely as details in some areas remain unclear, and will be investigated in future studies. We hope this review can provide new insights into the understanding of neurodegenerative diseases from the epigenetic perspective. PMID:24367332

  15. Endocytic membrane trafficking and neurodegenerative disease.

    PubMed

    Schreij, Andrea M A; Fon, Edward A; McPherson, Peter S

    2016-04-01

    Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology. PMID:26721251

  16. Induced pluripotent stem cells and neurodegenerative diseases.

    PubMed

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  17. Mitochondrial drug targets in neurodegenerative diseases.

    PubMed

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  18. Modulating Human Aging and Age-Associated Diseases

    PubMed Central

    Fontana, Luigi

    2009-01-01

    Population aging is progressing rapidly in many industrialized countries. The United States population aged 65 and over is expected to double in size within the next 25 years. In sedentary people eating Western diets aging is associated with the development of serious chronic diseases, including type 2 diabetes mellitus, cancer and cardiovascular diseases. About 80 percent of adults over 65 years of age have at least one chronic disease, and 50 percent have at least two chronic diseases. These chronic diseases are the most important cause of illness and mortality burden, and they have become the leading driver of healthcare costs, constituting an important burden for our society. Data from epidemiological studies and clinical trials indicate that many age-associated chronic diseases can be prevented, and even reversed, with the implementation of healthy lifestyle interventions. Several recent studies suggest that more drastic interventions (i.e. calorie restriction without malnutrition and moderate protein restriction with adequate nutrition) may have additional beneficial effects on several metabolic and hormonal factors that are implicated in the biology of aging itself. Additional studies are needed to understand the complex interactions of factors that regulate aging and age-associated chronic disease. PMID:19364477

  19. Circulating microRNAs in Neurodegenerative Diseases.

    PubMed

    Grasso, Margherita; Piscopo, Paola; Crestini, Alessio; Confaloni, Annamaria; Denti, Michela A

    2015-01-01

    Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient's cognitive function analysis, and the development of diagnostic methods is complicated by the brain's capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.

  20. Neuronal Network Oscillations in Neurodegenerative Diseases.

    PubMed

    Nimmrich, Volker; Draguhn, Andreas; Axmacher, Nikolai

    2015-09-01

    Cognitive and behavioral acts go along with highly coordinated spatiotemporal activity patterns in neuronal networks. Most of these patterns are synchronized by coherent membrane potential oscillations within and between local networks. By entraining multiple neurons into a common time regime, such network oscillations form a critical interface between cellular activity and large-scale systemic functions. Synaptic integrity is altered in neurodegenerative diseases, and it is likely that this goes along with characteristic changes of coordinated network activity. This notion is supported by EEG recordings from human patients and from different animal models of such disorders. However, our knowledge about the pathophysiology of network oscillations in neurodegenerative diseases is surprisingly incomplete, and increased research efforts are urgently needed. One complicating factor is the pronounced diversity of network oscillations between different brain regions and functional states. Pathological changes must, therefore, be analyzed separately in each condition and affected area. However, cumulative evidence from different diseases may result, in the future, in more unifying "oscillopathy" concepts of neurodegenerative diseases. In this review, we report present evidence for pathological changes of network oscillations in Alzheimer's disease (AD), one of the most prominent and challenging neurodegenerative disorders. The heterogeneous findings from AD are contrasted to Parkinson's disease, where motor-related changes in specific frequency bands do already fulfill criteria of a valid biomarker. PMID:25920466

  1. Role of neuroinflammation in neurodegenerative diseases (Review)

    PubMed Central

    CHEN, WEI-WEI; ZHANG, XIA; HUANG, WEN-JUAN

    2016-01-01

    Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro-inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro-inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases. PMID:26935478

  2. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    PubMed Central

    Johnson, William M.; Wilson-Delfosse, Amy L.; Mieyal, John. J.

    2012-01-01

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated. PMID:23201762

  3. Prism Management in Patients with Neurodegenerative Disease.

    PubMed

    Gilligan, Rikki

    2015-01-01

    Patients with motility problems due to neurodegenerative disease such as Parkinson's and its variations often present challenging cases for the orthoptist. A few "tricks of the trade" will be presented on how to make a Parkinson's patient's daily life a little easier.

  4. Catalpol: a potential therapeutic for neurodegenerative diseases.

    PubMed

    Jiang, B; Shen, R F; Bi, J; Tian, X S; Hinchliffe, T; Xia, Y

    2015-01-01

    Neurodegenerative disorders, e.g., Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the progressive loss of neurons and subsequent cognitive decline. They are mainly found in older populations. Due to increasing life expectancies, the toll inflicted upon society by these disorders continues to become heavier and more prominent. Despite extensive research, however, the exact etiology of these disorders is still unknown, though the pathophysiological mechanisms have been attributed to oxidative, inflammatory and apoptotic injury in the brain. Moreover, there is currently no promising therapeutic agent against these neurodegenerative changes. Catalpol, an iridoid glucoside contained richly in the roots of the small flowering plant species Rehmannia glutinosa Libosch, has been shown to have antioxidation, anti-inflammation, anti-apoptosis and other neuroprotective properties and plays a role in neuroprotection against hypoxic/ischemic injury, AD and PD in both in vivo and in vitro models. It may therefore represent a potential therapeutical agent for the treatment of hypoxic/ischemic injury and neurodegenerative diseases. Based on our studies and those of others in the literature, here we comprehensively review the role of Catalpol in neuroprotection against pathological conditions, especially in neurodegenerative states and the potential mechanisms involved.

  5. Neurodegenerative processes in Huntington's disease

    PubMed Central

    Bano, D; Zanetti, F; Mende, Y; Nicotera, P

    2011-01-01

    Huntington's disease (HD) is a complex and severe disorder characterized by the gradual and the progressive loss of neurons, predominantly in the striatum, which leads to the typical motor and cognitive impairments associated with this pathology. HD is caused by a highly polymorphic CAG trinucleotide repeat expansion in the exon-1 of the gene encoding for huntingtin protein. Since the first discovery of the huntingtin gene, investigations with a consistent number of in-vitro and in-vivo models have provided insights into the toxic events related to the expression of the mutant protein. In this review, we will summarize the progress made in characterizing the signaling pathways that contribute to neuronal degeneration in HD. We will highlight the age-dependent loss of proteostasis that is primarily responsible for the formation of aggregates observed in HD patients. The most promising molecular targets for the development of pharmacological interventions will also be discussed. PMID:22071633

  6. Resveratrol: A Focus on Several Neurodegenerative Diseases

    PubMed Central

    Tellone, Ester; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno; Ficarra, Silvana

    2015-01-01

    Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong. PMID:26180587

  7. Implications of glial nitric oxide in neurodegenerative diseases

    PubMed Central

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  8. Implications of glial nitric oxide in neurodegenerative diseases.

    PubMed

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  9. Neurodegenerative disease high-field imaging

    PubMed Central

    van der Grond, J.; van Buchem, M.A.; van Zijl, P.; Webb, A.G.

    2012-01-01

    High field magnetic resonance imaging is showing potential for imaging of neurodegenerative diseases. 7 T MRI is beginning to be used in a clinical research setting and the theoretical benefits, i.e. higher signal-to-noise, sensitivity to iron, improved MRA and increased spectral resolution in spectroscopy are being confirmed. Despite the limited number of studies to date, initial results in patients with multiple sclerosis, Alzheimer’s disease and Huntington’s disease show promising additional features in contrast that may assist in better diagnosis of these disorders. PMID:22548926

  10. Prion-like Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Frost, Bess; Diamond, Marc I.

    2013-01-01

    Many non-infectious neurodegenerative diseases are associated with the accumulation of fibrillar protein. These diseases all exhibit phenotypic diversity and propagation of pathology that is reminiscent of prionopathies. Furthermore, emerging studies of amyloid-β, α–synuclein, and tau proteins suggest that they share key biophysical and biochemical characteristics with prions. Propagation of protein misfolding in these diseases may therefore occur via mechanisms similar to those underlying prion pathogenesis. If verified in vivo, this will suggest new therapeutic strategies to block propagation of protein misfolding throughout the brain. PMID:20029438

  11. The promises of neurodegenerative disease modeling.

    PubMed

    Lepesant, Jean-Antoine

    2015-01-01

    The rise in the prevalence of neurodegenerative diseases parallels the rapid increase in human lifespan. Despite intensive research, the molecular and cellular mechanisms underlying the onset and progression of these devastating diseases with age are still poorly understood. Many aspects of these diseases have been modelled successfully in experimental animals such as the mouse, the zebrafish Brachydanio rero, the nematode worm Caenorhaditis elegans and the fruit fly Drosophila melanogaster. This review will focus on the advantages offered by the genetic tools available in Drosophila for combining powerful strategies in order to tackle the causative factors of these complex pathologies and help to elaborate efficient drugs to treat them.

  12. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    PubMed

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.

  13. Biology of Mitochondria in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2012-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS. PMID:22482456

  14. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression

    PubMed Central

    Gao, Hui-Ming; Hong, Jau-Shyong

    2016-01-01

    Neurodegenerative diseases are a group of chronic, progressive disorders characterized by the gradual loss of neurons in discrete areas of the central nervous system (CNS). The mechanism(s) underlying their progressive nature remains unknown but a timely and well-controlled inflammatory reaction is essential for the integrity and proper function of the CNS. Substantial evidence has documented a common inflammatory mechanism in various neurodegenerative diseases. We hypothesize that in the diseased CNS, interactions between damaged neurons and dysregulated, overactivated microglia create a vicious self-propagating cycle causing uncontrolled, prolonged inflammation that drives the chronic progression of neurodegenerative diseases. We further propose that dynamic modulation of this inflammatory reaction by interrupting the vicious cycle might become a disease-modifying therapeutic strategy for neurodegenerative diseases. PMID:18599350

  15. [The role of thiamine in neurodegenerative diseases].

    PubMed

    Bubko, Irena; Gruber, Beata M; Anuszewska, Elżbieta L

    2015-09-21

    Vitamin B1 (thiamine) plays an important role in metabolism. It is indispensable for normal growth and development of the organism. Thiamine has a favourable impact on a number of systems, including the digestive, cardiovascular and nervous systems. It also stimulates the brain and improves the psycho-emotional state. Hence it is often called the vitamin of "reassurance of the spirit". Thiamine is a water-soluble vitamin. It can be present in the free form as thiamine or as its phosphate esters: mono-, di- or triphosphate. The main source of thiamine as an exogenous vitamin is certain foodstuffs, but trace amounts can be synthesised by microorganisms of the large intestine. The recommended daily intake of thiamine is about 2.0 mg. Since vitamin B1 has no ability to accumulate in the organism, manifestations of its deficiency begin to appear very quickly. The chronic state of thiamine deficiency, to a large extent, because of its function, contributes to the development of neurodegenerative diseases. It was proved that supporting vitamin B1 therapy not only constitutes neuroprotection but can also have a favourable impact on advanced neurodegenerative diseases. This article presents the current state of knowledge as regards the effects of thiamine exerted through this vitamin in a number of diseases such as Parkinson's disease, Alzheimer's disease, Wernicke's encephalopathy or Wernicke-Korsakoff syndrome and Huntington's disease.

  16. Antioxidant Supplementation in the Treatment of Aging-Associated Diseases

    PubMed Central

    Conti, Valeria; Izzo, Viviana; Corbi, Graziamaria; Russomanno, Giusy; Manzo, Valentina; De Lise, Federica; Di Donato, Alberto; Filippelli, Amelia

    2016-01-01

    Oxidative stress is generally considered as the consequence of an imbalance between pro- and antioxidants species, which often results into indiscriminate and global damage at the organismal level. Elderly people are more susceptible to oxidative stress and this depends, almost in part, from a decreased performance of their endogenous antioxidant system. As many studies reported an inverse correlation between systemic levels of antioxidants and several diseases, primarily cardiovascular diseases, but also diabetes and neurological disorders, antioxidant supplementation has been foreseen as an effective preventive and therapeutic intervention for aging-associated pathologies. However, the expectations of this therapeutic approach have often been partially disappointed by clinical trials. The interplay of both endogenous and exogenous antioxidants with the systemic redox system is very complex and represents an issue that is still under debate. In this review a selection of recent clinical studies concerning antioxidants supplementation and the evaluation of their influence in aging-related diseases is analyzed. The controversial outcomes of antioxidants supplementation therapies, which might partially depend from an underestimation of the patient specific metabolic demand and genetic background, are presented. PMID:26903869

  17. Inflammation in neurodegenerative diseases--an update.

    PubMed

    Amor, Sandra; Peferoen, Laura A N; Vogel, Daphne Y S; Breur, Marjolein; van der Valk, Paul; Baker, David; van Noort, Johannes M

    2014-06-01

    Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases. PMID:24329535

  18. Biomarker-based dissection of neurodegenerative diseases.

    PubMed

    Olsson, Bob; Zetterberg, Henrik; Hampel, Harald; Blennow, Kaj

    2011-12-01

    The diagnosis of neurodegenerative diseases within neurology and psychiatry are hampered by the difficulty in getting biopsies and thereby validating the diagnosis by pathological findings. Biomarkers for other types of disease have been readily adopted into the clinical practice where for instance troponins are standard tests when myocardial infarction is suspected. However, the use of biomarkers for neurodegeneration has not been fully incorporated into the clinical routine. With the development of cerebrospinal fluid (CSF) biomarkers that reflect pathological events within the central nervous system (CNS), important clinical diagnostic tools are becoming available. This review summarizes the most promising biomarker candidates that may be used to monitor different types of neurodegeneration and protein inclusions, as well as different types of metabolic changes, in living patients in relation to the clinical phenotype and disease progression over time. Our aim is to provide the reader with an updated lexicon on currently available biomarker candidates, how far they have come in development and how well they reflect pathogenic processes in different neurodegenerative diseases. Biomarkers for specific pathogenetic processes would also be valuable tools both to study disease pathogenesis directly in patients and to identify and monitor the effect of novel treatment strategies.

  19. Inflammation in neurodegenerative diseases--an update.

    PubMed

    Amor, Sandra; Peferoen, Laura A N; Vogel, Daphne Y S; Breur, Marjolein; van der Valk, Paul; Baker, David; van Noort, Johannes M

    2014-06-01

    Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.

  20. Quantitative interaction proteomics of neurodegenerative disease proteins.

    PubMed

    Hosp, Fabian; Vossfeldt, Hannes; Heinig, Matthias; Vasiljevic, Djordje; Arumughan, Anup; Wyler, Emanuel; Landthaler, Markus; Hubner, Norbert; Wanker, Erich E; Lannfelt, Lars; Ingelsson, Martin; Lalowski, Maciej; Voigt, Aaron; Selbach, Matthias

    2015-05-19

    Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD.

  1. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    PubMed Central

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  2. Overcoming obstacles to repurposing for neurodegenerative disease

    PubMed Central

    Shineman, Diana W; Alam, John; Anderson, Margaret; Black, Sandra E; Carman, Aaron J; Cummings, Jeffrey L; Dacks, Penny A; Dudley, Joel T; Frail, Donald E; Green, Allan; Lane, Rachel F; Lappin, Debra; Simuni, Tanya; Stefanacci, Richard G; Sherer, Todd; Fillit, Howard M

    2014-01-01

    Repurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer’s Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson’s Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases. Here, we present opportunities on how philanthropy, industry, and government can begin to address these challenges, promote policy changes, and develop targeted funding strategies to accelerate the potential of FDA-approved repurposed drugs. PMID:25356422

  3. Engineering enhanced protein disaggregases for neurodegenerative disease

    PubMed Central

    Jackrel, Meredith E; Shorter, James

    2015-01-01

    Abstract Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones. PMID:25738979

  4. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease.

    PubMed

    Hroudová, Jana; Singh, Namrata; Fišar, Zdeněk

    2014-01-01

    Mitochondrial dysfunctions are supposed to be responsible for many neurodegenerative diseases dominating in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). A growing body of evidence suggests that defects in mitochondrial metabolism and particularly of electron transport chain may play a role in pathogenesis of AD. Structurally and functionally damaged mitochondria do not produce sufficient ATP and are more prominent in producing proapoptotic factors and reactive oxygen species (ROS), and this can be an early stage of several mitochondrial disorders, including neurodegenerative diseases. Mitochondrial dysfunctions may be caused by both mutations in mitochondrial or nuclear DNA that code mitochondrial components and by environmental causes. In the following review, common aspects of mitochondrial impairment concerned about neurodegenerative diseases are summarized including ROS production, impaired mitochondrial dynamics, and apoptosis. Also, damaged function of electron transport chain complexes and interactions between pathological proteins and mitochondria are described for AD particularly and marginally for PD and HD.

  5. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs

    PubMed Central

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  6. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases.

    PubMed

    Kuboyama, Tomoharu; Tohda, Chihiro; Komatsu, Katsuko

    2014-01-01

    Neurodegenerative diseases commonly induce irreversible destruction of central nervous system (CNS) neuronal networks, resulting in permanent functional impairments. Effective medications against neurodegenerative diseases are currently lacking. Ashwagandha (roots of Withania somnifera Dunal) is used in traditional Indian medicine (Ayurveda) for general debility, consumption, nervous exhaustion, insomnia, and loss of memory. In this review, we summarize various effects and mechanisms of Ashwagandha extracts and related compounds on in vitro and in vivo models of neurodegenerative diseases such as Alzheimer's disease and spinal cord injury.

  7. microRNAs and Neurodegenerative Diseases.

    PubMed

    Qiu, Lifeng; Tan, Eng King; Zeng, Li

    2015-01-01

    microRNAs (miRNAs) are small, noncoding RNA molecules that through imperfect base-pairing with complementary sequences of target mRNA molecules, typically cleave target mRNA, causing subsequent degradation or translation inhibition. Although an increasing number of studies have identified misregulated miRNAs in the neurodegenerative diseases (NDDs) Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, which suggests that alterations in the miRNA regulatory pathway could contribute to disease pathogenesis, the molecular mechanisms underlying the pathological implications of misregulated miRNA expression and the regulation of the key genes involved in NDDs remain largely unknown. In this chapter, we provide evidence of the function and regulation of miRNAs and their association with the neurological events in NDDs. This will help improve our understanding of how miRNAs govern the biological functions of key pathogenic genes in these diseases, which potentially regulate several pathways involved in the progression of neurodegeneration. Additionally, given the growing interest in the therapeutic potential of miRNAs, we discuss current clinical challenges to developing miRNA-based therapeutics for NDDs.

  8. Role of apolipoprotein E in neurodegenerative diseases

    PubMed Central

    Giau, Vo Van; Bagyinszky, Eva; An, Seong Soo A; Kim, Sang Yun

    2015-01-01

    Apolipoprotein E (APOE) is a lipid-transport protein abundantly expressed in most neurons in the central nervous system. APOE-dependent alterations of the endocytic pathway can affect different functions. APOE binds to cell-surface receptors to deliver lipids and to the hydrophobic amyloid-β peptide, regulating amyloid-β aggregations and clearances in the brain. Several APOE isoforms with major structural differences were discovered and shown to influence the brain lipid transport, glucose metabolism, neuronal signaling, neuroinflammation, and mitochondrial function. This review will summarize the updated research progress on APOE functions and its role in Alzheimer’s disease, Parkinson’s disease, cardiovascular diseases, multiple sclerosis, type 2 diabetes mellitus, Type III hyperlipoproteinemia, vascular dementia, and ischemic stroke. Understanding the mutations in APOE, their structural properties, and their isoforms is important to determine its role in various diseases and to advance the development of therapeutic strategies. Targeting APOE may be a potential approach for diagnosis, risk assessment, prevention, and treatment of various neurodegenerative and cardiovascular diseases in humans. PMID:26213471

  9. The Role of Copper in Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Rose, Francis M.

    My research concerns the fundamental atomistic mechanisms of neurodegenerative diseases and the methodologies by which they may be discerned. This thesis consists of three primary parts. The introductory material is the raison d'etre for this work and a critical overview of the specific physics, mathematics and algorithms used in this research. The methods are presented along with specific details in order to facilitate future replication and enhancement. With the groundwork of mechanisms and methods out of the way, we then explore a nouveau atomistic mechanism describing the onset of Parkinson's disease, a disease that has been closely linked to misfolded metalloproteins. Further exploration of neurodegeneration takes place in the following chapter, where a remedial approach to Alzheimer's disease via a simulated chelation of a metalloprotein is undertaken. Altogether, the methods and techniques applied here allow for simulated exploration of both the atomistic mechanisms of neurodegeneration and their potential remediation strategies. The beginning portion of the research efforts explore protein misfolding dynamics in the presence a copper ion. Misfolding of the human alpha-synuclein (aS) protein has been implicated as a central constituent in neurodegenerative disease. In Parkinson's disease (PD) in particular, aS is thought to be the causative participant when found concentrated into neuritic plaques. Here we propose a scenario involving the metal ion Cu2+ as the protein misfolding initiator of fibrillized aS, the chief component of neuritic plaques. From experimental results we know these misfolded proteins have a rich beta--sheet signature, a marker that we reproduce with our simulated model. This model identifies a process of structural modifications to a natively unfolded alpha-synuclein resulting in a partially folded intermediate with a well defined nucleation site. It serves as a precursor to the fully misfolded protein. Understanding the nucleation

  10. Neurodegenerative disease. Genetic discrimination in Huntington disease.

    PubMed

    Pulst, Stefan M

    2009-10-01

    A survey conducted in Canada examined the prevalence of perceived genetic discrimination against patients with Huntington disease. The respondents reported discrimination not only by insurance or mortgage companies, but also in family and social contexts. Discrimination was more frequently attributed to family history than to genetic test results. PMID:19794509

  11. The Role of Oxidative Stress in Neurodegenerative Diseases

    PubMed Central

    Kim, Geon Ha; Kim, Jieun E.; Rhie, Sandy Jeong

    2015-01-01

    Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined. PMID:26713080

  12. Neurodegenerative disease-specific induced pluripotent stem cell research.

    PubMed

    Inoue, Haruhisa

    2010-10-01

    Neurodegenerative disease-specific induced pluripotent stem cell (iPSC) research contributes to the following 3 areas; "Disease modeling", "Disease material" and "Disease therapy". "Disease modeling", by recapitulating the disease phenotype in vitro, will reveal the pathomechanisms. Neurodegenerative disease-specific iPSC-derived non-neuronal cells harboring disease-causative protein(s), which play critical roles in neurodegeneration including motor neuron degeneration in amyotrophic lateral sclerosis, could be "Disease material", the target cell(s) for drug screening. These differentiated cells also could be used for "Disease therapy", an autologous cellular replacement/neuroprotection strategy, for patients with neurodegenerative disease. Further progress in these areas of research can be made for currently incurable neurodegenerative diseases.

  13. Adrenoleukodystrophy: new approaches to a neurodegenerative disease.

    PubMed

    Moser, Hugo W; Raymond, Gerald V; Dubey, Prachi

    2005-12-28

    X-linked adrenoleukodystrophy (X-ALD), which was first described in 1923, was viewed until 1976 as a rare and inexorably fatal neurodegenerative disorder that affected boys. The genetic defect and biochemical abnormalities have now been defined. Ongoing research has resulted in new findings: (1) there is a wide range of phenotypic expression. At least half of patients with X-ALD are adults with somewhat milder manifestations, and women who are carriers may become symptomatic. X-ALD is often misdiagnosed as attention-deficit/hyperactivity disorder in boys and as multiple sclerosis in men and women, and is not an uncommon cause of Addison disease; (2) the incidence of X-ALD, estimated to be 1:17,000 in all ethnic groups, approximates that of phenylketonuria; (3) noninvasive and presymptomatic diagnosis and prenatal diagnosis are available; family screening and genetic counseling are key to disease prevention; and (4) new therapies, applied early, show promise. Neonatal screening is likely to become available, and a wider awareness of X-ALD and its various modes of presentation permit new proactive approaches to this distressing disorder.

  14. Structural anatomy of empathy in neurodegenerative disease.

    PubMed

    Rankin, Katherine P; Gorno-Tempini, Maria Luisa; Allison, Stephen C; Stanley, Christine M; Glenn, Shenly; Weiner, Michael W; Miller, Bruce L

    2006-11-01

    Empathy is a complex social behaviour mediated by a network of brain structures. Recently, several functional imaging studies have investigated the neural basis of empathy, but few corroborative human lesion studies exist. Severe empathy loss is a common feature of frontotemporal lobar degeneration (FTLD), and is also seen in other neurodegenerative diseases. In this study, the neuroanatomic basis of empathy was investigated in 123 patients with FTLD, Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy using the Interpersonal Reactivity Index (IRI). IRI Empathic Concern and Perspective taking scores were correlated with structural MRI brain volume using voxel-based morphometry. Voxels in the right temporal pole, the right fusiform gyrus, the right caudate and right subcallosal gyrus correlated significantly with total empathy score (P < 0.05 after whole-brain correction for multiple comparisons). Empathy score correlated positively with the volume of right temporal structures in semantic dementia, and with subcallosal gyrus volume in frontotemporal dementia. These findings are consistent with previous research suggesting that a primarily right frontotemporal network of brain regions is involved in emotion processing, and highlights the roles of the right temporal pole and inferior frontal/striatal regions in regulating complex social interactions. This is the first large-scale lesion study to investigate the neural basis of empathy using correlational analytic methods. The results suggest that the right anterior temporal and medial frontal regions are essential for real-life empathic behaviour.

  15. Drosophila as a model for human neurodegenerative disease.

    PubMed

    Bilen, Julide; Bonini, Nancy M

    2005-01-01

    Among many achievements in the neurodegeneration field in the past decade, two require special attention due to the huge impact on our understanding of molecular and cellular pathogenesis of human neurodegenerative diseases. First is defining specific mutations in familial neurodegenerative diseases and second is modeling these diseases in easily manipulable model organisms including the fruit fly, nematode, and yeast. The power of these genetic systems has revealed many genetic factors involved in the various pathways affected, as well as provided potential drug targets for therapeutics. This review focuses on fruit fly models of human neurodegenerative diseases, with emphasis on how fly models have provided new insights into various aspects of human diseases.

  16. Mitochondria as a Therapeutic Target for Aging and Neurodegenerative Diseases

    PubMed Central

    Reddy, P. Hemachandra; Reddy, Tejaswini P.

    2012-01-01

    Mitochondria are cytoplasmic organelles responsible for life and death. Extensive evidence from animal models, postmortem brain studies of and clinical studies of aging and neurodegenerative diseases suggests that mitochondrial function is defective in aging and neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Several lines of research suggest that mitochondrial abnormalities, including defects in oxidative phosphorylation, increased accumulation of mitochondrial DNA defects, impaired calcium influx, accumulation of mutant proteins in mitochondria, and mitochondrial membrane potential dissipation are important cellular changes in both early and late-onset neurodegenerative diseases. Further, emerging evidence suggests that structural changes in mitochondria, including increased mitochondrial fragmentation and decreased mitochondrial fusion, are critical factors associated with mitochondrial dysfunction and cell death in aging and neurodegenerative diseases. This paper discusses research that elucidates features of mitochondria that are associated with cellular dysfunction in aging and neurodegenerative diseases and discusses mitochondrial structural and functional changes, and abnormal mitochondrial dynamics in neurodegenerative diseases. It also outlines mitochondria-targeted therapeutics in neurodegenerative diseases. PMID:21470101

  17. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns

    PubMed Central

    Sanchez-Mut, J V; Heyn, H; Vidal, E; Moran, S; Sayols, S; Delgado-Morales, R; Schultz, M D; Ansoleaga, B; Garcia-Esparcia, P; Pons-Espinal, M; de Lagran, M M; Dopazo, J; Rabano, A; Avila, J; Dierssen, M; Lott, I; Ferrer, I; Ecker, J R; Esteller, M

    2016-01-01

    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies. PMID:26784972

  18. A network approach to clinical intervention in neurodegenerative diseases.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2014-12-01

    Network biology has become a powerful tool to dissect the molecular mechanisms triggering neurodegeneration. Recent developments in network biology have led to the discovery of disease-causing genes, diagnostic biomarkers, and therapeutic targets for several neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases. Network-based approaches have provided the molecular rationale for the relationship among cancer, diabetes, and neurodegenerative diseases, and have uncovered unexpected links between apparently unrelated diseases. Here, we summarize the recent advances in network biology to untangle the molecular underpinnings giving rise to the most prevalent neurodegenerative diseases. We propose that network analysis provides a feasible and practical tool for identifying biologically meaningful biomarkers and potential therapeutic targets for clinical intervention in neurodegenerative diseases. PMID:25455073

  19. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases.

    PubMed

    Yamazaki, Hiromi; Tanji, Kunikazu; Wakabayashi, Koichi; Matsuura, Shin; Itoh, Ken

    2015-05-01

    As the elderly population increases, a growing number of individuals suffer from age-associated neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Oxidative stress is considered to play a crucial role in the pathogenesis of age-related diseases. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is activated by oxidative stress and regulates the expression of a variety of antioxidant enzymes and proteins that exert cytoprotective effects against oxidative stress. Numerous studies have addressed the role of Nrf2 in age-related diseases, including neurodegenerative diseases, using animal or in vitro cell culture models. Here, we introduce the role of oxidative stress in the pathogenesis of neurodegenerative diseases and critically examine the recent findings concerning the role for Nrf2 in the amelioration of AD and PD. Nrf2 not only regulates antioxidant proteins but also regulates the genes associated with autophagy and nerve growth factor signaling. Current research unequivocally demonstrates that the activation of the Nrf2 pathway is a promising novel strategy for the prevention and modification of neurodegenerative diseases. PMID:25707882

  20. Neuron–astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation

    PubMed Central

    Rama Rao, Kakulavarapu V.; Kielian, Tammy

    2015-01-01

    Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron–astrocyte cross-talk in the context of select neurodegenerative diseases. PMID:26543505

  1. Indian Herbs for the Treatment of Neurodegenerative Disease.

    PubMed

    Mannangatti, Padmanabhan; Naidu, Kamalakkannan Narasimha

    2016-01-01

    Ayurveda, an ancient system of medicine that is indigenous to India, is believed to be the world's oldest comprehensive health-care system and is now one of the most recognized and widely practiced disciplines of alternative medicine in the world. Medicinal herbs have been in use for treating diseases since ancient times in India. Ayurvedic therapies with medicinal herbs and herbomineral products generally provide relief without much adverse effects even after prolonged administration. Neurodegenerative disorders are a major cause of mortality and disability, and increasing life spans represent one of the key challenges of medical research. Ayurvedic medicine describes most neurodegenerative diseases and has defined a number of plants with therapeutic benefits for the treatment of neurodegenerative diseases having antioxidant activities. In this chapter, the role of four important Ayurvedic medicinal plants, viz., Withania somnifera (ashwagandha), Bacopa monnieri (brahmi), Centella asiatica (gotu kola), and Mucuna pruriens (velvet bean), on neurodegenerative diseases are discussed. PMID:27651261

  2. Stem cell therapy in neurodegenerative diseases: From principles to practice.

    PubMed

    Sakthiswary, Rajalingham; Raymond, Azman Ali

    2012-08-15

    The lack of curative therapies for neurodegenerative diseases has high economic impact and places huge burden on the society. The contribution of stem cells to cure neurodegenerative diseases has been unraveled and explored extensively over the past few years. Beyond substitution of the lost neurons, stem cells act as immunomodulators and neuroprotectors. A large number of preclinical and a small number of clinical studies have shown beneficial outcomes in this context. In this review, we have summarized the current concepts of stem cell therapy in neurodegenerative diseases and the recent advances in this field, particularly between 2010 and 2012. Further studies should be encouraged to resolve the clinical issues and vague translational findings for maximum optimization of the efficacy of stem cell therapy in neurodegenerative diseases.

  3. Molecular imaging of stem cell transplantation for neurodegenerative diseases.

    PubMed

    Wang, Ping; Moore, Anna

    2012-01-01

    Cell replacement therapy with stem cells holds tremendous therapeutic potential for treating neurodegenerative diseases. Over the last decade, molecular imaging techniques have proven to be of great value in tracking transplanted cells and assessing the therapeutic efficacy. This current review summarizes the role and capabilities of different molecular imaging modalities including optical imaging, nuclear imaging and magnetic resonance imaging in the field of stem cell therapy for neurodegenerative disorders. We discuss current challenges and perspectives of these techniques and encompass updated information such as theranostic imaging and optogenetics in stem cell-based treatment of neurodegenerative diseases.

  4. Reprogramming therapeutics: iPS cell prospects for neurodegenerative disease.

    PubMed

    Abeliovich, Asa; Doege, Claudia A

    2009-02-12

    The recent description of somatic cell reprogramming to an embryonic stem (ES) cell-like phenotype, termed induced pluripotent stem (iPS) cell technology, presents an exciting potential venue toward cell-based therapeutics and disease models for neurodegenerative disorders. Two recent studies (Dimos et al. and Ebert et al.) describe the initial characterization of neurodegenerative disease patient-derived iPS cell cultures as proof of concept for the utility of this technology.

  5. Evaluation of Traditional Medicines for Neurodegenerative Diseases Using Drosophila Models

    PubMed Central

    Lee, Soojin; Bang, Se Min; Lee, Joon Woo; Cho, Kyoung Sang

    2014-01-01

    Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines. PMID:24790636

  6. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies

    PubMed Central

    Valera, Elvira; Masliah, Eliezer

    2013-01-01

    Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer’s disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson’s disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies. PMID:23384597

  7. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-01-01

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans. PMID:26919851

  8. From target identification to drug screening assays for neurodegenerative diseases.

    PubMed

    Zuccato, Chiara; Tartari, Marzia; Goffredo, Donato; Cattaneo, Elena; Rigamonti, Dorotea

    2005-09-01

    Treatment of neurodegenerative diseases represents a major challenge for the pharmaceutical industry. Key to developing novel and efficacious therapeutics is the discovery of new druggable targets. Toward this aim, the current drug discovery process is strongly relying on the improved understanding of disease mechanisms and on a synergistic approach with chemistry, molecular biology and robotics. In this scenario, we present the case of a newly discovered molecular mechanism that may be of interest for drug discovery programmes in Huntington's disease and other neurodegenerative diseases. PMID:15916902

  9. Biomarker Discovery in Neurodegenerative Diseases: A Proteomic Approach

    PubMed Central

    Shi, Min; Caudle, W. Michael; Zhang, Jing

    2010-01-01

    Biomarkers for neurodegenerative disorders are essential to facilitate disease diagnosis, ideally at early stages, monitor disease progression, and assess response to existing and future treatments. Application of proteomics to the human brain, cerebrospinal fluid and plasma has greatly hastened the unbiased and high-throughput searches for novel biomarkers. There are many steps critical to biomarker discovery, whether for neurodegenerative or other diseases, including sample preparation, protein/peptide separation and identification, as well as independent confirmation and validation. In this review we have summarized current proteomics technologies involved in discovery of biomarkers for neurodegenerative diseases, practical considerations and limitations of several major aspects, as well as the current status of candidate biomarkers revealed by proteomics for Alzheimer and Parkinson diseases. PMID:18938247

  10. Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases.

    PubMed

    Chen, Xiang-Jun; Xu, Huan; Cooper, Helen M; Liu, Yaobo

    2014-04-01

    Cytoplasmic dynein is the most important molecular motor driving the movement of a wide range of cargoes towards the minus ends of microtubules. As a molecular motor protein, dynein performs a variety of basic cellular functions including organelle transport and centrosome assembly. In the nervous system, dynein has been demonstrated to be responsible for axonal retrograde transport. Many studies have revealed direct or indirect evidence of dynein in neurodegenerative diseases such as amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, Alzheimer's disease, Parkinson's disease and Huntington's disease. Among them, a number of mutant proteins involved in various neurodegenerative diseases interact with dynein. Axonal transport disruption is presented as a common feature occurring in neurodegenerative diseases. Dynein heavy chain mutant mice also show features of neurodegenerative diseases. Moreover, defects of dynein-dependent processes such as autophagy or clearance of aggregation-prone proteins are found in most of these diseases. Lines of evidence have also shown that dynein is associated with neurodevelopmental diseases. In this review, we focus on dynein involvement in different neurological diseases and discuss potential underlying mechanisms.

  11. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    PubMed

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine. PMID:21422516

  12. Contributions of isolated Pacific populations to understanding neurodegenerative diseases.

    PubMed

    Garruto, Ralph M; Yanagihara, Richard

    2009-01-01

    Isolated human populations have provided a natural experimental laboratory for the ongoing study of human disease. In the mid-20th century a number of high-incidence foci of neurodegenerative diseases were brought to medical attention including kuru, amyotrophic lateral sclerosis, and parkinsonism-dementia. These foci were discovered in Papua New Guinea, West New Guinea, the Kii Peninsula of Japan, and in the Mariana Islands. The study of these diseases in isolated human groups has significantly contributed to our understanding of the cause and mechanisms of pathogenesis of these and related neurodegenerative disorders globally. This paper is dedicated to D. Carleton Gajdusek, a pioneer in the study of neurodegenerative diseases, whose decades of fieldwork and laboratory studies have led to numerous scientific discoveries that have reshaped our thinking and understanding about neurodegeneration.

  13. Neuroinflamm-aging and neurodegenerative diseases: an overview.

    PubMed

    Pizza, Vincenzo; Agresta, Anella; D'Acunto, Cosimo W; Festa, Michela; Capasso, Anna

    2011-08-01

    Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.

  14. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    PubMed

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  15. Microtubule-Stabilizing Agents as Potential Therapeutics for Neurodegenerative Disease

    PubMed Central

    Brunden, Kurt R.; Trojanowski, John Q.; Smith, Amos B.; Lee, Virginia M.-Y.; Ballatore, Carlo

    2014-01-01

    Microtubules (MTs)1, cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington’s disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders. PMID:24433963

  16. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    PubMed Central

    Frautschy, Sally

    2014-01-01

    The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer's disease, tauopathies, and Huntington's diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell. PMID:25386560

  17. RNA processing-associated molecular mechanisms of neurodegenerative diseases.

    PubMed

    Tang, Anna Y

    2016-08-01

    Dysfunctions of RNA processing and mutations of RNA binding proteins (RBPs) play a fundamental role in the pathogenesis of many neurodegenerative diseases. To elucidate the function of RNA processing and RBPs mutations in neuronal cells and to increase our understanding on the pathogenic mechanisms of neurodegeneration, I have reviewed recent advances on RNA processing-associated molecular mechanisms of neurodegenerative diseases, including RBPs-mediated dysfunction of RNA processing, dysfunctional microRNA (miRNA)-based regulation of gene expression, and oxidative RNA modification. I have focused on neurodegeneration induced by RBPs mutations, by dysfunction of miRNA regulation, and by the oxidized RNAs within neurons, and discuss how these dysfunctions have pathologically contributed to neurodegenerative diseases. The advances overviewed above will be valuable to basic investigation and clinical application of target diagnostic tests and therapies.

  18. Neural stem cell-based treatment for neurodegenerative diseases.

    PubMed

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury.

  19. The role of mitochondria in inherited neurodegenerative diseases.

    PubMed

    Kwong, Jennifer Q; Beal, M Flint; Manfredi, Giovanni

    2006-06-01

    In the past decade, the genetic causes underlying familial forms of many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich ataxia, hereditary spastic paraplegia, dominant optic atrophy, Charcot-Marie-Tooth type 2A, neuropathy ataxia and retinitis pigmentosa, and Leber's hereditary optic atrophy have been elucidated. However, the common pathogenic mechanisms of neuronal death are still largely unknown. Recently, mitochondrial dysfunction has emerged as a potential 'lowest common denominator' linking these disorders. In this review, we discuss the body of evidence supporting the role of mitochondria in the pathogenesis of hereditary neurodegenerative diseases. We summarize the principal features of genetic diseases caused by abnormalities of mitochondrial proteins encoded by the mitochondrial or the nuclear genomes. We then address genetic diseases where mutant proteins are localized in multiple cell compartments, including mitochondria and where mitochondrial defects are likely to be directly caused by the mutant proteins. Finally, we describe examples of neurodegenerative disorders where mitochondrial dysfunction may be 'secondary' and probably concomitant with degenerative events in other cell organelles, but may still play an important role in the neuronal decay. Understanding the contribution of mitochondrial dysfunction to neurodegeneration and its pathophysiological basis will significantly impact our ability to develop more effective therapies for neurodegenerative diseases. PMID:16805775

  20. From cellular senescence to age-associated diseases: the miRNA connection

    PubMed Central

    2012-01-01

    Cellular senescence has evolved from an in-vitro model system to study aging in vitro to a multifaceted phenomenon of in-vivo importance as senescent cells in vivo have been identified and their removal delays the onset of age-associated diseases in a mouse model system. From the large emerging class of non-coding RNAs, miRNAs have only recently been functionally implied in the regulatory networks that are modified during the aging process. Here we summarize examples of similarities between the differential expression of miRNAs during senescence and age-associated diseases and suggest that these similarities might emphasize the importance of senescence for the pathogenesis of age-associated diseases. Understanding such a connection on the level of miRNAs might offer valuable opportunities for designing novel diagnostic and therapeutic strategies. PMID:24472232

  1. Neuroprotective effects of berry fruits on neurodegenerative diseases

    PubMed Central

    Subash, Selvaraju; Essa, Musthafa Mohamed; Al-Adawi, Samir; Memon, Mushtaq A.; Manivasagam, Thamilarasan; Akbar, Mohammed

    2014-01-01

    Recent clinical research has demonstrated that berry fruits can prevent age-related neurodegenerative diseases and improve motor and cognitive functions. The berry fruits are also capable of modulating signaling pathways involved in inflammation, cell survival, neurotransmission and enhancing neuroplasticity. The neuroprotective effects of berry fruits on neurodegenerative diseases are related to phytochemicals such as anthocyanin, caffeic acid, catechin, quercetin, kaempferol and tannin. In this review, we made an attempt to clearly describe the beneficial effects of various types of berries as promising neuroprotective agents. PMID:25317174

  2. What can pluripotent stem cells teach us about neurodegenerative diseases?

    PubMed

    Wichterle, Hynek; Przedborski, Serge

    2010-07-01

    Neurodegenerative diseases represent a growing public health challenge. Current medications treat symptoms, but none halt or retard neurodegeneration. The recent advent of pluripotent cell biology has opened new avenues for neurodegenerative disease research. The greatest potential for induced pluripotent cells derived from affected individuals is likely to be their utility for modeling and understanding the mechanisms underlying neurodegenerative processes, and for searching for new treatments, including cell replacement therapies. However, much work remains to be done before pluripotent cells can be used for preclinical and clinical applications. Here we discuss the challenges of generating specific neural cell subtypes from pluripotent stem cells, the use of pluripotent stem cells to model both cell-autonomous and non-cell-autonomous mechanisms of neurodegeneration, whether adult-onset neurodegeneration can be emulated in short-term cultures and the hurdles of cell replacement therapy. Progress in these four areas will substantially accelerate effective application of pluripotent stem cells.

  3. Adult neurogenesis in the olfactory system and neurodegenerative disease.

    PubMed

    Gallarda, B W; Lledo, P-M

    2012-12-01

    The olfactory system is unique in many respects-two of which include the process of adult neurogenesis which continually supplies it with newborn neurons, and the fact that neurodegenerative diseases are often accompanied by a loss of smell. A link between these two phenomena has been hypothesized, but recent evidence for the lack of robust adult neurogenesis in the human olfactory system calls into question this hypothesis. Nevertheless, model organisms continue to play a critical role in the exploration of neurodegenerative disease. In part one of this review we discuss the most promising recent technological advancements for studying adult neurogenesis in the murine olfactory system. Part two continues by looking at emerging evidence related to adult neurogenesis in neurodegenerative disease studied in model organisms and the differences between animal and human olfactory system adult neurogenesis. Hopefully, the careful application of advanced research methods to the study of neurodegenerative disease in model organisms, while taking into account the recently reported differences between the human and model organism olfactory system, will lead to a better understanding of the reasons for the susceptibility of olfaction to disease.

  4. Pharmacotherapy for Neurodegenerative Diseases: Are We Approaching the Tipping Point?

    PubMed

    Honig, P K

    2015-11-01

    Neurodegenerative diseases continue to represent major unmet medical and public health needs and will increasingly strain the healthcare system as people live longer due to medical advances in other diseases. Hopefully the emergence of increased understanding of the biology of these conditions coupled with novel clinical pharmacology tools, clinical trial designs, and regulatory innovation will allow the emergence of highly effective symptomatic and disease modifying pharmacotherapies. PMID:26478996

  5. Sign Language Aphasia from a Neurodegenerative Disease

    PubMed Central

    Falchook, Adam D.; Mayberry, Rachel I.; Poizner, Howard; Burtis, David Brandon; Doty, Leilani; Heilman, Kenneth M.

    2012-01-01

    While Alois Alzheimer recognized the effects of the disease he described on speech and language in his original description of the disease in 1907, the effects of Alzheimer disease on language in deaf signers has not previously been reported. We evaluated a 55 year old right handed congenitally deaf woman with a two year history of progressive memory loss and a deterioration of her ability to communicate in American Sign Language, which she learned at the age of eight. Examination revealed that she had impaired episodic memory as well as marked impairments in the production and comprehension of fingerspelling and grammatically complex sentences. She also had signs of anomia as well as an ideomotor apraxia and visual-spatial dysfunction. This report illustrates the challenges in evaluation of a patient for the presence of degenerative dementia when the person is deaf from birth, uses sign language, and has a late age of primary language acquisition. Although our patient could neither speak nor hear, in many respects her cognitive disorders mirror those of patients with Alzheimer disease who had normally learned to speak. PMID:22823942

  6. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    PubMed

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  7. Les Liaisons Dangereuses: Cancer-Related Genes and Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Ghetti, Bernardino; Buonaguro, Franco M.

    2014-07-01

    The following sections are included: * INTRODUCTION * MUTATIONS IN THE CSF1R GENE ASSOCIATED WITH DIFFUSE LEUKOENCEPHALOPATHY WITH SPHEROIDS AND HUMAN CANCERS. * A SPECIAL LINK HAS BEEN SHOWN BETWEEN PTEN AND AD. * ACETYLCHOLINE DEFICIENCY AND PATHOGENESIS OF AD. * MIRNAS AND COMMON PATHWAYS IN CANCER AND NEURODEGENERATIVE DISEASE. * SUMMARY * REFERENCES

  8. [Caregivers of people with neurodegenerative diseases: from help to delegation].

    PubMed

    Delzescaux, Sabine; Blondel, Frédéric

    2015-01-01

    Being a caregiver is difficult, even more so when it comes to helping people with a neurodegenerative disease. These caregivers, either family members or close friends, are confronted with an unexpected delegation which can prove to be highly complex as the pitfalls can indeed be significant. Moreover, the support the caregivers can provide depends on the support they can get for themselves. PMID:26364815

  9. Alzheimer's disease: An acquired neurodegenerative laminopathy

    PubMed Central

    Frost, Bess

    2016-01-01

    ABSTRACT The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a “nucleoplasmic reticulum,” into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination. PMID:27167528

  10. Alzheimer's disease: An acquired neurodegenerative laminopathy.

    PubMed

    Frost, Bess

    2016-05-01

    The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a "nucleoplasmic reticulum," into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination.

  11. Alzheimer's disease: An acquired neurodegenerative laminopathy.

    PubMed

    Frost, Bess

    2016-05-01

    The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a "nucleoplasmic reticulum," into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination. PMID:27167528

  12. Summary of cerebrospinal fluid routine parameters in neurodegenerative diseases.

    PubMed

    Jesse, Sarah; Brettschneider, Johannes; Süssmuth, Sigurd D; Landwehrmeyer, Bernhard G; von Arnim, Christine A F; Ludolph, Albert C; Tumani, Hayrettin; Otto, Markus

    2011-06-01

    In neurodegenerative diseases, cerebrospinal fluid analysis (CSF) is predominantly performed to exclude inflammatory diseases and to perform a risk assessment in dementive disorders by measurement of tau proteins and amyloid beta peptides. However, large scale data on basic findings of CSF routine parameters are generally lacking. The objective of the study was to define a normal reference spectrum of routine CSF parameters in neurodegenerative diseases. Routine CSF parameters (white cell count, lactate and albumin concentrations, CSF/serum quotients of albumin (Q (alb)), IgG, IgA, IgM, and oligoclonal IgG bands (OCB)) were retrospectively analyzed in an academic research setting. A total of 765 patients (Alzheimer's disease (AD), Parkinson's disease (PD), Parkinson's disease dementia (PDD), vascular dementia (VD), frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multisystem atrophy (MSA), motor neuron diseases (MND), spinocerebellar ataxia (SCA), Huntington's disease (HD)) and non-demented control groups including a group of patients with muscular disorders (MD). The main outcome measures included statistical analyses of routine CSF parameters. Mildly elevated Q (alb) were found in a small percentage of nearly all subgroups and in a higher proportion of patients with PSP, MSA, VD, PDD, and MND. With the exception of 1 MND patient, no intrathecal Ig synthesis was observed. Isolated OCBs in CSF were sometimes found in patients with neurodegenerative diseases without elevated cell counts; lactate levels were always normal. A slightly elevated Q (alb) was observed in a subgroup of patients with neurodegenerative diseases and does not exclude the diagnosis. Extensive elevation of routine parameters is not characteristic and should encourage a re-evaluation of the clinical diagnosis.

  13. ETHICAL AND GENETIC ASPECTS REGARDING PRESYMPTOMATIC TESTING FOR NEURODEGENERATIVE DISEASES.

    PubMed

    Cozaru, Georgeta Camelial; Aşchie, Mariana; Mitroi, Anca Florentina; Poinăreanu, I; Gorduza, E V

    2016-01-01

    Neurodegenerative diseases, such as Alzheimer's dementia, Huntington's chorea, Parkinson's disease or spinocerebellar ataxia, manifests into adulthood with an insidious onset, slowly of progressive symptoms. All of these diseases are characterized by presimptomatic stages that preceded with many years of clinical debut. In Parkinson's disease, more than half of the dopaminergic neurons of the black substance are lost before the advent of motor characteristic manifestations. In Huntington's chorea, the progressive neurodegenerative disease could be diagnose prenatal and presymptomatic by analyse of the number of CAG repeats in exon 1 of the huntingtin gene. A similar mechanism represented by expansion of trinucleotide repeats during hereditary transmission from parents to children was identified in fragile X syndrome, spinocerebellar ataxia, spinal muscular and bulbar atrophy, or myotonic dystrophy. Presymptomatic diagnosis in all these progressive diseases raise many ethical issues, due to the psychological impact that can cause the prediction of a disease for which there is currently no curative treatment. Therefore, a positive result can produce serious psychological trauma and major changes in the lifestyle of the individual, instead, a negative result can bring joy and tranquillity. But the problem arises if presymptomatic testing in these neurodegenerative diseases brings greater benefits compared to the possible psychological damage, which can add the risk of stigmatization or discrimination. PMID:27125067

  14. Human-induced pluripotent stem cells: potential for neurodegenerative diseases.

    PubMed

    Ross, Christopher A; Akimov, Sergey S

    2014-09-15

    The cell biology of human neurodegenerative diseases has been difficult to study till recently. The development of human induced pluripotent stem cell (iPSC) models has greatly enhanced our ability to model disease in human cells. Methods have recently been improved, including increasing reprogramming efficiency, introducing non-viral and non-integrating methods of cell reprogramming, and using novel gene editing techniques for generating genetically corrected lines from patient-derived iPSCs, or for generating mutations in control cell lines. In this review, we highlight accomplishments made using iPSC models to study neurodegenerative disorders such as Huntington's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Fronto-Temporal Dementia, Alzheimer's disease, Spinomuscular Atrophy and other polyglutamine diseases. We review disease-related phenotypes shown in patient-derived iPSCs differentiated to relevant neural subtypes, often with stressors or cell "aging", to enhance disease-specific phenotypes. We also discuss prospects for the future of using of iPSC models of neurodegenerative disorders, including screening and testing of therapeutic compounds, and possibly of cell transplantation in regenerative medicine. The new iPSC models have the potential to greatly enhance our understanding of pathogenesis and to facilitate the development of novel therapeutics.

  15. Epigenetic mechanisms in neurological and neurodegenerative diseases

    PubMed Central

    Landgrave-Gómez, Jorge; Mercado-Gómez, Octavio; Guevara-Guzmán, Rosalinda

    2015-01-01

    The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS’s regulation and neurological disorders are mediated via modulation of chromatin structure. “Epigenetics”, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD+) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics

  16. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  17. Protein aggregate spreading in neurodegenerative diseases: Problems and perspectives

    PubMed Central

    Lee, Seung-Jae; Lim, Hee-Sun; Masliah, Eliezer; Lee, He-Jin

    2014-01-01

    Progressive accumulation of specific protein aggregates is a defining feature of many major neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, fronto-temporal dementia, Huntington’s disease, and Creutzfeldt–Jakob disease (CJD). Findings from several recent studies have suggested that aggregation-prone proteins, such as tau, α-synuclein, polyglutamine-containing proteins, and amyloid-β, can spread to other cells and brain regions, a phenomenon considered unique to prion disorders, such as CJD and bovine spongiform encephalopathy. Cell-to-cell propagation of protein aggregates may be the general underlying principle for progressive deterioration of neurodegenerative diseases. This may also have significant implications in cell replacement therapies, as evidenced by the propagation of α-synuclein aggregates from host to grafted cells in long-term transplants in Parkinson’s patients. Here, we review recent progress in protein aggregate propagation in experimental model systems and discuss outstanding questions and future perspectives. Understanding the mechanisms of this pathological spreading may open the way to unique opportunities for development of diagnostic techniques and novel therapies for protein misfolding-associated neurodegenerative diseases. PMID:21624403

  18. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases.

    PubMed

    Tanna, Tanmay; Sachan, Vatsal

    2014-01-01

    Mesenchymal Stem Cells or Marrow Stromal Cells (MSCs) have long been viewed as a potent tool for regenerative cell therapy. MSCs are easily accessible from both healthy donor and patient tissue and expandable in vitro on a therapeutic scale without posing significant ethical or procedural problems. MSC based therapies have proven to be effective in preclinical studies for graft versus host disease, stroke, myocardial infarction, pulmonary fibrosis, autoimmune disorders and many other conditions and are currently undergoing clinical trials at a number of centers all over the world. MSCs are also being extensively researched as a therapeutic tool against neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Multiple Sclerosis (MS). MSCs have been discussed with regard to two aspects in the context of neurodegenerative diseases: their ability to transdifferentiate into neural cells under specific conditions and their neuroprotective and immunomodulatory effects. When transplanted into the brain, MSCs produce neurotrophic and growth factors that protect and induce regeneration of damaged tissue. Additionally, MSCs have also been explored as gene delivery vehicles, for example being genetically engineered to over express glial-derived or brain-derived neurotrophic factor in the brain. Clinical trials involving MSCs are currently underway for MS, ALS, traumatic brain injuries, spinal cord injuries and stroke. In the present review, we explore the potential that MSCs hold with regard to the aforementioned neurodegenerative diseases and the current scenario with reference to the same.

  19. [Are we underestimating occupational risks for neurodegenerative diseases?].

    PubMed

    Oddone, Enrico; Imbriani, Marcello

    2015-01-01

    In recent years a great number of studies suggests that occupational exposures could play a role in the onset of some neurodegenerative diseases. The literature data are more numerous for Parkinson's disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis, although to date no specific occupational exposure was proved to be a definite causal factor. This lack of information is attributable both to the complex patogenesis of these diseases and to a delay regarding this field of research with respect to others pathologies. Nevertheless, available evidence oblige researchers to deepen the studies of occupational exposures as risk factors of neurodegenerative diseases, in order to provide a solid basis possible preventive measures for a class of pathologies with high social impact, both in terms of therapies and in terms of disability.

  20. PET/SPECT imaging agents for neurodegenerative diseases

    PubMed Central

    Zhu, Lin; Ploessl, Karl; Kung, Hank F.

    2014-01-01

    Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative disease have a significant impact on clinical diagnosis and patient care. The examples of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, ie radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays. PMID:24676152

  1. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    PubMed Central

    Godoy, Maria Dantas Costa Lima; Voegels, Richard Louis; Pinna, Fábio de Rezende; Imamura, Rui; Farfel, José Marcelo

    2014-01-01

    Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia. PMID:25992176

  2. Extracting regional brain patterns for classification of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pulido, Andrea; Rueda, Andrea; Romero, Eduardo

    2013-11-01

    In structural Magnetic Resonance Imaging (MRI), neurodegenerative diseases generally present complex brain patterns that can be correlated with di erent clinical onsets of this pathologies. An objective method that aims to determine both global and local changes is not usually available in clinical practice, thus the interpretation of these images is strongly dependent on the radiologist's skills. In this paper, we propose a strategy which interprets the brain structure using a framework that highlights discriminant brain patterns for neurodegenerative diseases. This is accomplished by combining a probabilistic learning technique, which identi es and groups regions with similar visual features, with a visual saliency method that exposes relevant information within each region. The association of such patterns with a speci c disease is herein evaluated in a classi cation task, using a dataset including 80 Alzheimer's disease (AD) patients and 76 healthy subjects (NC). Preliminary results show that the proposed method reaches a maximum classi cation accuracy of 81.39%.

  3. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    PubMed

    Yu-Wai-Man, Patrick

    2016-10-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation.

  4. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    PubMed Central

    Yu-Wai-Man, Patrick

    2016-01-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation. PMID:27002113

  5. Cerebral correlates of psychotic syndromes in neurodegenerative diseases

    PubMed Central

    Jellinger, Kurt A

    2012-01-01

    Abstract Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer’s disease, synucleinopathies (Parkinson’s disease, dementia with Lewy bodies), Huntington’s disease, frontotemporal degenerations, motoneuron and prion diseases. Many of these psychiatric manifestations may be early expressions of cognitive impairment, but often there is a dissociation between psychotic/behavioural symptoms and the rather linear decline in cognitive function, suggesting independent pathophysiological mechanisms. Strictly neuropathological explanations are likely to be insufficient to explain them, and a large group of heterogeneous factors (environmental, neurochemical changes, genetic factors, etc.) may influence their pathogenesis. Clinico-pathological evaluation of behavioural and psychotic symptoms (PS) in the setting of neurodegenerative and dementing disorders presents a significant challenge for modern neurosciences. Recognition and understanding of these manifestations may lead to the development of more effective preventive and therapeutic options that can serve to delay long-term progression of these devastating disorders and improve the patients’ quality of life. A better understanding of the pathophysiology and distinctive pathological features underlying the development of PS in neurodegenerative diseases may provide important insights into psychotic processes in general. PMID:21418522

  6. Multimodality imaging of Alzheimer disease and other neurodegenerative dementias.

    PubMed

    Nasrallah, Ilya M; Wolk, David A

    2014-12-01

    Neurodegenerative diseases, such as Alzheimer disease, result in cognitive decline and dementia and are a leading cause of mortality in the growing elderly population. These progressive diseases typically have an insidious onset, with overlapping clinical features early in the disease course that make diagnosis challenging. The neurodegenerative diseases are associated with characteristic, although not completely understood, changes in the brain: abnormal protein deposition, synaptic dysfunction, neuronal injury, and neuronal death. Neuroimaging biomarkers-principally regional atrophy on structural MR imaging, patterns of hypometabolism on (18)F-FDG PET, and detection of cerebral amyloid plaque on amyloid PET--are able to evaluate the patterns of these abnormalities in the brain to improve early diagnosis and help predict the disease course. These techniques have unique strengths and synergies in multimodality evaluation of the patient with cognitive decline or dementia. This review discusses the key imaging biomarkers from MR imaging, (18)F-FDG PET, and amyloid PET; the imaging features of the most common neurodegenerative dementias; the role of various neuroimaging studies in differential diagnosis and prognosis; and some promising imaging techniques under development.

  7. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives

    PubMed Central

    de Tommaso, Marina; Arendt-Nielsen, Lars; Defrin, Ruth; Kunz, Miriam; Pickering, Gisele; Valeriani, Massimiliano

    2016-01-01

    Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD related disorders, motor neuron diseases (MND), Huntington's disease (HD), spinocerebellar ataxia (SCA), and spinal muscular atrophy (SMA), is mainly addressed to motor and cognitive impairment, with special care to vital functions as breathing and feeding. Many of these patients complain of painful symptoms though their origin is variable, and their presence is frequently not considered in the treatment guidelines, leaving their management to the decision of the clinicians alone. However, studies focusing on pain frequency in such disorders suggest a high prevalence of pain in selected populations from 38 to 75% in AD, 40% to 86% in PD, and 19 to 85% in MND. The methods of pain assessment vary between studies so the type of pain has been rarely reported. However, a prevalent nonneuropathic origin of pain emerged for MND and PD. In AD, no data on pain features are available. No controlled therapeutic trials and guidelines are currently available. Given the relevance of pain in neurodegenerative disorders, the comprehensive understanding of mechanisms and predisposing factors, the application and validation of specific scales, and new specific therapeutic trials are needed. PMID:27313396

  8. PREFACE: Physics and biology of neurodegenerative diseases Physics and biology of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pastore, Annalisa

    2012-06-01

    , about 15 years after the original reports, it is clear that amyloids are special structures that occur in nature under several different guises, some good, some evil [3]. The number of diseases associated with misfolding and fibrillogenesis has steadily increased. Examples of fairly common pathologies associated with fibre formation include Alzheimer's disease (currently one of the major threats for human health in our increasingly aging world), Parkinson's disease and several rare, but not less severe, pathologies. On the other hand, it is also clear that amyloid formation is a convenient mechanism for storing peptides and/or proteins in a compact and resistant way. The number of organisms/tissues in which amyloid deposits are found is thus increasing. It is also not too far-fetched to expect that the mechanical properties of amyloids could be used in biotechnology to design new materials. Because of the importance of this topic in so many scientific fields, we have dedicated this special issue of Journal of Physics: Condensed Matter to the topic of protein aggregation and disease. In the following pages we have collected two reviews and five articles that explore new and interesting developments in the field. References [1] Olby R 1994 The Path of the Double Helix: The Discovery of DNA (New York: Dover) [2] Dobson C M 2004 Principles of protein folding, misfolding and aggregation Semin. Cell Dev. Biol. 15 3-16 [3] Hammer N D, Wang X, McGuffie B A, Chapman M R 2008 Amyloids: friend or foe? J. Alzheimers Dis. 13 407-19 Physics and biology of neurodegenerative diseases contents Protein aggregation and misfolding: good or evil?Annalisa Pastore and Pierandrea Temussi Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic toolsM Di Carlo, D Giacomazza and P L San Biagio Entrapment of Aβ1-40 peptide in unstructured aggregatesC Corsale, R Carrotta, M R Mangione, S Vilasi, A Provenzano, G Cavallaro, D Bulone and P L San Biagio Elemental micro

  9. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease)

    PubMed Central

    Spuch, Carlos; Navarro, Carmen

    2011-01-01

    Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB). Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease. PMID:22203906

  10. Stem cell challenges in the treatment of neurodegenerative disease.

    PubMed

    Feng, Zhongling; Gao, Feng

    2012-02-01

    Neurodegenerative diseases result from the gradual and progressive loss of neural cells and lead to nervous system dysfunction. The rapidly advancing stem cell field is providing attractive alternative options for fighting these diseases. Results have provided proof of principle that cell replacement can work in humans with Parkinson's disease (PD). However, three clinical studies of cell transplantation were published that found no net benefit, while patients in two of the studies developed dyskinesias that persisted despite reductions in treatment. Induced pluripotent stem cells (iPSC) have major potential advantages because patient-specific neuroblasts are suitable for transplantation, avoid immune reactions, and can be produced without the use of human ES cells (hESC). Although iPSCs have not been successfully used in clinical trials for PD, patients with amyotrophic lateral sclerosis (ALS) were treated with autologous stem cells and, though they had some degree of decline one year after treatment, they were still improved compared with the preoperative period or without any drug therapy. In addition, neural stem cells (NSCs), via brain-derived neurotrophic factor (BDNF), have been shown to ameliorate complex behavioral deficits associated with widespread Alzheimer's disease (AD) pathology in a transgenic mouse model of AD. So far, the FDA lists 18 clinical trials treating multiple sclerosis (MS), but most are in preliminary stages. This article serves as an overview of recent studies in stem cell and regenerative approaches to the above chronic neurodegenerative disorders. There are still many obstacles to the use of stem cells as a cure for neurodegenerative disease, especially because we still don't fully understand the true mechanisms of these diseases. However, there is hope in the potential of stem cells to help us learn and understand a great deal more about the mechanisms underlying these devastating neurodegenerative diseases.

  11. PREFACE: Physics and biology of neurodegenerative diseases Physics and biology of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pastore, Annalisa

    2012-06-01

    , about 15 years after the original reports, it is clear that amyloids are special structures that occur in nature under several different guises, some good, some evil [3]. The number of diseases associated with misfolding and fibrillogenesis has steadily increased. Examples of fairly common pathologies associated with fibre formation include Alzheimer's disease (currently one of the major threats for human health in our increasingly aging world), Parkinson's disease and several rare, but not less severe, pathologies. On the other hand, it is also clear that amyloid formation is a convenient mechanism for storing peptides and/or proteins in a compact and resistant way. The number of organisms/tissues in which amyloid deposits are found is thus increasing. It is also not too far-fetched to expect that the mechanical properties of amyloids could be used in biotechnology to design new materials. Because of the importance of this topic in so many scientific fields, we have dedicated this special issue of Journal of Physics: Condensed Matter to the topic of protein aggregation and disease. In the following pages we have collected two reviews and five articles that explore new and interesting developments in the field. References [1] Olby R 1994 The Path of the Double Helix: The Discovery of DNA (New York: Dover) [2] Dobson C M 2004 Principles of protein folding, misfolding and aggregation Semin. Cell Dev. Biol. 15 3-16 [3] Hammer N D, Wang X, McGuffie B A, Chapman M R 2008 Amyloids: friend or foe? J. Alzheimers Dis. 13 407-19 Physics and biology of neurodegenerative diseases contents Protein aggregation and misfolding: good or evil?Annalisa Pastore and Pierandrea Temussi Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic toolsM Di Carlo, D Giacomazza and P L San Biagio Entrapment of Aβ1-40 peptide in unstructured aggregatesC Corsale, R Carrotta, M R Mangione, S Vilasi, A Provenzano, G Cavallaro, D Bulone and P L San Biagio Elemental micro

  12. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  13. Searching for MIND: microRNAs in neurodegenerative diseases.

    PubMed

    Barbato, Christian; Ruberti, Francesca; Cogoni, Carlo

    2009-01-01

    In few years our understanding of microRNA (miRNA) biogenesis, molecular mechanisms by which miRNAs regulate gene expression, and the functional roles of miRNAs has been expanded. Interestingly, numerous miRNAs are expressed in a spatially and temporally controlled manner in the nervous system, suggesting that their posttrascriptional regulation may be particularly relevant in neural development and function. MiRNA studies in neurobiology showed their involvement in synaptic plasticity and brain diseases. In this review ,correlations between miRNA-mediated gene silencing and Alzheimer's, Parkinson's, and other neurodegenerative diseases will be discussed. Molecular and cellular neurobiological studies of the miRNAs in neurodegeneration represent the exploration of a new Frontier of miRNAs biology and the potential development of new diagnostic tests and genetic therapies for neurodegenerative diseases.

  14. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases

    PubMed Central

    Bento, Carla F.

    2015-01-01

    Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating. PMID:26101267

  15. Potential application of lithium in Parkinson's and other neurodegenerative diseases.

    PubMed

    Lazzara, Carol A; Kim, Yong-Hwan

    2015-01-01

    Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson's disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of calpain. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases.

  16. Epidemiology of mild traumatic brain injury and neurodegenerative disease

    PubMed Central

    Gardner, Raquel C.; Yaffe, Kristine

    2015-01-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma has been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. PMID:25748121

  17. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    PubMed Central

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  18. Potential application of lithium in Parkinson's and other neurodegenerative diseases

    PubMed Central

    Lazzara, Carol A.; Kim, Yong-Hwan

    2015-01-01

    Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson's disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of calpain. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases. PMID:26578864

  19. Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities

    PubMed Central

    Pirooznia, Sheila K.; Elefant, Felice

    2013-01-01

    Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and HATs in

  20. Dysphagia in stroke, neurodegenerative disease, and advanced dementia.

    PubMed

    Altman, Kenneth W; Richards, Amanda; Goldberg, Leanne; Frucht, Steven; McCabe, Daniel J

    2013-12-01

    Aspiration risk from dysphagia increases with central and peripheral neurologic disease. Stroke, microvascular ischemic disease, a spectrum of neurodegenerative diseases, and advancing dementia all have unique aspects. However, there are distinct commonalities in this population. Increasing nutritional requirements to stave off oropharyngeal muscular atrophy and a sedentary lifestyle further tax the patient's abilities to safely swallow. This article reviews stroke, muscular dystrophy, myasthenia gravis, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and advanced dementia. Approaches to screening and evaluation, recognizing sentinel indicators of decline that increase aspiration risk, and options for managing global laryngeal dysfunction are also presented. PMID:24262965

  1. [Induced pluripotent stem cells revolutionise research of neurodegenerative diseases].

    PubMed

    Schmidt, Sissel Ida; Knudsen, Matias Jul; Barnkob, Helle Bogetofte; Meyer, Morten

    2016-07-18

    Research into the causes of neurodegenerative diseases like Parkinson's- and Alzheimer's disease has long been hampered by the lack of access to live disease-afflicted neurons for in vitro studies. The introduction of induced pluripotent stem (iPS) cells has made such studies possible. iPS cells can be reprogrammed from somatic patient-derived cells (e.g. skin cells) and differentiated into any cell type of the body. This allows for the production of neurons, which have the genetic background of the patients and show disease-relevant phenotypes.

  2. Dysphagia in stroke, neurodegenerative disease, and advanced dementia.

    PubMed

    Altman, Kenneth W; Richards, Amanda; Goldberg, Leanne; Frucht, Steven; McCabe, Daniel J

    2013-12-01

    Aspiration risk from dysphagia increases with central and peripheral neurologic disease. Stroke, microvascular ischemic disease, a spectrum of neurodegenerative diseases, and advancing dementia all have unique aspects. However, there are distinct commonalities in this population. Increasing nutritional requirements to stave off oropharyngeal muscular atrophy and a sedentary lifestyle further tax the patient's abilities to safely swallow. This article reviews stroke, muscular dystrophy, myasthenia gravis, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and advanced dementia. Approaches to screening and evaluation, recognizing sentinel indicators of decline that increase aspiration risk, and options for managing global laryngeal dysfunction are also presented.

  3. Stem cells for the treatment of neurodegenerative diseases.

    PubMed

    Dantuma, Elise; Merchant, Stephanie; Sugaya, Kiminobu

    2010-12-10

    Stem cells offer an enormous pool of resources for the understanding of the human body. One proposed use of stem cells has been as an autologous therapy. The use of stem cells for neurodegenerative diseases has become of interest. Clinical applications of stem cells for Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis will increase in the coming years, and although great care will need to be taken when moving forward with prospective treatments, the application of stem cells is highly promising.

  4. Neural substrates of spontaneous narrative production in focal neurodegenerative disease.

    PubMed

    Gola, Kelly A; Thorne, Avril; Veldhuisen, Lisa D; Felix, Cordula M; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P; Stanley, Christine M; Glenn, Shenly; Miller, Bruce L; Rankin, Katherine P

    2015-12-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups. Storytelling patterns may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls (NC)) were analyzed for storytelling frequency and characteristics, and videos of the interactions were rated for patients' level of social attentiveness. Compared to controls, svPPAs told more stories and autobiographical stories, and perseverated on aspects of self during the interaction, whereas ADs told fewer autobiographical stories than NCs. svPPAs and bvFTDs were rated as less attentive to social cues. Aspects of storytelling were related to diverse cognitive and socio-emotional functions, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, narrative evaluations patterns, and social attentiveness correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. PMID:26485159

  5. Heavy metals and neurodegenerative diseases: an observational study.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; Calabrò, Rocco Salvatore; D'Aleo, Giangaetano; Marra, Angela; Sessa, Edoardo; Bua, Daniel Giuseppe; Potortì, Angela Giorgia; Dugo, Giacomo; Bramanti, Placido; Mazzon, Emanuela

    2014-11-01

    In this study, we evaluated the levels of some of the most investigated metals (Cu, Se, Zn, Pb, and Hg) in the blood of patients affected by the most common chronic neurodegenerative diseases like Alzheimer's disease (AD) and multiple sclerosis (MS), in order to better clarify their involvement. For the first time, we investigated a Sicilian population living in an area exposed to a potentially contaminated environment from dust and fumes of volcano Etna and consumer of a considerable quantity of fish in their diet, so that this represents a good cohort to demonstrate a possible link between metals levels and development of neurodegenerative disorders. More specifically, 15 patients affected by AD, 41 patients affected by MS, 23 healthy controls, and 10 healthy elderly controls were recruited and subjected to a venous blood sampling. Quantification of heavy metals was performed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This technique has allowed us to establish that there is a concomitance of heavy metal unbalance associated with AD more than in other neurodegenerative pathologies, such as MS. Also, we can assess that the concentration of these elements is independent from the diet, especially from occasional or habitual consumption of fruits and vegetables, prevalence in the diet of meat or fish, possible exposure to contaminated environment due both to the occupation and place of residence.

  6. Oxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases

    PubMed Central

    Chang, Yu-Chun

    2016-01-01

    Aging-associated cardiovascular diseases (CVDs) have some risk factors that are closely related to oxidative stress. Salvia miltiorrhiza (SM) has been used commonly to treat CVDs for hundreds of years in the Chinese community. We aimed to explore the effects of SM on oxidative stress in aging-associated CVDs. Through literature searches using Medicine, PubMed, EMBASE, Cochrane library, CINAHL, and Scopus databases, we found that SM not only possesses antioxidant, antiapoptotic, and anti-inflammatory effects but also exerts angiogenic and cardioprotective activities. SM may reduce the production of reactive oxygen species by inhibiting oxidases, reducing the production of superoxide, inhibiting the oxidative modification of low-density lipoproteins, and ameliorating mitochondrial oxidative stress. SM also increases the activities of catalase, manganese superoxide dismutase, glutathione peroxidase, and coupled endothelial nitric oxide synthase. In addition, SM reduces the impact of ischemia/reperfusion injury, prevents cardiac fibrosis after myocardial infarction, preserves cardiac function in coronary disease, maintains the integrity of the blood-brain barrier, and promotes self-renewal and proliferation of neural stem/progenitor cells in stroke. However, future clinical well-designed and randomized control trials will be necessary to confirm the efficacy of SM in aging-associated CVDs. PMID:27807472

  7. Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species

    PubMed Central

    Kovacic, Peter; Somanathan, Ratnasamy

    2012-01-01

    Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable. PMID:23730253

  8. Mitochondrial quality control: decommissioning power plants in neurodegenerative diseases.

    PubMed

    Mukherjee, Rukmini; Chakrabarti, Oishee

    2013-01-01

    The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration. PMID:24288463

  9. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders.

    PubMed

    Jucker, Mathias; Walker, Lary C

    2011-10-01

    The misfolding and aggregation of specific proteins is a seminal occurrence in a remarkable variety of neurodegenerative disorders. In Alzheimer disease (the most prevalent cerebral proteopathy), the two principal aggregating proteins are β-amyloid (Aβ) and tau. The abnormal assemblies formed by conformational variants of these proteins range in size from small oligomers to the characteristic lesions that are visible by optical microscopy, such as senile plaques and neurofibrillary tangles. Pathologic similarities with prion disease suggest that the formation and spread of these proteinaceous lesions might involve a common molecular mechanism-corruptive protein templating. Experimentally, cerebral β-amyloidosis can be exogenously induced by exposure to dilute brain extracts containing aggregated Aβ seeds. The amyloid-inducing agent probably is Aβ itself, in a conformation generated most effectively in the living brain. Once initiated, Aβ lesions proliferate within and among brain regions. The induction process is governed by the structural and biochemical nature of the Aβ seed, as well as the attributes of the host, reminiscent of pathogenically variant prion strains. The concept of prionlike induction and spreading of pathogenic proteins recently has been expanded to include aggregates of tau, α-synuclein, huntingtin, superoxide dismutase-1, and TDP-43, which characterize such human neurodegenerative disorders as frontotemporal lobar degeneration, Parkinson/Lewy body disease, Huntington disease, and amyotrophic lateral sclerosis. Our recent finding that the most effective Aβ seeds are small and soluble intensifies the search in bodily fluids for misfolded protein seeds that are upstream in the proteopathic cascade, and thus could serve as predictive diagnostics and the targets of early, mechanism-based interventions. Establishing the clinical implications of corruptive protein templating will require further mechanistic and epidemiologic investigations

  10. The role of the Wnt canonical signaling in neurodegenerative diseases.

    PubMed

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about. PMID:27370940

  11. The role of the Wnt canonical signaling in neurodegenerative diseases.

    PubMed

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.

  12. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy. PMID:21258649

  13. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    PubMed Central

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Cheng, Shin-Nan; Lee, Hsiu-Fen; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2015-01-01

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases. PMID:26712747

  14. Developing neural stem cell-based treatments for neurodegenerative diseases.

    PubMed

    Byrne, James A

    2014-05-30

    Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer's disease. Currently, no effective therapies for Alzheimer's disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer's disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer's disease.

  15. Creatine for neuroprotection in neurodegenerative disease: end of story?

    PubMed

    Bender, Andreas; Klopstock, Thomas

    2016-08-01

    Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases.

  16. Mesenchymal stem cells for the treatment of neurodegenerative disease

    PubMed Central

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-01-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed. PMID:21082892

  17. Creatine for neuroprotection in neurodegenerative disease: end of story?

    PubMed

    Bender, Andreas; Klopstock, Thomas

    2016-08-01

    Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases. PMID:26748651

  18. Mesenchymal stem cells for the treatment of neurodegenerative disease.

    PubMed

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-11-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

  19. Human embryonic stem cell therapies for neurodegenerative diseases.

    PubMed

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  20. Resting state brain networks and their implications in neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong

    2012-10-01

    Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.

  1. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models.

    PubMed

    Sandoe, Jackson; Eggan, Kevin

    2013-07-01

    Human neurodegenerative disorders are among the most difficult to study. In particular, the inability to readily obtain the faulty cell types most relevant to these diseases has impeded progress for decades. Recent advances in pluripotent stem cell technology now grant access to substantial quantities of disease-pertinent neurons both with and without predisposing mutations. While this suite of technologies has revolutionized the field of 'in vitro disease modeling', great care must be taken in their deployment if robust, durable discoveries are to be made. Here we review what we perceive to be several of the stumbling blocks in the use of stem cells for the study of neurological disease and offer strategies to overcome them.

  2. Corruption and spread of pathogenic proteins in neurodegenerative diseases.

    PubMed

    Walker, Lary C; LeVine, Harry

    2012-09-28

    With advancing age, the brain becomes increasingly susceptible to neurodegenerative diseases, most of which are characterized by the misfolding and errant aggregation of certain proteins. The induction of aggregation involves a crystallization-like seeding mechanism by which a specific protein is structurally corrupted by its misfolded conformer. The latest research indicates that, once formed, proteopathic seeds can spread from one locale to another via cellular uptake, transport, and release. Impeding this process could represent a unified therapeutic strategy for slowing the progression of a wide range of currently intractable disorders.

  3. Neural basis of interpersonal traits in neurodegenerative diseases.

    PubMed

    Sollberger, Marc; Stanley, Christine M; Wilson, Stephen M; Gyurak, Anett; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Weiner, Michael W; Miller, Bruce L; Rankin, Katherine P

    2009-11-01

    Several functional and structural imaging studies have investigated the neural basis of personality in healthy adults, but human lesions studies are scarce. Personality changes are a common symptom in patients with neurodegenerative diseases like frontotemporal dementia (FTD) and semantic dementia (SD), allowing a unique window into the neural basis of personality. In this study, we used the Interpersonal Adjective Scales to investigate the structural basis of eight interpersonal traits (dominance, arrogance, coldness, introversion, submissiveness, ingenuousness, warmth, and extraversion) in 257 subjects: 214 patients with neurodegenerative diseases such as FTD, SD, progressive nonfluent aphasia, Alzheimer's disease, amnestic mild cognitive impairment, corticobasal degeneration, and progressive supranuclear palsy and 43 healthy elderly people. Measures of interpersonal traits were correlated with regional atrophy pattern using voxel-based morphometry (VBM) analysis of structural MR images. Interpersonal traits mapped onto distinct brain regions depending on the degree to which they involved agency and affiliation. Interpersonal traits high in agency related to left dorsolateral prefrontal and left lateral frontopolar regions, whereas interpersonal traits high in affiliation related to right ventromedial prefrontal and right anteromedial temporal regions. Consistent with the existing literature on neural networks underlying social cognition, these results indicate that brain regions related to externally focused, executive control-related processes underlie agentic interpersonal traits such as dominance, whereas brain regions related to internally focused, emotion- and reward-related processes underlie affiliative interpersonal traits such as warmth. In addition, these findings indicate that interpersonal traits are subserved by complex neural networks rather than discrete anatomic areas.

  4. MicroRNAs in neurodegenerative diseases and their therapeutic potential.

    PubMed

    Junn, Eunsung; Mouradian, M Maral

    2012-02-01

    MicroRNAs (miRNAs) are abundant, endogenous, short, noncoding RNAs that act as important post-transcriptional regulators of gene expression by base-pairing with their target mRNA. During the last decade, substantial knowledge has accumulated regarding the biogenesis of miRNAs, their molecular mechanisms and functional roles in a variety of cellular contexts. Altered expression of certain miRNA molecules in the brains of patients with neurodegenerative diseases such as Alzheimer and Parkinson suggests that miRNAs could have a crucial regulatory role in these disorders. Polymorphisms in miRNA target sites may also constitute an important determinant of disease risk. Additionally, emerging evidence points to specific miRNAs targeting and regulating the expression of particular proteins that are key to disease pathogenesis. Considering that the amount of these proteins in susceptible neuronal populations appears to be critical to neurodegeneration, miRNA-mediated regulation represents a new target of significant therapeutic prospects. In this review, the implications of miRNAs in several neurodegenerative disorders and their potential as therapeutic interventions are discussed.

  5. The Importance of Tau Phosphorylation for Neurodegenerative Diseases

    PubMed Central

    Noble, Wendy; Hanger, Diane P.; Miller, Christopher C. J.; Lovestone, Simon

    2013-01-01

    Fibrillar deposits of highly phosphorylated tau are a key pathological feature of several neurodegenerative tauopathies including Alzheimer’s disease (AD) and some frontotemporal dementias. Increasing evidence suggests that the presence of these end-stage neurofibrillary lesions do not cause neuronal loss, but rather that alterations to soluble tau proteins induce neurodegeneration. In particular, aberrant tau phosphorylation is acknowledged to be a key disease process, influencing tau structure, distribution, and function in neurons. Although typically described as a cytosolic protein that associates with microtubules and regulates axonal transport, several additional functions of tau have recently been demonstrated, including roles in DNA stabilization, and synaptic function. Most recently, studies examining the trans-synaptic spread of tau pathology in disease models have suggested a potential role for extracellular tau in cell signaling pathways intrinsic to neurodegeneration. Here we review the evidence showing that tau phosphorylation plays a key role in neurodegenerative tauopathies. We also comment on the tractability of altering phosphorylation-dependent tau functions for therapeutic intervention in AD and related disorders. PMID:23847585

  6. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    SciTech Connect

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  7. Induced neural stem cells (iNSCs) in neurodegenerative diseases.

    PubMed

    Hermann, Andreas; Storch, Alexander

    2013-09-01

    Recent advances in somatic cell reprogramming is one of the most important developments in neuroscience in the last decades since it offers for the first time the opportunity to work with disease/patient-specific neurons or other neural cell types. Induced pluripotent stem cells (iPSCs) can be differentiated into all cell types of the body enabling investigations not only on neurons but also on muscle or endothelial cells which are cell types often also of great interest in neurodegenerative diseases. The novel technology of direct lineage conversion of somatic cells into neurons (induced neurons; iNs) or into expandable multipotent neural stem cells (induced neural stem cells; iNSCs) provides interesting alternatives to the iPSC technology. These techniques have the advantage of easier cell culture, but only neurons (iNs) or neuroectodermal cells (iNSCs) can be generated. Although there are several open questions coming along with these new neural cell types, they hold great promises for both cell replacement and cell modelling of neurodegenerative diseases.

  8. The promise of human embryonic stem cells in aging-associated diseases

    PubMed Central

    Yabut, Odessa; Bernstein, Harold S.

    2011-01-01

    Aging-associated diseases are often caused by progressive loss or dysfunction of cells that ultimately affect the overall function of tissues and organs. Successful treatment of these diseases could benefit from cell-based therapy that would regenerate lost cells or otherwise restore tissue function. Human embryonic stem cells (hESCs) promise to be an important therapeutic candidate in treating aging-associated diseases due to their unique capacity for self-renewal and pluripotency. To date, there are numerous hESC lines that have been developed and characterized. We will discuss how hESC lines are derived, their molecular and cellular properties, and how their ability to differentiate into all three embryonic germ layers is determined. We will also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we will highlight the general challenges that must be overcome and the strategies being developed to generate highly-purified hESC-derived cell populations that can safely be used for clinical applications. PMID:21566262

  9. The maternal-age-associated risk of congenital heart disease is modifiable.

    PubMed

    Schulkey, Claire E; Regmi, Suk D; Magnan, Rachel A; Danzo, Megan T; Luther, Herman; Hutchinson, Alayna K; Panzer, Adam A; Grady, Mary M; Wilson, David B; Jay, Patrick Y

    2015-04-01

    Maternal age is a risk factor for congenital heart disease even in the absence of any chromosomal abnormality in the newborn. Whether the basis of this risk resides with the mother or oocyte is unknown. The impact of maternal age on congenital heart disease can be modelled in mouse pups that harbour a mutation of the cardiac transcription factor gene Nkx2-5 (ref. 8). Here, reciprocal ovarian transplants between young and old mothers establish a maternal basis for the age-associated risk in mice. A high-fat diet does not accelerate the effect of maternal ageing, so hyperglycaemia and obesity do not simply explain the mechanism. The age-associated risk varies with the mother's strain background, making it a quantitative genetic trait. Most remarkably, voluntary exercise, whether begun by mothers at a young age or later in life, can mitigate the risk when they are older. Thus, even when the offspring carry a causal mutation, an intervention aimed at the mother can meaningfully reduce their risk of congenital heart disease.

  10. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons.

    PubMed

    Lakatta, Edward G

    2002-01-01

    In the United States, cardiovascular disease, e.g., atherosclerosis and hypertension, that lead to heart failure and stroke, is the leading cause of mortality, accounting for over 40 percent of deaths in those aged 65 years and above. Over 80 percent of all cardio-vascular deaths occur in the same age group. Thus, age, per se, is the major risk factor for cardiovascular disease. Clinical manifestations and prognosis of these cardiovascular diseases likely become altered in older persons with advanced age because interactions occur between age-associated cardiovascular changes in health and specific pathophysiologic mechanisms that underlie a disease. A fundamental understanding of age-associated changes in cardiovascular structure and function ranging in scope from humans to molecules is required for effective and efficient prevention and treatment of cardiovascular disease in older persons. A sustained effort over the past two decades has been applied to characterize the multiple effects of aging in health on cardiovascular structure and function in a single study population, the Baltimore Longitudinal Study on Aging. In these studies, community dwelling, volunteer participants are rigorously screened to detect both clinical and occult cardiovascular disease and characterized with respect to lifestyle, e.g. exercise habits, in an attempt to deconvolute interactions among lifestyle, cardiovascular disease and the aging process in health. This review highlights some specific changes in resting cardiovascular structure and function and cardiovascular reserve capacity that occur with advancing age in healthy humans. Observations from relevant experiments in animal models have been integrated with those in humans to provide possible mechanistic insight.

  11. MicroRNAs: novel therapeutic targets in neurodegenerative diseases.

    PubMed

    Roshan, Reema; Ghosh, Tanay; Scaria, Vinod; Pillai, Beena

    2009-12-01

    The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increases. However, limited knowledge of the molecular basis of disease pathogenesis is a major hurdle in the identification of drug targets and development of therapeutic strategies for these largely incurable disorders. Recently, differential expression of endogenous regulatory small RNAs, known as 'microRNAs' (miRNAs), in patients of Alzheimer's disease, Parkinson's disease and models of ataxia suggest that they might have key regulatory roles in neurodegeneration. miRNAs that can target known mediators of neurodegeneration offer potential therapeutic targets. Our bioinformatic analysis suggests novel miRNA-target interactions that could potentially influence neurodegeneration. The recent development of molecules that alter miRNA expression promises valuable tools that will enhance the therapeutic potential of miRNAs.

  12. Research on neurodegenerative diseases using induced pluripotent stem cells.

    PubMed

    Imamura, Keiko; Inoue, Haruhisa

    2012-06-01

    Induced pluripotent stem cells (iPSC) are derived from somatic cells. These somatic cells have had their gene expression experimentally reprogrammed to an embryonic stem cell-like pluripotent state, gaining the capacity to differentiate various cell types in the three embryonic germ layers. Thus, iPSC technology makes it possible to obtain neuronal cells from any human cells. iPSC can be generated from various kinds of somatic cells and from patients with neurodegenerative diseases. Disease modelling using iPSC technology would elucidate the pathogenesis of such diseases and contribute to related drug discoveries. In this review, we discuss the recent advances in iPSC technology as well as its potential applications.

  13. Role of the Retromer Complex in Neurodegenerative Diseases.

    PubMed

    Li, Chaosi; Shah, Syed Zahid Ali; Zhao, Deming; Yang, Lifeng

    2016-01-01

    The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases.

  14. Genetic susceptibility testing for neurodegenerative diseases: Ethical and practice issues

    PubMed Central

    Roberts, J. Scott; Uhlmann, Wendy R.

    2013-01-01

    As the genetics of neurodegenerative disease become better understood, opportunities for genetic susceptibility testing for at-risk individuals will increase. Such testing raises important ethical and practice issues related to test access, informed consent, risk estimation and communication, return of results, and policies to prevent genetic discrimination. The advent of direct-to-consumer genetic susceptibility testing for various neurodegenerative disorders (including Alzheimer’s disease, Parkinson’s disease, and certain prion diseases) means that ethical and practical challenges must be faced not only in traditional research and clinical settings, but also in broader society. This review addresses several topics relevant to the development and implementation of genetic susceptibility tests across research, clinical, and consumer settings; these include appropriate indications for testing, the implications of different methods for disclosing test results, clinical versus personal utility of risk information, psychological and behavioral responses to test results, testing of minors, genetic discrimination, and ethical dilemmas posed by whole-genome sequencing. We also identify future areas of likely growth in the field, including pharmacogenomics and genetic screening for individuals considering or engaged in activities that pose elevated risk of brain injury (e.g., football players, military personnel). APOE gene testing for risk of Alzheimer’s disease is used throughout as an instructive case example, drawing upon the authors’ experience as investigators in a series of multisite randomized clinical trials that have examined the impact of disclosing APOE genotype status to interested individuals (e.g., first-degree relatives, persons with mild cognitive impairment). PMID:23583530

  15. Mutational Spectrum Analysis of Neurodegenerative Diseases and Its Pathogenic Implication.

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2015-10-14

    One of the most conspicuous features of neurodegenerative diseases (NDs) is the occurrence of dramatic conformation change of individual proteins. We performed a mutational spectrum analysis of disease-causing missense mutations in seven types of NDs at nucleotide and amino acid levels, and compared the results with those of non-NDs. The main findings included: (i) The higher mutation ratio of G:C→T:A transversion to G:C→A:T transition was observed in NDs than in non-NDs, interpreting the excessive guanine-specific oxidative DNA damage in NDs; (ii) glycine and proline had highest mutability in NDs than in non-NDs, which favor the protein conformation change in NDs; (iii) surprisingly low mutation frequency of arginine was observed in NDs. These findings help to understand how mutations may cause NDs.

  16. Revisiting Metal Toxicity in Neurodegenerative Diseases and Stroke: Therapeutic Potential

    PubMed Central

    Mitra, Joy; Vasquez, Velmarini; Hegde, Pavana M; Boldogh, Istvan; Mitra, Sankar; Kent, Thomas A; Rao, Kosagi S; Hegde, Muralidhar L

    2015-01-01

    Excessive accumulation of pro-oxidant metals, observed in affected brain regions, has consistently been implicated as a contributor to the brain pathology including neurodegenerative diseases and acute injuries such as stroke. Furthermore, the potential interactions between metal toxicity and other commonly associated etiological factors, such as misfolding/aggregation of amyloidogenic proteins or genomic damage, are poorly understood. Decades of research provide compelling evidence implicating metal overload in neurological diseases and stroke. However, the utility of metal toxicity as a therapeutic target is controversial, possibly due to a lack of comprehensive understanding of metal dyshomeostasis-mediated neuronal pathology. In this article, we discuss the current understanding of metal toxicity and the challenges associated with metal-targeted therapies. PMID:25717476

  17. Probing Mechanisms That Underlie Human Neurodegenerative Diseases in Drosophila

    PubMed Central

    Jaiswal, M.; Sandoval, H.; Zhang, K.; Bayat, V.; Bellen, H.J.

    2013-01-01

    The fruit fly, Drosophila melanogaster, is an excellent organism for the study of the genetic and molecular basis of metazoan development. Drosophila provides numerous tools and reagents to unravel the molecular and cellular functions of genes that cause human disease, and the past decade has witnessed a significant expansion of the study of neurodegenerative disease mechanisms in flies. Here we review the interplay between oxidative stress and neuronal toxicity. We cover some of the studies that show how proteasome degradation of protein aggregates, autophagy, mitophagy, and lysosomal function affect the quality control mechanisms required for neuronal survival. We discuss how forward genetic screens in flies have led to the isolation of a few loci that cause neurodegeneration, paving the way for large-scale systematic screens to identify such loci in flies as well as promoting gene discovery in humans. PMID:22974305

  18. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    PubMed

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction.

  19. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2016-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  20. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases.

    PubMed

    Jucker, Mathias; Walker, Lary C

    2013-09-01

    For several decades scientists have speculated that the key to understanding age-related neurodegenerative disorders may be found in the unusual biology of the prion diseases. Recently, owing largely to the advent of new disease models, this hypothesis has gained experimental momentum. In a remarkable variety of diseases, specific proteins have been found to misfold and aggregate into seeds that structurally corrupt like proteins, causing them to aggregate and form pathogenic assemblies ranging from small oligomers to large masses of amyloid. Proteinaceous seeds can therefore serve as self-propagating agents for the instigation and progression of disease. Alzheimer's disease and other cerebral proteopathies seem to arise from the de novo misfolding and sustained corruption of endogenous proteins, whereas prion diseases can also be infectious in origin. However, the outcome in all cases is the functional compromise of the nervous system, because the aggregated proteins gain a toxic function and/or lose their normal function. As a unifying pathogenic principle, the prion paradigm suggests broadly relevant therapeutic directions for a large class of currently intractable diseases.

  1. Neuroanatomical correlates of cognitive self-appraisal in neurodegenerative disease.

    PubMed

    Rosen, Howard J; Alcantar, Oscar; Rothlind, Johannes; Sturm, Virginia; Kramer, Joel H; Weiner, Michael; Miller, Bruce L

    2010-02-15

    Self-appraisal is a critical cognitive function, which helps us to choose tasks based on an accurate assessment of our abilities. The neural mechanisms of self-appraisal are incompletely understood, although a growing body of literature suggests that several frontal and subcortical regions are important for self-related processing. Anosognosia, or lack of awareness of one's deficits, is common in neurodegenerative dementias, offering an important window onto the brain systems involved in self-appraisal. We examined the neuroanatomical basis of self-appraisal in a mixed group of 39 individuals, including 35 with cognitive impairment due to one of several probable neurodegenerative diseases, using voxel-based morphometry and an objective, neuropsychologically-based measure of self-appraisal accuracy. Self-appraisal accuracy was correlated with tissue content in the right ventromedial prefrontal cortex (vmPFC). We hypothesize that emotional/physiological processing carried out by vmPFC is an important factor mediating self-appraisal accuracy in dementia. PMID:19961939

  2. Neuroanatomical correlates of cognitive self-appraisal in neurodegenerative disease

    PubMed Central

    Rosen, Howard J.; Alcantar, Oscar; Rothlind, Johannes; Sturm, Virginia; Kramer, Joel H.; Weiner, Michael; Miller, Bruce L.

    2009-01-01

    Self-appraisal is a critical cognitive function, which helps us to choose tasks based on an accurate assessment of our abilities. The neural mechanisms of self-appraisal are incompletely understood, although a growing body of literature suggests that several frontal and subcortical regions are important for self-related processing. Anosognosia, or lack of awareness of one's deficits, is common in neurodegenerative dementias, offering an important window onto the brain systems involved in self-appraisal. We examined the neuroanatomical basis of self-appraisal in a mixed group of 39 individuals, including 35 with cognitive impairment due to one of several probable neurodegenerative diseases, using voxel-based morphometry and an objective, neuropsychologically-based measure of self-appraisal accuracy. Self-appraisal accuracy was correlated with tissue content in the right ventromedial prefrontal cortex (vmPFC). We hypothesize that emotional/physiological processing carried out by vmPFC is an important factor mediating self-appraisal accuracy in dementia. PMID:19961939

  3. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Mancuso, Cesare; Barone, Eugenio; Calafato, Stella; Bates, Timothy; Rizzarelli, Enrico; Kostova, Albena T Dinkova

    2009-01-01

    The ability of a cell to counteract stressful conditions, known as cellular stress response, requires the activation of pro-survival pathways and the production of molecules with anti-oxidant, anti-apoptotic or pro-apoptotic activities. Among the cellular pathways conferring protection against oxidative stress, a key role is played by vitagenes, which include heat shock proteins (Hsps) heme oxygenase-1 and Hsp70, as well as the thioredoxin/thioredoxin reductase system. Heat shock response contributes to establish a cytoprotective state in a wide variety of human diseases, including inflammation, cancer, aging and neurodegenerative disorders. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Dietary antioxidants, such as curcumin, L-carnitine/acetyl-L-carnitine and carnosine have recently been demonstrated in vitro to be neuroprotective through the activation of hormetic pathways, including vitagenes. In the present review we discuss the importance of vitagenes in the cellular stress response and analyse, from a pharmacological point of view, the potential use of dietary antioxidants in the treatment of neurodegenerative disorders in humans.

  4. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases.

    PubMed

    Irwin, Michael H; Moos, Walter H; Faller, Douglas V; Steliou, Kosta; Pinkert, Carl A

    2016-05-01

    Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc. PMID:26899010

  5. Strategies for molecular imaging dementia and neurodegenerative diseases

    PubMed Central

    Schaller, Bernhard J

    2008-01-01

    Dementia represents a heterogeneous term that has evolved to describe the behavioral syndromes associated with a variety of clinical and neuropathological changes during continuing degenerative disease of the brain. As such, there lacks a clear consensus regarding the neuropsychological and other constituent characteristics associated with various cerebrovascular changes in this disease process. But increasing this knowledge has given more insights into memory deterioration in patients suffering from Alzheimer’s disease and other subtypes of dementia. The author reviews current knowledge of the physiological coupling between cerebral blood flow and metabolism in the light of state-of-the-art-imaging methods and its changes in dementia with special reference to Alzheimer’s disease. Different imaging techniques are discussed with respect to their visualizing effect of biochemical, cellular, and/or structural changes in dementia. The pathophysiology of dementia in advanced age is becoming increasingly understood by revealing the underlying basis of neuropsychological changes with current imaging techniques, genetic and pathological features, which suggests that alterations of (neuro) vascular regulatory mechanisms may lead to brain dysfunction and disease. The current view is that cerebrovascular deregulation is seen as a contributor to cerebrovascular pathologies, such as stroke, but also to neurodegenerative conditions, such as Alzheimer’s disease. The better understanding of these (patho) physiological mechanisms may open an approach to new interventional strategies in dementia to enhance neurovascular repair and to protect neurovascular coupling. PMID:18830391

  6. Natural Compounds Preventing Neurodegenerative Diseases Through Autophagic Activation.

    PubMed

    Huang, Zhe; Adachi, Hiroaki

    2016-06-01

    Neurodegenerative diseases (NDDs) are a group of intractable diseases that significantly affect human health. To date, the pathogenesis of NDDs is still poorly understood and effective disease-modifying therapies for NDDs have not been established. NDDs share the common morphological characteristic of the deposition of abnormal proteins in the nervous system, including neurons. Autophagy is one of the major processes by which damaged organelles and abnormal proteins are removed from cells. Impairment of autophagy has been found to be involved in the pathogenesis of NDDs, and the regulation of autophagy may become a therapeutic strategy for NDDs. In recent years, some active compounds from plants have been found to regulate autophagy and exert neuroprotection against NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia 3, and amyotrophic lateral sclerosis, via activating autophagy. In this paper, we review recent advances in the use of active ingredients from plants for the regulation of autophagy and treatment of NDDs. PMID:27302727

  7. p53 and mitochondrial dysfunction: novel insight of neurodegenerative diseases.

    PubMed

    Dai, Chun-Qiu; Luo, Ting-Ting; Luo, Shi-Cheng; Wang, Jia-Qi; Wang, Sheng-Ming; Bai, Yun-Hu; Yang, Yan-Ling; Wang, Ya-Yun

    2016-08-01

    Mitochondria are organelles responsible for vital cell functions. p53 is a transcription factor that regulates the DNA stability and cell growth normality. Recent studies revealed that p53 can influence mitochondrial function changing from normal condition to abnormal condition under different stress levels. In normal state, p53 can maintain mitochondrial respiration through transactivation of SCO2. When stress stimuli presents, SCO2 overexpresses and leads to ROS generation. ROS promotes p53 inducing MALM (Mieap-induced accumulation of lysosome-like organelles within mitochondria) to repair dysfunctional mitochondria and MIV (Mieap-induced vacuole) to accomplish damaged mitochondria degradation. If stress or damage is irreversible, p53 will translocate to mitochondria, leading into apoptosis or necrosis. Neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease are still lack of clear explanations of mechanisms, but more studies have revealed the functional relationship between mitochondria and p53 towards the pathological development of these diseases. In this review, we discuss that p53 plays the vital role in the function of mitochondria in the aspect of pathological change metabolism. We also analyze these diseases with novel targeted treating molecules which are related to p53 and mitochondria, hoping to present novel therapies in future clinic.

  8. p53 and mitochondrial dysfunction: novel insight of neurodegenerative diseases.

    PubMed

    Dai, Chun-Qiu; Luo, Ting-Ting; Luo, Shi-Cheng; Wang, Jia-Qi; Wang, Sheng-Ming; Bai, Yun-Hu; Yang, Yan-Ling; Wang, Ya-Yun

    2016-08-01

    Mitochondria are organelles responsible for vital cell functions. p53 is a transcription factor that regulates the DNA stability and cell growth normality. Recent studies revealed that p53 can influence mitochondrial function changing from normal condition to abnormal condition under different stress levels. In normal state, p53 can maintain mitochondrial respiration through transactivation of SCO2. When stress stimuli presents, SCO2 overexpresses and leads to ROS generation. ROS promotes p53 inducing MALM (Mieap-induced accumulation of lysosome-like organelles within mitochondria) to repair dysfunctional mitochondria and MIV (Mieap-induced vacuole) to accomplish damaged mitochondria degradation. If stress or damage is irreversible, p53 will translocate to mitochondria, leading into apoptosis or necrosis. Neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease are still lack of clear explanations of mechanisms, but more studies have revealed the functional relationship between mitochondria and p53 towards the pathological development of these diseases. In this review, we discuss that p53 plays the vital role in the function of mitochondria in the aspect of pathological change metabolism. We also analyze these diseases with novel targeted treating molecules which are related to p53 and mitochondria, hoping to present novel therapies in future clinic. PMID:27422544

  9. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    PubMed

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-01

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.

  10. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases

    PubMed Central

    Smith, J. A.; Leonardi, T.; Huang, B.; Iraci, N.; Vega, B.; Pluchino, S.

    2015-01-01

    Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs—or specific EV cargoes—are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases. PMID:24973266

  11. Differential diagnosis of neurodegenerative diseases using structural MRI data.

    PubMed

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti; Barkhof, Frederik; Tijms, Betty; Lemstra, Afina W; Tong, Tong; Guerrero, Ricardo; Schuh, Andreas; Ledig, Christian; Rueckert, Daniel; Soininen, Hilkka; Remes, Anne M; Waldemar, Gunhild; Hasselbalch, Steen; Mecocci, Patrizia; van der Flier, Wiesje; Lötjönen, Jyrki

    2016-01-01

    Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by

  12. Insights into the evolutionary features of human neurodegenerative diseases.

    PubMed

    Panda, Arup; Begum, Tina; Ghosh, Tapash Chandra

    2012-01-01

    Comparative analyses between human disease and non-disease genes are of great interest in understanding human disease gene evolution. However, the progression of neurodegenerative diseases (NDD) involving amyloid formation in specific brain regions is still unknown. Therefore, in this study, we mainly focused our analysis on the evolutionary features of human NDD genes with respect to non-disease genes. Here, we observed that human NDD genes are evolutionarily conserved relative to non-disease genes. To elucidate the conserved nature of NDD genes, we incorporated the evolutionary attributes like gene expression level, number of regulatory miRNAs, protein connectivity, intrinsic disorder content and relative aggregation propensity in our analysis. Our studies demonstrate that NDD genes have higher gene expression levels in favor of their lower evolutionary rates. Additionally, we observed that NDD genes have higher number of different regulatory miRNAs target sites and also have higher interaction partners than the non-disease genes. Moreover, miRNA targeted genes are known to have higher disorder content. In contrast, our analysis exclusively established that NDD genes have lower disorder content. In favor of our analysis, we found that NDD gene encoded proteins are enriched with multi interface hubs (party hubs) with lower disorder contents. Since, proteins with higher disorder content need to adapt special structure to reduce their aggregation propensity, NDD proteins found to have elevated relative aggregation propensity (RAP) in support of their lower disorder content. Finally, our categorical regression analysis confirmed the underlined relative dominance of protein connectivity, 3'UTR length, RAP, nature of hubs (singlish/multi interface) and disorder content for such evolutionary rates variation between human NDD genes and non-disease genes.

  13. Differential diagnosis of neurodegenerative diseases using structural MRI data

    PubMed Central

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti; Barkhof, Frederik; Tijms, Betty; Lemstra, Afina W.; Tong, Tong; Guerrero, Ricardo; Schuh, Andreas; Ledig, Christian; Rueckert, Daniel; Soininen, Hilkka; Remes, Anne M.; Waldemar, Gunhild; Hasselbalch, Steen; Mecocci, Patrizia; van der Flier, Wiesje; Lötjönen, Jyrki

    2016-01-01

    Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by

  14. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence

    PubMed Central

    Kolodkin, Alexey; Simeonidis, Evangelos; Balling, Rudi; Westerhoff, Hans V.

    2012-01-01

    Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction) is also an emergent property, emerging from a perturbation of the network. On the one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be required for therapies to become effective across mankind. On the other hand, diverse combinations of internal and external perturbation factors may cause a similar shift in network functioning. We offer this as an explanation for the multi-factorial nature of most diseases: they are “systems biology diseases,” or “network diseases.” Here we use neurodegenerative diseases, like Parkinson's disease (PD), as an example to show that due to the inherent complexity of these networks, it is difficult to understand multi-factorial diseases with simply our “naked brain.” When describing interactions between biomolecules through mathematical equations and integrating those equations into a mathematical model, we try to reconstruct the emergent properties of the system in silico. The reconstruction of emergence from interactions between huge numbers of macromolecules is one of the aims of systems biology. Systems biology approaches enable us to break through the limitation of the human brain to perceive the extraordinarily large number of interactions, but this also means that we delegate the understanding of reality to the computer. We no longer recognize all those essences in the system's design crucial for important physiological behavior (the so-called “design principles” of the system). In this paper we review evidence that by using more abstract approaches and by experimenting in silico, one may still be able to discover and understand the design principles that

  15. Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases.

    PubMed

    Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai

    2015-08-01

    Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.

  16. The involvement of microRNAs in neurodegenerative diseases

    PubMed Central

    Maciotta, Simona; Meregalli, Mirella; Torrente, Yvan

    2013-01-01

    Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed. PMID:24391543

  17. TREM2 in CNS homeostasis and neurodegenerative disease.

    PubMed

    Painter, Meghan M; Atagi, Yuka; Liu, Chia-Chen; Rademakers, Rosa; Xu, Huaxi; Fryer, John D; Bu, Guojun

    2015-09-04

    Myeloid-lineage cells accomplish a myriad of homeostatic tasks including the recognition of pathogens, regulation of the inflammatory milieu, and mediation of tissue repair and regeneration. The innate immune receptor and its adaptor protein—triggering receptor expressed on myeloid cells 2 (TREM2) and DNAX-activating protein of 12 kDa (DAP12)—possess the ability to modulate critical cellular functions via crosstalk with diverse signaling pathways. As such, mutations in TREM2 and DAP12 have been found to be associated with a range of disease phenotypes. In particular, mutations in TREM2 increase the risk for Alzheimer's disease and other neurodegenerative disorders. The leading hypothesis is that microglia, the resident immune cells of the central nervous system, are the major myeloid cells affected by dysregulated TREM2-DAP12 function. Here, we review how impaired signaling by the TREM2-DAP12 pathway leads to altered immune responses in phagocytosis, cytokine production, and microglial proliferation and survival, thus contributing to disease pathogenesis.

  18. MicroRNAs (miRNAs) in neurodegenerative diseases.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Rajeev, Bernard W

    2008-01-01

    Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small ( approximately 22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of this review is to provide perspective for these new data that may be helpful to specialists in either field. An overview is provided about the normal functions for miRNAs, including some of the newer concepts related to the human brain. Recently published studies pertaining to the roles of miRNAs in NDs--including Alzheimer's disease, Parkinson's disease and triplet repeat disorders-are described. Finally, a discussion is included with theoretical syntheses and possible future directions in exploring the nexus between miRNA and ND research.

  19. The involvement of microRNAs in neurodegenerative diseases.

    PubMed

    Maciotta, Simona; Meregalli, Mirella; Torrente, Yvan

    2013-12-19

    Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed.

  20. Association between environmental exposure to pesticides and neurodegenerative diseases

    SciTech Connect

    Parron, Tesifon; Requena, Mar; Hernandez, Antonio F.; Alarcon, Raquel

    2011-11-15

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: Black-Right-Pointing-Pointer Environmental exposure to pesticides and neurodegenerative-psychiatric disorders. Black-Right-Pointing-Pointer Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. Black-Right-Pointing-Pointer Males from

  1. [Effects of resveratrol-induced cellular autophagy in control of neurodegenerative diseases].

    PubMed

    Dong, Wen; Wang, Rong

    2016-01-01

    Cellular autophagy is a major degradative pathway for clearance of aggregate-prone proteins and damaged organelles. It plays an important role in regulating cellular homeostasis, cell growth and development, and disease development. Dysfunctional autophagy contributes to the pathology of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, in which specific pathological protein accumulation occurs. A growing body of evidence suggests that resveratrol plays a significantly role in the regulation of autophagy and clearance of pathological proteins. Resveratrol is a potential drug for neurodegenerative diseases therapy. This review focuses on the effects of resveratrol on cellular autophagy and clinical application in the control of neurodegenerative diseases. PMID:27405156

  2. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine

    PubMed Central

    Kovacs, Gabor G.

    2016-01-01

    Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials. PMID:26848654

  3. Elusive roles for reactive astrocytes in neurodegenerative diseases

    PubMed Central

    Ben Haim, Lucile; Carrillo-de Sauvage, Maria-Angeles; Ceyzériat, Kelly; Escartin, Carole

    2015-01-01

    Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND. PMID:26283915

  4. Autobiographical memory and autonoetic consciousness: triple dissociation in neurodegenerative diseases.

    PubMed

    Piolino, Pascale; Desgranges, Béatrice; Belliard, Serge; Matuszewski, Vanessa; Lalevée, Catherine; De la Sayette, Vincent; Eustache, Francis

    2003-10-01

    Few studies have investigated autobiographical amnesia in neurodegenerative diseases and yet these pathologies are particularly relevant when addressing the issue of theories of long-term memory consolidation. According to the standard model, the medial temporal lobe (MTL) is involved in the storage and retrieval of episodic and semantic memories during a limited period of years. An alternative model, the multiple trace theory (MTT), suggests that the capacity of the MTL to recollect episodic memories is of a more permanent nature. In order to test these models, we studied three groups of patients with a neurodegenerative disease predominantly affecting different cerebral structures namely the MTL (13 patients in the early stages of Alzheimer's disease) and the neocortex involving either the anterior temporal lobe (10 patients with semantic dementia) or the frontal lobe (15 patients with the frontal variant of frontotemporal dementia, fv-FTD). We compared these groups of patients with control subjects using an original and reliable autobiographical memory task designed specially to assess strictly episodic memory over the entire lifespan. This task, developed on the basis of the most up-to-date definition of episodic memory, takes into account the ability to mentally travel back in time and re-experience the source of acquisition (remembering, i.e. autonoetic consciousness) via the remember/know paradigm. All three groups of patients produced strongly contrasting profiles of autobiographical amnesia (regardless of the nature of the memories), which also differed markedly from that of the control group: temporally graded memory loss in Alzheimer's disease, showing that remote memories are better preserved than recent ones; memory loss with a reversed gradient in semantic dementia; and memory loss without any clear gradient in fv-FTD. Most strictly episodic memories (i.e. unique, specific in time and space, and detailed) were impaired, whatever the time interval

  5. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    PubMed Central

    Melo, Ailton; Monteiro, Larissa; Lima, Rute M. F.; de Oliveira, Diêgo M.; de Cerqueira, Martins D.; El-Bachá, Ramon S.

    2011-01-01

    The incidence and prevalence of neurodegenerative diseases (ND) increase with life expectancy. This paper reviews the role of oxidative stress (OS) in ND and pharmacological attempts to fight against reactive oxygen species (ROS)-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials. PMID:22191013

  6. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease

    PubMed Central

    Vendrov, Aleksandr E.; Vendrov, Kimberly C.; Smith, Alberto; Yuan, Jinling; Sumida, Arihiro; Robidoux, Jacques; Madamanchi, Nageswara R.

    2015-01-01

    Abstract Aims: Increased oxidative stress and vascular inflammation are implicated in increased cardiovascular disease (CVD) incidence with age. We and others demonstrated that NOX1/2 NADPH oxidase inhibition, by genetic deletion of p47phox, in Apoe−/− mice decreases vascular reactive oxygen species (ROS) generation and atherosclerosis in young age. The present study examined whether NOX1/2 NADPH oxidases are also pivotal to aging-associated CVD. Results: Both aged (16 months) Apoe−/− and Apoe−/−/p47phox−/− mice had increased atherosclerotic lesion area, aortic stiffness, and systolic dysfunction compared with young (4 months) cohorts. Cellular and mitochondrial ROS (mtROS) levels were significantly higher in aortic wall and vascular smooth muscle cells (VSMCs) from aged wild-type and p47phox−/− mice. VSMCs from aged mice had increased mitochondrial protein oxidation and dysfunction and increased vascular cell adhesion molecule 1 expression, which was abrogated with (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) treatment. NOX4 expression was increased in the vasculature and mitochondria of aged mice and its suppression with shRNA in VSMCs from aged mice decreased mtROS levels and improved function. Increased mtROS levels were associated with enhanced mitochondrial NOX4 expression in aortic VSMCs from aged subjects, and NOX4 expression levels in arterial wall correlated with age and atherosclerotic severity. Aged Apoe−/− mice treated with MitoTEMPO and 2-(2-chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione had decreased vascular ROS levels and atherosclerosis and preserved vascular and cardiac function. Innovation and Conclusion: These data suggest that NOX4, but not NOX1/2, and mitochondrial oxidative stress are mediators of CVD in aging under hyperlipidemic conditions. Regulating NOX4 activity/expression and using mitochondrial antioxidants are

  7. Elucidation of endemic neurodegenerative diseases--a commentary.

    PubMed

    Nishida, Yuzo

    2003-01-01

    Recent investigations of scrapie, Creutzfeldt-Jakob disease (CJD), and chronic wasting disease (CWD) clusters in Iceland, Slovakia and Colorado, respectively, have indicated that the soil in these regions is low in copper and higher in manganese, and it has been well-known that patients of ALS or Parkinson's disease were collectively found in the New Guinea and Papua islands, where the subterranean water (drinking water) contains much Al3+ and Mn2+ ions. Above facts suggest that these neurodegenerative diseases are closely related with the function of a metal ion. We have investigated the chemical functions of the metal ions in detail and established the unique mechanism of the oxygen activation by the transition metal ions such as iron and copper, and pointed out the notable difference in the mechanism among iron, aluminum and manganese ions. Based on these results, it has become apparent that the incorporation of Al(III) or Mn(II) in the cells induces the "iron-overload syndrome", which is mainly due to the difference in an oxygen activation mechanism between the iron ion and Al(III) or the Mn(II) ion. This syndrome highly promotes formation of hydrogen peroxide, and hydrogen peroxide thus produced can be a main factor to cause serious damages to DNA and proteins (oxidative stress), yielding a copper(II)- or manganese(II)-peptide complex and its peroxide adduct, which are the serious agents to induce the structural changes from the normal prion protein (PrP(c)) to abnormal disease-causing isoforms, PrP(Sc), or the formation of PrP 27-30 (abnormal cleavage at site 90 of the prion protein). It seems reasonable to consider that the essential origin for the transmissible spongiform encephalopathies (TSEs) should be the incorporation and accumulation of Al(III) and Mn(II) ions in the cells, and the sudden and explosive increase of scrapie and bovine spongiform encephalopathy (BSE) in the last decade may be partially due to "acid rain", because the acid rain makes Al

  8. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

    PubMed

    Jenkins, Timothy G; Aston, Kenneth I; Pflueger, Christian; Cairns, Bradley R; Carrell, Douglas T

    2014-07-01

    Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc.), trinucleotide expansion associated diseases (myotonic dystrophy, Huntington's, etc.) and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body). Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists. PMID:25010591

  9. Stem cell-based models and therapies for neurodegenerative diseases.

    PubMed

    Iyer, Shilpa; Alsayegh, Khaled; Abraham, Sheena; Rao, Raj R

    2009-01-01

    Multiple neurodegenerative disorders typically result from irrevocable damage and improper functioning of specialized neuronal cells or populations of neuronal cells. These disorders have the potential to contribute to an already overburdened health care system unless the progression of neurodegeneration can be altered. Progress in understanding neurodegenerative cell biology has been hampered by a lack of predictive and, some would claim, relevant cellular models. Additionally, the research needed to develop new drugs and determine methods for repair or replacement of damaged neurons is severely hampered by the lack of an adequate in vitro human neuron cell-based model. In this context, pluripotent stem cells and neural progenitors and their properties including unlimited proliferation, plasticity to generate other cell types, and a readily available source of cells--pose an excellent alternative to ex vivo primary cultures or established immortalized cell lines in contributing to our understanding of neurodegenerative cell biology and our ability to analyze the therapeutic or cytotoxic effects of chemicals, drugs, and xenobiotics. Many questions that define the underlying "genesis" of the neuronal death in these disorders also remain unanswered, with evidence suggesting a key role for mitochondrial dysfunction. The assessment of stem cells, neural progenitors, and engineered adult cells can provide useful insights into neuronal development and neurodegenerative processes. Finally, the potential for a combination of cell- and gene-based therapeutics for neurodegenerative disorders is also discussed.

  10. Brain lipoprotein metabolism and its relation to neurodegenerative disease.

    PubMed

    Danik, M; Champagne, D; Petit-Turcotte, C; Beffert, U; Poirier, J

    1999-01-01

    notion and suggests that the isolated brain possesses its own system to maintain local lipid homeostasis. This is further exemplified by the salvage and recycling of lipids shown to occur following a lesion in order to allow surviving neurons to sprout and reestablish lost synapses. Not much is currently known about lipoprotein metabolism in neurodegenerative diseases, but lipid alterations have been repeatedly reported in Alzheimer brains in which neuronal loss and deafferentation are major features. Although the mechanism underlying the link between the epsilon4 allele of the apolipoprotein E gene and Alzheimer's disease is presently unclear, it may well be postulated that it is related to disturbances in brain lipoprotein metabolism. PMID:11028681

  11. Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases.

    PubMed

    Orellana, Juan A; Retamal, Mauricio A; Moraga-Amaro, Rodrigo; Stehberg, Jimmy

    2016-01-01

    Under physiological conditions, astroglial hemichannels and pannexons allow the release of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating synaptic transmission, plasticity and memory. However, recent evidence suggests that under pathological conditions, they may be central in the development of various neurodegenerative diseases. Here we review current literature on the role of astroglial hemichannels and pannexons in memory, stress and the development of neurodegenerative diseases, and propose that they are not only crucial for normal brain function, including memory, but also a potential target for the treatment of neurodegenerative diseases.

  12. Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases

    PubMed Central

    Orellana, Juan A.; Retamal, Mauricio A.; Moraga-Amaro, Rodrigo; Stehberg, Jimmy

    2016-01-01

    Under physiological conditions, astroglial hemichannels and pannexons allow the release of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating synaptic transmission, plasticity and memory. However, recent evidence suggests that under pathological conditions, they may be central in the development of various neurodegenerative diseases. Here we review current literature on the role of astroglial hemichannels and pannexons in memory, stress and the development of neurodegenerative diseases, and propose that they are not only crucial for normal brain function, including memory, but also a potential target for the treatment of neurodegenerative diseases. PMID:27489539

  13. Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases.

    PubMed

    Youssef, S A; Capucchio, M T; Rofina, J E; Chambers, J K; Uchida, K; Nakayama, H; Head, E

    2016-03-01

    According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world's population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer's disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson's disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases. PMID:26869150

  14. Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds.

    PubMed

    Denzer, Isabel; Münch, Gerald; Friedland, Kristina

    2016-01-01

    Oxidative stress and mitochondrial dysfunction are early events in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Mitochondria are important key players in cellular function based on mitochondrial energy production and their major role in cell physiology. Since neurons are highly depending on mitochondrial energy production due to their high energy demand and their reduced glycolytic capacity mitochondrial dysfunction has fatal consequences for neuronal function and survival. The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) is the major regulator of cellular response to oxidative stress. Activation of Nrf2 induces the transcriptional regulation of antioxidant response element (ARE)-dependent expression of a battery of cytoprotective and antioxidant enzymes and proteins. Moreover, activation of Nrf2 protects mitochondria from dysfunction and promotes mitochondrial biogenesis. Therefore, the Nrf2/ARE pathway has become an attractive target for the prevention and treatment of oxidative stress-related neurodegenerative diseases. Small food-derived inducers of the Nrf2/ARE pathway including l-sulforaphane from broccoli and isoliquiritigenin from licorice displayed promising protection of mitochondrial function in models of oxidative stress and neurodegenerative diseases and represent a novel approach to prevent and treat aging-associated neurodegenerative diseases.

  15. MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases.

    PubMed

    Ha, Tai-You

    2011-10-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

  16. Gene therapy for Parkinson's disease: state-of-the-art treatments for neurodegenerative disease.

    PubMed

    Douglas, Michael R

    2013-06-01

    Pharmacological and surgical treatments offer symptomatic benefits to patients with Parkinson's disease; however, as the condition progresses, patients experience gradual worsening in symptom control, with the development of a range of disabling complications. In addition, none of the currently available therapies have convincingly shown disease-modifying effects - either in slowing or reversing the disease. These problems have led to extensive research into the possible use of gene therapy as a treatment for Parkinson's disease. Several treatments have reached human clinical trial stages, providing important information on the risks and benefits of this novel therapeutic approach, and the tantalizing promise of improved control of this currently incurable neurodegenerative disorder.

  17. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases

    PubMed Central

    Guo, Jing L; Lee, Virginia M Y

    2014-01-01

    A common feature of many neurodegenerative diseases is the deposition of β-sheet-rich amyloid aggregates formed by proteins specific to these diseases. These protein aggregates are thought to cause neuronal dysfunction, directly or indirectly. Recent studies have strongly implicated cell-to-cell transmission of misfolded proteins as a common mechanism for the onset and progression of various neurodegenerative disorders. Emerging evidence also suggests the presence of conformationally diverse ‘strains’ of each type of disease protein, which may be another shared feature of amyloid aggregates, accounting for the tremendous heterogeneity within each type of neurodegenerative disease. Although there are many more questions to be answered, these studies have opened up new avenues for therapeutic interventions in neurodegenerative disorders. PMID:24504409

  18. Transcriptomics study of neurodegenerative disease: emphasis on synaptic dysfunction mechanism in Alzheimer's disease.

    PubMed

    Karim, Sajjad; Mirza, Zeenat; Ansari, Shakeel A; Rasool, Mahmood; Iqbal, Zafar; Sohrab, Sayed S; Kamal, Mohammad A; Abuzenadah, Adel M; Al-Qahtani, Mohammed H

    2014-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder primarily affecting memory and thinking ability; caused by progressive degeneration and death of nerve cells. In this study, we integrated multiple dataset retrieved from the National Center for Biotechnology Information's Gene Expression Omnibus database, and took a systems-biology approach to compare and distinguish the molecular network based synaptic dysregulation associated with AD in particular and neurodegenerative diseases in general. We first identified 832 differentially expressed genes using cut off P value <0.5 and fold change > 2, followed by gene ontology study to identify genes associated with synapse (n=95) [membrane associated guanylate kinase, 2, amyloid beta precursor protein, neurotrophic tyrosine kinase, receptor, type 2], synapse part [γ-aminobutyric acid A receptor, γ1], synaptic vesicle [glutamate receptor, ionotropic, α-amino-3-hydroxy-5- methyl-4-isoxazole propionic acid receptor 2, synaptoporin], pre- and post-synaptic density [neuronal calcium sensor 1, glutamate receptor, metabotropic 3]. We integrated these data with known pathways using Ingenuity Pathway Analysis tool and found following synapse associated pathways to be most affected; γ-aminobutyric acid receptor signaling, synaptic long term potentiation/depression, nuclear factor-erythroid 2-related factor 2-mediated oxidative stress response, huntington's disease signaling and Reelin signaling in neurons. In conclusion, synaptic dysfunction is tightly associated with the development and progression of neurodegenerative diseases like AD. PMID:25230228

  19. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases.

    PubMed

    Tan, Lin; Yu, Jin-Tai; Tan, Lan

    2015-01-01

    Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), originate from a loss of neurons in the central nervous system (CNS) and are severely debilitating. The incidence of neurodegenerative diseases increases with age, and they are expected to become more common due to extended life expectancy. Because of no clear mechanisms, these diseases have become a major challenge in neurobiology. It is well recognized that these disorders become the culmination of many different genetic and environmental influences. Prior studies have shown that microRNAs (miRNAs) are pathologically altered during the inexorable course of some neurodegenerative diseases, suggesting that miRNAs may be the contributing factor in neurodegeneration. Here, we review what is known about the involvement of miRNAs in the pathogenesis of neurodegenerative diseases. The biogenesis of miRNAs and various functions of miRNAs that act as the chief regulators will be discussed. We focus in particular on dysregulation of miRNAs which leads to several neurodegenerative diseases from three aspects: miRNA-generating disorders, miRNA-targeting genes and epigenetic alterations. Furthermore, recent evidences have shown that circulating miRNA expression levels are changed in patients with neurodegenerative diseases. Circulating miRNA expression levels are reported in patients in order to evaluate their application as biomarkers of these diseases. A discussion is included with a potential diagnostic biomarker and the possible future direction in exploring the nexus between miRNAs and various neurodegenerative diseases.

  20. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials. PMID:27086703

  1. Neurodegenerative diseases: occupational occurrence and potential risk factors, 1982 through 1991.

    PubMed Central

    Schulte, P A; Burnett, C A; Boeniger, M F; Johnson, J

    1996-01-01

    OBJECTIVES: To identify potential occupational risk factors, this study examined the occupational occurrence of various neurodegenerative diseases. METHODS: Death certificates from 27 states in the National Occupational Mortality Surveillance System were evaluated for 1982 to 1991. Proportionate mortality ratios were calculated by occupation for presenile dementia, Alzheimer's disease, Parkinson's disease, and motor neuron disease. RESULTS: Excess mortality was observed for all four categories in the following occupational categories: teachers; medical personnel; machinists and machine operators; scientists; writers/designers/entertainers; and support and clerical workers. Clusters of three neurodegenerative diseases were also found in occupations involving pesticides, solvents, and electromagnetic fields and in legal, library, social, and religious work. Early death from motor neuron disease was found for firefighters, janitors, military personnel, teachers, excavation machine operators, and veterinarians, among others. CONCLUSIONS: Neurodegenerative disease occurs more frequently in some occupations than in others, and this distribution, which may indicate occupational risk factors, should be further investigated. PMID:8806381

  2. A Review of Quality of Life after Predictive Testing for and Earlier Identification of Neurodegenerative Diseases

    PubMed Central

    Paulsen, Jane S.; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E.; Panegyres, Peter K.; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K.

    2013-01-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these “patient reported outcomes” for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance towards predictive genetic testing. Forty-one studies examining health related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  3. A review of quality of life after predictive testing for and earlier identification of neurodegenerative diseases.

    PubMed

    Paulsen, Jane S; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E; Panegyres, Peter K; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K

    2013-11-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these "patient reported outcomes" for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance toward predictive genetic testing. Forty-one studies examining health-related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  4. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses.

    PubMed

    Wilkaniec, Anna; Czapski, Grzegorz A; Adamczyk, Agata

    2016-01-01

    Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases. PMID:26376455

  5. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses.

    PubMed

    Wilkaniec, Anna; Czapski, Grzegorz A; Adamczyk, Agata

    2016-01-01

    Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.

  6. There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases

    PubMed Central

    Paillusson, Sebastien; Stoica, Radu; Gomez-Suaga, Patricia; Lau, Dawn H.W.; Mueller, Sarah; Miller, Tanya; Miller, Christopher C.J.

    2016-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or ‘MAM’). Moreover, several recent studies have shown that disturbances to ER–mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings. PMID:26899735

  7. The potential of microRNAs as biofluid markers of neurodegenerative diseases--a systematic review.

    PubMed

    Danborg, Pia B; Simonsen, Anja H; Waldemar, Gunhild; Heegaard, Niels H H

    2014-06-01

    MicroRNAs (miRNA) are biological molecules transcribed from non-protein coding regions of the genome, participating in regulating cellular processes. MiRNAs in biofluids may possess neurodegenerative disease biomarker potential for screening tests, differential diagnosis and disease progression monitoring. This systematic review clarifies biomarker potential of miRNAs detected in biofluids of neurodegenerative disease patients. Thirty-three and ten miRNAs displayed significant expression between patients with multiple sclerosis and Alzheimer's disease, respectively, compared to healthy controls in minimum two studies. Thirty-eight miRNAs showed biomarker potential by distinguishing significantly between minimum two diseases. Summarized data directs future research towards discovering new biomarkers for neurodegenerative diseases.

  8. Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases

    PubMed Central

    Allen, Mariet; Carrasquillo, Minerva M.; Funk, Cory; Heavner, Benjamin D.; Zou, Fanggeng; Younkin, Curtis S.; Burgess, Jeremy D.; Chai, High-Seng; Crook, Julia; Eddy, James A.; Li, Hongdong; Logsdon, Ben; Peters, Mette A.; Dang, Kristen K.; Wang, Xue; Serie, Daniel; Wang, Chen; Nguyen, Thuy; Lincoln, Sarah; Malphrus, Kimberly; Bisceglio, Gina; Li, Ma; Golde, Todd E.; Mangravite, Lara M.; Asmann, Yan; Price, Nathan D.; Petersen, Ronald C.; Graff-Radford, Neill R.; Dickson, Dennis W.; Younkin, Steven G.; Ertekin-Taner, Nilüfer

    2016-01-01

    Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases. PMID:27727239

  9. Aging, Neurodegenerative Disease, and Traumatic Brain Injury: The Role of Neuroimaging

    PubMed Central

    Levine, Brian

    2015-01-01

    Abstract Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease. PMID:25192426

  10. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases.

    PubMed

    Carletti, Barbara; Piemonte, Fiorella; Rossi, Ferdinando

    2011-06-01

    During the past decades Neural Stem Cells have been considered as an alternative source of cells to replace lost neurons and NSC transplantation has been indicated as a promising treatment for neurodegenerative disorders. Nevertheless, the current understanding of NSC biology suggests that, far from being mere spare parts for cell replacement therapies, NSCs could play a key role in the pharmacology of neuroprotection and become protagonists of innovative treatments for neurodegenerative diseases. Here, we review this new emerging concept of NSC biology.

  11. Nanoparticles and Colloids as Contributing Factors in Neurodegenerative Disease

    PubMed Central

    Bondy, Stephen C.

    2011-01-01

    This review explores the processes underlying the deleterious effects of the presence of insoluble or colloidal depositions within the central nervous system. These materials are chemically unreactive and can have a prolonged residence in the brain. They can be composed of mineral or proteinaceous materials of intrinsic or exogenous origin. Such nanoparticulates and colloids are associated with a range of slow-progressing neurodegenerative states. The potential common basis of toxicity of these materials is discussed. A shared feature of these disorders involves the appearance of deleterious inflammatory changes in the CNS. This may be due to extended and ineffective immune responses. Another aspect is the presence of excess levels of reactive oxygen species within the brain. In addition with their induction by inflammatory events, these may be further heightened by the presence of redox active transition metals to the large surface area afforded by nanoparticles and amphipathic micelles. PMID:21776226

  12. Nanoparticles and colloids as contributing factors in neurodegenerative disease.

    PubMed

    Bondy, Stephen C

    2011-06-01

    This review explores the processes underlying the deleterious effects of the presence of insoluble or colloidal depositions within the central nervous system. These materials are chemically unreactive and can have a prolonged residence in the brain. They can be composed of mineral or proteinaceous materials of intrinsic or exogenous origin. Such nanoparticulates and colloids are associated with a range of slow-progressing neurodegenerative states. The potential common basis of toxicity of these materials is discussed. A shared feature of these disorders involves the appearance of deleterious inflammatory changes in the CNS. This may be due to extended and ineffective immune responses. Another aspect is the presence of excess levels of reactive oxygen species within the brain. In addition with their induction by inflammatory events, these may be further heightened by the presence of redox active transition metals to the large surface area afforded by nanoparticles and amphipathic micelles.

  13. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer's Disease.

    PubMed

    Thomas, J; Thomas, C J; Radcliffe, J; Itsiopoulos, C

    2015-01-01

    Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia.

  14. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer's Disease.

    PubMed

    Thomas, J; Thomas, C J; Radcliffe, J; Itsiopoulos, C

    2015-01-01

    Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia. PMID:26301243

  15. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer's Disease

    PubMed Central

    Thomas, J.; Thomas, C. J.; Radcliffe, J.; Itsiopoulos, C.

    2015-01-01

    Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia. PMID:26301243

  16. The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases.

    PubMed

    Peng, Jun; Zeng, Xianmin

    2011-07-28

    Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia are the most common human neurodegenerative diseases pathologically characterized by a progressive and specific loss of certain neuronal populations. The exact mechanisms of neuronal cell death in these diseases are unclear, although some forms of the diseases are inherited and genes causing these diseases have been identified. Currently there are no effective clinical therapies for many of these diseases. The recently acquired ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture may provide a powerful tool for in vitro neurodegenerative disease modeling and an unlimited source for cell replacement therapy. In the present review, we summarize recent progress on iPSC generation and differentiation into neuronal cell types and discuss the potential application for in vitro disease mechanism study and in vivo cell replacement therapy.

  17. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases

    PubMed Central

    Joshi, Gururaj; Johnson, Jeffrey A.

    2013-01-01

    Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders. The overexpression of Nrf2 has become a potential therapeutic avenue for various neurodegenerative disorders such as Parkinson, Amyotrophic lateral sclerosis, and Alzheimer’s disease. The expression of phase II detoxification enzymes is governed by the cis-acting regulatory element known as antioxidant response element (ARE). The transcription factor Nrf2 binds to ARE thereby transcribing multitude of antioxidant genes. Keap1, a culin 3-based E3 ligase that targets Nrf2 for degradation, sequesters Nrf2 in cytoplasm. Disruption of Keap1-Nrf2 interaction or genetic overexpression of Nrf2 can increase the endogenous antioxidant capacity of the brain thereby rendering protection against oxidative stress in neurodegenerative disorders. This review primarily focuses on targeted Nrf2 overexpression as a promising therapeutic strategy for the treatment of neurodegenerative disorders. PMID:22742419

  18. Is neurodegenerative disease a long-latency response to early-life genotoxin exposure?

    PubMed

    Kisby, Glen E; Spencer, Peter S

    2011-10-01

    Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, a disappearing neurodegenerative disease linked to use of the neurotoxic cycad plant for food and/or medicine, is intensively studied because the neuropathology (tauopathy) is similar to that of Alzheimer's disease. Cycads contain neurotoxic and genotoxic principles, notably cycasin and methylazoxymethanol, the latter sharing chemical relations with nitrosamines, which are derived from nitrates and nitrites in preserved meats and fertilizers, and also used in the rubber and leather industries. This review includes new data that influence understanding of the neurobiological actions of cycad and related genotoxins and the putative mechanisms by which they might trigger neurodegenerative disease.

  19. Is neurodegenerative disease a long-latency response to early-life genotoxin exposure?

    PubMed

    Kisby, Glen E; Spencer, Peter S

    2011-10-01

    Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, a disappearing neurodegenerative disease linked to use of the neurotoxic cycad plant for food and/or medicine, is intensively studied because the neuropathology (tauopathy) is similar to that of Alzheimer's disease. Cycads contain neurotoxic and genotoxic principles, notably cycasin and methylazoxymethanol, the latter sharing chemical relations with nitrosamines, which are derived from nitrates and nitrites in preserved meats and fertilizers, and also used in the rubber and leather industries. This review includes new data that influence understanding of the neurobiological actions of cycad and related genotoxins and the putative mechanisms by which they might trigger neurodegenerative disease. PMID:22073019

  20. Neurodegenerative Models in Drosophila: Polyglutamine Disorders, Parkinson Disease, and Amyotrophic Lateral Sclerosis

    PubMed Central

    Ambegaokar, Surendra S.; Roy, Bidisha; Jackson, George R.

    2010-01-01

    Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue. PMID:20561920

  1. [Mechanisms of the immune system ageing and some age-associated diseases].

    PubMed

    Witkowski, Jacek M

    2014-01-01

    In this paper the concept of homeostenosis (progressive reduction of ability to adapt producing loss of effectiveness) of the immune system is presented as a cause of the system ageing. In particular, the progression of immune system homeostenosis was shown to be associated with previous or ongoing chronic inflammatory diseases, including rheumatoid arthritis, type 2 diabetes, chronic kidney disease and Alzheimer's disease.

  2. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  3. Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease

    PubMed Central

    Kulkarni, Apurva; Ganesan, Priya; O’Donnell, Lauren A.

    2016-01-01

    Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent cells in the developing and adult brain, are often altered during CNS insults. Recent studies highlight the complex effects of IFNγ on NSPC activity in neurodegenerative diseases. However, the mechanisms that mediate these effects, and the eventual outcomes for the host, are still being explored. Here, we review the effects of IFNγ on NSPC activity during different pathological insults. An improved understanding of the role of IFNγ would provide insight into the impact of immune responses on the progression and resolution of neurodegenerative diseases. PMID:27774000

  4. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases

    PubMed Central

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E.

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases. PMID:26538832

  5. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders.

    PubMed

    Bigford, Gregory E; Del Rossi, Gianluca

    2014-07-01

    Neurodegenerative disorders and diseases (NDDs) that are either chronically acquired or triggered by a singular detrimental event are a rapidly growing cause of disability and/or death. In recent times, there have been major advancements in our understanding of various neurodegenerative disease states that have revealed common pathologic features or mechanisms. The many mechanistic parallels discovered between various neurodegenerative diseases suggest that a single therapeutic approach may be used to treat multiple disease conditions. Of late, natural compounds and supplemental substances have become an increasingly attractive option to treat NDDs because there is growing evidence that these nutritional constituents have potential adjunctive therapeutic effects (be it protective or restorative) on various neurodegenerative diseases. Here we review relevant experimental and clinical data on supplemental substances (i.e., curcuminoids, rosmarinic acid, resveratrol, acetyl-L-carnitine, and ω-3 (n-3) polyunsaturated fatty acids) that have demonstrated encouraging therapeutic effects on chronic diseases, such as Alzheimer's disease and neurodegeneration resulting from acute adverse events, such as traumatic brain injury. PMID:25022989

  6. Functional Genomics Approach for Identification of Molecular Processes Underlying Neurodegenerative Disorders in Prion Diseases

    PubMed Central

    Basu, Urmila; Guan, Le Luo; Moore, Stephen S

    2012-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious neurodegenerative disorders leading to death. These include Cresutzfeldt-Jakob disease (CJD), familial, sporadic and variant CJD and kuru in humans; and animal TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) of mule deer and elk, and transmissible mink encephalopathy. All these TSEs share common pathological features such as accumulation of mis-folded prion proteins in the central nervous system leading to cellular dysfunction and cell death. It is important to characterize the molecular pathways and events leading to prion induced neurodegeneration. Here we discuss the impact of the functional genomics approaches including microarrays, subtractive hybridization and microRNA profiling in elucidating transcriptional cascades at different stages of disease. Many of these transcriptional changes have been observed in multiple neurodegenerative diseases which may aid in identification of biomarkers for disease. A comprehensive characterization of expression profiles implicated in neurodegenerative disorders will undoubtedly advance our understanding on neuropathology and dysfunction during prion disease and other neurodegenerative disorders. We also present an outlook on the future work which may focus on analysis of structural genetic variation, genome and transcriptome sequencing using next generation sequencing with an integrated approach on animal and human TSE related studies. PMID:23372423

  7. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases.

    PubMed

    Miller, Elżbieta; Morel, Agnieszka; Saso, Luciano; Saluk, Joanna

    2014-01-01

    Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs) especially F4-neuroprotanes (F4-NPs) are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.

  8. Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models

    PubMed Central

    Reinhardt, Anita; Feuillette, Sébastien; Cassar, Marlène; Callens, Céline; Thomassin, Hélène; Birman, Serge; Lecourtois, Magalie; Antoniewski, Christophe; Tricoire, Hervé

    2012-01-01

    Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80–84 year-old Europeans) or Parkinson disease (PD, 1.4% prevalence for >55 years old) share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence) and frontotemporal lobar degeneration (FTLD, 0.02% prevalence), a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs (miRNAs), a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias, and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for seven diseases (PD, 3 FTLD, 3 dominant ataxias) that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non-coding CAG repeat RNAs (sCAG) in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases. PMID:23115562

  9. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs?

    PubMed Central

    2013-01-01

    Histone deacetylase (HDAC) inhibitors have been demonstrated to be beneficial in animal models of neurodegenerative diseases. Such results were mainly associated with the epigenetic modulation caused by HDACs, especially those from class I, via chromatin deacetylation. However, other mechanisms may contribute to the neuroprotective effect of HDAC inhibitors, since each HDAC may present distinct specific functions within the neurodegenerative cascades. Such an example is HDAC6 for which the role in neurodegeneration has been partially elucidated so far. The strategy to be adopted in promising therapeutics targeting HDAC6 is still controversial. Specific inhibitors exert neuroprotection by increasing the acetylation levels of α-tubulin with subsequent improvement of the axonal transport, which is usually impaired in neurodegenerative disorders. On the other hand, an induction of HDAC6 would theoretically contribute to the degradation of protein aggregates which characterize various neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Hutington’s diseases. This review describes the specific role of HDAC6 compared to the other HDACs in the context of neurodegeneration, by collecting in silico, in vitro and in vivo results regarding the inhibition and/or knockdown of HDAC6 and other HDACs. Moreover, structure, function, subcellular localization, as well as the level of HDAC6 expression within brain regions are reviewed and compared to the other HDAC isoforms. In various neurodegenerative diseases, the mechanisms underlying HDAC6 interaction with other proteins seem to be a promising approach in understanding the modulation of HDAC6 activity. PMID:23356410

  10. [Progress in induced pluripotent stem cell research for age-related neurodegenerative diseases].

    PubMed

    Ito, Daisuke; Yagi, Takuya; Suzuki, Norihiro

    2013-03-01

    In 2006, Takahashi et al. established a method for reprogramming somatic cells by introducing definite transcription factors, which enabled the generation of induced pluripotent stem cells (iPSCs) with pluripotency comparable to that of embryonic stem cells. In turn, it has become possible to use these iPSCs for producing various tissues needed for the treatment of neurodegenerative disorders, which have been difficult to obtain from living bodies. This advancement is expected to bring forth rapid progress in the clarification of mechanisms underlying the diseases and discovery of new innovative drugs and lead to rapid progress in regenerative medicine. In recent years, recapitulation and analysis of disease conditions using iPSCs derived from the patients themselves have been reported, and remarkable advances have been made, even for late-onset neurodegenerative disorders. These findings show that the phenotypes of late-onset neurodegenerative disorders can be recapitulated in iPSC-derived neuronal cells, which are reflected the early developmental stages, indicating cellular abnormalities exist from the prenatal period, despite the late onset diseases. In this review, we summarize the state of iPSCs research in the context of neurodegenerative disorders, discuss the possible ways for understanding the mechanisms underlying neurodegenerative disorders and discovering new drugs, and describe some other aspects of regenerative medicine.

  11. Avocado as a Major Dietary Source of Antioxidants and Its Preventive Role in Neurodegenerative Diseases.

    PubMed

    Ameer, Kalandar

    2016-01-01

    Avocados have a high content of phytochemicals especially antioxidants with potential neuroprotective effect. Aging is the major risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A large body of evidence indicates that oxidative stress is involved in the pathophysiology of these diseases. Oxidative stress can induce neuronal damages and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. There is evidence for increased oxidative damage to macromolecules in amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, and Alzheimer's disease. Thus, antioxidants have been used for their effectiveness in reducing these deleterious effects and neuronal death in many in vitro and in vivo studies. The critical review results indicate that compounds in avocado are unique antioxidants, preferentially suppressing radical generation, and thus may be promising as effective neuropreventive agents. The diverse array of bioactive nutrients present in avocado plays a pivotal role in the prevention and cure of various neurodegenerative diseases. PMID:27651262

  12. Can neurodegenerative disease be defined by four 'primary determinants': anatomy, cells, molecules, and morphology?

    PubMed

    Armstrong, R A

    2016-01-01

    Traditional methods of describing and classifying neurodegenerative disease are based on the clinico-pathological concept supported by molecular pathological studies and defined by 'consensus criteria'. Disease heterogeneity, overlap between disorders, and the presence of multiple co-pathologies, however, have questioned the validity and status of many traditional disorders. If cases of neurodegenerative disease are not easily classifiable into distinct entities, but more continuously distributed, then a new descriptive framework may be required. This review proposes that there are four key neuropathological features of neurodegenerative disease (the 'primary determinants') that could be used to provide such a framework, viz., the anatomical pathways affected by the disease ('anatomy'), the cell populations affected ('cells'), the molecular pathology of 'signature' pathological lesions ('molecules'), and the morphological types of neurodegeneration ('morphology'). This review first discusses the limitations of existing classificatory systems and second provides evidence that the four primary determinants could be used as axes to define all cases of neurodegenerative disease. To illustrate the methodology, the primary determinants were applied to the study of a group of closely related tauopathy cases and to heterogeneity within frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). PMID:27543767

  13. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs.

    PubMed

    Ke, Zhipeng; Zhang, Xinzhuang; Cao, Zeyu; Ding, Yue; Li, Na; Cao, Liang; Wang, Tuanjie; Zhang, Chenfeng; Ding, Gang; Wang, Zhenzhong; Xu, Xiaojie; Xiao, Wei

    2016-03-01

    Neurodegenerative diseases, referring to as the progressive loss of structure and function of neurons, constitute one of the major challenges of modern medicine. Traditional Chinese herbs have been used as a major preventive and therapeutic strategy against disease for thousands years. The numerous species of medicinal herbs and Traditional Chinese Medicine (TCM) compound formulas in nervous system disease therapy make it a large chemical resource library for drug discovery. In this work, we collected 7362 kinds of herbs and 58,147 Traditional Chinese medicinal compounds (Tcmcs). The predicted active compounds in herbs have good oral bioavailability and central nervous system (CNS) permeability. The molecular docking and network analysis were employed to analyze the effects of herbs on neurodegenerative diseases. In order to evaluate the predicted efficacy of herbs, automated text mining was utilized to exhaustively search in PubMed by some related keywords. After that, receiver operator characteristic (ROC) curves was used to estimate the accuracy of predictions. Our study suggested that most herbs were distributed in family of Asteraceae, Fabaceae, Lamiaceae and Apocynaceae. The predictive model yielded good sensitivity and specificity with the AUC values above 0.800. At last, 504 kinds of herbs were obtained by using the optimal cutoff values in ROC curves. These 504 herbs would be the most potential herb resources for neurodegenerative diseases treatment. This study would give us an opportunity to use these herbs as a chemical resource library for drug discovery of anti-neurodegenerative disease.

  14. Target- and Mechanism-Based Therapeutics for Neurodegenerative Diseases: Strength in Numbers

    PubMed Central

    Trippier, Paul C.; Labby, Kristin Jansen; Hawker, Dustin D.; Mataka, Jan J.; Silverman, Richard B.

    2013-01-01

    The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms; N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases. PMID:23458846

  15. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders

    PubMed Central

    2016-01-01

    Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration. PMID:27230456

  16. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration.

    PubMed

    Saxena, Smita; Caroni, Pico

    2011-07-14

    Neurodegenerative diseases selectively target subpopulations of neurons, leading to the progressive failure of defined brain systems, but the basis of such selective neuronal vulnerability has remained elusive. Here, we discuss how a stressor-threshold model of how particular neurons and circuits are selectively vulnerable to disease may underly the etiology of familial and sporadic forms of diseases such as Alzheimer's, Parkinson's, Huntington's, and ALS. According to this model, the intrinsic vulnerabilities of neuronal subpopulations to stressors and specific disease-related misfolding proteins determine neuronal morbidity. Neurodegenerative diseases then involve specific combinations of genetic predispositions and environmental stressors, triggering increasing age-related stress and proteostasis dysfunction in affected vulnerable neurons. Damage to vasculature, immune system, and local glial cells mediates environmental stress, which could drive disease at all stages.

  17. Content analysis of neurodegenerative and mental diseases social groups.

    PubMed

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; Bargiela-Flórez, Beatriz; López-Coronado, Miguel; Rodrigues, Joel J P C

    2015-12-01

    This article aims to characterize the different types of Facebook and Twitter groups for different mental diseases, their purposes, and their functions. We focused the search on depressive disorders, dementia, and Alzheimer's and Parkinson's diseases and examined the Facebook (www.facebook.com) and Twitter (www.twitter.com) groups. We used four assessment criteria: (1) purpose, (2) type of creator, (3) telehealth content, and (4) free-text responses in surveys and interviews. We observed a total of 357 Parkinson groups, 325 dementia groups, 853 Alzheimer groups, and 1127 depression groups on Facebook and Twitter. Moreover, we analyze the responses provided by different users. The survey and interview responses showed that many people were interested in using social networks to support and help in the fight against these diseases. The results indicate that social networks are acceptable by users in terms of simplicity and utility. People use them for finding support, information, self-help, advocacy and awareness, and for collecting funds.

  18. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    PubMed

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  19. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    PubMed

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases. PMID:27651266

  20. Stem cells and neurodegenerative diseases: where is it all going?

    PubMed

    Barker, Roger A

    2012-11-01

    Over the last few years there have been a number of major breakthroughs in the development of stem cells for diseases of the CNS. One of these has been in the ability to reprogram adult somatic cells to a more pluripotent state as well as directly to neurons and, by so doing, use patient-derived cells to study disease. In addition, the capacity to engineer embryonic stem cells to defined neuronal fates in the absence of proliferative contaminant cells is now feasible, which opens up the possibility of using these cells for cell transplantation. In this review, we will discuss how these developments have come about, particularly in the context of Parkinson's disease, and what this means for the future of this whole field over the next few years.

  1. Redox chemistry of green tea polyphenols: therapeutic benefits in neurodegenerative diseases.

    PubMed

    Hügel, H M; Jackson, N

    2012-05-01

    Evidence for the medicinal and health benefits of polyphenols in green tea for the prevention of chronic diseases such as heart disease, various types of cancer and neurodegenerative diseases is advancing. Their in vivo effectiveness and molecular mechanisms are difficult to elucidate and remain a challenging task. We review the redox responsiveness and amyloid protein perturbation biophysical properties of the major green tea polyphenol constituent (-)- epigallocatechin-3-gallate [EGCG].

  2. Age-associated B vitamin deficiency as a determinant of chronic diseases.

    PubMed

    Brachet, Patrick; Chanson, Aurélie; Demigné, Christian; Batifoulier, Frédérique; Alexandre-Gouabau, Marie-Cécile; Tyssandier, Viviane; Rock, Edmond

    2004-06-01

    The number of elderly individuals is growing rapidly worldwide and degenerative diseases constitute an increasing problem in terms of both public health and cost. Nutrition plays a role in the ageing process and there has been intensive research during the last decade on B vitamin-related risk factors in vascular and neurological diseases and cancers. Data from epidemiological studies indicate that subclinical deficiency in most water-soluble B vitamins may occur gradually during ageing, possibly due to environmental, metabolic, genetic, nutritional and pathological determinants, as well as to lifestyle, gender and drug consumption. Older adults have distinct absorption, cell transport and metabolism characteristics that may alter B vitamin bioavailability. Case-control and longitudinal studies have shown that, concurrent with an insufficient status of certain B vitamins, hyperhomocysteinaemia and impaired methylation reactions may be some of the mechanisms involved before a degenerative pathology becomes evident. The question that arises is whether B vitamin inadequacies contribute to the development of degenerative diseases or result from ageing and disease. The present paper aims to give an overview of these issues at the epidemiological, clinical and molecular levels and to discuss possible strategies to prevent B vitamin deficiency during ageing.

  3. Central nervous system endothelium in neuroinflammatory, neuroinfectious, and neurodegenerative disease.

    PubMed

    Andjelkovic, A V; Pachter, J S

    1998-02-15

    Accumulating evidence points toward a significant role for the microvascular endothelium in the pathogenesis of several neurologic conditions. This review highlights those biochemical, anatomical, and physiological features of the endothelium thought to be dysfunctional in these disease states, and elaborates on novel treatment modalities that target the endothelium. PMID:9514196

  4. Menkes Kinky Hair Syndrome: A Rare Neurodegenerative Disease

    PubMed Central

    Gandhi, Rozil; Kakkar, Ritu; Rajan, Sajeev; Bhangale, Rashmi; Desai, Shrinivas

    2012-01-01

    Menkes kinky hair disease is a rare X-linked recessive disease nearly exclusively affecting males who present at 2-3 months of age due to abnormal functioning of copper-dependent enzymes due to deficiency of copper. Here, we describe a completely worked-up case of a 4-month-old male infant with very typical history and radiological features confirmed by biochemical and trichoanalysis. The initially seen asymmetric cortical and subcortical T2 hyperintensities in cerebral and cerebellar hemispheres converted into symmetrical diffuse cerebral and predominantly cerebellar atrophy with uniform loss of both white and grey matter on follow-up MRI. Also, subdural hemorrhages of various sizes and different stages and tortuosity of larger proximal intracranial vessels with distal narrowing were identified. Ours is a completely worked-up proven case of Menkes kinky hair disease (MKHD) with history, electroencephalography, biochemical, trichoanalysis, and MRI findings. This is a good teaching case and shows importance of clinical examination and biochemistry as complimentary to MRI. Tortuous intracranial arteries with blocked major vessels are found only in this disease, thus stressing the value of MR Angiography in these patients. PMID:22919529

  5. Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials.

    PubMed

    Zhang, Wei; Chen, Xue-yan; Su, Su-wen; Jia, Qing-zhong; Ding, Tao; Zhu, Zhong-ning; Zhang, Tong

    2016-01-01

    The purpose of this work is to investigate the efficacy of exogenous melatonin in the treatment of sleep disorders in patients with neurodegenerative disease. We searched Pubmed, the Cochrane Library, and ClinicalTrials.gov, from inception to July 2015. We included randomized clinical trials (RCTs) that compared melatonin with placebo and that had the primary aim of improving sleep in people with neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). We pooled data with the weighted mean difference in sleep outcomes. To assess heterogeneity in results of individual studies, we used Cochran's Q statistic and the I (2) statistic. 9 RCTs were included in this research. We found that the treatment with exogenous melatonin has positive effects on sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI) in PD patients (MD: 4.20, 95 % CI: 0.92-7.48; P = 0.01), and by changes in PSQI component 4 in AD patients (MD: 0.67, 95 % CI: 0.04-1.30; P = 0.04), but not on objective sleep outcomes in both AD and PD patients. Treatment with melatonin effectively improved the clinical and neurophysiological aspects of rapid eye movement (REM) sleep behavior disorder (RBD), especially elderly individuals with underlying neurodegenerative disorders. This meta-analysis provided some evidence that melatonin improves sleep quality in patients with AD and PD, and melatonin can be considered as a possible sole or add-on therapy in neurodegenerative disorders patients with RBD.

  6. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression.

    PubMed

    Ntsapi, C; Loos, B

    2016-10-01

    Caloric restriction (CR) is known to extend lifespan in most organisms, indicating that nutrient and energy regulatory mechanisms impact aging. The greatest risk factor for neurodegeneration is age; thus, the antiaging effects of CR might attenuate progressive cell death and avert the aggregation of abnormal proteins associated with neurodegenerative diseases. CR is a potent inducer of autophagy, a tightly regulated intracellular process that facilitates recycling of abnormal protein aggregates and damaged organelles into bioenergetic and biosynthetic materials to maintain homeostasis. Thus, dysregulated autophagy can lead to cellular dysfunction, abnormal protein accumulation, proteotoxicity and subsequently the onset of several neurodegenerative diseases. Therefore, the targeted and precision-controlled activation of autophagy represents a promising therapeutic strategy. Non-pharmacological therapeutic interventions that delay aging by modulating specific stages of autophagy might be beneficial against premature aging, neurodegeneration and its associated ailments. However, the dynamic and often compensatory cross-talk that exists between the protein degradation pathways makes clinical translational approaches challenging. Here we review the primary autophagy pathways in the context of age-related neurodegenerative diseases, focusing on compensatory mechanisms and pathway failure. By critically assessing each underlying molecular machinery, we reveal their impact on aging and unmask the role of caloric restriction in changing cellular fate by delayed aging through stimulation of autophagy. This may point towards novel and better targeted interventions that exploit the autophagic machinery in the treatment of neurodegenerative diseases.

  7. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression.

    PubMed

    Ntsapi, C; Loos, B

    2016-10-01

    Caloric restriction (CR) is known to extend lifespan in most organisms, indicating that nutrient and energy regulatory mechanisms impact aging. The greatest risk factor for neurodegeneration is age; thus, the antiaging effects of CR might attenuate progressive cell death and avert the aggregation of abnormal proteins associated with neurodegenerative diseases. CR is a potent inducer of autophagy, a tightly regulated intracellular process that facilitates recycling of abnormal protein aggregates and damaged organelles into bioenergetic and biosynthetic materials to maintain homeostasis. Thus, dysregulated autophagy can lead to cellular dysfunction, abnormal protein accumulation, proteotoxicity and subsequently the onset of several neurodegenerative diseases. Therefore, the targeted and precision-controlled activation of autophagy represents a promising therapeutic strategy. Non-pharmacological therapeutic interventions that delay aging by modulating specific stages of autophagy might be beneficial against premature aging, neurodegeneration and its associated ailments. However, the dynamic and often compensatory cross-talk that exists between the protein degradation pathways makes clinical translational approaches challenging. Here we review the primary autophagy pathways in the context of age-related neurodegenerative diseases, focusing on compensatory mechanisms and pathway failure. By critically assessing each underlying molecular machinery, we reveal their impact on aging and unmask the role of caloric restriction in changing cellular fate by delayed aging through stimulation of autophagy. This may point towards novel and better targeted interventions that exploit the autophagic machinery in the treatment of neurodegenerative diseases. PMID:27473756

  8. Proactive Strategies for Managing the Behavior of Children with Neurodegenerative Diseases and Visual Impairment.

    ERIC Educational Resources Information Center

    Loftin, M. M.; Koehler, W. S.

    1998-01-01

    Presents proactive strategies to help educators deal with challenging behaviors of children with visual impairments and neurodegenerative diseases. Strategies are provided for general noncompliance, difficulty with changed or novel routines, difficulty maintaining physical movement, significant variations in affect, and intense tantrums and other…

  9. Contribution of analytical microscopies to human neurodegenerative diseases research (PSP and AD).

    PubMed

    Quintana, Carmen

    2007-09-01

    Using analytical microscopies we have observed an increase of Fe(2+) iron-induced oxidative stress inside pathological ferritin (Ft). This finding, together with the presence of Ft in myelinated axons associated with oligodendrocyte processes and myelin sheet fraying, suggests that a dysfunction of ferritin (a ferritinopathy) may be the non-specific aging-dependent pathogenic event responsible for neurodegenerative disease.

  10. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed. PMID:25724169

  11. Tau and neurodegenerative disease: the story so far.

    PubMed

    Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2016-01-01

    In 1975, tau protein was isolated as a microtubule-associated factor from the porcine brain. In the previous year, a paired helical filament (PHF) protein had been identified in neurofibrillary tangles in the brains of individuals with Alzheimer disease (AD), but it was not until 1986 that the PHF protein and tau were discovered to be one and the same. In the AD brain, tau was found to be abnormally hyperphosphorylated, and it inhibited rather than promoted in vitro microtubule assembly. Almost 80 disease-causing exonic missense and intronic silent mutations in the tau gene have been found in familial cases of frontotemporal dementia but, to date, no such mutation has been found in AD. The first phase I clinical trial of an active tau immunization vaccine in patients with AD was recently completed. Assays for tau levels in cerebrospinal fluid and plasma are now available, and tau radiotracers for PET are under development. In this article, we provide an overview of the pivotal discoveries in the tau research field over the past 40 years. We also review the current status of the field, including disease mechanisms and therapeutic approaches. PMID:26635213

  12. Ca2+ dysfunction in neurodegenerative disorders: Alzheimer's disease.

    PubMed

    Fedrizzi, Laura; Carafoli, Ernesto

    2011-01-01

    More than one century ago "a peculiar disorder of the cerebral cortex" was noticed in a middle-aged patient who had been affected by dementia in the last years of his life. The postmortem hallmarks of his brain were protein plaques, neurofibrillary tangles, and atherosclerotic changes: the neuropathologist who found these alterations and gave his name to the disease that underlied them was Alois Alzheimer (Alzheimer et al., Clin Anat 1995;8:429-431). Following its discovery, the disease has been studied with a vigor that went parallel to the increase of its social importance. The amount of information amassed in the literature is impressive, but knowledge on the mechanism underlying its onset and its progression is still very limited. Numerous hypotheses on the molecular pathogenesis of the Alzheimer's disease (AD) have been proposed and two have gradually gained wide consensus: (i) the amyloid cascade hypothesis, first proposed on the basis of the toxicity evoked by the deposition of amyloid β (Aβ) aggregates; (ii) the Ca(2+) hypothesis, which focuses on the correlation between the dysfunction of Ca(2+) homeostasis and the neurodegeneration process. This succinct review will discuss the essential aspects of the role of Ca(2+) homeostasis dysregulation in the onset and development of AD.

  13. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases

    PubMed Central

    Wan, Wenbin; Cao, Lan; Kalionis, Bill; Xia, Shijin; Tai, Xiantao

    2015-01-01

    Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons. Incurable neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) show dramatic rising trends particularly in the advanced age groups. However, the underlying mechanisms are not yet fully elucidated, and to date there are no biomarkers for early detection or effective treatments for the underlying causes of these diseases. Furthermore, due to species variation and differences between animal models (e.g., mouse transgenic and knockout models) of neurodegenerative diseases, substantial debate focuses on whether animal and cell culture disease models can correctly model the condition in human patients. In 2006, Yamanaka of Kyoto University first demonstrated a novel approach for the preparation of induced pluripotent stem cells (iPSCs), which displayed similar pluripotency potential to embryonic stem cells (ESCs). Currently, iPSCs studies are permeating many sectors of disease research. Patient sample-derived iPSCs can be used to construct patient-specific disease models to elucidate the pathogenic mechanisms of disease development and to test new therapeutic strategies. Accordingly, the present review will focus on recent progress in iPSC research in the modeling of neurodegenerative disorders and in the development of novel therapeutic options. PMID:26240571

  14. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases.

    PubMed

    Suksuphew, Sarawut; Noisa, Parinya

    2015-03-26

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer's disease, Parkinson's disease, and Huntington's disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.

  15. Prevention of mutation, cancer, and other age-associated diseases by optimizing micronutrient intake.

    PubMed

    Ames, Bruce N

    2010-01-01

    I review three of our research efforts which suggest that optimizing micronutrient intake will in turn optimize metabolism, resulting in decreased DNA damage and less cancer as well as other degenerative diseases of aging. (1) Research on delay of the mitochondrial decay of aging, including release of mutagenic oxidants, by supplementing rats with lipoic acid and acetyl carnitine. (2) The triage theory, which posits that modest micronutrient deficiencies (common in much of the population) accelerate molecular aging, including DNA damage, mitochondrial decay, and supportive evidence for the theory, including an in-depth analysis of vitamin K that suggests the importance of achieving optimal micronutrient intake for longevity. (3) The finding that decreased enzyme binding constants (increased Km) for coenzymes (or substrates) can result from protein deformation and loss of function due to an age-related decline in membrane fluidity, or to polymorphisms or mutation. The loss of enzyme function can be compensated by a high dietary intake of any of the B vitamins, which increases the level of the vitamin-derived coenzyme. This dietary remediation illustrates the importance of understanding the effects of age and polymorphisms on optimal micronutrient requirements. Optimizing micronutrient intake could have a major effect on the prevention of cancer and other degenerative diseases of aging.

  16. Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification.

    PubMed

    Zhu, Xiaofeng; Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2016-03-01

    The high feature-dimension and low sample-size problem is one of the major challenges in the study of computer-aided Alzheimer's disease (AD) diagnosis. To circumvent this problem, feature selection and subspace learning have been playing core roles in the literature. Generally, feature selection methods are preferable in clinical applications due to their ease for interpretation, but subspace learning methods can usually achieve more promising results. In this paper, we combine two different methodological approaches to discriminative feature selection in a unified framework. Specifically, we utilize two subspace learning methods, namely, linear discriminant analysis and locality preserving projection, which have proven their effectiveness in a variety of fields, to select class-discriminative and noise-resistant features. Unlike previous methods in neuroimaging studies that mostly focused on a binary classification, the proposed feature selection method is further applicable for multiclass classification in AD diagnosis. Extensive experiments on the Alzheimer's disease neuroimaging initiative dataset showed the effectiveness of the proposed method over other state-of-the-art methods. PMID:26276982

  17. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases.

    PubMed

    Franceschi, Claudio; Campisi, Judith

    2014-06-01

    Human aging is characterized by a chronic, low-grade inflammation, and this phenomenon has been termed as "inflammaging." Inflammaging is a highly significant risk factor for both morbidity and mortality in the elderly people, as most if not all age-related diseases share an inflammatory pathogenesis. Nevertheless, the precise etiology of inflammaging and its potential causal role in contributing to adverse health outcomes remain largely unknown. The identification of pathways that control age-related inflammation across multiple systems is therefore important in order to understand whether treatments that modulate inflammaging may be beneficial in old people. The session on inflammation of the Advances in Gerosciences meeting held at the National Institutes of Health/National Institute on Aging in Bethesda on October 30 and 31, 2013 was aimed at defining these important unanswered questions about inflammaging. This article reports the main outcomes of this session.

  18. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases.

    PubMed

    Franceschi, Claudio; Campisi, Judith

    2014-06-01

    Human aging is characterized by a chronic, low-grade inflammation, and this phenomenon has been termed as "inflammaging." Inflammaging is a highly significant risk factor for both morbidity and mortality in the elderly people, as most if not all age-related diseases share an inflammatory pathogenesis. Nevertheless, the precise etiology of inflammaging and its potential causal role in contributing to adverse health outcomes remain largely unknown. The identification of pathways that control age-related inflammation across multiple systems is therefore important in order to understand whether treatments that modulate inflammaging may be beneficial in old people. The session on inflammation of the Advances in Gerosciences meeting held at the National Institutes of Health/National Institute on Aging in Bethesda on October 30 and 31, 2013 was aimed at defining these important unanswered questions about inflammaging. This article reports the main outcomes of this session. PMID:24833586

  19. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders

    PubMed Central

    Hofmann-Apitius, Martin; Ball, Gordon; Gebel, Stephan; Bagewadi, Shweta; de Bono, Bernard; Schneider, Reinhard; Page, Matt; Kodamullil, Alpha Tom; Younesi, Erfan; Ebeling, Christian; Tegnér, Jesper; Canard, Luc

    2015-01-01

    Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies—data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European

  20. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders.

    PubMed

    Hofmann-Apitius, Martin; Ball, Gordon; Gebel, Stephan; Bagewadi, Shweta; de Bono, Bernard; Schneider, Reinhard; Page, Matt; Kodamullil, Alpha Tom; Younesi, Erfan; Ebeling, Christian; Tegnér, Jesper; Canard, Luc

    2015-01-01

    Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European

  1. A Friend in Need may not be a Friend Indeed: Role of Microglia in Neurodegenerative Diseases.

    PubMed

    Kaushik, D K; Basu, A

    2013-09-19

    Inflammation plays a critical role in the progression of neurodegenerative diseases. Microglia are the resident macrophages of the central nervous system (CNS) which actively take part in the neuronal development of CNS and are involved in clearance of pathogens as well as cellular debris from the system upon insult to this organization. Chronic activation of microglia in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) as well as inflammatory conditions of CNS such as multiple sclerosis (MS) results in overall upregulation of pro-inflammatory cytokines and chemokines in the brain parenchyma. This compromises the neuronal health which further activates microglia by releasing death associated molecules such as neuromelanin, Aβ peptides and cellular debris at the lesion site thereby forming a vicious cycle of disease advancement. Targeting microglial activation has proven to be a viable option in the treatment of inflammation related neurodegenerative diseases. This review will discuss the central position of inflammation and therapeutic strategies aiming to alleviate disease progression in some of the important inflammatory conditions of CNS.

  2. A friend in need may not be a friend indeed: role of microglia in neurodegenerative diseases.

    PubMed

    Kaushik, Deepak Kumar; Basu, Anirban

    2013-09-01

    Inflammation plays a critical role in the progression of neurodegenerative diseases. Microglia are the resident macrophages of the central nervous system (CNS) which actively take part in the neuronal development of CNS and are involved in clearance of pathogens as well as cellular debris from the system upon insult to this organization. Chronic activation of microglia in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) as well as inflammatory conditions of CNS such as multiple sclerosis (MS) results in overall upregulation of pro-inflammatory cytokines and chemokines in the brain parenchyma. This compromises the neuronal health which further activates microglia by releasing death associated molecules such as neuromelanin, Aβ peptides and cellular debris at the lesion site thereby forming a vicious cycle of disease advancement. Targeting microglial activation has proven to be a viable option in the treatment of inflammation related neurodegenerative diseases. This review will discuss the central position of inflammation and therapeutic strategies aiming to alleviate disease progression in some of the important inflammatory conditions of CNS.

  3. Movement and Other Neurodegenerative Syndromes in Patients with Systemic Rheumatic Diseases

    PubMed Central

    Menezes, Rikitha; Pantelyat, Alexander; Izbudak, Izlem; Birnbaum, Julius

    2015-01-01

    Abstract Patients with rheumatic diseases can present with movement and other neurodegenerative disorders. It may be underappreciated that movement and other neurodegenerative disorders can encompass a wide variety of disease entities. Such disorders are strikingly heterogeneous and lead to a wider spectrum of clinical injury than seen in Parkinson's disease. Therefore, we sought to stringently phenotype movement and other neurodegenerative disorders presenting in a case series of rheumatic disease patients. We integrated our findings with a review of the literature to understand mechanisms which may account for such a ubiquitous pattern of clinical injury. Seven rheumatic disease patients (5 Sjögren's syndrome patients, 2 undifferentiated connective tissue disease patients) were referred and could be misdiagnosed as having Parkinson's disease. However, all of these patients were ultimately diagnosed as having other movement or neurodegenerative disorders. Findings inconsistent with and more expansive than Parkinson's disease included cerebellar degeneration, dystonia with an alien-limb phenomenon, and nonfluent aphasias. A notable finding was that individual patients could be affected by cooccurring movement and other neurodegenerative disorders, each of which could be exceptionally rare (ie, prevalence of ∼1:1000), and therefore with the collective probability that such disorders were merely coincidental and causally unrelated being as low as ∼1-per-billion. Whereas our review of the literature revealed that ubiquitous patterns of clinical injury were frequently associated with magnetic resonance imaging (MRI) findings suggestive of a widespread vasculopathy, our patients did not have such neuroimaging findings. Instead, our patients could have syndromes which phenotypically resembled paraneoplastic and other inflammatory disorders which are known to be associated with antineuronal antibodies. We similarly identified immune-mediated and inflammatory markers

  4. Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders.

    PubMed

    Forlenza, O V; De-Paula, V J R; Diniz, B S O

    2014-06-18

    Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. More recently, based on findings from translational research, lithium has also been regarded as a neuroprotective agent and a candidate drug for disease-modification in certain neurodegenerative disorders, namely, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and, more recently, Parkinson's disease (PD). The putative neuroprotective effects of lithium rely on the fact that it modulates several homeostatic mechanisms involved in neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Such a wide range of intracellular responses may be secondary to two key effects, that is, the inhibition of glycogen synthase kinase-3 beta (GSK-3β) and inositol monophosphatase (IMP) by lithium. In the present review, we revisit the neurobiological properties of lithium in light of the available evidence of its neurotrophic and neuroprotective properties, and discuss the rationale for its use in the treatment and prevention of neurodegenerative diseases.

  5. Thymosin β4 as a restorative/regenerative therapy for neurological injury and neurodegenerative diseases.

    PubMed

    Chopp, Michael; Zhang, Zheng Gang

    2015-01-01

    Thymosin β4 (Tβ4) promotes CNS and peripheral nervous system (PNS) plasticity and neurovascular remodeling leading to neurological recovery in a range of neurological diseases. Treatment of neural injury and neurodegenerative disease 24 h or more post-injury and disease onset with Tβ4 enhances angiogenesis, neurogenesis, neurite and axonal outgrowth, and oligodendrogenesis, and thereby, significantly improves functional and behavioral outcomes. We propose that oligodendrogenesis is a common link by which Tβ4 promotes recovery after neural injury and neurodegenerative disease. The ability to target many diverse restorative processes via multiple molecular pathways that drive oligodendrogenesis and neurovascular remodeling may be mediated by the ability of Tβ4 to alter cellular expression of microRNAs (miRNAs). However, further investigations on the essential role of miRNAs in regulating protein expression and the remarkable exosomal intercellular communication network via exosomes will likely provide insight into mechanisms of action and means to amplify the therapeutic effects of Tβ4.

  6. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases.

    PubMed

    Kawahara, Masahiro

    2005-11-01

    Aluminum is environmentally abundant, but not an essential element. Aluminum has been associated with several neurodegenerative diseases, such as dialysis encephalopathy, amyotrophic lateral sclerosis and Parkinsonism dementia in the Kii peninsula and Guam, and in particular, Alzheimer's disease. Although this association remains controversial, there is increasing evidence which suggests the implication of metal homeostasis in the pathogenesis of Alzheimer's disease. Aluminum, zinc, copper, and iron cause the conformational changes of Alzheimer's amyloid-beta protein. Al causes the accumulation of tau protein and amyloid-beta protein in experimental animals. Aluminum induces neuronal apoptosis in vivo as well as in vitro. Furthermore, a relationship between aluminum and the iron-homeostasis or calcium-homeostasis has been suggested. Based on these findings, the characteristics of aluminum neurotoxicity are reviewed, and the potential link between aluminum and neurodegenerative diseases is reconsidered.

  7. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins.

    PubMed

    Butterfield, D Allan; Palmieri, Erika M; Castegna, Alessandra

    2016-01-01

    Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.

  8. The basics of preclinical drug development for neurodegenerative disease indications

    PubMed Central

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  9. The basics of preclinical drug development for neurodegenerative disease indications.

    PubMed

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  10. Abstract and concrete categories? Evidences from neurodegenerative diseases.

    PubMed

    Catricalà, Eleonora; Della Rosa, Pasquale A; Plebani, Valentina; Vigliocco, Gabriella; Cappa, Stefano F

    2014-11-01

    We assessed the performance of patients with a diagnosis of Alzheimer׳s disease (AD) and of the semantic variant of primary progressive aphasia (sv-PPA) in a series of tasks involving both abstract and concrete stimuli, which were controlled for most of the variables that have been shown to affect performance on lexical-semantic tasks. Our aims were to compare the patients׳ performance on abstract and concrete stimuli and to assess category-effects within the abstract and concrete domains. The results showed: (i) a better performance on abstract than concrete concepts in sv-PPA patients. (ii) Category-related effects in the abstract domain, with emotion concepts being preserved in AD and social relations being selectively impaired in sv-PPA. In addition, a living-non living dissociation may be (infrequently) observed in individual AD patients after controlling for an extensive set of potential confounds. Thus, differences between and within the concrete or abstract domain may be present in patients with semantic memory disorders, mirroring the different brain regions involved by the different pathologies.

  11. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.

    PubMed

    Wu, Ping; Zuo, Xialin; Deng, Houliang; Liu, Xiaoxia; Liu, Li; Ji, Aimin

    2013-08-01

    Long noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated. Here, we give a systematic and comprehensive summary of the existing knowledge of lncRNAs in order to provide a better understanding of this new studying field. lncRNAs play important roles in brain development, neuron function and maintenance, and neurodegenerative diseases are becoming increasingly evident. In this review, we also highlighted recent studies related lncRNAs in central nervous system (CNS) development and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), and elucidated some specific lncRNAs which may be important for understanding the pathophysiology of neurodegenerative diseases, also have the potential as therapeutic targets.

  12. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.

    PubMed

    Wu, Ping; Zuo, Xialin; Deng, Houliang; Liu, Xiaoxia; Liu, Li; Ji, Aimin

    2013-08-01

    Long noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated. Here, we give a systematic and comprehensive summary of the existing knowledge of lncRNAs in order to provide a better understanding of this new studying field. lncRNAs play important roles in brain development, neuron function and maintenance, and neurodegenerative diseases are becoming increasingly evident. In this review, we also highlighted recent studies related lncRNAs in central nervous system (CNS) development and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), and elucidated some specific lncRNAs which may be important for understanding the pathophysiology of neurodegenerative diseases, also have the potential as therapeutic targets. PMID:23756188

  13. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases

    SciTech Connect

    Androutsopoulos, Vasilis P.; Kanavouras, Konstantinos; Tsatsakis, Aristidis M.

    2011-11-15

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  14. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia.

    PubMed

    Keiser, Megan S; Kordasiewicz, Holly B; McBride, Jodi L

    2016-04-15

    RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic.

  15. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases

    PubMed Central

    Vegeto, Elisabetta; Benedusi, Valeria; Maggi, Adriana

    2008-01-01

    Recent studies highlight the prominent role played by estrogens in protecting the central nervous system (CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative process of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is associated with the activation of microglia cells, which drive the resident inflammatory response. Chronically stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on surrounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microglia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation and the anti-inflammatory activity played by estrogens specifically in microglia. PMID:18522863

  16. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products

    PubMed Central

    Barrera, Giuseppina; Gentile, Fabrizio; Pizzimenti, Stefania; Canuto, Rosa Angela; Daga, Martina; Arcaro, Alessia; Cetrangolo, Giovanni Paolo; Lepore, Alessio; Ferretti, Carlo; Dianzani, Chiara; Muzio, Giuliana

    2016-01-01

    In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations. PMID:26907355

  17. Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: Potential utility and limitations.

    PubMed

    Kudrna, Jeremy J; Ugen, Kenneth E

    2015-01-01

    There has been a recent expansion of vaccination and immunotherapeutic strategies from controlling infectious diseases to the targeting of non-infectious conditions including neurodegenerative disorders. In addition to conventional vaccine and immunotherapeutic modalities, gene-based methods that express antigens for presentation to the immune system by either live viral vectors or non-viral naked DNA plasmids have been developed and evaluated. This mini-review/commentary summarizes the advantages and disadvantages, as well as the research findings to date, of both of these gene-based vaccination approaches in terms of how they can be targeted against appropriate antigens within the Alzheimer and Parkinson disease pathogenesis processes as well as potentially against targets in other neurodegenerative diseases. Most recently, the novel utilization of these viral vector and naked DNA gene-based technologies includes the delivery of immunoglobulin genes from established biologically active monoclonal antibodies. This modified passive immunotherapeutic strategy has recently been applied to deliver passive antibody immunotherapy against the pathologically relevant amyloid β protein in Alzheimer disease. The advantages and disadvantages of this technological application of gene-based immune interventions, as well as research findings to date are also summarized. In sum, it is suggested that further evaluation of gene based vaccines and immunotherapies against neurodegenerative diseases are warranted to determine their potential clinical utility.

  18. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases.

    PubMed

    Basak, Indranil; Patil, Ketan S; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2016-02-01

    The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.

  19. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases.

    PubMed

    Basak, Indranil; Patil, Ketan S; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2016-02-01

    The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies. PMID:26608596

  20. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    PubMed Central

    Natale, G.; Pompili, E.; Biagioni, F.; Paparelli, S.; Lenzi, P.; Fornai, F.

    2013-01-01

    Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-tocell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs); mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs). The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step. PMID:23549464

  1. Epidemiology of Major Neurodegenerative Diseases in Women: Contribution of the Nurses’ Health Study

    PubMed Central

    Munger, Kassandra L.; Ascherio, Alberto; Grodstein, Francine

    2016-01-01

    Objectives. To review the contribution of the Nurses’ Health Study (NHS) to identifying the role of lifestyle, diet, and genetic or biological factors in several neurodegenerative diseases, including cognitive decline, multiple sclerosis, Parkinson’s disease, and amyotrophic lateral sclerosis. Methods. We completed a narrative review of the publications of the NHS and NHS II between 1976 and 2016. Results. In primary findings for cognitive function, higher intake of nuts, moderate alcohol consumption, and higher physical activity levels were associated with better cognitive function. Flavonoids, physical activity, and postmenopausal hormone therapy were related to cognitive decline over 2 to 6 years. The NHS also has been integral in establishing Epstein-Barr virus infection, inadequate vitamin D nutrition, cigarette smoking, and obesity as risk factors for multiple sclerosis and inverse associations between cigarette smoking and caffeine and risk of Parkinson’s disease. Increased risk of amyotrophic lateral sclerosis has been associated with cigarette smoking and decreased risk associated with obesity. Conclusions. The NHS has provided invaluable resources on neurodegenerative diseases and contributed to their etiological understanding. We anticipate that the NHS cohorts will continue to make important contributions to the field of neurodegenerative diseases. PMID:27459462

  2. The molecular mechanisms of scrapie encephalopathy and relevance to human neurodegenerative disease.

    PubMed Central

    Lukiw, W J; Cho, H J; Kaufmann, J C; Crapper McLachlan, D R

    1990-01-01

    We have investigated alterations in the structure and function of nuclei isolated from normal and pathological brains in a number of neurodegenerative diseases including scrapie and Alzheimer's disease. Here we summarize both general and specific changes in chromatin structure, gene expression, and neuropathological features for each encephalopathy and compare them in terms of their molecular biological similarities and differences. While both scrapie and Alzheimer's disease share a number of common alterations in genomic organization and gene activity during the pathogenic process, each neurological disease appears to operate on fundamentally different mechanisms. Images Fig. 2. Fig. 3. Fig. 4A. Fig. 5A. PMID:2407330

  3. From intrinsic firing properties to selective neuronal vulnerability in neurodegenerative diseases.

    PubMed

    Roselli, Francesco; Caroni, Pico

    2015-03-01

    Neurodegenerative diseases (NDDs) involve years of gradual preclinical progression. It is widely anticipated that in order to be effective, treatments should target early stages of disease, but we lack conceptual frameworks to identify and treat early manifestations relevant to disease progression. Here we discuss evidence that a focus on physiological features of neuronal subpopulations most vulnerable to NDDs, and how those features are affected in disease, points to signaling pathways controlling excitation in selectively vulnerable neurons, and to mechanisms regulating calcium and energy homeostasis. These hypotheses could be tested in neuronal stress tests involving animal models or patient-derived iPS cells.

  4. Time is of the essence: microRNAs and age-associated neurodegeneration.

    PubMed

    Aw, Sherry; Cohen, Stephen M

    2012-08-01

    Aging is a key risk factor in neurodegenerative disease; however, little is known about cellular pathways that mediate age-associated degeneration of the brain. The Bonini lab has identified a conserved microRNA, miR-34, that plays a neuroprotective role in the aging Drosophila brain and suggests that it functions in temporal control of gene expression.

  5. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases.

    PubMed

    Rodríguez-Morató, Jose; Xicota, Laura; Fitó, Montse; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-01-01

    Adherence to the Mediterranean Diet (MD) has been associated with a reduced incidence of neurodegenerative diseases and better cognitive performance. Virgin olive oil, the main source of lipids in the MD, is rich in minor phenolic components, particularly hydroxytyrosol (HT). HT potent antioxidant and anti-inflammatory actions have attracted researchers' attention and may contribute to neuroprotective effects credited to MD. In this review HT bioavailability and pharmacokinetics are presented prior to discussing health beneficial effects. In vitro and in vivo neuroprotective effects together with its multiple mechanisms of action are reviewed. Other microconstituents of olive oil are also considered due to their potential neuroprotective effects (oleocanthal, triterpenic acids). Finally, we discuss the potential role of HT as a therapeutic tool in the prevention of neurodegenerative diseases. PMID:25781069

  6. Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2014-01-01

    Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases. PMID:25257784

  7. The transcription factor X-box binding protein-1 in neurodegenerative diseases

    PubMed Central

    2014-01-01

    Endoplasmic reticulum (ER) is the cellular compartment where secreted and integral membrane proteins are folded and matured. The accumulation of unfolded or misfolded proteins triggers a stress that is physiologically controlled by an adaptative protective response called Unfolded Protein Response (UPR). UPR is primordial to induce a quality control response and to restore ER homeostasis. When this adaptative response is defective, protein aggregates overwhelm cells and affect, among other mechanisms, synaptic function, signaling transduction and cell survival. Such dysfunction likely contributes to several neurodegenerative diseases that are indeed characterized by exacerbated protein aggregation, protein folding impairment, increased ER stress and UPR activation. This review briefly documents various aspects of the biology of the transcription factor XBP-1 (X-box Binding Protein-1) and summarizes recent findings concerning its putative contribution to the altered UPR response observed in various neurodegenerative disorders including Parkinson’s and Alzheimer’s diseases. PMID:25216759

  8. Burden of neurodegenerative diseases in a cohort of medical examiner subjects.

    PubMed

    Uryu, Kunihiro; Haddix, Terri; Robinson, John; Nakashima-Yasuda, Hanae; Lee, Virginia M-Y; Trojanowski, John Q

    2010-05-01

    Here we report studies of the burden of neurodegenerative neuropathologies in a cohort of Medical Examiner (ME) subjects from the County of Santa Clara (California) to determine if this unique population of decedents manifested evidence of neurodegeneration that might underlie causes of death seen in an ME practice. We found that 13% of the brains from ME cases showed significant tau pathology, including 55% of those 65 years old and older and 63% of those 70 years old and older. The histochemical and immunohistochemical findings were consistent with Alzheimer's disease (AD) in 7 subjects and frontotemporal lobar degeneration (FTLD) tauopathy type in six cases. There were no cases of Parkinson's disease, dementia with Lewy Bodies or other neurodegenerative conditions. Our study suggests that decedents >65 years of age in an ME practice are afflicted by common causes of dementia such as AD and FTLD which could contribute wholly or in part to their causes of death.

  9. Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases.

    PubMed

    Payne, Natalie L; Sylvain, Aude; O'Brien, Carmel; Herszfeld, Daniella; Sun, Guizhi; Bernard, Claude C A

    2015-01-25

    The advent of human induced pluripotent stem cells (hiPSCs), reprogrammed in vitro from both healthy and disease-state human somatic cells, has triggered an enormous global research effort to realize personalized regenerative medicine for numerous degenerative conditions. hiPSCs have been generated from cells of many tissue types and can be differentiated in vitro to most somatic lineages, not only for the establishment of disease models that can be utilized as novel drug screening platforms and to study the molecular and cellular processes leading to degeneration, but also for the in vivo cell-based repair or modulation of a patient's disease profile. hiPSCs derived from patients with the neurodegenerative diseases amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease and multiple sclerosis have been successfully differentiated in vitro into disease-relevant cell types, including motor neurons, dopaminergic neurons and oligodendrocytes. However, the generation of functional iPSC-derived neural cells that are capable of engraftment in humans and the identification of robust disease phenotypes for modeling neurodegeneration still require several key challenges to be addressed. Here, we discuss these challenges and summarize recent progress toward the application of iPSC technology for these four common neurodegenerative diseases.

  10. Role of the nucleolus in neurodegenerative diseases with particular reference to the retina: a review.

    PubMed

    Sia, Paul I; Wood, John Pm; Chidlow, Glyn; Sharma, Shiwani; Craig, Jamie; Casson, Robert J

    2016-04-01

    The nucleolus has emerged as a key regulator of cellular growth and the response to stress, in addition to its traditionally understood function in ribosome biogenesis. The association between nucleolar function and neurodegenerative disease is increasingly being explored. There is also recent evidence indicating that the nucleolus may well be crucial in the development of the eye. In this present review, the role of the nucleolus in retinal development as well as in neurodegeneration with an emphasis on the retina is discussed.

  11. The benefits and limitations of animal models for translational research in neurodegenerative diseases.

    PubMed

    Jucker, Mathias

    2010-11-01

    Age-related neurodegenerative diseases are largely limited to humans and rarely occur spontaneously in animals. Genetically engineered mouse models recapitulate aspects of the corresponding human diseases and are instrumental in studying disease mechanisms and testing therapeutic strategies. If considered within the range of their validity, mouse models have been predictive of clinical outcome. Translational failure is less the result of the incomplete nature of the models than of inadequate preclinical studies and misinterpretation of the models. This commentary summarizes current models and highlights key questions we should be asking about animal models, as well as questions that cannot be answered with the current models.

  12. The emerging use of in vivo optical imaging in the study of neurodegenerative diseases.

    PubMed

    Patterson, Aileen P; Booth, Stephanie A; Saba, Reuben

    2014-01-01

    The detection and subsequent quantification of photons emitted from living tissues, using highly sensitive charged-couple device (CCD) cameras, have enabled investigators to noninvasively examine the intricate dynamics of molecular reactions in wide assortment of experimental animals under basal and pathophysiological conditions. Nevertheless, extrapolation of this in vivo optical imaging technology to the study of the mammalian brain and related neurodegenerative conditions is still in its infancy. In this review, we introduce the reader to the emerging use of in vivo optical imaging in the study of neurodegenerative diseases. We highlight the current instrumentation that is available and reporter molecules (fluorescent and bioluminescent) that are commonly used. Moreover, we examine how in vivo optical imaging using transgenic reporter mice has provided new insights into Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Prion disease, and neuronal damage arising from excitotoxicity and inflammation. Furthermore, we also touch upon studies that have utilized these technologies for the development of therapeutic strategies for neurodegenerative conditions that afflict humans.

  13. The emerging use of in vivo optical imaging in the study of neurodegenerative diseases.

    PubMed

    Patterson, Aileen P; Booth, Stephanie A; Saba, Reuben

    2014-01-01

    The detection and subsequent quantification of photons emitted from living tissues, using highly sensitive charged-couple device (CCD) cameras, have enabled investigators to noninvasively examine the intricate dynamics of molecular reactions in wide assortment of experimental animals under basal and pathophysiological conditions. Nevertheless, extrapolation of this in vivo optical imaging technology to the study of the mammalian brain and related neurodegenerative conditions is still in its infancy. In this review, we introduce the reader to the emerging use of in vivo optical imaging in the study of neurodegenerative diseases. We highlight the current instrumentation that is available and reporter molecules (fluorescent and bioluminescent) that are commonly used. Moreover, we examine how in vivo optical imaging using transgenic reporter mice has provided new insights into Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Prion disease, and neuronal damage arising from excitotoxicity and inflammation. Furthermore, we also touch upon studies that have utilized these technologies for the development of therapeutic strategies for neurodegenerative conditions that afflict humans. PMID:25147799

  14. The Emerging Use of In Vivo Optical Imaging in the Study of Neurodegenerative Diseases

    PubMed Central

    Booth, Stephanie A.; Saba, Reuben

    2014-01-01

    The detection and subsequent quantification of photons emitted from living tissues, using highly sensitive charged-couple device (CCD) cameras, have enabled investigators to noninvasively examine the intricate dynamics of molecular reactions in wide assortment of experimental animals under basal and pathophysiological conditions. Nevertheless, extrapolation of this in vivo optical imaging technology to the study of the mammalian brain and related neurodegenerative conditions is still in its infancy. In this review, we introduce the reader to the emerging use of in vivo optical imaging in the study of neurodegenerative diseases. We highlight the current instrumentation that is available and reporter molecules (fluorescent and bioluminescent) that are commonly used. Moreover, we examine how in vivo optical imaging using transgenic reporter mice has provided new insights into Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Prion disease, and neuronal damage arising from excitotoxicity and inflammation. Furthermore, we also touch upon studies that have utilized these technologies for the development of therapeutic strategies for neurodegenerative conditions that afflict humans. PMID:25147799

  15. Use of Genetically Modified Mesenchymal Stem Cells to Treat Neurodegenerative Diseases

    PubMed Central

    Wyse, Robert D.; Dunbar, Gary L.; Rossignol, Julien

    2014-01-01

    The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson’s, Alzheimer’s and Huntington’s diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs. PMID:24463293

  16. Determination of the olfactory threshold using a piezoelectric microdispenser for neurodegenerative disease diagnostics

    NASA Astrophysics Data System (ADS)

    Wallace, David B.; Taylor, David; Antohe, Bogdan V.; Achiriloaie, Ioan; Comparini, Norman; Stewart, R. Malcolm; Sanghera, Manjit K.

    2006-11-01

    Ink-jet microdispensing technology was used to develop an instrument for the quantitative determination of the olfactory threshold. An electrical pulse applied to the piezoelectric element produces a deformation that is transmitted to the fluid which results in a drop of fluid being ejected through the orifice mounted at one end of a piezoelectric tube. An electronic console actuates the piezoelectric dispensing elements and controls the number of drops that are dispensed and evaporated to create a fragrance cloud. The number of drops that are generated, evaporated and presented to the patient's nose for detection is adjusted according to a preset algorithm until the patient's threshold is discovered. Neurodegenerative disease patients tested with the developed olfactometer showed a significant elevation of their olfactory threshold as compared to normal controls. This result agrees with literature studies that indicate the sense of smell is one of the first affected by neurodegenerative disease. Through its precise control and detection capability, the digital olfactometer described in this paper can be used as an early screening tool for neurodegenerative disease through olfactory threshold determination.

  17. The impact of base excision DNA repair in age-related neurodegenerative diseases.

    PubMed

    Leandro, Giovana S; Sykora, Peter; Bohr, Vilhelm A

    2015-06-01

    The aging process and several age-related neurodegenerative disorders have been linked to elevated levels of DNA damage induced by ROS and deficiency in DNA repair mechanisms. DNA damage induced by ROS is a byproduct of cellular respiration and accumulation of damage over time, is a fundamental aspect of a main theory of aging. Mitochondria have a pivotal role in generating cellular oxidative stress, and mitochondrial dysfunction has been associated with several diseases. DNA base excision repair is considered the major pathway for repair of oxidized bases in DNA both in the nuclei and in mitochondria, and in neurons this mechanism is particularly important because non-diving cells have limited back-up DNA repair mechanisms. An association between elevated oxidative stress and a decrease in BER is strongly related to the aging process and has special relevance in age-related neurodegenerative diseases. Here, we review the role of DNA repair in aging, focusing on the implications of the DNA base excision repair pathways and how alterations in expression of these DNA repair proteins are related to the aging process and to age-related neurodegenerative diseases.

  18. Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease

    PubMed Central

    Langford-Smith, Kia J.; Langford-Smith, Alex; Brown, Jillian R.; Crawford, Brett E.; Vanier, Marie T.; Grynkiewicz, Grzegorz; Wynn, Rob F.; Wraith, J. Ed; Wegrzyn, Grzegorz; Bigger, Brian W.

    2010-01-01

    Background Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. Methodology/Principal Findings We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. Conclusions/Significance Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases. PMID:21152017

  19. ACAID as a potential therapeutic approach to modulate inflammation in neurodegenerative diseases.

    PubMed

    Toscano-Tejeida, D; Ibarra, A; Phillips-Farfán, B V; Fuentes-Farías, A L; Meléndez-Herrera, E

    2016-03-01

    The progressive loss of neurons and inflammation characterizes neurodegenerative diseases. Although the etiology, progression and outcome of different neurodegenerative diseases are varied, they share chronic inflammation maintained largely by central nervous system (CNS)-derived antigens recognized by T cells. Inflammation can be beneficial by recruiting immune cells to kill pathogens or to clear cell debris resulting from the primary insult. However, chronic inflammation exacerbates and perpetuates tissue damage. An increasing number of therapies that attempt to modulate neuroinflammation have been developed. However, so far none has succeeded in decreasing the secondary damage associated with chronic inflammation. A potential strategy to modulate the immune system is related to the induction of tolerance to CNS antigens. In this line, it is our hypothesis that this could be accomplished by using anterior chamber associated immune deviation (ACAID) as a strategy. Thus, we review current knowledge regarding some neurodegenerative diseases and the associated immune response that causes inflammation. In addition, we discuss further our hypothesis of the possible usefulness of ACAID as a therapeutic strategy to ameliorate damage to the CNS.

  20. Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre.

    PubMed

    Li, Jiayuan; Jiang, Zhe; Li, Xuezheng; Hou, Yue; Liu, Fen; Li, Ning; Liu, Xia; Yang, Lihua

    2015-01-01

    Neurodegenerative diseases are associated with neuroinflammation, manifested by over-production of nitric oxide (NO) by microglial cells. Now there still lack effective treatment and prevention for the neurodegenerative diseases. Concerning neuroinflammation mediated by microglia cell, bioactivity-guided phytochemical research of Pongamia pinnata (L.) Pierre was performed in this study. A new chlorinated flavonoid, 2′,6′-dichlore-3′, 5′-dimethoxy-[2′′,3′′:7,8]-furanoflavone (1) was identified together with 29 known compounds, including flavonoids (compounds 2-17), isoflavonoids (compounds 18-23), chalcones (compounds 24-25), flavonones (compounds 26-27), triterpenes (28-29) and alkaloid (30) from the effective dichloride methane extract of dry stem of P. pinnata (L.) Pierre. Their structures were elucidated by physicochemical and spectral methods. The anti-neuroinflammatory activities were assayed in BV-2 cells by assessing LPS-induced NO production. Then pongaglabol methyl ether (2), lonchocarpin (24) and glabrachromene II (25) were selected as potential therapeutic agents for neurodegenerative diseases because of their significant anti-neuroinflammatory activities. Furthermore, the characteristics of structure type existing in P. pinnata (L.) Pierre and brief SAR were summarized, respectively.

  1. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases.

    PubMed

    Wyse, Robert D; Dunbar, Gary L; Rossignol, Julien

    2014-01-23

    The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.

  2. Visual Hallucinations in the Psychosis Spectrum and Comparative Information From Neurodegenerative Disorders and Eye Disease

    PubMed Central

    Waters, Flavie; Collerton, Daniel; ffytche, Dominic H.; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Larøi, Frank

    2014-01-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. PMID:24936084

  3. Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease.

    PubMed

    Waters, Flavie; Collerton, Daniel; Ffytche, Dominic H; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Larøi, Frank

    2014-07-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications.

  4. Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre.

    PubMed

    Li, Jiayuan; Jiang, Zhe; Li, Xuezheng; Hou, Yue; Liu, Fen; Li, Ning; Liu, Xia; Yang, Lihua

    2015-01-01

    Neurodegenerative diseases are associated with neuroinflammation, manifested by over-production of nitric oxide (NO) by microglial cells. Now there still lack effective treatment and prevention for the neurodegenerative diseases. Concerning neuroinflammation mediated by microglia cell, bioactivity-guided phytochemical research of Pongamia pinnata (L.) Pierre was performed in this study. A new chlorinated flavonoid, 2′,6′-dichlore-3′, 5′-dimethoxy-[2′′,3′′:7,8]-furanoflavone (1) was identified together with 29 known compounds, including flavonoids (compounds 2-17), isoflavonoids (compounds 18-23), chalcones (compounds 24-25), flavonones (compounds 26-27), triterpenes (28-29) and alkaloid (30) from the effective dichloride methane extract of dry stem of P. pinnata (L.) Pierre. Their structures were elucidated by physicochemical and spectral methods. The anti-neuroinflammatory activities were assayed in BV-2 cells by assessing LPS-induced NO production. Then pongaglabol methyl ether (2), lonchocarpin (24) and glabrachromene II (25) were selected as potential therapeutic agents for neurodegenerative diseases because of their significant anti-neuroinflammatory activities. Furthermore, the characteristics of structure type existing in P. pinnata (L.) Pierre and brief SAR were summarized, respectively. PMID:25466192

  5. Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease.

    PubMed

    Vicencio, Jose Miguel; Lavandero, Sergio; Szabadkai, Gyorgy

    2010-02-01

    Substantial progress has been made throughout the last decades in the elucidation of the key players and mechanisms responsible for Ca2+ signal generation in both excitable and non-excitable cells. Importantly, these studies led also to the recognition that a close correlation exists between the deregulation of cellular Ca2+ homeostasis and the development of several human pathologies, including neurodegenerative disease. Notwithstanding this advances, much less is certain about the targets and mechanisms by which compromised Ca2+ signaling exerts its effects on cell function and survival. Recently it has been proposed that deregulation of cellular energy metabolism and protein turnover (synthesis, folding and degradation) are also fundamental pathomechanisms of neurodegenerative disease, pointing to the pivotal role of autophagy, a major cellular pathway controlling metabolic homeostasis. Indeed, activation of autophagy has been shown to represent a highly successful strategy to restore normal neuronal function in a variety of models of neurodegenerative disease. Here we review recent advances in elucidating Ca2+ regulation of autophagy and will highlight its relationship to neurodegeneration. PMID:20097418

  6. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease.

    PubMed

    Richards, Robert I; Robertson, Sarah A; O'Keefe, Louise V; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an "intelligent system," in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate-mediated damage

  7. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease

    PubMed Central

    Richards, Robert I.; Robertson, Sarah A.; O'Keefe, Louise V.; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T.

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an “intelligent system,” in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate

  8. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    PubMed Central

    Khanam Irin, Afroza; Tom Kodamullil, Alpha; Gündel, Michaela; Hofmann-Apitius, Martin

    2015-01-01

    Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL). This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson's disease (PD) and Multiple Sclerosis (MS). PMID:26636108

  9. The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases.

    PubMed

    Zeineddine, Rafaa; Yerbury, Justin J

    2015-01-01

    With the onset of the rapidly aging population, the impact of age related neurodegenerative diseases is becoming a predominant health and economic concern. Neurodegenerative diseases such as Alzheimer's disease, Creutzfeldt-Jakob disease (CJD), Parkinson's disease, Huntington's disease, frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) result from the loss of a specific subsets of neurons, which is closely associated with accumulation and deposition of specific protein aggregates. Protein aggregation, or fibril formation, is a well-studied phenomenon that occurs in a nucleation-dependent growth reaction. Recently, there has been a swell of literature implicating protein aggregation and its ability to propagate cell-to-cell in the rapid progression of these diseases. In order for protein aggregation to be kindled in recipient cells it is a requisite that aggregates must be able to be released from one cell and then taken up by others. In this article we will explore the relationship between protein aggregates, their propagation and the role of macropinocytosis in their uptake. We highlight the ability of neurons to undergo stimulated macropinocytosis and identify potential therapeutic targets. PMID:26528186

  10. Effect of electromagnetic radiations on neurodegenerative diseases- technological revolution as a curse in disguise.

    PubMed

    Hasan, Gulam M; Sheikh, Ishfaq A; Karim, Sajjad; Haque, Absarul; Kamal, Mohammad A; Chaudhary, Adeel G; Azhar, Essam; Mirza, Zeenat

    2014-01-01

    In the present developed world, all of us are flooded with electromagnetic radiations (EMR) emanating from generation and transmission of electricity, domestic appliances and industrial equipments, to telecommunications and broadcasting. We have been exposed to EMR for last many decades; however their recent steady increase from artificial sources has been reported as millions of antennas and satellites irradiate the global population round the clock, year round. Needless to say, these are so integral to modern life that interaction with them on a daily basis is seemingly inevitable; hence, the EMR exposure load has increased to a point where their health effects are becoming a major concern. Delicate and sensitive electrical system of human body is affected by consistent penetration of electromagnetic frequencies causing DNA breakages and chromosomal aberrations. Technological innovations came with Pandora's Box of hazardous consequences including neurodegenerative disorders, hearing disabilities, diabetes, congenital abnormalities, infertility, cardiovascular diseases and cancer to name few, all on a sharp rise. Electromagnetic non-ionizing radiations pose considerable health threat with prolonged exposure. Mobile phones are usually held near to the brain and manifest progressive structural or functional alterations in neurons leading to neurodegenerative diseases and neuronal death. This has provoked awareness among both the general public and scientific community and international bodies acknowledge that further systematic research is needed. The aim of the present review was to have an insight in whether and how cumulative electro-magnetic field exposure is a risk factor for neurodegenerative disorders.

  11. Analysis of optical neural stimulation effects on neural networks affected by neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2016-03-01

    The number of people in risk of developing a neurodegenerative disease increases as the life expectancy grows due to medical advances. Multiple techniques have been developed to improve patient's condition, from pharmacological to invasive electrodes approaches, but no definite cure has yet been discovered. In this work Optical Neural Stimulation (ONS) has been studied. ONS stimulates noninvasively the outer regions of the brain, mainly the neocortex. The relationship between the stimulation parameters and the therapeutic response is not totally clear. In order to find optimal ONS parameters to treat a particular neurodegenerative disease, mathematical modeling is necessary. Neural networks models have been employed to study the neural spiking activity change induced by ONS. Healthy and pathological neocortical networks have been considered to study the required stimulation to restore the normal activity. The network consisted of a group of interconnected neurons, which were assigned 2D spatial coordinates. The optical stimulation spatial profile was assumed to be Gaussian. The stimulation effects were modeled as synaptic current increases in the affected neurons, proportional to the stimulation fluence. Pathological networks were defined as the healthy ones with some neurons being inactivated, which presented no synaptic conductance. Neurons' electrical activity was also studied in the frequency domain, focusing specially on the changes of the spectral bands corresponding to brain waves. The complete model could be used to determine the optimal ONS parameters in order to achieve the specific neural spiking patterns or the required local neural activity increase to treat particular neurodegenerative pathologies.

  12. Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease.

    PubMed

    Dunnett, Stephen B; Rosser, Anne E

    2014-01-01

    We review the first generations of clinical trials of novel cell therapies applied to a range of neurodegenerative diseases in the context of mechanisms of functional efficacy. This in turn helps to determine the best strategies to be adopted and the potential chances for success in developing new cell therapies to clinical application in different conditions. We then consider the scientific, technical, ethical, regulatory and logistic issues to be resolved in translating effective laboratory cell-based protocols to patients in clinical trials. We draw optimistic conclusions about the likelihood of success in developing radical new approaches to a range of devastating, and currently untreatable, neurodegenerative conditions, but caution that the problems are complex and the solutions are likely to be slow and costly to achieve in order to overcome significant ethical and regulatory as well as scientific challenges.

  13. [Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].

    PubMed

    Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P

    2015-01-01

    Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies. PMID:25304170

  14. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies

    PubMed Central

    Ciechanover, Aaron; Kwon, Yong Tae

    2015-01-01

    Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons. PMID:25766616

  15. Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer's disease characterization

    PubMed Central

    Liu, Sidong; Cai, Weidong; Wen, Lingfeng; Feng, David Dagan; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J.; Eberl, Stefan; ADNI

    2014-01-01

    Neuroimaging has played an important role in non-invasive diagnosis and differentiation of neurodegenerative disorders, such as Alzheimer's disease and Mild Cognitive Impairment. Various features have been extracted from the neuroimaging data to characterize the disorders, and these features can be roughly divided into global and local features. Recent studies show a tendency of using local features in disease characterization, since they are capable of identifying the subtle disease-specific patterns associated with the effects of the disease on human brain. However, problems arise if the neuroimaging database involved multiple disorders or progressive disorders, as disorders of different types or at different progressive stages might exhibit different degenerative patterns. It is difficult for the researchers to reach consensus on what brain regions could effectively distinguish multiple disorders or multiple progression stages. In this study we proposed a Multi-Channel pattern analysis approach to identify the most discriminative local brain metabolism features for neurodegenerative disorder characterization. We compared our method to global methods and other pattern analysis methods based on clinical expertise or statistics tests. The preliminary results suggested that the proposed Multi-Channel pattern analysis method outperformed other approaches in Alzheimer's disease characterization, and meanwhile provided important insights into the underlying pathology of Alzheimer's disease and Mild Cognitive Impairment. PMID:24933011

  16. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    PubMed

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities. PMID:26883165

  17. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons

    PubMed Central

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  18. Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer's disease characterization.

    PubMed

    Liu, Sidong; Cai, Weidong; Wen, Lingfeng; Feng, David Dagan; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Eberl, Stefan

    2014-09-01

    Neuroimaging has played an important role in non-invasive diagnosis and differentiation of neurodegenerative disorders, such as Alzheimer's disease and Mild Cognitive Impairment. Various features have been extracted from the neuroimaging data to characterize the disorders, and these features can be roughly divided into global and local features. Recent studies show a tendency of using local features in disease characterization, since they are capable of identifying the subtle disease-specific patterns associated with the effects of the disease on human brain. However, problems arise if the neuroimaging database involved multiple disorders or progressive disorders, as disorders of different types or at different progressive stages might exhibit different degenerative patterns. It is difficult for the researchers to reach consensus on what brain regions could effectively distinguish multiple disorders or multiple progression stages. In this study we proposed a Multi-Channel pattern analysis approach to identify the most discriminative local brain metabolism features for neurodegenerative disorder characterization. We compared our method to global methods and other pattern analysis methods based on clinical expertise or statistics tests. The preliminary results suggested that the proposed Multi-Channel pattern analysis method outperformed other approaches in Alzheimer's disease characterization, and meanwhile provided important insights into the underlying pathology of Alzheimer's disease and Mild Cognitive Impairment.

  19. [Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].

    PubMed

    Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P

    2015-01-01

    Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies.

  20. Modulation of the Kynurenine Pathway for the Potential Treatment of Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Courtney, Stephen; Scheel, Andreas

    Modulation of tryptophan metabolism and in particular the kynurenine pathway is of considerable interest in the discovery of potential new treatments for neurodegenerative diseases. A number of small molecule inhibitors of the kynurenine metabolic pathway enzymes have been identified over recent years; a summary of these and their utility has been reviewed in this chapter. In particular, inhibitors of kynurenine monooxygenase represent an opportunity to develop a therapy for Huntington's disease; progress in the optimization of small molecule inhibitors of this enzyme is also described.

  1. Pathogenic Protein Seeding in Alzheimer’s Disease and Other Neurodegenerative Disorders

    PubMed Central

    Jucker, Mathias; Walker, Lary C.

    2011-01-01

    The misfolding and aggregation of specific proteins is a seminal occurrence in a remarkable variety of neurodegenerative disorders. In Alzheimer’s disease (the most prevalent cerebral proteopathy), the two principal aggregating proteins are β-amyloid (Aβ) and tau. The abnormal assemblies formed by conformational variants of these proteins range in size from small oligomers to the characteristic lesions that are visible by optical microscopy, such as senile plaques and neurofibrillary tangles. Pathologic similarities with prion disease suggest that the formation and spread of these proteinaceous lesions might involve a common molecular mechanism – corruptive protein templating. Experimentally, cerebral β-amyloidosis can be exogenously induced by exposure to dilute brain extracts containing aggregated Aβ seeds. The amyloid-inducing agent probably is Aβ itself, in a conformation generated most effectively in the living brain. Once initiated, Aβ lesions proliferate within and among brain regions. The induction process is governed by the structural and biochemical nature of the Aβ seed, as well as the attributes of the host, reminiscent of pathogenically variant prion strains. The concept of prion-like induction and spreading of pathogenic proteins recently has been expanded to include aggregates of tau, α-synuclein, huntingtin, superoxide dismutase-1, and TDP-43, which characterize such human neurodegenerative disorders as frontotemporal lobar degeneration, Parkinson’s/Lewy body disease, Huntington’s disease, and amyotrophic lateral sclerosis. Our recent finding that the most effective Aβ seeds are small and soluble intensifies the search in bodily fluids for misfolded protein seeds that are upstream in the proteopathic cascade, and thus could serve as predictive diagnostics and the targets of early, mechanism-based interventions. Establishing the clinical implications of corruptive protein templating will require further mechanistic and epidemiologic

  2. Epidemiology of neurodegenerative diseases in sub-Saharan Africa: a systematic review

    PubMed Central

    2014-01-01

    Background Sub-Saharan African (SSA) countries are experiencing rapid transitions with increased life expectancy. As a result the burden of age-related conditions such as neurodegenerative diseases might be increasing. We conducted a systematic review of published studies on common neurodegenerative diseases, and HIV-related neurocognitive impairment in SSA, in order to identify research gaps and inform prevention and control solutions. Methods We searched MEDLINE via PubMed, ‘Banque de Données de Santé Publique’ and the database of the ‘Institut d’Epidemiologie Neurologique et de Neurologie Tropicale’ from inception to February 2013 for published original studies from SSA on neurodegenerative diseases and HIV-related neurocognitive impairment. Screening and data extraction were conducted by two investigators. Bibliographies and citations of eligible studies were investigated. Results In all 144 publications reporting on dementia (n = 49 publications, mainly Alzheimer disease), Parkinsonism (PD, n = 20), HIV-related neurocognitive impairment (n = 47), Huntington disease (HD, n = 19), amyotrophic lateral sclerosis (ALS, n = 15), cerebellar degeneration (n = 4) and Lewy body dementia (n = 1). Of these studies, largely based on prevalent cases from retrospective data on urban populations, half originated from Nigeria and South Africa. The prevalence of dementia (Alzheimer disease) varied between <1% and 10.1% (0.7% and 5.6%) in population-based studies and from <1% to 47.8% in hospital-based studies. Incidence of dementia (Alzheimer disease) ranged from 8.7 to 21.8/1000/year (9.5 to 11.1), and major risk factors were advanced age and female sex. HIV-related neurocognitive impairment’s prevalence (all from hospital-based studies) ranged from <1% to 80%. Population-based prevalence of PD and ALS varied from 10 to 235/100,000, and from 5 to 15/100,000 respectively while that for Huntington disease was 3.5/100,000. Equivalent

  3. Applications of Surface Plasmon Resonance for Characterization of Molecules Important in the Pathogenesis and Treatment of Neurodegenerative Diseases

    PubMed Central

    Wittenberg, Nathan J.; Wootla, Bharath; Jordan, Luke R.; Denic, Aleksandar; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses

    2014-01-01

    Characterization of binding kinetics and affinity between a potential new drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment. PMID:24625008

  4. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    PubMed Central

    Martins, Ian James

    2015-01-01

    Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration. PMID:26690419

  5. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases.

    PubMed

    Martins, Ian James

    2015-01-01

    Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration. PMID:26690419

  6. Recent advances in iPSC technologies involving cardiovascular and neurodegenerative disease modeling.

    PubMed

    Csöbönyeiová, Mária; Danišovič, Ľuboš; Polák, Štefan

    2016-01-01

    Cardiovascular and neurodegenerative diseases are the most common health threats in developed countries. Limited cell derivation and cell number in cardiac tissue makes it difficult to study the cardiovascular disease using the existing cardiac cell model. Regarding the neurodegenerative disorders, the most potential sources of cell therapeutics such as fetal-derived primary neurons and human embryonic stem cells (ESCs) are associated with ethical or technical limitations. The successful derivation of human-induced pluripotent stem cells (iPSCs) by de-differentiation of somatic cells offers significant potential to overcome hurdles in the field of the replacement therapy. Human iPSCs are functionally similar to human embryonic stem cells, and can be derived autologously without the ethical challenges associated with human ESCs. The iPSCs can, in turn, be differentiated into all cell types including neurons, cardiac cells, blood and liver cells, etc. Recently, target tissues derived from human iPSCs such as cardiomyocytes (CMs) or neurons have been used for new disease modeling and regenerative medicine therapies. Diseases models could be advantageous in the development of personalized medicine of various pathological conditions. This paper reviews efforts aimed at both the practical development of iPSCs, differentiation to neural/cardiac lineages, and the further use of these iPSCs-derived cells for disease modeling, as well as drug toxicity testing. PMID:26492069

  7. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    PubMed Central

    Reijs, Babette L. R.; Teunissen, Charlotte E.; Goncharenko, Nikolai; Betsou, Fay; Blennow, Kaj; Baldeiras, Inês; Brosseron, Frederic; Cavedo, Enrica; Fladby, Tormod; Froelich, Lutz; Gabryelewicz, Tomasz; Gurvit, Hakan; Kapaki, Elisabeth; Koson, Peter; Kulic, Luka; Lehmann, Sylvain; Lewczuk, Piotr; Lleó, Alberto; Maetzler, Walter; de Mendonça, Alexandre; Miller, Anne-Marie; Molinuevo, José L.; Mollenhauer, Brit; Parnetti, Lucilla; Rot, Uros; Schneider, Anja; Simonsen, Anja Hviid; Tagliavini, Fabrizio; Tsolaki, Magda; Verbeek, Marcel M.; Verhey, Frans R. J.; Zboch, Marzena; Winblad, Bengt; Scheltens, Philip; Zetterberg, Henrik; Visser, Pieter Jelle

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer’s and Parkinson’s disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF) and blood samples were collected according to the BIOMARKAPD standardized pre-analytical procedures and stored at Integrated BioBank of Luxembourg. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), vascular dementia, multiple system atrophy, progressive supranuclear palsy, PD, PD with dementia, and dementia with Lewy bodies. The virtual biobank contains information on over 8,600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank. PMID:26528237

  8. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases.

    PubMed

    Yeo, Woon-Seok; Kim, Young Jun; Kabir, Mohammad Humayun; Kang, Jeong Won; Ahsan-Ul-Bari, Md; Kim, Kwang Pyo

    2015-01-01

    This review highlights the significance of protein tyrosine nitration (PTN) in signal transduction pathways, the progress achieved in analytical methods, and the implication of nitration in the cellular pathophysiology of aging and age-related neurodegenerative diseases. Although mass spectrometry of nitrated peptides has become a powerful tool for the characterization of nitrated peptides, the low stoichiometry of this modification clearly necessitates the use of affinity chromatography to enrich modified peptides. Analysis of nitropeptides involves identification of endogenous, intact modification as well as chemical conversion of the nitro group to a chemically reactive amine group and further modifications that enable affinity capture and enhance detectability by altering molecular properties. In this review, we focus on the recent progress in chemical derivatization of nitropeptides for enrichment and mass analysis, and for detection and quantification using various analytical tools. PTN participates in physiological processes, such as aging and neurodegenerative diseases. Accumulation of 3-nitrotyrosine has been found to occur during the aging process; this was identified through mass spectrometry. Further, there are several studies implicating the presence of nitrated tyrosine in age-related diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PMID:24889964

  9. Recent advances in iPSC technologies involving cardiovascular and neurodegenerative disease modeling.

    PubMed

    Csöbönyeiová, Mária; Danišovič, Ľuboš; Polák, Štefan

    2016-01-01

    Cardiovascular and neurodegenerative diseases are the most common health threats in developed countries. Limited cell derivation and cell number in cardiac tissue makes it difficult to study the cardiovascular disease using the existing cardiac cell model. Regarding the neurodegenerative disorders, the most potential sources of cell therapeutics such as fetal-derived primary neurons and human embryonic stem cells (ESCs) are associated with ethical or technical limitations. The successful derivation of human-induced pluripotent stem cells (iPSCs) by de-differentiation of somatic cells offers significant potential to overcome hurdles in the field of the replacement therapy. Human iPSCs are functionally similar to human embryonic stem cells, and can be derived autologously without the ethical challenges associated with human ESCs. The iPSCs can, in turn, be differentiated into all cell types including neurons, cardiac cells, blood and liver cells, etc. Recently, target tissues derived from human iPSCs such as cardiomyocytes (CMs) or neurons have been used for new disease modeling and regenerative medicine therapies. Diseases models could be advantageous in the development of personalized medicine of various pathological conditions. This paper reviews efforts aimed at both the practical development of iPSCs, differentiation to neural/cardiac lineages, and the further use of these iPSCs-derived cells for disease modeling, as well as drug toxicity testing.

  10. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases

    PubMed Central

    2013-01-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer′s disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases. PMID:24678247

  11. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases.

    PubMed

    Zeliger, Harold I

    2013-09-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.

  12. Insight into the Dissociation of Behavior from Histology in Synucleinopathies and in Related Neurodegenerative Diseases.

    PubMed

    Sekiyama, Kazunari; Takamatsu, Yoshiki; Koike, Wakako; Waragai, Masaaki; Takenouchi, Takato; Sugama, Shuei; Hashimoto, Makoto

    2016-03-31

    Recent clinical trials using immunization approaches against Alzheimer's disease (AD) have failed to demonstrate improved cognitive functions in patients, despite potent suppression in the formation of both senile plaques and other amyloid-β deposits in postmortem brains. Similarly, we observed that treatment with ibuprofen, a non-steroidal anti-inflammatory drug, was effective in improving the histopathology, such as reducing both protein aggregation and glial activation, in the brains of transgenic mice expressing dementia with Lewy bodies-linked P123H β-synuclein. In contrast, only a small improvement in cognitive functions was observed in these mice. Collectively, it is predicted that histology does not correlate with behavior that is resilient and resistant to therapeutic stimuli. Notably, such a 'discrepancy between histology and behavior' is reminiscent of AD-like pathologies and incidental Lewy bodies, which are frequently encountered in postmortem brains of the elderly who had been asymptomatic for memory loss and Parkinsonism during their lives. We suggest that 'the discrepancy between histology and behavior' may be a universal feature that is associated with various aspects of neurodegenerative diseases. Furthermore, given that the cognitive reserve is specifically observed in human brains, human behavior may be evolutionally distinct from that in other animals, thus, contributing to the differential efficiency of therapy between human and lower animals, an important issue in the therapy of neurodegenerative diseases. Overall, it is important to better understand 'the discrepancy between histology and behavior' in the mechanism of neurodegeneration for the development of effective therapies against neurodegenerative diseases. PMID:27031478

  13. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases

    PubMed Central

    Chin-Chan, Miguel; Navarro-Yepes, Juliana; Quintanilla-Vega, Betzabet

    2015-01-01

    Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action. PMID:25914621

  14. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

    PubMed Central

    Maccarrone, M; Bernardi, G; Agrò, A Finazzi; Centonze, D

    2011-01-01

    Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21323908

  15. Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases.

    PubMed

    Gao, Aijing; Peng, Yuhua; Deng, Yulin; Qing, Hong

    2013-01-01

    Difficulties in realizing persistent neurogenesis, inabilities in modeling pathogenesis of most cases, and a shortage of disease material for screening therapeutic agents restrict our progress to overcome challenges presented by neurodegenerative diseases. We propose that reprogramming primary somatic cells of patients into induced pluripotent stem cells (iPSCs) provides a new avenue to overcome these impediments. Their abilities in self-renewal and differentiation into various cell types will enable disease investigation and drug development. In this review, we introduce efficient approaches to generate iPSCs and distinct iPSCs differentiation stages, and critically discuss paradigms of iPSCs technology application to investigate neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Although iPSCs technology is in its infancy and faces many obstacles, it has great potential in helping to identify therapeutic targets for treating neurodegenerative diseases.

  16. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction

    PubMed Central

    Petrov, A. M.; Kasimov, M. R.; Zefirov, A. L.

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body’s total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington’s, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer’s disease, Parkinson’s disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  17. Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes.

    PubMed

    Sin, Olga; Nollen, Ellen A A

    2015-11-01

    Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding, trafficking and clearance of proteins, all of which act in an orchestrated manner to ensure proteome stability. The protein quality control system is enhanced by stress response pathways, which take action whenever the proteome is challenged by environmental or physiological stress. Aging, however, damages the proteome, and such proteome damage is thought to be associated with aging-related diseases. In this review, we discuss the different cellular processes that define the protein quality control system and focus on their role in protein conformational diseases. We highlight the power of using small organisms to model neurodegenerative diseases and how these models can be exploited to discover genetic modulators of protein aggregation and toxicity. We also link findings from small model organisms to the situation in higher organisms and describe how some of the genetic modifiers discovered in organisms such as worms are functionally conserved throughout evolution. Finally, we demonstrate that the non-coding genome also plays a role in maintaining protein homeostasis. In all, this review highlights the importance of protein and RNA homeostasis in neurodegenerative diseases.

  18. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    PubMed Central

    2012-01-01

    The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies. PMID:24278740

  19. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    PubMed

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  20. Fermented grape marc (FGM): immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases.

    PubMed

    Marzulli, G; Magrone, T; Kawaguchi, K; Kumazawa, Y; Jirillo, E

    2012-01-01

    The onset of neurodegenerative diseases has become more frequent than in the past also in relation to inappropriate dietary habits adopted in the western world. Nutraceuticals are currently investigated in order to prevent or retard the outcome of the so-called diet-related diseases, even including neurodegenerative pathologies. Here, we have in vitro studied the ability of fermented grape marc (FGM) from Negroamaro (N) and Koshu (K) Vitis vinifera to modulate the function of human peripheral blood mononuclear cells (PBMCs). Actually, both FGMs were able to increase the release and the intracellular content of inflammatory and anti-inflammatory cytokines, the induction of FoxP3 (a biomarker of T regulatory cells) and reduce the production of Granzyme B from PBMCs. Since these FGM-induced effects tend to polarize the immune response toward an anti-inflammatory pathway, the potential use of FGMs may represent a valid therapeutic measure to mitigating neuroinflammation in pathologies such as Parkinson disease and Alzheimer disease.

  1. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases

    PubMed Central

    Alexander, Adanna G.; Marfil, Vanessa; Li, Chris

    2014-01-01

    Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model. PMID:25250042

  2. Cerebral cortical amyloid protein precursor mRNA expression is similar in Alzheimer's disease and other neurodegenerative diseases.

    PubMed

    Ohyagi, Y; Takahashi, K; Satoh, Y; Makifuchi, T; Tabira, T

    1992-08-01

    The expression of 3 beta-amyloid protein precursor (APP) mRNAs (695, 751, and 770) in the cerebral cortex in Alzheimer's disease and other neurodegenerative diseases was analyzed by the S1 nuclease protection assay. We found no significant Alzheimer's disease-specific alteration of APP mRNA expression when compared to the other neurological diseases as controls. Since the expression of this mRNA was not correlated with amyloid deposition, it is possible that gliosis/neuronal loss may secondarily alter APP mRNA expression. However, the current study revealed no significant correlation between them.

  3. AIMP1 deficiency presents as a cortical neurodegenerative disease with infantile onset.

    PubMed

    Armstrong, L; Biancheri, R; Shyr, C; Rossi, A; Sinclair, G; Ross, C J; Tarailo-Graovac, M; Wasserman, W W; van Karnebeek, C D M

    2014-08-01

    We report the second family with AIMP1 deficiency, due to a homozygous truncating AIMP1 (g.107248613 C > T) mutation. This female showed early-onset developmental arrest, intractable epileptic spasms, microcephaly, and a rapid clinical course leading to premature death, associated with cerebral atrophy and myelin deficiency on brain MRI. Clinical and neuroimaging findings are consistent with a primary neuronal degenerative disorder, rather than with the previously reported Perlizaeus-Merzbacher-like phenotype. Given its critical role in neurofilament assembly 16, impaired myelin formation is due to neuronal/axonal dysfunction. We propose that AIMP1 deficiency be added to the differential diagnosis of infantile onset, progressive neurodegenerative disease.

  4. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases.

    PubMed

    Buendia, Izaskun; Michalska, Patrycja; Navarro, Elisa; Gameiro, Isabel; Egea, Javier; León, Rafael

    2016-01-01

    Neurodegenerative diseases (NDDs) are predicted to be the biggest health concern in this century and the second leading cause of death by 2050. The main risk factor of these diseases is aging, and as the aging population in Western societies is increasing, the prevalence of these diseases is augmenting exponentially. Despite the great efforts to find a cure, current treatments remain ineffective or have low efficacy. Increasing lines of evidence point to exacerbated oxidative stress, mitochondrial dysfunction and chronic neuroinflammation as common pathological mechanisms underlying neurodegeneration. We will address the role of the nuclear factor E2-related factor 2 (Nrf2) as a potential target for the treatment of NDDs. The Nrf2-ARE pathway is an intrinsic mechanism of defence against oxidative stress. Nrf2 is a transcription factor that induces the expression of a great number of cytoprotective and detoxificant genes. There are many evidences that highlight the protective role of the Nrf2-ARE pathway in neurodegenerative conditions, as it reduces oxidative stress and neuroinflammation. Therefore, the Nrf2 pathway is being increasingly considered a therapeutic target for NDDs. Herein we will review the deregulation of the Nrf2 pathway in different NDDs and the recent studies with Nrf2 inducers as "proof-of-concept" for the treatment of those devastating pathologies.

  5. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; Campello, Laura; Maneu, Victoria; De la Villa, Pedro; Lax, Pedro; Pinilla, Isabel

    2014-11-01

    Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.

  6. A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank

    PubMed Central

    Toledo, Jon B.; Van Deerlin, Vivianna M.; Lee, Edward B.; Suh, EunRan; Baek, Young; Robinson, John L.; Xie, Sharon X.; McBride, Jennifer; Wood, Elisabeth M.; Schuck, Theresa; Irwin, David J.; Gross, Rachel G.; Hurtig, Howard; McCluskey, Leo; Elman, Lauren; Karlawish, Jason; Schellenberg, Gerard; Chen-Plotkin, Alice; Wolk, David; Grossman, Murray; Arnold, Steven E.; Shaw, Leslie M.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2014-01-01

    Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples. Moreover, the value of biobanks is greatly enhanced if they link all the multidimensional clinical and laboratory information of each case, which is accomplished, optimally, using systematic and standardized operating procedures, and in the framework of multidisciplinary teams with the support of a flexible and user-friendly database system that facilitates the sharing of information of all the teams in the network. We describe a biobanking system that is a platform for discovery research at the Center for Neurodegenerative Disease Research at the University of Pennsylvania. PMID:23978324

  7. Mitochondrial Biogenesis: A Therapeutic Target for Neurodevelopmental Disorders and Neurodegenerative Diseases

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2014-01-01

    In the developing and mature brain, mitochondria act as central hubs for distinct but interwined pathways, necessary for neural development, survival, activity, connectivity and plasticity. In neurons, mitochondria assume diverse functions, such as energy production in the form of ATP, calcium buffering and generation of reactive oxygen species. Mitochondrial dysfunction contributes to a range of neurodevelopmental and neurodegenerative diseases, making mitochondria a potential target for pharmacological-based therapies. Pathogenesis associated with these diseases is accompanied by an increase in mitochondrial mass, a quantitative increase to overcome a qualitative deficiency due to mutated mitochondrial proteins that are either nuclear- or mitochondrial-encoded. This compensatory biological response is maladaptive, as it fails to sufficiently augment the bioenergetically functional mitochondrial mass and correct for the ATP deficit. Since regulation of neuronal mitochondrial biogenesis has been scantily investigated, our current understanding on the network of transcriptional regulators, co-activators and signaling regulators mainly derives from other cellular systems. The purpose of this review is to present the current state of our knowledge and understanding of the transcriptional and signaling cascades controlling neuronal mitochondrial biogenesis and the various therapeutic approaches to enhance the functional mitochondrial mass in the context of neurodevelopmental disorders and adult-onset neurodegenerative diseases. PMID:24606804

  8. Induced neural stem/precursor cells for fundamental studies and potential application in neurodegenerative diseases.

    PubMed

    Shen, Ting; Pu, Jiali; Zheng, Tingting; Zhang, Baorong

    2015-10-01

    Recent research has shown that defined sets of exogenous factors are sufficient to convert rodent and human somatic cells directly into induced neural stem cells or neural precursor cells (iNSCs/iNPCs). The process of transdifferentiation bypasses the step of a pluripotent state and reduces the risk of tumorigenesis and genetic instability while retaining the self-renewing capacity. This iNSC/iNPC technology has fueled much excitement in regenerative medicine, as these cells can be differentiated into target cells for re placement therapy for neurodegenerative diseases. Patients' somatic cell-derived iNSCs/iNPCs have also been proposed to serve as disease models with potential value in both fundamental studies and clinical applications. This review focuses on the mechanisms, techniques, and app lications of iNSCs/iNPCs from a series of related studies, as well as further efforts in designing novel strategies using iNSC/iNPC technology and its potential applications in neurodegenerative diseases.

  9. Network Analysis of Neurodegenerative Disease Highlights a Role of Toll-Like Receptor Signaling

    PubMed Central

    Nguyen, Thanh-Phuong; Morine, Melissa J.

    2014-01-01

    Despite significant advances in the study of the molecular mechanisms altered in the development and progression of neurodegenerative diseases (NDs), the etiology is still enigmatic and the distinctions between diseases are not always entirely clear. We present an efficient computational method based on protein-protein interaction network (PPI) to model the functional network of NDs. The aim of this work is fourfold: (i) reconstruction of a PPI network relating to the NDs, (ii) construction of an association network between diseases based on proximity in the disease PPI network, (iii) quantification of disease associations, and (iv) inference of potential molecular mechanism involved in the diseases. The functional links of diseases not only showed overlap with the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration. PMID:24551850

  10. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001-2010.

    PubMed

    Forrester, Joseph D; Kugeler, Kiersten J; Perea, Anna E; Pastula, Daniel M; Mead, Paul S

    2015-11-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions.

  11. Adult Hippocampal Neurogenesis, Aging and Neurodegenerative Diseases: Possible Strategies to Prevent Cognitive Impairment.

    PubMed

    Vivar, Carmen

    2015-01-01

    The adult brain of humans and other mammals continuously generates new neurons throughout life. However, this neurogenic capacity is limited to two brain areas, the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ of the lateral ventricle. Although the DG generates new neurons, its neurogenic capacity declines with age and neurodegenerative diseases such as Alzheimer's disease (AD and Huntington's disease (HD. This review focuses on the role of newly-born neurons in cognitive processes, and discusses some of the strategies proposed in humans and animals to enhance neurogenesis and counteract age-related cognitive deficits, such as physical exercise and intake of natural products like omega-3 fatty acids, curcumin and flavanols. PMID:26059358

  12. CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases

    PubMed Central

    Yang, Weili; Tu, Zhuchi; Sun, Qiang; Li, Xiao-Jiang

    2016-01-01

    CRISPR/Cas9 is now used widely to genetically modify the genomes of various species. The ability of CRISPR/Cas9 to delete DNA sequences and correct DNA mutations opens up a new avenue to treat genetic diseases that are caused by DNA mutations. In this review, we describe the advantages of using CRISPR/Cas9 to engineer genomic DNAs in animal embryos, as well as in specific regions or cell types in the brain. We also discuss how to apply CRISPR/Cas9 to establish animal models of neurodegenerative diseases, such as Parkinson’s and Huntington’s disease (HD), and to treat these disorders that are caused by genetic mutations. PMID:27199655

  13. Stem cells on the brain: modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells.

    PubMed

    Srikanth, Priya; Young-Pearse, Tracy L

    2014-01-01

    Seven years have passed since the initial report of the generation of induced pluripotent stem cells (iPSCs) from adult human somatic cells, and in the intervening time the field of neuroscience has developed numerous disease models using this technology. Here, we review progress in the field and describe both the advantages and potential pitfalls of modeling neurodegenerative and neurodevelopmental diseases using this technology. We include tables with information on neural differentiation protocols and studies that developed human iPSC lines to model neurological diseases. We also discuss how one can: investigate effects of genetic mutations with iPSCs, examine cell fate-specific phenotypes, best determine the specificity of a phenotype, and bring in vivo relevance to this in vitro technique.

  14. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    PubMed

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  15. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  16. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  17. Brain rust: recent discoveries on the role of oxidative stress in neurodegenerative diseases.

    PubMed

    de Oliveira, Diêgo Madureira; Ferreira Lima, Rute Maria; El-Bachá, Ramon Santos

    2012-05-01

    Oxidative stress (OS) and damages due to excessive reactive oxygen species (ROS) are common causes of injuries to cells and organisms. The prevalence of neurodegenerative diseases (ND) increases with aging and much of the research involving ROS and OS has emerged from works in this field. This text reviews some recent published articles about the role of OS in ND. Since there are many reviews in this field, the focus was centered in articles published recently. The Scientific Journals Directory supported by the Brazilian Ministry of Education Office for the Coordination of Higher Educational Personnel Improvement (CAPES) was used to search, download, and review articles. The search engine looked for the terms 'oxidative stress AND neurodegenerative diseases AND nutrition' in 10 different scientific collections. Biochemical markers for ND lack sensitivity or specificity for diagnosis or for tracking response to therapy today. OS has an intimate connection with ND, albeit low levels of ROS seem to protect the brain. Deleterious changes in mitochondria, OS, calcium, glucocorticoids, inflammation, trace metals, insulin, cell cycle, protein aggregation, and hundreds to thousands of genes occur in ND. The interaction of genes with their environment, may explain ND. Although OS has received much attention over the years, which increased the number of scientific works on antioxidant interventions, no one knows how to stop or delay ND at present. Interventions in vitro, in vivo, and in humans will continue to contribute for a better understanding of these pathologies. PMID:22583954

  18. Brain rust: recent discoveries on the role of oxidative stress in neurodegenerative diseases.

    PubMed

    de Oliveira, Diêgo Madureira; Ferreira Lima, Rute Maria; El-Bachá, Ramon Santos

    2012-05-01

    Oxidative stress (OS) and damages due to excessive reactive oxygen species (ROS) are common causes of injuries to cells and organisms. The prevalence of neurodegenerative diseases (ND) increases with aging and much of the research involving ROS and OS has emerged from works in this field. This text reviews some recent published articles about the role of OS in ND. Since there are many reviews in this field, the focus was centered in articles published recently. The Scientific Journals Directory supported by the Brazilian Ministry of Education Office for the Coordination of Higher Educational Personnel Improvement (CAPES) was used to search, download, and review articles. The search engine looked for the terms 'oxidative stress AND neurodegenerative diseases AND nutrition' in 10 different scientific collections. Biochemical markers for ND lack sensitivity or specificity for diagnosis or for tracking response to therapy today. OS has an intimate connection with ND, albeit low levels of ROS seem to protect the brain. Deleterious changes in mitochondria, OS, calcium, glucocorticoids, inflammation, trace metals, insulin, cell cycle, protein aggregation, and hundreds to thousands of genes occur in ND. The interaction of genes with their environment, may explain ND. Although OS has received much attention over the years, which increased the number of scientific works on antioxidant interventions, no one knows how to stop or delay ND at present. Interventions in vitro, in vivo, and in humans will continue to contribute for a better understanding of these pathologies.

  19. Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease.

    PubMed

    Luks, Tracy L; Oliveira, Michael; Possin, Katherine L; Bird, Anne; Miller, Bruce L; Weiner, Michael W; Kramer, Joel H

    2010-01-01

    This study investigated the neurobiological basis of attentional control dysfunction in neurodegenerative disease by determining the effect of regional brain atrophy on Flanker task performance of neurodegenerative patients. We hypothesized that atrophy in DLPFC and ACC would be significantly associated with decreased attentional control performance on the Flanker task. We used voxel-based morphometry (VBM) to measure the relationship between MRI measures of regional grey matter atrophy and performance on a version of the Flanker task, measured by accuracy and response time. Sixty-five subjects participated, including patients with frontotemporal dementia, Alzheimer's disease, mild cognitive impairment, non-fluent progressive aphasia, corticobasal degeneration, progressive supranuclear palsy, semantic dementia, and healthy controls. Accuracy measures of attentional control and response time measures of attentional control were associated with two different patterns of regional atrophy across subjects. First, there was an association between left hemisphere DLPFC and ACC atrophy and poorer attentional control accuracy. Second, right hemisphere temporal-parietal junction (TPJ) and ventrolateral prefrontal cortex (VLPFC) and DLPFC atrophy were associated with slower response times during attentional control on accurate trials, which may reflect emergent involvement due to deficits in the DLPFC-ACC network.

  20. Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease.

    PubMed

    Luks, Tracy L; Oliveira, Michael; Possin, Katherine L; Bird, Anne; Miller, Bruce L; Weiner, Michael W; Kramer, Joel H

    2010-01-01

    This study investigated the neurobiological basis of attentional control dysfunction in neurodegenerative disease by determining the effect of regional brain atrophy on Flanker task performance of neurodegenerative patients. We hypothesized that atrophy in DLPFC and ACC would be significantly associated with decreased attentional control performance on the Flanker task. We used voxel-based morphometry (VBM) to measure the relationship between MRI measures of regional grey matter atrophy and performance on a version of the Flanker task, measured by accuracy and response time. Sixty-five subjects participated, including patients with frontotemporal dementia, Alzheimer's disease, mild cognitive impairment, non-fluent progressive aphasia, corticobasal degeneration, progressive supranuclear palsy, semantic dementia, and healthy controls. Accuracy measures of attentional control and response time measures of attentional control were associated with two different patterns of regional atrophy across subjects. First, there was an association between left hemisphere DLPFC and ACC atrophy and poorer attentional control accuracy. Second, right hemisphere temporal-parietal junction (TPJ) and ventrolateral prefrontal cortex (VLPFC) and DLPFC atrophy were associated with slower response times during attentional control on accurate trials, which may reflect emergent involvement due to deficits in the DLPFC-ACC network. PMID:19747928

  1. Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases.

    PubMed

    Marciniak, Rafał; Sheardova, Katerina; Cermáková, Pavla; Hudeček, Daniel; Sumec, Rastislav; Hort, Jakub

    2014-01-01

    Effect of different meditation practices on various aspects of mental and physical health is receiving growing attention. The present paper reviews evidence on the effects of several mediation practices on cognitive functions in the context of aging and neurodegenerative diseases. The effect of meditation in this area is still poorly explored. Seven studies were detected through the databases search, which explores the effect of meditation on attention, memory, executive functions, and other miscellaneous measures of cognition in a sample of older people and people suffering from neurodegenerative diseases. Overall, reviewed studies suggested a positive effect of meditation techniques, particularly in the area of attention, as well as memory, verbal fluency, and cognitive flexibility. These findings are discussed in the context of MRI studies suggesting structural correlates of the effects. Meditation can be a potentially suitable non-pharmacological intervention aimed at the prevention of cognitive decline in the elderly. However, the conclusions of these studies are limited by their methodological flaws and differences of various types of meditation techniques. Further research in this direction could help to verify the validity of the findings and clarify the problematic aspects.

  2. Grey and White Matter Clinico-Anatomical Correlates of Disinhibition in Neurodegenerative Disease

    PubMed Central

    Santillo, Alexander Frizell; Lundblad, Karl; Nilsson, Markus; Landqvist Waldö, Maria; van Westen, Danielle; Lätt, Jimmy; Blennow Nordström, Erik; Vestberg, Susanna; Lindberg, Olof; Nilsson, Christer

    2016-01-01

    Disinhibition is an important symptom in neurodegenerative diseases. However, the clinico-anatomical underpinnings remain controversial. We explored the anatomical correlates of disinhibition in neurodegenerative disease using the perspective of grey and white matter imaging. Disinhibition was assessed with a neuropsychological test and a caregiver information-based clinical rating scale in 21 patients with prefrontal syndromes due to behavioural variant frontotemporal dementia (n = 12) or progressive supranuclear palsy (n = 9), and healthy controls (n = 25). Cortical thickness was assessed using the Freesurfer software on 3T MRI data. The integrity of selected white matter tracts was determined by the fractional anisotropy (FA) from Diffusion Tensor Imaging. Disinhibition correlated with the cortical thickness of the right parahippocampal gyrus, right orbitofrontal cortex and right insula and the FA of the right uncinate fasciculus and right anterior cingulum. Notably, no relationship was seen with the thickness of ventromedial prefrontal cortex. Our results support an associative model of inhibitory control, distributed in a medial temporal lobe-insular-orbitofrontal network, connected by the intercommunicating white matter tracts. This reconciles some of the divergences among previous studies, but also questions the current conceptualisation of the “prefrontal” syndrome and the central role attributed to the ventromedial prefrontal cortex in inhibitory control. PMID:27723823

  3. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases.

    PubMed

    Guerra-Araiza, C; Álvarez-Mejía, A L; Sánchez-Torres, S; Farfan-García, E; Mondragón-Lozano, R; Pinto-Almazán, R; Salgado-Ceballos, H

    2013-07-01

    Aging and neurodegenerative diseases share oxidative stress cell damage and depletion of endogenous antioxidants as mechanisms of injury, phenomena that are occurring at different rates in each process. Nevertheless, as the central nervous system (CNS) consists largely of lipids and has a poor catalase activity, a low amount of superoxide dismutase and is rich in iron, its cellular components are damaged easily by overproduction of free radicals in any of these physiological or pathological conditions. Thus, antioxidants are needed to prevent the formation and to oppose the free radicals damage to DNA, lipids, proteins, and other biomolecules. Due to endogenous antioxidant defenses are inadequate to prevent damage completely, different efforts have been undertaken in order to increase the use of natural antioxidants and to develop antioxidants that might ameliorate neural injury by oxidative stress. In this context, natural antioxidants like flavonoids (quercetin, curcumin, luteolin and catechins), magnolol and honokiol are showing to be the efficient inhibitors of the oxidative process and seem to be a better therapeutic option than the traditional ones (vitamins C and E, and β-carotene) in various models of aging and injury in vitro and in vivo conditions. Thus, the goal of the present review is to discuss the molecular basis, mechanisms of action, functions, and targets of flavonoids, magnolol, honokiol and traditional antioxidants with the aim of obtaining better results when they are prescribed on aging and neurodegenerative diseases. PMID:23594291

  4. Effect of Meditation on Cognitive Functions in Context of Aging and Neurodegenerative Diseases

    PubMed Central

    Marciniak, Rafał; Sheardova, Katerina; Čermáková, Pavla; Hudeček, Daniel; Šumec, Rastislav; Hort, Jakub

    2014-01-01

    Effect of different meditation practices on various aspects of mental and physical health is receiving growing attention. The present paper reviews evidence on the effects of several mediation practices on cognitive functions in the context of aging and neurodegenerative diseases. The effect of meditation in this area is still poorly explored. Seven studies were detected through the databases search, which explores the effect of meditation on attention, memory, executive functions, and other miscellaneous measures of cognition in a sample of older people and people suffering from neurodegenerative diseases. Overall, reviewed studies suggested a positive effect of meditation techniques, particularly in the area of attention, as well as memory, verbal fluency, and cognitive flexibility. These findings are discussed in the context of MRI studies suggesting structural correlates of the effects. Meditation can be a potentially suitable non-pharmacological intervention aimed at the prevention of cognitive decline in the elderly. However, the conclusions of these studies are limited by their methodological flaws and differences of various types of meditation techniques. Further research in this direction could help to verify the validity of the findings and clarify the problematic aspects. PMID:24478663

  5. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  6. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.

    PubMed

    Okazawa, H; Ikawa, M; Tsujikawa, T; Kiyono, Y; Yoneda, M

    2014-12-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases.

  7. Melatonin and Other Tryptophan Metabolites Produced by Yeasts: Implications in Cardiovascular and Neurodegenerative Diseases

    PubMed Central

    Hornedo-Ortega, Ruth; Cerezo, Ana B.; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen; Mas, Albert

    2016-01-01

    Yeast metabolism produces compounds derived from tryptophan, which are found in fermented beverages, such as wine and beer. In particular, melatonin and serotonin, may be relevant due to their bioactivity in humans. Indeed, the former is a neurohormone related to circadian rhythms, which also has a putative protective effect against degenerative diseases. Moreover, serotonin is a neurotransmitter itself, in addition to being a precursor of melatonin synthesis. This paper summarizes data reported on fermented beverages, to evaluate dietary intake. Additionally, the article reviews observed effects of yeast amino acid metabolites on the prevention of neurodegenerative diseases (Alzheimer’s and Parkinson’s) and angiogenesis, focusing on evidence of the molecular mechanism involved and identification of molecular targets. PMID:26834716

  8. The Progress of Mitophagy and Related Pathogenic Mechanisms of the Neurodegenerative Diseases and Tumor

    PubMed Central

    Song, Ying; Ding, Wei; Xiao, Yan; Lu, Kong-jun

    2015-01-01

    Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases. PMID:26779531

  9. Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases.

    PubMed

    Charng, Wu-Lin; Yamamoto, Shinya; Bellen, Hugo J

    2014-08-01

    Signaling pathways and cellular processes that regulate neural development are used post-developmentally for proper function and maintenance of the nervous system. Genes that have been studied in the context of the development of Drosophila peripheral nervous system (PNS) and neuromuscular junction (NMJ) have been identified as players in the pathogenesis of human neurodegenerative diseases, including spinocerebellar ataxia, amyotrophic lateral sclerosis, and spinal muscular atrophy. Hence, by unraveling the molecular mechanisms that underlie proneural induction, cell fate determination, axonal targeting, dendritic branching, and synapse formation in Drosophila, novel features related to these disorders have been revealed. In this review, we summarize and discuss how studies of Drosophila PNS and NMJ development have provided guidance in experimental approaches for these diseases.

  10. Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies.

    PubMed

    Devall, Matthew; Roubroeks, Janou; Mill, Jonathan; Weedon, Michael; Lunnon, Katie

    2016-06-20

    The field of mitochondrial epigenetics has received increased attention in recent years and changes in mitochondrial DNA (mtDNA) methylation has been implicated in a number of diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis. However, current publications have been limited by the use of global or targeted methods of measuring DNA methylation. In this review, we discuss current findings in mitochondrial epigenetics as well as its potential role as a regulator of mitochondria within the brain. Finally, we summarize the current technologies best suited to capturing mtDNA methylation, and how a move towards whole epigenome sequencing of mtDNA may help to advance our current understanding of the field. PMID:26876477

  11. Estimating premorbid IQ in the prodromal phase of a neurodegenerative disease

    PubMed Central

    Carlozzi, Noelle E.; Stout, Julie C.; Mills, James A.; Duff, Kevin; Beglinger, Leigh J.; Aylward, Elizabeth H.; Whitlock, Kathryn B.; Solomon, Andrea C.; Queller, Sarah; Langbehn, Douglas R.; Johnson, Shannon A.; Paulsen, Jane S.

    2011-01-01

    Estimates of premorbid intellect are often used in neuropsychological assessment to make inferences about cognitive decline. To optimize the method of controlling for premorbid intellect in assessments of prodromal neurodegenerative disease, we examined performance on the American National Adult Reading Test (ANART; administered during Years 1 and 3) and the two-subtest version of the Wechsler Abbreviated Scale of Intelligence (WASI; administered in Years 2 and 4) in an ongoing prospective longitudinal study of 371 participants with prodromal Huntington disease and 51 participants with normal CAG repeats. Although both measures performed similarly, the ANART demonstrated slightly lower variability in performance over a two-year period and had slightly higher test-retest reliability than the WASI. PMID:21660882

  12. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    PubMed

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases.

  13. Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury

    PubMed Central

    Wang, Miao; Han, Xianlin

    2016-01-01

    Summary Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarized the principles underlying this platform and presented a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples. We believe that this protocol could aid the researchers in the field to determine the altered lipid patterns in neurodegenerative diseases and brain injury. PMID:26235081

  14. Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases.

    PubMed

    Ramirez, Joel; Berezuk, Courtney; McNeely, Alicia A; Gao, Fuqiang; McLaurin, JoAnne; Black, Sandra E

    2016-03-01

    Although the brain lacks conventional lymphatic vessels found in peripheral tissue, evidence suggests that the space surrounding the vasculature serves a similar role in the clearance of fluid and metabolic waste from the brain. With aging, neurodegeneration, and cerebrovascular disease, these microscopic perivascular spaces can become enlarged, allowing for visualization and quantification on structural MRI. The purpose of this review is to: (i) describe some of the recent pre-clinical findings from basic science that shed light on the potential neurophysiological mechanisms driving glymphatic and perivascular waste clearance, (ii) review some of the pathobiological etiologies that may lead to MRI-visible enlarged perivascular spaces (ePVS), (iii) describe the possible clinical implications of ePVS, (iv) evaluate existing qualitative and quantitative techniques used for measuring ePVS burden, and (v) propose future avenues of research that may improve our understanding of this potential clinical neuroimaging biomarker for fluid and metabolic waste clearance dysfunction in neurodegenerative and neurovascular diseases.

  15. Reasoning over genetic variance information in cause-and-effect models of neurodegenerative diseases

    PubMed Central

    Naz, Mufassra; Kodamullil, Alpha Tom

    2016-01-01

    The work we present here is based on the recent extension of the syntax of the Biological Expression Language (BEL), which now allows for the representation of genetic variation information in cause-and-effect models. In our article, we describe, how genetic variation information can be used to identify candidate disease mechanisms in diseases with complex aetiology such as Alzheimer’s disease and Parkinson’s disease. In those diseases, we have to assume that many genetic variants contribute moderately to the overall dysregulation that in the case of neurodegenerative diseases has such a long incubation time until the first clinical symptoms are detectable. Owing to the multilevel nature of dysregulation events, systems biomedicine modelling approaches need to combine mechanistic information from various levels, including gene expression, microRNA (miRNA) expression, protein–protein interaction, genetic variation and pathway. OpenBEL, the open source version of BEL, has recently been extended to match this requirement, and we demonstrate in our article, how candidate mechanisms for early dysregulation events in Alzheimer’s disease can be identified based on an integrative mining approach that identifies ‘chains of causation’ that include single nucleotide polymorphism information in BEL models. PMID:26249223

  16. Niemann-Pick C disease gene mutations and age-related neurodegenerative disorders.

    PubMed

    Zech, Michael; Nübling, Georg; Castrop, Florian; Jochim, Angela; Schulte, Eva C; Mollenhauer, Brit; Lichtner, Peter; Peters, Annette; Gieger, Christian; Marquardt, Thorsten; Vanier, Marie T; Latour, Philippe; Klünemann, Hans; Trenkwalder, Claudia; Diehl-Schmid, Janine; Perneczky, Robert; Meitinger, Thomas; Oexle, Konrad; Haslinger, Bernhard; Lorenzl, Stefan; Winkelmann, Juliane

    2013-01-01

    Niemann-Pick type C (NPC) disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95%) or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD) and progressive supranuclear palsy (PSP), and to genetically determine the proportion of potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients clinically diagnosed with PD (n = 563), FTLD (n = 133) and PSP (n = 94), and 846 population-based controls. The frequencies of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2 mutations were found in six PD patients (1.1%) and seven control subjects (0.8%), but not in FTLD or PSP. All rare variation was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC patients were not present in our samples. However, further assessment of NPC disease genes in age-related neurodegeneration is warranted. PMID:24386122

  17. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases. PMID:27292537

  18. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases.

  19. Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease.

    PubMed

    Ruiz-Riquelme, Alejandro; Sánchez-Iglesias, Sofía; Rábano, Alberto; Guillén-Navarro, Encarna; Domingo-Jiménez, Rosario; Ramos, Adriana; Rosa, Isaac; Senra, Ana; Nilsson, Peter; García, Ángel; Araújo-Vilar, David; Requena, Jesús R

    2015-11-01

    Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers.

  20. Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease.

    PubMed

    Ruiz-Riquelme, Alejandro; Sánchez-Iglesias, Sofía; Rábano, Alberto; Guillén-Navarro, Encarna; Domingo-Jiménez, Rosario; Ramos, Adriana; Rosa, Isaac; Senra, Ana; Nilsson, Peter; García, Ángel; Araújo-Vilar, David; Requena, Jesús R

    2015-11-01

    Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers. PMID:26282322

  1. Identification of novel susceptibility loci for Guam neurodegenerative disease: challenges of genome scans in genetic isolates

    PubMed Central

    Sieh, Weiva; Choi, Yoonha; Chapman, Nicola H.; Craig, Ulla-Katrina; Steinbart, Ellen J.; Rothstein, Joseph H.; Oyanagi, Kiyomitsu; Garruto, Ralph M.; Bird, Thomas D.; Galasko, Douglas R.; Schellenberg, Gerard D.; Wijsman, Ellen M.

    2009-01-01

    Amyotrophic lateral sclerosis/parkinsonism–dementia complex (ALS/PDC) is a fatal neurodegenerative disease found in the Chamorro people of Guam and other Pacific Island populations. The etiology is unknown, although both genetic and environmental factors appear important. To identify loci for ALS/PDC, we conducted both genome-wide linkage and association analyses, using approximately 400 microsatellite markers, in the largest sample assembled to date, comprising a nearly complete sample of all living and previously sampled deceased cases. A single, large, complex pedigree was ascertained from a village on Guam, with smaller families and a case–control sample ascertained from the rest of Guam by population-based neurological screening and archival review. We found significant evidence for two regions with novel ALS/PDC loci on chromosome 12 and supportive evidence for the involvement of the MAPT region on chromosome 17. D12S1617 on 12p gave the strongest evidence of linkage (maximum LOD score, Zmax = 4.03) in our initial scan, with additional support in the complete case–control sample in the form of evidence of allelic association at this marker and another nearby marker. D12S79 on 12q also provided significant evidence of linkage (Zmax = 3.14) with support from flanking markers. Our results suggest that ALS/PDC may be influenced by as many as three loci, while illustrating challenges that are intrinsic in genetic analyses of isolated populations, as well as analytical strategies that are useful in this context. Elucidation of the genetic basis of ALS/PDC should improve our understanding of related neurodegenerative disorders including Alzheimer disease, Parkinson disease, frontotemporal dementia and ALS. PMID:19567404

  2. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease.

    PubMed

    Chouhan, Amit K; Guo, Caiwei; Hsieh, Yi-Chen; Ye, Hui; Senturk, Mumine; Zuo, Zhongyuan; Li, Yarong; Chatterjee, Shreyasi; Botas, Juan; Jackson, George R; Bellen, Hugo J; Shulman, Joshua M

    2016-01-01

    Common neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest

  3. Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases.

    PubMed

    Schipper, H M

    1999-09-01

    The mechanisms responsible for the pathological deposition of brain iron in Parkinson's disease, Alzheimer's disease and other human neurodegenerative disorders remain poorly understood. In rat primary astrocyte cultures, we demonstrated that dopamine, cysteamine, H(2)O(2) and menadione rapidly induce heme oxygenase-1 (HO-1) expression (mRNA and protein) followed by sequestration of non-transferrin-derived (55)Fe by the mitochondrial compartment. The effects of dopamine on HO-1 expression were inhibited by ascorbate implicating a free radical mechanism of action. Dopamine-induced mitochondrial iron trapping was abrogated by administration of the heme oxygenase inhibitors, tin mesoporphyrin (SnMP) or dexamethasone (DEX) indicating that HO-1 upregulation is necessary for subsequent mitochondrial iron deposition in these cells. Overexpression of the human HO-1 gene in cultured rat astroglia by transient transfection also stimulated mitochondrial (55)Fe deposition, an effect that was again preventible by SnMP or DEX administration. We hypothesize that free ferrous iron and carbon monoxide generated by HO-1-mediated heme degradation promote mitochondrial membrane injury and the deposition of redox-active iron within this organelle. We have shown that the percentages of GFAP-positive astrocytes that co-express HO-1 in Parkinson-affected substantia nigra and Alzheimer-diseased hippocampus are significantly increased relative to age-matched controls. Stress-induced up-regulation of HO-1 in astroglia may be responsible for the abnormal patterns of brain iron deposition and mitochondrial insufficiency documented in various human neurodegenerative disorders. PMID:12835114

  4. Tool use disorders in neurodegenerative diseases: Roles of semantic memory and technical reasoning.

    PubMed

    Baumard, Josselin; Lesourd, Mathieu; Jarry, Christophe; Merck, Catherine; Etcharry-Bouyx, Frédérique; Chauviré, Valérie; Belliard, Serge; Moreaud, Olivier; Croisile, Bernard; Osiurak, François; Le Gall, Didier

    2016-09-01

    In the field of apraxia, it has been suggested that the ability to use tools and objects in daily life depends not only on semantic knowledge about tool function and context of use but also on technical reasoning about mechanical properties of tools and objects. The aim of the present work was to assess tool use abilities regarding these hypotheses in patients with neurodegenerative diseases and reduced autonomy. Performance of patients with Alzheimer's disease (AD) (n = 31), semantic dementia (SD) (n = 16) and corticobasal syndrome (CBS) (n = 7) was compared to that of healthy control participants (n = 31) in familiar tool use tasks, functional/contextual associations and mechanical problem solving (MPS). A conversion method was applied to data in order to avoid ceiling effects. Tool use disorders were found in all patient groups but the underlying reasons were different. Patients with SD had difficulties in imagining and selecting familiar tools due to the semantic loss but they performed in normal range in MPS tasks. Interestingly, they performed better with only one tool and its corresponding object, which is interpreted as a partial compensation of semantic loss by spared technical reasoning. Patients with CBS exhibited the reverse pattern, that is, MPS deficits without semantic loss. However, additional qualitative research is needed to disentangle the relative contributions of motor and technical reasoning deficits to this pattern. Both of these profiles were found in patients with AD. For all that, these patients did not commit the same errors as stroke patients with left brain-damage documented in previous works. Several hypotheses are proposed to account for the specificity of tool use disorders in neurodegenerative diseases, and recommendations are provided to caregivers. PMID:27376932

  5. The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases.

    PubMed

    Philippens, Ingrid H C H M; 't Hart, Bert A; Torres, German

    2010-12-01

    Aging societies face an increasing prevalence of neurodegenerative disorders for which no cure exists. The paucity of relevant animal models that faithfully reproduce clinical and pathogenic features of neurodegenerative diseases is a major cause for the lack of effective therapies. Clinically distinct disorders, such as Alzheimer's and Parkinson's disease, are driven by overlapping pathogenic mechanisms that converge onto vulnerable neurons to ultimately cause abnormal clinical outcomes. These similarities, particularly in the early phases of neurodegeneration, might help identify appropriate animal model systems for studying of cell pathology. While reviewing some of the cellular mechanisms of disease progression, we discuss the MPTP-induced model of Parkinsonism in marmoset monkeys as a model system for construct, face and predictive validity in neurodegenerative studies.

  6. Concise review: toward stem cell-based therapies for retinal neurodegenerative diseases.

    PubMed

    Bull, Natalie D; Martin, Keith R

    2011-08-01

    Loss of sight due to irreversible retinal neurodegeneration imposes a significant disease burden on both patients and society. Glaucoma and age-related macular degeneration are the commonest neurodegenerative blinding diseases in the developed world, and both are becoming increasingly prevalent as populations age. Our heavy reliance on our sense of sight means that visual loss often severely restricts day-to-day life, making it difficult to function without additional support. Visual impairment also limits employment possibilities, adding to the economic burden. Current therapies for many degenerative retinopathies are limited in their efficacy, often treating the effects of disease rather than the underlying causes. Consequently, the development of novel adjunctive neuroprotective and neuroregenerative treatments are important goals. Evidence from animal models suggests that stem cells could be useful as part of novel new treatment strategies for eye disease. The accessibility of the eye and extensive repertoire of available surgical techniques may facilitate the translation of stem cell-based therapies, for example, via transplantation, to the retina more rapidly than to other parts of the central nervous system. This concise review will examine how cell therapies are being applied experimentally for neuroregenerative and neuroprotective treatment of currently incurable degenerative retinal diseases. Furthermore, recent progress toward clinical translation of such therapies will be highlighted.

  7. Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies.

    PubMed

    López González, Irene; Garcia-Esparcia, Paula; Llorens, Franc; Ferrer, Isidre

    2016-01-01

    Polymorphisms in certain inflammatory-related genes have been identified as putative differential risk factors of neurodegenerative diseases with abnormal protein aggregates, such as sporadic Alzheimer's disease (AD) and sporadic Parkinson's disease (sPD). Gene expression studies of cytokines and mediators of the immune response have been made in post-mortem human brain samples in AD, sPD, sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2, Pick's disease (PiD), progressive supranuclear palsy (PSP) and frontotemporal lobar degeneration linked to mutation P301L in MAPT Frontotemporal lobar degeneration-tau (FTLD-tau). The studies have disclosed variable gene regulation which is: (1) disease-dependent in the frontal cortex area 8 in AD, sPD, sCJD MM1 and VV2, PiD, PSP and FTLD-tau; (2) region-dependent as seen when comparing the entorhinal cortex, orbitofrontal cortex, and frontal cortex area 8 (FC) in AD; the substantia nigra, putamen, FC, and angular gyrus in PD, as well as the FC and cerebellum in sCJD; (3) genotype-dependent as seen considering sCJD MM1 and VV2; and (4) stage-dependent as seen in AD at different stages of disease progression. These observations show that regulation of inflammation is much more complicated and diverse than currently understood, and that new therapeutic approaches must be designed in order to selectively act on specific targets in particular diseases and at different time points of disease progression. PMID:26861289

  8. Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies

    PubMed Central

    López González, Irene; Garcia-Esparcia, Paula; Llorens, Franc; Ferrer, Isidre

    2016-01-01

    Polymorphisms in certain inflammatory-related genes have been identified as putative differential risk factors of neurodegenerative diseases with abnormal protein aggregates, such as sporadic Alzheimer’s disease (AD) and sporadic Parkinson’s disease (sPD). Gene expression studies of cytokines and mediators of the immune response have been made in post-mortem human brain samples in AD, sPD, sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2, Pick’s disease (PiD), progressive supranuclear palsy (PSP) and frontotemporal lobar degeneration linked to mutation P301L in MAPT Frontotemporal lobar degeneration-tau (FTLD-tau). The studies have disclosed variable gene regulation which is: (1) disease-dependent in the frontal cortex area 8 in AD, sPD, sCJD MM1 and VV2, PiD, PSP and FTLD-tau; (2) region-dependent as seen when comparing the entorhinal cortex, orbitofrontal cortex, and frontal cortex area 8 (FC) in AD; the substantia nigra, putamen, FC, and angular gyrus in PD, as well as the FC and cerebellum in sCJD; (3) genotype-dependent as seen considering sCJD MM1 and VV2; and (4) stage-dependent as seen in AD at different stages of disease progression. These observations show that regulation of inflammation is much more complicated and diverse than currently understood, and that new therapeutic approaches must be designed in order to selectively act on specific targets in particular diseases and at different time points of disease progression. PMID:26861289

  9. Fluctuations in Protein Aggregation: Design of Preclinical Screening for Early Diagnosis of Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Costantini, Giulio; Budrikis, Zoe; Taloni, Alessandro; Buell, Alexander K.; Zapperi, Stefano; La Porta, Caterina A. M.

    2016-09-01

    Autocatalytic fibril nucleation has recently been proposed to be a determining factor for the spread of neurodegenerative diseases, but the same process could also be exploited to amplify minute quantities of protein aggregates in a diagnostic context. Recent advances in microfluidic technology allow the analysis of protein aggregation in micron-scale samples, potentially enabling such diagnostic approaches, but the theoretical foundations for the analysis and interpretation of such data are, so far, lacking. Here, we study computationally the onset of protein aggregation in small volumes and show that the process is ruled by intrinsic fluctuations whose volume-dependent distribution we also estimate theoretically. Based on these results, we develop a strategy to quantify in silico the statistical errors associated with the detection of aggregate-containing samples. Our work explores a different perspective on the forecasting of protein aggregation in asymptomatic subjects.

  10. Midkine and Pleiotrophin in the Treatment of Neurodegenerative Diseases and Drug Addiction.

    PubMed

    Alguacil, Luis F; Herradón, Gonzalo

    2015-01-01

    Pleiotrophin (PTN) and Midkine (MK) are neurotrophines with documented protective actions in experimental models of neurodegenerative diseases and beneficial effects on toxicity and addictive behaviours related to drug abuse. Concerning the latter, both PTN and MK prevent the neurotoxic effects of amphetamine on nigrostriatal pathways and endogenous PTN also limits amphetamine reward. Moreover, endogenous PTN overexpression in the prefontral cortex abolishes alcohol- induced conditioned place preference. This review summarizes the existing patents for using PTN and MK in the treatment and diagnosis of neuropsychiatric disorders with a focus on neurotoxicity, neurodegeneration and substance use disorders. We have also reviewed the mechanism of action of PTN and MK and summarized existing patents on downstream modulators in their signaling pathways for the same indications. PMID:25808239

  11. Microtubule Stabilizing Agents as Potential Treatment for Alzheimer’s Disease and Related Neurodegenerative Tauopathies

    PubMed Central

    Ballatore, Carlo; Brunden, Kurt R.; Huryn, Donna M.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Smith, Amos B.

    2012-01-01

    The microtubule (MT)-associated protein tau, which is highly expressed in the axons of neurons, is an endogenous MT-stabilizing agent that plays an important role in the axonal transport. Loss of MT-stabilizing tau function, caused by misfolding, hyperphosphorylation and sequestration of tau into insoluble aggregates, leads to axonal transport deficits with neuropathological consequences. Several in vitro and preclinical in vivo studies have shown that MT-stabilizing drugs can be utilized to compensate for the loss of tau function and to maintain/restore an effective axonal transport. These findings indicate that MT-stabilizing compounds hold considerable promise for the treatment of Alzheimer disease and related tauopathies. The present article provides a synopsis of the key findings demonstrating the therapeutic potential of MT-stabilizing drugs in the context of neurodegenerative tauopathies, as well as an overview of the different classes of MT-stabilizing compounds. PMID:23020671

  12. Reactive near field electromagnetic axonal communication channels and their role in neurodegenerative diseases.

    PubMed

    Morgera, Salvatore Domenic

    2015-01-01

    Research focus is on the micron-scale subsystem of the human nervous system known as the axon, or nerve fibre. In studying what has been traditionally treated as an electrochemical subsystem, we find that the axon is both an electrochemical and electromagnetic link in an intricately designed network. This work offers a game changing look at phenomena which enable interaction among millions of fibres tightly packed in bundles and tracts in the human peripheral and central nervous systems, respectively. We maintain that these fibres do not act independently as generally believed, but form intricate spatial and temporal near-field networks. An understanding of these networks will lead to improved diagnostics and therapeutics for neurodegenerative diseases.

  13. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases.

    PubMed

    Kan, I; Melamed, E; Offen, D

    2007-01-01

    Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.

  14. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases

    PubMed Central

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article’s supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  15. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases.

    PubMed

    Bradley, Walter G; Mash, Deborah C

    2009-01-01

    Excitement about neurogenetics in the last two decades has diverted attention from environmental causes of sporadic ALS. Fifty years ago endemic foci of ALS with a frequency one hundred times that in the rest of the world attracted attention since they offered the possibility of finding the cause for non-endemic ALS throughout the world. Research on Guam suggested that ALS, Parkinson's disease and dementia (the ALS/PDC complex) was due to a neurotoxic non-protein amino acid, beta-methylamino-L-alanine (BMAA), in the seeds of the cycad Cycas micronesica. Recent discoveries that found that BMAA is produced by symbiotic cyanobacteria within specialized roots of the cycads; that the concentration of protein-bound BMAA is up to a hundred-fold greater than free BMAA in the seeds and flour; that various animals forage on the seeds (flying foxes, pigs, deer), leading to biomagnification up the food chain in Guam; and that protein-bound BMAA occurs in the brains of Guamanians dying of ALS/PDC (average concentration 627 microg/g, 5 mM) but not in control brains have rekindled interest in BMAA as a possible trigger for Guamanian ALS/PDC. Perhaps most intriguing is the finding that BMAA is present in brain tissues of North American patients who had died of Alzheimer's disease (average concentration 95 microg/g, 0.8mM); this suggests a possible etiological role for BMAA in non-Guamanian neurodegenerative diseases. Cyanobacteria are ubiquitous throughout the world, so it is possible that all humans are exposed to low amounts of cyanobacterial BMAA, that protein-bound BMAA in human brains is a reservoir for chronic neurotoxicity, and that cyanobacterial BMAA is a major cause of progressive neurodegenerative diseases including ALS worldwide. Though Montine et al., using different HPLC method and assay techniques from those used by Cox and colleagues, were unable to reproduce the findings of Murch et al., Mash and colleagues using the original techniques of Murch et al. have

  16. Prediction of Metabolic Gene Biomarkers for Neurodegenerative Disease by an Integrated Network-Based Approach

    PubMed Central

    Su, Xianming

    2015-01-01

    Neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Huntington's disease (HD), have become more and more common among aged people worldwide. One hallmark of NDs is the presence of intracellular accumulation of specific pathogenic proteins that may result from abnormal function of metabolic processes. Previously, we have developed a computational method named Met-express that predicted key enzyme-coding genes in cancer development by integrating cancer gene coexpression network with the metabolic network. Here, we applied Met-express to predict key enzyme-coding genes in both PD and HD. Functional enrichment analysis and literature review of predicted genes suggested that there might be some common pathogenic metabolic pathways for PD and HD. We further found that the predicted genes had significant functional association with known disease genes, with some of them already documented as biomarkers or therapeutic targets for NDs. As such, the predicted metabolic genes may be of use as novel biomarkers not only for ND diagnosis but also for potential therapeutic treatments. PMID:26064912

  17. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution

    PubMed Central

    Dantuma, Nico P.; Bott, Laura C.

    2014-01-01

    The ubiquitin-proteasome system (UPS) has been implicated in neurodegenerative diseases based on the presence of deposits consisting of ubiquitylated proteins in affected neurons. It has been postulated that aggregation-prone proteins associated with these disorders, such as α-synuclein, β-amyloid peptide, and polyglutamine proteins, compromise UPS function, and delay the degradation of other proteasome substrates. Many of these substrates play important regulatory roles in signaling, cell cycle progression, or apoptosis, and their inadvertent stabilization due to an overloaded and improperly functioning UPS may thus be responsible for cellular demise in neurodegeneration. Over the past decade, numerous studies have addressed the UPS dysfunction hypothesis using various model systems and techniques that differ in their readout and sensitivity. While an inhibitory effect of some disease proteins on the UPS has been demonstrated, increasing evidence attests that the UPS remains operative in many disease models, which opens new possibilities for treatment. In this review, we will discuss the paradigm shift that repositioned the UPS from being a prime suspect in the pathophysiology of neurodegeneration to an attractive therapeutic target that can be harnessed to accelerate the clearance of disease-linked proteins. PMID:25132814

  18. Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases.

    PubMed

    Srinageshwar, Bhairavi; Maiti, Panchanan; Dunbar, Gary L; Rossignol, Julien

    2016-02-02

    The main objectives of this review are to survey the current literature on the role of epigenetics in determining the fate of stem cells and to assess how this information can be used to enhance the treatment strategies for some neurodegenerative disorders, like Huntington's disease, Parkinson's disease and Alzheimer's disease. Some of these epigenetic mechanisms include DNA methylation and histone modifications, which have a direct impact on the way that genes are expressed in stem cells and how they drive these cells into a mature lineage. Understanding how the stem cells are behaving and giving rise to mature cells can be used to inform researchers on effective ways to design stem cell-based treatments. In this review article, the way in which the basic understanding of how manipulating this process can be utilized to treat certain neurological diseases will be presented. Different genetic factors and their epigenetic changes during reprogramming of stem cells into induced pluripotent stem cells (iPSCs) have significant potential for enhancing the efficacy of cell replacement therapies.

  19. Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease.

    PubMed

    Ash, Sharon; Ternes, Kylie; Bisbing, Teagan; Min, Nam Eun; Moran, Eileen; York, Collin; McMillan, Corey T; Irwin, David J; Grossman, Murray

    2016-08-01

    Quantifiers such as many and some are thought to depend in part on the conceptual representation of number knowledge, while object nouns such as cookie and boy appear to depend in part on visual feature knowledge associated with object concepts. Further, number knowledge is associated with a frontal-parietal network while object knowledge is related in part to anterior and ventral portions of the temporal lobe. We examined the cognitive and anatomic basis for the spontaneous speech production of quantifiers and object nouns in non-aphasic patients with focal neurodegenerative disease associated with corticobasal syndrome (CBS, n=33), behavioral variant frontotemporal degeneration (bvFTD, n=54), and semantic variant primary progressive aphasia (svPPA, n=19). We recorded a semi-structured speech sample elicited from patients and healthy seniors (n=27) during description of the Cookie Theft scene. We observed a dissociation: CBS and bvFTD were significantly impaired in the production of quantifiers but not object nouns, while svPPA were significantly impaired in the production of object nouns but not quantifiers. MRI analysis revealed that quantifier production deficits in CBS and bvFTD were associated with disease in a frontal-parietal network important for number knowledge, while impaired production of object nouns in all patient groups was related to disease in inferior temporal regions important for representations of visual feature knowledge of objects. These findings imply that partially dissociable representations in semantic memory may underlie different segments of the lexicon. PMID:27301638

  20. Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific Antifungal Antibodies

    PubMed Central

    Pisa, Diana; Alonso, Ruth; Rábano, Alberto; Carrasco, Luis

    2016-01-01

    The origin and potential function of corpora amylacea (CA) remains largely unknown. Low numbers of CA are detected in the aging brain of normal individuals but they are abundant in the central nervous system of patients with neurodegenerative diseases. In the present study, we show that CA from patients diagnosed with Alzheimer's disease (AD) contain fungal proteins as detected by immunohistochemistry analyses. Accordingly, CA were labeled with different anti-fungal antibodies at the external surface, whereas the central portion composed of calcium salts contain less proteins. Detection of fungal proteins was achieved using a number of antibodies raised against different fungal species, which indicated cross-reactivity between the fungal proteins present in CA and the antibodies employed. Importantly, these antibodies do not immunoreact with cellular proteins. Additionally, CNS samples from patients diagnosed with amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) also contained CA that were immunoreactive with a range of antifungal antibodies. However, CA were less abundant in ALS or PD patients as compared to CNS samples from AD. By contrast, CA from brain tissue of control subjects were almost devoid of fungal immunoreactivity. These observations are consistent with the concept that CA associate with fungal infections and may contribute to the elucidation of the origin of CA. PMID:27013948

  1. Mithramycin, an agent for developing new therapeutic drugs for neurodegenerative diseases.

    PubMed

    Osada, Nobuhiro; Kosuge, Yasuhiro; Ishige, Kumiko; Ito, Yoshihisa

    2013-01-01

    Mithramycin A (MTM) has been shown to inhibit cancer growth by blocking the binding of Sp-family transcription factors to gene regulatory elements and is used for the treatment of leukemia and testicular cancer in the United States. In contrast, MTM has also been shown to exert neuroprotective effects in normal cells. An earlier study showed that MTM protected primary cortical neurons against oxidative stress-induced cell death. Recently, we demonstrated that MTM suppressed endoplasmic reticulum (ER) stress-induced neuronal death in organotypic hippocampal slice cultures and cultured hippocampal cells through attenuation of ER stress-associated signal proteins. We also found that MTM decreased neuronal death in area CA1 of the hippocampus after transient global ischemia/reperfusion in mice and restored the ischemia/reperfusion-induced impairment of long-term potentiation in this area. MTM has been shown to prolong the survival of Huntington's disease model mice and to attenuate dopaminergic neurotoxicity in mice after repeated administration of methamphetamine. In this review, we provide an up to date overview of neuroprotective effects of MTM and less toxic MTM analogs, MTM SK and MTM SDK, on some of the neurodegenerative diseases and discuss the promise of MTM as an agent for developing new therapeutic drugs for such diseases. PMID:23902990

  2. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.

    PubMed

    Gu, Zezong; Nakamura, Tomohiro; Lipton, Stuart A

    2010-06-01

    Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through beta-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration. PMID:20333559

  3. Biological metals and metal-targeting compounds in major neurodegenerative diseases.

    PubMed

    Barnham, Kevin J; Bush, Ashley I

    2014-10-01

    Multiple abnormalities occur in the homeostasis of essential endogenous brain biometals in age-related neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. As a result, metals both accumulate in microscopic proteinopathies, and can be deficient in cells or cellular compartments. Therefore, bulk measurement of metal content in brain tissue samples reveal only the "tip of the iceberg", with most of the important changes occurring on a microscopic and biochemical level. Each of the major proteins implicated in these disorders interacts with biological transition metals. Tau and the amyloid protein precursor have important roles in normal neuronal iron homeostasis. Changes in metal distribution, cellular deficiencies, or sequestration in proteinopathies all present abnormalities that can be corrected in animal models by small molecules. These biochemical targets are more complex than the simple excess of metals that are targeted by chelators. In this review we illustrate some of the richness in the science that has developed in the study of metals in neurodegeneration, and explore its novel pharmacology.

  4. Redox Reactions Induced by Nitrosative Stress Mediate Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Nakamura, Tomohiro

    2015-01-01

    Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer’s disease (AD) and Parkinson’s disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through β-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration. PMID:20333559

  5. Closing the gap between brain banks and proteomics to advance the study of neurodegenerative diseases

    PubMed Central

    Leite, Renata Elaine Paraizo; Grinberg, Lea Tenenholz

    2015-01-01

    Neurodegenerative diseases (NDs), such as Alzheimer’s disease and Parkinson’s disease, are among the most debilitating neurological disorders, and as life expectancy rises quickly around the world, the scientific and clinical challenges of dealing with them will also increase dramatically, putting increased pressure on the biomedical community to come up with innovative solutions for the understanding, diagnosis and treatment of these conditions. Despite several decades of intensive research, there is still little that can be done to prevent, cure or even slow down the progression of NDs in most patients. There is an urgent need to develop new lines of basic and applied research, that can be quickly translated into clinical application. One way to do this is to apply the tools of proteomics to well-characterized samples of human brain tissue, but a closer partnership must still be forged between proteomic scientists, brain banks and clinicians to explore the maximum potential of this approach. Here we analyze the challenges and potential benefits of using human brain tissue for proteomics research toward NDs. PMID:26059592

  6. Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific Antifungal Antibodies.

    PubMed

    Pisa, Diana; Alonso, Ruth; Rábano, Alberto; Carrasco, Luis

    2016-01-01

    The origin and potential function of corpora amylacea (CA) remains largely unknown. Low numbers of CA are detected in the aging brain of normal individuals but they are abundant in the central nervous system of patients with neurodegenerative diseases. In the present study, we show that CA from patients diagnosed with Alzheimer's disease (AD) contain fungal proteins as detected by immunohistochemistry analyses. Accordingly, CA were labeled with different anti-fungal antibodies at the external surface, whereas the central portion composed of calcium salts contain less proteins. Detection of fungal proteins was achieved using a number of antibodies raised against different fungal species, which indicated cross-reactivity between the fungal proteins present in CA and the antibodies employed. Importantly, these antibodies do not immunoreact with cellular proteins. Additionally, CNS samples from patients diagnosed with amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) also contained CA that were immunoreactive with a range of antifungal antibodies. However, CA were less abundant in ALS or PD patients as compared to CNS samples from AD. By contrast, CA from brain tissue of control subjects were almost devoid of fungal immunoreactivity. These observations are consistent with the concept that CA associate with fungal infections and may contribute to the elucidation of the origin of CA. PMID:27013948

  7. What's on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths

    PubMed Central

    Crabb, David P.; Smith, Nicholas D.; Zhu, Haogang

    2014-01-01

    Purpose: We test the hypothesis that age-related neurodegenerative eye disease can be detected by examining patterns of eye movement recorded whilst a person naturally watches a movie. Methods: Thirty-two elderly people with healthy vision (median age: 70, interquartile range [IQR] 64–75 years) and 44 patients with a clinical diagnosis of glaucoma (median age: 69, IQR 63–77 years) had standard vision examinations including automated perimetry. Disease severity was measured using a standard clinical measure (visual field mean deviation; MD). All study participants viewed three unmodified TV and film clips on a computer set up incorporating the Eyelink 1000 eyetracker (SR Research, Ontario, Canada). Eye movement scanpaths were plotted using novel methods that first filtered the data and then generated saccade density maps. Maps were then subjected to a feature extraction analysis using kernel principal component analysis (KPCA). Features from the KPCA were then classified using a standard machine based classifier trained and tested by a 10-fold cross validation which was repeated 100 times to estimate the confidence interval (CI) of classification sensitivity and specificity. Results: Patients had a range of disease severity from early to advanced (median [IQR] right eye and left eye MD was −7 [−13 to −5] dB and −9 [−15 to −4] dB, respectively). Average sensitivity for correctly identifying a glaucoma patient at a fixed specificity of 90% was 79% (95% CI: 58–86%). The area under the Receiver Operating Characteristic curve was 0.84 (95% CI: 0.82–0.87). Conclusions: Huge data from scanpaths of eye movements recorded whilst people freely watch TV type films can be processed into maps that contain a signature of vision loss. In this proof of principle study we have demonstrated that a group of patients with age-related neurodegenerative eye disease can be reasonably well separated from a group of healthy peers by considering these eye movement

  8. Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio).

    PubMed

    Gao, Dongxu; Wu, Meifang; Wang, Chonggang; Wang, Yuanchuan; Zuo, Zhenghong

    2015-10-01

    Previous epidemiological and animal studies report that exposure to environmental pollutant exposure links to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Benzo[a]pyrene (BaP), a neurotoxic polycyclic aromatic hydrocarbon, has been increasingly released into the environment during recent decades. So far, the role of BaP on the development of neurodegenerative diseases remaind unclear. This study aimed to determine whether chronic exposure to low dose BaP would cause neurodegenerative disease-like syndromes in zebrafish (Danio rerio). We exposed zebrafish, from early embryogenesis to adults, to environmentally relevant concentrations of BaP for 230 days. Our results indicated that BaP decreased the brain weight to body weight ratio, locomotor activity and cognitive ability; induced the loss of dopaminergic neurons; and resulted in neurodegeneration. In addition, obvious cell apoptosis in the brain was found. Furthermore, the neurotransmitter levels of dopamine and 3,4-dihydroxyphenylacetic acid, the mRNA levels of the genes encoding dopamine transporter, Parkinson protein 7, phosphatase and tensin-induced putative kinase 1, ubiquitin carboxy-terminal hydrolase L1, leucine-rich repeat serine/threonine kinase 2, amyloid precursor protein b, presenilin 1 and presenilin 2 were significantly down-regulated by BaP exposure. These findings suggest that chronic exposure to low dose BaP could cause the behavioral, neuropathological, neurochemical, and genetic features of neurodegenerative diseases. This study provides clues that BaP may constitute an important environmental risk factor for neurodegenerative diseases in humans.

  9. NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases.

    PubMed

    Nalls, Mike A; Bras, Jose; Hernandez, Dena G; Keller, Margaux F; Majounie, Elisa; Renton, Alan E; Saad, Mohamad; Jansen, Iris; Guerreiro, Rita; Lubbe, Steven; Plagnol, Vincent; Gibbs, J Raphael; Schulte, Claudia; Pankratz, Nathan; Sutherland, Margaret; Bertram, Lars; Lill, Christina M; DeStefano, Anita L; Faroud, Tatiana; Eriksson, Nicholas; Tung, Joyce Y; Edsall, Connor; Nichols, Noah; Brooks, Janet; Arepalli, Sampath; Pliner, Hannah; Letson, Chris; Heutink, Peter; Martinez, Maria; Gasser, Thomas; Traynor, Bryan J; Wood, Nick; Hardy, John; Singleton, Andrew B

    2015-03-01

    Our objective was to design a genotyping platform that would allow rapid genetic characterization of samples in the context of genetic mutations and risk factors associated with common neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and use a common and accessible technology. Central to this project, we wanted to make the content of the platform open to any investigator without restriction. In designing this array we prioritized a number of types of genetic variability for inclusion, such as known risk alleles, disease-causing mutations, putative risk alleles, and other functionally important variants. The array was primarily designed to allow rapid screening of samples for disease-causing mutations and large population studies of risk factors. Notably, an explicit aim was to make this array widely available to facilitate data sharing across and within diseases. The resulting array, NeuroX, is a remarkably cost and time effective solution for high-quality genotyping. NeuroX comprises a backbone of standard Illumina exome content of approximately 240,000 variants, and over 24,000 custom content variants focusing on neurologic diseases. Data are generated at approximately $50-$60 per sample using a 12-sample format chip and regular Infinium infrastructure; thus, genotyping is rapid and accessible to many investigators. Here, we describe the design of NeuroX, discuss the utility of NeuroX in the analyses of rare and common risk variants, and present quality control metrics and a brief primer for the analysis of NeuroX derived data. PMID:25444595

  10. NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases

    PubMed Central

    Nalls, Mike A.; Bras, Jose; Hernandez, Dena G.; Keller, Margaux F.; Majounie, Elisa; Renton, Alan E.; Saad, Mohamad; Jansen, Iris; Guerreiro, Rita; Lubbe, Steven; Plagnol, Vincent; Gibbs, J. Raphael; Schulte, Claudia; Pankratz, Nathan; Sutherland, Margaret; Bertram, Lars; Lill, Christina M.; DeStefano, Anita L.; Faroud, Tatiana; Eriksson, Nicholas; Tung, Joyce Y.; Edsall, Connor; Nichols, Noah; Brooks, Janet; Arepalli, Sampath; Pliner, Hannah; Letson, Chris; Heutink, Peter; Martinez, Maria; Gasser, Thomas; Traynor, Bryan J.; Wood, Nick; Hardy, John; Singleton, Andrew B.

    2015-01-01

    Our objective was to design a genotyping platform that would allow rapid genetic characterization of samples in the context of genetic mutations and risk factors associated with common neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and use a common and accessible technology. Central to this project, we wanted to make the content of the platform open to any investigator without restriction. In designing this array we prioritized a number of types of genetic variability for inclusion, such as known risk alleles, disease-causing mutations, putative risk alleles, and other functionally important variants. The array was primarily designed to allow rapid screening of samples for disease-causing mutations and large population studies of risk factors. Notably, an explicit aim was to make this array widely available to facilitate data sharing across and within diseases. The resulting array, NeuroX, is a remarkably cost and time effective solution for high-quality genotyping. NeuroX comprises a backbone of standard Illumina exome content of approximately 240,000 variants, and over 24,000 custom content variants focusing on neurologic diseases. Data are generated at approximately $50–$60 per sample using a 12-sample format chip and regular Infinium infrastructure; thus, genotyping is rapid and accessible to many investigators. Here, we describe the design of NeuroX, discuss the utility of NeuroX in the analyses of rare and common risk variants, and present quality control metrics and a brief primer for the analysis of NeuroX derived data. PMID:25444595

  11. NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases.

    PubMed

    Nalls, Mike A; Bras, Jose; Hernandez, Dena G; Keller, Margaux F; Majounie, Elisa; Renton, Alan E; Saad, Mohamad; Jansen, Iris; Guerreiro, Rita; Lubbe, Steven; Plagnol, Vincent; Gibbs, J Raphael; Schulte, Claudia; Pankratz, Nathan; Sutherland, Margaret; Bertram, Lars; Lill, Christina M; DeStefano, Anita L; Faroud, Tatiana; Eriksson, Nicholas; Tung, Joyce Y; Edsall, Connor; Nichols, Noah; Brooks, Janet; Arepalli, Sampath; Pliner, Hannah; Letson, Chris; Heutink, Peter; Martinez, Maria; Gasser, Thomas; Traynor, Bryan J; Wood, Nick; Hardy, John; Singleton, Andrew B

    2015-03-01

    Our objective was to design a genotyping platform that would allow rapid genetic characterization of samples in the context of genetic mutations and risk factors associated with common neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and use a common and accessible technology. Central to this project, we wanted to make the content of the platform open to any investigator without restriction. In designing this array we prioritized a number of types of genetic variability for inclusion, such as known risk alleles, disease-causing mutations, putative risk alleles, and other functionally important variants. The array was primarily designed to allow rapid screening of samples for disease-causing mutations and large population studies of risk factors. Notably, an explicit aim was to make this array widely available to facilitate data sharing across and within diseases. The resulting array, NeuroX, is a remarkably cost and time effective solution for high-quality genotyping. NeuroX comprises a backbone of standard Illumina exome content of approximately 240,000 variants, and over 24,000 custom content variants focusing on neurologic diseases. Data are generated at approximately $50-$60 per sample using a 12-sample format chip and regular Infinium infrastructure; thus, genotyping is rapid and accessible to many investigators. Here, we describe the design of NeuroX, discuss the utility of NeuroX in the analyses of rare and common risk variants, and present quality control metrics and a brief primer for the analysis of NeuroX derived data.

  12. Caring for Others: Internet Video-Conferencing Group Intervention for Family Caregivers of Older Adults with Neurodegenerative Disease

    ERIC Educational Resources Information Center

    Marziali, Elsa; Donahue, Peter

    2006-01-01

    Purpose: The aim of this pilot feasibility study was to evaluate the effects of an innovative, Internet-based psychosocial intervention for family caregivers of older adults with neurodegenerative disease. Design and Methods: After receiving signed informed consent from each participant, we randomly assigned 66 caregivers to an Internet-based…

  13. Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases.

    PubMed

    Haston, Kelly M; Finkbeiner, Steven

    2016-01-01

    Neurodegenerative diseases are a leading cause of death. No disease-modifying therapies are available, and preclinical animal model data have routinely failed to translate into success for therapeutics. Induced pluripotent stem cell (iPSC) biology holds great promise for human in vitro disease modeling because these cells can give rise to any cell in the human brain and display phenotypes specific to neurodegenerative diseases previously identified in postmortem and clinical samples. Here, we explore the potential and caveats of iPSC technology as a platform for drug development and screening, and the future potential to use large cohorts of disease-bearing iPSCs to perform clinical trials in a dish.

  14. Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases

    PubMed Central

    Haston, Kelly M.; Finkbeiner, Steven

    2016-01-01

    Neurodegenerative diseases are a leading cause of death. No disease-modifying therapies are available, and preclinical animal model data have routinely failed to translate into success for therapeutics. Induced pluripotent stem cell (iPSC) biology holds great promise for human in vitro disease modeling because these cells can give rise to any cell in the human brain and display phenotypes specific to neurodegenerative diseases previously identified in postmortem and clinical samples. Here, we explore the potential and caveats of iPSC technology as a platform for drug development and screening, and the future potential to use large cohorts of disease-bearing iPSCs to perform clinical trials in a dish. PMID:26514199

  15. Orally Bioavailable Metal Chelators and Radical Scavengers: Multifunctional Antioxidants for the Coadjutant Treatment of Neurodegenerative Diseases.

    PubMed

    Kawada, Hiroyoshi; Kador, Peter F

    2015-11-25

    Neurodegenerative diseases are associated with oxidative stress that is induced by the presence of reactive oxygen species and the abnormal cellular accumulation of transition metals. Here, a new series of orally bioavailable multifunctional antioxidants (MFAO-2s) possessing a 2-diacetylamino-5-hydroxypyrimidine moiety is described. These MFAO-2s demonstrate both free radical and metal attenuating properties that are similar to the original published MFAO-1s that are based on 1-N,N'-dimethylsulfamoyl-1-4-(2-pyrimidyl)piperazine. Oral bioavailability studies in C57BL/6 mice demonstrate that the MFAO-2s accumulate in the brain at significantly higher levels than the MFAO-1s while achieving similar neural retina levels. The MFAO-2s protect human neuroblastoma and retinal pigmented epithelial cells against hydroxyl radicals in a dose-dependent manner by maintaining cell viability and intracellular glutathione levels. The MFAO-2s outperform clioquinol, a metal attenuator that has been investigated for the treatment of Alzheimer's disease.

  16. Ethics of genetic and biomarker test disclosures in neurodegenerative disease prevention trials

    PubMed Central

    Karlawish, Jason; Berkman, Benjamin E.

    2015-01-01

    Objective: Prevention trials for neurodegenerative diseases use genetic or other risk marker tests to select participants but there is concern that this could involve coercive disclosure of unwanted information. This has led some trials to use blinded enrollment (participants are tested but not told of their risk marker status). We examined the ethics of blinded vs transparent enrollment using well-established criteria for assessing the ethics of clinical research. Methods: Normative analysis applying 4 key ethical criteria—favorable risk-benefit ratio, informed consent, fair subject selection, and scientific validity—to blinded vs transparent enrollment, using current evidence and state of Alzheimer disease (AD) and other prevention trials. Results: Current evidence on the psychosocial impact of risk marker disclosure and considerations of scientific benefit do not support an obligation to use blinded enrollment in prevention trials. Nor does transparent enrollment coerce or involve undue influence of potential participants. Transparent enrollment does not unfairly exploit vulnerable participants or limit generalizability of scientific findings of prevention trials. However, if the preferences of a community of potential participants would affect the rigor or feasibility of a prevention trial using transparent enrollment, then investigators are required by considerations of scientific validity to use blinded enrollment. Conclusions: Considerations of risks and benefits, informed consent, and fair subject selection do not require the use of blinded enrollment for AD prevention trials. Blinded enrollment in AD prevention trials may sometimes be necessary because of the need for scientific validity, not because it prevents coercion or undue influence. PMID:25762713

  17. Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases.

    PubMed

    Herrera-Arozamena, Clara; Martí-Marí, Olaia; Estrada, Martín; de la Fuente Revenga, Mario; Rodríguez-Franco, María Isabel

    2016-09-01

    The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer's disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2).

  18. A-kinase anchoring proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary diseases

    PubMed Central

    Poppinga, W J; Muñoz-Llancao, P; González-Billault, C; Schmidt, M

    2014-01-01

    The universal second messenger cAMP is generated upon stimulation of Gs protein-coupled receptors, such as the β2-adreneoceptor, and leads to the activation of PKA, the major cAMP effector protein. PKA oscillates between an on and off state and thereby regulates a plethora of distinct biological responses. The broad activation pattern of PKA and its contribution to several distinct cellular functions lead to the introduction of the concept of compartmentalization of cAMP. A-kinase anchoring proteins (AKAPs) are of central importance due to their unique ability to directly and/or indirectly interact with proteins that either determine the cellular content of cAMP, such as β2-adrenoceptors, ACs and PDEs, or are regulated by cAMP such as the exchange protein directly activated by cAMP. We report on lessons learned from neurons indicating that maintenance of cAMP compartmentalization by AKAP5 is linked to neurotransmission, learning and memory. Disturbance of cAMP compartments seem to be linked to neurodegenerative disease including Alzheimer's disease. We translate this knowledge to compartmentalized cAMP signalling in the lung. Next to AKAP5, we focus here on AKAP12 and Ezrin (AKAP78). These topics will be highlighted in the context of the development of novel pharmacological interventions to tackle AKAP-dependent compartmentalization. PMID:25132049

  19. The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases.

    PubMed

    Sharma, Rahul; Lahiri, Ramanuj; Scollard, David M; Pena, Maria; Williams, Diana L; Adams, Linda B; Figarola, John; Truman, Richard W

    2013-01-01

    Leprosy (also known as Hansen's disease) is an infectious peripheral neurological disorder caused by Mycobacterium leprae that even today leaves millions of individuals worldwide with life-long disabilities. The specific mechanisms by which this bacterium induces nerve injury remain largely unknown, mainly owing to ethical and practical limitations in obtaining affected human nerve samples. In addition to humans, nine-banded armadillos (Dasypus novemcinctus) are the only other natural host of M. leprae, and they develop a systemically disseminated disease with extensive neurological involvement. M. leprae is an obligate intracellular parasite that cannot be cultivated in vitro. Because of the heavy burdens of bacilli they harbor, nine-banded armadillos have become the organism of choice for propagating large quantities of M. leprae, and they are now advancing as models of leprosy pathogenesis and nerve damage. Although armadillos are exotic laboratory animals, the recently completed whole genome sequence for this animal is enabling researchers to undertake more sophisticated molecular studies and to develop armadillo-specific reagents. These advances will facilitate the use of armadillos in piloting new therapies and diagnostic regimens, and will provide new insights into the oldest known infectious neurodegenerative disorder. PMID:23223615

  20. Anti-Viral Agents in Neurodegenerative Disorders: New Paradigm for Targeting Alzheimer's Disease.

    PubMed

    Faldu, Khushboo G; Shah, Jigna S; Patel, Snehal S

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease affecting geriatric populations for which several causes have been proposed. These include a relationship with known pathogens although the exact nature of such a relationship remains uncertain. Herpes simplex virus-1 has been proposed as potential cause of AD because of its ability to form ß amyloid(Aß) and neurofibrillary tangles due to tau hyperphosphorylation and action of beta & gamma secretase on amyloid precursor protein(APP) together with genetic association with apolipoprotein-E4(ApoE-Ɛ4), which points out to latent Herpes Simplex virus-1 as an agent causing AD. There are numerous studies that linked HSV-1 with AD like anti-HSV-1 IgM antibodies, nectin-2, heme oxygenase-1, phosphorylated eukaryotic initiation factor-2A, caspase-8 and nucleus-specific alteration of raphe neurons. Various possible mechanisms by which HSV-1 might lead to development of AD such as ApoE, ß-amyloid, tau phosphorylation, inflammation and oxidative stress are also discussed. Thus, this review discusses patent information and a strong relationship between latent HSV-1 and AD and also proposes antiviral therapy for AD. PMID:25963683

  1. DIMETER: A Haptic Master Device for Tremor Diagnosis in Neurodegenerative Diseases

    PubMed Central

    González, Roberto; Barrientos, Antonio; del Cerro, Jaime; Coca, Benito

    2014-01-01

    In this study, a device based on patient motion capture is developed for the reliable and non-invasive diagnosis of neurodegenerative diseases. The primary objective of this study is the classification of differential diagnosis between Parkinson's disease (PD) and essential tremor (ET). The DIMETER system has been used in the diagnoses of a significant number of patients at two medical centers in Spain. Research studies on classification have primarily focused on the use of well-known and reliable diagnosis criteria developed by qualified personnel. Here, we first present a literature review of the methods used to detect and evaluate tremor; then, we describe the DIMETER device in terms of the software and hardware used and the battery of tests developed to obtain the best diagnoses. All of the tests are classified and described in terms of the characteristics of the data obtained. A list of parameters obtained from the tests is provided, and the results obtained using multilayer perceptron (MLP) neural networks are presented and analyzed. PMID:24608001

  2. Imaging the Perivascular Space as a Potential Biomarker of Neurovascular and Neurodegenerative Diseases.

    PubMed

    Ramirez, Joel; Berezuk, Courtney; McNeely, Alicia A; Gao, Fuqiang; McLaurin, JoAnne; Black, Sandra E

    2016-03-01

    Although the brain lacks conventional lymphatic vessels found in peripheral tissue, evidence suggests that the space surrounding the vasculature serves a similar role in the clearance of fluid and metabolic waste from the brain. With aging, neurodegeneration, and cerebrovascular disease, these microscopic perivascular spaces can become enlarged, allowing for visualization and quantification on structural MRI. The purpose of this review is to: (i) describe some of the recent pre-clinical findings from basic science that shed light on the potential neurophysiological mechanisms driving glymphatic and perivascular waste clearance, (ii) review some of the pathobiological etiologies that may lead to MRI-visible enlarged perivascular spaces (ePVS), (iii) describe the possible clinical implications of ePVS, (iv) evaluate existing qualitative and quantitative techniques used for measuring ePVS burden, and (v) propose future avenues of research that may improve our understanding of this potential clinical neuroimaging biomarker for fluid and metabolic waste clearance dysfunction in neurodegenerative and neurovascular diseases. PMID:26993511

  3. P7C3 and an unbiased approach to drug discovery for neurodegenerative diseases

    PubMed Central

    McKnight, Steven L.; Ready, Joseph M.

    2014-01-01

    A novel neuroprotective small molecule was discovered using a target-agnostic in vivo screen in living mice. This aminopropyl carbazole, named P7C3, is orally bioavailable, crosses the blood–brain barrier, and is non-toxic at doses several fold higher than the efficacious dose. The potency and drug-like properties of P7C3 were optimized through a medicinal chemistry campaign, providing analogues for detailed examination. Improved versions, such as (−)-P7C3-S243 and P7C3-A20, displayed neuro-protective properties in rodent models of Parkinson’s disease, amyotrophic lateral sclerosis, traumatic brain injury and age-related cognitive decline. Derivatives appended with immobilizing moieties may reveal the protein targets of the P7C3 class of neuroprotective compounds. Our results indicate that unbiased, in vivo screens might provide starting points for the development of treatments for neurodegenerative diseases as well as tools to study the biology underlying these disorders. PMID:24514864

  4. Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases.

    PubMed

    Herrera-Arozamena, Clara; Martí-Marí, Olaia; Estrada, Martín; de la Fuente Revenga, Mario; Rodríguez-Franco, María Isabel

    2016-01-01

    The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer's disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2). PMID:27598108

  5. Phytochemicals That Regulate Neurodegenerative Disease by Targeting Neurotrophins: A Comprehensive Review

    PubMed Central

    Venkatesan, Ramu; Ji, Eunhee; Kim, Sun Yeou

    2015-01-01

    Alzheimer's disease (AD), characterized by progressive dementia and deterioration of cognitive function, is an unsolved social and medical problem. Age, nutrition, and toxins are the most common causes of AD. However, currently no credible treatment is available for AD. Traditional herbs and phytochemicals may delay its onset and slow its progression and also allow recovery by targeting multiple pathological causes by antioxidative, anti-inflammatory, and antiamyloidogenic properties. They also regulate mitochondrial stress, apoptotic factors, free radical scavenging system, and neurotrophic factors. Neurotrophins such as BDNF, NGF, NT3, and NT4/5 play a vital role in neuronal and nonneuronal responses to AD. Neurotrophins depletion accelerates the progression of AD and therefore, replacing such neurotrophins may be a potential treatment for neurodegenerative disease. Here, we review the phytochemicals that mediate the signaling pathways involved in neuroprotection specifically neurotrophin-mediated activation of Trk receptors and members of p75NTR superfamily. We focus on representative phenolic derivatives, iridoid glycosides, terpenoids, alkaloids, and steroidal saponins as regulators of neurotrophin-mediated neuroprotection. Although these phytochemicals have attracted attention owing to their in vitro neurotrophin potentiating activity, their in vivo and clinical efficacy trials has yet to be established. Therefore, further research is necessary to prove the neuroprotective effects in preclinical models and in humans. PMID:26075266

  6. Impact of Non-Enzymatic Glycation in Neurodegenerative Diseases: Role of Natural Products in Prevention.

    PubMed

    Ahmad, Saheem; Farhan, Mohammed

    2016-01-01

    Non-enzymatic protein glycosylation is the addition of free carbonyls to the free amino groups of proteins, amino acids, lipoproteins and nucleic acids resulting in the formation of early glycation products. The early glycation products are also known as Maillard reaction which undergoes dehydration, cyclization and rearrangement to form advanced glycation end-products (AGEs). By and large the researchers in the past have also established that glycation and the AGEs are responsible for most type of metabolic disorders, including diabetes mellitus, cancer, neurological disorders and aging. The amassing of AGEs in the tissues of neurodegenerative diseases shows its involvement in diseases. Therefore, it is likely that inhibition of glycation reaction may extend the lifespan of an individual. The hunt for inhibitors of glycation, mainly using in vitro models, has identified natural compounds able to prevent glycation, especially polyphenols and other natural antioxidants. Extrapolation of results of in vitro studies on the in vivo situation is not straightforward due to differences in the conditions and mechanism of glycation, and bioavailability problems. Nevertheless, existing data allow postulating that enrichment of diet in natural anti-glycating agents may attenuate glycation and, in consequence may halt the aging and neurological problems. PMID:27651252

  7. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes

    PubMed Central

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Gao, Yuan; Yu, Li-Rong; Alla, Ramani; Shmookler Reis, Robert

    2015-01-01

    Age-dependent neurodegenerative diseases progressively form aggregates containing both shared components (e.g., TDP-43, phosphorylated tau) and proteins specific to each disease. We investigated whether diverse neuropathies might have additional aggregation-prone proteins in common, discoverable by proteomics. Caenorhabditis elegans expressing unc-54p/Q40::YFP, a model of polyglutamine array diseases such as Huntington's, accrues aggregates in muscle 2–6 days posthatch. These foci, isolated on antibody-coupled magnetic beads, were characterized by high-resolution mass spectrometry. Three Q40::YFP-associated proteins were inferred to promote aggregation and cytotoxicity, traits reduced or delayed by their RNA interference knockdown. These RNAi treatments also retarded aggregation/cytotoxicity in Alzheimer's disease models, nematodes with muscle or pan-neuronal Aβ1–42 expression and behavioral phenotypes. The most abundant aggregated proteins are glutamine/asparagine-rich, favoring hydrophobic interactions with other random-coil domains. A particularly potent modulator of aggregation, CRAM-1/HYPK, contributed < 1% of protein aggregate peptides, yet its knockdown reduced Q40::YFP aggregates 72–86% (P < 10−6). In worms expressing Aβ1–42, knockdown of cram-1 reduced β-amyloid 60% (P < 0.002) and slowed age-dependent paralysis > 30% (P < 10−6). In wild-type worms, cram-1 knockdown reduced aggregation and extended lifespan, but impaired early reproduction. Protection against seeded aggregates requires proteasome function, implying that normal CRAM-1 levels promote aggregation by interfering with proteasomal degradation of misfolded proteins. Molecular dynamic modeling predicts spontaneous and stable interactions of CRAM-1 (or human orthologs) with ubiquitin, and we verified that CRAM-1 reduces degradation of a tagged-ubiquitin reporter. We propose that CRAM-1 exemplifies a class of primitive chaperones that are initially protective and highly

  8. Neurodegenerative diseases in a dish: the promise of iPSC technology in disease modeling and therapeutic discovery.

    PubMed

    Xie, Y Z; Zhang, R X

    2015-01-01

    The study of stem-cell biology has been a flourishing research area because of its multi-differentiation potential. The emergence of induced pluripotent stem cells (iPSCs) open up the possibility of addressing obstructs, such as the limited cell source, inherent complexity of the human brain, and ethical constrains. Though still at its infancy phase, reprogramming of somatic cells has been demonstrating the ability to enhance in vitro study of neurodegenerative diseases and potential treatment. However, iPSCs would not thoroughly translate to the clinic before limitations are addressed. In this review, by summarizing the recent development of iPSC-based models, we will discuss the feasibility of iPSC technology on relevant diseases depth and illustrate how this new tool applies to drug screening and celluar therapy.

  9. Nanoparticles in the brain: a potential therapeutic system targeted to an early defect observed in many neurodegenerative diseases.

    PubMed

    Gunawardena, Shermali

    2013-10-01

    Currently, there are no effective treatments or cures for many neurodegenerative diseases affecting an aging baby-boomer generation. The ongoing problem with many of the current therapeutic treatments is that most are aimed at dissolving or dissociating aggregates and preventing cell death, common neuropathology often seen towards the end stage of disease. Often such treatments have secondary effects that are more devastating than the disease itself. Thus, effective therapeutics must be focused on directly targeting early events such that global deleterious effects of drugs are minimized while beneficial therapeutic effects are maximized. Recent work indicates that in many neurodegenerative diseases long distance axonal transport is perturbed, leading to axonal blockages. Axonal blockages are observed before pathological or behavioral phenotypes are seen indicating that this pathway is perturbed early in disease. Thus, developing novel therapeutic treatments to an early defect is critical in curing disease. Here I review neurodegenerative disease and current treatment strategies, and discuss a novel nanotechnology based approach that is aimed at targeting an early pathway, with the rationale that restoring an early problem will prevent deleterious downstream effects. To accomplish this, knowledge exchange between biologists, chemists, and engineers will be required to manufacture effective novel biomaterials for medical use.

  10. Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases

    PubMed Central

    Lapchak, Paul A

    2012-01-01

    One of the most promising methods to treat neurodegeneration is noninvasive transcranial near-infrared laser therapy (NILT), which appears to promote acute neuroprotection by stimulating mitochondrial function, thereby increasing cellular energy production. NILT may also promote chronic neuronal function restoration via trophic factor-mediated plasticity changes or possibly neurogenesis. Clearly, NILT is a treatment that confers neuroprotection or neurorestoration using pleiotropic mechanisms. The most advanced application of NILT is for acute ischemic stroke based upon extensive preclinical and clinical studies. In laboratory settings, NILT is also being developed to treat traumatic brain injury, Alzheimer’s disease and Parkinson’s disease. There is some intriguing data in the literature that suggests that NILT may be a method to promote clinical improvement in neurodegenerative diseases where there is a common mechanistic component, mitochondrial dysfunction and energy impairment. This article will analyze and review data supporting the continued development of NILT to treat neurodegenerative diseases. PMID:22145842

  11. Is Modulation of Oxidative Stress an Answer? The State of the Art of Redox Therapeutic Actions in Neurodegenerative Diseases

    PubMed Central

    Chiurchiù, Valerio

    2016-01-01

    The central nervous system is particularly sensitive to oxidative stress due to many reasons, including its high oxygen consumption even under basal conditions, high production of reactive oxygen and nitrogen species from specific neurochemical reactions, and the increased deposition of metal ions in the brain with aging. For this reason, along with inflammation, oxidative stress seems to be one of the main inducers of neurodegeneration, causing excitotoxicity, neuronal loss, and axonal damage, ultimately being now considered a key element in the onset and progression of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and hereditary spastic paraplegia. Thus, the present paper reviews the role of oxidative stress and of its mechanistic insights underlying the pathogenesis of these neurodegenerative diseases, with particular focus on current studies on its modulation as a potential and promising therapeutic strategy. PMID:26881039

  12. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope.

    PubMed

    Sonkusare, S K; Kaul, C L; Ramarao, P

    2005-01-01

    Alzheimer's disease is the fourth largest cause of death for people over 65 years of age. Dementia of Alzheimer's type is the commonest form of dementia, the other two forms being vascular dementia and mixed dementia. At present, the therapy of Alzheimer's disease is aimed at improving both, cognitive and behavioural symptoms and thereby, quality of life for the patients. Since the discovery of Alzheimer's disease by Alois Alzheimer, many pathological mechanisms have been proposed which led to the testing of various new treatments. Until recently the available drugs for the treatment of Alzheimer's disease are cholinesterase inhibitors, which have limited success because these drugs improve cognitive functions only in mild dementia and cannot stop the process of neurodegeneration. Moreover, drugs of this category show gastrointestinal side effects. As the cells of central and peripheral nervous system cannot regenerate, newer strategies are aimed at preserving the surviving neurons by preventing their degeneration. NMDA-receptor-mediated glutamate excitotoxicity plays a major role in Abeta-induced neuronal death. Hence, it was thought that NMDA receptors could be a promising target for preventing the progression of Alzheimer's disease. All the compounds synthesized initially in this category showed toxicity mainly because of their high affinity for NMDA receptors. Memantine (1-amino adamantane derivative), NMDA-receptor antagonist was reported to be effective therapeutically in Alzheimer's disease. It was available in Germany as well as European Union and has been approved for moderate to severe dementia in United States of America recently. It is an uncompetitive, moderate affinity antagonist of NMDA receptors that inhibits the pathological functions of NMDA receptors while physiological processes in learning and memory are unaffected. Memantine is also reported to have beneficial effects in other CNS disorders viz., Parkinson's disease (PD), stroke, epilepsy, CNS

  13. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options

    PubMed Central

    Uttara, Bayani; Singh, Ajay V.; Zamboni, Paolo; Mahajan, R.T

    2009-01-01

    Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants, overproduction or incorporation of free radicals from environment to living system leads to serious penalty leading to neuro-degeneration. Neural cells suffer functional or sensory loss in neurodegenerative diseases. Apart from several other environmental or genetic factors, oxidative stress (OS) leading to free radical attack on neural cells contributes calamitous role to neuro-degeneration. Though, oxygen is imperative for life, imbalanced metabolism and excess reactive oxygen species (ROS) generation end into a range of disorders such as Alzheimer’s disease, Parkinson’s disease, aging and many other neural disorders. Toxicity of free radicals contributes to proteins and DNA injury, inflammation, tissue damage and subsequent cellular apoptosis. Antioxidants are now being looked upon as persuasive therapeutic against solemn neuronal loss, as they have capability to combat by neutralizing free radicals. Diet is major source of antioxidants, as well as medicinal herbs are catching attention to be commercial source of antioxidants at present. Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging. Antioxidants have a wide scope to sequester metal ions involved in neuronal plaque formation to prevent oxidative stress. In addition, antioxidant therapy is vital in scavenging free radicals and ROS preventing neuronal degeneration in post-oxidative stress scenario. PMID:19721819

  14. Nano-Drugs Based on Nano Sterically Stabilized Liposomes for the Treatment of Inflammatory Neurodegenerative Diseases

    PubMed Central

    Turjeman, Keren; Bavli, Yaelle; Kizelsztein, Pablo; Schilt, Yaelle; Allon, Nahum; Katzir, Tamar Blumenfeld; Sasson, Efrat; Raviv, Uri; Ovadia, Haim; Barenholz, Yechezkel

    2015-01-01

    The present study shows the advantages of liposome-based nano-drugs as a novel strategy of delivering active pharmaceutical ingredients for treatment of neurodegenerative diseases that involve neuroinflammation. We used the most common animal model for multiple sclerosis (MS), mice experimental autoimmune encephalomyelitis (EAE). The main challenges to overcome are the drugs’ unfavorable pharmacokinetics and biodistribution, which result in inadequate therapeutic efficacy and in drug toxicity (due to high and repeated dosage). We designed two different liposomal nano-drugs, i.e., nano sterically stabilized liposomes (NSSL), remote loaded with: (a) a “water-soluble” amphipathic weak acid glucocorticosteroid prodrug, methylprednisolone hemisuccinate (MPS) or (b) the amphipathic weak base nitroxide, Tempamine (TMN). For the NSSL-MPS we also compared the effect of passive targeting alone and of active targeting based on short peptide fragments of ApoE or of β-amyloid. Our results clearly show that for NSSL-MPS, active targeting is not superior to passive targeting. For the NSSL-MPS and the NSSL-TMN it was demonstrated that these nano-drugs ameliorate the clinical signs and the pathology of EAE. We have further investigated the MPS nano-drug’s therapeutic efficacy and its mechanism of action in both the acute and the adoptive transfer EAE models, as well as optimizing the perfomance of the TMN nano-drug. The highly efficacious anti-inflammatory therapeutic feature of these two nano-drugs meets the criteria of disease-modifying drugs and supports further development and evaluation of these nano-drugs as potential therapeutic agents for diseases with an inflammatory component. PMID:26147975

  15. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam

    PubMed Central

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J.

    2003-01-01

    We here report biomagnification (the increasing accumulation of bioactive, often deleterious molecules through higher trophic levels of a food chain) of the neurotoxic nonprotein amino acid β-methylamino-l-alanine (BMAA) in the Guam ecosystem. Free-living cyanobacteria produce 0.3 μg/g BMAA, but produce 2-37 μg/g as symbionts in the coralloid roots of cycad trees. BMAA is concentrated in the developing reproductive tissues of the cycad Cycas micronesica, averaging 9 μg/g in the fleshy seed sarcotesta and a mean of 1,161 μg/g BMAA in the outermost seed layer. Flying foxes (Pteropus mariannus), which forage on the seeds, accumulate a mean of 3,556 μg/g BMAA. Flying foxes are a prized food item of the indigenous Chamorro people who boil them in coconut cream and eat them whole. Chamorros who die of amyotrophic lateral sclerosis/parkinsonism-dementia complex (AL-SPDC), a neurodegenerative disease with symptoms similar to amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease, have an average of 6.6 μg/g BMAA in their brain tissues. The biomagnification of BMAA through the Guam ecosystem fits a classic triangle of increasing concentrations of toxic compounds up the food chain. This may explain why the incidence of ALS-PDC among the Chamorro was 50-100 times the incidence of amyotrophic lateral sclerosis elsewhere. Biomagnification of cyanobacterial BMAA may not be unique to Guam; our discovery of BMAA in the brain tissue from Alzheimer's patients from Canada suggests alternative ecological pathways for the bioaccumulation of BMAA in aquatic or terrestrial ecosystems. PMID:14612559

  16. Nano-Drugs Based on Nano Sterically Stabilized Liposomes for the Treatment of Inflammatory Neurodegenerative Diseases.

    PubMed

    Turjeman, Keren; Bavli, Yaelle; Kizelsztein, Pablo; Schilt, Yaelle; Allon, Nahum; Katzir, Tamar Blumenfeld; Sasson, Efrat; Raviv, Uri; Ovadia, Haim; Barenholz, Yechezkel

    2015-01-01

    The present study shows the advantages of liposome-based nano-drugs as a novel strategy of delivering active pharmaceutical ingredients for treatment of neurodegenerative diseases that involve neuroinflammation. We used the most common animal model for multiple sclerosis (MS), mice experimental autoimmune encephalomyelitis (EAE). The main challenges to overcome are the drugs' unfavorable pharmacokinetics and biodistribution, which result in inadequate therapeutic efficacy and in drug toxicity (due to high and repeated dosage). We designed two different liposomal nano-drugs, i.e., nano sterically stabilized liposomes (NSSL), remote loaded with: (a) a "water-soluble" amphipathic weak acid glucocorticosteroid prodrug, methylprednisolone hemisuccinate (MPS) or (b) the amphipathic weak base nitroxide, Tempamine (TMN). For the NSSL-MPS we also compared the effect of passive targeting alone and of active targeting based on short peptide fragments of ApoE or of β-amyloid. Our results clearly show that for NSSL-MPS, active targeting is not superior to passive targeting. For the NSSL-MPS and the NSSL-TMN it was demonstrated that these nano-drugs ameliorate the clinical signs and the pathology of EAE. We have further investigated the MPS nano-drug's therapeutic efficacy and its mechanism of action in both the acute and the adoptive transfer EAE models, as well as optimizing the perfomance of the TMN nano-drug. The highly efficacious anti-inflammatory therapeutic feature of these two nano-drugs meets the criteria of disease-modifying drugs and supports further development and evaluation of these nano-drugs as potential therapeutic agents for diseases with an inflammatory component.

  17. Protective Role of DNJ-27/ERdj5 in Caenorhabditis elegans Models of Human Neurodegenerative Diseases

    PubMed Central

    Muñoz-Lobato, Fernando; Rodríguez-Palero, María Jesús; Naranjo-Galindo, Francisco José; Shephard, Freya; Gaffney, Christopher J.; Szewczyk, Nathaniel J.; Hamamichi, Shusei; Caldwell, Kim A.; Caldwell, Guy A.; Link, Chris D.

    2014-01-01

    Abstract Aims: Cells have developed quality control systems for protection against proteotoxicity. Misfolded and aggregation-prone proteins, which are behind the initiation and progression of many neurodegenerative diseases (ND), are known to challenge the proteostasis network of the cells. We aimed to explore the role of DNJ-27/ERdj5, an endoplasmic reticulum (ER)-resident thioredoxin protein required as a disulfide reductase for the degradation of misfolded proteins, in well-established Caenorhabditis elegans models of Alzheimer, Parkinson and Huntington diseases. Results: We demonstrate that DNJ-27 is an ER luminal protein and that its expression is induced upon ER stress via IRE-1/XBP-1. When dnj-27 expression is downregulated by RNA interference we find an increase in the aggregation and associated pathological phenotypes (paralysis and motility impairment) caused by human β-amyloid peptide (Aβ), α-synuclein (α-syn) and polyglutamine (polyQ) proteins. In turn, DNJ-27 overexpression ameliorates these deleterious phenotypes. Surprisingly, despite being an ER-resident protein, we show that dnj-27 downregulation alters cytoplasmic protein homeostasis and causes mitochondrial fragmentation. We further demonstrate that DNJ-27 overexpression substantially protects against the mitochondrial fragmentation caused by human Aβ and α-syn peptides in these worm models. Innovation: We identify C. elegans dnj-27 as a novel protective gene for the toxicity associated with the expression of human Aβ, α-syn and polyQ proteins, implying a protective role of ERdj5 in Alzheimer, Parkinson and Huntington diseases. Conclusion: Our data support a scenario where the levels of DNJ-27/ERdj5 in the ER impact cytoplasmic protein homeostasis and the integrity of the mitochondrial network which might underlie its protective effects in models of proteotoxicity associated to human ND. Antioxid. Redox Signal. 20, 217–235. PMID:23641861

  18. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases.

    PubMed

    Saraiva, Cláudia; Praça, Catarina; Ferreira, Raquel; Santos, Tiago; Ferreira, Lino; Bernardino, Liliana

    2016-08-10

    The blood-brain barrier (BBB) is a vital boundary between neural tissue and circulating blood. The BBB's unique and protective features control brain homeostasis as well as ion and molecule movement. Failure in maintaining any of these components results in the breakdown of this specialized multicellular structure and consequently promotes neuroinflammation and neurodegeneration. In several high incidence pathologies such as stroke, Alzheimer's (AD) and Parkinson's disease (PD) the BBB is impaired. However, even a damaged and more permeable BBB can pose serious challenges to drug delivery into the brain. The use of nanoparticle (NP) formulations able to encapsulate molecules with therapeutic value, while targeting specific transport processes in the brain vasculature, may enhance drug transport through the BBB in neurodegenerative/ischemic disorders and target relevant regions in the brain for regenerative processes. In this review, we will discuss BBB composition and characteristics and how these features are altered in pathology, namely in stroke, AD and PD. Additionally, factors influencing an efficient intravenous delivery of polymeric and inorganic NPs into the brain as well as NP-related delivery systems with the most promising functional outcomes will also be discussed.

  19. Erythropoietin as a new therapeutic opportunity in brain inflammation and neurodegenerative diseases.

    PubMed

    Merelli, A; Czornyj, L; Lazarowski, A

    2015-01-01

    Highly expressed Erythropoietin Receptor (EPO-R) has been detected in several nonhematopoietic hypoxic cells, including cells from different brain areas in response to many different types of cell injury. In brain, hypoxia-ischemia (HI) can induce a wide spectrum of biologic responses, where inflammation and apoptosis are the main protagonists. Inflammation, as a primary brain insult, can induce a chronic hypoxic condition, producing the continuous cycle of inflammation-hypoxia that increases the apoptotic-cell number. It has also been demonstrated that administration of erythropoietin (EPO) prevented the neuronal death induced by HI, as well as the induction of lipid peroxidation in the hippocampus in a rodent model of Alzheimer's disease. Anti-apoptotic, anti-inflammatory, anti-oxidant, and/or cell-proliferative effects of EPO, have been observed in all type of cells expressing EPO-R, resulting in a potential tool for neuroprotection, neuroreparation, or neurogenesis of brain damaged areas. The nasal route is an alternative way of drugs administration that has been successfully exploited for bypassing the blood brain barrier, and subsequently delivering EPO and other molecules to central nervous system. Intranasal administration of EPO could be a new therapeutic opportunity in several brain damages that includes hypoxia, inflammation, neurodegenerative process, and apoptosis. PMID:25405533

  20. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements

    PubMed Central

    Mielcarek, Michal; Zielonka, Daniel; Carnemolla, Alisia; Marcinkowski, Jerzy T.; Guidez, Fabien

    2015-01-01

    For the past decade protein acetylation has been shown to be a crucial post-transcriptional modification involved in the regulation of protein functions. Histone acetyltransferases (HATs) mediate acetylation of histones which results in the nucleosomal relaxation associated with gene expression. The reverse reaction, histone deacetylation, is mediated by histone deacetylases (HDACs) leading to chromatin condensation followed by transcriptional repression. HDACs are divided into distinct classes: I, IIa, IIb, III, and IV, on the basis of size and sequence homology, as well as formation of distinct repressor complexes. Implications of HDACs in many diseases, such as cancer, heart failure, and neurodegeneration, have identified these molecules as unique and attractive therapeutic targets. The emergence of HDAC4 among the members of class IIa family as a major player in synaptic plasticity raises important questions about its functions in the brain. The characterization of HDAC4 specific substrates and molecular partners in the brain will not only provide a better understanding of HDAC4 biological functions but also might help to develop new therapeutic strategies to target numerous malignancies. In this review we highlight and summarize recent achievements in understanding the biological role of HDAC4 in neurodegenerative processes. PMID:25759639

  1. The Changing Landscape of Voltage-Gated Calcium Channels in Neurovascular Disorders and in Neurodegenerative Diseases

    PubMed Central

    Cataldi, Mauro

    2013-01-01

    It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia. PMID:24179464

  2. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics

    PubMed Central

    Cho, Seongeun; Wood, Andrew; Bowlby, Mark R

    2007-01-01

    Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context. In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro. PMID:18615151

  3. The anatomy of category-specific object naming in neurodegenerative diseases.

    PubMed

    Brambati, S M; Myers, D; Wilson, A; Rankin, K P; Allison, S C; Rosen, H J; Miller, B L; Gorno-Tempini, M L

    2006-10-01

    Neuropsychological studies suggest that knowledge about living and nonliving objects is processed in separate brain regions. However, lesion and functional neuroimaging studies have implicated different areas. To address this issue, we used voxel-based morphometry to correlate accuracy in naming line drawings of living and nonliving objects with gray matter volumes in 152 patients with various neurodegenerative diseases. The results showed a significant positive correlation between gray matter volumes in bilateral temporal cortices and total naming accuracy regardless of category. Naming scores for living stimuli correlated with gray matter volume in the medial portion of the right anterior temporal pole, whereas naming accuracy for familiarity-matched nonliving items correlated with the volume of the left posterior middle temporal gyrus. A previous behavioral study showed that the living stimuli used here also had in common the characteristic that they were defined by shared sensory semantic features, whereas items in the nonliving group were defined by their action-related semantic features. We propose that the anatomical segregation of living and nonliving categories is the result of their defining semantic features and the distinct neural subsystems used to process them. PMID:17014369

  4. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases.

    PubMed

    Li, Rui; Bai, Ye; Liu, Tongtong; Wang, Xiaoqun; Wu, Qian

    2013-06-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specifi c iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.

  5. Specific Transfection of Inflamed Brain by Macrophages: A New Therapeutic Strategy for Neurodegenerative Diseases

    PubMed Central

    Haney, Matthew J.; Zhao, Yuling; Harrison, Emily B.; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D.; Klyachko, Natalia L.; Mosley, R. Lee; Gendelman, Howard E.; Kabanov, Alexander V.; Batrakova, Elena V.

    2013-01-01

    The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders. PMID:23620794

  6. The Influence of Na+, K+-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence

    PubMed Central

    Kinoshita, Paula F.; Leite, Jacqueline A.; Orellana, Ana Maria M.; Vasconcelos, Andrea R.; Quintas, Luis E. M.; Kawamoto, Elisa M.; Scavone, Cristoforo

    2016-01-01

    Decreased Na+, K+-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1−4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging. PMID:27313535

  7. Neural basis of motivational approach and withdrawal behaviors in neurodegenerative disease

    PubMed Central

    Shinagawa, Shunichiro; Babu, Adhimoolam; Sturm, Virginia; Shany-Ur, Tal; Toofanian Ross, Parnian; Zackey, Diana; Poorzand, Pardis; Grossman, Scott; Miller, Bruce L; Rankin, Katherine P

    2015-01-01

    Introduction The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been theorized as neural systems that regulate approach/withdrawal behaviors. Behavioral activation/inhibition balance may change in neurodegenerative disease based on underlying alterations in systems supporting motivation and approach/withdrawal behaviors, which may in turn be reflected in neuropsychiatric symptoms. Method A total of 187 participants (31 patients diagnosed with behavioral variant of FTD [bvFTD], 13 semantic variant of primary progressive aphasia [svPPA], 14 right temporal variant FTD [rtFTD], 54 Alzheimer’s disease [AD], and 75 older healthy controls [NCs]) were included in this study. Changes in behavioral inhibition/activation were measured using the BIS/BAS scale. We analyzed the correlation between regional atrophy pattern and BIS/BAS score, using voxel-based morphometry (VBM). Results ADs had significantly higher BIS scores than bvFTDs and NCs. bvFTDs activation-reward response (BAS-RR) was significantly lower than ADs and NCs, though their activation-drive (BAS-D) was significantly higher than in ADs. Both AD and rtFTD patients had abnormally low activation fun-seeking (BAS-FS) scores. BIS score correlated positively with right anterior cingulate and middle frontal gyrus volume, as well as volume in the right precentral gyrus and left insula/operculum. Conclusions AD, bvFTD, and rtFTD patients show divergent patterns of change in approach/withdrawal reactivity. High BIS scores correlated with preservation of right-predominant structures involved in task control and self-protective avoidance of potentially negative reinforcers. Damage to these regions in bvFTD may create a punishment insensitivity that underlies patients’ lack of self-consciousness in social contexts. PMID:26442751

  8. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases.

    PubMed

    Rice, Claire M; Kemp, Kevin; Wilkins, Alastair; Scolding, Neil J

    2013-10-01

    Multiple sclerosis is a major cause of neurological disability, and particularly occurs in young adults. It is characterised by conspicuous patches of damage throughout the brain and spinal cord, with loss of myelin and myelinating cells (oligodendrocytes), and damage to neurons and axons. Multiple sclerosis is incurable, but stem-cell therapy might offer valuable therapeutic potential. Efforts to develop stem-cell therapies for multiple sclerosis have been conventionally built on the principle of direct implantation of cells to replace oligodendrocytes, and therefore to regenerate myelin. Recent progress in understanding of disease processes in multiple sclerosis include observations that spontaneous myelin repair is far more widespread and successful than was previously believed, that loss of axons and neurons is more closely associated with progressive disability than is myelin loss, and that damage occurs diffusely throughout the CNS in grey and white matter, not just in discrete, isolated patches or lesions. These findings have introduced new and serious challenges that stem-cell therapy needs to overcome; the practical challenges to achieve cell replacement alone are difficult enough, but, to be useful, cell therapy for multiple sclerosis must achieve substantially more than the replacement of lost oligodendrocytes. However, parallel advances in understanding of the reparative properties of stem cells--including their distinct immunomodulatory and neuroprotective properties, interactions with resident or tissue-based stem cells, cell fusion, and neurotrophin elaboration--offer renewed hope for development of cell-based therapies. Additionally, these advances suggest avenues for translation of this approach not only for multiple sclerosis, but also for other common neurological and neurodegenerative diseases.

  9. Kuru: a half-opened window onto the landscape of neurodegenerative diseases.

    PubMed

    Liberski, Paweł P; Brown, Paul

    2004-01-01

    Kuru, the first human neurodegenerative disease classified as a transmissible spongiform encephalopathy (TSE), prion disease or, in the past, as a slow unconventional virus disease, was first reported to Western medicine in 1957 by Gajdusek and Zigas. A complete bibliography of kuru through 1975 has been published by Alpers et al. The solution of the kuru riddle opened a novel field of biomedical sciences and initiated more than a quarter of century of research that has already resulted in two Nobel prizes (to D. Carleton Gajdusek in 1976 and to Stanley B. Prusiner in 1997) and was linked to a third (to Kurt Wüthrich who determined the structure of the prion protein). Kuru research has impacted the concepts of nucleation-polymerization "protein cancers", and "conformational disorders". This paper is dedicated to Dr. Carleton Gajdusek on the occasion of his 80th birthday. "Kuru" in the Fore (Fig. 1) language means to shiver from fever or cold. The Fore used the noun of the kuru-verb to describe the always fatal disease which decimated their children and adult women but rarely men. It has been and still is restricted to natives of the Fore linguistic group at Papua New Guinea's Eastern Highlands and those neighboring linguistic groups which exchange women with Fore people (Auiana, Awa, Usurufa, Kanite, Keiagana, late, Kamano, Kimi; Fig. 2). Neighboring groups into which kuru-affected people did not settle through marriage or adoption, such as the Anga (Kukukuku), and remote lagaria, Kamano and Auiana people, were not affected. It seems that Kuru first appeared at or shortly after the turn of XX century in Uwami village of Keiagana people and spread to the Awande in the North Fore where the Uwami had social contacts. Within 20 years it had spread further into the Kasokana (in 1922 according to Lindebaum) and Miarasa villages of North Fore, and a decade later had reached the South Fore at the Wanikanto and Kamira villages. Kuru became endemic in all villages that it

  10. Excess body weight increases the burden of age-associated chronic diseases and their associated health care expenditures

    PubMed Central

    Atella, Vincenzo; Kopinska, Joanna; Medea, Gerardo; Belotti, Federico; Tosti, Valeria; Mortari, Andrea Piano; Cricelli, Claudio; Fontana, Luigi

    2015-01-01

    Aging and excessive adiposity are both associated with an increased risk of developing multiple chronic diseases, which drive ever increasing health costs. The main aim of this study was to determine the net (non‐estimated) health costs of excessive adiposity and associated age‐related chronic diseases. We used a prevalence‐based approach that combines accurate data from the Health Search CSD‐LPD, an observational dataset with patient records collected by Italian general practitioners and up‐to‐date health care expenditures data from the SiSSI Project. In this very large study, 557,145 men and women older than 18 years were observed at different points in time between 2004 and 2010. The proportion of younger and older adults reporting no chronic disease decreased with increasing BMI. After adjustment for age, sex, geographic residence, and GPs heterogeneity, a strong J‐shaped association was found between BMI and total health care costs, more pronounced in middle‐aged and older adults. Relative to normal weight, in the 45‐64 age group, the per‐capita total cost was 10% higher in overweight individuals, and 27 to 68% greater in patients with obesity and very severe obesity, respectively. The association between BMI and diabetes, hypertension and cardiovascular disease largely explained these elevated costs. PMID:26540605

  11. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review

    PubMed Central

    Vishwakarma, Sandeep K.; Bardia, Avinash; Tiwari, Santosh K.; Paspala, Syed A.B.; Khan, Aleem A.

    2013-01-01

    Since last few years, an impressive amount of data has been generated regarding the basic in vitro and in vivo biology of neural stem cells (NSCs) and there is much far hope for the success in cell replacement therapies for several human neurodegenerative diseases and stroke. The discovery of adult neurogenesis (the endogenous production of new neurons) in the mammalian brain more than 40 years ago has resulted in a wealth of knowledge about stem cells biology in neuroscience research. Various studies have done in search of a suitable source for NSCs which could be used in animal models to understand the basic and transplantation biology before treating to human. The difficulties in isolating pure population of NSCs limit the study of neural stem behavior and factors that regulate them. Several studies on human fetal brain and spinal cord derived NSCs in animal models have shown some interesting results for cell replacement therapies in many neurodegenerative diseases and stroke models. Also the methods and conditions used for in vitro culture of these cells provide an important base for their applicability and specificity in a definite target of the disease. Various important developments and modifications have been made in stem cells research which is needed to be more specified and enrolment in clinical studies using advanced approaches. This review explains about the current perspectives and suitable sources for NSCs isolation, characterization, in vitro proliferation and their use in cell replacement therapies for the treatment of various neurodegenerative diseases and strokes. PMID:25685495

  12. Role of apolipoprotein E polymorphism as a prognostic marker in traumatic brain injury and neurodegenerative disease: a critical review.

    PubMed

    Maiti, Tanmoy Kumar; Konar, Subhas; Bir, Shyamal; Kalakoti, Piyush; Bollam, Papireddy; Nanda, Anil

    2015-11-01

    OBJECT The difference in course and outcome of several neurodegenerative conditions and traumatic injuries of the nervous system points toward a possible role of genetic and environmental factors as prognostic markers. Apolipoprotein E (Apo-E), a key player in lipid metabolism, is recognized as one of the most powerful genetic risk factors for dementia and other neurodegenerative diseases. In this article, the current understanding of APOE polymorphism in various neurological disorders is discussed. METHODS The English literature was searched for various studies describing the role of APOE polymorphism as a prognostic marker in neurodegenerative diseases and traumatic brain injury. The wide ethnic distribution of APOE polymorphism was discussed, and the recent meta-analyses of role of APOE polymorphism in multiple diseases were analyzed and summarized in tabular form. RESULTS Results from the review of literature revealed that the distribution of APOE is varied in different ethnic populations. APOE polymorphism plays a significant role in pathogenesis of neurodegeneration, particularly in Alzheimer's disease. APOE ε4 is considered a marker for poor prognosis in various diseases, but APOE ε2 rather than APOE ε4 has been associated with cerebral amyloid angiopathy-related bleeding and sporadic Parkinson's disease. The role of APOE polymorphism in various neurological diseases has not been conclusively elucidated. CONCLUSIONS Apo-E is a biomarker for various neurological and systemic diseases. Therefore, while analyzing the role of APOE polymorphism in neurological diseases, the interpretation should be done after adjusting all the confounding factors. A continuous quest to look for associations with various neurological diseases and wide knowledge of available literature are required to improve the understanding of the role of APOE polymorphism in these conditions and identify potential therapeutic targets.

  13. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped

  14. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad?

    PubMed

    Saiko, Philipp; Szakmary, Akos; Jaeger, Walter; Szekeres, Thomas

    2008-01-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene; RV), a dietary constituent found in grapes and wine, exerts a wide variety of pharmacological activities. Because the grape skins are not fermented in the production process of white wines, only red wines contain considerable amounts of this compound. RV is metabolized into sulfated and glucuronidated forms within approximately 15min of entering the bloodstream, and moderate consumption of red wine results in serum levels of RV that barely reach the micromolar concentrations. In contrast, its metabolites, which may be the active principle, circulate in serum for up to 9h. RV has been identified as an effective candidate for cancer chemoprevention due its ability to block each step in the carcinogenesis process by inhibiting several molecular targets such as kinases, cyclooxygenases, ribonucleotide reductase, and DNA polymerases. In addition, RV protects the cardiovascular system by a large number of mechanisms, including defense against ischemic-reperfusion injury, promotion of vasorelaxation, protection and maintenance of intact endothelium, anti-atherosclerotic properties, inhibition of low-density lipoprotein oxidation, and suppression of platelet aggregation, thereby strongly supporting its role in the prevention of coronary disease. Promising data within the use of RV have also been obtained regarding progressive neurodegenerative maladies such as Alzheimer's, Huntington's, and Parkinson's diseases. Because neurotoxicity is often related to mitochondrial dysfunction and may be ameliorated through the inclusion of metabolic modifiers and/or antioxidants, RV may provide an alternative (and early) intervention approach that could prevent further damage. RV induces a multitude of effects that depend on the cell type (e.g., NF-kappaB modulation in cancer cells vs. neural cells), cellular condition (normal, stressed, or malignant), and concentration (proliferative vs. growth arrest), and it can have opposing activities

  15. Prominent effects and neural correlates of visual crowding in a neurodegenerative disease population.

    PubMed

    Yong, Keir X X; Shakespeare, Timothy J; Cash, Dave; Henley, Susie M D; Nicholas, Jennifer M; Ridgway, Gerard R; Golden, Hannah L; Warrington, Elizabeth K; Carton, Amelia M; Kaski, Diego; Schott, Jonathan M; Warren, Jason D; Crutch, Sebastian J

    2014-12-01

    provides a neurodegenerative disease model for exploring the basis of crowding. These data have significant implications for patients with, or who will go on to develop, dementia-related visual impairment, in whom acquired excessive crowding likely contributes to deficits in word, object, face and scene perception.

  16. Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins

    PubMed Central

    Li, Faxiang; Xie, Xingqiao; Wang, Yingli; Liu, Jianping; Cheng, Xiaofang; Guo, Yujiao; Gong, Yukang; Hu, Shichen; Pan, Lifeng

    2016-01-01

    Optineurin is an important autophagy receptor involved in several selective autophagy processes, during which its function is regulated by TBK1. Mutations of optineurin and TBK1 are both associated with neurodegenerative diseases. However, the mechanistic basis underlying the specific interaction between optineurin and TBK1 is still elusive. Here we determine the crystal structures of optineurin/TBK1 complex and the related NAP1/TBK1 complex, uncovering the detailed molecular mechanism governing the optineurin and TBK1 interaction, and revealing a general binding mode between TBK1 and its associated adaptor proteins. In addition, we demonstrate that the glaucoma-associated optineurin E50K mutation not only enhances the interaction between optineurin and TBK1 but also alters the oligomeric state of optineurin, and the ALS-related TBK1 E696K mutation specifically disrupts the optineurin/TBK1 complex formation but has little effect on the NAP1/TBK1 complex. Thus, our study provides mechanistic insights into those currently known disease-causing optineurin and TBK1 mutations found in patients. PMID:27620379

  17. Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins.

    PubMed

    Li, Faxiang; Xie, Xingqiao; Wang, Yingli; Liu, Jianping; Cheng, Xiaofang; Guo, Yujiao; Gong, Yukang; Hu, Shichen; Pan, Lifeng

    2016-01-01

    Optineurin is an important autophagy receptor involved in several selective autophagy processes, during which its function is regulated by TBK1. Mutations of optineurin and TBK1 are both associated with neurodegenerative diseases. However, the mechanistic basis underlying the specific interaction between optineurin and TBK1 is still elusive. Here we determine the crystal structures of optineurin/TBK1 complex and the related NAP1/TBK1 complex, uncovering the detailed molecular mechanism governing the optineurin and TBK1 interaction, and revealing a general binding mode between TBK1 and its associated adaptor proteins. In addition, we demonstrate that the glaucoma-associated optineurin E50K mutation not only enhances the interaction between optineurin and TBK1 but also alters the oligomeric state of optineurin, and the ALS-related TBK1 E696K mutation specifically disrupts the optineurin/TBK1 complex formation but has little effect on the NAP1/TBK1 complex. Thus, our study provides mechanistic insights into those currently known disease-causing optineurin and TBK1 mutations found in patients. PMID:27620379

  18. Implications of Parkinson's disease pathophysiology for the development of cell replacement strategies and drug discovery in neurodegenerative diseases.

    PubMed

    Pan-Montojo, Francisco; Funk, Richard H W

    2012-11-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder traditionally characterized by the loss of dopaminergic neurons in the substantia nigra (SN) at the midbrain. The potential use of adult or embryonic stem cells, induced pluriputent stem (iPS) cells and endogenous neurogenesis in cell replacement strategies has lead to numerous studies and clinical trials in this direction. It is now possible to differentiate stem cells into dopaminergic neurons in vitro and clinical trials have shown an improvement in PD-related symptoms after intra-striatal embryonic transplants and acceptable cell survival rates on the mid term. However, clinical improvement is transitory and associated with a strong placebo effect. Interestingly, recent pathological studies in PD patients who received embryonic stem cells show that in PD patients, grafted neurons show PD-related pathology. In this manuscript we review the latest findings regarding PD pathophysiology and give an outlook on the implications of these findings in how cell replacement strategies for PD treatment should be tested. These include changes in the type of animal models used, the preparation/conditioning of the cells before intracerebral injection, specially regarding backbone chronic diseases in iPS cells and determining the optimal proliferation, survival, differentiation and migration capacity of the grafted cells.

  19. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases

    SciTech Connect

    Iacopino, A.M.; Christakos, S. )

    1990-06-01

    The present studies establish that there are specific, significant decreases in the neuronal calcium-binding protein (28-kDa calbindin-D) gene expression in aging and in neurodegenerative diseases. The specificity of the changes observed in calbindin mRNA levels was tested by reprobing blots with calmodulin, cyclophilin, and B-actin cDNAs. Gross brain regions of the aging rat exhibited specific, significant decreases in calbindin{center dot}mRNA and protein levels in the cerebellum, corpus striatum, and brain-stem region but not in the cerebral cortex or hippocampus. Discrete areas of the aging human brain exhibited significant decreases in calbindin protein and mRNA in the cerebellum, corpus striatum, and nucleus basalis but not in the neocortex, hippocampus, amygdala, locus ceruleus, or nucleus raphe dorsalis. Comparison of diseased human brain tissue with age- and sex-matched controls yielded significant decreases calbindin protein and mRNA in the substantia nigra (Parkinson disease), in the corpus striatum (Huntington disease), in the nucleus basalis (Alzheimer disease), and in the hippocampus and nucleus raphe dorsalis (Parkinson, Huntington, and Alzheimer diseases) but not in the cerebellum, neocortex, amygdala, or locus ceruleus. These findings suggest that decreased calbindin gene expression may lead to a failure of calcium buffering or intraneuronal calcium homeostasis, which contributes to calcium-mediated cytotoxic events during aging and in the pathogenesis of neurodegenerative diseases.

  20. Technologies enabling autologous ne